

**(12) STANDARD PATENT**  
**(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 2014281715 B2**

(54) Title  
**Vial transfer and injection apparatus and method**

(51) International Patent Classification(s)  
**A61M 5/178** (2006.01)      **A61M 5/152** (2006.01)  
**A61M 5/00** (2006.01)      **A61M 5/20** (2006.01)

(21) Application No: **2014281715**      (22) Date of Filing: **2014.06.17**

(87) WIPO No: **WO14/204894**

(30) Priority Data

|                                  |                                |                           |           |
|----------------------------------|--------------------------------|---------------------------|-----------|
| (31) Number<br><b>61/836,266</b> | (32) Date<br><b>2013.06.18</b> | (33) Country<br><b>US</b> |           |
|                                  | <b>61/979,816</b>              | <b>2014.04.15</b>         | <b>US</b> |

(43) Publication Date: **2014.12.24**  
(44) Accepted Journal Date: **2018.09.27**

(71) Applicant(s)  
**Enable Injections, Inc.**

(72) Inventor(s)  
**Hooven, Michael D.;Huddleston, Matthew J.;Palmer, Joetta Renee;Stefanchik, David**

(74) Agent / Attorney  
**Pizzeys Patent and Trade Mark Attorneys Pty Ltd, GPO Box 1374, BRISBANE, QLD, 4001, AU**

(56) Related Art  
**US 2004/0116847 A1**  
**US 4886499 A**

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau



(10) International Publication Number

WO 2014/204894 A3

(43) International Publication Date  
24 December 2014 (24.12.2014)

WIPO | PCT

(51) International Patent Classification:  
*A61M 5/178* (2006.01)    *A61M 5/152* (2006.01)  
*A61M 5/20* (2006.01)    *A61M 5/00* (2006.01)

(72) Inventors: **HOOVEN, Michael, D.**; 7778 Bennington Drive, Cincinnati, OH 45241 (US). **HUDDLESTON, Matthew, J.**; 5705 Whispering Trail, Galena, OH 43021 (US). **PALMER, Joetta, Renee**; 3849 Cherry Brook Lane, Mason, OH 45040 (US). **STEFANCHIK, David**; 5792 Cabernet Ct., Morrow, OH 45152 (US).

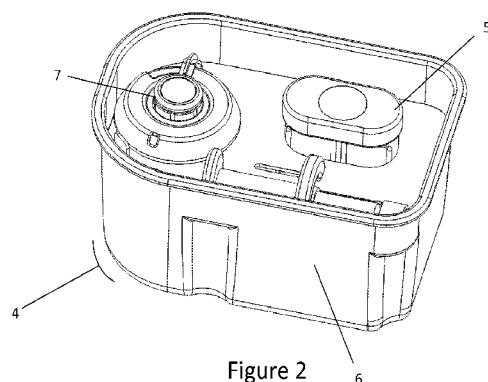
(21) International Application Number:  
PCT/US2014/042627

(74) Agent: **MCFARRON, Gary, W.**; Cook Alex Ltd., 200 West Adams Street, Suite 2850, Chicago, IL 60606 (US).

(22) International Filing Date:  
17 June 2014 (17.06.2014)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English


(26) Publication Language: English

(30) Priority Data:  
61/836,266            18 June 2013 (18.06.2013)    US  
61/979,816            15 April 2014 (15.04.2014)    US

(71) Applicant: **ENABLE INJECTIONS, LLC** [US/US]; 301 Industrial Drive, Franklin, OH 45005 (US).

*[Continued on next page]*

(54) Title: VIAL TRANSFER AND INJECTION APPARATUS AND METHOD



(57) **Abstract:** Drug delivery system, injection device, transfer apparatus, vial holder and method of administering and transferring are disclosed. The system may include transfer apparatus and an injection device. The transfer apparatus may have receiving stations for a drug source, such as a vial or vial holder, and for an injection device, and fluid flow pathways for transferring drugs from the source into the injection device. The injection device may include an expandable elastic bladder and an injection cannula that is movable between a plurality of positions.

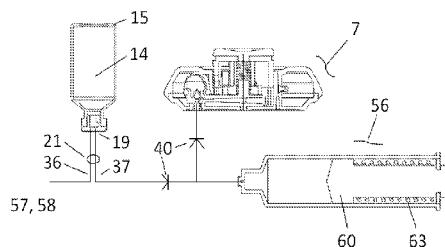



Figure 11



**(84) Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

**Published:**

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

**(88) Date of publication of the international search report:**

23 July 2015

## Vial Transfer and Injection Apparatus and Method

**[0001]** This application claims priority to and the benefit of United States Provisional Patent Application No. 61/979,816, filed April 15, 2014, and United States Provisional Patent Application No. 61/836,266, filed June 18, 2013, both of which are hereby incorporated by reference in their entirety.

**[0002]** The present subject matter generally relates to devices and methods for administering the contents of vials and more specifically to a disposable one-time use apparatus and method that transfers and mixes the contents of one or more vials into a disposable injection device for administration into a subject such as a human being.

### Background

**[0003]** Vials are one of the preferred container closure systems used by the pharmaceutical industry due to their extensive clinical history and record of long term stability with a wide variety of drugs. Pharmaceutical drugs including biologics are often first commercially introduced in standard containers such as vials. Additionally the industry has made a significant investment in capital equipment for aseptic vial filling. However, vials require the transfer of the contained drug from the vial to an injection device for delivery to the patient. New container closure systems such as prefilled syringes and cartridges have been introduced that allow direct transfer of the drug from the syringe or cartridge to the patient. Injection devices such as autoinjection devices and pens have been developed to utilize these newer forms of container closure. Because of uncertainty about long-term drug stability, and the extensive manufacturing resources already in place, devices that incorporate standard container closure systems such as vials, prefilled syringes or cartridges are greatly preferred by the pharmaceutical industry over devices that require a custom form of drug containment.

**[0004]** However, vials, prefilled syringes and cartridges are not necessarily the optimum containers for a drug delivery device. This is especially true in the case of delivery devices that deliver relatively high volumes of drugs (2-20cc) or high viscosity (over 15 cP). Vials, prefilled syringes and cartridges are almost exclusively cylinders made of glass, which imposes design constraints on forces

and geometries. Typical syringes and autoinjection devices are limited on the viscosities of drug that can be delivered as well as by the forces that can be applied to the glass container closure systems. New injection devices have been developed including pumps for the delivery of insulin that use custom container 5 closures, but these systems are very expensive, cannot generate high forces or pressures and typically reusable and/or refillable.

**[0005]** Due to factors including stability and time to market, pharmaceutical drugs including biologics are often initially marketed in a lyophilized or powder form or in concentrated liquid form. Such drugs packaged in vials in both liquid and powder 10 formulations can require significant preparation prior to administration. To facilitate the administration of liquid formulations in vials, drugs in vials are often packaged with an empty syringe and multiple needles for aspiration out of the vials and injection into the patient. In the case of powder formulations, an additional diluent or solution vial may be provided to allow for reconstituting the powder drug into 15 solution available for injection.

**[0006]** The risks associated with the preparation and administration of these drug forms are significant. They include the potential for needle stick injury during the reconstitution and administration process as well as errors with improper mixing and inaccurate dose volume or concentration delivered. This presents a real 20 challenge for both trained caregivers and patients preparing and receiving the medication. Similar issues of risk can also apply to the transfer of ready-to-inject drug that must be transferred from a vial to an injection device. This transfer involves removal of the drug from the vial, measurement of the proper dose, and injection into the patient using a syringe. Incomplete transfer of the full 25 volume of the vial necessitates overfilling of the vial by some 25-30% and the associated waste. Contamination of the drug with non-sterile ambient air that is injected into the vial, or improper sterile technique can cause contamination of the injectable drug.

**[0007]** Accordingly, there continues to exist a need for new and/or improved 30 apparatus and methods for transfer, mixing and injection of drugs from a source vial or vials to a subject.

### Description

**[0008]** The description below is for purposes of illustration only and not limitation. The present subject matter may be employed in a variety of apparatus, systems and methods not depicted below.

5

### Summary

**[0009]** The present subject matter is directed, in part, to disposable, one-time-use apparatus and methods for preferably automatically mixing and/or transferring, upon user initiation, the injectable contents of one or more standard vials into an injection device and preferably simultaneously pressurizing the 10 injection device for subsequent automated injection into a subject. The contents of the vial(s) may be any suitable injectable, and for purposes of this description and claims, "injectable" includes without limitation drugs of any type, therapeutic or diagnostic, antibiotics, biologics, sedatives, sterile water and other injectable materials, either alone or in combination with one or more other injectables, and 15 whether or not requiring reconstitution or concentration adjustment or other processing before injection. Although various features of the present subject matter may be described in the context of reconstituting a powder drug for injection, the apparatus and method disclosed here are not limited to that particular application and may be employed with liquid injectables that are ready for injection 20 and only need to be transferred from the vial to the injection device. Furthermore, the apparatus and method disclosed may be employed to injectables that do not require reconstitution or concentration adjustment but which are to be mixed before injection (such as where two liquid drugs are to be mixed for a combination drug therapy), and/or other injection applications.

25 **[00010]** The apparatus and method described herein may be of any suitable detailed configuration, but is preferably configured to transfer the contents of a vial into an injection device. Also, the apparatus may be configured to mix or process the contents of vials requiring reconstitution or concentration adjustment during the transfer process. Also, the apparatus may be configured to allow the user to select 30 a dose volume for injection and may further include a lock-out feature that requires such a selection before communication of the contents of the vial with the apparatus is permitted or transfer or mixing or other processing is initiated. The

apparatus may further be configured to filter the contents for removal of particulate or drug particles before transfer into the injection device, and may include a sterile filter for filtering any displacement air vented into the vial or vials. The device may also include a lockout to prevent the user from removing the injection device prior to 5 drug transfer or activating the injection device until the device has been removed from the transfer apparatus.

**[00011]** The present subject matter may include a vial holder configured to hold one or more vials in a predefined relationship for cooperation with the transfer apparatus. For example, the vial holder may be configured to include one receiving 10 zone or cavity for a single vial (such as a liquid drug containing vial). Alternatively, the vial holder may be configured to include a first vial-receiving zone or cavity for a first vial (such as a lyophilized drug containing vial) and a second vial receiving zone or cavity for a second vial (such as a diluent containing vial). The vial holder may contain the vial(s) in a predefined relationship for mounting to or otherwise 15 cooperating with the transfer apparatus for accessing the vial contents and processing them if needed (e.g., mixing them to reconstitute the drug). The vial holder may be configured to only accept a diluent containing vial in one of the receiving zones and only accept a powder vial in the other receiving zone as to prevent mix up of the vials in the wrong position. The vial holder may include a 20 removable cover that is configured for attachment over the vial caps that cover the vial access members, such that removal of the cover simultaneously removes the vial caps and exposes the vial access members for connection to the transfer apparatus or prior antiseptic swabbing if needed. If the vial caps have been maintained suitably sterile by the cover, the swabbing may not be necessary 25 although still preferred out of an abundance of caution. Alternatively, the vial holder with vials installed may be mounted to the transfer apparatus with the vial caps already removed. The sterility of the vial stoppers and vial access members may be maintained through the life of the product, eliminating the need for the user to remove the vial caps and swab the vial tops.

30 **[00012]** The present subject matter includes an injection device of any suitable detailed construction, but injection devices that are particularly useful in combination with the apparatus here are described in U.S. patent application serial

no. 61/326,492 filed April 21, 2010; U.S. patent application serial no. 13/637,756, filed September 27, 2012; and U.S. patent application no. 61/704,922, filed September 24, 2012, all of which are hereby incorporated by reference herein. As can be seen in those applications, the illustrated injection devices employ an

5 expandable member, such as a balloon, to automatically expel or inject the drug when activated by the user. Long term storage of a drug in such a pressurized member presents design and manufacturing challenges, and a particularly beneficial aspect of one embodiment of the present subject matter is that the injection device may remain unpressurized (e.g., the balloon unfilled and

10 unexpanded and in a low energy state) and the injectable remains in its standard original vial or vials for enhanced shelf life until an injection is required. At that time, the injectable is preferably automatically transferred by the transfer apparatus from the vial or vials into the injection device (with any associated mixing, diluting or other processing as required), with the transfer apparatus simultaneously charging

15 the injection device (e.g., expanding and pressurizing the expandable member or balloon by introducing the injectable there into under pressure) so that the injection device is ready for automated injection into a subject upon user activation. In this application, the injectable is in the injection device only for a very limited amount of time, such as seconds or minutes, and shelf life concerns and design or material

20 constraints for long term drug storage are reduced.

**[00013]** In accordance with another aspect of the present subject matter, which may be employed in any suitable injection device, the expandable member (such as a balloon) may be elongated and configured to progressively collapse from one end to another during injection. The specific configuration may vary, but

25 arrangement of the elongated expandable member in a generally flat spiral or helical configuration allows for the expandable member to be of substantial length and volume in a relatively compact arrangement that can be applied to and retained on the skin of a subject during injection. The injection device may also have a viewing window that allows the user to view the expandable member and identify

30 the general status of the injection by the amount of collapse and/or the expandable member or the viewing window may be graduated by appropriate markings so that the user can determine the amount of injection that has occurred.

[00014] Although the vial holder, transfer apparatus and injection device, and their methods of use are separate aspects of the present subject matter that have their own utility and may be separately claimed, they may also be configured and claimed in various combinations or sub combinations, such as transfer apparatus 5 and injection device in combination or the vial holder, transfer apparatus and injection device in combination and/or the methods of using such.

**Brief Description of Drawings**

[00015] Examples of the subject matter of this patent application are shown for purposes of illustration only, and not limitation, in the attached drawings, of 10 which:

[00016] Figure 1 is a perspective view of a single-vial system including the single vial holder, transfer apparatus and injection device system embodying the present subject matter.

[00017] Figure 2 is a perspective view of a dual vial system including the dual vial holder, transfer apparatus and injection device system embodying the present 15 subject matter.

[00018] Figure 3 includes a perspective view of a single vial holder with the removable top included, a cross-section of the single vial holder with removable top included and a perspective view of the single vial holder with the removable top and 20 vial cap removed.

[00019] Figure 4 includes a perspective view with removable top included and a cross-section of the dual vial holder with removable top and vial caps removed.

[00020] Figure 5 is a cross-section of Figure 2 in the area of the vial holder 25 showing the position of the vial access members relative to the septums of the vials.

[00021] Figure 6 is a cross-section of Figure 1 in the area of the vial holder showing the vial access member pierced through the septum of the vial.

[00022] Figure 7 is a perspective view of the transfer apparatus shown in Figure 1 showing the vial holder and injection device receiving areas.

[00023] Figure 8 is a close up of Figure 5 illustrating the vial access member 30 piercing the septum of the vial with the collapsible vial access member shield.

**[00024]** Figure 9 is a schematic of the dual vial transfer system in Figure 2 with a first vial, a second vial, a transfer apparatus with a first and second variable pressure chambers and injection device including the fluid pathways.

**[00025]** Figure 10 is a cross-section of Figure 2 in a pre-fire position.

5 **[00026]** Figure 11 is a schematic of the single vial transfer system in Figure 1 with a drug vial, a transfer apparatus with a first variable pressure chamber and injection device including the fluid pathways.

**[00027]** Figure 12 is a cross-section of Figure 1.

10 **[00028]** Figure 13 is a schematic of an alternative embodiment for the dual vial transfer system in Figure 2 with a first vial, a second vial, a transfer apparatus with a first pressure chamber and injection device including the fluid pathways.

15 **[00029]** Figure 14 is a schematic of an alternative embodiment of the dual vial transfer system in Figure 2 with a first vial, a second vial, a transfer apparatus with a first and second variable pressure chamber and injection device including the fluid pathways.

**[00030]** Figure 15 is a schematic of an alternative embodiment of the dual vial transfer system in Figure 2 with a first vial, a second vial, a transfer apparatus with a first pressure chamber, a dual lumen connector and injection device including the fluid pathways.

20 **[00031]** Figure 16 is a cross-section of Figure 1.

**[00032]** Figure 17 is a schematic of an alternative embodiment of the single vial transfer system in Figure 1 with a drug vial, a transfer apparatus with a first variable pressure chamber, an injection device including the fluid pathways with check valves and flow restrictors.

25 **[00033]** Figure 18 is a cross-section of Figure 2.

