4061605 A2 | I P YO0 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
22 July 2004 (22.07.2004)

(10) International Publication Number

WO 2004/061605 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2003/041202
(22) International Filing Date:
18 December 2003 (18.12.2003)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
10/336,704 2 January 2003 (02.01.2003) US
10/336,784 2 January 2003 (02.01.2003) US
10/336,832 2 January 2003 (02.01.2003) US
10/336,833 2 January 2003 (02.01.2003) US
10/336,834 2 January 2003 (02.01.2003) US
10/336,835 2 January 2003 (02.01.2003) US
(71) Applicant: Z-FORCE, INC. [US/US]; 24461 Ridge

(72)

Route Drive, Suite 100, Laguna Hills, CA 92653 (US).

Inventors: MILOUSHEYV, Vladimir; 35 Terraza Del
Mar, Dana Point, CA 92629 (US). NICKOLOY, Peter; 70
Calais Street, Laguna Niguel, CA 92677 (US).

(74)

(81)

(84)

Agents: WILLIAMS, Gary, S. et al.; Morgan, Lewis &
Bockius LLP, 3300 Hillview Avenue, Palo Alto, CA 94304
Us).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: MEDATA BASED FILE SWITCH AND SWITCHED FILE SYSTEM

/ 212

/ 200

FILE SWITCH

| et A
L
/,//ZE
File Server 1
I
i
. 1202
|
Y .
: 203
File Server |
|
;
File Server : 204
|
|
205
File Server E
!
I
210 . i 206
File Server !
I
. 17 207
File Server

Client 4
2

21

]

|

!

Client 1 Client3 | !
- |

212 i

I

1

1

|

211 i
200 |

|

NETWORK i
i

]

]

|

1

1

]

]

I

]

\ i
Client 2 :
1

1

i

|

]

212

& (57) Abstract: Client computers are decoupled from file servers in a computer network, by placing a network node, also termed a
& file switch or file switch computer, between the client computers and the file servers. To the client computers, the file switch appears

O (; be a file server having enormous storage capabilities and high throughput. To the file servers, the file switch appears to be a client
as it delegates a single transaction received from a client computer to multiple file servers. The file switch aggregates the file server’s

=

responses to the client computer’s request and presents a single response back to the client computer. The file switch performs this
transaction aggregation function in a manner that is transparent to both the client computers and the file servers.

WO 2004/061605 PCT/US2003/041202

METADATA BASED FILE SWITCH'AND SWITCHED FILE SYSTEM

FIELD OF THE INVENTION
[0001] The present invention relates generally to the field of storage networks, and

more specifically to file switching and switched file systems.
BACKGROUND OF THE INVENTION

DESCRIPTION OF THE RELATED ART
[0002] Since the birth of computer networking, access to storage has remained among
the most important network applications. The reason is simple: the purpose of networks was
and is to share data and content, and most of the data worth sharing resides on some form of
storage.
[0003] Despite the importance of storage applications in networks, their usefulness
has, until recently, been greatly limited by the insufficient bandwidth provided by networks.
Even at 100 Megabits/second (Mbps) (the most common maximum speed in existing local
area networks, also known as Fast Ethernet), accessing data through a network is several
times slower than reading it from a hard disk attached locally to a computer. For this reason,
historically most of the data accessed by a networked computer (workstation or application
server - often referred to as a “ client”) has resided on local storage and only data that has to
be shared has resided on network servers.
[0004] The introduction of gigabit and multi—gigébit network technology, however, is
changing the rules of the game. A single Gigabit Ethernet or FibreChannel connection is
capable of transporting data at aggregate rates of up to 240 Megabytes/second (MB/s), which
is much greater than the performance of most locally attached storage devices. This means
that in new high speed networks, data can be accessed through the network faster than from
local storage. As a result, we have now reached the beginning of a fundamental trend in

which the majority of useful data is being moved to the network.

Storage Networks
[0005] The ability to store terabytes of data on the network and make that data

accessible to tens and hundreds of thousands of users is extremely attractive. At the same
time, creating storage and network systems capable of adequately handling such amounts of

information and usage loads is not a simple task. As a result, storage networking - the

WO 2004/061605 PCT/US2003/041202

discipline that deals with designing, building and managing such systems - is rapidly
becoming recognized as a separate, specialized field of computer networking.

[0006] The key promise of storage networking is in delivering network systems that
enable the sharing of huge amounts of information and content among geographically
dispersed users. To deliver on this promise, the storage network systems have to be extremely
scalable while providing a high degree of availability comparable to that of the public
telephone system. In addition, any system of this scale has to be designed so that it can be

managed effectively.

" Available Approaches to Scaling File Systems

[0007] The primary function of every file system is to enable shared access to storage
resources. In fact, file systems were originally created to facilitate sharing of then-expensive
storage between multiple applications and multiple users. As a result, when exposed as a
network service, file systems provide a complete and mature solution to the problem of
sharing data.

[0008] The flip side is that file systems are complex and very processing-intensive,
which increases substantially the performance requirements to any computer that provides
file services over a fast network. To serve files to hundreds and thousands of users
simultaneously requires tremendous amounts of processing power, memory and bus
bandwidth.

[0009] Figure 1 illustrates a typical application of presently available, commonly used
network file systems. The system consists of a local area network 104, which connects a large
number of client workstations and application servers 102, connected to various file servers.
The file servers typically include standalone servers such as 105 and 106, as well as file
servers, such as 107 and 108, configured as a cluster 110 with shared storage 118. The

servers 107 and 108 are connected together through a high-speed, low-latency intra-cluster
connection 112, and are also connected to the shared storage 118 through a SAN (storage
area network), typically using optical (FibreChannel) interconnect 114 and 116. In addition,
clients and application servers 102 and file servers 105 through 108 may be configured to be
part of a distributed file system with the appropriate software services installed on all of those

machines.

WO 2004/061605 PCT/US2003/041202

Single Box Solutions

[0010] Single box solutions provide a simple and straightforward approach to the
problem of increasing the performance of file servers. Traditionally, the fastest available
computers were used to serve files; when even these became insufficient, specialized
architectures were built to extend the capabilities of the server. Where one processor was not
enough, more processors were added; where the bandwidth of a standard bus was not
sufficient, additional busses or even custom-designed wider busses were introduced, and so
on.

[0011] The result of this approach is that high-end file servers are essentially
rﬁassively multiprocessing supercomputers, with all the associated costs and complexity.
Examples of single box solutions are the EMC Celera/Symmetrix, SGI Origin, HP
Superdome, Intel Paragon and IBM SP, the trademarks of which are hereby acknowledged.
However, high-performance multiprocessing file servers quickly run into the performance
limits of their storage subsystems. The approach to resolving this bottleneck is to spread the
load among multiple hard disks and data paths operating in parallel.

[0012] Single-box solutions are subject to several serious problems. First, because of
the extremely high complexity and the need to develop custom silicon in order to satisfy
performance requirements, single box solutions are very expensive. Second, their
development cycles are exceedingly long, virtually guaranteeing that they will be “behind the
curve” in many important aspects, such as software technologies, protocols, etc., by the time
they are generally commercially available. Since storage requirements effectively double
every year or so, these boxes often become obsolete long before the customers manage to

depreciate their high cost.

Cluster File Systems

[0013] An alternative to scaling the server architecture within the box is to put
together multiple servers accessing the same pool of storage over a fast interconnect such as
HIPPI or FibreChannel. The result is a “cluster” of computers that acts in many aspects
similarly to a multiprocessing supercomputer but can be assembled from generally available
components.

[0014] Since all computers in a cluster access the same set of hard disks, the file
system software in each of them has to cooperate with the other members of the cluster in
coordinating the access and allocation of the storage space. The simplest way to approach this

problem is to section the storage pool and divide it among the different computers in the

WO 2004/061605 PCT/US2003/041202

cluster; this approach is implemented in Windows clustering described in “Windows

. Clustering Technologies — An Overview”, November 2000, Microsoft Corp. The main
challenge in the above-mentioned file system comes from the need to frequently synchronize
and coordinate access to the storage among all members of the cluster. This requires a
centralized lock manager and/or a file manager that controls the allocation of disk space to
different files and controls access to those files. These components-quickly become a major
bottleneck that prevents the scaling of cluster file systems beyond about sixteen nodes.

[0015] The reliance on centralized resource coordination is the primary weak point of
cluster file systems that limits severely their scalability. Solutions that partially relieve this
problem introduce other problems, including custom functionality in storage subsystems and
specialized client-side software. If any of these approaches is commercialized, the
requirement for using proprietary storage subsystems will have substantial negative effect on -
- both adoption and price, while the need to rely on proprietary client-side software that has to
be installed in every client accessing the system make the system fragile, prone to security

breaches and hard to deploy and support.

Distributed File Systems

[0016] Both single box solutions and cluster file systems are tightly coupled systems
that exhibit serious scalability limitations. Creating distributed file systems is an approach
attempting to combine hundreds of file servers in a unified system that can be accessed and
managed as a single file system. Examples of distributed file systems are the Andrew File
System, and its derivatives AFS and Coda, Tricord, as well as the Microsoft Distributed File
System DFS.

[0017] Distributed file systems are loosely coupled collections of file servers that can
be located in diverse geographical locations. They provide a unified view of the file
namespace, allowing clients to access files without regard to where in the system those files
reside. In addition, the system administrator can move files from one server to another in a
transparent fashion and replicate files across multiple-servers for increased availability in case
of partial system failure. |

[0018] Distributed file systems exhibit excellent scalability in terms of storage
capacity. It is easy to add new servers to an existing system without bringing it off-line. In
addition, distributed file systems make it possible to connect storage residing in different

geographical locations into a single cohesive system.

WO 2004/061605 PCT/US2003/041202

[0019] The main problem with available distributed file systems is that they do not
scale in performance nearly as well as they scale in storage capacity. Typically, the
performance the distributed file system can deliver to a single client (workstation or
application server) is limited by the performance of the utilized individual file servers, which,
considering the large number of servers involved, is not likely to be a very high performance
- machine.

[0020] Another problem that has great impact in commercial environments is the fact
that most distributed file systems require specialized client-side software that has to be
installed and configured properly on each and every client that is to access the file system:
This tends to create massive versioning and support problems.

[0021] - Moreover, distributed file systems are very prone to “hotspotting”.

. ‘Hotspotting occurs when the demand for an individual file or a small set of files residingon a

- single server increases dramatically over short period of time, resulting in severe degradation = -

of performance experienced by a large number of users.

[0022] Yet another problem with distributed file systems is in their low
manageability. Although most aspects of the distributed file systems can be managed while
the system is on-line, the heterogeneous and distributed nature of these systems effectively
precludes any serious automation of the management tasks. As a result, managing distributed

file systems requires large amount of highly qualified labor.

Summary ' ‘
[0023] Although many approaches to scaling network file systems have been taken
over the last fifteen years, none has succeeded in delivering on the high performance, high
scalability and simple management promise of storage networking. Analysis of the systems
described above shows that all of their limitations can be traced to a small set of fundamental
flaws, namely, all available systems suffer from at least one of the following problems:
[0024] 1. One file, one server. The inability to utilize multiple file servers in
handling requests for a single file limits severely the throughput available to any single client
and does not allow the system to balance the load across all available processing resources.
[0025] 2. Centralized arbitration and metadata management. The need to
arbitrate access to storage and the shared data structures used to manage it creates a

bottleneck that severely limits the scalability of the system.

WO 2004/061605 PCT/US2003/041202

[0026] 3. Proprietary client-side software. The need to buy, install, configure and
support a non-trivial piece of software across all client machines running multiple different

operating systems creates serious barrier for adoption.

Conclusions

[0027] With the mass adoption of gigabit and multi-gigabit network infrastructure,

- storage networking is rapidly becoming key to delivering and managing content on the .

network. To achieve this, storage networks have to facilitate sharing of data among thousands

. (or even larger numbers) of users, be able to scale in storage capacity, performance and
access. bandwidth extremely well, provide a very high degree of availability, and be easy to
manage. Increasingly, new applications, such as e-mail, streaming video content, document
repositories, and other soft-structured data, require these characteristics to be achieved by a .
network service that provides access to files.
[0028] The existing approaches to scaling network file systems are successful in

- solving one or another aspect of these requirements. However, there is no currently available
system that can deliver all characteristics needed for storage networking to achieve its

promise.

SUMMARY OF THE INVENTION
[0029] An apparatus and method are provided in a computer network to decouple
client computers from the file servers, by placing a transparent network node, also termed a
file switcﬁ or file switch computer, Between the client compufers and the file servers. U-sage
of such a file switch allows reduced latency in file transfers, as well as scalable mirroring,
striping, spillover, and other features. The file switch preferably includes at least one.
processing unit for executing computer programs, at least one port for exchanging
information with the file servers and client computers, and a file aggregation module. The
file aggregation module includes computer programs, which include instructions for:
determining a set of file servers from the group of file servers for storing a specified user file,
creating a metadata file (sometimes called a metafile) storing information identifying the set
of file servers for storing the user file; and updating directory structures on the set of file

servers to indicate storage of the user file.

WO 2004/061605 PCT/US2003/041202

BRIEF DESCRIPTION OF THE DRAWINGS
[0030] The aforementioned features and advantages of the invention as well as
additional features and advantages thereof will be more clearly understood hereinafter as a
result of a detailed description of a preferred embodiment of the invention when taken in

conjunction with the following drawings in which:

[0031] Figure 1 illustrates a prior art storage network including a distributed file
system and a clustered file system;

[0032] Figure 2 illustrates a file switch in a computer network;

[0033] - Figure 3 illustrates a switched file system;

[0034] © Figure 4 illustrates transaction aggregation by a file switch;

'[0035] Figure 5 illustrates the client’s view of a switched file system,;

[0036] Figure 6 illustrates the hardware architecture and memory structure of a file
switch;

[0037] Figure 7 illustrates the data plane of a file switch;

[0038] - Figure 8 illustrates an exemplary metafile;

[0039] Figure 9 illustrates namespace aggregation by a file switch;

[0040] Figure 10 illustrates data aggregation through mirroring;

[0041] Figure 11 illustrates data aggregation through striping;

[0042] Figure 12 illustrates data aggregation through spillover;

[0043] Figure 13 illustrates the syntax of data aggregation rules;

[0044] . Figure 14 illustrates a method for creating directory structure for a metafile;
[0045] Figure 15 illustrates the storage of metafile and user file;

[0046] Figure 16 illustrates a method for creating directory structure for a user file;
[0047] TFigure 17 illustrates a method for creating directory path with global unique
identifier;

'[0048] Figure 18 illustrates a method for balancing load at the file switch level,
[0049] Figure 19 illustrates a method for transaction aggregation;

[0050] Figure 20 illustrates a method for accessing an aggregated user file through the
metafile;

[0051] Figure 21 illustrates an exemplary concurrency problem;

[0052] Figure 22 illustrates a method for implementing an implicit locking
mechanism;

[0053] Figure 23a illustrates a method for handling an opportunity locking request;

WO 2004/061605 PCT/US2003/041202

[0054] Figure 23b illustrates a method for handling an opportunity locking break
notification;
[0055] Figure 23c illustrates a method for mapping level of exclusivity of caching to

the oplock exclusivity level granted;

[0056] Figure 24 illustrates a method for handling a semaphore locking mechanism;
[0057] Figure 25 illustrates a method for enumerating a directory;
[0058] Figure 26 illustrates a method for implementing a redundant metavolume
controller.

DETAILED DESCRIPTION
[0059] The following description is provided to enable any person skilled in the art to

which the invention pertains to make and use the invention and sets forth the best modes
presently contemplated by the inventor for carrying out the invention. Various modifications,
however, will remain readily apparent to those skilled in the art, since the basic principles of
the present invention have been defined herein specifically to provide a file switch, a
switched file system and their mechanisms of operation. Any and all such modifications,
equivalents and alternatives are intended to fall within the spirit and scope of the presently

claimed invention.

Definitions

[0060] Aggregator. An “aggregator” is a file switch that performs the function of
directory, déta Or namespace aggregaﬁon of a client data file over a file array.

‘ [0061] Data Stream. A “data stream” is a segment of a stripe-mirror instance of a
user file. If a data file has no spillover, the first data stream is the stripe-mirror instance of the -
data file. But if a data file has spillovers, the stripe-mirror instance consists of multiple data
streams, each data stream having metadata containing a pointer pointing to the next data
stream. The metadata file for a user file contains an array of pointers pointing to a descriptor
of each stripe-mirror instance; and the descriptor of each stripe-mirror instance in turn .
contains a pointer pointing to the first element of an array of data streams.

[0062] File Array. A “file array” consists of a subset of servers of a NAS array that
are used to store a particular data file.

[0063] File Switch. A “file switch” performs file aggregation, transaction aggregation
and directory aggregation functions, and is logically positioned between a client and a set of

file servers. To client devices, the file switch appears to be a file server having enormous

WO 2004/061605 PCT/US2003/041202

storage capabilities and high throughput. To the file servers, the file switch appears to be a
client. The file switch directs the storage of individual user files over multiple file servers,
using striping to improve throughput and-using mirroring to improve fault tolerance as well
as throughput. The aggregation functions of the file switch are done in a manner that is
transparent to client devices.

[0064] Switched File System. A “switched file system” is defined as a network

including one or more file switches and one or more file servers. The switched file system is
a file system since it exposes files as a method for sharing disk storage. The switched file
system is a network file system, since it provides network file system services through a
network file protocol — the file switches act as network file servers and the group of file
switches may appear to the client computers as a single file server.

[0065] Data File. In the present invention, a file has two distinct sections, namely a
“metadata file” and a “data file”. The “data file” is the actual data that is read and written by
the clients of a file switch. A file is the main component of a file system. A fileisa
collection of information that is used by a computer. There are many different types of files
that are used for many different purposes, mostly for storing vast amounts of data (i.e.,
database files, music files, MPEGs, videos). There are also types of files that contain
applications and programs used by computer operators as well as specific file formats used by
different applications. Files range in size from a few bytes to many gigabytes and may
contain any type of data. Formally, a file ‘is a called a stream of bytes (or a data stream)
residing on a file system. A file is always referred to by its name within a file system.

[0066] Metadata File. A “metadata file”, also referred as the “metafile”, is a file that
contains the metadata, or at least a portion of the metadata, for a spéciﬁc file. The properties
and state information about a specific file is called metadata. In the present invention,
ordinary clients cannot read or write the content of the metadata files, but still have access to
ordinary directory information. In fact, the existence of the metadata files is transparent to
the clients, who need not have any knowledge of the metadata files.

[0067] Mirror. A “mirror” is a copy of a file. When a file is configured to have two
mirrors, that means there are two copies of the file.

[0068] Network Attached Storage Array. A “Network Attached Storage (NAS)

array” is a group of storage servers that are connected to each other via a computer network.

A file server or storage server is a network server that provides file storage services to client
computers. The services provided by the file servers typically includes a full set of services

(such as file creation, file deletion, file access control (lock management services), etc.)

9

WO 2004/061605 PCT/US2003/041202

provided using a predefined industry standard network file protocol, such as NFS, CIFS or

the like.

[0069] Oplock. An oplock, also called an “opportunistic lock” is a mechanism for
allowing the data in a file to be cached, typically by the user (or client) of the file. Unlike a
regular lock on a file, an oplock on behalf of a first client is automatically broken whenever a
second client attempts to access the file in a manner inconsistent with the oplock obtained by
the first client. Thus, an oplock does not actually provide exclusive access to a file; rather it
provides a mechanism for detecting when access to a file changes from exclusive to shared,

and for writing cached data back to the file (if necessary) before enabling shared access to the

- file.

[0070] Spillover. A “spillover” file is a data file (also called a data stream file) that is
- created when the data file being used to store a stripe overflows the available storage on a
first file server. In this situation, a spillover file is created on a second file server to store the -
remainder of the stripe. In the unlikely case that a spillover file overflows the available
storage of the second file server, yet another spillover file is created on a third file server to
store the remainder of the stripe. Thus, the content of a stripe may be stored in a series of
data files, and the second through the last of these data files are called spillover files.

