0 02/096010 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 November 2002 (28.11.2002)

PCT

(10) International Publication Number

WO 02/096010 Al

(51) International Patent Classification’; HO4L 1/00, 29/06

(21) International Application Number: PCT/US02/15942

(22) International Filing Date: 16 May 2002 (16.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/293,050
10/094,915

23 May 2001 (23.05.2001)
11 March 2002 (11.03.2002)

Us
Us

(71) Applicant (for all designated States except US): SERA-
NOA NETWORKS, INC. [US/US]; Concord Office Cen-
ter, Knox Trail, 2352 Main Street, Concord, MA 01742-
3833 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): TRIPPE, Daniel
[US/US]; 340 Dutton Road, Sudbury, MA 01776 (US).

(74) Agents: OLIVER, Kevin, A. et al.; Patent Group, Foley,
Hoag & Eliot LLP, One Post Office Square, Boston, MA
02109 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, T, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: HDLC (HIGH-LEVEL DATA LINK CONTROL) FRAMES

» 16
Framer L 216
0 200 - 0
1 = 1
1 — 1 '-\/210
1 stuffing — 1
1 204 oy 1
1 — 1
{ - 1 checksum —)‘E"\/ 212
11111110pP 0 28 | |l
framing
10 Buffer 202 208
frame
bits to é204 control ——J
frame signals

(57) Abstract: The disclosure describes generation of HDLC (High-Level Data Link Control) frame bits by the application of an
HDLC stuffing operation that operates on bits in parallel. The disclosure also describes parallel bit processing for destuffing bits of

an HDLC (High-Level Data Link Control) frame.

10

15

20

25

30

WO 02/096010 PCT/US02/15942

HDLC (HIGH-LEVEL DATA LINK CONTROL) FRAMES

Background

Computer networks enable computing devices to exchange
information. Most networks support this communication by
carrying bits (i.e., signals representing a "1" or a "O")
between devices. These bits can represent anything from a
web-page picture to a bank account balance. Sometimes,
however, errors occur. For example, sometimes a network
loses a bit, mistakes a "1" for a "0", and so forth.

To provide more reliable communication, many computers
send a stream of bits within a collection of "frames" where
individual frames carry a portion of the bit stream. Frames
can also include information that a frame receiver can use to
detect and even repair transmission errors.

To illustrate framing, FIG. 1 depicts a series of bits
102 that one computer wants to send to another. As shown, a
frame 114 carries some portion 108 of the original bit stream
102. More specifically, the frame 114 shown is an HDLC
(High-Level Data Link Control) frame. An HDLC frame-ll4
includes at least one frame flag 104 that identifies the
frame boundary. The frame flag 104 is a pre-defined sequence
of eight-bits: "01111110". Thus, a receiver that detects
this bit pattern in a series of received bits knows that it
has encountered a frame boundary.

Since frames 114 can carry arbitrary sequence of bits,
the possibility arises that some part of the original bit
stream 102 may happen to include the same string of bits pre-
defined as a frame flag. For example, in FIG. 1, the
original bit stream 102 features bits, "01111110", that are
coincidentally the same as the frame flag bits. To prevent
these bits from falsely signifying a frame boundary to a

receiver, HDLC uses a technique known as "zero stuffing".

WO 02/096010 PCT/US02/15942

10

15

20

25

30

Zero stuffing causes insertion of a "O" bit 112 after a
string of five consecutive "1" bits. Thus, as shown, bits of
bit stream 102 are stored in the frame as "011111011" 108
instead of "01111110". After stuffing, bits within a frame
will not trick a receiver into erroneously identifying a
frame boundary. A receiver of these bits 114 can recover the
original bit sequence 102 by "destuffing" bits (removing "O"
bits following five consecutive "1"-s) within a received HDLC
frame.
Summary

In general, in one aspect, the disclosure features a
method of generating bits of an HDLC (High-Level Data Link
Control) frame. The method includes receiving a group of
bits and determining HDLC frame bits by applying an HDLC
stuffing operation to more than one of the bits in parallel.

