
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0196070 A1

US 2016O196070A1

Vijayan et al. (43) Pub. Date: Jul. 7, 2016

(54) SYSTEMS AND METHODS FOR RETAINING (52) U.S. Cl.
AND USING DATABLOCK SIGNATURES IN CPC G06F 3/0608 (2013.01); G06F 3/0619
DATA PROTECTION OPERATIONS (2013.01); G06F 3/0641 (2013.01); G06F

3/065 (2013.01); G06F 3/0683 (2013.01)
(71) Applicant: CommVault Systems, Inc., Tinton Falls,

NJ (US) (57) ABSTRACT

(72) Inventors: Manoj Kumar Vijayan, Marlboro, NJ
(US); Deepak Raghunath Attarde, A system according to certain embodiments associates a S1g
Marlboro, NJ (US) nature value corresponding to a data block with one or more

s data blocks and a reference to the data block to form a signa
(21) Appl. No.: 14/967,097 ture/data word corresponding to the data block. The system

further logically organizes the signature/data words into a
(22) Filed: Dec. 11, 2015 plurality of files each comprising at least one signature/data

Related U.S. Application Data word such that the signature values are embedded in the
respective file. The system according to certain embodiments

(63) Continuation of application No. 14/040.247, filed on reads a previously stored signature value corresponding to a
Sep. 27, 2013, now Pat. No. 9.239,687, which is a respective data block for sending from a backup storage sys
continuation of application No. 12/982,100, filed on tem having at least one memory device to a secondary storage
Dec. 30, 2010, now Pat. No. 8,578,109. system. Based on an indication as to whether the data block is

(60) Provisional application No. 61/388,506, filed on Sep. already stored on the secondary storage system, the system
30, 2010. reads the data block from the at least one memory device for

s sending to the secondary storage system if the data block does
Publication Classification not exist on the secondary storage system, wherein the sig

nature value and not the data block is read from theat least one
(51) Int. Cl. memory device if the data block exists on the secondary

G06F 3/06 (2006.01) Storage System.

1OO

11 O 150

BLOCK STORAGE
GENERATION MANAGER

12O 160

SIGNATURE REMOTE
GENERATION SYNCHRONIZATION

170
130

SIGNATURE DATA
COMPARISON PACKAGING

140

DEDUPLICATION
DATABASE

Patent Application Publication Jul. 7, 2016 Sheet 1 of 7 US 2016/O196070 A1

100

110 150

BLOCK STORAGE
GENERATION MANAGER

120 160

SIGNATURE REMOTE
GENERATION SYNCHRONIZATION

170
130

SIGNATURE DATA
COMPARISON PACKAGING

140

DEDUPLICATION
DATABASE

FIG. 1

Patent Application Publication Jul. 7, 2016 Sheet 2 of 7 US 2016/O196070 A1

STORAGE MANAGER

STORAGE STORAGE
DEVICE DEVICE

FIG. 2

US 2016/O196070 A1 Jul. 7, 2016 Sheet 3 of 7 Patent Application Publication

809

~

<+- - - - - - - - - - - - - - - - - - ,\dOO)\\]\/[T]X[\\/

709

(S)INEITO OL

US 2016/O196070 A1 Jul. 7, 2016 Sheet 4 of 7 Patent Application Publication

£19. "SDI

US 2016/O196070 A1 Jul. 7, 2016 Sheet 5 of 7 Patent Application Publication

907

907

(S)INEOW WICEW 907

007_^

NOE \D^U L (S)INEITO Z07

Patent Application Publication Jul. 7, 2016 Sheet 6 of 7 US 2016/O196070 A1

START

RECEIVE DATA BLOCK FOR BACKUP

STORE SIGNATURE VALUE ALONG WITH DATABLOCK
AND/OR REFERENCE TODATABLOCK

RECEIVE NEXT
DATABLOCK

BACKUP
COMPLETE

FIG. 5A

RECEIVE AUXILARY COPY INSTRUCTIONS

READ STORED SIGNATURE VALUE

SEND SIGNATURE VALUE TO SECONDARY STORAGE

NO READ NEXT
STORED

SIGNATURE
VALUE

DATABLOCK
ALREADY AT SECONDARY

STORAGE
READ DATABLOCK
AND SENT TO

SECONDARY STORAGE

AUXILARY
COPY COMPLETE

FIG. 5B

Patent Application Publication Jul. 7, 2016 Sheet 7 of 7 US 2016/O196070 A1

START

RECEIVE DATABLOCKSAT FIRST STORAGE
SUBSYSTEM

ASSOCATE SIGNATURES WITH DATABLOCKS TO
FORM SIGNATUREIDATA WORDS

LOGICALLY ORGA
EMBEDD

NIZE WORDS INFILE WITH
ED SIGNATURES

FINISH

START

RECEIVE INSTRUCTIONS TO RETRIEVE FILE
HAVINGEMBEDDED SIGNATURES

EXTRACT STORED SIGNATURE VALUE FROM FIRST
WORD

SEND SIGNATURE VALUE TO SECOND STORAGE
SUBSYSTEM

EXTRACT DATABLOCK
ALREADY AT SECOND STORED

SIGNATURE
STORAGE SUBSYSTEM VALUE FOR

NEXT WORD
EXTRACT DATABLOCK
FROMWORD AND SEND

TO SECONDARY
STORAGE

FILERETRIEVAL
COMPLETE

FIG. 6B

US 2016/O 196070 A1

SYSTEMS AND METHODS FOR RETAINING
AND USING DATA BLOCK SIGNATURES IN

DATA PROTECTION OPERATIONS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. Any and all applications for which a foreign or
domestic priority claim is identified in the Application Data
Sheet as filed with the present application are hereby incor
porated by reference under 37 CFR 1.57.

BACKGROUND

0002 Computers have become an integral part of business
operations such that many banks, insurance companies, bro
kerage firms, financial service providers, and a variety of
other businesses rely on computer networks to store, manipu
late, and display information that is constantly subject to
change. Oftentimes, the Success or failure of an important
transaction may turn on the availability of information that is
both accurate and current. Accordingly, businesses world
wide recognize the commercial value of their data and seek
reliable, cost-effective ways to protect the information stored
on their computer networks.
0003. In corporate environments, protecting information

is generally part of a routine process that is performed for
many computer systems within an organization. For example,
a company might back up critical computing systems related
to e-commerce Such as databases, file servers, web servers,
and so on as part of a daily, weekly, or monthly maintenance
schedule. The company may also protect computing systems
used by each of its employees, such as those used by an
accounting department, marketing department, engineering
department, and so forth.
0004 AS Such, enterprises are generating ever increasing
Volumes of data and corresponding storage requirements.
Moreover, enterprise storage systems are typically distributed
over one or more networks, such as where backup storage is
remote from client computers. In Such situations, storage
system activity can place heavy demands on available net
work bandwidth.