**[00034]** Figure 19 is a cross-section of Figure 2

**[00035]** Figure 20 is a perspective view of the injection device.

**[00036]** Figure 21 is a top view of a filled injection device showing the delivery indicator in a full state.

30 **[00037]** Figure 22 is top view of a filled injection device showing the delivery indicator in an empty state.

**[00038]** Figure 23 is a perspective view showing the underside of the injection device with attached tape and fill port.

**[00039]** Figure 24 is a perspective view showing the underside of the injection device with tape detached and the fill and dispense ports exposed.

5 **[00040]** Figure 25 is a cross-section of the injection device on the transfer apparatus.

**[00041]** Figure 26 is a perspective view of the injection device attached to the skin with the safety device installed.

10 **[00042]** Figure 27 is a perspective view of the injection device attached to the skin with the safety device removed and the button up in a pre-fire state.

**[00043]** Figure 28 is a perspective view of the injection device attached to the skin with the safety device removed and the button down in a fired state.

**[00044]** Figure 29 is a cross-section view of the injection device attached to the skin with the button up in a pre-fire state.

15 **[00045]** Figure 30 is a cross-section view of the injection device attached to the skin with button down in a first fired state.

**[00046]** Figure 31 is a cross-section view of the injection device attached to the skin with button down in a dispense state.

20 **[00047]** Figure 32 is a cross-section view of the injection device attached to the skin showing the end of delivery indicator not triggered.

**[00048]** Figure 33 is a cross-section view of the injection device attached to the skin showing the end of delivery indicator triggered.

**[00049]** Figure 34 is a cross-section view of the injection device attached to the skin with button locked up in a post-fired state.

25 **[00050]** Figure 35 is a perspective view of the injection device removed from the skin with the bandage remaining on the skin.

**[00051]** Figure 36 is a perspective view of the injection device with the top housing removed in a filled state.

**[00052]** Figure 37 is a top view of the injection device shown in Figure 36.

30 **[00053]** Figure 38 is a perspective view of the injection device with the top housing removed in an empty state.

**[00054]** Figure 39 is a top view of the injection device shown in Figure 38.

**[00055]** Figure 40 is a perspective view of the single vial system in the packaging.

**[00056]** Figure 41 is a perspective view of the single vial system in the packaging open.

5 **[00057]** Figure 42 is a perspective view of the single vial system in the packaging with the lid removed exposing the contents of the package.

**[00058]** Figure 43 is a perspective view of the single vial system with the vial holder removed from the package and the vial cap removed.

10 **[00059]** Figure 44 is a perspective view of the single vial system with the vial holder fully inserted into the transfer apparatus.

**[00060]** Figure 45 is a perspective view of a dual vial system showing the vial holder installed.

**[00061]** Figure 46 is a top view of Figure 45 showing the volume controller in a preset state.

15 **[00062]** Figure 47 is a top view of Figure 45 showing the volume controller in a set state.

**[00063]** Figure 48 is a perspective view of a dual vial system with the volume controller removed and the vial holder depressed into the transfer apparatus to start the mixing and transfer process.

20 **[00064]** Figure 49 is a perspective view of a dual vial system after completion of the mixing and transfer process, filling of the injection device and release of the injection device removal interlock.

**[00065]** Figure 50 is a perspective view of the single vial system with the injection device filled and removed from the package.

25 **[00066]** Figure 51 is a perspective view of the injection device placed on the skin and the safety in place.

**[00067]** Figure 52 is a perspective view of the injection device placed on the skin and the safety removed.

30 **[00068]** Figure 53 is a perspective view of the injection device placed on the skin and the button depressed to fire start the injection.

**[00069]** Figure 54 is a perspective view of the injection device removed from the skin after the injection with the button in a locked up position and a bandage remaining on the skin.

5 **[00070]** Figure 55 is a perspective view of injection device embodying the present subject matter.

**[00071]** Figure 56 is a cross-section of Figure 55 showing the injection device with the button in the first position.

10 **[00072]** Figure 57 is an illustration (Van Gerwen, D.J. *Needle-Tissue Interaction by Experiment*. Ph.D. Thesis, Delft University of Technology, 2013. ISBN 978-94-6186-238-9, pg. 11) showing four stages of needle penetration into tissue including a.) no contact, b.) boundary displacement, c.) tip insertion and d.) shaft insertion.

**[00073]** Figure 58 is a cross-section of Figure 55 showing an injection device with the button in a second position or dispense position.

15 **[00074]** Figure 59 is a perspective view of a single vial transfer system with the drug vial and injection device installed embodying the present subject matter.

**[00075]** Figure 60 is a cross-section of Figure 59 with depicting an aspect of the vial holder area showing the drug vial, a vial access member and an extension member in the down position.

20 **[00076]** Figure 61 is a cross-section of Figure 59 depicting an aspect of the vial holder area showing the drug vial, a vial access member and an extension member in the up position.

**[00077]** Figure 62 is a cross-section of Figure 59 with the box and tray removed and depicting an aspect of the pressure chamber and fluid passageways.

25 **[00078]** Figure 63 is a cross-section of Figure 59 depicting an aspect of the vial holder area showing the drug vial, the vial access member and outlet opening.

**[00079]** Figure 64 is a cross-section of a single-vial system including the single vial holder, transfer apparatus and injection device system.

30 **[00080]** Figure 65 is a schematic of an alternative embodiment of the single vial transfer system in Figure 64 with a drug vial, a transfer apparatus with a first variable pressure chamber, an injection device including the fluid pathways with check valves and flow restrictors.

**[00081]** Figure 66 is a cross-section of Figure 55 showing adhesive/device and adhesive/skin interfaces.

**[00082]** Figure 67 is a perspective view of the bottom of an injection device showing the different zones of the adhesive.

5 **[00083]** Figure 68 is a cross-section of Figure 55 showing bulging tissue on a device with permanently attached adhesive.

**[00084]** Figure 69 is a cross-section of Figure 55 showing bulging tissue on a device with multi-zone attached adhesive.

10 **[00085]** Figure 70 is a perspective view of the top of an alternative injection device.

**[00086]** Figure 71 is a cross-section of Figure 70 showing a dislodgment sensor non-engaged and the needle locked in the dispense position.

**[00087]** Figure 72 is a cross-section of Figure 70 showing a dislodgment sensor engaged and the needle and button retracted to post-fire position.

15 **[00088]** Figure 73 is a cross-section of Figure 55 showing an injection device with the button in the first position or pause position.

**[00089]** Figure 74 is a cross-section of Figure 55 showing an injection device with the button in a second position or dispense position.

**[00090]** Figure 75 is a cross-section of Figure 55 showing an injection device 20 with the needle retracted and the button in the up or pre-fire position.

**[00091]** Figure 76 is a cross-section of Figure 55 showing an injection device with the button in a second position or dispense position.

**[00092]** Figure 77 is a perspective view of a single vial transfer apparatus.

**[00093]** Figure 78 is a perspective view of an injection device.

25 **[00094]** Figure 79 is a cross-section of Figure 78 showing an injection device with the button in a second position or dispense position.

**[00095]** Figure 80 is a schematic of an alternative embodiment of the single vial transfer system in Figure 64 with a drug vial, a transfer apparatus with a first variable pressure chamber, an injection device including the fluid pathways with 30 check valves and flow restrictors.

**[00096]** Figure 81 is a cross-section of Figure 77 depicting an aspect of the vial receiving area.

**[00097]** Figure 82 is a schematic of a dual vial transfer system with a first vial, a second vial, a transfer apparatus with a first and second variable pressure chambers and injection device including the fluid pathways.

5 **[00098]** Figure 83 is a perspective view of an injection device with the attached safety sleeve.

**[00099]** Figure 84 is a cross-section of Figure 55 showing an injection device with the button in second position or dispense position.

10 **[000100]** Figure 85 is a cross-section of Figure 59 depicting an aspect of the vial holder area showing the drug vial, vial access member and angle sensor in the open position.

**[000101]** Figure 86 is a cross-section of Figure 59 depicting an aspect of the vial holder area showing the drug vial, vial access member and angle sensor in the closed position.

15 **[000102]** Figure 87 is a schematic of an alternative embodiment of the single vial transfer system with a drug vial, a transfer apparatus with a first variable pressure chamber and an injection device including the fluid pathways with check valves.

#### Detailed Description

20 **[000103]** Referring to Figures 1 and 2, as set forth in more detail below, the disposable, one-time use, single vial transfer and injection system 1 shown in Figure 1 may comprise a single vial holder 2, transfer apparatus 3 and injection device 7. A disposable, one-time use, dual vial mixing, transfer and injection system 4 shown in Figure 2 may comprise a dual vial holder 5, transfer apparatus 6 and injection device 7. As mentioned earlier, each of these aspects has separate 25 utility and may be claimed separately and/or in combination or sub-combination.

30 **[000104]** Referring to Figures 3 and 4, the single vial holder 2 shown includes a housing 8 that includes a side wall 9, end wall 10 and apertures or viewing windows 11. Alternatively the vial holder 2 material may be transparent to allow for visualization of the contents of the vial 12. The housing 8 is shaped to define at least one or two or more vial-receiving cavities 13 or zones for securely holding a vial 12 in each zone 13 as shown in Figure 4. The cavities 13 in the vial holder 5 may be sized for receiving standard injectable vial 12 of different sizes such as from

1 to 30 ml. The vial 12 may be of the same size or different sizes and may contain any desired injectable 14. In the dual vial holder 5 illustrated in Figure 4, the vials may include one vial of powdered, lyophilized or liquid drug 15 and one vial of liquid or diluent 16. The vial holder 5 may have the vials prepackaged and

5 assembled therein by, for example, a drug manufacturer, or the vials may be inserted into the vial holder 5 by the end user or by a medical professional such as a pharmacist or nurse. The vial holder 5 may have appropriate markings and/or features to only allow for the assembly of certain vials in certain cavities 13. For example, the powdered drug vial 15 may be inserted into a specific cavity 13 of the

10 vial holder 5 and diluent vial 16 in another cavity 13 of the vial holder 5. The apertures or viewing windows 11 in the vial holder 5 allow for direct visualization of the contents 14 of the vials.

**[000105]** Referring to Figures 3 and 4, as a further alternative, the vial holder 5 may be an assembly of individual vial holders 2, each of which holds a single vial 12. For example, the injectable manufacturer may preassemble a vial 12 in an individual vial holder 2 which can then be joined with the vial holder 2 of another vial 12, if needed, at the time of injection. For example, a drug manufacturer may provide a lyophilized drug 15 in its own vial holder 2 and the diluent 16, such as sterile water or saline, in a separate vial holder 2. The user or medical professional

20 can then, as needed, join the individual vial holders 2 to form the vial holder assembly 5 for connection to the transfer apparatus 6 shown in Figure 2.

**[000106]** Referring back to Figure 3, the vial holder 2 may include a removable cover 17 that normally covers and protects the end of the vial 18 during shipping and storage. Typical standard commercial vials 12 include a pierceable septum 19 located in the vial neck for accessing the vial contents 14, which is covered by a removable vial cap or closure 20. The removable cover 17 may be configured to engage the vial cap 20 so that removal of the cover simultaneously removes vial cap 20 and exposes the vial septum 19 for accessing the contents 14 after any antiseptic swabbing of the septum 19 that may be deemed necessary by the user.

25 The vial holder 2 may recess the vial 12 therein such that after the vial cap 20 is removed by the cover 17, the pierceable septums 19 are recessed within the vial holder 2 to reduce the chance of contamination by the user prior to insertion of the

30

vial holder 2 into the transfer apparatus 3 as shown in Figure 1. This system is applicable to both single vial holders 2 and dual vial holders 5.

5 [000107] Referring to Figure 3, the vial holder 2 may include interlocks 27 to prevent the vial 12 from being removed once the vial 12 is inserted into the vial holder 2. This helps prevent the vial 12 from falling out or being inadvertently removed during handling.

10 [000108] Referring to Figure 5, the vial holder 5 may be assembled to the transfer apparatus 6 with the vial caps removed and the vials 15, 16 installed into the vial holder 5 by the device manufacturer. The exposed vial septums 19 are held in close proximity to the vial access members 21, 52 prior to activation. This configuration provides convenience by eliminating the need for the user to remove the vial caps, swab the vial tops 19 and assemble the vial holder 5 to the transfer apparatus 6 prior to use of the system 4.

15 [000109] Referring to Figure 6, the vial holder 2 may be packaged separately from the transfer apparatus 3. In this case, the user would remove the vial cap with the removable cover 17, swab the vial top 19 (if necessary) and assemble the vial holder 2 into the transfer apparatus 3. As shown in Figure 6, the vial holder 2 may include lock-out features 22 that interact with the transfer apparatus 3 to prevent the vial holder 2 from being inadvertently pulled out of the transfer apparatus 3 after 20 activation by the user.

25 [000110] Referring to Figure 5, the vial holder 5 preferably is assembled to the transfer apparatus 6 to configure the vials 15, 16 upside down in a vertical position. This allows any liquid 23 in the vials to be in direct communication with the vial access members 21, 52 after insertion of the vial holder 5. This also forces the air 24 to the top of the vial in this orientation. To encourage the septums 19 to remain uncontaminated after removal of the vial caps and before insertion of the vial holder 5, the exposed vial septums 19 may be recessed into the vial holder 5 to prevent inadvertent contact as shown in Figure 4. This configuration is applicable to single vial holder and dual vial holder configurations.

30 [000111] Referring to Figure 6, the vial holder 2 preferably is mechanically configured with insertion features 25 in the transfer apparatus 3 to actuate like an on/off switch, i.e., to only have two states, open and closed such as a light switch.

This may prevent the user from pushing the vial holder 2 into the transfer apparatus 3 half way and not allowing the vial access member 21 to pierce the septum 19 and allow communication between the contents 14 of the vial 12 and the transfer apparatus 3. Additionally, the vial holder 2 may interface with an interlock 26 in the 5 transfer apparatus 3 to lock the vial holder 2 in the closed position after full insertion of the vial holder 2 to prevent the vial holder 2 from being removed from the transfer apparatus 3 after insertion.

**[000112]** Referring to Figure 7, the transfer apparatus 3 comprises an outer housing 28 and defines a vial holder docking area or first receiving station 29 and 10 an injection device docking station or second receiving station 30 (for removable injection devices). In the illustrated structure, the vial holder docking station 29 and injection device docking station 30 are at opposite ends of the transfer apparatus housing 28.

**[000113]** Referring to Figure 7, the transfer apparatus 3 may have an outer 15 housing 28 that is integrated into the packaging 31 of the system. The outer packaging 31 may essentially form the bottom and side walls of the transfer apparatus outer housing 28. All of the operational steps in using the system up to the point of removal of the injection device may occur in this packaging 31. This may provide cost reduction and increase ease of use for the user. Additionally, 20 incorporating the entire transfer apparatus 3 into the packaging 31 eliminates the possible user error that could occur if the user was required to remove the transfer apparatus 3 from the package 31. The packaging 31 could include a plastic tub or tray that contains the system. Furthermore, the packaging 31 could include everything within a shipping carton 32 that houses the entire system.

**[000114]** Referring to Figure 7, the transfer apparatus 3 comprises a vial holder docking area 29 that may include elongated a vial access member or piercing member 21. This access member or piercing member 21 could be configured as pointed or blunt cannulas or needles. Referring to Figure 8, the vial holder 5 with attached vial 12 is shown inserted into the vial docking station 29 and the vial 30 access member 21 piercing the vial septum 19 allowing access to the contents 14 of the vial 12. The vial access member 21 may include a collapsible seal 33 to maintain sterility of the vial access member 21 and fluid path prior to activation.

The collapsible seal 33 may also attach and seal on the outside of the vial 12 relative to the vial access member 21 to maintain sterility prior to activation.

**[000115]** Referring to Figure 8, the vial access member 21 of the transfer apparatus 3 may comprise of multi-lumen tubes 34 to communicate with the 5 internal fluid pathways 35 of the transfer apparatus 3. The vial access member 21 preferably comprises one inlet tube 36 allowing air or fluid to enter the vial 12 and one outlet tube 37 allowing for air or fluid to exit the vial 12. These inlet 36 and outlet 37 tubes may be separate and distinct and communicate with different fluid pathways in the transfer apparatus 3. Because of the vertical orientation of the vial 10 12 in the upside-down position, the lumen openings 38 in the vial access member 21 can be oriented so the inlet tube opening 36 is above the output tube opening 37. This orientation allows for introduction of pressurized air or liquid through the upper inlet tube 36 and output of the vial contents 14 through the lower output tube 37. Further, the outlet opening 37 may be positioned near the bottom of the vial 12, 15 adjacent to the septum 19 to encourage the entire contents 14 of the vial 12 to enter the outlet port 37 and be removed from the vial 12.