[0071] Stripe. A “stripe” is a portion of a user file. In some cases an entire file will
be contained in a single stripe. A stripe typically has a specified maximum size, such as 32
Kbytes, or even 32 Mbytes, and once the file being striped becomes larger than the stripe

~ size, an additional stripe is created. Each stripe is stored in a separate data file, and is stored
separately from the other stripes of a data file. As described elsewhere in this document, if

" the data file (also called a “data stream file”) for a stripe overflows the available storage on a
file server, a “spillover ” file is created to store the remainder of the stripe. Thus, a stripe is a
logical entity, comprising a specific portion of a user file, that is distinct from the data file
(also called a data stream file) or data files that are used to store the stripe.

[0072] Stripe-Mirror Instance. A “stripe-mirror instance” is an instance (i.e., a copy)

of a data file that contains a portion of a user file on a particular file server. There is one
distinct stripe-mirror instance for each stripe-mirror combination of the user file. For
example, if a user file has ten stripes and two mirrors, there will be twenty distinct stripe-
mirror instances for that file. For files that are not striped, each stripe-mirror instance contains

a complete copy of the user file.

10

WO 2004/061605 PCT/US2003/041202

[0073] Subset. A subset is a portion of thing, and may include all of the thing. Thué
a subset of a file may include a portion of the file that is less than the entire file, or is may
include the entire file.

[0074] User File. A “user file” is the file or file object that a client computer works

- with, and is also herein called the “aggregated file.” A user file may be divided into portions

and stored in multiple data files by the switched file system of the present invention.

File Switch and Switched File System
[0075] . Figure 2 illustrates an inventive network configuration including a file switch
200. In this configuration, the file switch 200 is. implemented with two different network
interfaces: one for connecting to the client network 211 through connection 209, and the .
other for connecting to a file server network through connections 210 and other similar
connections as shown. For simplicity, the file switch 200 is shown in this Figure as being
directly connected to each of the file servers 201 through 207. In practice, one or more
commonly available layer 2 switches are preferably used to implement these connections.
[0076] Since most popular network file protocols are based on the IP standard, the file
switch preferably supports TCP/IP network protocols, as well as other protocols of the IP
stack (e.g., ARP), as appropriate. The file switch preferably supports multiple industry
standard network file protocols, such as NFS and CIFS.
[0077] Clients, such as workstations and application servers 212 request file services
by communicating to the file switch 200 using the NFS or CIFS protocols. File switch 200
preferably implements the server side of the appropriate network file protocol on the
connection 209. The switch further interacts with the file servers 201 through 207 by
implementing the client side of preferably the same network file protocol. The presence of
file switch 200 is thereby preferably transparent to both the clients and the servers.
[0078] Additionally, the file switch may implement other IP protocols, such as
DHCP, DNS or WINS, either as a client or as a server for purpose of configuring file servers
201 through 207, self-configuration of the file switch, and others that will be described
herein.
[0079] The file switch 200 implements industry standard protocols both on the client
side (via connection 209) and on the server side (via connections 210). This implementation
allows the file switch 200 to function in an environment where the file servers 201 through
207 are standard, commercially available file servers or NAS appliances, and clients 212 are

standard commercially available computers. In this manner, the benefits of the file switch can

11

WO 2004/061605 PCT/US2003/041202

be utilized withdut requiring any proprietary software to be installed and maintained on any

other network node.

[0080] The primary functionality of the file switch can be divided into three broad

categories: 1) transaction handling; 2) file system aggregation; and 3) switch aggregation.

- Transaction handling includes transaction switching and transaction aggregation. File system :
aggregation includes aggregating file system objects and data file. Switch aggregation
includes various mechanisms for combining multiple file switches together, which includes
load balancing, configuration sharing, fail-over and management aggregation. The

" functionality of the file switch may be implemented in software, in hardware or any
combination of software and hardware, as appropriate.

[0081] A switched file system is a distributed file system as it aggregates the
namespaces of multiple file servers. It is also a parallel file system, as it can utilize multiple
file servers in parallel to satisfy the request of a single network file client. Therefore, the
switched file system is a new type of distributed, parallel network file system.

[0082] Figure 3 illustrates a switched file system, including its configurations and
applications. The exemplary switched file system consists of the following elements. A set of
file switches 308 are aggregated in a group 309, and are connected to two arrays of file
servers 310 and 311, which are called NAS arrays. The file switches 308 are also connected
to a legacy file server 313, typically containing archive and other pre-file switch content,
which is aggregated only by namespace (i.e., the file switches 308 do not perform file
aggregation for the files stored by the legacy file server 313). In addjtion, the file switch
group 309 aggregates the namespace of another switched file system provided by the file
switch group 314 connected to NAS array 315 and connected to the group '3 09 through a
layer 2 switch 312.

[0083] The services of the group 309 are provided to a network 305 that includes
clients 306, a management workstation 307 and a connection to a metro-area network 304.
The metro-area network 304 provides the remote LAN 300 and its clients 301 with file
services made available by group 309. In order to improve the access to these services, the
remote LAN 300 also includes a file switch 302, which acts as a gateway to the group 309
and caches files locally to the NAS array 303.

Topologies
[0084] The switched file system provides many combinations of file system

aggregation and supports different topologies.

12

WO 2004/061605 PCT/US2003/041202

[0085] One of the available topologies is virtualization. In virtualization, the switched
file system aggregates the namespace exposed by a single file server (e.g., legacy file server
313) without further aggregating its files on other servers. One of the mechanisms available
for this is the namespace aggregation technique described herein. The virtualization allows
pre-existing file servers to be made available to clients of the switched file system and
included in its logical namespace. This functionality facilitates the adoption of the switched
file system and provides an incremental approach to adoption.

[0086] Another available topology is NAS array. The switched file system can have a
set of file servers (e.g., the servers in array 310), preferably with similar capacity and-
performance characteristics, designated as a NAS array. The file switches participating in the
. switched file system distribute files across the file servers in the NAS array, by using the
directory, and data aggregation mechanisms described herein. NAS arrays provide high
performance and high availability. Multiple NAS arrays can be configured in the same -
switched file system, and their namespaces can be aggregated with virtualized file servers to
present a unified namespace.

[0087] Yet another available topology is cascading. In a cascaded configuration, one
or more switched file systems can be connected within another switched file system,
effectively playing the role of a file server in that other switched file system. In our example,
the file switches 314 and the NAS array 315 comprise a small switched file system, which is
aggregated in the namespace of the switched file system presented by the group 309. Since:
the file switches 314 appear as a file server to the file switches 309, the latter can aggregate
the namespace provided by the former the same way as the virtualized server 313. One .
skilled in the art will easily recognize that multiple instances of the switched file system
comprising the file switches 314 and the NAS array 315 may exist, and may be aggregated by
the switches in the group 309 in any and all ways in which the latter may aggregate regular -
file servers, including data aggregation, directory aggregation, and so on.

[0088] * Another topology is the gateway topology. A file switch 302, preferably
having its own NAS array 303, acts as a gateway to clients locally connected to it, and
provides access to the file services made available by the file switch group 309. An advantage
of this topology is that the connection between group 309 and file switch 302, such as the
MAN 304, may have lower bandwidth than the local networks 305. The gateway topology
allows the gateway file switch 302 to cache locally on the NAS array 303 files normally
residing on the file system exposed by the group 309. Since the file switch 302 appears as just

13

WO 2004/061605 PCT/US2003/041202

another client to the file switch group 309, all locking and other client semantics are available

to the file switch 302 to provide caching.

Basics of Transaction Asoregation By a File Switch

[0089] - The typical operation of the file switch involves receiving file protocol
requests, such as login, tree connect/mount, file open, file read/write, etc., from clients and
forwarding, or switching these requests to one or more of the file servers.

[0090] Figure 4 illustrates a preferred process by which a file switch can delegate a
single transaction received from a client to more than one file server and therefore aggregate :
the behavior of those servers in handling the transaction. The behavior of the file switch is
presented to the original client as the behavior of a single file server.

- [0091] Consider the case in which a file switch 400 stripes the data of a file among

file server 401, connected to the file switch through connection 403, and file server 402,

. connected to the file switch through connection 404, in order to deliver higher aggregate:

performance to clients by making these two file servers handle requests in parallel.

[0092] In this example, a client 406 is connected through a computer network 407 to

the file switch 400 through connection 408. The client 406 has established preferably a TCP

connection to the file switch 400, and believes the file switch 400 to be a file server. The

client 406, therefore, initiates a file write transaction of a file named myFile.doc by issuing a

write request message to the file switch 400. After receiving the write request message, the

file switch is in a position to decide how to handle the transaction.

[0093] - In this example, the switch handles the transaction by splitting it into two.

transactions targeted to two separate file servers 401 and 402. Upon examining the write

request, the file switch updates its state (as discussed in more detail below) in a manner |
sufficient to accomplish the goal, and forwards the write request to the file servers 401 and -

402 via the connections 403 and 404, respectively. The two file servers 401 and 402 receive

separate file write requests, each for its appropriate file and each with the appropriate portion

of the data to be written. The file servers execute the requested write operations in parallel
and submit their respective responses to the file switch, which they believe to be the
originator of the write requests. It should be noted that this process does not require in any
way that servers 401 and 402 interact with one another or even be aware of the other’s
existence.

[0094] Upon receipt of responses from file servers 401 and 402, respectively, the file

switch 400 knows the results of both write requests submitted by it and is, therefore, in a

14

WO 2004/061605 PCT/US2003/041202

position to form a response to the original client containing the aggregate result of the
transaction. The switch achieves this by sending an acknowledgement to the original client.
The client receives the response and sends t’he file myFile.doc to the file switch. The file
switch in turn sends the file myFile.doc to the appropriate directory in servers 401 and 402.
The transaction is now complete.
- [0095] The mechanism described above enables two innovative results. First, the file
switch can aggregate a set of file system entities, such as files or directories that reside on
* different file servers and present this set to the clients as a single cohesive entity, thereby
~ forming the foundation for aggregating complete file systems.
[0096] Second, this mechanism allows the switch to split or replicate individual read
and write network file transactions among multiple file servers, which execute the requested
- operations in parallel. In this manner, the present invention sets the foundation for forming
the equivalent of a parallel file system on a network including file switches and file servers.
The file switch has the ability to deliver aggregate performance to each client that is many

times higher than the performance of the individual file servers available to it.

Client’s View of the Switched File System
[0097] From the standpoint of a network file client, such as 406, the switched file

system appears as a single file server with multiple network interfaces. Figure 5 illustrates
the similarity between a switched file system and a single file server. Network clients connect
to the switched file system 500 through the ipterfaces 501 as they would connect to the single
file server 502 thoﬁgh its interfaces 503.

[0098] The switched file system 500 preferably provides a single namespace. It
- allows network file clients to use standard client software using widely standardized network
file protocols for accessing file servers, such as the CIFS and NFS protocols. The ability of -
standard file client software to access the switched file system simplifies adoption and also
allows changes to the switched file system mechanisms and topologies to be performed:

transparently to all clients.

Administrator’s View of the Switched File System

[0099] An administrator’s view of the switched file system 500 is to a degree similar
to the client’s view. For most operations, the administrator views the switched file system
500 as if it were a single, high-capacity, high-performance, and highly available file server

502. For the purposes of management and reconfiguration it preferably appears as a single

15

WO 2004/061605 PCT/US2003/041202

file server. The file switches preferably. support the same file server management protocols
(such as MSRAP) as single CIFS or NFS file servers do. The switched file system can be
configured to expose shares/mount points in the aggregated namespace to their clients.

[0100] Administrators can add individual file servers (using the virtualization
topology) and new NAS arrays to the switched file system 500, and can also add or remove
file servers to or from existing NAS arrays in the switched file system. In the event the
administrator adds one or more file servers to an existing NAS array, the file switch can
discover the newly added servers (or automatically have access to the added servers). And
preferably on administrator’s request, the file switches redistribute the files and their data
across all file servers, including the newly added ones, thus extending both the capacity and
the performance of the file system. In case the administrator wishes to remove one or more
file servers from a NAS array, the administrator can request that a file switch free up
specified servers (by redistributing the files to the file servers that remain in the NAS array).

" Upon completion of that process, the file switches notifies the administrator that the selected .
file servers are free and can be removed without data loss.

[0101] The switched file system 500 provides high availability by distributing the
work among many file switches and file servers. Failure of a file server or a file switch
typically does not cause loss of data or loss of access. The administrator can be notified of the
failure and replace or repair the failed component.

[0102] = - The switched file system preferably tracké access patterns and can report
statistical information to the administrator. Based on this information, the administrator can
tune the performance and storage capacity utilization of the switched file system 500, for
instance by adding or reconfiguring NAS arrays, file switches and by changing aggregation

rules (discussed below) on the file switches.

Scaling in Switched File System

[0103] -« The switched file system scales capacity and performance by adding more file
servers to a NAS array and distributing files across all file servers. It scales access bandwidth
by adding more file switches to a connected group and accesses the same set of file servers,
providing a wider access path (multiple network connections). Unlike prior art solutions, the
switched file system scales independently in multiple directions (or dimensions) without
inherent limitations.

[0104] The switched file system also scales in geographical distribution by adding

cascaded file switches (or switched file system) and gateway file switches.

16

WO 2004/061605 PCT/US2003/041202

Metadata Based Switched File System

Hardware Architecture

[0105] In a preferred embodiment, each file switch 400 (Figure 4) of the metadata

based switched file system is implemented using a computer system schematically shown in
Figure 6. The computer system (i.e., the file switch) one or more processing units (CPU's)
600, at least one network or other communications interface 604, a switch 603 or bus
interface for connecting the network interfaces to the system busses 601, a memory device
608, and one or more communication busses 601 for interconnecting these components. The
file switch may optionally have a user interface 602, although in some embodiments the file
switch is managed using a workstation connected to the file switch via one of the network
interfaces 604. In alternate embodiments, much of the functionality of the file switch may be
implemented in one or more application specific integrated circuits (ASIC’s), thereby either
eliminating the need for a CPU, or reducing the role of the CPU in the handling file access
requests by client computers. |

[0106] The memory 608 may include high speed random access memory and may
also include non-volatile memory, such as one or more magnetic disk storage devices. The
memory 608 may include mass storage that is remotely located from the central processing
unit(s) 600. The memory 608 preferably stores:

[oro71 - an operating system 610 that includes procedures for handling various
~ basic system services and for performing hardyvare dependent tasks;

[0108] . a network communication module 611 that is used for controlling the
communication between the system and various clients 606 and file servers via the network
interface(s) 604 and one or more communication networks, such as the Internet, other wide
are networks, local area networks, metropolitan area networks, and so on;

[0109] . a file switch module 612, for implementing many of the main aspects
of the present invention;

[0110] . state information 620, including transaction state 621, open file state
622 and locking state 623; and

[0111] . cached information 624, including cached (and aggregated) data file
626 and corresponding metadata files 625.

[0112] The file switch module 612, the state information 620 and the cached
information 624 may include executable procedures, sub-modules, tables and other data

structures.

17

WO 2004/061605 PCT/US2003/041202

[0113] In other embodiments, additional or different modules and data structures may

be used, and some of the modules and/or data structures listed above may not be used.

Software Architecture

Layering Model

[0114] Figure 6 also illustfates the preferred software architecture for a metadata
based switched file system. The software architecture of the switched file system is
preferaoly divided in three planes: the core services plane 613, the control plane 614, and the
data i)lane 615 . | o '
[0115] The core services layer 613 provides'basic services to all components in the
remaining layers. These services include services provided by the operating system (memory
management component model, threading), as well as serv1ces developed specifically for the -
ﬁle switch as an unattended and always-on device (conﬁguratlon database, event manager,
etc.). These services are general, low-level computer services, and are minimally dependent
on the particular functions of a file switch.

[0116] - The control plane layer 614 is responsible for maintaining the operation of the
data plane 615. It sets up the configuration of the data plane, controls the life cycle of the file
switch, such as start, stop, and restart, and implements various management protocols. In
addition, it includes additional services that provide features like clustering of file switches,
load balancing, failover, backup, file system check and repair, and automated management.
These functlons don’t participate directly in servmg client-originated file requests, but are
essential for the e)glstence and continued operation of the file switch. These functions may
also include value-adding services, such as data migration and accounting.

[0117] The data plane layer 615 is responsible for file switching and aggregation. It
provides all protocol layers through which file requests pass as well as the switching logic
that distributes these requests to the file servers and aggregates the responses. All requests to

access files and user file directories go through the data plane 615 and are served by it.

The Data Plane

[0118] In the preferred embodiment illustrated in Figure 7, the data plane consists of
the following key components.

[0119] The TCP/IP Transport 708 includes the NetBT (NETBIOS over TCP/IP) sub-
layer used by the Server Service (SRV) 718 and Parallel Redirector 706 (RDR) components.

18

WO 2004/061605 PCT/US2003/041202

This includes the entire transport layer from the TCP or NetBT session layer down to the
physical Ethemet interface. For fast operation and minimum load on the CPU, the file switch
uses a hardware-implemented or hardware-assisted extension of the TCP/IP implementation.
However, the use of hardware-assisted TCP is not required for the file switch to operate
because the components that interface with TCP, such as SRV 718 and RDR 706, use the
standard transport protocol interface provided by the TCP/IP transport.

[0120] The Server Service 718 (SRV) is the CIFS file server service. It interprets the
clients’ requests for operations on files sent as CIFS commands and translates them to
NT/WDM file I/0 requests (IRPs). SRV 718 handles the entire process of authenticating

~ clients. Other file protocol servers can be used nstead of or aloné with the CIFS file server
(e.g., NES).

[0121] - The Virtual File System 702 (VFS) is a file system driver, an Installable File
System, in WDM terms. VFS 702 provides the common name épace of the File Switch,
which makes multiple NAS Arrays combined into aggregated file systems aloﬁg with legacy
single-server NAS file systems appear as a single file system to the client. In addition, VFS
serves as a “security context gateway”, Working in the context of the connected client on its
front side and providing the mandated access control checks, while operating in the “local
system” context when accessing the constituent file systems that make up the “ virtual”
namespace. Finally, VFS implements the local caching of open files to provide low latency to
the clients and optimize access to the constituent server file systems by consolidating small
1170) requests (“lazy write”, “read ahead”). i

[61 22] The Aggregated File System 704 (AFS) is a file system driver. It implements
the “Switched 'File System’ aggregation mechanisms. It presents an array of file servers as a
single file system by distributing the metafiles énd the data files stored among the file servers.
It also performs the function of aggregating data files and load balancing accesses between
clients and the array of file servers. AFS further provides ad{fanced NTFS-style features
including Unicode names, extended attributes and security descriptors, even if the file
systems that it aggregates do not have this support.

[0123] The Parallel Redirector 706 (RDR) is a file system driver. It is similar to the
Windows Workstation service, which exposes a file I/O interface and converts it to network
file I/O requests sent to a remote server. It uses multiple concurrent connections to the same
network server in order to alleviate the inability of some CIFS implementations to handle

multiple pending client read and write requests on the same network connection. In addition,

19

WO 2004/061605 PCT/US2003/041202

the RDR is used to access the virtualized “legacy” servers and to perform operations on
aggregated data files of the file system.
[0124] The data plane also includes a front-side network interface 710 and a back-
side network interface 712. A front-side and a back-side TCP/IP protocol stack reside within
the TCP/IP transport 708.
[0125] Various other services, such as DHCP, DNS, load-balancing, command-line
and/or web-based management, SNMP, etc., may be included in or added to the architecture

. described above.
[0126] The implementation of the architecture described above can be arranged in
many possible ways. For example, the network: interfaces may be implemented in hardware,
while the rest of the data plane and the two remaining planes are fully implemented in
software. Alternatively, additional portions of the data plane may be implemented in
hardware (e.g., by using Field-Programmable Gate Arrays, Application-Specific Integrated
-Circuits, switch fabrics, network processors, etc.), while the control plane 614 may be
implemented in software. In addition, the control plane 614 may be further implemented or
accelerated in hardware. Moreover, it may be advantageous to implement portions of a -
certain plane (e.g., the data plane or the control plane) by providing accelerated functions in
hardware while maintaining the rest of the plane’s functionality (such as setup, initialization
and other slow functions) in software. In other embodiment, the Aggregated File System 704
is provided, but the Virtual File System 702 is not provided. In yet another embodiment one
or more of the modules of the file switch are implemented on the file servers of a NAS array.
[0127] One skilled in the art will easily recognize that various other architectures for
implementing a file switch ére possible. In addition, while most of the particular choices
made in implementing the file switch (such as those described above) are preferably driven .
by the performance and cost targets of the file switch, all various implementations fall within.

the spirit of the present invention.