SUMMARY

0005. In response to these challenges, one technique
developed by storage system providers is data deduplication.
Deduplication typically involves eliminating or reducing the
amount of redundant data stored and communicated within a
storage system, improving storage utilization. For example,
data can be divided into units of a chosen granularity (e.g.,
files or data blocks). As new data enters the system, the data
units can be checked to see if they already exist in the storage
system. If the data unit already exists, instead of storing
and/or communicating a duplicate copy, the storage system
stores and/or communicates a reference to the existing data
segment. Thus, deduplication can improve storage utiliza
tion, System traffic (e.g., over a networked storage system), or
both.
0006. However, deduplication techniques can be highly
computationally intensive. For example, in order to deter
mine whether a block already exists in storage, deduplication
often involves computing a Substantially unique signature or
identifier (e.g., a hash) of data segments and comparing sig
nature to signatures of existing data segments. In order to
generate the signature, the storage system typically reads the

Jul. 7, 2016

data from memory and then computes the signature. Given
the Volume of data storage systems are typically dealing with,
Such overhead can reduce performance significantly.
0007. In view of the foregoing, a need exists for a storage
system which reduces deduplication overhead, particularly
during large backup operations.
0008. In certain embodiments, a method is disclosed for
performing an auxiliary copy operation from a backup Stor
age system to a secondary storage system. The method
includes in response to instructions to copy at least Some of a
plurality of backed up data blocks from a backup storage
system comprising at least one memory device to a secondary
storage system the following, for each of the at least some
data blocks: reading, with one or more processors, a previ
ously stored signature value corresponding to the respective
data block for sending from the backup storage system to the
secondary storage system, and based on an indication as to
whether the data block is already stored on the secondary
storage system, reading the data block from the at least one
memory device for sending to the secondary storage system if
the data block does not exist on the secondary storage system,
wherein the signature value and not the data block is read
from the at least one memory device if the data block exists on
the secondary storage system.
0009. In certain embodiments, a system is disclosed for
performing an auxiliary copy operation from a backup Stor
age system to a secondary storage system. The system
includes a backup storage system comprising at least one
memory device. The system further includes a copy manage
ment module executing in one or more processors and con
figured to, in response to instructions to copy at least Some of
a plurality of backed up data blocks stored in the at least one
memory device to a secondary storage system, for each of the
at least Some data blocks: read a previously stored signature
value corresponding to the respective data block for sending
from the backup storage system to the secondary storage
system; and on an indication as to whether the data block is
already stored on the secondary storage system, to read the
data block from the at least one memory device for sending to
the secondary storage system if the data block does not exist
on the secondary storage system, wherein the signature value
and not the data block is read from the at least one memory
device if the data block exists on the secondary storage sys
tem

0010. In certain embodiments, a method is disclosed for
communicating data from a first storage system to a second
storage system. The method includes in response to instruc
tions to send at least Some of a plurality of data blocks from a
first storage system to a second storage system, for each of the
at least some data blocks: reading, with one or more proces
sors, a previously stored signature value corresponding to the
respective data block for sending from the first storage system
to the second storage system, and based on an indication as to
whether the data block is already stored on the second storage
system, reading the data block for sending to the second
storage system if the data block does not exist on the second
storage system, wherein the signature value and not the data
block is read if the data block exists on the second storage
system.
0011. In certain embodiments, a method is disclosed for
performing an auxiliary copy operation from a backup Stor
age system to a secondary storage system comprising dedu
plicated data. The method includes for each of a plurality of
data blocks involved in a backup storage operation, storing

US 2016/O 196070 A1

with one or more processors a signature value corresponding
to the data block and one or more of the data block and a
reference to the data block on at least one memory device of
a backup storage system. The method further includes in
response to instructions to perform an auxiliary copy of at
least a subset of the plurality of data blocks to a secondary
storage system comprising deduplicated data, for each data
block in the subset of data blocks: reading the previously
stored signature value corresponding to the respective data
block from the at least one storage device for sending to the
secondary storage system, and based on an indication as to
whether the data block is already stored on the secondary
storage system, reading the data block from the at least one
storage device for sending to the secondary backup storage
system if the data block is not already stored on the secondary
backup storage system, wherein the signature value and not
the data block is read from the at least one storage device if the
data block is already stored on the secondary backup storage
system.
0012. In certain embodiments, a system is disclosed for
performing an auxiliary copy operation from a backup Stor
age system to a secondary backup storage system. The system
includes a backup storage system comprising at least one
memory device and in networked communication with a sec
ondary backup storage system. The system further includes a
data packaging module executing in one or more processors
and configured to, for each of a plurality of data blocks
involved in a backup storage operation, Store a signature value
corresponding to the data block and store one or more of the
data block and a reference to the data block on the at least one
memory device. The system further includes a copy manage
ment module executing in one or more processors and con
figured to, for each data block in the subset of data blocks and
in response to instructions to perform a copy of at least a
subset of the plurality of data blocks to the secondary backup
storage system, read the previously stored signature value
corresponding to the data block from the at least one storage
device for sending to the secondary storage system, and based
on an indication as to whether the data block is already stored
on the secondary storage system, read the data block from the
at least one storage device for sending to the secondary
backup storage system if the data block is not already stored
on the secondary backup storage system, wherein the signa
ture value and not the data block is read from the at least one
storage device if the data block is already stored on the sec
ondary backup storage system.
0013. In certain embodiments, a method is disclosed for
storing data at a backup storage system. The method includes
for each of a plurality of data blocks involved in a backup
storage operation, with one or more processors, associating a
signature value corresponding to the data block with one or
more of the data blocks and a reference to the data block to
form a signature/data word corresponding to the data block,
and logically organizing the signature/data words into a plu
rality of files each comprising at least one signature/data word
Such that the signature values are embedded in the respective
file.