**[000116]** Referring to Figures 9 and 10, the transfer apparatus 6 is configured to carry out all of the necessary steps to transfer and reconstitute (if necessary) injectable 14 contained within the vials 15,16 and transfer the mixture to the 20 injection device 7 preferably automatically after user initiation of the process. The transfer apparatus 6 is configured and preferably includes a propulsion system or systems, such as electrically (e.g., battery powered) or mechanically (e.g., spring loaded) actuated pumps, to direct diluent from the diluent vial 16 into the injectable powder vial 15 and to direct the injectable 14 through the transfer apparatus 6 into 25 the injection device 7.

**[000117]** Referring to Figures 9 and 10, the transfer apparatus 6 may also include an array of internal fluid pathways 35, as required to perform any transfer, reconstitution, mixing, dilution or other processing of the injectable 14 and transferring it from the vials 15, 16 in the vial holder 5 to the injection device 7. The 30 fluid pathways 35 may include flexible or rigid conduits or tubes. These fluid pathways 35 may also include check valves, filters, flow restrictors or other means

40 to direct the drug from the vials 15, 16 through transfer apparatus 6, into the injection device 7.

**[000118]** Referring to Figures 9 and 10, the transfer apparatus 6 may include variable volume pressure chambers or cylinders that have movable spring-loaded 5 pistons therein and directly communicate with the internal fluid pathways 35. The chamber capacity for each variable volume chamber may be defined by chamber diameter and location of the piston within the chamber. The first pressure chamber 41 in transfer apparatus 6 may preferably have an initial volume set by the manufacturer in the range of 1 to 30 milliliters. The initial contents of the first 10 pressure chamber 41 may preferably include air 45. The piston 43 may be driven by a compression spring 44 in the first pressure chamber 41 whose volume is defined and set by the manufacturer. The spring-loaded piston 43 may be of adequate size and configuration to produce 1 to 50 psi of static air pressure in the first pressure chamber 41. The volume of air 45 will depend on the diameter of the 15 chamber 41 and stroke position of the piston 43 during operation. This pressure will depend on the relative volume of air 45 displaced by the piston 43 and the force exerted by the spring 44. In other words, the force exerted by the spring 44 multiplied by the area of the piston 43 inside the chamber 41 will determine the static pressure within the chamber 41. The force exerted by the spring 44 at its 20 solid height or the beginning of the stroke may be much higher than the force exerted by the spring 44 at end of its travel. The spring 44 may be appropriately sized to control the rate at which air 45 is expelled out of the pressure chamber 41 and thus the speed of the fluid transfer in the transfer apparatus 6. The first pressure chamber 41 is preferably configured to expel all of the air 45 out of the 25 first pressure chamber 41. Alternatively, a flow restrictor 55 in the output path 35 of the pressure chamber 41 could be used to control the rate at which air 45 is expelled out of the pressure chamber 41.

**[000119]** Referring to Figures 9 and 10, the chamber volume for the second pressure chamber 42 may be set by the manufacturer. Alternatively, the filled 30 chamber volume for the second pressure chamber 42 may be set by the user at time of use using a dose selector or volume controller 48 in the range of 0.5 to 30 milliliters. The spring-loaded piston 46 in the second pressure chamber 42 may be

of adequate size and configuration to produce 1 to 200 psi of pressure in the second pressure chamber 42. A dose selector or volume controller 48 permits the user to select a prescribed dosage to be injected by the injection device 7 by setting the filled volume of chamber 42. The dose selector 48 may be of any 5 suitable configuration. The dose selector 48 may be directly coupled to the pressure plunger assembly chamber 93 which is moveable inside the pressure chamber 42. A trigger 49 within the pressure plunger assembly 93 releases the piston 46 in the second pressure chamber 42 once the piston has reached a position corresponding to the filled volume setting. The user selects the desired 10 dosage positions in the second pressure chamber 42 by moving the dose selector 48 which positions the pressure chamber plunger assembly 93 to define a filled chamber volume equal to the desired injection dosage. Alternatively, the position of the pressure plunger assembly 93 may already be set by the manufacturer corresponding to the delivery dose and the user operates the device without 15 making a dose adjustment.

**[000120]** Referring to Figures 9 and 10, the transfer apparatus 6 for a dual vial system 4 that provides for mixing and transfer includes a vial holder 5 with a first vial 16 and second vial 15, a first variable volume pressure chamber 41, a second variable volume dose pressure chamber 42, fluid pathways 35, and check valves 20 40 to direct air from the first pressure chamber 41 into the first vial 16 and the contents 23 of the first vial 16 into the second vial 15 and the resulting mixture 14 in the second vial 15 into the second pressure chamber 42 which is then transferred into the injection device 7.

**[000121]** Referring to Figure 8, upon complete insertion of the vial holder 5 into 25 the transfer apparatus 6 and the subsequent introduction of the vial access members 21 through the septums 19 and into the vial chambers 12 by the user allows for the release of the pressure chamber trigger 50 shown in Figure 10.

**[000122]** Referring to Figures 9 and 10, release of the trigger 50 then releases the first pressure chamber spring 44 allowing the advance of the first pressure 30 chamber piston 43 in the first pressure chamber 41 causing the air 45 in the first pressure chamber 41 to be forced through the inlet tube 36 of the first vial access member 21 and into the first vial 16 through internal passage ways 35 in the

transfer apparatus 6. As more air 45 is forced out of the first pressure chamber 41 and into the first vial 16 through the inlet tube 36, the air 45 rises to the top of the first vial 16 due to its vertical orientation within the vial holder 5. The increasing air pressure in the first vial 16 causes the fluid 23 in the vial 16 to be expelled through

5 the outlet tube 37 of the first vial access member 21 and through the inlet tube 51 of the second vial access member 52. The fluid 23 from the first vial entering the second vial 15 mixes with the contents 54 of the second vial 15 containing the liquid or powdered drug and exits through the outlet tube 53 of the second vial access member 52 and into the second pressure chamber 42. In the same manner

10 within the reconstitution configuration, the advancing plunger 43 in the first pressure chamber 41 continues to push a first fluid 23 then air 45 mixture through the first vial 16 into the second vial 15. The increasing air pressure in the top of the second vial 15 causes the reconstituted mixture 14 in the bottom of the second vial 15 to be expelled out into the second pressure chamber 42. A 'popoff' or check

15 valve 40 or other type of valve may be present on the outlet tube 53 of the second vial access member 52 to encourage all of the contents 23 of the first vial 16 to enter the second vial 15 before the contents 14 of the second vial 15 are expelled out into the second pressure chamber 42. The valve would not open until the pressure corresponding to the plunger 43 pushing substantially all the air 45 out of

20 the first pressure chamber 41. This ensures that the contents 54 of the second vial 15 may be thoroughly mixed with the contents 23 of the first vial 16 before the mixture 14 exits the second vial 15 and into the second pressure chamber 42. Alternatively, a flow restrictor 55 may be used in the fluid pathway 35 to delay the transfer and increase the mixing time.

25 **[000123]** Referring to Figures 9 and 10, injectable drug 14 flows from the second vial 15 after reconstitution, into the second pressure chamber 42, filling the chamber 42 to the extent permitted by the piston 46 position as selected using the dose indicator 48 by the user or manufacturer, which corresponds to the desired dosage. When the desired volume of the second pressure chamber 42 has been

30 achieved, the second pressure chamber trigger 49 releases the spring 47 and forces the piston 46 forward, expelling the selected dosage of injectable drug 14 under pressure into the injection device 7. Calibration of the dose volume shown

on the dose selector 48 and the actual dose received by the user may be required to account for fluid loss in the internal pathways 35 of the transfer apparatus 6. The injection device 7 is now full and ready to remove from the transfer apparatus 6.

**[000124]** Referring to Figures 11 and 12, an alternative transfer apparatus 3

5 within a single vial system 1 that does not perform mixing but only transfers fluid 14 from a single vial 15 to the injection device 7 is provided. This alternative transfer apparatus 3 includes a vial holder 2 with single vial 15, a variable volume pressure chamber 56, fluid pathways 35, and check valves 40 to direct the contents 14 from the vial 15 into the injection device 7. The inlet tube 36 of the vial access member 10 21 is vented to the environment 57 to allow air 58 to enter the vial 1. The outlet tube 37 of the vial access member 21 is connected to the pressure chamber 56.

**[000125]** Referring to Figures 11 and 12, the full insertion of the vial holder 2

15 into the transfer apparatus 3 by the user causes the introduction of the vial access member 21 through the septum 19 of the vial 15 to access the contents 14 of the vial 15. This also triggers the release of the pressure chamber trigger 59. The pressure release trigger 59 releases the plunger 60 within the pressure chamber 56 connected to a withdraw spring 61. The withdraw spring 61 forces the plunger 60 to retract and withdraw fluid 14 from the vial 15 and fill the pressure chamber 56. A specified amount of fluid 14 withdrawn by the chamber 56 could be set by the 20 manufacturer by limiting the retraction of the plunger 60. Additionally, the chamber 56 can be configured to withdraw all of the fluid 14 from the vial 15 by retracting the plunger 60 to its full travel. Once the plunger 60 reaches a set position within the pressure chamber 56, it interacts with a dispense trigger 62 that releases a dispense spring 63 to force the liquid 14 out of the pressure chamber 56 into the 25 injection device 7. Check valves 40 could be employed to prevent fluid 14 from going back into the vial 15.

**[000126]** Referring to Figure 13, an alternative transfer apparatus 6 for a dual

vial system 4 that provides for mixing and transfer includes a vial holder 5 with a first vial 16 and second vial 15, a variable volume pressure chamber 56, fluid

30 pathways 35, and check valves 40 to direct the contents 23 of the first vial 16 into the second vial 15 and the resulting mixture 14 into the pressure chamber 56. This mixture 14 is then transferred back into the second vial 15 and then transferred into

the injection device 7. In this embodiment, the inlet tube 36 of the first vial access member 21 is vented to the environment 57 to allow air 58 to enter the vial 16. The outlet tube 37 of the first vial access member 21 is connected to the inlet tube 51 of the second vial access member 52. The outlet tube 53 of the second vial access member 52 is connected to the variable volume pressure chamber 56. A fluid pathway 35 includes check valves 40 that are located between the first vial access member 21, the second vial access member 52 and the injection device 7.

**[000127]** Referring to Figure 13, the full insertion of the vial holder 5 into the transfer apparatus 6 by the user causes the introduction of the vial access members 21, 52 through the septums 19 of the vials 15, 16 to access the contents 23, 54 of each vial 15, 16. This also triggers the release of the pressure chamber trigger. The pressure chamber trigger releases the plunger 60 within the pressure chamber 56 connected to a withdraw spring. The withdraw spring forces the plunger 60 to retract and withdraw fluid 23 from the first vial 16 which fills the second vial 15. This filling also results in mixing of the fluid 23 from the first vial 16 and the contents 54 of the second vial 15. The resulting mixture 14 from the second vial 15 fills the pressure chamber 56 until all of the fluid 23 is removed from the first vial 16. The rate at which the first vial 16 fills the second vial 15 can be controlled with check valves 40 or flow restrictors 55. The amount of fluid 23 withdrawn from the first vial 16 can be set in the chamber 56 by the manufacturer. Once the plunger 60 in the chamber 56 reaches a set position within the pressure chamber 56, it interacts with a dispense trigger that releases a dispense spring to force the liquid 14 out of the pressure chamber 56 back into the second vial 15. This has an advantage to allow for additional mixing of the fluid 23 from the first vial 16 and the contents 14 of the second vial 15. Once all of the fluid 14 from the chamber 56 is dispensed back to the second vial 15, the solution 14 is transferred to the injection device 7. The volume of the pressure chamber 56 could be set to be larger than the total fluid volume so that additional air 58 is drawn into chamber 56. This additional air 58 could be helpful in insuring that all of the liquid 14 is transferred into the injection device 7 that may otherwise have resided in the fluid pathways 35. Check valves 40 could be employed anywhere in the fluid pathways 35 to prevent fluid 14 from going back into the first vial 16 during transfer of the

mixture 14 from the second vial 15 to the injection device 7. Flow restrictors 55 could be employed anywhere in the fluid pathway 35 to control the amount of mixing time of within the second vial 15 before transfer of the mixture 14 to the injection device 7.

5 [000128] Referring to Figure 14, an alternative transfer apparatus 6 for a dual vial system 4 that provides for mixing and transfer includes a vial holder 5 with a first vial 16 and second vial 15, a first variable volume pressure chamber 56, a second variable volume pressure chamber 42, fluid pathways 35, and check valves 40 to direct the contents 23 of the first vial 16 into the second vial 15 and the

10 resulting mixture 14 into the pressure chamber 56. This mixture 14 is then transferred from the first pressure chamber 56 to a second pressure chamber 42 and then transferred into the injection device 7. In this embodiment, the inlet tube 36 of the first vial access member 21 is vented to the environment 57 to allow air 58 to enter the vial 16. The outlet tube 37 of the first vial access member 21 is

15 connected to the inlet tube 51 of the second vial access member 52. The outlet tube 53 of the second vial access member 52 is connected to the first variable volume pressure chamber 56. A fluid pathway 35 include a check valve 40 also exists between the first vial access member 21, the second vial access member 52 and the second pressure chamber 42 and the injection device 7.

20 [000129] Referring to Figure 14, the full insertion of the vial holder 5 into the transfer apparatus 6 by the user causes the introduction of the vial access members 21, 52 through the septums 19 of the vials 15, 16 to access the contents 23, 54 of each vial 15, 16. This also triggers the release of the pressure chamber trigger. The pressure chamber trigger releases the plunger 60 within the pressure

25 chamber 56 connected to a withdraw spring. The withdraw spring forces the plunger 60 to retract and withdraw fluid 23 from the first vial 16 which fills the second vial 15. This filling also results in mixing of the fluid 23 from the first vial 16 and the contents 54 of the second vial 15. The resulting mixture 14 from the second vial 15 fills the pressure chamber 56 until all of the fluid 23 is removed from

30 the first vial 16. The rate at which the first vial 16 fills the second vial 15 can be controlled with check valves 40 or flow restrictors 55. The amount of fluid 23 withdrawn from the first vial 16 can be set in the chamber 56 by the manufacturer.

Once the plunger 60 in the chamber 56 reaches a set position within the pressure chamber 56, it interacts with a dispense trigger that releases a dispense spring to force the liquid 14 out of the pressure chamber 56 back into the second vial 15.

Once all of the fluid 14 from the chamber 56 is dispensed back to the second vial

5 15, the solution 14 is transferred into the second pressure chamber 42, filling the chamber 42 to the extent permitted by the piston 46 position as selected using the dose indicator by the user or manufacturer, which corresponds to the desired dosage. When the desired volume of the second pressure chamber 42 has been achieved, the second pressure chamber trigger releases the second pressure  
10 chamber spring and forces the piston 46 forward, expelling the selected dosage of injectable drug 14 under pressure into the injection device 7. Check valves 40 could be employed anywhere in the fluid pathway 35 to prevent fluid 14 from going back into the first vial 16 during transfer of the mixture 14 from the second vial 15 to the second pressure chamber 42 and to the injection device 7. Flow restrictors 55  
15 could be employed anywhere in the fluid pathway 35 to control the amount of mixing time of within the second vial 15 before transfer of the mixture 14 to the second pressure chamber 42.