Operation of the Data Plane
[0128] In normal operation, the componénts in the data plane interact with each other
and with the Ethernet interfaces of the File Switch. The following steps illustrate the

interactions between the components for an exemplary client session.

Exemplary Client Session

[0129] 1. Client connects to the file switch via the network interface 710.

20

WO 2004/061605 PCT/US2003/041202

[0130] The TCP connection request is forwarded to SRV 718 via the TCP/IP
transport.

[0131] 2. Client logs in and attaches to a shared mount point exposed by the switch.
[0132] The client’s request arrives as a series of CIFS commands. SRV 718 performs

authentication of these requests without involving any other data plane components.
~ [0133] - 3. Client opens a file.
 [0134] As the shared mount point exposed by SRV 718 is associated with the file
system owned by VES 702, SRV 718 translates the request to a file system operation on VFS
- 702.
- [0135] Next, VFS 702 consults a virtualization table stored in the configuration
. database and finds the translated path for the file. This path may point to a file on a “legacy”
. file system handled by RDR 706 or to a file on an aggregated file system handled by AFS
704.
. [0136] - Next, VFS 702 retrieves the security descriptor for the file and performs a
- security check to verify the client’s right to open the file. If the check passes, the open request
is forwarded to AFS 704 or RDR 706 using the translated file path. Upon successful
completion of the “open”, VFS 702 will request an opportunistic lock (op-lock) on the file in
order to enable local caching of the file.
[0137] If the file is on a “legacy” file system, RDR 706 completes the open operation
through its CIFS connection to the NAS sever.
~ [0138] If the file is on an aggregated file system, the “open” request is handled by
AFS 704. Then, AFS 704 begins processing of the “open” request by issuing an “open”
request to all mirror copies of the metadata file that represents the client’s aggregated data
files through RDR 706. If at least one mirror copy is opened successfully, AFS 704
completes the client’s open request and starts calling RDR 706 to open the data files that hold
the client’s data.
[0139] For each of the data files, RDR 706 picks one of its “trunked” connections to
the corresponding NAS server to use for that file and sends a CIFS open request to that
connection. Following an analogy from the telecom world, the use of multiple connections to
the same target in order to increase throughput is referred to in this specification as a
“trunked” connection.
[0140] 4. Client reads metadata (e.g., directory information).
[0141] A client request to read file attributes, file size and similar requests not related

to data read/write are forwarded to SRV 718 and are converted to file system operations on

21

WO 2004/061605 PCT/US2003/041202

the metadata file corresponding to the specified user file. All of these requests go through the

same path as follows:

[0142] —the VFS 702 forwards the requests directly to the same file system on which
. the file was originally opened.

[0143] —if file is found on the AFS 704, the AFS 704 forwards the requests to RDR

706 as an operation on one of the mirror copies of the metadata file or to all mirror copies, if

the operation involves a modification of the metadata file.

[0144] —the RDR 706 converts the requests to CIFS requests and sends them to the
NAS server.

1 [0145] 5. Client requests a data operation.
[0146] Client’s data requests are converted by SRV 718 into “read”, “write” and

“lock control” file I/O requests sent to VFS 702. Data operations on aggregated files are
forwarded from VFS 702 to AFS 704. AFS 704 consults its aggregation table, compiled from
“data in the-configuration database, computes how to distribute the requests among the data -
files that hold the client’s data and forwards those requests to the data files open on RDR 706.
[0147] - 6. Client disconnects.
[0148] When the client disconnects, SRV: 718 closes any files that were left open,
thus providing proper closing of files on the servers, even if the client does not close its file
before disconnecting.
[0149] One skilled in the relevant art will easily recognize that various modifications
" of this architecture can work well for the inventive file switch while preserving the spirit of
the present invention. For example, more network interfaces 710 and 712 can be added, and.
the.two network interfaces can be replaced by a single network interface wherein the client
traffic and the server traffic can be separated by the TCP protocol stack. The TCP protocol
“stacks can be merged together (in many conventional computer architectures there is a single
TCP/IP protocol stack that handles multiple network adapters) or separated per network
adapter.
[0150] In addition, multiple server-side SRV’s 718 can be added in order to process
multiple network file protocols or different versions thereof. Similarly, multiple client-side
RDR’s 706 can be added in order to support multiple network protocols or multiple versions

of such network protocol in interacting with the file servers.

22

WO 2004/061605 PCT/US2003/041202

Metadata File _

[0151] A metadata file based switched file system aggregates files across multiple file
servers of a NAS array in order to increase performance and to aggregate storage capacity.
The subset of file servers of a NAS array that are used to represent a single user file is known
as a file array. Every file contained in the aggregated file system has a corresponding file
array.

[0152] The model of metadata file aggregation is based on the file array. From the

. point of view of the client, an aggregated file is seen as a single file. However, the switched
file system views the file as multiple metafiles and data files stored on multiple file servers in
the file array. “Metafile based aggregation” refers to aggregating the metafiles and data files .
that together.store the metadata and data file of a specified user file.

[0153] - There are two classes of properties of an aggregated file: state and metadata.
The state properties are managed internally by the file switch in memory. These properties

- are used to describe the current state of a file such as current oplock level, access mode, and
cache mode. The metadata in general is shared between all clients of a single file. Each -
property has an associated aggregation class. The aggregation class describes how a specific

. property is aggregated in relation to the elements of a file array.

Primary and Secondary Metadata File

[0154] The switched file system metadata for each aggregated file (also called the
user file) consists of two separate metadata files: a primary metadata file and a secondary

, metadata file. The Primary metadata file contains various properties about a specific
aggregated file, such as the aggregation parameters, file paths to the data files that store the

. contents of the aggregated file, and file attributes. The metadata file attributes represent the

. aggregated file attributes (file attributes, creation date and time, etc.). The primary metadata
filename is the same as the aggregated filename except it is prefixed with the letter P’.
[0155] The secondary metadata file is used only (or primarily) to store the aggregated
size of the file. The size of the file is encoded in the file’s date/time attribute fields, which
are retrieved through a file get information request. The secondary metadata file contains no
data. The secondary metadata filename is the same as the aggregated filename except it is
prefixed with the letter S’. For file systems that do not support date/time attribute fields
large enough to store the file size, the file size may be stored in the primary or secondary

file’s data.

23

WO 2004/061605 PCT/US2003/041202

[0156] In an alternative embodiment, only the primary metadata file is created and
there is no secondary metadata file. In this alternative implementation, the aggregated file
size is encoded directly in one of the primary metadata file’s date/time attributes fields (e.g., -
the creation date/time field).

[0157] - Figure 8 illustrates the contents of the primary metadata file 800 in a preferred
embodiment. At a minimum, the primary metadata file 800 contains the following elements:
[0158] . A header 801: field for storing genuine file attributes that are exposed
to the user, such as creation, last access, and last written dates and times. The header 801 is
optional since much or all of the header information may be stored in the directory entry for.
the metafile.

[0159] . A metadata offsets field 802 for pointing to various portions of the
metadata contained in the metadata file. This is used by the aggregated file system fér :
quickly accessing the portions of the metadata. In alternate embodiments, the offsets field -
802 can be eliminated if fixed sized fields or fixed position. fields are used in the metadata
file.

[0160] e An aggregation descriptor field 803 that contains a header of the
descriptor 804, a stripe-mirror map 811, and a data stream descriptor 813. The header of the
descriptor 804 further contains a flag that indicates whether the metafile is valid. If the

metafile is not valid, it should be ignored or updated to become valid.

[0161] . A number of stripes field 805 for indicating the number of stripes into
which the corresponding user file has been divided. |

[0162] '+ A stripe size field 806 for indicating the size (in number of bytes) of
each stripe. ‘ '

[0163] - - A number of mirror field 808, which indicates the number of copies

(also called mirrors) of each stripe that are stored in a file array.

‘[0164] © A spillover field 809 for indicating whether there is any spillover of the
user file.
[0165] T e A number of data streams field 810 for indicating the total number of

data streams for the user file.

[0166] . A matrix 812 of pointers to entries 830 in the data stream descriptor.
The size of the matrix is determined by the number of stripes 805 and the number of mirrors
808 of the user file. The matrix 812 contains an array of pointers (e.g., indexes into the data
stream descriptor), one for each distinct stripe-mirror of the user file, to entries 830 in the

data stream descriptor 813. For example, if a file has ten stripes and two mirrors, there will

24

WO 2004/061605 PCT/US2003/041202

be twenty distinct stripe-mirrors for that file. Each instance of a stripe is sometimes called a
stripe-mirror instance, to emphasize that the data file containing that stripe instance is for a
particular mirror of the stripe. Each entry 830 in the data stream descriptor 813 includes, in
turn, the name 818 of (or a pointer to, or an identifier of) a file server in which a stripe-mirror
instance of the user file is stored. If the stripe-mirror instance overflowed the file server, then
the entry 830 also identifies a spillover segment with a pointer (index to next data stream)

815 to a next entry 830 that describes the spillover segment.

. [0167] . A total file length field 820 for indicating the total aggregated size of
the user file. This field is optional, although frequently helpful.. .
[0168] The entries 830 of the data stream descriptor array each include the following
fields:

- [0169] . A state of data stream field 814 for indicating whether the stripe-mirror

instance identified by an entry 830 is valid (containing correct data), invalid (e.g., containing
out of date data) or does not exist.

[0170] . An index to next data stream field 815 for linking to the entry 830 for a
. spillover segment. The index 815 is null when there is no spillover segment.

[0171] . A starting offset 816 within the aggregated user file for indicating the starting
location of the segment or segment portion represented by the entry 830. When the entry
830 represents a stripe-mirror instance (i.e., a segment of the user file) without a spillover ‘

- segment, then the starting and ending offsets 816, 817 are determined solely on the stripe size
and the stripe number of the stripe represented by the entry 830. When a stripe-mirror
instance has one or more spillover segments, the starting and ending offsets represent the
starting and ending positions of each of the segments that forms the stripe-mirror instance. In
© an alternate embodiment, when a stripe-mirror has not spilled over, the field 816 is set to 0
and the field 817 is set to a special value (e.g., -1) to indicate a maximum value, which allows
the system to avoid modifying the metadata every time data is written to the end of the file,
and allows multiple openers of the file to work more efficiently together.

[0172] . An ending offset 817 within the aggregated user file for indicating the
ending location of the segment represented by the entry 830.

[0173] . A server name field 818 for indicating the name (or some other
identifier) of file server in the file array that stores the file segment represented by the entry
830.

[0174] . A global unique identifier field 819, containing a global unique identifier
(GUID) for the data stream of a stripe-mirror instance corresponding to the entry 830. The

25

WO 2004/061605 PCT/US2003/041202

GUID is used for determining the directory structure in which the file segment corresponding
to the entry 830 is stored within a file server in the file array. The GUID, in ASCII
representation, is also used as the file name of the data file(s) that stores the stripe-mirror
instance.

- [0175] The metafile described above can be extended according to the needs of the
switched file system. For example, in an alternative embodiment, a deleted file path field is
included in the metadata file for indicating the location of a user file that has been deleted,
but not yet removed from the file server. Saving the state of the deleted file path enables the
trash bin functionality (which allows deleted files to be recovered). In addition, a security
descriptor field may be included in the metafile for indicating the access permission of a user
file. Other types of metadata that are not described above may also be extended according to
the needs of the particular file aggregation and the particular file system. The layout, structure
and usage of the metadata are entirely up to the particular implementation of the switched file

system.

Aggregation with Metadata File
[0176] One objective of the present invention is to aggregate file system services
. provided by conventional file servers and present them to network clients as a single, large,
very high performance network file system, the availability of which is many times higher
than the availability of each individual file server.
[0177] To achieve this objective, the file switch preferably aggregates all operations
. of one or more network file protocols in such a way that clients connected to the switch will .
not be able to distinguish its operation from the operation of a single network file server. This
reciuires the switch to aggregate all entities exposed by a typical network file protocol, in

. particular, the file system namespace, directories, metafiles and data files.

Rule-based aggregation

[0178] The mechanisms that the file switch uses to achieve file system aggregation
are preferably implemented such that they can be driven from a set of rules and policies
defined on the file switch.

[0179] There are several attributes that make rule-based aggregation desirable. First,
it allows a storage administrator to specify different ways of aggregation for different sets
and/or types of files, thereby easily tuning the characteristics of the system to the intended

use and the specific access patterns for different data. Second, it allows the file switch to

26

WO 2004/061605 PCT/US2003/041202

operate with more deterministic timing by eliminating the need to consult external devices
during normal operation.

[0180] In addition, rule-based operation allows multiple file switches to aggregate
and be put in front of the same set of servers without the file switches having to interact with
each other, except to synchronize the set of rules and policies whenever they are changed.
This loose coupling between file switches that aggregate the same set of file servers makes it
possible to scale access bandwidth by orders of magnitude, simply by adding file switches
whenever needed.

[0181] . . Finally, since file switches are in an excellent position to track usage patterns
internally, they can be configured to adjust the aggregation rules (discussed below)
-automatically in accordance with policies specified by the system administrator and observed
usage patterns. Asa result, the file switches can optimize in-wide margins the distribution of
files and data’among the file servers to achieve smooth and adaptive behavior of the network -

storage system as a whole.

Namespace aggregation

Namespace Rules

[0182] In order for a file aggregator to‘redirect a file opél'ation to the appropriate NAS
array, it uses a set of namespace rules (also called the namespace aggregation rules) to
generate the corresponding NAS array fﬂe path. Using the given file path accessed by a
client and matchiﬁg namespace rule, the NAS array file péth can be generated by using a path
replacement proceés. Before using path féplacement, the aggregator must select the matching
namespace rule for the given file path. Once the rule is selected, the aggregator uses a path
replacement process to generate the proper NAS array file path. The path replacement
process replaces the client’s file path with the NAS array file path.

[0183] Figure 9 illustrates a rule-based namespace aggregation by the inventive file
switch to aggregate multiple file servers under a common file system namespace. The rules
for namespace aggregation are preferably defined as a table of path correspondences. The
first column specifies the names visible to the clients, the second column specifies the name
of the file server and, optionally a shared mount point on that server, in which the files
actually reside. A file switch is shown connected to three file servers 908, 909 and 910.
Loaded within (or otherwise accessible by) the file switch is a rule table 904 that specifies
three rules 905, 906 and 907. The path names 901, 902 and 903 of incoming file requests,

27

WO 2004/061605 PCT/US2003/041202

such as file open requests, initiated by a network client are compared to the name-mapping

rules in the first column (ﬁreferably the comparison is done either by matching longest

prefixes first, or by applying the rules in a predefined order of priority, so that overlapping
pathnames can be specified). If a match is found, the matching portion of the file base path is
replaced with the name from the second column and the request is forwarded to the new path -
for processing. Once a file is open on the target server, all further transactions related to this
file are switched to that server.

[0184] For example, rule 905 specifies that the \ENG subtree of the common

namespace is to be mapped to the server 908. File 901 will match this rule and therefore will

be switched to the server 908 where it will arrive with a modified path. However, rule 906

. specifies that a subtree within the \ENG subtree, namely \ENG\SW, is to be mapped to a

different server, server 909. File 902 satisfies this rule and will therefore be switched to

. server 909, where it will arrive with ‘a modified path. In addition, rule 907 speqiﬁes that the.
\ACCT subtree is to be mapped to server 910. This rule will drive the switching of file 903
even though this file resides in a subdirectory of the \ACCT subtree (because of the prefix
match).

[0185] In addition to base path, other namespace mapping rules are contemplated. For
example, a rule may specify that all files with a given extension (and, optionally also under a
given subtree) are switched to a specific server. For example, a rule (*.mpeg --> \\srv3\dir6)
will cause all MPEG files to be sent to the subdirectory dir6 on server SRV3 910, no matter
where in the 10g1ca1 namespace these ﬁles reside.

[0186] It should be noted that the new path created by the application of the
namespace aggregatlon rules is the file path for the metadata file corresponding to the
specified user file. Access to data within the user file is redirected to other file servers, and to
specific directories and data files within those directories, in accordance with the metadata in

| the metadata file. This will be explained in more detail below.

[0187] Note that by aggregating the namespace of multiple file servers into a common
namespace, the file switch achieves a function similar to what available distributed file

systems do without requiring any proprietary client-side software.

Name of a Data Stream
[0188] Each aggregated file consists of one or more data streams that contain the
file’s data. The number of data streams depends upon the number of stripes and mirrors for

the specific data file, as well as the number of spillover fragments (as explained in more

28

WO 2004/061605 PCT/US2003/041202

detail below). The name of a data stream is the ASCII code (i.e., the ASCII representation)
of the global unique identifier (GUID) stored in the corresponding entry 830 of each data
stream. This ensures the name for each data stream is unique because of the uniqueness of the
GUID. -
- [0189] Figure 15 illustrates an example where the above naming methodology is
observed. The data stream names for the document myFile.doc 1500 are formed using the
ASCII code of the GUID of the corresponding data stream. For example, the name for the
first data stream on file server 1501 is the ASCII code of the GUID for this entry (namely
. GUID_ASCII 1) and similarly, the names for the first-data stream on file servers 1502
t01506 are the ASCII codes of the GUID for the respective entries, namely GUID 'ASCII 2,
-GUID_ASCII_3, GUID_ASCII 4, GUID_ASCII_5 and GUID_ASCII_6. Note that the
mapping is configured and performed on the file switch. The clients don’t need to know, and.
in fact have no way of knowing, the mapping and do not need to be reconfigured if'the

mapping is changed.

Data Aggregation Rules

[0190] The ability to aggregate data files among multiple servers and to do so safely
in a concurrent environment enables the file switch to distribute the data of the aggregated
file on multiple servers, thereby achieving both parallel operation and high availability. The
same process can be Vie\;ved as the file switch aggregating the contents of the member files
into a single file that it presents to its network clients.

[0191j Most network file protocols represent data file as contiguous arrays of bytes.
.This means that the techniques required to distribute the data for each individual file are not
different from the techniques required to distribute the data for an array of hard disks. In
accordance with the present invention, the methods for doing so, including striping, mirroring
and other variations of RAID, are applied to distributing data of individual files across a set
of file servers.

[0192] Figures 10-12, described hereinafter, respectively illustrate mirroring, striping,
and spillover as implemented by the present invention. As these mechanisms exist
conventionally, a representation of the clients and servers is not believed necessary. It is
noted, however, that these mechanisms are performed by the present invention based on
switching file protocol transactions that take place in the file switch (represented by the arrow
in each of these figures), rather than API functions that take place on a local machine,

typically the client.

29

WO 2004/061605 PCT/US2003/041202

Mirroring

[0193] Figure 10 illustrates data aggregation through mirroring in a switched file

system. In this example, the file switch (not shown) aggregates member files 1001, 1002,
1003 and 1004, all preferably residing on different file servers, into a single aggregated file

. 1000, presented to the clients. The member files 1001 through 1004 contain identical data,
which the switch presents as contents of the aggregated file 1000.
[0194] When the client initiates a file open transaction, the switch aggregates that

‘transaction (as shown in Figure 10) and preferably opens all member files 1001 through
1004. When the client initiates a file read transaction, the file switch selects, preferably

.randomly, one of the file servers on which the member files resides and switches the read
transaction to it. That server executes the read transaction and returns the response to the
'switch; the switch forwards the response to the client, thus completing the read transaction
requested by the client. With this mechanism, if multiple clients try to read the same file
1000, the switch will direct their transactions to different member servers at random (or in
accordance with predefined criteria, such as load balancing criteria). The switch thus balances
the load among these file servers. In addition, the clients can experience up to four times
increase in performance compared to a situation where the file 1000 is stored on a single
server.