0014. In certain embodiments, a system is disclosed for
storing data at a backup storage system. The system includes
at least one memory device. The system further includes a
data packaging module executing in one or more processors.
The data packaging module is configured to, for each of a
plurality of data blocks involved in a backup storage opera
tion, associate a signature value corresponding to the data

Jul. 7, 2016

block with one or more of the data blocks and a reference to
the data block to form a signature/data word corresponding to
the data block, and logically organize the signature/data
words into a plurality of files each comprising at least one
signature/data word Such that the signature values are embed
ded in the respective file.
0015. In certain embodiments, a method is disclosed for
storing data at a storage system. The method includes, for
each of a plurality of data blocks involved in a storage opera
tion, with one or more processors, associating a signature
value corresponding to the data block with one or more of the
data blocks and a reference to the data block to form a signa
ture/data word corresponding to the data block, and logically
organizing the signature/data words into a plurality of files
each comprising at least one signature/data word Such that the
signature values are embedded in the respective file.

BRIEF DESCRIPTION OF THE DRAWINGS

0016 FIG. 1 is a block diagram that illustrates compo
nents of an example storage system configured to implement
techniques compatible with embodiments described herein.
0017 FIG. 2 illustrates a block diagram of an example
network storage architecture compatible with embodiments
described herein.
0018 FIG. 3A illustrates a block diagram of an example
storage system configured to perform backup and auxiliary
copy operation in accordance with embodiments described
herein.
0019 FIG. 3B illustrates a logical diagram of an example

file stored in the storage system of FIG. 3A and organized in
accordance with embodiments described herein.
0020 FIG. 4 illustrates a block diagram of another
example storage system in accordance with embodiments
described herein.
0021 FIG. 5A-B illustrate flow charts of example backup
and auxiliary copy operations, respectively, in accordance
with embodiments described herein.
0022 FIG. 6A illustrates a flow chart of an example data
packaging operation in accordance with embodiments
described herein.
0023 FIG. 6B illustrates a flow chart of an example pro
cess of retrieving a file stored according to the process of FIG.
6A in accordance with embodiments described herein.

DETAILED DESCRIPTION

0024. As will be seen from the disclosure herein, certain
embodiments of systems and methods are provided for pro
viding reduced overhead during operations involving dedu
plicated data. In particular, embodiments described herein
store signature values along with their associated data blocks.
Words including the signature values and data blocks (and/or
data block references) can be stored generally at the time the
data blocks are written, Such as during a backup operation.
0025 Thus, the signature values are generally embedded
along with the data blocks and are readily accessible for later
access, such as during an auxiliary copy. When a data block is
requested for communication to a destination storage system
from a source storage system, the signature value is initially
read by the storage system and the data block itself is not. If
the system determines that data block does not exist at the
destination storage system using the signature, the data block
itself is then read and communicated to the destination Stor
age system. On the other hand, if the data block exists at the

US 2016/O 196070 A1

destination storage system, the data block is not communi
cated to the destination storage system, and is not read at the
Source storage system.
0026. Thus, according to embodiments, when data blocks
are already at the destination storage system, they are not read
at the Source, reducing the amount of data reads at the Source
storage system. While the signature value is read at the Source
storage system, the signature value is typically significantly
Smaller than the data block, so the amount of overhead asso
ciated with reading the signature is substantially lower than
for the data blocks themselves. Moreover, according to cer
tain embodiments, because the signature value is generally
persistently stored along with the data, the signature value
does not need to be regenerated when the data block is
requested by the target system, Substantially reducing com
putational overhead in the aggregate.
0027. The performance improvement resulting from such
techniques can be significant, particularly during storage
operations involving the transfer of large amounts of data,
Such as during auxiliary copy operations from a primary
backup storage system to a secondary backup storage system.
0028. The features of the systems and methods will now be
described with reference to the drawings summarized above.
Throughout the drawings, reference numbers are re-used to
indicate correspondence between referenced elements. The
drawings, associated descriptions, and specific implementa
tion are provided to illustrate embodiments of the invention
and not to limit the scope of the disclosure.
0029. In addition, methods and functions described herein
are not limited to any particular sequence, and the acts or
blocks relating thereto can be performed in other sequences
that are appropriate. For example, described acts or blocks
may be performed in an order other than that specifically
disclosed, or multiple acts or blocks may be combined in a
single act or block.
0030 Additionally, while described primarily with
respect to block-level deduplication techniques, certain
embodiments described herein are compatible with file-level
deduplication, or deduplication involving other levels of
granularity.

System Overview

0031 FIG. 1 is a block diagram that illustrates compo
nents of an example storage system 100 configured to imple
ment deduplication techniques compatible with embodi
ments of the invention. The deduplication system 100
contains a block generation module 110, a signature genera
tion module 120, a signature comparison module 130, a dedu
plication database (DDB) component 140, a storage manager
module 150, a remote synchronization module 160, and a
data packaging module 170.
0032. The block generation module 110 generally oper
ates on incoming data to break the data up into blocks which
are then processed for deduplication. In various embodi
ments, the block generation module 110 can create blocks
according to a number of policies. In some embodiments, for
example, the blocks comprise fixed length segments of data.
In other embodiments, blocks have variable lengths. Accord
ing to certain embodiments, the block generation module 110
aligns the blocks intelligently based on the data content. Such
techniques can increase the likelihood that generated blocks
will contain duplicate data, thereby improving the amount of
data reduction achieved via deduplication. Whether variable