**[000130]** Referring to Figure 15, an alternative transfer apparatus 6 for a dual vial system 4 that provides for mixing and transfer includes a vial holder 5 with a  
20 first vial 16 and second vial 15, a variable volume pressure chamber 56, a dual lumen connector 94, inlet fluid pathway 95, outlet fluid pathway 96 and check valves 40 to direct the contents 23 of the first vial 16 into the pressure chamber 56 through the inlet line 95 during retraction of the plunger 60 within the pressure chamber 56. The advancement of the plunger 60 after full retraction within the  
25 pressure chamber 56 causes the fluid contents 23 to flow from the pressure chamber 56 into the second vial 15, mix with the contents 56 of the second vial 15 and the resulting mixture 14 flows into the injection device 7. A check valve 40 in the outlet fluid pathway 96 would prevent the contents 56 of the second vial 15 from being pulled into the pressure chamber 56 during the retraction phase. A check  
30 valve 40 in the inlet fluid pathway 95 would prevent the fluid contents 23 in the pressure chamber 56 from being transferred back to the first vial 16 during advancement of the plunger 60. A check valve in the fluid pathway 35 from the

second vial 15 and the injection device 7 prevents the mixture from being transferred back from the injection device 7 to the second vial 15. Flow restrictions 55 could be employed anywhere in the fluid pathways 35, 95, 96 to control the rate of fluid transfer. Alternatively, the use of the dual lumen connector 94 could also be 5 used for a single vial transfer system 1 in the same manner to remove and advance fluid in different fluid pathways.

**[000131]** Referring to Figure 16, the pressure chambers in the abovementioned embodiments may be configured with an outlet port 64 that is biased or off-center compared to a normal syringe to take advantage of gravity. When the pressure 10 chamber 59 is filled with liquid 14 during a transfer process, there may be some air 58 that is introduced into the chamber 59 in addition to liquid 14. During the process of expelling the liquid 14 from the pressure chamber 59, it may be advantageous to control the order of when air 58 or liquid 14 is expelled from the pressure chamber 59. For example, if the outlet port 64 of the pressure chamber 15 59 is oriented down, during the process of expelling the liquid 14 from the pressure chamber 59, all of the liquid 14 is expelled first then the remaining air 58 is expelled last since the air bubble is oriented to the top of the pressure chamber 59. Conversely, if the outlet port 64 is oriented up, during the process of expelling the liquid 14 from the pressure chamber 59, all of the air 58 is expelled first then the 20 remaining liquid 14 last. This has particular advantage when using hydrophobic or hydrophilic filters to remove unwanted air 58 from the lines during the transfer of liquid 14 to the injection device 7.

**[000132]** The transfer apparatus may employ a variety of devices or procedures to enhance mixing. For example, the transfer apparatus may inject the 25 diluent into the drug-containing vial in a swirling manner to enhance mixing and/or may employ or introduce mixture-enhancing members such as dynamic or static mixers, e.g., mixing balls, augers or propellers, oscillating injection tubes, or the like. These techniques could be employed within the second vial or one of the syringes. Additionally, the transfer apparatus may have an intermediate chamber 30 between the outlet tube of the second vial access member and the pressure chamber to allow for the abovementioned enhanced mixing techniques and procedures. The transfer apparatus also may be configured to move the injectable

vial to induce turbulence and enhance mixing, such as by spinning the injectable vial. A flow restrictor may be used in the air or drug path to increase the transfer time to allow for greater mixing.

**[000133]** Referring to Figures 16 and 17, another optional feature of the transfer apparatus 3 is a filter 65 in the injectable fluid pathway 35 for filtering the injectable 14 to remove particulate before it is introduced into the injection device 7. The filter 65 may be a membrane, depth filter or other suitable filtration media that is of sufficiently small pore size or effective pore size to remove objectionable particulate, which may include but not be limited to undissolved injectable 14 in those situations where the injectable 14 is reconstituted by the transfer apparatus 3.

**[000134]** Referring to Figures 16 and 17, withdrawing injectable from the vial 15 may require or be enhanced by the introduction of displacement air 58 into the vial 15. In another aspect of the present subject matter, the transfer apparatus 3 may include a displacement air pathway or vent 66 that communicates with the interior of the vial(s) to allow displacement air 58 to enter the vial 15 as the injectable 14 is withdrawn. As previously discussed, the vial access member 29 for piercing the vial septum 19 may have inlet 36 and outlet 37 tubes, one for injectable 14 flowing from the vial 15 and one for displacement air 58 flowing into the vial 15. The displacement air 58 flow pathway 35 in the transfer apparatus 3 may include a sterile filter 65 such as membrane or depth filter 65 having an actual or effective pore size of about 0.22 microns or smaller for filtering the displacement air 58. Such a pore size is sufficiently small to prevent introduction of pathogens into the vial 15 with the displacement air 58, reducing the risk of contamination of the injectable 14.

**[000135]** Referring to Figures 16 and 17, the transfer apparatus 3 may include an air remover 67 in communication with injectable 14 fluid pathway 35 leading from the vial 15 to the injection device 7. Such an air remover 67 may include a bubble trap, air gap or other configuration in the injectable 14 fluid pathway 35 that removes air 58 from the injectable 14 fluid pathway 35 before it is introduced into the injection device 7. This air remover 67 may be configured with a hydrophobic filter 65 or a combination of hydrophobic 68 and hydrophilic 69 filters. A

hydrophobic filter 68 would allow for the venting of air from the transfer apparatus 3 but not the passage of liquid 14. A hydrophilic filter 69 would allow the passage of liquid 14 but not the passage of particulate or air 58. The combination and position of the filter 69 in the fluid pathway 35 is preferable in removing all of the air 58

5 during the transfer process.

**[000136]** Referring to Figure 18 and 19, the transfer apparatus 6 may also have additional features as well as those described above. One such feature is an interlock 70 between the dose selector 48 and the vial docking station 29. This can be, for example, a mechanical interference member 97 that prevents the user from

10 loading vials into the docking station 29 until a dosage has been selected.

Mechanically, the dosage selector 48 may be linked to an interference member 97 at the docking station 29 which normally resides in a load-prevention position to prevents insertion of the vial holder 5 into the vial holder station 29 unless moved to a load-permitting position when the dosage member 48 is moved to a dosage

15 selected position. Of course, for administering injectable from a vial that contains a single dose of injectable or a single vial, all of which is to be injected, the transfer apparatus need not include a dose selection capability.

**[000137]** Referring to Figure 18 and 19, the transfer apparatus 6 may include an interlock 71 between the transfer apparatus 6 and the injection device 7 to prevent the injection device from being removed prior to filling and indicate when the injection device 7 is ready for removal from the transfer apparatus 6.

Mechanically, a locking pin 72 may be linked to the injection device 7 to prevent removal prior to the injection device 7 being completely filled by the transfer apparatus 6. The locking pin 72 may be part of the transfer apparatus 6 and

25 communicate with piston in the pressure chamber 42. When the pressure chamber 42 has expelled all of the injectable 14, this may mechanically trigger the locking pin 72 to move away from the injection device 7, allow for removal of the injection device 7 from the transfer apparatus 6 by the user.

**[000138]** Referring to Figure 18, the transfer apparatus 6 may include an interlock between the transfer apparatus 6 and the injection device 7 to control how the injection device 7 is removed from the transfer apparatus 6. Mechanically, a flange or other protrusion 73 on the injection device 7 may mechanically interface

with an undercut in the transfer apparatus 6. This configuration may allow for one-way rotation of the injection device 7 relative to the transfer apparatus 6 for removal by the user.

**[000139]** Referring to Figure 18 and 19, the transfer apparatus 6 may include a locking feature that prevents the injection device 7 from being activated while docked on the transfer apparatus 6. For example, a mechanical interference member such as a locking pin, arch or other means 72 could extend out of the transfer apparatus 6 and mechanically lock the injection device 7 at the actuator or button in the up position. Alternatively, the mechanical interference member 72 could be a shield that covers the entire injection device 7 to prevent access to the injection device 7 while on the transfer apparatus 6. The arch or shield 72 may be part of the transfer apparatus 6 and communicate with the pressure chamber 42. When the pressure chamber 42 has expelled all of the injectable 14 into the injection device 7, this may mechanically trigger the arch or shield 72 to unlock and move away from the injection device 7. This allows access to the injection device 7 and removal from the transfer apparatus 6 by the user.

**[000140]** Another optional feature on the transfer apparatus is a quick release filling port or access member feature between the transfer apparatus and the injection device to allow for the quick release of the injection device from the transfer apparatus and to prevent the injection device from being reattached to the transfer apparatus. After the injection device is filled and ready to remove from the transfer apparatus, the user may remove the injection device. The filling tube or access member 83 of the transfer apparatus may be spring loaded such that when the injection device is removed from the transfer apparatus, the filling tube 83 springs down into the transfer apparatus. This allows for quick release of the tube 83 from the filling port 81 of the injection device preventing inadvertent leaking of the injection device at the filling port 81. This also makes the filling tube 83 inaccessible to the user, thus preventing reattachment of the injection device onto the transfer apparatus.

**[000141]** Referring to Figure 18, the injection device 7 and transfer apparatus 6 are preferably configured for removable attachment of the injection device 7. In the current embodiment, after transfer of the injectable fluid 14 from the second

pressure chamber 42 within the transfer apparatus 6 into the injection device 7 and release of the interlock 71 on the transfer apparatus 6, the injection device 7 is ready to be separated from injection device docking station 30 of the transfer apparatus 6 for application to the skin of a subject. As previously mentioned, 5 alternative embodiments described herein include the transfer of the injectable fluid from a single pressure chamber directly to the injection device.

**[000142]** Referring to Figure 20, the injection device 7 may be of any suitable configuration. As explained earlier, the injection device may advantageously employ one or more of the features of the injection devices described in U.S. patent 10 application serial no. 61/326,492 filed April 21, 2010; U.S. patent application serial no. 13/637,756, filed September 27, 2012; and U.S. patent application no. 61/704,922, filed September 24, 2012, which are all hereby incorporated by reference herein.

**[000143]** Referring to Figures 20-22, the injection device 7 has a generally low-profile, disc shaped outer housing 74 with an upper surface 75 and a lower surface 76, through which an injection needle or cannula protrudes when actuated by the user. The upper surface 75 has an actuator or button 77 to start the injection and a clear section 80 of the housing 74 that allows the subject or medical professional to view the expandable member 78 to ascertain the amount of injectable fluid 79 in 15 the device 7. For example, the user could determine whether the injection has commenced or concluded. More preferably, the expandable member 78 and/or the clear section 80 of the housing 74 may be graduated, such as by line markings 127 or the like, so that the patient or medical professional can visually determine the amount of injectable fluid 79 remaining with greater precision – such as, for 20 example, about 50% complete or about 75% complete. In addition, the expandable member 78 may itself include or interact with a feature on the outer housing 74 to show the amount of injectable fluid 79 remaining. For example, when the injection device 7 is full of drug 79, the clear section 80 may show one color such as but not limited to green. When the injection device 7 is empty of drug 79, the clear section 25 80 may show a different color such as but not limited to red. In the middle of dispense, the clear section 80 could show a combination of colors.

**[000144]** Referring to Figures 23-25, the undersurface 76 of the injection device 7 includes a filling port 81 and a dispense port 82. The filling port 81 is the interface that allows the transfer apparatus filling tube 83 to transfer liquid 79 to the injection device 7. The dispense port 82 also contains an internal pathway 84

5 between the expelled injectable 79 from the expandable member 78 and the needle 85. The filling port 81 and dispense port 79 may be in direct fluid communication through internal pathways 86, or they may be combined into a single port.

**[000145]** Referring to Figures 23-25, the injection device may preferably include a filling port 81 that includes a check valve 87 to prevent pressurized

10 injectable 79 from leaking out of the injection device 7 when the injection device 7 is removed from the transfer apparatus 6 and the filling port 81 is removed from the filling tube 83.

**[000146]** Referring to Figures 23-25, the injection device 7 may also have a filling port 81 that is configured to accept the insertion of a syringe. This syringe

15 may be configured with a luer fitting or a needle. This filling port 81 configuration allows for the manual filling of the injection device by the user. The transfer apparatus 6 may still be used but would not be required in this configuration.

**[000147]** Referring to Figures 23-25, the injection device 7 may also have a dispense port 82 that is configured to directly connect to an intravenous cannula via

20 attached tubing or a standard needle port.

**[000148]** Referring to Figures 23-25, the undersurface 76 of the injection device 7 carries an adhesive 88 for securing the injection device 7 temporarily to the skin of a subject until the injection is complete. During removal of the injection device 7, an adhesive tape liner 89 may be removed automatically exposing an adhesive

25 surface 88 on the undersurface 76 of the injection device 7 that may be used to adhere the injection device 7 to the patient's skin. Alternatively, the tape liner 89 may have a tab 90 that the user pulls to manually remove before adhering the injection device 7 to the skin. Alternatively this tab may be attached to the surface of the transfer device 4 so that the tape liner is automatically removed upon

30 removal of the injection device 7.

**[000149]** Referring to Figures 23-25, the injection device 7 may have an adhesive tape flange 91 that extends beyond the undersurface base 76. This

flange 91 of adhesive tape 88 can act as a strain relief between the injection device 7 and skin surface, reducing the risk of accidentally dislodging the injection device 7 from the skin. In other words, similar to a tapered strain relief on a wire where it enters into a connector, the extended adhesive flange 91 acts to distribute the load

5 on both sides of the connection point between the adhesive tape 88 and the undersurface base 76 of the injection device 7 to reduce any stress risers at the adhesive tape 88 and skin interface.

**[000150]** Referring to Figures 23-25, the injection device 7 may be configured with a tapered underside surface 98 that presses on the adhesive flange 91 to

10 securely attach the adhesive tape 88 to the skin as the user is securing the injection device 7 to the skin without additional user intervention. By using the compliance of a person's skin when pressing the injection device 7 against the skin, the tapered underside surface 98 of the injection device 7 effectively presses the flange 91 of the adhesive tape 88 against the skin but the upper exposed surface of

15 the flange 91 portion does not have exposed adhesive and therefore is not attached to that portion of the tapered underside surface 98. The user is not required to run their finger around the flange 91 to secure the injection device 7 to the skin making it a much simpler method of adhesive tape 88 attachment.

**[000151]** Referring to Figures 23-25, the injection device 7 may have an

20 underside surface 76 that is flexible or compliant in lieu of being rigid to allow for improved attachment by conforming of the injection device 7 to the skin during application.

**[000152]** Referring to Figures 26-28, after the injection device 7 is placed against or adhered to the skin 99, a safety mechanism or lock-out mechanism may

25 be automatically released and the injection device 7 is ready to fire (inject). In other words, the injection device 7 is prevented from being actuated (it is locked out) until it is placed against the skin. Alternatively, the user may manually remove a safety 100 such as a safety pin, safety sleeve, or collar to release the injection device to be ready to fire (inject). The injection device 7 preferably cannot be fired until the

30 safety mechanism 100 is released. The safety mechanism 100 may be passive or active and manually triggered by the user or automatically triggered by the injection device 7.

**[000153]** Referring to Figures 26-28, the injection device 7 may use an actuator or button 77 and a visual indicator 101 in combination to define the state of the injection device 7 after it has been removed from the transfer apparatus. For example, when the button 77 is in the up position and the indicator 101 has one color such as but not limited to green, this may indicate that the injection device 7 is ready to start the injection. Additionally, the button 77 may have a side wall 102 that is a different color from its top 103. When the button 77 is depressed, the user cannot see the sidewall 102 of the button 77; this may indicate that the injection device 7 is in use. The injection device 7 may alert the user when the injection of the drug is completed. This alert could be in the form of visual indicators, audible sounds, mechanical movements or a combination. The button 77 is ideally designed to give the user audible, visual and tactile feedback when the button 77 'pops up' into the locked-out position. The injection device 7 may indicate to the user that it has completed dispensing and the full dose has been delivered to the patient with the button 77 in the up position and indicator window 101 showing the injection device is empty. For example, when the button 77 is in the up position and indicator 101 shows a different color such as but not limited to red, this may indicate that the injection device 7 has completed the injection.

**[000154]** Referring to Figures 29-31, the injection device 7 may have an actuator or button 77 that the user depresses on the injection device 7 to start the injection. The button 77 may be configured to be an on/off switch, i.e., to only have two states, open and closed such as a light switch. This may prevent the user from pushing the button 77 half way and not actuating the injection device 7. Once activated, this 'light switch' type button 77 would insert the needle 85 rapidly into the skin 99, independent of the user manipulation of the button 77. Alternatively, the button 77 could have a continuous motion, allowing the user to slowly insert the needle 85 into skin 99. The button 77 may preferably be directly coupled to the needle 85 by using adhesive 104 creating a button 77 and needle 85.