'[0195] When a client initiates a file write transaction, the switch aggregates the
transaction by replicating the user data into all of the member transactions. As a result, all
member files 1001 through 1004 are updated synchronously with the same data. Since all
'member transactions execute in parallel, this does not significantly degrade the performance -
‘of write transaction on the aggregated file compared to write transactions on a file stored on a
single server.
[0196] * Finally, when a client initiates a close transaction, the switch aggregates it'in a
manner similar to the open transaction and closes all member files.
[0197] One other significant advantage of file mirroring is that the above transactions
‘can be completed successfully even if one or more of the member file servers become

- unavailable. Open, write and close transactions are switched to all available servers; read

transactions are switched to any one of the available servers. This way, as long as at least one

of the member files is online, the file system as a whole and the aggregated file 1000 in

particular remain available to all clients.

30

WO 2004/061605 PCT/US2003/041202

Striping

[0198] Figure 11 illustrates data aggregation in a switched file system through
striping by a file switch. In this exampie, the file switch (not shown) aggregates member files
© 1101 through 1106, all preferably residing on different file servers, into a single aggregated
file 1100, presented to the clients. The member files 1101 through 1106 in this case contain
different, non-overlapping stripes, which the switch presents as a contiguous aggregated file
1100.

- [0199] i When a file switch receives a file open transaction from a client, it aggregates
that transaction (as shown in Figure 11) and opens the corresponding metadata file. From the
metadata file, the file switch determines the number of stripes and the file server locations of
- the data files containing the stripes. By placing an appropriate lock on the metadata file, the
file switch can furthermore prevent other client requests from interfering with the operation
of the current client request.

[0200] When the client initiates a file read transaction, the switch aggregates this

" transaction by executing the following steps. First, determining based on the stripe size and.
the requested starting offset and the requested transaction size, which of the member servers
will be involved in the transaction, and at what starting offset and what amount of data each
of them must read. The switch then issues the member transactions to the selected servers
and aggregates the results by ensuring that data arrives at the client in the right reconstructed
order. The client receives the aggregated header for the response, followed by all of the data
requested, in the correct order.

10201] - - One skilled in the art will recognize that the write transaction in this case is
executed in a manner similar to the read transaction described above, except that the data is
distributed as illustrated in Figure 11, instead of being assembled as was the case with the
read transaction. Finally, when a client initiates a close transaction, the switch aggregates it.
in a manner similar to the open transaction and closes the corresponding metadata file, as
well as any of the stripe data files that have been opened.

[0202] In the case of data aggregation through striping, both read and write
transactions are aggregated by submitting corresponding read and write transactions for
smaller amounts of data to multiple member servers in parallel. This results in a respective
increase of performance, which the file switch can deliver to each individual client, as well as
to an excellent load balancing in the case of multiple clients accessing the same file. In

addition, as multiple studies have shown, striping tends to resolve the problem of hotspotting.

31

WO 2004/061605 PCT/US2003/041202

Spillover

[0203] Figure 12 illustrates data aggregation through spillover. The spillover

- mechanism is preferably used to aggregate storage capacity, preferably in conjunction with
one or more of the other mechanisms described herein. The spillover is especially useful in
cases where one or more of the member servers for an aggregated file unexpectedly run out
of disk space while the file is open. The figure illustrates an aggregated file 1200, comprising
two member files 1201 and 1202, preferably residing on different file servers. As seen from
the figure, sections 1, 2, 3, and 4 of the aggregated file 1200 reside in member file 1201,.
while the remaining sections 5 and 6 reside in- member file:1202.

. [0204] - . Spillover happens when the file switch, in the process of writing data into a
file unexpectedly discovers that the target file server is about to run or has run out of disk
space. In such case, rather than failing the write transaction, the: switch may elect to open a
new member file on another server and continue writing into it. The contents of the two files
are concatenated to present a common contiguous byte array in an obvious way. One skilled:
in the art will recognize that the spillover mechanism can be applied to the second file as
well, creating an arbitrarily long chain of member files, so that all disk capacity in the system
can be fully utilized if needed. ‘

[0205] The file switch switches file transactions to spilled-over files as follows. For

- read and write transactions, the file switch looks at the starting offset and the length of the

- payload to be read/written and switches the transactions as follows:

[0206] (@) if the payload fits completely within the first member file (e.g., .
segments 1 and 2 from file 1200), the file switch switches the transaction to the first server.

- [0207] (b) if the payload fits completely within one of the spillover (second and
further) member files (e.g., segment 5 from file 1200, which is stored in the beginning of the
member file.1202), the file switch switches the transaction to the server on which that
member file resides. The switch also modifies the parameters of the transaction by
subtracting from the starting offset for the transaction the starting offset of the member file
within the aggregated file. In our example, segment 5 is at offset 0 in file 1202, so four
segments should be subtracted from the request, resulting in a request to read the first
segment from file 1202.

[0208] (©) if the payload spans multiple member files (e.g., segments 4 and 5
from file 1200), the file switch replicates the transaction to all servers on which portions of

the request reside, modifying the starting offset and length of each transaction. Upon

32

WO 2004/061605 PCT/US2003/041202

receiving the responses, the file switch reconstructs the data in the correct order (similar to

the way this is done for striping) and sends it back to the client.

. [0209] In order for the spillover mechanism to function, the metadata file stores the

range of data file and the location of the member files in the file system (i.e., the server on

which each member file resides and the file name and file path of the member file). This

same information is obtained from the metadata file during read and write or update

operations.

[0210] According to the present invention, the file switch aggregates data file on a

file-per-file basis. In this way, different files can be aggregated in different ways using

- different combinations of striping, mirroring and other data aggregation techniques to achieve.
optimal balance between performance, storage utilization and the desired level of data
availability.

- [0211] It is well known that the effectiveness of striping, mirroring and other data
aggregation techniques when applied to block devices, such as in RAID or parallel file

. systems, can be greatly diminished by the fact that no single solution can fit all types of files

and access patterns. By way of example, streaming video can be striped very effectively over

a large number of devices, since streaming data is usually being read in large segments. On

the opposite side of the spectrum, HTML files are typically only a few kilobytes large and not

a good target for striping. Therefore, the present invention utilizes aggregation rules (also

called the data aggregation rules) to configure the file switch with different data aggregation

- parameters for different types and/or sets of files.

. Syntax of Data Aggregation Rules

- [0212] Figure 13 illustrates the syntax of data aggregation rules and provides
examples of such rules. The preferred syntax 1300 defines a set of data aggregation

. parameters, namely, number of mirrors and stripe size, which are selected for a given set of
files based on each file’s path (location in the aggregated namespace) and type (recognized
by the file extension/suffix).

[0213] Rule 1301 shows typical parameters for MPEG files located anywhere in the
file system. The rule is selected for any file path, but only for files whose filename extension
is MPEG, and it defines mirroring by 2 and a stripe size of 16KB. With this rule, any MPEG
file will be mirrored once (two copies of the data will exist in the system) and striped using a

file stripe size of 16 kilobytes.

33

WO 2004/061605 PCT/US2003/041202

[0214] Rule 1302 shows typical parameters for HTML files located anywhere in the
file system. The rule is selected for any file path and only for files whose filename extension
is HTML, and it defines mirroring by 64 and no striping. With this rule, any HTML file will

be mirrored on 64 file servers, which allows load balancing when read by large number of

clients simultaneously (which is the typical access pattern for HTML files on a HTTP server). -

- [0215] - . Rule 1303 shows typical parameters for Microsoft Word document files
located anywhere in the file system. The rule is selected for any file path and only for files « .
. whose filename extension is DOC, and it defines mirroring by 3, and a stripe size of 8KB. .
With this rule, any document file will be mirrored twice (three copies of the data will exist in -
- the system for higher availability) and striped with a file stripe of 8 kilobytes. Since most
such documents typically have file sizes between 32 KB and 100 KB, this rule provides
moderate (e.g., 4X) improvement in performance for each individual client, and lowers the
. probability of hotspotting significantly since each file is spread across a total of 24 file
- servers (if that many file servers are available) without wasting too much storage space.
[0216] - Rule 1304 shows a desired set of aggregation parameters for software source
code files that contain valuable intellectual property while being each small in size. The rule
applies to any file in the \CODEBASE subtree of the aggregated namespace, and defines
mirroring by 4 and no striping. This provides moderate performance increase (e.g., 4X)
during program compilation and build, which is the usage pattern where hundreds of files are .
being read in a batch process and provides excellent protection from data loss due to server
failure. | o
[0217] Finally, rule 1305 is a modification of rule 1304 that optimizes the use of
storage space in the \CODEBASE subtree. This rule recognizes the fact that source code
directories often contain intermediate object code files (with file extension of OBJ) which are
a byproduct of the compilation process and can easily be reconstructed if lost. The rule
defines an exception from rule 1304, namely that any file in the \CODEBASE subtree that
has a filename extension of OBJ will be neither mirrored nor striped. When used together, -
rules 1304 and 1305 can easily provide optimal storage characteristics for a software
engineering department.
[0218] In another embodiment, the data aggregation rules contain additional
parameters. In particular, the syntax of the data aggregation rules in this embodiment is:
[0219] (Path, Type) = (N Mirrors, Stripe Size, operational parameters, caching

parameters)

34

WO 2004/061605 PCT/US2003/041202

[0220] The operational parameters may include, for example, a lock redundancy
parameter that specifies the number of file servers on which file lock are to be replicated.
The caching parameters may include a “read ahead enabled” parameter, which indicates
whether read ahead caching (i.e., retrieving and caching data from a file before it has been
requested by an application running on the client computer) is enabled for the files to which:
the aggregation rule applies. The caching parameters may include a “write behind / write
through” parameter, which indicates (for the files to which the rule is applicable) whether
“new and updated data is lazily written back to the file servers, or is written bacl; immediately.
The caching parameters may also include caching parameters that specify one or more of-a:
maximum cache size, a maximum caching time, a maximum amount of dirty data that can be

cached without writeback to the file server (if write behind is enabled), and so on.

Summary of Data Aggregation Rules.

[0221]. = This section has described the various mechanisms, algorithms and other
elements of the present invention used to achieve the desired behavior of the file switch,
namely the ability to aggregate multiple.independent file servers into a single, highly scalable .
switched file system.

[0222] - One skilled in the art will easily recognize that the mechanisms described in
this section can be beneficially applied simultaneously to the same file. For example,
mirroring and striping can be combined to increase both performance and availability of a
single file; further, spillover can be added to the same file in caée some of the file servers run
out of storage space. Moreover, one skilled in the art will recognize that other data
aggregation techniques, for example RAID4 and RAIDS, can be implemented in a file switch

in addition to or instead of the mechanisms described herein.

Directory Aggregation

[0223] Namespace aggregation as described above is an easy way to distribute files
among different servers, and also to add a new server to an existing system. However, this
technique alone may not be sufficient to aggregate seamlessly the storage capacity of
multiple file servers. For example, with namespace aggregation alone it may not be possible
to tell how much free disk-space is available on the aggregated file system.

[0224] Since different directories are mapped to different servers, a file that cannot be
stored under the \ENG subtree for lack of room may be successfully stored under the

\ENG\SW subtree, which resides on a different server. Thus, even when the system as a

35

WO 2004/061605 PCT/US2003/041202

- whole has plenty of available storage space, particular file operations in particular places in
the namespace may not be able to execute successfully without extensive human intervention. -
[0225] Directory aggregation resolves the above issues by making it possible to

distribute files that reside in the same aggregated directory among different servers. This
ensures that the files from all directories of the combined namespace can share all of the

available free disk space.

Directory Structure of Metadata File

[0226] . In order to determine the directory structure for storing the metafile of a user
file in the group of file servers, the file switch needs to construct the following:

[0227] [NAS array][file server][directory path][filename]

[0228] Figure 14 illustrates a method for constructing the directory structure of a
metafile. The method consists of the following key steps:

[0229] 1. Determine NAS array 1404: The aggregator needs to first determine
which NAS array should be used. This determination is based on the namespace rules. The
file path being accessed is mapped to a specific NAS array and directory path in accordance
with the namespace rules, as described above.

[0230] -2 Determine File Servers 1406: The file server (more specifically the set
of file servers) that contains the metadata file is determined by using a hash function (e.g., by
applying it to the user file name) to identify a first file server. The set of additional file
servers (for storing redundant copies of the metadata file) is determined according to the
aggregation rules. For example, applying the hash function may be used to identify a first ﬁle
server in a NAS array, and then the additional file servers for additional stripes and mirrors
may be automatically identified by applying a predefined selection rule starting with the
identified first file server. A very simply selection rule would simply select the “next” N-1
file servers in the NAS array, when a total of N file servers are needed.

[0231] 3. Determine Directory Path 1408: The directory path is calculated using
the aggregation rules and the file path provided with the request. Parts of the file path may
need to be replaced depending on the aggregation rules. The constructed directory path needs
to be replicated according to the number of redundant metafiles defined by the aggregation
rules.

[0232] 4. Determine Metafile Names 1410: The file names of the primary and
secondary metafile stored on the file server are the same as the user file name, with a prefix

of “P” for the primary metafile and a prefix of “S” for the secondary metafile respectively.

36

WO 2004/061605 PCT/US2003/041202

[0233] The NAS array in which the metafile is to be stored is identified by the
namespace aggregation rules. There may be multiple NAS arrays in a given file system.
- Bach NAS array is responsible for specific directories and files as described by the rules.
Directory aggregation applies to a specific NAS array; not all NAS arrays as a whole. The
- full set of file servers that makes up the NAS array must be known to the file switch (e.g., a
'background service may keep track of this information). Each file server in the array is
identified by its computer name on the network.
[0234] The aggregation rules are used to determine how data files are aggregated over
" a specific NAS array. The aggregation rules determine the subset of servers that contain -
' specific files and how those files are stripped and mirrored.
[0235] A hash function is used to determine the first file server in the NAS array that
contains a specific metafile. The hash function is applied to the name of the file (preferably
not including the file path). The value of the hash is used to determine which file server
*_contains the first occurrence of the metafile. The hash function is configured to produce a
‘value in a range of numbers equal to the number of file servers in the NAS array, where each
value in this range represents one of the file servers in the array. This mechanism evenly
distributes metafiles across the NAS array. The hash function, used in conjunction with the
aggregation rules, determines the exact subset of file servers containing the specific metafile.
[0236] The components of the array configuration are used to aggregate files and

directories across the NAS array. Below is a simple example:

[0237] Namespace rule: \ENG\DOCS*.* > NAS3\DIRA\DATA
- [0238] - Client requested file: \ENG\DOCS\myFile.doc:
[0239] Value of file hash: second server in NAS array -
[0240] Using the above information, the client file path “\ENG\DOCS\myFile.doc” is

translated into‘\SRV2\DIR4\DATA\myFile.doc”on the third NAS array, NAS3 (“SRV2” is
the name of the second server in the NAS array). The directory “\DIRA\DATA?”, if it doesn’t
already exist, is created on all members of the NAS array, not just the members containing

the metafile for file “myFile.doc”, to support directory enumeration and metafile redundancy.

[0241] This example pertains to both opening and creating files. When accessing the
file on the NAS array, the metadata files involved are:

[0242] . NAS3\DIR4\DATA\PmyFile.doc — primary metadata file

[0243] . NAS3\DIR4\DATA\SmyFile.doc — secondary metadata file

37

WO 2004/061605 PCT/US2003/041202

[0244) . NAS3\DIRA\<TBD>\DATA\myFile.doc.S<s>M<m>F<n> (the values
of <s>, <m> and <n> depend on the stripe, and mirror and spillover segments that need to be
accessed).

[0245] Figure 15 illustrates a graphical representation of the storage of the user file

and metadata files for an aggregated user file named “myFile.doc”. There are six file servers

1501 to 1506 in the file array. The user file is divided into six stripes. In this example, no

mirrors of the user file are shown.

[0246] The primary and secondary metadata files (PmyFile.doc and SmyFile.doc) are -
- stored in the first file server 1501 of the array. The metadata files are replicated one time in .

file server 1502 to provide redundancy. The metadata files are stored in the same directory as

the directory in which the user file resides prior to directory aggregation by the file switch.

Directory Structure of a User File .
[0247] The user files are stored in the same file array but in a different directory sub-

tree, separate from the metafile. A “file array” is the subset of file servers in a singlé NAS
| array that stores the contents of a specific file. This section describes how to create the

directory structure of a user file within a file array.

User File Distribution Mechanism

[0248] Figure 16 illustrates a preferred embodirrlent for distributing a user file in a
NAS array. The method consists of the following steps:
[0249] 1. Determine NAS array 1604; (
[0250] 2 Determine the number of file servers 1606;
[0251] 3 Select File Servers and Perform Load Balancing 1608;
[0252] ' 4. Determine and Handle Spillovers 1610;
* [0253] 5 Create Global Unique Identifier (GUID) 1612;
[0254] 6 Determine File Path with GUID 1614;
7

[0255] Create Data Stream Filename 1616;

[0256] The method starts in block 1602 and moves to block 1604 where mapping of a
user file to the proper NAS array is performéd. The method uses the namespace rules
described above. This method is the same as for determining the NAS array for storing the
metafile.

[0257] In block 1606, the number of file servers to be used to store the user file is
determined. The method applies the aggregation rules, which specify the stripe size and the

38

WO 2004/061605 PCT/US2003/041202

number of mirrors. For a given file size, the number of stripes is determined by dividing the

file size by the stripe size (from the aggregation rule applicable to the specified file). In one

approach, the number of servers is computed by multiplying the number of stripes by the

number of mirrors. However, in the event that there is an insufficient number of file servers

. to store each mirrored stripe of the user file, multiple stripes (i.e., stripe instances) can be
stored in a single file server.
[0258] In block 1608, the number of file servers computed in block 1606 is selected

- from the NAS array. There are numerous selection methods that can be applied to select the
file servers for achieving the goal of load balancing in storing the user file. In one selection
method, called the round robin method, each file server within the NAS array is selected -
sequentially for storing a stripe (or a strip instance) of the user file. When multiple copies of .
each stripe are to be stored, each instance or copy of the stripe must be stored on a different
file server. In other selection method, based on the available disk space on the file servers,
the file servef with the largest available disk space is selected first, and then the file server
with the ﬁext largest available disk space is selected second. The process continues until all
the stripes of the user file are stored. Yet another method for selecting the file servers can be
based on the historical load statistics of a particular file server. Yet another method for
selecting the file servers can be based on the response time of the file servers.
[0259] In block 1610, the method determines and handles any spillover fragments of
the stripes that form the user file. While aggregating files to multiple devices, over time some
of the device’s storage capacity may become exhausted. As aresult, the file aggregation may
fail and cause disruptions in the systems network. To avoid such failures, file aggregation
includes spillover. This is a mechanism that allows the aggregator to use a different storage
device when one or more of the devices run out of storage space. Each file server storage
capacity must be monitored using a specific threshold. The threshold varies depending on the
storage capacity of the file server. The threshold is needed so a portion of the storage can be
reserved for file spillover information and metafile. Note that when the user file is first
created, the determination step will show that no spillover fragment exists, and hence the
handling spillover step will not be performed.
[0260] ‘When the file aggregator detects that a particular file server has reached its
threshold (i.e., the file server’s disks are full), a different file server is designated for all
subsequent data belonging to the accessed file. One approach to store the spillover fragments
of a user file is to store the spillover data file in the subsequent file server, in a predefined

sequence of the file servers with the NAS array. The sequence of the file servers wraps

39

WO 2004/061605 PCT/US2003/041202

around when the last file server is reached. By allowing directories and their contents to
spillover on the servers, the capacity of the entire NAS array can be used for file storage.
[0261] For a given file, there is either spillover or no spillover, as indicated by the
spillover flag 809 in the metafile for the user file. If there is no spillover, the data file is
accessed as:described in the previous section, where the “stripe fragment” parameter of the
file ’s extension is 0. If there is spillover, the spillover contents of a stripe are stored:on
another server using the same file path as for the initial fragment of the stripe. The
determination of the file path is described below, with reference to Figure 17. The spillover .-
fragment is stored in a data file having a file name with an extension that specifies the. -
spillover fragment, also called the stripe fragment. The primary metadata file is updated to
include pointers to the full set of spillover fragments. .In addition, all redundant metafiles
must be updated to include entries 830 for each spillover fragment.