Embodiments may include one or more of the following

features. The more than one bits may be 21 bits, where n >
0. Applying the HDLC stuffing operation may occur in a
single clock cycle. Applying the HDLC stuffing operation may
include applying combinatorial logic on the more than one
bits, for example, via logic implemented on a FPGA (Field
Programmable Gate Array). Applying the HDLC stuffing
operation may include identifying a number of trailing "1"-s
in a previous group of bits. The method may further include
receiving HDLC control signals (e.g., start-of-frame, end-of-
frame, and abort) and outputting corresponding HDLC bit
sequences. The method may further include determining an
HDLC checksum.

The method may further include receiving bits from
different logical channels, storing a context for the
different logical channels that includes information used in
the HDLC stuffing operation, and accessing the context for a

one of the logical channels providing the more than one bits.

WO 02/096010 PCT/US02/15942

10

15

20

25

30

At least one of the logical channels may correspond to one of
the following: a DSO signal, a DS1 signal, a fractional DS1
signal, and a clear-channel DS3 signal.

In general, in another aspect, the disclosure features a
method of processing bits of an HDLC (High-Level Data Link
Control) frame. The method includes receiving bits of the
HDLC frame and applying an HDLC destuffing operation to more
than one of the bits in parallel.

Embodiments may include one or more of the following

features. The more than one bits may be 21 bits, where n >
0. Applying the HDLC destuffing operation may occur in a
single clock cycle. Applying the HDLC destuffing operation
may include applying combinatorial logic on the more than one
bits, for example, via logic implemented on a FPGA (Field
Programmable Gate Array). Applying the HDLC destuffing
operation may include identifying a number of trailing "1"-s
in a previous group of bits.

The method may further include receiving bits from
different logical channels, storing a context for the
different logical channels that includes information used in
the destuffing operation, and accessing the context for a one
of the logical channels providing the more than one bits. At
least one of the logical channels may correspond to one of
the following: a DSO signal, a DS1 signal, a fractional DS1
signal, and a clear-channel DS3 signal.

In general, in another aspect, the disclosure describes
an apparatus for generating an HDLC (High-Level Data Link
Control) frame. The apparatus includes inputs for a group of
bits and
a logic network configured to apply an HDLC stuffing
operation to the more than one of the bits in parallel.

In general, in another aspect, the disclosure describes

an apparatus for processing bits of an HDLC (High-Level Data

WO 02/096010 PCT/US02/15942

10

15

20

25

30

Link Control) frame. The apparatus includes inputs for
receiving bits of the HDLC frame and a logic network
configured to apply an HDLC destuffing operation to more than
one of the bits in parallel.

Advantages will become apparent in view of the following
description, including the figures and the claims.
Brief Description of the Drawings

FIG. 1 is a diagram of an HDLC (High-Level Data Link

Control) Frame.

FIG. 2 is a diagram of an HDLC framer.

FIG. 3 is a diagram of an HDLC frame receiver.

FIG. 4 is a schematic of HDLC framer logic.

FIG. 5 is a schematic of HDLC frame receiver logic.

FIG. 6 is a diagram of an HDLC framer system that can
process HDLC frames for transmission over diffefent channels.

FIG. 7 is a diagram of an HDLC frame receiver that can
process HDLC frames received over different channels.

FIG. 8 is a diagram of a device including an HDLC framer
and receiver.
Detailed Description

FIG. 2 illustrates an HDLC (High-Level Data Link
Control) framer 200 that generates HDLC frames for a stream
of bits 204. Instead of serially processing the bits 204,
the framer 200 processes bits of the stream 204 in parallel.
In other words, the framer 200 operates on a group of bits
202 simultaneously to generate the corresponding HDLC frame
bits 210. For example, as shown, the framer 200 processes a
group of bits of "01111110" 202 in parallel to generate
stuffed HDLC bits that begin "01111101" 212.

Similarly, FIG. 3 illustrates an HDLC frame receiver 300
that processes bits 320 of received HDLC frames in parallel.

For example, as shown, the receiver 300 can generate output

WO 02/096010 PCT/US02/15942

10

15

20

25

30

bits 322 that correspond to a destuffing of a group 320 of
HDLC bits.