**[000155]** Referring to Figures 29-31, the injection device 7 may have a needle 85 travel into the skin 99, upon actuation of the button 77 that initially goes to a first position or depth as shown in Figure 30 and retracts slightly to a second position of depth preferably automatically as shown in Figure 31. The first depth shown in

Figure 30 is achieved from over travel of the button 77 during actuation. The first depth may be controlled by features 105 in the button 77 in direct contact with the base 106 of the injection device 7. The final depth of the needle 85 is suitable for subcutaneous injections. Alternatively, the final depth of the needle 85 may be 5 reduced for intradermal injections. Alternatively, the final depth of the needle 85 may be increased for intramuscular injections. Upon reaching the first depth, the needle 85 retracts back to a second depth as shown in Figure 31. The retraction distance of the needle to the second depth is in the range of 0.1-2mm. This retraction feature is preferable to prevent the needle 85 from being blocked by 10 tissue during the initial insertion process. This tissue blockage could require a very high pressure to overcome and prevent the injection device 7 from delivering the drug. The retraction of the needle 85 from the first position to a second position creates an open pocket ahead of the needle tip 107 allowing reduced pressure for initiation of flow of drug from the needle 85. This reduced pressure for initiation of 15 the flow of drug from the needle is preferable for the injection device 7 to maintain a relatively constant pressure during injection.

**[000156]** Referring to Figures 29-31, the injection device 7 may include a needle 85 with a side hole 108. As shown in Figure 31, once the button 77 on the injection device 7 is fully depressed, the needle 85 will be fully inserted into the skin 20 99 through the dispense port 82 and the injection device 7 will begin dispensing of the injectable. Until the button 77 is fully depressed, the side-hole 108 and therefore the internal lumen of the needle 85 is not in communication with the fluid channel 86 of the dispense port 82. Both the side-hole 108 and needle-tip 107 are retained within a septum 109. With the side-hole 108 and needle-tip 107 being 25 retained within the septum 109, the entire drug path is kept sterile until the time of use. When the button 77 is fully depressed and the needle 85 is in the dispense position, a side hole 108 in the needle 85 is in communication with the fluid channel 86 of the dispense port 82 and the injection of the liquid begins.

**[000157]** Referring to Figures 29-31, the septum 109 provides the advantage of 30 sealing the needle tip 107 as well as the side hole 108 from the injectable before and after dispense. Sealing the needle tip 107 and the side hole 108 of the needle 85 at the end of the injection has a particular advantage to prevent dripping of

injectable from the injection device 7 after end of dispense and/or after it is removed from the skin surface. It also prevents contaminates from entering the hollow needle prior to being actuated into the skin. The septum 109 may be made of any suitable material to allow for sealing once the needle 85 has punctured it.

5 The material composition of septum 109 may preferably be silicone. Alternatively, the material composition of the septum may also be a blend of different materials including but not limited to bromobutyl, chlorobutyl, isoprene, polyisoprene, SBR, polybutadiene, EPDM, natural rubber and silicone. Alternatively, the fluid pathway 86 including the dispense port 82 could be a rigid plastic with a silicone injected  
10 overmold to produce the septum previously described.

**[000158]** Referring to Figures 29-31, the septum 109 at the dispense port 82 could protrude slightly from the underneath surface into the skin surface 99 of the injection device 7 to provide for pressure on the skin surface 99 at the injection site. This pressure on the skin surface 99 by the dispense port 82 after the needle is  
15 retracted could eliminate injectable from coming out of the injection site commonly referred to as blowback.

**[000159]** Referring to Figures 29-31, the injection device 7 may include a set of spring tabs 110 that interface with the button 77 to perform locking functions. A spring tab 110 is biased to lock into an undercut 111 in the button 77 to keep the  
20 button 77 in a first up position or pre-fire position as shown in Figure 29. The geometry of the undercut 111 and spring tab 110 help to produce the light switch actuation force described previously. This light switch actuation is accomplished by the translation of the button 77 relative to the spring tab 110 and the geometry of the mating undercut 111 surfaces.

25 **[000160]** Referring to Figures 29-31, the injection device 7 may include a spring tab 112 that interact with the button 77 in the injection device 7 to perform locking functions such that when the button 77 is actuated to the first depth and retracts slightly back to the second depth or dispense position, undercut features 113 in the button 77 allow a spring tab 112 to hold the button 77 in the dispense position until  
30 the injection device 7 has completed dispensing.

**[000161]** Referring to Figures 32-33, the injection device 7 may include an end of delivery indication or empty indicator 114 to sense when all of the fluid 79 has

been expelled from the expandable member 78 and the injection device 7 has completed dispensing. The empty indicator 114 may be configured with a slot or other opening 115 to slide over the expandable member 78 at the exit port when the expandable member 78 is in a deflated state after all of the fluid has been

5       expelled. There may be two states of the empty indicator. As shown in Figure 32, the empty indicator may be in a first position or deflected-out state when the expandable member 78 is full with fluid 79 at that section and is not contained within the slot or opening 115. This first position would translate to a non-empty state of the expandable member 78 when the diameter of the expandable member

10      78 is larger than its minimum due to residual fluid 79 contained within. As shown in Figure 33, the empty indicator 114 may be in a second position or deflected-in state when the expandable member 78 is partially or fully contained within the slot or opening 115. This second position would translate to an empty state of the expandable member 78 when the diameter is at a minimum.

15      **[000162]**     Referring to Figures 32-33, the injection device 7 may include an automatic needle retraction mechanism at the end of dispense. This mechanism includes a direct coupling between a spring tab 112, button undercut feature 113 and the empty indicator 114, all previously mentioned. When the expandable member 78 is filled with injectable 79 and the button 77 is depressed from a first

20      20 pre-fire position to a second dispense position as shown in Figure 33, undercut features 113 in the button 77 allow a spring tab 112 to hold the button 77 in the dispense position until the injection device 7 has completed dispensing. This spring tab 112 may also be directly coupled to the empty indicator 114 which is naturally in the first position or deflected-out state. The motion of depressing the

25      25 button 77 to a second position or dispense position allows a post feature 116 in the button 77 to provide a bias or pre-tension on the spring tab 112 to urge the empty indicator 114 to its second position or deflected-in state. However, since the expandable member 78 is initially full with injectable 79 at a large diameter, the empty indicator 114 cannot move to the second position or deflected-in state as

30      30 shown in Figure 32. After the button 77 is depressed, the fluid 79 starts to expel out of the expandable member 78 through the needle as previously mentioned. Once the expandable member 78 has expelled all of the fluid 79 and is at a

minimum diameter, the empty indicator 114 (under pretension from the spring tab 112) will move to the second position or deflected-in state as shown in Figure 33. The spring tab 112 directly coupled to the empty indicator 114 also moves with the empty indicator 114. This movement releases the spring tab 112 from the undercut 5 feature 113 in the button 77 to allow the button 77 (and needle) to move up to a final position or post fire position after the dispense is completed as shown in Figure 34.

**[000163]** Referring to Figure 34, lock out spring tabs 117 may also interact with the button 77 in the injection device 7 to perform locking functions such that when 10 the injection is complete the button 77 is released, and the button 77 is urged up by the return spring 118 to a final up position or post-fire position. The button height 77 relative to the top of the injection device 7 in the final up position or post-fire position (shown in Figure 34) may be higher than the pre-firing position (shown in Figure 29). The end of the lock out spring tabs 117 move out to the outer diameter 15 surface 119 of the button 77 within the outer housing 74 to lock the button 77 in the up position or post-fire position and prevent the button 77 from being actuated again.

**[000164]** Referring to Figure 34, the injection device 7 may include a return spring 118 that interacts with the button 77 to provide a bias to the button 77 into a 20 first up position or pre-fire position. When the button is actuated down to a second depth or dispense position, the return spring 118 is compressed causing more of a bias or preload. At the end of the dispense period, the button 77 is unlocked from the second depth or dispense position (shown in Figure 31) to move up to a final position or post fire position after the dispense is completed as previously 25 mentioned. It is the bias of the return spring 118 that forces the button 77 up to a final position or post-fire position.

**[000165]** Referring to Figure 34-35, upon removal of the injection device 7 from the skin 99, the injection device 7 will preferably be locked out, preventing non-destructive access to the needle or reuse of the injection device 7. The injection 30 device 7 may indicate to the user that the full dose has been delivered. This indication could be in the form of a visual indicator, audible sound, mechanical movement or a combination.

**[000166]** Referring to Figure 35, upon removal of the injection device 7 from the skin 35, a bandage 120 may release from the injection device 7 and remain on the skin surface 35. This can be affected by using an adhesive on the bandage portion that more strongly attaches the bandage to the skin than the adhesive that attaches 5 the bandage to the injection device 7. Thus when the housing is lifted from the skin, the bandage 120 remains in place over the injection site as described in U.S. patent no. 7,637,891 and U.S. patent application no. 12/630996, filed December 4, 2009 incorporated by reference herein.

**[000167]** Referring to Figures 36-39, the injection device 7 may preferably 10 include a manifold 121 that assembles to both the expandable member 78 and the filling port 81 and dispensing ports 82, and provides direct fluid communication between the expandable member 78 and the filling 81 and dispensing 82 ports of the injection device 7. The manifold 121 may be configured on the end that assembles to the expandable member 78 to be large in diameter to facilitate filling 15 and expelling all of the fluid 79 out of the expandable member 78 as previously discussed. The manifold 121 may preferably include internal passageways 122 to allow for fluid flow in and out of the expandable member 78. The manifold 121 may be configured with a filter 123 in the injectable fluid pathway 122 for filtering the injectable 79 to remove particulate before and after it is introduced into the 20 expandable member 78. The filter 123 may be a membrane, depth filter or other suitable filtration media that is of sufficiently small pore size or effective pore size to remove objectionable particulate, which may include but not be limited to undissolved injectable 79 in those situations where the injectable 79 is reconstituted by the transfer apparatus. The manifold 121 may also be configured 25 with a filter 123 for the removal of air. Such an air remover filter 123 may include a bubble trap, air gap or other configuration in the injectable fluid pathway 122 that removes air from the injectable fluid pathway 122 before it is introduced into the expandable member 78. This air remover filter 123 may be configured with a hydrophobic filter or a combination of hydrophobic and hydrophilic filters. A 30 hydrophobic filter would allow for the venting of air from the transfer apparatus but not the passage of liquid. A hydrophilic filter would allow the passage of liquid but not the passage of particulate or air. The air remover filter 123 may also have

check valves to allow for venting of trapped air. Alternately, the air remover and filters 123 may be located at any point in the fluid pathway from the filling port 81 to the needle 85. For example, the most downstream point in the fluid pathway is the distal end 128 of the expandable member 78. An internal mandrel 124 may be

5 connected to distal end 128 of the expandable member 78. An air remover or filter 123 may be integrated into this downstream point to allow for venting of trapped air during filling of the injection device 7. Furthermore, the mandrel 124 could include a slot along its length that is in communication with the downstream filter 123 to aid in the venting of air during the filling process.

10 [000168] Referring to Figures 36-39, the injection device 7 may include a resilient expandable member 78 such as an elastomeric balloon or bladder. The material composition of expandable member 78 may preferably be silicone. Alternatively, the material composition of the expandable member 78 may also be a blend of different materials including but not limited to bromobutyl, chlorobutyl,

15 isoprene, polyisoprene, SBR, polybutadiene, EPDM, natural rubber and silicone. In addition, the expandable member 78 may be coated to improve their surface properties. Coatings may include parylene, silicone, Teflon and fluorine gas treatments. Alternatively, the expandable member 78 may be made from a thermoplastic elastomer.

20 [000169] Referring to Figures 36-39, the injection device 7 may include a resilient expandable member 78 which the injectable 79 is transferred under pressure. This causes the expandable member 78 to enlarge and the resilience of the expandable member 78 creates a pressure which tends to expel the injectable 79. The pressure chamber of the transfer apparatus described previously (or such

25 other pump or pressurizing means as may be employed in the transfer apparatus) transfers the injectable 79 to the injection device 7 under pressure. Introducing the injectable 79 into the expandable member 78 under pressure causes it to stretch and expand both in diameter and length. An example of this would be blowing up a long, skinny balloon. The volume range of the injection device 7 may be 0.5 to 30

30 milliliter. When expanded, the resilient expandable member 78 exerts an expulsion pressure in the range of 1 to 200 psi on the injectable 79 contained in the expandable member 78 so that the injection device 7 is ready to administer the

injectable 79 automatically when triggered by the user by depression of the button as previously described. Thus, the transfer apparatus as previously described operates not only to transfer a measured amount of injectable 79 (and if necessary mix, dilute and filter it) to the injection device 7, but also simultaneously charges or 5 provides the motive pressure to the injection device 7 (by expanding the resilient expandable member 78) so that the injection device 7 is ready to automatically dispense the injectable 79 under the pressure exerted by the resilient expandable member 78 when actuated by the user.

**[000170]** This aspect of the transfer apparatus (simultaneous transferring and 10 charging) is particularly beneficial. While the above applications show the injection device 7 in a pre-filled or charged condition for injection of the drug 79 when the injection device 7 is actuated, the present disclosure contemplates that the injection device 7 can remain empty and the expandable member 78 in a more relaxed and un-filled condition, i.e., in a non-charged or non-filled condition, until administration 15 of the injectable 79 is required. Only then is the injectable 79 mixed or processed as necessary and introduced into the injection device 7, expanding the expandable member 78 to a filled (charged) condition. In the present disclosure, the drug is stored in its original container closure (vial) until the time of use. Because the injectable 79 will typically be injected within seconds to hours after transfer from the 20 vial into injection device 7, shelf life and material compatibility of the drug with the materials in the fluid pathway within the injection device 7 are not significant issues. The challenges and expense of designing an injection device 7 and selecting materials for an extended shelf life of pre-filled injection device 7 are significantly reduced.

**25 [000171]** Referring to Figures 36-39, the present subject matter may use features of the injection device 7 described in the patent applications incorporated by reference herein as previously described. However, the expandable member 78 employed in the injection device 7 here may also preferably take the form of an elongated balloon or bladder arranged, for example, in a planar helical or spiral 30 configuration as illustrated. As previously mentioned, the injection device 7 includes a circular shaped outer housing 74 that has a spiral slot or recess 125 formed therein. The elongated balloon or bladder 78 rests in the slot 125, with one

end for communicating directly or indirectly with an injection needle 85 through fluid pathways 122 and the other end for communicating directly or indirectly with a dispense indicator 101. The elongated spiral configuration allows the balloon or bladder 78 to have substantial volume for such quantity of injectable 79 as may be 5 desired, while also contributing to the low profile configuration of the injection device 7. In other words, by utilizing a relatively long expandable member 78 with a large length to diameter ratio, very high pressures and volumes can be achieved with a minimum of forces required. Additionally the volume of the expandable member 78 can be changed by changing the filling length, without significantly altering the 10 pressure/volume curves of the expandable member 78.

**[000172]** Referring to Figures 36-39, one of the other aspects described in U.S. patent application no. 61/704922, filed September 24, 2012, that may be employed in the present subject matter is the use of an insert or plug or mandrel 124 within the expandable member 78 to pre-stress the expandable member 78 to a slightly 15 expanded position when unfilled, so that when the expandable member 78 expels the injectable 79, it will contract or collapse to a condition where it is still stretched or stressed and continues to exert pressure on any fluid there within as shown in Figures 38 and 39. This better assures that all or substantially all of the injectable 79 is fully expelled from the injection device 7. The mandrel or shaft 124 could be a 20 fluid filled expandable member if desired. This would allow for a variable size mandrel 124. Alternatively, the expandable member 78 could have a sufficiently small internal volume (small diameter) when unstressed so that virtually all the injectable 79 is expelled without the need for an internal mandrel or shaft 124. Additionally, the expandable member 78 could be flattened/stretched by 'wrapping' 25 it around a surface within the injection device such as a cylindrical wall 134. The pre-stress created in the expandable member 78 would act to eliminate any residual fluid volume remaining within.