[0262] -... To indicate that an aggregated file has spillover, its primary metafile is

. updated with the following information:

[0263] . Spillover flag 809 is set, to indicate that the file has at least one -
spillover.

[0264] . Total number of spillovers, which is stored in field 810 of the metadata
file, as shown in Figure 8. This parameter indicates the total number of spillover fragments
for the aggregated file.

[0265] . List of all spillover fragments which include (<stripe #>, <mirror #>,

<start offset>, <end offset>, <logical device name>). More particularly, each spillover -
fragment is represented by an entry 830 of the data stream descriptor 813 in the metadata file,:
as shown in Figure 8. The entry 830 for the initial fragment of a stripe is linked to the first
spillover fragment by the “index to next data stream” 815, and if there are any additional
spillover fragments.for the same stripe, these are found by following the links in the index
field 815 of successive entries 830.

[0266] The spillover information in the metafile is stored in the order that the
spillovers occur. A full stripe of a file is a concatenation of all of the stripe fragments,
including an initial fragment file and zero of more spillover fragment files, in the order that
they are listed in the metafile. Each fragment file is stored on one of the NAS devices, as
indicated by the server name 818 in the entry 830 representing the fragment file.

[0267] When accessing a file contains spillover data, the file switch checks if the

needed data is on the regular file server for a particular stripe, or a spillover file server, or

40

WO 2004/061605 PCT/US2003/041202

both. The file’s metadata is used to determine which file servers contain the spillover data.
There may be any number of spillover file servers in the NAS array.
[0268] . Inblock 1612, the global unique identifier (GUID), a value that is 32 bytes
long in a preferred embodiment, is created for each distinct data file of the user file. The
length of the GUID may be different in other implementations. The GUID for each data file -
is stored in a descriptor field 819 of the corresponding entry 830 in the metadata file. Figure
17 illustrates a method for creating the GUID. The inputs 1702 for creating the GUID consist
.of a MAC, a time stamp, a sequence counter number, aggregation rules and the filename. In
other embodiments, other information could be used as input to the GUID function 1704.
.. The MAC identifies a unique client that accesses the file switch; the time stamp indicates the
time of the access and the sequence counter counts the number of accesses to the file switch.

The GUID function 1704 combines the inputs to create a unique bit stream that is written into

- the GUID 1706.

[0269] In block 1614, the file path, within a file server, for each data file (i.e., each
stripe instance file and spillover file) is determined using the GUID for that data file. Figure
17 illustrates one approach to implement this step. In block 1706, the GUID is divided into
multiple segments, herein called indexes, namely index 1, index 2 and up to index n. The
directory path to the user file is formed by concatenating a subset of the indices to form a file
path, with each utilized index comprising a directory name in the file path. For example, the
GUID of a data file may contain indices A, B, C, D and E, as well as other portions not used
in the file path. In one embodiment, each index from the GUID comprises one or two ASCII
. characters. The file path for the data file is then \A\B\C\D\E\filename. As shown in 1708,
each index from the GUID forms the name of a directory in the file path of the data stream.
By forming the file path of each of the data streams in this way, the data streams are
automatically and randomly (or pseudo-randomly) spread over a large number of distinct -
directories, thereby preventing large numbers of data streams from being stored in a single
directory. Having large numbers of data streams in the same directory could have an adverse
impact on system performance, and this file path forming mechanism avoids that potential
problem.

[0270] In block 1616, the file names of all the data streams of each stripe-mirror
instance of the user file in the file array are determined. In normal operations, each
aggregated file consists of one or more stripe-mirror instances. The number of stripe-mirror
instances depends on the number of stripes and mirrors for the specific user file. The number

of data streams for each stripe-mirror instance depends on the number of spillovers for the

41

WO 2004/061605 PCT/US2003/041202

specific stripe-mirror instance. The data streams are named using the ASCII code of the
GUID associated with each corresponding data stream. This was described above in detail
with reference to Figure 15.

[0271] Note that the mapping of the data files (that together form an aggregated file)
to file servers, and to specific directories on the file servers is performed by the file switch.-
The clients don’t need to know, and in fact have no way of knowing, the mapping and do not
need to be reconfigured if the mapping is changed. -

[0272] After the step of determining user file name extensions in block 1616, the

- method ends at block 1618.

- [0273] It should be pointed out that in other embodiments, the steps of Figure 16 may
- be performed in a different order. Further, many of these steps may be performed or re--
. executed each time the user file increases in size sufficiently to require that addition of-anew -

stripe to the user file.

. Example :

[0274] “ The following example illustrates how the directory structure for the user file .
is determined. This example assumes the following: ,
[0275] . - One file aggregator (i.e., file switch) and 2 different NAS arrays NAS1
and NAS2. Each NAS array contains 8 file servers. The names of the file servers in NAS1
are NAS1 SRV1,NAS1 SRV2,NAS1 SRV3, etc. The names of the file servers in NAS2
are NAS2 SRV1,NAS2 SRV2, NAS2 SRV3, etc.

[0276] . . The following namespace rules are defined:

[o2771 . o Rule 1: \ZF\ENG\DOC*.* - \NAST\DOC_DIR
[0278] o Rule 2: \ZF\ENG\DESIGN* * - NAS2\DESIGN DIR
[0279] . o Rule 3: \ZF\ENG\TRAINING*. MPG - \NAS2\MOVIES
[0280] . The following aggregation rules are defined for NAS1:

[0281] o Rule 1: \DOC_DIR*.* - {stripe (4, 8192, 1), mirror (1) }
[0282] - . The following aggregation rules are defined for NAS2:

[0283] o Rule 1: \DESIGN_DIR*.* - {stripe (4, 8192, 1), mirror (1) }
[0284] o Rule 2: \MOVIES*.* - {stripe (8, 16384, 1), mirror (0) }
[0285] Assuming the client requests to access the file “\ZF\ENG\DOC\GEARS.DOC

.,

42

WO 2004/061605 PCT/US2003/041202

[0286] . According to namespace rule 1, this path is mapped to the first NAS
array NAST1 to the directory “DOC_DIR”. The application of this namespace rule identifies

the location where the metadata file for the user file is located.

[0287] .. According to the aggregation rule 1 for NAS1, “DOC_DIR” is striped
over 4 servers, each stripe is 8K and each stripe is mirrored 1 time on the other 4 servers in
the NAS array.

[0288] . Let HashFunction(GEARS.DOC) = 0. In this case, the first server

containing the file “GEARS.DOC” is NAS1_SRV1. Additional file servers, for additional
stripes and mirrors are identified using this first server as a starting point. Alternately, the file
servers to be used to.store the data files are identified using a load balancing function.
Further, each copy of a stripe data file must be stored on a different file server than the other
copies of the same stripe, in order to provide protection againstfile server failures, and to
provide parallel data paths for improved throughput.

[0289] . A separate GUID is computed for each distinct data stream of a user
file. Thus, a respective GUID is computed for each data stream of a stripe-mirror instance,
and if there are spillovers, a separate GUID is computed for each spillover segment. From
the GUID for each data stream, a file path is generated, and each data stream is stored in the

determined file server at the file path determined from its GUID.

Isomorphic Trees

[0290] In order to implement directory aggregation, described below, the aggregated
directory structure must be present on all servers of the NAS array. Each file server must .
‘have the same directory structure (also called a directory tree). Having isomorphic directory
trees enables files to be stored on any server in the NAS array. Each file server need not have
‘the same metafiles and data files. .

[0291] In order to ensure that each file server has the exact same directory structure,
for each file create request received from the client, the aggregator must create the specified
directories on all the file servers. The aggregator (i.e., the file switch) extracts the directory
- portion of the file path and creates the same directory structure on all file servers in parallel.
[0292] As an example, if the file path being created is “‘\eng\doc\archive\mydoc.doc”,
the aggregator must create the nested directory “\eng\doc\archive” on every file server in the

appropriate NAS array where the file “mydoc.doc” is to be stored.

43

WO 2004/061605 PCT/US2003/041202

Load Balancing at the File Switch Level
[0293] Figure 18 illustrates a mechanism provided by the present invention for load
balancing at the file switch level. Since all file switches within an aggregated file switch
provide access to the same set of files, any client may be connected to any of the file
-, switches. This allows clients to be distributed among the file switches so that not all clients - . .
are connected to the same file switch. This can be achieved by manually configuring each
. client to use a particular file switch or by automatically distributing the clients when they try
to connect to the aggregated file switch 1803.
- [0294] - - The selection of which particular file switch is going to serve a given client
- - happens when the client connects to the file switch. This association preferably does not
change for the duration of the client connection. -
{0295] - - The load distribution is preferably done through:a name resolution service,
such as DNS or WINS, that provides a mapping between a name (configured as server name:
for the clients) and the IP address of a particular file switch.
[0296] - One possible mechanism is to have the'group 1803 be assigned a separate
DNS subdomain (e.g., zx1.zforce.com). File switch 1801, which is configured as a group
controller also acts as a DNS server for that subdomain. The subdomain preferably contains
two host names, such as admin.zx1.z-force.com and zx1.z-force.com. The name admin.zx1.z-
force.com is used for management, the host name zx1.z-force.com is used for file serving
(i.e., this is the name to which clients connect). The group controller always resolves the
admin.zx1.z-force.com host to itself. It resolves the zx1.z-force.com host name dynamically.
In different embodiments, the zx1.z-force.com host name is resolved to a respective file
switch on a rotating basis, a random basis, on the basis of the number of users connected to
each of the file switches, or on the basis of the current transactional loads being handled by
the file switches in the group (the file switches may report their load factor periodically to the
group controller 1801). As a result, different clients end up on different switches. Each of the
switches may also have a unique name in the subdomain (e.g., switch3.zx1.z-force.com).
[0297] In an alternative embodiment, the group controller can be a dedicated device
instead of the file switch 1801.
[0298] Another mechanism for load balancing is for each file switch to have a
different server name and IP address. The system administrator can configure different .
groups of clients to connect to different file switches (e.g., based on company structure), or

use a third-party load balancer or round-robin DNS such as RRDNS.

44

WO 2004/061605 PCT/US2003/041202

[0299] Yet another mechanism that can be used by the file switches belonging to the
same group is to configure the switches with the same server name (e.g., the CIFS server
name), and have that name registered as a group name instead of an individual host name.
When a client tries to establish a connection to that name, the first switch able to respond will
get the client connection. Since typically this will be the least-loaded switch, this mechanism
can also be used for load balancing.

[0300] One skilled in the art will recognize that other mechanisms can be used to
achieve load balancing. One skilled in the art will also recognize that combining a load-
balanced front end with independent connections on the back end of the file switch allows
practically unlimited scaling up of the bandwidth of the network file system, simply by
adding file switches to the group 1803. In such case, one may also increase the number of file
servers to which the file switches connect as needed to achieve the desired aggregate . .

performance.

Transaction Aggregation
- [0301] Figure 19 illustrates transaction aggregation by a file switch. File switch 200

receives a file read request 1901 from a client connected through connection 209. The switch

.determines the subset of file servers on which instances of the aggregated file are to reside; in . -

this example, servers 201, 202, 203 and 204, collectively identified as the file array 1900. The
switch then submits appropriately modified file read requests 1902, 1903, 1904 and 1905 to
servers of the file array 1900, in parallel. The servers 201 through 204 receive their respective
. file read requests 1902 through 1905, execute them in parallel and respond accordiﬂg to
protocol back to the switch, each believing that the switch is its client for the individual file
that resides on that server. The file switch 200 collects all responses from the file servers.
Next, it updates its state with information regarding the member files that comprise the
aggregated file, each residing on one of the servers 201 through 204 of the file array 1900.
Then it aggregates the transaction result and submits it back to the original client.

[0302] As aresult, the client can now initiate various file transactions on the file (in
this example, FILE1), as if it were a single file residing on a single file server. The switch
aggregates different transactions differently. Its operation on read and write transactions is
described elsewhere in this document. The operation of the file switch with respect to

concurrency-related requests and issues is described in the following section.

45

WO 2004/061605 PCT/US2003/041202

Accessing an Aggregated User File Through the Metafile

[0303] Figure 20 illustrates the preferred method for accessing an aggregated user
file through the metafile. Upon receiving a file operation request from a client, the file switch
follows similar patterns without regard to the actual command being processed. The method

. starts.in block 2002 and goes through the following steps.

[0304] In step 2004, the metafile is accessed to fetch the metadata of the user file. The

location of the metafile is determined by applying a namespace rule to identify a NAS array

(i.e., a group of file servers) and by applying a hash function to the given user file name and

the given file path to identify a particular file server within the identified NAS array.

[0305] - .. Instep 2006, the file server that stores each individual data file of the user file
_is determined from the metadata of the user file. Treating the set of file servers in which the
. data files are stored as a “file array,” each file access.operation is executed over a specific set

of data files in the file array. The elements in the file array are treated as an ordered set;

therefore the actual addressing of the elements can be computed by using an index within the
array (zero-based index).

- [0306] In step 2008, the file aggregator submits the file access command(s) to the
selected file array. Each command is defined as an abstract operation descriptor and a set of
arguments. The operations contained in the descriptor are defined in the object model in the
previous section. The operations are grouped based on their operation descriptor and order.
The operations within the same group are submitted to the different file array members

. simultaneously (orin quick succession), so that all members will receive them practically at

the same time. The different groups of operations-are executed in sequence following the -

order defined in the operation handling for each command.

[0307] In step 2010, the file aggregator (i.e., the file switch) waits and receives

response(s) from the selected array of file servers. After all operations are submitted to their -

recipients, the file aggregator waits for a response from each of the array elements
participating in the command. The responses may come in any order at any time. It is not
necessary-for the file aggregator to wait until the entire and complete response is received
from a file array member. Once the file aggregator reads enough of the response in order to
make a decision about the submitted operation, it may stop waiting for the response from that
member.

[0308] In step 2012, the file aggregator computes the aggregated result. When all the

file array member responses are received, the file aggregator combines them in an aggregate

response.

46

WO 2004/061605 PCT/US2003/041202

[0309] In step 2014, the file aggregator submits a response back to the client. After all
responses are received from the file array members and the aggregate result is calculated, the
final response is sent back to the client. Each of the client’s operations will be execﬁted
-asynchronously due to the fact that the file aggregator must submit each operation to the file

array members across a network. Finally, the method ends in block 2016.

General Algorithm for Handling Client Accesses

. .[0310] .. This section presents the general aggregation algorithms used to aggregate
operations, properties and metafiles in an aggregated file system. There are two general

. algorithms: 1) perform operation over all metafiles in a file array, and 2) perform operation
for a specific aggregation over a subset of metafiles. Which algorithm is used is mostly

-dependent upon the file operation executed or by the aggregator.

Perform Opgration Over All Metafiles

[0311] In this algorithm, operations are executed over all metafiles in a given file
array. This is used when an operation affects all of the metafiles. For example, this algorithm
is used when opening files for access, and when deleting files. The operation is repeated over

all metafiles in parallel for highest performance.

Perform Operation Over a Subset of Metafiles

[0312] . In this algorithm, operations are executed over only a subset of metafiles in a

given file array. Typically there are 3 cases in which this is used, each of which is described

below: ‘

[0313] 1. Execute operation over the first metafile in the file array.

[0314] . 2. Execute operation over the last metafile in the file array.

[0315] 3. Execute operation over a subset of the metafiles in the file array.
.[0316] Which metafile(s) is(are) accessed is determined by the file operation being

executed. For example, to retrieve the creation time or file attributes only one of the
metafiles are needed. To determine the size of the file, only a subset of the metafiles are

needed.

Handling Concurrent Accesses

[0317] Since file servers and network file protocols are designed for accessing by

multiple clients simultaneously, they typically provide excellent support for concurrency

47

WO 2004/061605 PCT/US2003/041202

handling. For example, the CIFS network file protocol provides the ability to request an
exclusive file open, meaning that if two clients request open at the same time, only one of the
requests is going to succeed.

[0318] In the case of a single file server, this support is often implemented inside the
file server by using 6perating system synchronization objects. This works well for a single
server in which access from multiple clients can be serialized within the same computer.
However, as the background discussion explains, extending this approach to multiple servers
in a clustered configuration creates a bottleneck. For this reason, the present invention

- preferably uses a different mechanism for handling concurrency.

An Exemplary Concurrency Problem

[0319] Figure 21 illustrates an exemplary concurrency problem when two clients
trying to access the same resources simultaneously. The system 2108 consists of two file
switches 200 and 2106, file servers 201 through 207, and a layer 2 switch 2107, which is used
to connect the file servers and the file switches.

[0320] -+ In this example, two clients send requests for an exclusive file write
simultaneously. A first client, client A is connected to file switch 200 and sends its exclusive
file write request 2111 to it; a second client, client B is connected to the file switch 2106 and
sends its exclusive file write request 2101 to it. In this example, the requested file is
aggregated from four files, each residing on one of the servers 201 through 204 (the four
servers forming the file array 2100 for this file). ‘ ‘

[0321] Both file switches process the request at the same time and try to process it by
switching the incoming requests 2111 and 2101 to each of the four servers of the file array
2100. File switch 200 sends requests 2112 through 2115 to the file servers 201 through 204,

- respectively. File switch 2106 sends requests 2102 through 2105 to the file servers 201
through 204, respectively. While the two switches may have issued the requests at the same
time, the requests arrive at each of the file servers in some order. In this example, the file
servers 201, 203 and 204 receives the requests 2112, 2114 and 2115, respectively, before they
receive the corresponding requests from the file switch 2106, namely the requests 2102, 2104
and 2105. However, the file server 202 receives the request 2103 from the file switch 2106
before it receives the request 2113 from the file switch 200. One skilled in the art will easily
recognize that several other orders are possible, as well as similar situations with more than

two clients, more than two switches and another number of file servers.

48

WO 2004/061605 PCT/US2003/041202

[0322] Based on the above-described order of arrival of requests, the file servers 201,
203 and 204 satisfy the write requests 2112, 2114 and 2115 coming from file switch 200 and
refuse the requests 2102, 2104 and 2105 from the file switch 2106. The file server 202
satisfies the request 2103 from the file switch 2106 and refuses the request 2113 from the file
- switch 200. As a result, from the standpoint of a file switch, both aggregated transactions will
fail, since neither of them would succeed in writing all four of the member files, and will fail
the respective client requests 2111 and 2101. This scenario is clearly in violation of the
semantics of the exclusive write request, which semantics state that one client should succeed
and all others should fail.
[0323] One skilled in the art will recognize that this situation is a classic deadlock
problem. Although the resource that both clients requested (i.e., the aggregated file) is
available and can be granted to one of the clients easily, none of the clients is able to acquire

it (i.e., write to the file).

Implicit Locking

[0324]" Network file protocols typically provide file-level locking and byte-range
locking in order to synchronize multiple clients that try to write to the same file and the same
area within a file. When locking is used consistently by all clients, there is no need for
additional synchronization in order to avoid inconsistent data being written to different
mirrors of the same file; however, not all file client applications use the locking mechanism
cqnsistently. ' _ .