Jul. 7, 2016

or fixed, a variety of block lengths are possible. For example,
blocks can be 32 kilobytes (kB), 64 kB, 128 kB, 512 kB, or
Some other value.
0033. The signature generation module 120 generates a
Substantially unique signature or identifier of a block. The
signature, which is used to determine if another block is
already stored at the relevant storage system location matches
the block used to generate the signature. The signature com
parison module 130 performs comparisons of the generated
signatures of previously received and/or stored blocks to
determine if they contain the same data (or, in some other
embodiments, Substantially similar data) as existing blocks.
The results of the comparison indicate whether the previously
received blocks are candidates for deduplication.
0034. The signature generation module 120 may generate,
and the signature comparison module 130 may thus compare,
a variety of Substantially unique signature types. In one
embodiment, for example, the signature is a hash value. In
other embodiments, the signature can be a message digest,
checksum, digital fingerprint, digital signature or other
sequence of bytes that Substantially uniquely identifies the
relevant data block. The term “substantially' is used to
modify the term “unique identifier because algorithms used
to produce hash values may result in collisions, where two
different files or data objects result in the same hash value.
However, depending upon the algorithm or cryptographic
hash function used, collisions should be suitably rare and thus
the signature generated for block should be unique through
out the storage system 100.
0035. The deduplication database 140 (DDB) is a data
store that contains entries identifying data managed by the
deduplication system 100, and may also contain Supplemen
tal information associated with files and/or blocks, such as
signatures, paths, locations, reference counts, file sizes, or
other information.
0036. The storage operation manager module 150 coordi
nates storage operations and invokes the other modules of the
storage system 100 as needed to perform requested Storage
operations. For example, the storage manager module 150
may include an application used by an administrator to man
age the system 100. The storage operation manager module
150 may also maintain indexes of the data objects and each of
the references to those data objects through the system 100, as
well as pending operations on the data objects that are part of
a data management plan of an organization implementing the
single instancing system 100.
0037. The storage system 100 can be a networked storage
system configured to perform deduplication at one or more
nodes in the system 100, and one or more of the components
of the system 100 may be distributed across or instantiated at
multiple nodes in the system.
0038. Additionally, the system 100 can reduce the amount
of data communicated across the network using deduplica
tion techniques. For example, the synchronization module
160 performs deduplication between locations that are
remote from one another, Such as between a backup storage
system and a secondary backup storage system, between a
backup storage system and secondary backup storage,
between a client system and a backup storage system,
between an enterprise or organization having a headquarters
or central office and one or more satellite or remote offices,
and the like.
0039. The synchronization module 160 can use the tech
niques described in further detail hereinto determine whether

US 2016/O 196070 A1

a block should be communicated between the remote loca
tions, or whether only a reference to the block should be
communicated instead. As used in this context, the term
“remote' can mean the modules are at different locations on
the network, are physically or logically removed from one
another, etc.
0040. The data packaging module 170 can be generally
configured to format data in the storage system 100 in an
intelligent manner. For example, the data packaging module
170 according to certain embodiments generally associates
and writes signature values along with the corresponding data
blocks and/or block references. As is described in greater
detail herein, associating and storing the signatures and/or
references along with the data blocks can improve system
performance.
0041 As described in greater detail herein, redundant data
may be detected and reduced at several locations throughout
the system and/or times throughout the operation of the sys
tem. The embodiments provided herein only as examples, and
are not intended to be an exhaustive list of the way in which
the system can be implemented. In general, the systems and
methods described with respect to any FIGS. 2-6B may
include or be performed by the modules included in the sys
tem 100 of FIG. 1.
0042 FIG. 2 illustrates a block diagram of an example
network storage architecture compatible with embodiments
described herein. For example, in certain embodiments, one
or more of the components of the storage system 100 shown
in FIG. 1 are implemented on a networked storage system
such as the one shown in FIG.2. The system 200 is configured
to perform storage operations on electronic data in a com
puter network. As shown, the system includes a storage man
ager 200 and one or more of the following: a client 285, an
information store 290, a data agent 295, a media agent 205, an
index cache 210, and a storage device 215.
0043. A data agent 295 can be a software module that is
generally responsible for archiving, migrating, and recover
ing data of a client computer 285 stored in an information
store 290 or other memory location. Each client computer 285
has at least one data agent 295 and the system can Support
many client computers 285. The system provides a plurality
of data agents 295 each of which is intended to backup,
migrate, and recover data associated with a different applica
tion. For example, different individual data agents 295 may be
designed to handle Microsoft ExchangeTM data, Microsoft
Windows file system data, and other types of data known in
the art. If a client computer 285 has two or more types of data,
one data agent 295 may be implemented for each data type to
archive, migrate, and restore the client computer 285 data.
0044) The storage manger 200 is generally a software
module or application that coordinates and controls the sys
tem. The storage manager 200 communicates with all ele
ments of the system including client computers 285, data
agents 295, media agents 205, and storage devices 215, to
initiate and manage system backups, migrations, recoveries,
and the like.
0045. A media agent 205 is generally a software module
that conducts data, as directed by the storage manager 200,
between locations in the system. For example, the media
agent may conduct data between the client computer 285 and
one or more storage devices 215, between two or more stor
age devices 215, etc. The storage devices 215 can include a
tape library, a magnetic media storage device, an optical
media storage device, or other storage device. Although not

Jul. 7, 2016

shown in FIG. 2, one or more of the media agents 205 may
also be communicatively coupled to one another.
0046 Each of the media agents 205 can be communica
tively coupled with and control at least one of the storage
devices 215. The media agent 205 generally communicates
with the storage device 215 via a local bus. In some embodi
ments, the storage device 215 is communicatively coupled to
the media agent(s) 205 via a Storage Area Network ("SAN).
0047. Further embodiments of systems such as the one
shown in FIG. 2 are described in application Ser. No. 10/818,
749, now U.S. Pat. No. 7,246,207, issued Jul.17, 2007, which
is incorporated by reference herein. In various embodiments,
components of the system may be distributed amongst mul
tiple computers, or one or more of the components may reside
and execute on the same computer.
0048. Furthermore, components of the system of FIG. 2
can also communicate with each other via a computer net
work. For example, the network may comprise a public net
work such as the Internet, virtual private network (VPN),
token ring or TCP/IP based network, wide area network
(WAN), local area network (LAN), an intranet network,
point-to-point link, a wireless network, cellular network,
wireless data transmission system, two-way cable system,
interactive kiosk network, satellite network, broadband net
work, baseband network, combinations of the same or the
like.
0049 Additionally, the various components of FIG.2 may
be configured for deduplication. For example, one or more of
the clients 285 can include a deduplicated database (DDB).
The data stored in the storage devices 215 may also be dedu
plicated. For example, one or more of the media agents 205
associated with the respective storage devices 215 can man
age the deduplication of data in the storage devices 215.