**[000173]** There are a number of different ways to cause an expandable member 78 to expand and/or contract in an arcuate manner as previously 30 described. Referring back to Figure 34, one way is to design the expandable member 78 with a thicker wall cross section 126 in one area around the circumference of the expandable member 78 that would cause the expandable

member 78 to expand in a circular fashion. Alternatively, a separate element 126 could be affixed along the length of the expandable member 78 to effectively stiffen the expandable member 78 in that portion of the circumference that would cause the expandable member 78 to expand in an arcuate manner. Referring back to

5 Figure 36, another way is to use internal features such as slots or recesses 125 in the housing 74 of the injection device 7 to guide the expandable member 78 around a circular or spiral path. These features 125 could interact with the expandable member 78 in a number of ways, the simplest being the outer shape of the expandable member is constrained by a slot 125 in the housing 74 of the injection 10 device 7. Friction between the expandable member 78 and the inner surfaces 125 of the housing 74 could be reduced by lubricating the outside surface of the expandable member 78, or by inserting the expandable member 78 within a low spring rate spring that would limit both the friction and outer diameter of the expandable member 78 while not constraining the length.

15 **[000174]** Referring to Figures 36-39, the elongated expandable member 78 may be preferably configured to expand along an arc with a predetermined tube diameter without the aid of walls or a guide within the injection device. Referring back to Figure 34, looking at a cross-section of the elongated expandable member 78, a thicker wall area 126 in a small portion of the circumference of the 20 expandable member 78 may be added to cause the elongated expandable member 78 to expand in an arc as previously described. The arcuate expandable member 78 grows in length due to increase in pressure and volume there within; the thicker section 126 deflects less than the thinner section.

**[000175]** Referring to Figure 36, the arcuate expandable member 78 will 25 expand in length in an arc shape as to orient its heavy wall thickness zone 126 or less deflecting zone to the inside of the circle. Increasing the wall thickness 126 of the expandable member 78 within the small zone 126 around the circumference will effectively continue to decrease the radius of the arc of the expandable member 78. The increase in wall thickness 126 may be achieved by molding or extruding it into 30 the arcuate expandable member 78 or by bonding a strip of material to one side 126 of the expandable member to cause that portion of the wall 126 to lengthen at

a slower rate, thereby causing the expandable member 78 to expand in an arc shape as previously discussed.

**[000176]** Referring to Figure 37, the distal end of the expandable member 78 could be affixed an element such as an indicator 101, which is constrained to follow 5 guide path within the inner surfaces 125 of the housing 74. Alternately, the expandable member 78 could be pre-stretched and flattened around a circular diameter inside the injection device 7 such as wall 134 so that there would be no change in expandable member length. Alternatively, a straight or curved mandrel 124 whose length is more than the unstressed expandable member could be used 10 to stretch the expandable member into a circular shape within the injection device 7 prior to filling. Alternatively, the mandrel 124 could be used as a visual indicator to show the state of the injection device 7 and the progress of the injection. The mandrel 124 could be colored to allow it to be easily viewed through the housing.

**[000177]** Referring to Figures 36-39, the injectable 79 is injected into the 15 expandable member 78 by the transfer apparatus and the expandable member 78 is expanded to a certain outer diameter controlled by the configuration of the inner surfaces 125 of the housing 74. In this way, the entire length of the expandable member 78 can be filled with a known volume of drug, and the outer diameter is known at each lengthwise location along the expandable member 78. It is 20 desirable to have the expandable member 78 fill and empty along its length in a controlled way, from one end to the other to encourage the expandable member 78 to completely empty, and to allow the easy and accurate measurement of fluid 79 in the expandable member. To visually aid in determining how much fluid 79 is in the expandable member 78, graduated markings could be printed on the expandable 25 member 78, like a syringe, to indicate the volume remaining in the expandable member 78. As previously described and referring to Figures 21-22, the expandable member 78 and housing 74 could be clear to allow the user to see the drug 74 and the volume remaining in the injection device 7. Alternatively, graduated markings 127 could be printed on the housing 74 to indicate the volume 30 remaining in the expandable member 78.

**[000178]** Referring to Figures 36-39, in accordance with an aspect of this subject matter mentioned above, the injectable 79 is preferably expelled

progressively from the distal end 128 of the elongated expandable member 78 toward the proximal end 129. The proximal end 129 of the expandable member is closest to the dispensing needle 82 or cannula. This allows the user to visually ascertain or approximate the injection status visually alone or with the aid of

5 graduation markings 127 on the injection housing 74, the window 80 or the expandable member 78. Progressive expulsion may be achieved in a variety of ways. For example, the injectable 79 exits the expandable member 78 at the manifold 121 at the proximal exit port section 130 and is preferably located at the proximal end 129 of the elongated expandable member (e.g., balloon or bladder).

10 The thickness of the wall of the expandable member 78 may be varied, uniformly or stepwise increased, along its length from the distal end 128 toward the proximal end 129. Due to restraint by the walls of the spiral channel 125 in which the expandable member 78 resides, the expandable member 78 would be inflated with injectable 79 to a substantially uniform diameter along its length. However, the

15 thicker wall at the distal end 128 of the expandable member 78 would exert greater contraction force on the injectable 79 than the thinner wall at the proximal end 129 and thus collapse or contract in diameter first during expulsion of the injectable 79. The expandable member 78 would then collapse progressively from the distal end 128 toward the proximal end 129 as the wall of the expandable member 78

20 becomes thinner along its length in that direction. Because the thickness of the expandable member 78 preferably substantially uniformly increases from the proximal end 129 toward the distal or closed end 128, the contractive force of the expandable member 78 wall when expanded will increase substantially uniformly along the length of the elongated expandable member 78 from the proximal port

25 end 129 to the distal or closed end 128. Thus, when the injectable 79 is expelled into the subject, the expandable member 78 will progressively collapse in diameter as well as shrink in length, which collapse in diameter and shrinkage in length is preferably viewable by the user as described above. The distal end 128 of the elongated expandable member may allow for the connection of a movable indicator

30 component 101 in the injection device 7 which will follow the shrinkage in length of the elongated expandable member 78. This indicator 101 is preferably viewable by the user through the outer housing 74 and indicates the state of the injection device

7 and the progress of the injection. Alternatively, the expandable member 78 is configured with a constant wall thickness and could be prestressed in manufacturing to bias it to fill from the proximal end 129 to the distal end 128 and collapse or empty from the distal end 128 to the proximal end 129 in a progressive 5 manner as previously discussed.

**[000179]** Referring to Figures 36-39, the elongated expandable member 78 of the injection device 7 may be configured to have a section 130 of the expandable member 7 adjacent to the proximal exit port end 130 that fills first and collapses last during filling and expulsion of the injectable 79 from the injection device 7. In other 10 words, during filling of the injection device 7 by the transfer apparatus, it is advantageous to have the most proximal exit port section 130 of the expandable member 79 to fill with injectable first. Additionally, during dispense of the injectable 79 from the injection device 7, it is advantageous to have the last remaining volume of injectable 79 to be contained within the most proximal exit port section 130 the 15 expandable member 79. There are several advantages to the abovementioned configuration. The proximal end section 130 of the expandable member 78 could have a thin wall that would cause it to remain inflated under a lower pressure than the rest of the expandable member 78. This would assure that the section 130 of the expandable member 78 would remain inflated until all injectable 79 had been 20 expelled from the rest of the expandable member 78. As previously discussed, this section 130 may be directly coupled to an empty indicator to provide for full or empty indication. Additionally, as previously mentioned, this section 130 could be mechanically coupled to the empty indicator to allow for the automatic withdrawal of the button 77 and needle 82 upon complete expulsion of the injectable 79.

**25 [000180]** Referring to Figures 36-39, alternatively or in addition to varying the wall thickness 126 of the expandable member 78, an elongated internal mandrel or shaft 124 within the expandable member 78 may progressively (linearly or stepwise) decrease in cross-sectional size along the length of the expandable member 78 from proximal end (the exit port end) 129 toward the distal end (closed 30 end) 128 of the expandable member 78. Additionally, the manifold 121 which allows for attachment of the expandable member 78 to the injection device 7 may also be configured with a large diameter section 130 at the proximal end 129 of the

expandable member 78. A large diameter section 130 of the mandrel 124 or manifold 121 at the proximal end exit port 129 of the expandable member 78 insures that the expandable member 78 will fill with injectable 79 in this area 129 first. In other words, the expandable member 78 is being held at nearly a fill

5 diameter at the proximal end exit port 129 by the large diameter section 130 of the mandrel 120 or manifold 121. As fluid 79 first starts to fill the expandable member 78, it reaches a fill diameter first in the large diameter section 130 then fills progressively along the length of the expandable member 78 from the proximal end 129 to the distal end 128 as previously discussed.

10 **[000181]** Referring to Figures 36-39, as previously discussed, during dispense of injectable 79 from the expandable member 78, the diameter of the expandable member 78 at its distal end continuously collapses in a progressive fashion (similar to deflating a long skinny balloon) from its distal 128 to proximal end 129 until all of the fluid is expelled from the expandable member 78. A large diameter section 130 of the mandrel 124 or manifold 121 at the proximal end exit port 129 of the expandable member 78 provides the same benefit (as previously described for filling) during dispense of the injectable 79. This large diameter section 130 insures that the last remaining fluid 79 in the expandable member 78 will be contained and dispensed from this area 130. As previously discussed, this section 130 may be

15 directly coupled to an empty indicator to provide for full or empty indication as well as for the automatic withdrawal of the button 77 and needle 82 upon complete expulsion of the injectable 79.

20

#### Operation and Method

**[000182]** Referring to Figures 40-42, the sterile injection device 7 is attached to the transfer apparatus 3 within a covered tray 132 and a separately packaged vial holder 2 with filled vial(s) is provided in a carton 131. The user places the carton 131 on a clean, flat surface. The user opens the lid 133 to the carton 131 to expose the transfer apparatus 3 and vial holder assembly 2. The user removes the cover 132 from the transfer apparatus tray 3 to expose the transfer apparatus 3 and injection device 7. The user is instructed to leave the transfer apparatus 3 in the carton 131 and only remove the injection device 7 when prompted.

**[000183]** Referring to Figure 43-44, at the time of use, the user will remove the vial holder assembly 2 from the carton 131. The user will then remove the vial cap from the vial using the attached cap remover. The user will insert the vial holder 2 into the transfer apparatus 3. The user will push the vial holder 2 with attached vial 16 into the transfer apparatus 3 to actuate the system 1. This will do three things in the illustrated embodiment. First it will lock the vial holder 2 with attached vial 16 into a down position within the transfer apparatus 3. Then it will automatically initiate fluid communication between the contents 23 of the vial 16 and the transfer apparatus 3 by introducing an access member through the septum of the vial.

5 Third it will initiate the mixing (if needed) and transfer sequence of the transfer apparatus 3. This sequence of events will occur automatically and require no additional input by the user to proceed.

10

**[000184]** Referring to Figures 45-47, in a dual vial system 4 where mixing is required; the user may have the ability to adjust the delivery dose. A dose selector 48 is moved from an initial position shown in Figure 46 to a final delivery volume position in Figure 47. At this point, the vial holder 5 is free to depress by the user allow for the mixing and transfer to initiate. First, the diluent fluid is transferred from the diluent vial and introduced into the powdered lyophilized injectable vial. The fluid will be introduced into the powdered vial in such a way so that when the fluid is transferred from the vial, all the powder is removed as well. Mixing of the diluent and powder may occur completely in the powdered vial, or may be completed in the transfer apparatus. Static or dynamic mixing elements may be incorporated into the transfer apparatus or introduced into the powder vial by the transfer apparatus to allow for adequate mixing of the powered drug or other injectable and diluent.

15

20

25

30

**[000185]** Referring to Figures 45-47, in a dual vial system 5, the reconstituted solution is mixed in the powdered vial or transfer apparatus 6, a set volume of

solution prescribed by the manufacturer or set by the user is automatically transferred into the pressure dose chamber. This set volume is then automatically transferred to the injection device 7. The tubes, conduits valves and any other volume of the fluid path between the vials and transfer apparatus 6 will be

5 minimized to encourage transfer of the maximum percentage of the drug to the injection device 7.

**[000186]** Referring to Figures 48-50, once the required dose volume has been delivered to the injection device 7, there is a clear area or other indicator 80, 101 in the injection device 7 to allow the user to view the mixed solution to verify complete

10 mixing. Ideally, the user could view the entire drug volume within the injection device 7. There could also be an indicator 101, such a relative fill gage, to show that the correct dose had been delivered to the injection device 7. Completion of the mixing and transfer to the injection device 7 would then 'unlock' the injection device 7 and allow it to be removed from the transfer apparatus 3, 6 or injection

15 device docking station. The injection device 7 may indicate to the user that it is in a ready state with the button 77 in the up or ready position and the indicator window 80, 101 showing the injection device is full.

**[000187]** Referring to Figure 50, the user may disconnect the injection device 7 from the transfer apparatus 3 by twisting or pulling the injection device 7 off of the

20 transfer apparatus 3. During removal of the injection device 7, an adhesive tape liner may be removed automatically exposing an adhesive surface on the bottom of the injection device that may be used to adhere the device to the patient's skin. Alternatively, the tape liner may have a tab that the user pulls to manually remove before adhering the device to the skin.

25 **[000188]** Referring to Figure 51, the user attaches the injection device 7 to their skin 99. There may be an adhesive on the bottom of the injection device 7 that allows for adhesion to the skin 99 surface and hands-free operation. The adhesive may extend past the outline of the injection device to allow the user to firmly adhere the tape to the skin. Alternatively, the user may hold the injection device 7 against

30 the skin 99 for the duration of the injection.

**[000189]** Referring to Figures 51-53, the user removes the safety 100 and depresses the button 77 on the injection device 7 to start the injection. Once the

button 77 on the injection device 7 is fully depressed, it is locked into place and the needle will be fully inserted into the patient and the injection device 7 will begin dispensing the injectable drug. The injection device 7 may alert the user that injection of the drug has started. This alert could be in the form of visual indicators, 5 audible sounds, mechanical movements or a combination. The time of the injection could be in a range of a few seconds to several hours. The injection device 7 may indicate to the user that it is dispensing with the button 77 locked in the down position and indicator window 101 showing the injection device 7 is less than full. The injection device 7 preferably has a clear section 80 that allows the user to 10 easily determine the amount of drug remaining in the injection device 7.

**[000190]** Referring to Figures 54, the user will be alerted when the injection of the drug is completed. This alert could be in the form of visual indicators, audible sounds, mechanical movements or a combination. The injection device 7 may indicate to the user that it is has completed dispensing with the button 77 moving to 15 a locked up position with tactile and audible sounds and indicator window 101 showing the injection device is empty. At the end of the dispense, the needle will automatically retract into a locked position within the injection device 7.

**[000191]** Referring to Figure 54, upon removal of the injection device 7 from the skin 99, a bandage 120 could release from the injection device 7 and remain on the 20 skin surface 99. Upon removal from the skin 99, the injection device 7 will preferably be locked out, preventing non-destructive access to the needle or reuse of the injection device 7. The injection device 7 may indicate to the user that the full dose has been delivered. This indication could be in the form of a visual indictor, audible sound, mechanical movement or a combination.

25 **[000192]** In accordance with further aspects of the present subject matter, when administering an injection with a syringe and needle that is meant to be infused under the skin, it is desirable to know if the needle is properly placed within the skin or improperly placed within a blood vessel. It is common for a user performing an intradermal (ID), subcutaneous (SC) or intramuscular (IM) injection 30 to aspirate the syringe by pulling back on the plunger to create a pressure drop within the syringe to see if any visible blood comes up the needle into the syringe. If blood is visualized, this means the tip of the needle is in a blood vessel. A

number of injectable drugs meant for infusion under the skin specifically indicate not to inject into a blood vessel. Blood aspiration using a syringe and needle is a common technique and can be performed by anyone with adequate training.

However, as more drugs are being presented in automatic injection devices, the

5 ability to manual aspirate these types of systems does not exist. Once an injection device is placed on the skin and the needle is fired, there is no way for the user to know if the needle is properly placed within the skin or improperly placed within a blood vessel. Accordingly, there exists a need for a blood aspiration device and method within an automatic injection device.