[0325] Implicit locking allows a client to write data into a locked byte range while
sharing the same file with other clients. While a client holds a lock on a byte range in a file, it
is the only client that is allowed to write data into that portion of the file. Other clients can not .
read or write data in the locked range area. This gives a client an exclusive access to a
specific portion of the file but not to the entire file. If byte range locking is used consistently
by all clients, there is no need for additional synchronization in order to avoid inconsistent
data being written to different mirrors of the same file. However, not all client applications
use the locking mechanism consistently, which can result in data corruption in an aggregated
file system.

[0326] Another application of implicit locking is when the file aggregator needs to
lock a portion of the file if a client is trying to write data to the file and does not have
exclusive access to the target area of the file. The file aggregator (i.e., the file switch) is

configured to lock the corresponding byte range of a file if the client attempts to write data

49

WO 2004/061605 PCT/US2003/041202

into the file without first locking the range itself; the aggregator locks the byte range on
behalf of the client. The aggregator locks the byte range only if the client does not have
exclusive access to the whole file or exclusive access to the accessed portion of the file in

. which it intends to write. When the write operation is complete, the file aggregator unlocks
the previously locked byte region of the file.

[0327] - Figure 22 illustrates a method for implementing implicit locking with
metafiles that ensures that a client writing to a. file has exclusive access to that portion of the
file and keeps all mirrored copies of the file properly synchronized with the correct data. The
method starts in block 2200 and then moves through the following steps.

[0328] In step 2201, the file aggregator reads the metafile that contains information
identifying a set of file servers for storing respective defined portions of the specified user
file. The file aggregator then forwards a client’s byte range lock request to the appropriate file
servers 1n the correct NAS array. In step 2202, the file aggregator gathers the byte range lock
results from the file servers and forwards the aggregated result back to the client, then the -
method moves to step 2203 where the file aggregator saves the state of the specific byte range
* that was locked by the client. '

[0329] In one implementation, the byte range lock request is forwarded to the

" appropriate file servers so as to request locks on the data files containing the data in the
specified byte range. To do this, the primary metafile for the specified user file is first
accessed to determine the identities and locations of the data files for the stripes containing
the specified byte range. Then the lock requests, for locks on the required portions of those
data files; are forwarded to the appropriate file servers.

[0330] In a second preferred implementation, the byte range locks are obtained on the
primary metadata file and its copies; no locks are obtained on the underlying data files. In

- particular, a byte range lock may be obtained on a file, such as a metafile, even when the byte
range specified in the lock request is partially or even completely outside the range of data
actually stored in the file. Thus, in this implementation, the byte range lock requests are
directed to all the copies of the primary metadata file, corresponding to the user file on which
the lock has been requested (whether explicitly or implicitly). To prevent deadlocks, the byte
range lock request is first directed to the primary file server for the metafile (as determined,
for example, by a hash function or other selection function); and after the lock request is
granted by the primary file server, the same lock request is then directed to the other file
servers on which copies of the metafile are stored. This second implementation is more

efficient than the first. Both implementations utilize the lock management capabilities of the

50

WO 2004/061605 PCT/US2003/041202

file servers, with the primary roles of the file switch being the application of the namespace
rules to determine the file servers to.-which the lock request should be directed, replication of
the lock request to those file servers, and aggregation of the lock request results. In yet
another implementation, the aggregation rule applicable to the user file includes a lock
redundancy parameter P that specifies the number of primary metafile copies on which the
lock is obtained. In this implementation, the lock request is directed to a primary file server
for the metafile, and then to P-1 other file servers, selected in a predefined manner (e.g.,
based on ordinal numbers associated with the file servers, using a round robin selection
function). : . \

- [0331] - . Instep 2204, the file aggregator receives a file write request from a client. The

: file aggregator first determines, in step 2205, whether the byte range of the write operation
has been locked by the requesting client. If'the byte range is locked, the method moves on to
step 2209. In the alternative, if the byte range is not locked, then the method moves to step -
2206 where the file aggregator generates byte range lock requests to each of the file servers -
that contain a copy of the file on behalf of the client. It then gathers the byte range lock
results from the file servers and save the state of the specific byte range that was locked. In -
step 2208; a second determination is made as to whether the byte range lock has been
acquired by the file aggregator. If the byte range lock has been acquired, the method
continues in step 2209. If the byte range lock has not been acquired, then the file aggregator
fails the write request and sends a notice to-the client in step 2211.
[0332] In step 2209, after successfully securing the byte range lock either in step 2205
or step 2208, the file aggregator performs the write operation to all file servers that contain

. the aggregated file. The method then moves to step 2210 where the file aggregator sends an
acknowledgement to the client when the write operations have successfully completed.
[0333] In step 2212, the file aggregator releases the byte range lock. This step is
performed regardless of whether the write'operations have completed successfully as in step -

- 2210 or the write request has failed as in step 2208. After releasing the byte range lock, the
method ends in block 2213.
[0334] ‘When this mechanism is consistently used by the file switch, and in the case of
multiple file switches accessing the same set of file servers by all file switches, it ensures

consistency of the data file at a level comparable to that maintained by any single file server.

51

WO 2004/061605 PCT/US2003/041202

Opportunistic Locks and Caching

[0335] Another mechanism frequently deployed with network protocols is
Opportunistic Locks (“oplocks”; also known as callbacks). Oplocks allow clients to cache the
data file locally to increase performance while keeping the files synchronized and consistent.
Depending on the network file system that is used, oplocks may or may not be supported and
the different types of oplocks may vary. Most existing operating systems, including .
Microsoft Windows and LINUX (i.e., SAMBA), support oplocks.

- [0336] - Oplocks are usually only requested by a client when the client opens a file on
a network file server. When requesting an oplock, a client always requests a single oplock. If
an oplock isigranted to a client, the client may then cache data file locally to increase
performance. If an oplock is not granted, the client must send all network file requests over

. the network and it can not cache any data file. A server does not have to grant the oplock
specified by the client; it may grant the client a different oplock than the one requested.
[0337] Figure 23a illustrates a method for handling an oplock request by a client. The
method starts at step 2300 and continues to step 2301 where the file aggregator (i.e., a file
switch) receives the client’s request of an oplock to a user file. In step 2302, the aggregator -
sends oplock requests on the metafiles corresponding to the specified user file to a
predetermined array of file servers. Next, the aggregator waits and aggregates the responses

- from the file servers (step 2303) and grants the client the lowest level oplock that was granted
by the servers for the metafiles (step 2304). Note that oplocks are used on metafiles only, not
on data files. Then, in step 2305, the aggregator saves the state of all the granted oplocks
from the file servers. In step 2306, the oplock level granted to the client is also saved as the
current oplock level for the file aggregator. The method ends at block 2307.

[0338] Oplocks can be “broken” at any time. This means that after a server grants a
specific oplock to a client, the server can send a notification that tells the client that it no
longer has the right to hold its current oplock. This usually occurs when a second client tries -
to open the same file. The server may downgrade the current oplock to a different oplock or
may remove the oplock completely from the client. Depending on the new oplock granted by
the server, the client may have to flush any cached data file back to the server to keep the file
synchronized with other clients. If the client no longer holds an oplock on the file, all cached
data file must be flushed and all subsequent file operations must be sent over the network to
the file server.

[0339] Figure 23b illustrates a method for handling oplock break notifications from a
file server. The method starts at step 2310 and continues at step 2311 where an oplock break

52

WO 2004/061605 PCT/US2003/041202

notification from a sender file server is received. Then, in step 2312, the file aggregator (i.e.,
the file switch) compares the level of oplock break notification from the file server versus the
oplock level granted to the client.
[0340] - Instep 2313, if the level of oplock break notification is lower than the oplock
level granted to the client, the forwards the oplock break notification to the client. Then in -
step 2314, the aggregator waits for the client to respond to the oplock break notification, and
updates the current oplock level to the new oplock level. In step 2315, the aggregator
forwards the client’s response to the file server that originated the oplock break notification.
[0341] - In step 2316, if the oplock break notification specifies an oplock level that is
equal to or greater than the current oplock level that was granted to the client, the aggregator
- responds to the oplock break notification. It then updates its state to reflect the new oplock
level for this file server in step 2317. Since the client may hold an oplock that is lower then
the oplock specified in the notification, there is no reason to propagate the notification to the
client.
. [0342] In step 2318, if the client never requested an oplock when it opened the file or
does not hold an oplock associated with this file, the aggregator responds to the oplock break
notification. It then updates its state with the new oplock level in step 2319. The method ends
in step 2320.
[0343] Note that, before responding to any oplock break notification received from a
file server, the aggregator (i.e., file switch) must first update any oplock state as necessary.
As aresult, data cached within the aggregator may need to be written back to the file server,’
if the cached data has been modified, and cached data in the aggregator may need to be
invalidated if the oplock is being totally withdrawn by the file server. If multiple oplock
break notifications are received from different file servers around the same time, they are
queued and handled one at a time. In addition, it is not necessary to respond to the server’s
oplock break notification if the client chooses to close the aggregated file when it receives the
notification from the aggregator. Some network file systems accept a file close operation as a
response to an oplock break notification.
[0344] There are many different types of oplocks that can be granted. The types of
oplocks are defined by the network file protocol that is used with the file aggregator. The
type of oplock defines exactly how the client can cache data, ordered by the level of caching
given to a client. Figure 23c illustrates a method for mapping a level of exclusivity of
caching to the oplock exclusivity level granted. For example, when using the CIFS file

protocol, an “exclusive” oplock allows the client 2330 to cache a data file “myFile.doc” 2331

53

WO 2004/061605 PCT/US2003/041202

locally. Under an exclusive oplock, all read and write operations can be executed locally and
therefore the file access time is reduced. A “level 2” oplock allows the data file “myFile.doc”
2333 to be cached in the file switch 2332. This file is shared among clients supported by the
file switch 2332. “No Oplock” is the lowest level where the client is not allowed to cache the
file “myFile.doc”. Under “no oplock”, copies of this file 2335 and 2337 are stored in the file .
servers 2334 and 2336 respectively.
[0345] = . In analternate embodiment, oplocks requests are-directed to and handled by
the file servers that store data files for a specified user file, instead of being handled by the
file servers that store the metafile for the specified user file.. The file switch distributes the
oplock requests to the file servers accordingly, and also aggregates the oplock responses,
break messages, and so on from the same file servers. The number of file servers to which
each oplock request is directed is determined by the:number of stripes that are included in the
subset of the file for which an oplock is being requested, and the level of lock redundancy to .
be used.
[0346] - In one embodiment, implicit locking is used in combination with opportunistic
locking. In particular, when a client does not request an oplock in conjunction with an

- operation on a user file, the file switch may nevertheless request an oplock from the file
servers when predefined implicit locking criteria are met (e.g., when the nature of the client

_request, or a usage pattern by the client, indicates continued access to the file is likely).

When the implicit oplock is granted, the file switch caches data from the file specified by the
client, without the client having any knowledge that such caching is occurring. By - -
opportunistically caching data in the file switch, the file switch provides faster access.to.data .
in the specified file. This can be especially helpful when the file switch is much closer to the -
client computer than the file servers on which the requested file resides. In addition, while
the file switch caches data from a file, it can respond to requests from more than one-client
requesting data from that file, using the same cached data to provide fast responses to each of
the clients, so long as none of the clients requests exclusive access to the file.
[0347] In some embodiments, the file switch can cache data and use the cached data
to provide fast response to two or more clients or client computers, even when one or more of
the clients has requested an oplock on the same file. In other words, when a second client
attempts to access the same file for which an oplock has been granted, the oplock is not
necessarily broken. Rather, if the accesses by all the clients are compatible, then the file
switch caches the oplock state (if any) associated with each client requesting access to the

same file, and sends responses to the clients using the cached data from the file. The caching

54

WO 2004/061605 PCT/US2003/041202

of the data in the file switch ends when caching termination condition arises, such as a client

requesting exclusive access to the file, or all clients closing the file.

Semaphores

[0348] A semaphore is a mechanism that allows only a certain number of entities to

access a particular resource. In the context of an aggregated file system, a semaphore is.used

to allow only one file switch to access a specific aggregated file at a time. This includes all

occurrences of the file on all file servers in the NAS array (i.e., if the file is striped or

. mirrored among multiple file servers). In an aggregated file system, the semaphore is

. achieved using the primary metadata file stored on the NAS arrays as the semaphore object.
The process that obtains access to the primary metadata file also obtains access to the

- aggregated user file as a whole (the file may still be shared among multiple clients).

- [0349] The semaphore synchronization mechanism is used mainly with destructive

file operations. Destructive file operations include creating a new file, truncating an existing

. file, deleting an existing file and renaming or moving an existing file.

[0350] Synchronization is needed for destructive operations since executing the

. operations over a specific file changes some aspect of the file; if the aggregator needs to back

out and let another entity have access to the same file, it would have to restore the state of all

files that it accessed. This would require keeping the states of the transactions on the file

. switch, which is very costly and can degrade performance. By using the semaphore

- synchronization mechanism, an aggregator does not execute destructive file operations over

any files unless it is granted access to the files by way of a semaphore.

- [0351] Figure 24 illustrates a method for handling concurrent accesses using a

semaphore. The method starts in step 2400 and moves to step 2401 where the file aggregator

receives a destructive operation request. Also in step 2401, the file aggregator determines the -

location of the primary metafile of the requested user files by applying a hash function.on the

user file name.

[0352] Next, in step 2402, the file aggregator tries to open the primary metafile with

exclusive file access and no file sharing allowed. In step 2403, a first determination is made

as to whether the primary metafile has been successfulfy opened. If the answer is positive, the

method continues in step 2405. If the answer is negative, the file aggregator fails the client’s

file access request and moves to step 2409; or waits a random amount of time and retries to

open the primary metafile again. There should be a limit on the number of retries. If opening

the metafile has succeeded. The aggregator is granted -access to the aggregated file. In step

55

WO 2004/061605 PCT/US2003/041202

2405, the file aggregator opens all the data streams on all of the file servers of this user file’s
file array, or alternately opens all the data streams that will be needed for the destructive file
operation. Step 2405 ensures that all the data streams required for the destructive file
operation are available.

[0353] In step 2406, a second determination is made as to whether all open requests

" have been granted by the file servers. If any of the open requests fail, the file aggregator fails |
the client’s file access request in step 2407-and moves to step 2409. In the alternative, if all

* open requests have been granted successfully, the method moves to-step 2408 and the file
aggregator performs file access on all aggregated user files. In step 2409, after all the file
accesses have been completed, the file aggregator closes all the aggregated user files and then
closes the primary metafile. The method ends in step 2410.

- [0354] With each aggregator accessing the files using this methodology, it is
guaranteed that the access to the file will be properly synchronized.

Summary of Aggregation of Concurrent Accesses

[0355] . One skilled in the art will recognize that other algorithms may be employed to
achieve the same results and ensure consistent and atomic behavior for aggregated
transactions. Similarly, one skilled in the art will recognize that the same approaches may be
applied to other file transacftion types, such as locking, creation, etc.

[0356] In effect, the present invention aggregates the existing synchronization
mechanisms.provided by network file protocols (and thus by the file servers in the system) to ..
implement synchronization between the clients of multiple independent file switches without:
requiring direct interaction and communication, and therefore, coupling, between the file

switches. In addition, each individual file switch can further use these mechanisms in order to.

. synchronize transactions requested by multiple clients that are connected to that switch.

Directory Enumeration

- [0357] . When a file switch receives a directory enumeration request from a client, the
. request may specify to enumerate an entire directory (not including sub-directories) or it may
enumerate a single file. Single file enumeration is typically used to determine whether or not
a specific file exists in the file system. This section covers how to enumerate a single
directory or a single file.

[0358] When a directory enumeration request is received, the aggregated file system

uses the namespace aggregation rules to determine which NAS arrays need to be enumerated

56

WO 2004/061605 PCT/US2003/041202

in order to satisfy the request. Any particular directory (i.e., a virtual directory in the
username namespace) may be distributed over multiple different NAS arrays because
multiple namespace rules may apply to the files in that one directory. The file aggregator
enumerates the corresponding directories on all the NAS arrays that are the target of the
applicable namespace rules, combines the results, and propagates the combined result back to
the client. -
[0359] When enumerating the directories in an aggregated file system, all of the file
- servers of a specific NAS array must be enumerated for their directory contents. This is due
' to.the fact that'a hash function distribution function is used to distribute the metadata files
among different. file servers of the NAS array. Only the metafiles are enumerated; data files
are ignored. The main goal of the aggregated directory enumeration mechanism is to
efficiently eliminate duplicate files in the enumeration so that aggregated directory
enumeration is fast and efficient.
[0360] The basic aggregated directory enumeration method is as follows. When a file
switch needs to enumerate a directory on a NAS array, the client’s enumeration request is -
replicated in parallel to all of the file servers in the NAS array. The file switch receives all-of
the responses from the servers and builds the enumerated directory structure entirely in
memory. The file switch does not wait for the entire directory structure to be built in memory
before sending enumeration results back to the client. Rather, the enumeration results are
sent back to the client as soon as they are available.
[0361] .- Thedirectory enumeration strategy is defined in the following two sections:
[0362] « ' Enumeration State: Describes the internal state that the file switch
needs to maintain during a directory enumeration operation.
[0363] . " Enumeration Algorithm: Defines the algorithm of how to enumerate a

directory over a set of NAS arrays.

State Information Related to the Directory Entries

[0364] In order to enumerate the directories on a NAS array, the enumeration request
is sent to all file servers of the array and the responses are collected. Since the enumerated
directory structure is built entirely in memory from these responses, the file switch needs to

maintain the following intemal state (i.e., the enumeration state):

[0365] . a list of directory entries;
[0366] . additional state related to the directory entries; and
[0367] . a list of pointers to the directory entries.

57

WO 2004/061605 PCT/US2003/041202

A List of Directory Entries

[0368] After the enumeration request is replicated to all file servers of a NAS array,
the file switch collects all of the responses. These responses contain a list of files that are
contained in the enumerated directory. The responses should contain only listings of primary
and secondary metafiles, because data files are stored in a different sub-tree on the file
servers. For each listed file, the response contains the directory information requested in the
enumeration request, such as file name, file size, and other file attributes. Each file listing
returned in the enumeration set is known as a directory entry.

[0369] . - . Each file found in the enumeration response is added to a list/array of
directory entries maintained in memory in the file switch. In a preferred embodiment, each:
directory entry is added to the list in the order in which itis.received and processed. The list
or array is preferably implemented as either a queue or a linked list.

[0370] Each distinct user file must appear in the final enumerated list only once.

- Duplicate file names refer to files with the same name that are located in the same user
namespace directory. Duplicate files may appear because the file switch replicates the

metadata files for redundancy.

Additional State Relate to the Directory Entries

[0371] ~ For each directory entry, there is additional state that is tracked by the file
switch-during enumeration. This state includes the following:

[0372] . The number of times the file was found in the enumeration (duplicate
files). This occurs since metadata files are replicated for redundancy. Separate counters are

maintained for the primary and secondary metafiles.,

[0373] . . - Whether or not the file has been submitted back to the client as part of
the directory enumeration response.

[0374] The additional state can be kept as part of the directory entry array or can be
stored in a separate array.

[0375] A List of Pointers to the Directory Entries

[0376] For each directory entry that is processed by the file switch, the file switch

must search the directory entry list to see if the file is already included in the list. This can be
a very time consuming process, especially if the directory entry list contains thousands of
unsorted entries.

[0377] In order to speed up the enumeration process, the file switch must maintain a

list or array of memory pointers that point to specific entries in the directory entry array. The

58

WO 2004/061605 PCT/US2003/041202

pointer list contains pointers to the directory entries ordered alphabetically. Using the pointer
list, the file switch can quickly search through the directory entries using a binary search to
find out whether or not a file exists in the directory entry list. If a new file needs to be added
to the list, the file switch only needs to update the pointer list and no entry data needs to be

copied in memory.