Example System

0050 FIG. 3A illustrates a block diagram of a storage
system 300 in accordance with embodiments described
herein. The system 300 includes a backup storage subsystem
302 including at least one first media agent 304 and at least
one backup database 306. Because the backup database 306
can contain deduplicated data, it is also referred to as a backup
deduplicated database, or backup deduplication database
(backup DDB). The system 300 further includes a secondary
backup storage Subsystem 308 including at least one second
media agent 310 and at least one secondary storage database
312. Again, because the secondary backup database 312 can
contain deduplicated data, it is also referred as a secondary
storage deduplicated database, or secondary storage dedupli
cation database (secondary storage DDB).
0051. The system 300 is advantageously configured to
provide improved performance during data operations. The
first media agent 304 is in communication with one or more
client systems (not shown). For example, the first media agent
304 generally receives data from the client systems for
backup operations, and can also be configured to send certain
backed up data to the client systems, such as during a restore
operation.
0.052 The first media agent 304 generally conducts the
data to and from the backup DDB 306 for storage and retrieval
(e.g., during backup and restore operations, respectively). In
one example scenario, the first media agent 304 receives a
data block (or group of data blocks) from the client system for
backup. The first media agent 304 determines whether the
data block already exists at the backup DDB 306. For

US 2016/O 196070 A1

example, the first media agent 304 can generate a signature
(e.g., a hash value) corresponding to the data block and com
pare the signature to values in a signature table 314. The
signature table 314 generally stores signatures corresponding
to one or more of the data blocks already stored in the backup
DDB 306.

0053. In other embodiments, the first media agent 304
does not generate the hash itself, but instead receives the hash
from the client system. If there is a match, the media agent
304 stores the data block in the DDB 306. Otherwise, the
media agent 304 may store only a reference to the data block.
The hash table 314 may reside at the media agent 304 as
shown, at the backup DDB 306, or at some other location. In
some embodiments, no hash table 314 is maintained.
0054 According to certain aspects, when writing the data

to the backup DDB 306, the first media agent 304 formats or
packages the data such that performance of Subsequent Stor
age operations is enhanced. FIG. 3B shows a detailed view of
the example packaged data file 316 stored on the backup DDB
306. The file 316 includes a file header 316a, one or more
block headers 316b, and one or more data blocks 3.16c. Gen
erally, the data packaging operations described herein such as
the data packaging operations described with respect to any of
FIGS. 3-6 may be performed by a data packaging module
executing on one or more of the components in the system.
For example, a data packaging module may be implemented
on the storage manager, media agents (e.g., one or more of the
media agents 304,310 shown in FIG. 3A), or a combination
thereof.

0055. The file header 316a generally includes information
related to the file such as a file name or identifier, information
related to the application that created the file, user access
information, or other metadata related to the file.
0056. The block headers 316b can each include a block
reference 316d (e.g., a pointer or link) and substantially
unique signature 316e (e.g., a hash) corresponding to an
associated data block. While not shown to Scale, the signa
tures 316e and/or block references 316b according to certain
embodiments are significantly Smaller than the correspond
ing data blocks. For example, in one embodiment, the data
blocks are 512 kB, and the signatures are 64 bytes, although
other values can be used, such as 128, 256 or 512 bytes, or
lesser or greater values. In other embodiments, the files 316
can include data blocks and/or signatures having variable
lengths.
0057 The ratio between the size of the data blocks and the
size of the signature value is selected to calibrate system
performance in certain embodiments. For example, in the
above-described embodiment where the data blocks are 512
kB and the signature values are 64 bytes, the ratio is config
ured to be 8192. In another embodiment, the size of the data
blocks is variable (e.g., selectable by a user) and ranges from
between 32 kB and 512kB, while the signature values are 64
bytes. In such an embodiment, the ratio is at least about 512.
In various configurations, the ratio can be configured to be at
least about 128, 256, 512, 1024, 2048, 4096, 8192, 16,384,
32,768, 65,536, at least about some other lesser or greater
power of two, or at least about some other value.
0058 Where a data block has not been deduplicated, the
associated block reference 316d can point to the correspond
ing data block 3.16c itself in the file 316. For example, in the
example file 316 the data blocks 3.16c1 and 316c2 have not
been deduplicated. Thus, the block reference 316d1 points to
the data block 316 c1. Stored in the file 316 and the block

Jul. 7, 2016

reference 316d-4 points to the data block 316c2 in the file 316.
However, where a data block in the file has been deduplicated,
the block reference 316b points to a previously existing copy
of the data block, and the data block itself may not be stored
in the file 316. For example, the block reference 316d2 points
to a previously existing data block at Some other location in
the backup DDB 306, such as a data block in another file.
Where redundant data blocks exist within the same file, a
block reference 316d can point to a previously existing copy
of the data block within that same file. For example, the block
reference 316d3 points to the data block 316c1 in the file 316.
0059. As shown, the media agent 304 can package the data
such that the signatures 316e are embedded in the file 316 and
associated with the corresponding block references 316d and/
or data blocks 316c. For example, the signatures 316e in one
embodiment are stored in generally logically or physically
contiguous memory space with the corresponding block ref
erence 316d and/or data block 3.16c, or are otherwise logi
cally associated. The groupings defined by the media agent
304 and including the respective signature values 316e, data
block references 316d and/or data blocks 316 care referred to
herein as signature/data words. Example data packaging pro
cesses are described in further detail herein, with respect to
FIGS.5A and 6A, for instance. In certain embodiments, link
information can be added that includes information regarding
the physical location of the actual data block. For example,
the link information can include identifiers indicating the
machine and/or path at which the data block is stored, an
offset associated with the block, Such as an offset indicating a
position of the data block in the relevant file, and the like. In
Some embodiments, link information is added for each sig
nature 316e. For example, the link information can be
included in the block reference 316d in some embodiments,
or in Some other data structure.
0060 Embedding the signature values in the signature/
data words along with the data and/or data block references
316d is generally in contrast to where the signatures 316e are
stored in a separate hash table, such as the hash table 314. For
example, the hash table 314 may be used by the media agent
304 during backup for deduplication purposes, to determine
whether incoming blocks are redundant. On the other hand,
the signatures 316e embedded in the file 316 may be used for
other specialized purposes, such as during copy or other
operations, to quickly access the signature values as the
operation is performed. Thus, in at least Some embodiments,
such as where the system 300 includes both a signature table
314 and signature values 316e embedded along with the data
blocks 3.16c and/or block references 316b, the media agent
304 may maintain multiple instances of at least some signa
ture values.
0061. In some other alternative embodiments, the signa
tures 316e are stored in a separate hash table rather than being
embedded along with the data blocks 316c and/or block ref
erences 316b. In such embodiments, the separate hash table
may be in addition to the hash table 314, and the backup
Subsystem may therefore include at least first and second hash
tables.