The parallel processing illustrated in FIGs. 2 and 3 can
enable the framer 200 and receiver 300 to run at slower clock
speeds. For instance, instead of using a clock tick to
process each bit in turn, the systems can buffer a group of
bits to process en masse, for example, in a single clock
tick. By reducing the number of ticks needed to process the
bits, the framer 200 and receiver 300 can use relatively
inexpensive hardware to keep up with high speed network
connections.

In greater detail, FIG. 2 illustrates a framer 200 that
generates bits 210 of an HDLC frame for subsequent
transmission over a network 216. As shown, the bits being
framed may accumulate in a buffer 204. The framer 200 can
then pull off a group of bits 202 from the buffer 204 for

parallel processing. The framer 200 may be configured to

simultaneously process 21 (e.g., 2, 4, 8, 16, 32, ..) or some
other number of bits.

As shown, the framer 200 performs a variety of tasks
involved in generating an HDLC frame such as the computation
206 of a frame checksum (e.g., a 16 or 32 bit CRC (Cyclic
Redundancy Check) checksum) for inclusion in the frame. The
framer 200 also receives control signals, such as start-of-
frame, end-of-frame, and abort-frame signals, and generates
the appropriate HDLC bit sequences as output.

As described above, the framer 200 also performs
stuffing 204. For example, as shown, the sequence "0111110"
202 results in stuffed output that begins "01111101" 212.
Bit sequences of interest, however, may not neatly fall
within a single group of bits. For example, a sequence of
five consecutive “1”s that should prompt stuffing may overlap

different bit groups. For instance, a sequence of "01111110"

WO 02/096010 PCT/US02/15942

10

15

20

25

30

may be spread over a first group of bits, “xxxx0111”, and a
second group of bits, “1110xxxx”. To stuff this sequence,
the framer 200 stores a history of previously processed bits.
For example, the history can include data identifying a
number of trailing "1"-s in a previous group of bits. For
instance, after processing the first group, "“xxxx0111”, the
framer 200 stores data indicating the group ended with three
consecutive “1”s. The framer 200 can, thus, identify the
second bit of the second group, “1110xxx”, as the fifth
consecutive “1” and stuff a “0” after the second bit to yield
"11010xxxx".

Just as the framer 200 in FIG. 2 operates on groups of
bits in parallel to generate an HDLC frame, FIG. 3 depicts a
frame receiver 300 that operates on bits 314 of an HDLC frame
in parallel. For example, bits 314 of an HDLC frame may be
stored in a buffer as they arrive over a network 316 for
processing by the receiver 300 in groups 320 of bits.

As shown, the receiver 300 provides destuffing 302,
verifies the checksum 304 of an HDLC frame, detects HDLC flag
and abort sequences (i.e., sequences of between 7 and 21
consecutive "1"-g), and performs other tasks in handling HDLC
frames. Like the framer 200, bit patterns of interest, may
not neatly fall within a single group of bits processed by
receiver 300. For example, a frame boundary flag of
“01111110” may straddle different bit groups (e.g.,
"xxxx0111” and “1110xxxx"”). Similarly, a sequence that
should be destuffed may be spread over multiple bit groups.
To correctly process bits, the receiver 300, like the frame,
can store a history of previously processed bits. For
example, the receiver 300 can store a number of consecutive
"1"-3 ending a previous group of bits. Based on this
information, the receiver 300 can correctly process frame

flags, unstuff bits, and verify an HDLC frame’s checksum.

WO 02/096010 PCT/US02/15942

10

15

20

25

30

FIGs. 4 and 5 illustrate sample implementations of
framer and receiver logic. The logiec shown in these figures
can be implemented as a network of combinatorial digital
logic. Preferably, such logic can be constructed to reduce
the number of clock cycles used to process a group of bits in
parallel to a single cycle. The logic may be implemented in
a variety of ways such as traditional digital logic gates.
Alternatively, the logic may be implemented as a FPGA (Field
Programmable Gate Array) configured, for example, based on a
programmatic description of logic in a language known as
Verilog®.

In greater detail, FIG. 4 depicts the logical design of
an HDLC framer 200. As shown, a group of unframed bits
arrives at a CRC generator 230 that progressively computes a
checksum for bits included within an HDLC frame as the bits
arrive. Since the framer 200 stuffs both the unframed bits
and the CRC checksum, a multiplexer 232, under the control of
control logic 240, selects either the unframed bits or the
current CRC generator 230 output for stuffing.