10 **[000193]** Referring to Figures 55-56, the injection device 7 may have a needle 85 with a side-hole 108 in operative engagement with the button 77 slidable within a septum 109 advancing into the skin 99. The button 77 may have a viewing window 160 on the button top 103 that is in fluid communication with the proximal end 161 of the needle 85. The button top 103 may include a cavity 162 for blood 159 to accumulate and be seen through the button window 160 by a user. The cavity 162 may include a center hole 163 that allows fluid communication with the proximal end 161 of the needle 85 via needle lumen 165. The outer walls 164 of the cavity 162 are formed by the button top 103. Additionally, a portion of the outer walls 164 may include a hydrophobic filter 166. In this configuration, the proximal 15 end 161 of the needle 85 is at atmospheric pressure. If fluid 14 or blood 159 travel up the internal lumen 165 of the needle 85, it exits the proximal end 161 of the needle 85 and fills the cavity 162. The air 167 in the cavity 162 is easily displaced through the hydrophobic filter 166 until all of the air 167 has been displaced from the cavity 162 and it is full of fluid 14 or blood 159. At this point, the flow of fluid 14 20 or blood 159 stops as the fluid 14 or blood 159 cannot penetrate the hydrophobic filter 166 and can be easily viewed through the window 160 of the button top 103 by the user.

25 **[000194]** Referring to Figure 56, upon actuation (or depression) of the button 77, the needle 85 and button 77 travel to a first position or depth as shown in Figure 56. In this first position or depth, the side-hole 108 is covered by the septum 109 and therefore the internal lumen 165 of the needle 85 is not in communication with the fluid channel 86 of the dispense port 82. If the needle tip 107 in the first

position or depth is within a blood vessel 158, the pressure in the vessel 158 will advance blood 159 up through the internal lumen 165 and to the proximal end 161 of the needle 85, filling the cavity 162 with blood 159 which may be seen through the button window 160 on the top 103 of the button 77 thus providing a method for 5 determining if the injection device 7 needle 85 is in a blood vessel 158.

**[000195]** Referring to Figure 57, needle insertion into tissue can be generally divided into four stages. These include no contact, boundary displacement, tip insertion and shaft insertion. During boundary displacement, the tissue boundary in the contact area deflects under the influence of the load applied by the needle tip, 10 but the needle tip does not penetrate the tissue. The boundary of the skin follows the tip of the needle up to a maximum boundary displacement point in the contact area as the needle tip starts to penetrate the skin. After the needle tip penetrates the skin, the shaft is inserted into the tissue. Even after tip and shaft insertion, the boundary of the skin surface in the contact area does not return to its original no 15 contact state but remains displaced by a distance  $x$ . The amount of boundary displacement  $x$  is a function of several parameters including but not limited to needle diameter, needle tip geometry, needle shaft friction, needle insertion speed and physical skin properties. Boundary displacement  $x$  of the skin in the contact area is characterized in needle-based injection devices because it effects how 20 much of the needle penetrates the skin and therefore reduces the actual needle penetration depth by the amount of boundary displacement  $x$ . If the boundary displacement  $x$  could be intentionally induced by stretching or preloading such as pushing the skin out at the contact site prior to needle tip insertion, there would be no additional boundary displacement by the needle tip or shaft during insertion and 25 the needle tip depth could be predictably defined. The advantage of this intentional displacement is the amount of needle penetration into tissue would not be affected by variations in the boundary displacement  $x$ . Without intentionally inducing boundary displacement at the skin surface prior to needle tip insertion, the actual needle penetration depth into the skin is not specifically known because some of 30 the needle length (depending on the abovementioned parameters) is outside the skin due to the naturally occurring boundary displacement  $x$  shown in Figure 57. On the other hand, if the maximum boundary displacement could be induced at the

contact site, the actual needle penetration depth would not change with the variations in the abovementioned parameters including needle diameter, needle tip geometry, needle shaft friction, needle insertion speed and physical skin properties.

**[000196]** Referring to Figure 58, the injection device 7 may have a skin

5 boundary displacement extension or structure, such as an underside surface 76 that includes an extension 138 at or around the dispense port 82 or as part of the dispense port 82. When the injection device 7 is attached to the skin 99, the extension 138 will protrude into the skin 99 surface resulting in displacement of the skin 99 in this contact area 139. During actuation of the button 77 from a pre-fire  
10 state to first position, the needle 85 advances out of the injection device 7 through the dispense port 82 and/or extension 138 into the skin 99 to start the dispense of drug. For the reasons described above, as the needle 85 advances out of the injection device 7, the tip of the needle 107 does not produce additional boundary  
15 displacement 141 (already intentionally induced by the extension 138) in the skin 99 at the contact area 139. Thus the actual needle penetration depth 140 into the skin 99 is better characterized and controlled.

**[000197]** Referring to Figure 60, the vial access member 21 of the transfer

apparatus 3 maybe comprised of multiple lumens, such as multi-lumen tubes 34 to communicate with the internal fluid pathways 35 of the transfer apparatus 3. The  
20 vial access member 21 preferably comprises one inlet tube 36 allowing air or fluid to enter the vial 12 and one outlet tube 37 allowing for air or fluid to exit the vial 12. The lumen openings 38 in the vial access member 21 can be oriented so the inlet tube opening 36 is above the output tube opening 37 when the vial is inverted and attached as illustrated, for example, in Figure 59. This orientation allows for  
25 introduction of air or liquid through the upper inlet tube 36 and output of the vial contents 14 through the lower output tube 37. Further, the outlet opening 37 may be positioned near the lower end bottom of the inverted vial 12, adjacent to the septum 19 to encourage the entire contents 14 of the vial 12 to enter the outlet port 37 and be removed from the vial 12. Once the vial 12 is installed in the vial holder  
30 docking area 29 in the transfer apparatus 3, the vial access member 21 is able to access the contents 14 of the vial 12. When the transfer apparatus 3 begins to withdraw the contents 14 from the vial 12 through the outlet tube 37, a pressure

drop 154 occurs in the vial 12. This pressure drop 154 causes displacement air 58 to be drawn into the vial 12 through the inlet opening 37 of the vial access member 21 to replace the fluid 14 that is being withdrawn. In some cases depending on the amount of injectable 14 in the vial 12, the liquid level 153 in the vial 12 may be

5 above the vial access member 21 and specifically above inlet tube opening 37. When air 58 is drawn into the vial 12 through the inlet opening 37, it creates a bubble 155 in the fluid 14. Buoyancy causes the bubble 155 to migrate to the top of the vial 12 with the existing air 58. In some injectables 14, it is undesirable to introduce air bubbles 155 into the solution. This causes more bubbling, frothing

10 and or foaming within the fluid 14.

**[000198]** Referring to Figure 61, an extension member 156 could be slideably moveable within the inlet opening 36 of the vial access member 21. The outer diameter of the extension member 156 may be close fitting to the inner diameter of the inlet opening 36. The extension member 156 may have an inner diameter that

15 allows air 58 to pass through it. When air 58 is drawn into the vial 12 through the inlet vent opening 36 due to the pressure drop 154 in the vial 12, the air 58 first pushes the extension member 156 like a piston within the inlet opening 36. The extension member 156 is sufficiently long as to not come out of the inlet opening 36. The extension member 156 continues to slide through the inlet opening 36 until

20 the end of the extension member 156 stops at the top 157 of the vial 12 well above the liquid level in the vial 153. The top of the inverted vial 12 acts as a stop to the extension member 156. The tip of the extension member 156 may be tapered as to not block flow through its inner diameter when in contact with the top of the inverted vial 12. Air 58 continues to travel through the inner diameter of the extension

25 member 156 until all of the fluid 14 in the vial 12 has been withdrawn from the vial 12 through the outlet tube 37. As previously mentioned, the outer diameter of the extension member 156 is close fitting to the inlet opening 36 inner diameter as to not allow air to leak between this interface. The extension member 156 insures that no air 58 is introduced into the liquid 14 within the vial 12 causing bubbles 155.

30 **[000199]** Referring to Figure 62, the pressure chamber 59 may be configured with an inlet port 168 used to bring fluid 14 and air 58 into the chamber. Additionally, the pressure chamber 59 may be configured with an outlet port 64

used to expel fluid 14 and/or air 58 out of the chamber 59. These ports 168, 64 may be positioned off-center of the pressure chamber 59 to help control the sequence of liquid 14 and air 58 introduction into and/or expulsion from the pressure chamber 59. As previously mentioned, the outlet port 64 of the pressure 5 chamber 59 may be oriented below the inlet port, during the process of expelling the liquid 14 from the pressure chamber 59, all of the liquid 14 is expelled first then the remaining air 58 is expelled last any air in the chamber 59 would be oriented to the top of the pressure chamber 59. Additionally, as shown in Figure 62, the exit 10 port profile 169 may be configured in a non-circular shape to further encourage the entire liquid contents 14 of the pressure chamber 59 to enter the outlet port 64 and be removed from the pressure chamber 59 prior to removal of air 58 from the pressure chamber 59. Additionally, as shown in Figure 62, a portion 170 of the outlet port 64 may be positioned below the surface 171 of the pressure chamber 59. This may act as a trap to further encourage the entire liquid contents 14 of the 15 pressure chamber 59 to enter the outlet port 64 and be removed from the pressure chamber 59 prior to removal of air 58 from the pressure chamber 59.

20 **[000200]** Referring to Figure 63, when liquid 14 is removed from a vial 12 using a vial access member 21, only fluid 14 through the outlet opening 37 is removed until the liquid level 153 drops to the top of the outlet opening 137. At this point, a mixture of liquid 14 and air 58 will be removed. Referring to Figure 63, the vial access member 21 may additionally have an outlet opening 37 configured in a non-circular shape such that the opening height is reduced and the opening width is increased to further allow for more liquid content 14 of the vial 12 to enter the outlet port 37 and be removed from the vial 12 prior to removal of air 58 from the vial 12.

25 **[000201]** Referring to Figures 64 and 65, the combination of hydrophobic 68 and hydrophilic 69 filters in the fluid pathway 35 between the vial 15 and the injection device 7 may preferably allow for filtering of drug 14 and removal of air 58 during the transfer process. These filters may be separate components or combined into one component. Each filter may be constructed from different 30 materials including but not limited to Mixed Cellulose Ester (MCE), Polyvinylidene Difluoride (PVDF), Polytetrafluoroethylene (PTFE), Nylon and polyethersulfone

(PES). Each filter may have a range of pore sizes from 0.22 to 3 micron. Each filter may have a coating to make it hydrophilic or hydrophobic.

**[000202]** When administering an injection that is meant to be infused under the

skin, a common reaction is infusion site swelling. This reaction is particularly

5 pronounced in single subcutaneous sites where the infusion volume is high and/or the infusion rate is fast. When these infusions are administered with a syringe and needle or administration set, infusion site swelling has no consequence to the injection device. However, as more drugs are being presented in automatic injection devices that are adhered and worn on the body during the infusion, site  
10 swelling presents a challenge in keeping the automatic injection device secured to the body. In particular, the lump or bulge formed by the infused solution at the skin surface may dislodge an automatic injection device from the infusion site if the adhesive on the injection device is not properly designed. Accordingly, there exists the need for an automatic injection device with properly designed adhesive that  
15 allows for bulging at the injection site without compromising the adherence of the device to the patient.

**[000203]** Referring to Figure 66, there are two interfaces related to adhering the injection device 7 to the skin 99. The first is the adhesive/device interface 173 and the second is the adhesive/skin interface 174.

20 **[000204]** Referring to Figure 67, the adhesive 88 could be configured on the injection device 7 with at least two zones. The first zone 175 may include a permanent bond using mechanical or chemical means between the adhesive 88 and the injection device 7 and preferably be positioned within the perimeter of the injection device 7. The second zone 176 may be configured to be detachable or  
25 unattached from the injection device 7 and preferably be adjacent and on the outside (e.g., radially outward) of zone 1.

**[000205]** Referring to Figure 68, if the adhesive 88 were completely attached to the bottom 76 of the device 7, during a tissue bulge 177 event the adhesive 88 at the adhesive/skin interface 174 would start to peel from the skin 99 because this

30 interface 174 is weaker than the adhesive/device interface 173. This is demonstrated on a bulging surface in Figure 68. This may result in the injection device 7 becoming dislodged from the skin surface 99 and falling off the patient.

**[000206]** Referring to Figures 67 and 69, instead of permanently attaching the adhesive 88 completely to the bottom 76 of the injection device 7 as shown in Figure 68, the adhesive 88 could be configured on the injection device 7 with the abovementioned zones 175, 176. During a tissue bulge event 177 in this 5 configuration, the adhesive 88 in zone two 176 would detach from the injection device 7 and be firmly attached to the skin 99 surface at the adhesive/skin interface 174. This would allow for transfer of the peel edge 178 from the adhesive skin interface 174 to the adhesive/device interface 173 effectively creating a strain relief at the adhesive/skin interface. The adhesive/device interface 173 may be designed 10 to be much stronger and prevent injection device 7 separation from the skin surface 99.

**[000207]** When performing self-injections with automatic injection devices, protecting the user from accidental needle sticks is a beneficial requirement for the device. Typically, the needle is retracted within the device before and after use, 15 preventing the user from accessing the needle. However, during the injection, the needle is extended outside of the device. If the automatic injection device were body worn and inadvertently fell off the user during the injection, the needle would be exposed creating a potential needle stick hazard to the user. Accordingly, there exists the need for an automatic injection device with a skin dislodgement sensor to 20 automatically retract a needle if the device becomes dislodged from the skin during the injection.

**[000208]** Referring to Figure 70-72, a skin dislodgement sensor 179 may be in operative engagement with a flexible latch 181 of the button 77 and slidable within the lower housing 180 of the injection device 7. Referring to Figure 71, when the 25 injection device 7 is attached to the skin surface 99, the skin dislodgement sensor 179 is forced into a first or up position 182 inside the injection device 7. When the button 77 is actuated to a fired state or second position or dispense position (exposing the needle 85), the flexible latch 181 is forced into a lock position 187 by the skin dislodgement sensor 179 under the latch board 183. The latch board 183 30 holds the button 77 at the latch board surface 184 on the button 77 down in the fired state or dispense position until the end of dispense. At the end of dispense, the latch board 183 translates away from the latch board surface 184 on the button

77, allowing the button 77 and needle 85 to retract to a post fire position where the needle 85 is contained within the injection device 7. Referring to Figure 72, in the event that the injection device 7 becomes dislodged from the skin surface 99 during injection, the skin dislodgement sensor 179 extends to a second or down position 5 185 out of the injection device 7. This allows the flexible latch 181 to spring back to an unlocked position and disengage from the latch board 183. This allows the button 77 and needle 85 to retract to a post fire position where the needle 85 is contained within the injection device 7.

**[000209]** When performing self-injections with a syringe and needle, users may 10 have the need to temporarily stop or pause the injection due to acute pain or irritation at the injection site. This pause in flow of injectable into the injection site, accomplished by removing pressure on the plunger rod of the syringe, helps to reduce the pain at the injection site by allowing the injectable fluid bolus more time to diffuse into the surrounding tissue and thus reducing the local pressure and 15 associated pain and irritation. However, as more drugs are being presented in automatic injection devices, the ability to manually pause these types of automatic systems does not exist. Once an automatic injection device is placed on the skin and the cannula is introduced, there is no way for the user to pause the injection due to pain or irritation at the injection site. Accordingly, there exists a need for a 20 user to be able to pause an automatic injection system.

**[000210]** Referring to Figures 73-74, upon actuation of the button 77, the needle 85 and button 77 travel to a first position or depth as shown in Figure 73. In this first position or depth, the side-hole 108 is covered by the septum 109 and therefore the internal lumen 165 of the needle 85 is not in communication with the 25 fluid channel 86 of the dispense port 82. The button 77 may be intentionally held in this first position or depth to prevent flow of injectable 14 from the fluid channel 86 into the side-hole 108 of the needle 85 and into the skin 99. As shown in Figure 74, when the button 77 is released, the needle 85 and button 77 return to a second position or dispense position where the side-hole 108 is exposed to the fluid 30 channel 86 allowing the flow of injectable 14 from the fluid channel 86 into the side-hole 108 of the needle 85 and into the skin 99 until the end of the injection. This

action of pushing the button 77 to the first position or depth may be performed as many times a necessary during the entire injection.

**[000211]** Referring to Figures 75-76, the button 77 actuation force 186 is the transition load applied to the button 77 required to start displacement of the button

5 77 and needle 85 from a pre-fire position to a fired state or dispense position. Until this transition load is met, the force 186 applied to the button 77 is transferred directly to the injection device 7. Specifically, this load 186 may be transferred to adhesive skin interface 174 and/or the adhesive device interface 173 resulting in better securement of the injection device 7 to the skin surface 99 prior to actuation  
10 of the injection device 7.