Example Auxiliary Copy Operation

0062 Still referring to FIG.3, in certain embodiments, the
system 300 performs an auxiliary copy of data from the
backup DDB 306 to the secondary storage DDB 312. More
over, the system 300 can utilize certain advantageous aspects
described herein to reduce the overhead and time associated

US 2016/O 196070 A1

with executing the auxiliary copy, improving system perfor
mance. Generally, the data transfer operations described
herein Such as the auxiliary copy operations described with
respect to any of FIGS. 3-6 may be performed by a copy
management module executing on one or more of the com
ponents in the system. For example, a copy management
module may be implemented on the storage manager, media
agents (e.g., one or more of the media agents 304,310 shown
in FIG. 3A), or a combination thereof.
0063. In an example scenario, the first media agent 304
receives instructions to perform an auxiliary copy. The aux
iliary copy may be scheduled (e.g., daily, weekly, etc.), and
may be initiated by a storage manager (not shown). In other
embodiments, the media agent 304 may initiate the auxiliary
copy itself. Upon receiving the instructions, the first media
agent 304 begins the copy operation.
0064. In order to reduce the amount of data being sent to
the second media agent 310 during the copy, the first media
agent 304 sends signatures of corresponding data blocks to be
copied to the second media agent 310 before sending the data
blocks themselves. The second media agent 310 can check to
see if the received signatures match the signatures of data
blocks already existing at the secondary storage DDB 312.
For example, the second media agent 310 compares the
received signatures to entries in a signature table 318 (e.g., a
hash table). If a data block already exists at the secondary
storage DDB 312, the second media agent 310 stores a refer
ence to the existing copy of the data block in the secondary
storage DDB 312, and the first media agent 304 does not need
to send the actual data block. If a data block does not exist at
the secondary storage DDB 312, the second media agent 310
informs the first media agent 304, and the first media agent
304 will send the actual data block.

0065. As discussed, the first media agent 304 writes the
signature values 316e along with the data during the initial
backup storage operation. For example, the signature values
316e are embedded with the data in the signature/data words.
Thus, when the auxiliary copy request occurs at a later point
in time, the signature values 316e are advantageously readily
accessible by the first media agent 304 without having to read
the data or generate the signature value at that point. As such,
the first media agent 304 can efficiently retrieve the signature
values 316e and send them to the second media agent 310. To
access the signature values 316e, a lookup may be performed
on the second media agent 310 to see if the hash already
exists. If the hash already exists, the data block is not read or
sent to the second media agent 310 as discussed in further
detail herein.

0066 For example, because the signature values 316e are
generally significantly smaller than the data (e.g., 64BVersus
512kB), reading the signature values from the backup DDB
306 can consume less resources and/or take less time than
reading the data blocks themselves to generate the signature
values.
0067. Additionally, because the signature values are
embedded in the file 316 and associated with the correspond
ing block references 316b and/or data blocks 316 c1, the sig
nature values are readily accessible during the auxiliary copy
operation. For example, during the copy operation, the media
agent 304 can generally traverse the signature/data words in
the file 316 and extract the signature values 316e. Example
processes for reading the signature values 316e and/or data
blocks 3.16c are described in further detail herein, with
respect to FIGS. 5B and 6B, for instance.

Jul. 7, 2016

0068. It should be noted that a trade off exists between the
improved performance achieved by techniques described
herein and a corresponding reduction in storage utilization.
This is because storing signature values 316e along with the
corresponding block references 316b and/or data blocks 316c
consumes additional storage.
0069. Thus, depending on what resources are available,
according to certain embodiments, system parameters can be
tuned to achieve an appropriate balance between additional
storage overhead and improved performance. Such param
eters can include the size of the signatures 316e, the size of the
data blocks 3.16c, the ratio between the signature size and
block size, and the like. Additionally, the system 300 can
allow manually tuning of these parameters by System opera
tors and/or perform automatic tuning. For example, the sys
tem300 in one embodiment performs parameter tuning based
on the amount of available storage, the processing or memory
capacity of the media agent 304, or the like. In other embodi
ments, the system 300 allows for manually or automatically
disabling the storage of the signature values 316e along with
the block references 316b and/or data blocks 316C.

Other Example Implementations and Contexts

0070 Embodiments have been described in the context of
improving auxiliary copy performance between a backup
storage system and a secondary storage system. While certain
embodiments may be particularly well suited for such appli
cation, the concepts described herein are not limited to aux
iliary copy operations. Rather, it will be appreciated that the
concepts described herein may be used in a variety of other
contexts involving deduplicated data, Such as during primary
backup operations, restore operations, data replication, and
the like. FIG. 4 shows one such context, where a storage
system 400 includes a primary subsystem 401 including a
client system 402 in communication with a primary database
404, which may comprise a deduplicated database (DDB).
The system 400 also includes a backup subsystem 403 includ
ing a media agent 406 in communication with a backup dedu
plication database 408, which may also comprise a dedupli
cated database (DDB).
0071. In one embodiment, the client organizes data stored
on the primary DDB 404 in a manner similar to how the first
media agent 304 organizes the data on the backup DDB 306
shown in FIGS. 3A-3B. Thus, files stored on the primary
DDB 404 includes signature values embedded with corre
sponding data blocks and/or references to corresponding data
blocks in the manner described with respect to FIGS. 3A-3B.
0072. As such, it will be appreciated that the system 300
can provide improved performance for operations between
the primary subsystem 401 and the backup subsystem 403.
One Such operation can include a backup operation in which
data from the primary DDB 404 is sent to the backup sub
system 403 for storage in the backup DDB 408.