As shown, the stuffing logic includes a stuff detector
234 and stuffer 236. The detector 234 searches for stuff
sequences (i.e., five consecutive “1”-s). For stuff
sequences that overlap different bit groups, the detector 234
stores and accesses the number of trailing “1”-s from the
previous bit group(s). Based on this information, the
detector 234 generates a code indicating stuff positions in
the current group of bits.

The bit stuffer 236 inserts stuffing “0”-s based on the code
generated by the stuff detector 234 and the multiplexer 232
output.

The stuffer 236 feeds the stuffed bit sequences to a
segmenter 238. The number of bits sent to the segmenter 238

may vary based on the number of “0”-s stuffed by the stuffer

WO 02/096010 PCT/US02/15942

10

15

20

25

30

236. For example, an unframed eight-bit group ("octet") of
bits of “11111111” can yield a stuffed group of up to ten
HDLC bits (e.g., "1011111011”). To adapt to the variable .
length output of the stuffer 236, the segmenter 238 may be
configured to act as a FIFO (First-In-First-Out) gqueue that
buffers bits sent by the bit stuffer 236 and outputs a more
uniform number of bits with each clock. For example, while
the segmenter 238 may receive between 8 to 10 bits from the
stuffer 236, the segmenter 238 may output framed bits at a
rate of 8-bits per clock. Framed bits not output during one
clock cycle are stored and output at the start of the next
output cycle.

As shown, the segmenter 238 also receives bit sequences
from control logic 240 such as frame flag and abort
sequences. These bits may be appended to the current
segmenter 238 FIFO for subsequent output. The control logic
240 may generate the flag or abort sequence in response to
receivihg a control signal (e.g., start-frame, end-frame, or
abort) .

The control logic 240 may also perform other tasks. For
example, potentially, the storage capacity of the segmenter
240 may be filled. 1If so, the control 240 logic may
temporarily stall processing of new groups of unframed bits.

FIG. 5 depicts the logical design of an HDLC frame
receiver 300 that processes received framed bits in parallel
and outputs unframed bits and frame controls signals. As
shown, the receiver 300 includes a flag detector 330 that
searches received frame bits for flag and abort sequences.
Again, since bits of a flag or abort sequence may be spread
over multiple bit groups, the detector 330 stores and
accesses data identifying bits of a previous group that may

form part of a flag completed in the current group of bits.

WO 02/096010 PCT/US02/15942

10

15

20

25

30

Upon detection of a flag, the detector 330 causes control
logic 332 to output a corresponding control signal.

The control logic 332 also maintains the frame state of
the receiver. The state controls how the different
components operate. The receiver 300 is, initially, in a
no_sync state while awaiting an initial flag. When a flag is
detected, the receiver enters the hunt state, and awaits a
non-flag group of bits. Such bits causes the receiver to
enter the in frame state. Reception of another flag causes
the sequencer to return to the hunt state. Reception of an
abort sequence resets the receiver to the no-sync state.

The receiver 300 also includes destuffing logic 334, 336
that operates on received frame bits. More particularly, the
receiver 300 includes a stuff detector 334 that searches
incoming frame bits for five consecutive “1”-s. After
detecting these sequences, the detector 334 generates a code
identifying the bit position(s) of “0”-s to destuff. Again,
because a stuff sequence may overlap groups of bits, the
detector stores a count of trailing “1”-s of the next bit
group.

The received frame bits and the output of the stuff
detector 334 are processed by a bit-shifter 336 to destuff
the received frame bits. For example, based on frame bits of
“01111101”, the bit shifter 336 can output a destuffed set of
bits of “0111111”. As illustrated by this example, the bit
shifter 336 may output a variable number of bits based on the
number of stuffed “0”-s removed from a sequence. For
example, for an eight-bit input, the bit shifter may output
anywhere from six to eight bits.

A bit accumulator 338 receives and buffers the unstuffed
bits from the bit shifter 336. The accumulator 338 can
output the unframed bits in n-bit batches. For example, the

accumulator 338 can store a count of the number of bits

WO 02/096010 PCT/US02/15942

10

15

20

25

30

currently buffered and output n-bit batches when n-bits have
accumulated. The accumulator 338 can store the remaining
bits for subsequent output.