Directory Enumeration Algorithm

[0378] Figure 25 illustrates directory enumeration for the aggregated file system.
During directory enumeration, directory requests are sent to redundant directories of
metafiles and duplicate responses are filtered out. This is done to ensure that if a file server
fails while processing a directory enumeration request, the directory enumeration request is
précessed to completion using data obtained from the other file servers. The directory
enumeration request is processed just as quickly as if the file server had not failed. Thus, the
directory enumeration method makes individual file server failures invisible to the client.
Only if there is a failure of all the file servers on which redundant metafiles are stored will
directory enumeration service to the client computers be impacted.

[0379] The method starts in step 2500 and then moves to step 2501 where the file
switch receives a directory enumeration request (e.g., a command asking for a listing of all
files in a particular directory) from a client.

[0380] In step 2502, given the directory to be enumerated, the file switch determines
‘the set of NAS arrays that need to be enumerated based on the namespace aggregation rules
and the directory path being enumerated. More particularly, the file switch determines, from
the directory path specified in the request, all namespace rules that are applicable to the
request. Those rules specify the NAS arrays that store the files in the specified directory
path. Each NAS array is enumerated in exactly the same way. The file switch may
enumerate the NAS arrays one at a time. When the enumeration is completed on one NAS
array, the file switch moves to the next NAS array (if any) using the same internal state
information.

[0381] ‘Once the set of NAS arrays is determined, each NAS array is enumerated one
atatime. Step 2503 marks the beginning of the control loop for processing directory
information for each NAS array identified in step 2502. In step 2503, the file switch extracts
the match path portion after the last backslash °\’ of the enumeration path (e.g., “*.*”,

“* doc”, or “a*.doc”). If the first character of the match path is not the wildcard character

“#_the single character wildcard “?” is added as a prefix to the match path. If more than one

59

t

WO 2004/061605 PCT/US2003/041202

NAS array is identified in step 2502, the match path portion of the enumeration path
(extracted in step 2503) is different for each identified NAS array because each stores only a
portion of the files in the directory to be enumerated. For example, a first particular NAS
array identified in step 2502 méy ohly store files (in the specified directory) having a file
extension of “doc”. If the directory enumeration request is for files starting with the letter “a”
(e.g., dir a*.*), the extracted match path portion for this first NAS array would be “?a*.doc”.
[0382] The extracted match path portion is used by the file switch in step 2504 to

- retrieve all of the metafiles that match the match path portion. In the simplest case, if the
enumeration path specifies only a single file with no wildcards (e.g., “dir filel.doc”), the file .
switch simply replicates the request to the appropriate set of file servers of a single NAS
array, with a “?”” wildcard prefixed to the filename. The responses are collected and a
consolidated response is sent back to the client. No other steps are executed. The directory

" entry list, pointer list and additional state information are emptied or reset to contain no
entries.

+ [0383] More generally, in step 2504, the file switch replaces the enumeration path
according to the namespace aggregation rules (i.e., as determined in step 2503) applicable to
the NAS array currently being processed, and replicates the enumeration request in paralle] to
all of the file servers in the NAS array that are configured to store metadata files. In some
embodiments, the NAS array is configured so that some of the file servers in the NAS array
store metadata files, while other file servers are configured to store data files (i.e., files other
than metadata files); in other embodiments, some file servers may-be configured to store both -

‘metadata files and data files, while other file servers are configured to store only data files.
In step 2505, the file switch waits and receives the responses to the enumeration requests
from the file servers.

[0384] Step 2506 marks the beginning of the control loop for processing the response
received from each file server. In step 2506 a first or next file name in the response received
from a file server is processed. The file switch searches the pointer list by file name to see if-
the file name is already included in the directory entry list. During this step, the ‘P’ or ‘S’
prefix of the file name, which indicates whether the listed file is a primary or secondary
metafile, is stripped from the file name for purposes of searching the pointer list.

[0385] In step 2507, a determination is made as to whether a new entry has been
received. If the entry is not new, i.e., the file exists in the directory entry list built in memory,
then the method takes the NO branch and moves to step 2509 where the file switch updates

the state and pointer related to the existing directory entry. The state of the directory entry

60

WO 2004/061605 PCT/US2003/041202

includes the directory information returned by the file server with the directory entry. In step

- 25009, the file switch also updates the additional state of the directory entry with the number
of times the primary and secondary metafiles have been found.
[0386] In the alternative, if the entry is new, then the method takes the YES branch
and moves to step 2508 where the file switch adds the directory entry to the directory entry

* list and initializes the state of the new directory entry. The filename used in the directory
entry does not include the ‘P’ or ‘S’ prefix of the primary or secondary metafile represented
by the received filename. The file switch also updates the pointer list with a pointer to the
new directory entry-in the proper alphabetical order and initializes any other additional state
needed for the new entry.
[0387] In step 2510, a determination is made as to-whether both the primary and
secondary metafiles for a user file have been found. If the primary and secondary metafiles
have not been found according to the file aggregation rules, the file switch does not send the
directory entry back to the client that requested the directory enumeration, because it does not
yet have sufficient information to send back to the client. Instead, the method moves to step
2512 and continues with the next entry returned by the file servers (at step 2506). In the
alternative, if both the primary and secondary metafiles have been found, the directory entry
contains all the requested directory information for the corresponding user file, and this
directory entry is sent back to the client. The directory information for the secondary

- metafile contains the aggregated file size and allocation size of the user file. The directory
information for the primary metafile contains all other file information, including
access/creation dates and times, file:attributes and so on. (An alternate embodiment that
changes the operation of step 2510 is discussed below.)
[0388] In step 2511, the file switch submits the entry back to the client as part of the
enumeration response. The file switch preferably uses a different thread to submit an entry
back to the client. This thread runs in parallel with the threads that are enumerating the
directories on the file servers. If the entry has already been submitted back to the client, the
file switch does not return the entry to the client in step 2511, and instead skips over to step
2512.
[0389] In step 2512, a determination is made as to whether all files in the directory
has been enumerated. If the answer is negative, the NO path is taken and the method moves
to step 2515 before it continues with the next entry returned by the file server (step 2506).
The directory enumeration continues until all of the files are enumerated and stored in

memory. In the alternative, the YES path is taken and the method moves to step 2513. Note

61

WO 2004/061605 PCT/US2003/041202

that if'there are any directory enumeration errors, but at least one of the enumeration requests
‘1o the file servers is successful, a positive enumeration response is sent back to the client with

the collected enumeration results. If all of the enumeration requests fail, the client’s

enumeration request fails and a failure response is returned to the client.

[0390] In step 2513, a determination is made as to whether all file servers have been
. enumerated. If the answer is negative, the NO path is taken and the method moves to step
2515 before it continues with the next file server in the file array (at step 2504). In the
alternative, the YES path is taken and the method moves to step 2514 where another
determination is made as to whether all NAS arrays have been enumerated. If the answer is
negative, the NO path is taken and the method moves to step 2515 before it continues with
the next NAS array in the switched file system (at step 2503). In the alternative, the YES path
is taken and the method ends in step 2516. -

[0391] In step 2515, a termination condition is checked as to whether the client has
closed the enumeration. If the termination condition has not occurred, the method continues
at step 2503, 2504 or 2506, depending on the iteration loop the method is in, as indicated by
which step was performed (namely 2512, 2513 or 2514) prior to step 2515. In the alternative,
if the termination condition has occurred, the YES path is taken and the method ends in step
2516.

[0392] Note that when enumerating directories, the total number of entries that are in
the enumeration set may exceed the number of entries that can be returned back to the client
due to limitations of the client’s response receive buffer. If this situation occurs, the file
switch sends an enumeration response containing a subset of the entries with an indicator that
indicates there are more entries in the enumeration. This enables the client to send another
enumeration request to retrieve the remaining entries.

[0393] When updating the directory entry list of an existing entry, several entry
attributes need to be updated (see step 2509 above). The most important attribute is the size
or allocation size of the file. For each aggregated file, the size of the file is stored in the
secondary metafile encoded in one of the time/date fields associated with the file. The
allocation size is determined by taking the aggregated file size and multiplying it by the
number of mirrors. All other file attributes are retrieved from the primary metafile. These
attributes include last accessed date and time, creation date and time, last written date and
time, and so on.
[0394] If after a directory entry is submitted back to the client, the file switch receives

another occurrence of the same file listing on one of the other file servers, this is not

62

WO 2004/061605 PCT/US2003/041202

considered an error — because metafiles are purposely replicated. In this case, the file listing
received from the file server is ignored.
[0395] In an alternate embodiment, directory entries are not submitted back to the
client at step 2511, but instead a sorted list of directory entries is built at step 2511. The
resulting sorted list is returned to the client when the building of the list is complete, just
before step 2516.
[0396] In another alternate embodiment, only a primary metafile is provided for each
user file, and no secondary metafile is used. As explained above, one of the directory fields - -
of the primary metafile is used to store the aggregated file size for the corresponding user file.
In this embodiment, step 2510 can be eliminated. Instead, step 2508 is followed by step
2511, but step 2509 is followed by step 2512. In other words, whenever a new metafile is
found, its entry is submitted to the client, but.- when a redundant metafile is found the
- directory enumeration procedure skips over it, except for bookkeeping (step 2509).
[0397] ‘The directory enumeration method shown in Figure 25 can also be used, with
minor modifications, to perform other directory operations (sometimes called file
commands), such as changing a specified file attribute for a specified set of files (e.g., “attrib
+r c:\x\y\ab*.doc”) or deleting a specified set of files (e.g., “del c:\x\y\abcd*.doc™). In'step
2504, the file command is sent to the applicable file servers of NAS server identified in step
2502. Steps 2506 to 2510 are replaced by similar steps for aggregating the responses
_obtained from the file servers, and in step 2511 or 2516 the aggregated responses are returned
to the client.

Redundant Metavolume Controller

[0398] A collection of user files is referred to as a “volume” of data files. A volume
of data files may be stored on one or more file servers, and a file server may host one or more
logical volumes. In the context of the metadata based file switch and switched file system, a
collection of metafiles corresponding to the collection of user files is called a “metavolume”.
It is desirable to replicate metavolumes over multiple file servers to provide backup of the
metafiles and to provide continue operation of the switched file system in event of a failure of
one of the file servers used to store the metafiles.

[0399] A group of file servers in a NAS array can be designated to store metafiles.
Each such file server is called a metaserver. All metaservers in a NAS array have identical
metafile content (i.e., they all store copies of the same metafiles). Once a metavolume is

created, its configuration (with respect to the metaserver and directories in which the

63

WO 2004/061605 PCT/US2003/041202

metafiles are stored) does not change. Each metaserver within the redundant metavolume is
assigned an ordinal number. This ordinal number also does not change once a metavolume

assigned to the metaserver is created.

. Accessing Redundant Metavolumes
[0400] In general, there are three types of redundant metavolume operations:
. destructive operations, non-destructive operations and creating new file or lock acquisition. A
“non-destructive operation, such as a read operation, does not change.the content or attributes :
of the metavolume, so this operation is performed on any one of the metaservers. On the
other hand, a destructive operation, such as a delete operation, does change the content or
attributes of the metavolume, and this operation is performed on all the metaservers of the
NAS array to which the metavolume has been mapped. For creating new file or lock
acquisition, the operation is performed first on the primary metaserver to obtain the exclusive
access to the metavolume, and then the operation is performed on all other metaservers of the
metavolume.
[0401] - Figure 26 illustrates a method for accessing redundant metavolumes. The
method starts in block 2600 and thereafter moves to block 2602. At block 2602, the
redundant metavolume controller (RMC) receives a request from a file aggregator to access
the redundant metavolumes stored in a group of metaservers. In a preferred embodiment, the
RMC is implemented as a software module within the aggregated file system 616 (Figure 6). .
In another embodiment, the RMC may be implemented using one or more application '
specific integrated circuits (ASIC’s), or a combination of ASIC’s and software.
[0402] At block 2604, the RMC selects a primary metaserver. The primary
. metaserver is selected based on the name of the metafile. In one embodiment, the RMC
selects the primary metaserver by computing a sum S of all character values of the metafile
name and then computer S modulo M, where M is the number of metaservers. The resultant - .
number is used by the file switch as the ordinal number of the primary metaserver. In another.
embodiment of the present invention, the primary metaserver is selected by computing a hash
function of the name of the metafile. The resultant number of the hash function is the ordinal
number of the selected primary metaserver. Both of these methods distribute the primary
metafiles evenly across the available metaservers, and hence improve the performance of the
overall system. In yet another implementation, the primary metaserver is a predefined one of

the metaservers, such as the metaserver having the lowest ordinal number.

64

WO 2004/061605 PCT/US2003/041202

[0403] At block 2606, a determination is made as to the type of the requested
operation. If a destructive operation is requested, the path to 2612 is taken; if a non-
destructive operation is requested, éhe path to block 2608 is taken; and otherwise the path to
block 2616 is taken for handling creating a new file or lock acquisition.

[0404] At block 2608, the RMC sends the non-destructive operation request to the
available metaserver with the lowest ordinal number. Alternately, the RMC sends the
operation to arandomly or pseudo-randomly selected metaserver, from among the

' etaservers currently believed to be available. Next, the method moves to block 2610 where
'a determination is made as to whether the metaserver to which the request is sent is.available.
If the metaserver is unavailable, the NO path is taken and the RMC retries the operation to
the next available metaserver (by the next lowest ordinal number) by repeating the steps in
blocks 2608 and 2610. In the alternative, if the metaserver is available, the method moves to
block 2620, ‘

- [0405] At block 2612, the RMC sends the destructive operation request to all
metaservers and aggregates the responses from all the metaservers. Next, the method moves
to block 2614 where a determination is made as to whether at least one of the accesses to the
metaservers is successful. If none of the accesses to the metaservers is successful, the NO
path is taken and the RMC fails the destructive operation request. If the access to at least one,
but not all of the metaservers is successful, the operation is considered to have been
successfully complete, and the YES path is taken to block 2620. It is noted that the
destructive operation will have been preceded by a successful file open operation with a
request for exclusive access to the file, and therefore a race condition cannot cause the
operation to fail on some of the metaservers. If the destructive operation fails on a particular

- metaserver, the operation may be retried one or more times, and if the operation continues to
" fail, the metaserver may be denoted as being inoperative and in need of repair.

[0406] At block 2616, the RMC sends either the creating new file request or the range
lock acquisition request to the primary metaserver. If the access to the primary metaserver
fails, the FAIL path is taken and the RMC fails the operation request. In the alternative, if the
access to the primary metaserver is successful, the SUCCESS path is taken and the method
moves to block 2618.

[0407] At block 2618, the RMC sends either the creating new file requests or the lock
acquisition requests to all other metaservers. If none of the requests to the metaservers returns

success, the FAIL path is taken and the RMC fails the operation request. If the request to at

65

WO 2004/061605 PCT/US2003/041202

least one of the other metaservers returns success, the SUCCESS path is taken and the
method continues in block 2620.
[0408] At block 2620, based on the successful accesses to a metaserver in either block
2610, 2614 or 2618, the RMC saves a primary metaserver status in accordance with the
metaserver or metaservers that successfully handled the access operation.
*[0409] At block 2622, the RMC saves the states of the available metaservers and -
responds to the requested operation.
[0410] At block 2624, the RMC saves states information indicating which
metaservers successfully handled the access operation. These are the only metaservers.to. .
which subsequent operations will be sent. The method then ends in block 2626.
- [0411] The foregoing description, for purposes of explanation, has been described
with reference to specific embodiments. However, the illustrative discussions above are not
intended to be exhaustive or to limit the invention to the precise forms disclosed. Many
- modifications and variations are possible in view of the above teachings. The embodiments
were chosen and described in order to best explain the principles of the invention and its
practical applications, to thereby enable others skilled in the art to best utilize the invention
-and various embodiments with various modifications as are suited to the particular use

contemplated.

66

WO 2004/061605 PCT/US2003/041202

WHAT IS CLAIMED IS:

1. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:

at least one proce‘ssing unit for executing computer programs;

at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer
programs including instructions for:

receiving a user request to perform a specified transaction on a specified user file;

determining a subset of the file servers that store portions of the user file needed to
perform the specified transaction;

sending commands to each respective file server in the subset of file servers to
perform the transaction on a respective portion of the user file, and receiving replies from the
subset of file servers;

aggregating the received replies to produce an aggregated reply; and

sending the aggregated reply to a sender of the user request.

2. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:

at least one processing unit for executing computer programs;

at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer
programs including instructions for:

receiving a user request to perform a specified transaction on a specified user file;

accessing metadata identifying a set of file servers for storing respective defined
portions of the specified user file;

determining, based on the metadata, a subset of the file servers that store portions of
the user file needed to perform the specified transaction;

sending commands to each respective file server in the subset of file servers to
perform the transaction on a respective portion of the user file, and receiving replies from the

subset of file servers;

67

WO 2004/061605 PCT/US2003/041202

aggregating the received replies to produce an aggregated reply; and

sending the aggregated reply to a sender of the user request.

3. The file switch of claim 2, wherein

the specified user file has an aggregated size and a corresponding number of defined
portions, and

the one or more computer programs of the file aggregation module include
instructions for updating the metadata when the specified transaction changes the number of

defined portions of the specified user file.

4. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:
at least one processing unit for executing computer p’ro grams;
at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;
a file aggregation module including one or more computer programs, the computer-
programs including instructions for:
receiving a user request for a directory listing of user files for a specified
directory;
accessing a directory of metafiles corresponding to all user files in the
specified directory, each metafile storing information identifying a set of file servers that
store respective defined portions of the specified user file, wherein the directory listing of
metafiles is obtained from a particular file server of the group of file servers in which the
metafiles are stored;
constructing a directory listing of the user files from the directory of metafiles;
and
sending the directory listing to a particular client computer of the plurality of

client computers.

5. The file switch of claim 4, wherein the computer programs of the file aggregation
module include instructions for updating the directory of metafiles, whenever an operation is
performed on any user file in the specified directory that changes the aggregated file size of

the user file, so as to indicate the changed aggregated file size of the user file.

68

WO 2004/061605 PCT/US2003/041202

6. A file switch for use in a computer network having a group of file servers and a -
plurality of client computers, the file switch comprising:
at least one processing unit for executing computer programs;
at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;
a file aggregation module including one or more computer programs, the computer
programs including instructions for:
determining, in accordance with a predefined set of aggregation rules, a set of
file servers from the group of file servers for storing the user file;
for each portion of the user file to be stored in a respective one of the
determined set of servers, generating a file path as a function of a file name of the user file,
the file path including at least three directory levels below a root path of the file server; and
storing each said portion of the user file in the respective one of the

determined set of servers at the generated file path.

7. The file switch of claim 6, wherein the computer programs of the file aggregation
module include instructions for generating a globally unique identifier that is unique with
respect to globally unique identifiers for all user file portions stored in the group of file
servers, extracting a plurality of file path segments from the globally unique identifier, and

concatenating the plurality of file path segments to form at least a portion of the file path.

8. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:
at least one processing unit for executing computer programs;
at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;
a file aggregation module including one or more computer programs, the computer
programs including instructions for:
determining a set of file servers from the group of file servers for storing the
user file;
creating a metafile storing information identifying the set of file servers for
storing the user file; and
updating directory structures on the set of file servers to indicate storage of the

user file.

69

WO 2004/061605 PCT/US2003/041202

9. The file switch of claim 8, wherein the computer programs of the file aggregation
module include instructions for storing a plurality of copies of the metafile on a

corresponding plurality of the file servers in the group of file servers.

10. The file switch of claim 8, wherein the computer programs of the file aggregation
module include instructions for:

mapping a file path of the user file into a determined file path for the metafile in the
group of file servers and storing the metafile at a directory location in a file server in the

group of file servers, the directory location corresponding to the determined file path. .

11. The file switch of claim 8, wherein

the computer programs of the file aggregation module include instructions for
stripping and mirroring the user file in accordance with a predefined set of aggregation rules;
and '

the metafile identifies at least one file server for storing each stripe of the user file and

identifies at least one file server for storing each mirror of the user file.

12. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:

at least one processing unit for executing comi)uter programs;

at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer
programs including instructions for:

receiving one or more user requests to perform a specified operation on a specified
user file;

selecting, from among a group of rules, a rule applicable to the specified user file;
each rule in the group of rules including at least one parameter specifying, for files to which
the rule is applicable, how to distribute storage of each such file over the file servers in a
group of file servers; and

performing the specified operation in accordance with the selected rule, including,
when the specified operation changes the size of the specified user file, sending commands to
a plurality of the file servers so as to continue to distribute storage of the specified user file in

accordance with the selected rule.

70

WO 2004/061605 PCT/US2003/041202

13. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:.

at least one processing unit for executing computer programs;

at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer
programs including instructions for: ’

receiving one or more user requests to perform a specified operation on a specified
user file;

selecting, from among a group of rules, a rule applicable to the specified user file;
each rule in the group of rules including a striping parameter specifying, for files to which the
rule is applicable, a maximum size of file portions into which the files are divided, and a
mirroring parameter specifying, for files to which the rule is applicable, a number of
instances of each file portion are to be stored on file servers in the group of file servers; and

performing the specified operation in accordance with the selected rule, including:

when the specified operation increases the size of the specified user file by more than
the maximum file portion size specified by the selected rule, adding one or more file portions
to the user file, including creating and storing on the group of file servers the specified
number of instances of each added file portion, each created file portion instance having a

size no greater than the maximum file portion size specified by the selected rule.

14. The file switch of claim 13, wherein the one or more computer programs of the file
aggregation module include instructions for: -

storing in a metadata file, separate from the file portion instances in which the
specified user file is stored, data identifying a respective file server on which is stored each

file portion instance of the specified user file.

15. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:

at least one processing unit for executing computer programs;

at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer

programs including instructions for:

71

WO 2004/061605 PCT/US2003/041202

receiving a user request requiring a lock on a subset of a specified user file;

accessing a metafile that stores information identifying a set of file servers that store
respective defined portions of the specified user file;

determining, based on the information stored in the metafile, a subset of the file
servers that store portions of the specified user file that together comprise the subset of the
specified user file;

at each file server in the subset of file servers, performing a lock acquisition operation
to obtain a lock on the respective portion of the specified user file stored therein, and
producing a lock acquisition result; and

aggregating the lock acquisition results from the subset of file servers to produce an .

. aggregated lock acquisition result.

16.. The file switch of claim 15, wherein the computer programs of the file aggregation
module include instructions for continuing processing of the user request, when the
aggregated lock acquisition result is a positive result, by performing an operation on the

subset of the specified user file.

17. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising: ‘

at least one processing unit for executing computer programs;

at least one port for exchanging information with the file servers and client computers
the information exchanged including information concerning a specified user file;

a file aggregation module including one or more computer programs, the computer
programs including instructions for:

receiving a user request requiring a lock on a subset of the specified user file;

accessing a metafile that stores information identifying a set of file servers that store
respective defined portions of the specified user file;

initiating a lock acquisition operation on the metafile, the lock acquisition operation
using a first range of file positions that at least partially fall outside file positions located
within the metafile, the first range of file positions corresponding to subset of the specified
user file, and producing a lock acquisition result; and

when the lock acquisition result is positive, continuing processing of the user request

by performing an operation on the subset of the specified user file.

72

WO 2004/061605 PCT/US2003/041202

18. A file switch for use in a computer network having a group of file servers and a
plurality of client computers, the file switch comprising:
at least one processing unit for executing computer programs;
at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;
a file aggregation module including one or more computer programs, the computer
programs including instructions for:
receiving a u;er request to access a subset of a specified user file, the request
including a request for an opportunistic lock on the subset of the specified user file;
identifying a subset of file servers that store portions of the user file that
together comprise the subset of the specified user file;
sending an oplock request to each file server in the subset of file servers, and
receiving oplock request replies from the subset of file servers;
aggregating the received oplock request replies to produce an aggregated
oplock reply, such that the aggregated oplock reply is an oplock grant only when all the
received oplock request replies are oplock grants; and
sending the aggregated oplock reply to a sender of the user request, thereby
enabling the sender to cache data from the subset of the specified user file only when the

aggregate oplock reply is an oplock grant.

19. The file switch of claim 18, the file aggregation module further including instructions
for:
receiving an oplock break from a respective file server in the set of file servers;

forwarding the oplock break to the sender of the user request.

20. The file switch of claim 18, the file aggregation module further including instructions
for:

waiting to receive an oplock break acknowledgement from the sender of the user
request, and upon receiving the oplock break acknowledgement from the sender of the user
request, forwarding the oplock break acknowledgement to the respective file server in the set

of file servers.

21. A file switch for use in a computer network having a group of file servers and a

plurality of client computers, the file switch comprising:

73

WO 2004/061605 PCT/US2003/041202

at least one processing unit for executing computer programs;
at least one port for exchanging information with the file servers and client computers,
the information exchanged including information concerning a specified user file;
a file aggregation module including one or more computer programs, the computer
programs including instructions for:
receiving a user request to access a subset of a specified user file;
identifying a subset of file servers that store portions of the user file that
together comprise the subset of the specified user file;
sending an oplock request to each file server in the subset of file servers, and
receiving oplock request replies from the subset of file servers;
aggregating the received oplock request replies to produce an aggregated
oplock reply, such that the aggregated oplock reply is an oplock grant only when all the
received oplock request replies are oplock grants; and
caching data from the subset of the specified user file only when the aggregate
oplock reply is an oplock grant;
wherein the file switch is logically positioned between a client computer from which

the user request is received and the group of file servers.

74

PCT/US2003/041202

WO 2004/061605

1/25

lanIag 9|i4

A

lanies 9|l

lanleg 9ji4

Jonles 9|1

l "OId

14V J0idd

c0l

¥ uSID

€ Jusho

Zusio

L Juelo

col

c0l

PCT/US2003/041202

WO 2004/061605

2/25

OlLe

|
I
|
_ lanieg oji
L0z 1.7
-7
I
_ Jenies ol
90¢ !
I
1
| Janes 9|l
_
|
|
. mm__,\ JONIRS 914
]
|
|
“ 1oM8S 9]
“
|
| Ioniag 9|14
|
|
! lonieg 9|14

HOLIMS FTI4

(474

¥ WSlD

00¢ K

0Le

J

60¢

AHOMLAN

cle

€ Wal]

\

¢le

_/

cwalo

Lie

L wsi)

rAN k

PCT/US2003/041202

WO 2004/061605

3/25

GLe

€1e ——| Y3AY3S
ER|E|
AQVOI]
|
I Cle
8sd / N
I

ININ
“JOVNVIA

1Od

PCT/US2003/041202

WO 2004/061605

4/25

o0p-9|I4Aw

N Jenseg ejid

20p 8jI4Aw

oopa|i4Aw

o O O O

oop-ojidAw

| Jonag 914

“ OlL¥
m Ly \
“ ¥ JuSsiD \\ Z aln
|
|
4\ |
|
|
!
|
|
]
|
oop-9li4Aw
HOLIMS T4 < / MHOMLIN
A /
| 80¥
00% “ e
i
|
|
|
]
oop-a[IJAw
| gweno \ il =
" L Wslo
|
|
] 90y

G 'Ol o N SV

PCT/US2003/041202

5/25

WO 2004/061605

i WALSAS |
J d3alLvoadoov 3714 GIHOLIMS !
H3ANGFS 3114 “ AVHYY SYN “
Olg ATTVIY V €05 | NETNED “
I =] _
L ! 1oAI9S 3jid AOVOTT “
ooepaU| _ |
j 1 1 1M | o oo !
ooepaU| " “
! youms ——— _
U U U U Y ooemem m 7 Jofker J\ YoUmMS Slid H—
e 2 o e N NG U i
— _ 1 youme o4 |
il] aoelau| m “ m UOIMS 9]l J.M_m_ﬂmﬂ:
u T soepa _ —
|||||||||| N _
m | [uoums ep |rL|“ o5
|
| | I
UYOUMS 3]i4
—_— 1vo3u00Y S | SopHeMl
| AVHYY SYN |
| R "
]]
| 000 _
| |
| |
| 000 _
I]
| o0 o0 ”
|
\ ! 1oN9S 914 . _
205 " : “
! 189A188 9|14 |
| I«
|]

WO 2004/061605 PCT/US2003/041202

6/25
CPU - 600 . 610
Operating System /
611
601
4 Network Comm. Module /
612
002 File Switch Module -
User Interface 613
Core Services Layer K
614
OO,
w B 608 Control Plane Layer /
603 615
- Data Plane Layer -
Suiteh 616
wite Aggregated File System |/~
617
Virtual File System -
604 604 618
- v/ TCP/IP Transport -
N) 619
T IR I Parallel Redirector /6 .
Server Service /
620
606 607
/ / State Information T
’ 621
“' | L ”ll - Transaction State Info. -
Clients File Servers 622
Open File State Info. T
623
Locking State Info. -
624
Cached Information /-
625
Metadata File -
626
Aggregated Data File -
o O O
FIG. 6

WO 2004/061605

/702

7125

/’ 704

PCT/US2003/041202

/‘ 706

Parallel
Redirector

Virtual
File Aggregated
System - File e L
System
Server Service
718 TCP/IP Transport

;

3

\\ 708

710
N N
\ | o o o | _\
712
L =8 714
| 1
Clients File Servers /
716 ——
FIG.7
MAC, Time, Sequence |~ 1702
Counter
Global Unique 1704
Identifier (GUID) /
Function
GUID
o o o |lndex1 |Index2 [o o ofjIndexn | o o o

/1706

/

1708
/—

Data Stream Path = ..\Index 1\Index 2\...\Index n'\GUID_ASCII

FIG. 17

WO 2004/061605 PCT/US2003/041202
8/25
Metadata File
o 800
801
Header -
Metadata Offsets 802
Aggregation Descriptor 803
Header ~— 804
No. of Stripes 805
Strip Size 806
808
No. of Mirrors =
809
Spillover -
810
No. of Data Streams /—
(o] o O
Stripe-Mirror Map - 811
Matrix[Stripe #][Mirror#] - 812
813
Data Stream Descriptor -
830
E -
ntry
State of Data Stream
Index to Next Data Stream
_ _ /-816
Starting Offset Within User File 817
Ending Offset Within User File e
Server Name 819
/“
Global Unique Identifier (GUID)
830
Entry -
o O O /‘820
Total File Length
[0} o O

FIG. 8

PCT/US2003/041202

WO 2004/061605

9/25

6 "Old

SHANYIS
£3114\1.002\ HOLIMS 314
EAYUS 106
\
0l6 ! \SAMS W\ < L \LDDW
Z3114\ 906
ZAYS N
606 — \ZAYS W\ < AMS\ONZ
=l 506 ™
LAYS \LAMS W <= \ONT\
806—" v06 —"

IN3ITO

€311\ 002\ LDOV\

CHTIAVWAS\ON\

LATIHA\ONS

WO 2004/061605

10/25

PCT/US2003/041202

MYFILE.TXT

1002
MYFILE.TXT /—

/1000
:> 1003
MYFILE.TXT MYFILE.TXT /
1004
MYFILETXT |
FIG. 10
1105 1109
[[
1101 i !
N1 5
1106 1108 1110 1102 '/1106 [1110
\\ \\ \\ 2 6
112314516 1107
\ \ \ 3
1105 1107 1109 1100 1103
1108
' 4
FIG. 11 1104
/1201
1200
- 11234
7ol >
5| 6
\1202

FIG. 12

WO 2004/061605

PCT/US2003/041202
11/25
SYNTAX /’1300
(PATH, TYPE) —eememv > (N Mirrors, N Stripes, Strip Size)
EXAMPLES
1301
(* ,MPEG) ——mmmme > (, 32 , 16,384) /-
(* ,HTML) e > 64 , 0)
(* ,DOC) ——emm- > 8 8,192)
1304
(CODEBASE*, *) -m—mee > , 0) &
(\CODEBASE* , OBJ) =-emmmemme (1 , 0)

FIG. 13

WO 2004/061605

12/25
1402
1404
¥ _
Determine NAS
Array
1406
Determine File
Servers
Determine
Directory Path
o ,
1408 l
Determine
/ Metafile Names
1410

141

FIG. 14

PCT/US2003/041202

WO 2004/061605

6 stripes, 0 mirror

myFile.doc

N

1500

FIG. 15

13/25

PCT/US2003/041202

PmyFile.doc /1 501
SmyFile.doc
GUID_ASCII_1
File Server 1
PmyFile.doc /,1 502
SmyFile.doc
GUID_ASCIl_2
File Server 2
' /1503
GUID_ASCIL_3
File Server 3
/‘1 504
GUID_ASCII_4
File Server 4
/- 1505
GUID_ASCII_5
File Server 5
/-1506
GUID_ASCII_6

File Server 6

WO 2004/061605

1604

1610

1612

1618

14/25

PCT/US2003/041202

602

Determine NAS
Array

l

1606

Determine
Number of File
Servers

\

Y

Select File
Servers & Perform
Load Balancing

/—1608

'

Determine &
Handle Spillovers

Create Global
Unique Identifier
(GUID)

|

Determine File
Path With GUID

/1614

l

1616

Create Data
Stream File Name

{

FIG. 16

PCT/US2003/041202

WO 2004/061605

15/25

(474

¥ el

Gosl

60¢ J

1
_
!) lanies 9jid
R €08l
[J
! e
! |
] Janieg 9|4 zZ081
902 | oal HOLIMS “
|
| ™ | |
“ Jonies 8yl (491]0u0D) !
moC\ HOLIMS 114 |
|
m _
! JenIeg 8l HOLMS 3114 [_
! 00z — |
|
| HOLIMS T4 |
_ PN _
momk S S]
| 008 v\\
“
| JanIeg 914
w0z L/
1
|
|
| Janeg 9|14
|

_/

081

MHOMLAN

€ Wsl)

-

cle

_/

Z wsho

3%4

LUl

Zle K

PCT/US2003/041202

WO 2004/061605

16/25

oLe

202 —,
Janesg 9jid
902 —
JanIes 9l
G0Z —,
Janiesg 9|4
Y0 —
Jlanieg 94
(13114) avay
€02~ 06—
Janieg 9jid
(L3114) avay
20— y06L—"
JDAIBQ Il
S @i :mJEvo<mm
102 — €061 —"
2061
19MSS 914 N

(1314d) avay

HOLIMS 3114

60¢
.J

00¢ .k

ol¢c

(L37114) avay

1061 .\

WO 2004/061605 PCT/US2003/041202

17/25

Access Metadata
File

2002

2004

/— 2006
Determine Subset

of File Servers to
Access

l

Submit Command
to Selected File

/‘ Servers

2008 l

Wait and Receive
Response from

/ File Servers
2010 l
Compute an

/ Aggregated Result
2012 l /2014

Submit Response
Back to Client

2016 l

FIG. 20

PCT/US2003/041202

WO 2004/061605

18/25

L0C —~
1onIes 9)i4
90Z —
Jonies 9|i4
0T —.
Jonieg 9|4
JonIag 9ji
oM v |[e g
€02~ slz— goiz’
Joneg 9|14
ey |[s g
20z~ vliz— vyorz’
12AI9G 9|l
S ol o g |[e v
102~ corz—’ elz—"
oneg oy i COken
oy |[e g

oLe

HOLIMS ¢

N

NOFNK

ol¢

N oL
Z HOLIMS 114 N/,
S g
L HOLIMS 114
00z UM Y
EN\

e e e e

WO 2004/061605

2200

PCT/US2003/041202

19/25

Receive File Write
Request From Client

K2202

eck if Byte
Range L.ocke

Yes 2204

No

Generate Byte-Range Lock
Requests to File Servers

Y

Gather Lock Results & Save
in State

Byte-Range
Lack Acquired-

Yes

Perform Write Operation to
File Servers

—~

2214

Y

Receive Write Responses
From File Servers

2216

Acknowledge Write
Operation Complete

N

2218

2210

2206

2208

No

A

4

Send Write Request
Failure to Client

Release Byte-Range Lock

/- 2220

End

2222

™imn [aXal

\2212

WO 2004/061605

2301

20/25

Receive Client's Oplock
Request to Access a
User File

2302

|

Send Oplock Requests
on Metafiles to File
Servers

i

2303

Aggregate File Server
Responses

l

Grant Client Lowest
Oplock Level Allowed By
File Servers

2304

Save States of Granted
Oplocks From All File
Servers

2305 l
2306 Save Oplock Level
Granted to Client

2307 l

FIG. 23a

PCT/US2003/041202

WO 2004/061605

21/25

Start

v
Receive an Oplock Break

File Server

Exam Level o
Oplock Break
Notification

PCT/US2003/041202

Notification From Sender K
2311

Break Notification

Notification to Client

2312
If Oplock Levelin If Oplock Level in)
Break Notification Break Notification < If Client Never
>= Oplock Level Oplock Level Requested, or Does
y Cranted to Client v Granted to Client v Not Hold an Oplock
Respond to Oplock Forward Oplock Break Respond to Oplock

Break Notification

\2316
v

Update State
Information to New
Oplock Level of
Sender File Server

K2313

Update State Information
to New Oplock Level of
Sender File Server

\2317

\2318
\ 4

Update State
Information to New
Oplock Level of
Sender File Server

] \\2314

Forward Client's
Response Back to
Sender File Server

\\2315

\2319

;T:

2320

FIG. 23b

PCT/US2003/041202

WO 2004/061605

22/25

LEEC

I

1

oop aji4Aw

N Jonies 9|4

geee

O O O O

—~

\ oop-a)4Aw

| 19AI9S i

2€¢ "Old

€eece

S

'o0p-ai4Aw

¥ Ul

HOLIMS 3114

Nmmwl\

€ J3lD

0€ee

AHJOMLAN

¢ sl

' s0p-eji4Aw

}uSiD

WO 2004/061605 PCT/US2003/041202

23/25

TSt >
2400

Y
Receive File Access
Request & Determine
Location of Primary

Metafile
N 2401

Y
Open Primary Metafile
With Exclusive File Access

No

Y

Fail File Access Request |
i 2404

Send Requests to Open
Data Streams on All File
Servers To 2409

Y

Fail File Access Request | ™
2407

Perform File Access on All \
Data Stream Files 2408 l

To 2409

\ 4
Close All Data Stream —~
Files & Close Primary 2409

Metafile

\ 2410
End

FIG. 24

WO 2004/061605

St >
2500

Receive an
Enumeration Request
From Client

k2501

Y
Determine Set of NAS
Arrays to be
Enumerated

K2502

From 2515

For Each NAS Array,
Extract Matched Path

l 2503

(¢ From 2515

!

For Each File Server,
Send Enumeration
Request

’ \2504

Receive File Server
Response

\ 2505

From 2515

For Each Directory
Entry, Process
Responses From File
Servers

l \ 2506

To 2507

FIG. 25

2507

24/25

Yes

From 2506

PCT/US2003/041202

Update Update
Directory State Directory State
& Pointer For & Pointer For

New Entry Existing Entry

2508‘/ H%
Reitary Metafile Found>
Yes

2510

N~ 2509

Submit Entry Back To
Client

\2511

A

All File Server
numerated

Il NAS Array
umerated-7

Yes

To 2503,
2516 2504, 2506

WO 2004/061605

25/25

TSt >
2600

Y

Receive Metavolume
Aggregation Request

\ 4

\ 2602

Select A Primary
Metaserver

—

2604

Create, Req. Range Lock

PCT/US2003/041202

2616~
Send Request to

Operation Type? >

Non-
Destructive

Destructive

2606

Primary
Metaserver

Success Eails lFan
2618\ v Operation

A

'

Send Request to First/
Next Metaserver

Send Request to
All Metaservers

Send Request to
All Other
Metaservers

l N 2608

Metaserver
Available ?

2610

At Least One
Metaserver Access

2614

Save Primary Metaserver
Status

Save States of Which
Metaservers Are
Available

Y

Save States of

Metaserver that Returns [T 2624
Successful Access
v 2626 FIG. 26

End

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