Example Processes

(0073 FIG. 5A-B illustrate flow charts of example backup
and auxiliary copy operations, respectively, usable by the
storage system of FIG. 3 in accordance with embodiments
described herein. Referring to FIG. 5A, the process 500
begins when a backup operation is initiated (e.g., by a storage
manager or other component). At block 502, the process 500
receives a data block or group of data blocks for backup. For

US 2016/O 196070 A1

instance, the data block or group of data blocks may be
received by the first media agent 304 from one or more client
systems.
0074 At block 504, the process 500 stores a signature
value corresponding to the data block along with the data
block and/or a reference to the data block. For example, the
media agent 304 may compute a hash or other signature value
based on the data block, or may instead receive the hash from
the client system. In certain embodiments, the process 500
stores the reference (e.g., pointer or link) to the data block
instead of the data block itself when the data block already
exists in the backup DDB 306. The media agent 304 may
consult a hash table 314 or other appropriate data structure to
make the determination, for example. In some embodiments,
the media agent 305 initially only receives a signature value
corresponding to a data block from the client system, and not
the data block itself. In Such cases, the client system generally
only sends the data block after the media agent 304 deter
mines that the data block is not already stored in the backup
DDB 306 and sends a corresponding indication to the client
system.
0075. At block 506, the process 500 determines if the
backup operation is complete. For example, the client system
or storage manager may indicate to the media agent that the
backup operation is complete. If the backup operation is not
complete, the media agent 304 receives the next data block or
group of data blocks for backup from the client system at
block 508 and continues the backup process. If the process
508 determines that the backup operation is complete, the
process terminates.
0076 Referring to FIG. 5B, the process 550 at block 552
receives instructions to perform an auxiliary copy operation.
For example, the media agent may receive the instructions
from a storage manager component, from the client system,
the second media agent 310, or some other entity. In some
embodiments, a human operator manually instructs the sys
tem 300 to perform an auxiliary copy. In yet another configu
ration, the instructions can be received from the first media
agent 304 itself, such as where an internal scheduler residing
on the first media agent 304 instructs it to performan auxiliary
copy (e.g., at predetermined intervals).
0077. At block 554, the process 550 reads the stored sig
nature value corresponding to the first data block (or group of
data blocks). Because the signature value was embedded
along with the corresponding data block and/or reference to
the data block, as described above with respect to the backup
process 500, the signature value is readily available to the
process 550. Thus, the process 550 does not have to read the
data block from the backup DDB 306 in order to generate the
signature value, reducing operational overhead.
0078. Then, at block 556, the process 550 sends the sig
nature value (or group of signature values) to the secondary
storage subsystem 308. For example, the process 550 sends
the signature value to the second media agent 310.
0079. The process 550 receives an indication as to whether
the data block corresponding to the sent signature value is
already stored at the secondary storage DDB 312 at block
558. For example, the second media agent 310 may receive
the signature value from the first media agent 304 and consult
the signature table 318 to determine whether the data block is
already stored at the secondary storage DDB 312. The second
media agent 310 may then send the first media agent 304 the
indication based on this determination. As will be appreci

Jul. 7, 2016

ated, a variety of other mechanisms are possible for this
handshaking operation between the first and second media
agents 304,310.
0080. If the data block (or group of data blocks) is not
already stored at the secondary storage DDB 312, at block
560 the process 550 reads the data block itself from the
backup DDB 306 and sends the data block to the second
media agent 310 for storage in the secondary storage DDB
312. After sending the data block, the process 550 determines
whether the auxiliary copy operation is complete at block
562. For example, the media agent 304 may detect that each
data block on the backup DDB 306, or at least each data block
scheduled for copy, has been copied to the secondary storage
DDB 312. If the data block is already stored at the secondary
storage DDB 312, the process does not read the data block,
and instead moves generally directly to block 562.
I0081. If the auxiliary copy operation is complete, the pro
cess 550 finishes. On the other hand, if the auxiliary copy
operation is not complete, the process 550 reads the next
stored signature value (or group of signature values) and
continues the copy operation to completion. While described
in terms of an auxiliary copy operation from a backup storage
system to a secondary backup storage system, the techniques
and advantages described with respect to the processes 500,
550 of FIGS. 5A-5B may be achieved in a variety of other
contexts, such as in a primary backup operation from one or
more client systems to a backup system, or the like.
I0082 FIG. 6A illustrates a flow chart of an example data
packaging process 600 in accordance with embodiments
described herein. Generally, the data packaging process 600
can be usable by any of the storage systems described herein.
For example, the data packaging operation may be usable by
the system 300 of FIG. 3 to create the example file 316
described above and shown in FIGS. 3A-3B. The processes
600, 650 shown in FIGS. 6A-B will be described with respect
to the file 316 of FIG. 3 for the purposes of illustration,
although other file structures may be compatible.
I0083. At block 602, the process 600 receives a plurality of
data blocks for storage in a first storage Subsystem. As will be
appreciated, the first storage Subsystem may comprise a vari
ety of entities in a storage system, such as any of a backup
system, secondary storage system, client system, or the like in
a networked storage system. The data blocks may be received
serially, in groups, or in some other manner, depending on the
system's data communication protocol.
I0084. At block 604, the process 600 associates signature
values 316e with corresponding data blocks 3.16c and/or ref
erences 316b to the corresponding data blocks to form signa
ture/data words. The association may be in the form of a
logical association, physical association, or both. For
example, the signature values 316e, corresponding data
blocks 316c, and/or references 316b to the corresponding
data blocks may be arranged in logically or physically con
tiguous memory space. As an example, referring to FIG. 3B.
each hash.316e, block reference 316b/data block 316c group
ing in the file 316 generally constitutes a signature/data word.
It will be appreciated that the associations may occur gener
ally serially or incrementally as data block or groups of data
blocks are received.
I0085. At block 606, the process 600 logically organizes
the signature/data words in a file 316 such that the signature
values are embedded in the file. As such, the signature values
are readily accessible by the system 300. For example, by
traversing the file 316, the process 600 can readily determine