As shown, the bits output by the accumulator 338 are
progressively processed by a CRC checker 342. For example,
after detection of a frame flag by flag/abort detector 330,
if the CRC checker 342 detects a transmission error, control
logic 332 can output an appropriate frame control signal.

The receiver 300 is logically constructed to "strip out"
frame flag bits before they reach the CRC checker 342 and the
output stream. Since frame flags may straddle different
groups of bits, the beginning of the boundary flag may reach
the accumulator 338 before the flag is recognized. Thus, the
logic is constructed such that the accumulator 338 "backs
out" the flag bits already stored in the accumulator 338. To
perform this task, the accumulator 338 can adjust its count
of stored bits. For example, after receiving “xxxx0111”, the
accumulator 338 would have a count of 8 stored bits. After
receiving “1110xxxx” and the flag/abort detector 330 detects
the straddling flag, the control logic 332 can instruct the
bit accumulator 338 to decrement its count in an amount based
on the position of the flag in the previous group of bits
(e.g., 4).

A straddling flag also poses another problem in that the
bits following the end of the flag may belong to a different
HDLC frame. For example, the "xX" bits in "1110xxxx" may
correspond to the first bits of a new frame. To address this
scenario, bits following a flag are temporarily stored in a
straddle register 340. After the bits of the previous frame
are output by the accumulator 338, the accumulator 338
receives the bits stored by the straddle register.

FIGs. 6 and 7 illustrate framer 200 and receiver 300

systems that can process multiple HDLC frames carried by

10‘

WO 02/096010 PCT/US02/15942

10

15

20

25

30

different channels. As shown, both systems feature a context
memory 404, 504 that stores the current state of HDLC
processing for a given channel. For example, the context of
a channel may include a number of trailing “1”-s in a
preceding group of bits. By rapidly switching the context
gsupplied to the framer or receiver, the same logic can
process many different channels. Since, the framer and
receiver process chunks of channel data bits in parallel, the
framer/receiver can keep apace the continual accumulation of
bits of the different channels. By using the same logic to
serve different channels, this scheme can reduce overall
system cost.

A logical channel may correspond to a member of the DSx
hierarchy. For example, a channel may correspond to a DSO
gsignal, a DS1 signal or fractional DS1 signal (e.g., up to 24
DSO signals), or a clear-channel DS3 signal. Or, more
generally, the logical channel may correspond to a channel
within a time division multiplex scheme.

In greater detail, FIG. 6 illustrates an HDLC framer
system that processes the bits of different logical channels
402. Bit groups of the different channels are processed in
turn. For example, the framer 200 may process an octet for
bit stream 1, then next process an octet 402b for bit stream
2.

As shown in FIG. 6, the system also includes a context
memory 404 that stores the context or processing state of the
framer 200 for the bits of a particular channel. For the
sample implementation illustrated in FIG. 4, the context can
include the CRC bits thus far computed for a frame, the
number of trailing “1”-s in the previous group of bits, the
bits buffered by the segmenter, and so forth.

The bit streams 402 and contexts 404 are coordinated

such that the framer 200 simultaneously receives the bits of

-11-

WO 02/096010 PCT/US02/15942

10

15

20

25

30

a channel queue 402 and the corresponding context 404. For
example, when processing Bit Stream 1, the framer 200
receives Context 1. Similarly, when processing Bit Stream 2,
the framer 200 receives Context 2. As shown, the current
context of a channel is saved while the context of a
different channel is swapped in. For example, after
proceésing bits from bit stream 1, the framer 200 saves
updated Context 1 to the memory 404 and receives Context 2.

To perform context swapping, the memory 404 can feature
dual ports (e.g., a read and write port) that permit
simultaneous reading and writing of different memory
addresses. Such a memory 404 may require time to retrieve a
context. Thus, context retrieval should be initiated prior
to the application of the channel bits corresponding to the
contéxt.

FIG. 7 shows a receiver 300 system that processes the
bits 502 of HDLC frames received over different logical
channels. As shown, a context memory 504 stores the
processing context for the channels. The context for a
channel can include the computed CRC bits for the current
frame, the number of trailing “1”-s in a previous group of
bits, the bits of the straddle register or accumulator, the
processing state (e.g., in frame, out of frame, or hunt), and
so forth.

Like the framer system shown in FIG. 6, the receiver 200
receives HDLC bits 502b of a channel and the corresponding
context 504b. After processing a group of bits, the current
context is swapped back into memory and replaced by a context
of the next channel to be processed.

While described above as individually provided
components, a framer and receiver may be provided together.
For example, FIG. 8 illustrates a system that includes both a

receiver 602 and framer 604. While shown as only having a

-12-

WO 02/096010 PCT/US02/15942

single receiver and framer, other systems may include
multiple receivers and framers.
The techniques described herein are not limited to a
particular configuration. Other embodiments are within the
5 scope of the following claims.

What is claimed is:

-13-

WO 02/096010 PCT/US02/15942

10

15

20

25

30

1. A method of generating an HDLC (High-Level Data Link
Control) frame, the method comprising:

receiving a group of bits; and

determining HDLC frame bits by applying an HDLC stuffing
operation to more than one of the bits in parallel.

2. The method of claim 1, wherein the more than one bits

comprises 20! bits, where n > 0.
3. The method of claim 1, wherein the applying the HDLC
stuffing operation comprises applying the operation in a
single clock cycle.
4, The method of claim 1, wherein the applying the HDLC
stuffing operation comprises applying combinatorial logic on
the more than one bits.
5. The method of claim 4, wherein the combinatorial logic
comprises logic implemented on a FPGA (Field Programmable
Gate Array) .
6. The method of claim 1, wherein applying the HDLC
stuffing operation comprises identifying a number of trailing
"i"-g in a previous group of bits.
7. The method of claim 1, further comprising receiving HDLC
control signals and outputting corresponding HDLC bit
sequences.
8. The method of claim 7, wherein the control signals
comprige start-of-frame, end-of-frame, and abort.
9. The method of claim 1, further comprising determining an
HDLC checksum.
10. The method of claim 1, further comprising:

receiving bits from different logical channels;

storing a context for the different logical channels,
the context including information used in the HDLC stuffing
operation; and

accessing the context for a one of the logical channels

providing the more than one bits.

-14-

WO 02/096010 PCT/US02/15942

10

15

20

25

30

11. The method of claim 10, wherein at least one of the
logical channels corresponds to one of the following: a DSO
signal, a DS1 signal, a fractional DS1 signal, and a clear-
channel DS3 signal.
12. An apparatus for generating an HDLC (High-Level Data
Link Control) frame, the apparatus comprising:

inputs for a group of bits; and

a logic network configured to apply an HDLC stuffing
operation to the more than one of the bits in parallel.

13. The apparatus of claim 12, wherein the more than one

bits comprise 21 bits, where n > 0.

14. The apparatus of claim 12, wherein the applying the HDLC
stuffing operation comprises applying the operation in a
single clock cycle.

15. The apparatus of claim 12, wherein the logic comprises
combinatorial logic.

16. The apparatus of claim 15, wherein the combinatorial
logic comprises a FPGA (Field Programmable Gate Array).

17. The apparatus of claim 12, wherein the logic for
applying the HDLC stuffing operation comprises logic for
identifying a number of trailing "1"-s in a previous group of
bits.

18. The apparatus of claim 12, further comprising at least
one input for receiving HDLC control signals and logic for
outputting corresponding HDLC control flag and abort
sequences.

19. The apparatus of claim 18, wherein the control signals
comprise start-of-frame, end-of-frame, and abort.

20. The apparatus of claim 12, further comprising logic for
processing the more than one bits in parallel to determine an
HDLC checksum.

21. The apparatus of claim 12, further comprising:

-15-

WO 02/096010 PCT/US02/15942

10

storage of contexts for the different logical channels,
a context including information used in applying the HDLC
stuffing operation; and

logic constructed to access the context for a one of the
logical channels providing the more than one bits.
22. The apparatus of claim 21, wherein at least one of the
logical channels corresponds to one of the following: a DSO
signal, a DS1 signal, a fractional DS1 signal, and a clear-

channel DS3 signal.