US 2016/O 196070 A1

which hash value 316e corresponds to the current data block
3.16c in the file. Thus, the hash values 316e can be accessed
efficiently without having to regenerate the value or read the
data block.
I0086 FIG. 6B illustrates a flow chart of an example pro
cess 650 of retrieving a file stored according to the process of
FIG. 6 in accordance with embodiments described herein.
The process 650 receives instructions at block 652 to retrieve
a file 316 or portion thereof stored at a first storage subsystem
having embedded signature values 316e and stored at a first
storage Subsystem, according to certain embodiments.
0087. The instructions can be received from a source
external to the first storage Subsystem, or can be internally
generated (e.g., by a scheduler or the like). While the process
650 is described in the context of a file retrieval, the data
retrieval may be for other granularities of data, such as a
subset of data blocks or a single data block 3.16c. In one
embodiment, the first storage Subsystem is instructed to
retrieve subsets of data blocks 3.16c or individual data blocks
3.16c from multiple different files.
0088. The file retrieval instructions generally comprise
any request to access the file 316. Such accesses may be for
the purposes of sending data to another location in a net
worked storage system, Such as for backup, replication, aux
iliary copy, or for Some other purpose.
I0089. At block 654, the process 650 extracts the stored
signature value 616e from the first requested word, such as the
first word in the file 316. For example, in response to a request
to retrieve the file 316 shown in FIGS. 3A-3B, the process 300
extracts the first hash value 316e1 associated with the first
data block 316 c1. The process 650 can extract the signature
value 316e in a variety of ways. For example, the process 650
may traverse the each signature/data word in the file 316
sequentially, identifying and reading the signature values
316e during the traversal.
0090. Once the signature value 316e is extracted, the pro
cess 650 sends the signature value to a second storage Sub
system in the storage system (e.g., secondary storage system,
backup storage system, etc.) at block 656. At block 658, the
process 650 determines whether or not the data block already
exists at the second storage Subsystem. Although a variety of
handshaking mechanisms may be used, in one embodiment,
the second storage subsystem consults a signature table using
the received signature and sends an indication to the first
storage Subsystem whether or not the data block already
exists at the second storage Subsystem.
0091) If the block does not exist at the second storage
subsystem, the process 650 at block 658 extracts the data
block 316c from the current signature/data word and sends it
to the secondary storage Subsystem. The extraction of the data
block 3.16c may be generally similar to that of the signature
value 316e described above. Once the data block has been
sent, the process 650 determines whether or not the file
retrieval is complete at block 660. For example, the process
650 may detect that it has traversed the entire file 316 or group
of files, or may receive an indication from Some external
Source that the retrieval process is complete.
0092) If, at block 658 the process 650 determined that the
data block already existed at the second storage system, the
process 650 moves directly to block 660 without extracting or
sending the data block itself. In such cases, the process 650
advantageously does not read the data block at all during the
retrieval process. If the file retrieval process is complete, the
process 650 terminates. If not, the process 650 extracts the

Jul. 7, 2016

stored signature value 316e for the next signature/data word,
and continues the retrieval process accordingly. For example,
the process 650 may traverse to the next signature/data word
in the file 316 and extract and send the signature value 316e2
corresponding to the deduplicated data block referenced by
the block reference 316b2.

TERMINOLOGYAADDITIONAL
EMBODIMENTS

0093. In certain embodiments of the invention, operations
disclosed hereincan be used to copy or otherwise retrieve data
of one or more applications residing on and/or being executed
by a computing device. For instance, the applications may
comprise Software applications that interact with a user to
process data and may include, for example, database appli
cations (e.g., SQL applications), word processors, spread
sheets, financial applications, management applications,
e-commerce applications, browsers, combinations of the
same or the like. For example, in certain embodiments, the
applications may comprise one or more of the following:
MICROSOFTEXCHANGE, MICROSOFT SHAREPOINT,
MICROSOFT SQL SERVER, ORACLE, MICROSOFT
WORD and LOTUS NOTES.
0094 Moreover, in certain embodiments of the invention,
data backup systems and methods may be used in a modular
storage management system, embodiments of which are
described in more detail in U.S. Pat. No. 7,035,880, issued
Apr. 5, 2006, and U.S. Pat. No. 6,542,972, issued Jan. 30,
2001, each of which is hereby incorporated herein by refer
ence in its entirety. For example, the disclosed backup sys
tems may be part of one or more storage operation cells that
includes combinations of hardware and Software components
directed to performing storage operations on electronic data.
Exemplary storage operation cells usable with embodiments
of the invention include CommCells as embodied in the QNet
storage management system and the QiNetiX storage man
agement system by CommVault Systems, Inc., and as further
described in U.S. Pat. No. 7,454,569, issued Nov. 18, 2008,
which is hereby incorporated herein by reference in its
entirety.
0.095 Systems and modules described herein may com
prise software, firmware, hardware, or any combination(s) of
software, firmware, or hardware suitable for the purposes
described herein. Software and other modules may reside on
servers, workstations, personal computers, computerized tab
lets, PDAs, and other devices suitable for the purposes
described herein. Software and other modules may be acces
sible via local memory, via a network, via a browser, or via
other means suitable for the purposes described herein. Data
structures described herein may comprise computer files,
variables, programming arrays, programming structures, or
any electronic information storage schemes or methods, or
any combinations thereof, suitable for the purposes described
herein. User interface elements described herein may com
prise elements from graphical user interfaces, command line
interfaces, and other interfaces suitable for the purposes
described herein.
0096 Embodiments of the invention are also described
above with reference to flow chart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products. It will be understood that each block of the
flow chart illustrations and/or block diagrams, and combina
tions of blocks in the flow chart illustrations and/or block
diagrams, may be implemented by computer program

US 2016/O 196070 A1

instructions. These computer program instructions may be
provided to a processor of a general purpose computer, spe
cial purpose computer, or other programmable data process
ing apparatus to produce a machine. Such that the instruc
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the acts specified in the flow chart and/or
block diagram block or blocks.
0097. These computer program instructions may also be
stored in a computer-readable memory that can direct a com
puter or other programmable data processing apparatus to
operate in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instruction means which implement
the acts specified in the flow chart and/or block diagram block
or blocks. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operations to be performed
on the computer or other programmable apparatus to produce
a computer implemented process Such that the instructions
which execute on the computer or other programmable appa
ratus provide steps for implementing the acts specified in the
flow chart and/or block diagram block or blocks.
0.098 While certain embodiments of the inventions have
been described, these embodiments have been presented by
way of example only, and are not intended to limit the scope
of the disclosure. Indeed, the novel methods and systems
described herein may be embodied in a variety of other forms:

Jul. 7, 2016

furthermore, various omissions, Substitutions and changes in
the form of the methods and systems described herein may be
made without departing from the spirit of the disclosure. The
accompanying claims and their equivalents are intended to
cover such forms or modifications as would fall within the
Scope and spirit of the disclosure.
What is claimed is:
1. A method of performing an auxiliary copy operation

from a backup storage system to a secondary storage system,
the method comprising:

in response to instructions to copy at least some of a plu
rality of backed up data blocks from a backup storage
system comprising at least one memory device to a
secondary storage system, for each of the at least some
data blocks:
reading, with one or more processors, a previously

stored signature value corresponding to the respective
data block for sending from the backup storage sys
tem to the secondary storage system; and

based on an indication as to whether the data block is
already stored on the secondary storage system, read
ing the data block from the at least one memory device
for sending to the secondary storage system if the data
block does not exist on the secondary storage system,
wherein the signature value and not the data block is
read from the at least one memory device if the data
block exists on the secondary storage system.

k k k k k