-16-

WO 02/096010 PCT/US02/15942

1/8

1"?0 ~_ 102

01 11101
0111 1 1 1 0J0 1111 1JoJ1 0 ..Joi1 1 11011 0]~ 114

frame boundary . e ? frame boundary
108 \ 112

FIG. 1
(prior art)
) J

WO 02/096010 PCT/US02/15942
2/8
> 216
Framer _[-
0} 200 |0
1 = ap 1] .
1 = — 1\ 210
1 stuffing e 1
T o= |
1 > —]
{ 1 > | checksum —VET\/ 212
o111 1111 0P [of | & |1
1 0 /T framing
10 uter 202 208
T frame
bits to 8204 control —_I
frame signals

WO 02/096010 PCT/US02/15942

3/8

Receiver

300

unstuffing

302

IRRERN!

checksum
304

0 1: 312 frame

""" Buffer detection

%314 T

—

!

frame
signals

FIG. 3

WO 02/096010

. framed
bits

PCT/US02/15942
4/8
§200
Unframed Stuff
bits N Detector |
Muitiplexer 234 Bit Stuffer
CRC 232 | 236
Generator | Segmenter
30 238
A
Control Control R
Signals | 240 o

FIG. 4

WO 02/096010

PCT/US02/15942

5/8
§300
Flag/Abort Control C_ontrol
.| Detector Slgnalf,
w &
1 CRC
Checker
Framed
bits 342
_ »
Bit
N Accumulator -
Unframed
338 bits
A
> Bit Shifter
Stuff 336 Straddle
> Detector R N Register
334 340

FIG. 5

WO 02/096010 PCT/US02/15942

6/8

6;02

——» Bit Stream 2]
Bit Stream 2

——>» Bit Stream 1

——>{ Bit Streamn 404 402b Framer HDLG

[frames

Context1 .2_09_

Context 2
i Context 2 |—>

Context n e
404b

Context1

§404a

FIG. 6

WO 02/096010

PCT/US02/15942

§502

§504

7/8
HDLC bits 1
< HDLC bits 2 |+ HDLC bits 2
e502b .
HDLC bits n
Receiver
4_._.
300
Context1
< Context2 = Context2
e504b
Context n
Context1

e504&\

FIG. 7

WO 02/096010 PCT/US02/15942

8/8
Logic Network
600
P Receiver |, HDLC
Nl 602 | frames
606
.| Framer HDLC
" 604 frames

FIG. 8

INTERNATIONAL SEARCH REPORT

nt onal Application No

PC1/US 02/15942

CLASSIFICATION OF SUBJECT MATTER

P 7 CHOALI/00 - "HO4L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 HO4L

Minimum documentation searched (classification system foliowed by classification symbols)

Documentation searched other than minimum documentation 1o the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX, IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

AL) 8 August 2000 (2000-08-08)

column 26, line 55 - line 57
column 27, line 33 - line 48

14 May 1996 (1996-05-14)
abstract; claim 1

column 1, line 11 - Tine 29
column 4,
column 6, line 2 — 1line 10
column 6, line 25 - line 50
column 8, line 55 - 1ine 63

column 18, line 59 -column 19, line 26

line 61 —-column 5, line 6

X US 6 101 180 A (DANKWORTH JEFFREY A ET 1-22

X US 5 517 533 A (LAUCK ANTHONY G ET AL) 1-22

D Further documents are listed in the continuation of box C.

ID Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T

e

e

3

later document published after the international filing date
or priority date and not in conflict with the application but
cited 10 understand the principle or theory underlying the
invention

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
me'tllts, such combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual completion of the international search

14 October 2002

Date of mailing of the international search report

28/10/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Binger, B

Fom PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int onal Application No

Pui,US 02/15942

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6101180 A 08-08-2000 US 6266339 Bl 24-07-2001
us 6262982 Bl 17-07-2001
Us 2002118638 Al 29-08-2002
us 6411616 Bl 25-06-2002
AU 727421 B2 14-12-2000
AU 5256198 A 03-06-1998
EP 0988642 A2 29-03-2000
JP 2001504308 T 27-03-2001
Wo 9820724 A2 22-05-1998

US 5517533 A 14-05-1996 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