**[000212]** Referring to Figure 77, an indicator window 172 on the transfer apparatus 3 may be present to show that the transfer of fluid 14 and/or mixing is progressing. This indicator window 172 could be configured in the base of the transfer apparatus 3 and track the movement of the plunger 93 of the pressure

15 chamber 56 within the transfer device 3. The indicator window 172 could be configured with a scale or other means to track the movement of the plunger 93. Alternatively, the plunger 93 could be configured with a different color to make it easy to track its movement in the indicator window 172. The combination of the indicator window 172 and plunger 93 could provide the progress of withdrawing  
20 fluid 14 from the vial 12 and filling of the chamber 56. The combination of the indicator window 172 and plunger 93 could also provide the progress of the transfer of fluid 14 from the chamber 56 to the injection device 7.

**[000213]** Referring to Figure 78-79, the arcuate expandable member 78 is positioned and/or will preferably expand in length in an arc shape. In the illustrated

25 embodiment, the arc shape is induced by providing a less resilient area for example a thicker or relatively heavy wall thickness zone 126 which will result in less deflection of the expandable member in that zone and result in formation of an expanded arc shape. This heavy wall thickness zone 126 may be configured in any shape that will allow for the arc shape in the expandable member 78 during  
30 expansion. A preferred configuration for the heavy wall thickness zone 126 is to minimize its thickness or attachment 150 in the circumferential direction on the expandable member 78 wall and maximize the radial thickness or projection 151

away from the expandable member 78. This serves to urge the expandable member 78 to expand in an arc shape but also maximizes the amount of material along the circumference that is unaffected by the heavy wall thickness zone 126 for expansion. Additional features including but not limited to a T-shape may be 5 configured to the end of the radial projection 152 to help urge the expandable member 78 into an arc shape.

**[000214]** Referring to Figure 80, the volume of the pressure chamber 56 could be set to be larger than the total fluid volume 14 in the vial 15 so that additional air 58 is drawn into chamber 56 from the vial 15. This additional air 58 could be 10 helpful in insuring that all of the liquid 14 is removed from the vial 15 and removal or clearing of residual liquid 14 in the fluid pathways 35 between the vial 15 and the chamber 56. Additionally, during transfer of the liquid 14 from the chamber 56 to the injection device 7, the additional air may be useful in the removal or clearing of residual liquid 14 in the fluid pathways 35 between the chamber 56 and the 15 injection device 7.

**[000215]** Referring to Figure 81, the transfer apparatus 3 comprises a vial holder docking area 29 that may include an elongated vial access member or piercing member 21. This vial holder docking area 29 may include a vial access protector 136. The vial access protector 136 is locked and held in a first position 20 above the vial access member 21 by locking fingers 137 within the vial holder docking area 29 prior to insertion of the vial 12 or vial holder to cover the vial access member 21 and prevent inadvertent vial access member stick by the user. When the vial 12 or vial holder is inserted into the vial holder docking area 29, the vial 12 or vial holder displaces the locking fingers 137 and unlocks the vial access 25 protector 136. Once unlocked, the vial access protector 136 is movably slid able within the vial holder docking area 29 with the the vial 12 or vial holder.

**[000216]** Referring to Figure 82, flow restrictors 55 may be used in the fluid pathway 35 to control and/or delay the transfer time and/or increase the mixing time. Small lumen tubing could be used at any point in the flow path 35 to restrict 30 flow and increase the time of mixing/transfer for times up to an hour or more. One method to control and/or delay the transfer time and/or increase mixing time between the second pressure chamber 42 and the injection device 7 is by the use

of multi-lumen fluid pathways 142 between the second pressure chamber 42 and injection device 7. Each lumen 143, 144 of the fluid pathway 142 is attached to a specific location 145, 146 on the second pressure chamber 42, preferably spaced apart along the travel of the piston and has an internal diameter 147, 148 sized to

5 provide for a specific flow rate through that lumen 143, 144 based on the pressure within the second pressure chamber 42. Initially as the second pressure chamber piston 46 starts its advance in the chamber 42, the fluid mixture 14 is dispensed through all of the lumens 143, 144 in the fluid pathway 142 to the injection device 7. Once the piston passes over an attachment point 145 between a lumen 143 and

10 the pressure chamber 42, the flow of fluid through that lumen 143 stops and fluid 14 is forced through the remaining lumen 144. Multiple lumens and attachment points could be positioned along the pressure chamber. The final lumen 144 available from flow of fluid 14 could be sized with an internal diameter 148 that is very small. Accordingly, the flow rate would be very low, increasing the time to

15 transfer the fluid 14 from the chamber 42 to the injection device 7. This delay of transfer allows for increase mixing time.

**[000217]** Referring to Figure 83, a safety, such as a safety pin or safety sleeve 100 may be configured to allow for removal from the injection device 7 in any direction to release the injection device 7 to be ready to fire (inject).

20 **[000218]** Referring to Figure 84, the injection device 7 includes a needle 85 with a side-hole 108 that allows for fluid communication between the fluid channel 86 and the skin 99 once the button 77 is fully depressed in the injection device 7. This starts dispense of the injectable 14. The inner diameter 165 of the needle 85 is significant in controlling the rate of dispense from the injection device 7.

25 Referencing the Hagen–Poiseuille equation for fluid flowing in a pipe, the flow rate through a pipe is directly proportional to the radius of the pipe to the fourth power. Thus, small variations in the inner diameter 165 of the needle 85 result in large variations in flow through the needle 85, especially as the inner diameter 165 gets smaller. The needle 85 in the injection device 7 may range from 21G to 34G (Stubs

30 Iron Wire Gauge System) in various wall thickness configurations. This range corresponds to an inner diameter 165 range of 0.021" to 0.003", recognizing that there is manufacturing variation or tolerance with the needle inner diameter 165 in

any given needle size. This is based on needle size and can have an inner diameter variation as much as  $\pm 0.00075$ ". To limit the range of the inner diameter 165 within any given needle size and resulting variation in flow, the needle 85 may be modified prior to assembly into the injection device 7. This modification could

5 include crimping, flattening or rolling the needle to a new, prescribed effective inner diameter 165 over a portion of the length of the needle 85 from a circular shape to a non-circular shape. This has the advantage of allowing for specific delivery rate control from the injection device 7.

**[000219]** Referring to Figures 85-86, the lumen openings 38 in the vial access member 21 can be oriented to allow for introduction of pressurized air or liquid through the upper inlet tube 36 and output of the vial contents 14 through the lower output tube 37. Further, the outlet opening 37 may be positioned near the bottom of the inverted vial 12, adjacent to the septum 19 to encourage the entire contents 14 of the vial 12 to enter the outlet port 37 and be removed from the vial 12. The

10 preferred sequence for removal of the contents 14 from the vial 12 is first all of the fluid 14 in the vial 12 and then the air 58 from the vial 12. This is achieved with the current embodiment when the orientation of the transfer apparatus 3 is oriented as shown in Figures 85-86. Based on the geometry of the vial access member 21 within the vial 12, this sequence of all fluid 23 then air 58 removal is achieved up to

15 transfer apparatus 3 angles of +/- 45 degrees from horizontal. Beyond this angle, there is the possibility that air 58 is introduced before or during fluid 14 removal from the vial 12. An angle sensor 149 may be positioned in or around the vial access member 21 to sense the angle of the transfer apparatus 3. It may have direct communication with either or both of the lumen openings 38 and/or each or

20 both of the inlet tube 37 and output tube 36. In the current embodiment as shown in Figure 85, when the transfer apparatus 3 is at an angle less than 45 degrees, the sensor 149 allows fluid communication between the outlet port 37 and the fluid pathways 35. As shown in Figure 86, if the transfer apparatus 3 were tilted to an angle greater than 45 degrees, the sensor 149 may rotate or translate to a new

25 position to shut off the fluid communication between the outlet port 37 and the fluid pathways 35.

**[000220]** Referring to Figure 87, an alternative transfer apparatus 3 within a single vial system that does not perform mixing but only transfers fluid 14 from a single vial 12 to the injection device 7 is provided. This alternative transfer apparatus 3 includes a vial 12, a variable volume pressure chamber 56 and fluid pathways 35 to direct the contents 14 from the vial 12 into the injection device 7. The inlet tube 36 of the vial access member 21 is connected to the variable volume pressure chamber 56 with fluid pathways 35. The outlet tube 37 of the vial access member 21 is connected to the injection device 7 through fluid pathways pressure chamber 56.

5

**[000221]** Referring to Figures 87, the full insertion of the vial 12 into the transfer apparatus 3 by the user causes the introduction of the vial access member 21 through the septum 19 of the vial 12 to access the contents 14 of the vial 12. This also triggers the release of the pressure chamber trigger 59. The plunger 60 is in a retracted position and the pressure chamber 56 is full of air 135. The pressure 10 release trigger 59 releases the plunger 60 within the pressure chamber 56 connected to a dispense spring 63. The dispense spring 63 advances the plunger 60 and displaces air 135 from the pressure chamber 56 into the single vial 12 though the inlet tube 36. Air 135 entering the vial 12 displaces the fluid 14 out of the vial 12 through the outlet tube 37 into the injection device 7. This continues 15 until all of the fluid 14 is displaced out vial 12 into the injection device 7. Check valves 40 could be employed to prevent fluid 14 from going back into the vial 12 or fluid 14 from going back into the pressure chamber 56.

20

**[000222]** The present subject matter has been described in terms of specific embodiments for purposes of illustration only, and not limitation. It is to be understood that the scope of the subject matter is not limited to only the illustrated 25 embodiments or equivalents thereof but has broader application in embodiments of varying configuration and use some of which may be readily apparent upon reading this description and others only after some study and/or development.

The invention claimed is:

1. An injection device comprising:

a housing;

an arcuately expandable bladder made of elastomeric material and positioned within the housing, the bladder including a proximal end, a distal end and a wall extending between the proximal end and the distal end;

an injection cannula moveable within a central portion of the housing between a pre-dispense position and a dispense position, the injection cannula not being in fluid flow communication with the bladder in the pre-dispense position and being in fluid flow communication with the bladder in the dispense position;

a manifold within the housing attached to the proximal end of the bladder, the manifold having a fluid inlet port and a fluid pathway communicating between the fluid inlet port and the bladder for introduction of liquid under pressure into the bladder;

the distal end of the bladder being moveable within the housing, wherein the bladder elongates between the proximal end and the distal end and the distal end of the bladder moves along an arcuate path away from the proximal end of the bladder and at least partially around the central portion of the housing as liquid is introduced under pressure to expand the bladder; and

wherein an elastic force in the bladder wall when the bladder is arcuately expanded provides the pressure to expel liquid from the bladder and through the injection cannula, whereby the distal end of the bladder moves along the arcuate path and toward the proximal end due to the elastic force in the bladder wall as liquid flows from the bladder through the injection cannula.

2. The injection device of claim 1 including adhesive configured to attach the injection device to a patient's skin.

3. The injection device of claim 1 further comprising a cannula actuator which is configured so that the injection cannula is moveable from the pre-dispense position to a first depth into a patient's skin and then to a second depth less than the first depth, where the injection cannula is retained at the second depth.

4. The injection device of claim 3 wherein the injection cannula includes a side hole

configured so that when the injection cannula is in the pre-dispense position and the first depth position, the side hole is not in fluid flow communication with the bladder and when the injection cannula is in the second depth position, the side hole is in fluid flow communication with the bladder.

5. The injection device of claim 4 further comprising a septum positioned within the housing and configured to seal around a periphery of the side hole of the injection cannula when the injection cannula is in the pre-dispense position and the first depth position.
6. The injection device of claim 1 further comprising a cannula actuator that includes a viewing window and a cavity in fluid communication with a proximal end of the injection cannula so that blood accumulates in the cavity and is visible through the viewing window after the injection cannula is inserted into a blood vessel of a patient.
7. The injection device of claim 1 in which the injection cannula is selectively moveable from the dispense position to another position in which the injection cannula is not in communication with the bladder to pause the flow of a drug to the patient.
8. The injection device of claim 1 wherein the housing is circular and includes a spiral recess within which the distal end of the bladder is positioned and moves along as liquid is introduced into and expelled from the bladder.
9. The injection device of claim 1 wherein the distal end of the bladder is provided with an indicator.
10. The injection device of claim 1 further comprising a mandrel connected to the distal end of the bladder and configured so that the bladder is prestressed to an expanded condition even after all liquid has been expelled from the bladder.
11. The injection device of claim 1 wherein the bladder wall includes an area of increased thickness along a side of the bladder wall, where the area of increased thickness deflects less than a remaining portion of the bladder wall so that the distal end moves along the arcuate path when a volume of liquid under pressure is introduced into the bladder.
12. The injection device of claim 1 wherein the bladder is C-shaped.
13. The injection device of claim 1 wherein the bladder is arranged in a planar helical

configuration.

14. The injection device of claim 1 wherein the bladder is arranged in a spiral configuration.

15. The injection device of claim 1 wherein the bladder expands along a planar partial circular path.

16. The injection device of claim 1 wherein the bladder expands along a circular path.

17. The injection device of claim 1 wherein the bladder expands along a spiral path.

18. The injection device of claim 17 further comprising a mandrel connected to the distal end of the bladder and configured so that the bladder is prestressed to an expanded condition even after all liquid has been expelled from the bladder.

19. An injection device comprising:

a housing;

an arcuately expandable bladder made of elastomeric material and positioned within the housing, the bladder including a proximal end, a distal end and a wall extending between the proximal end and the distal end;

an injection cannula moveable within a central portion of the housing between a pre-dispense position and a dispense position, the injection cannula not being in fluid flow communication with the bladder in the pre-dispense position and being in fluid flow communication with the bladder in the dispense position;

a manifold within the housing attached to the proximal end of the bladder, the manifold having a fluid inlet port and a fluid pathway communicating between the fluid inlet port and the bladder for the introduction of liquid under pressure into the bladder;

the distal end of the bladder being moveable within the housing; wherein the bladder elongates between the proximal end and the distal end and the distal end of the bladder moves along an arcuate path away from the proximal end of the bladder and at least partially around the central portion of the housing as liquid is introduced under pressure to expand the bladder;

the bladder wall including a radially inner wall portion and a radially outer wall portion relative to the central portion of the housing; the radially inner wall portion being thicker than

the radially outer wall portion along a length of the elongated wall substantially parallel to the arcuate path between the proximal end and the distal end of the bladder to induce the bladder to extend in the arcuate path at least partially around the central portion of the housing as it expands; and

wherein an elastic force in the bladder wall when the bladder is arcuately expanded provides pressure to expel liquid from the bladder and through the injection cannula, whereby the distal end of the bladder moves along the arcuate path and toward the proximal end due to the elastic force in the bladder wall as liquid flows from the bladder through the injection cannula.

20. The injection device of claim 19 wherein the thicker radially inner wall portion is molded into the bladder wall.

21. The injection device of claim 19 wherein the thicker radially inner wall portion includes a strip of material bonded to the radially inner wall portion.

22. An injection device comprising:

a housing;

an arcuately expandable bladder made of elastomeric material and positioned within the housing, the bladder including a proximal end, a distal end and a wall extending between the proximal end and the distal end;

an injection cannula moveable within a central portion of the housing between a pre-dispense position and a dispense position, the injection cannula not being in fluid flow communication with the bladder in the pre-dispense position and being in fluid flow communication with the bladder in the dispense position;

a manifold within the housing attached to the proximal end of the bladder; the manifold having a fluid inlet port and a fluid pathway communicating between the fluid inlet port and the bladder for the introduction of liquid under pressure into the bladder;

the distal end of the bladder being moveable within the housing, wherein the bladder elongates between the proximal end and the distal end and the distal end of the bladder moves along an arcuate path away from the proximal end of the bladder and at least partially around the central portion of the housing as liquid is introduced under pressure to expand the bladder;

the bladder wall including a radially inner wall portion and a radially outer wall portion relative to the central portion of the housing, the radially inner wall portion being thicker than the radially outer wall portion along a length of the elongated wall substantially parallel to the arcuate path between the proximal end and the distal end of the bladder to induce the bladder to extend in the arcuate path at least partially around the central portion of the housing as it expands;

a guide extending at least partially around the central portion of the housing and slidably constraining the thicker radially inner wall portion to move along the arcuate path during bladder contraction and expansion; and

wherein an elastic force in the bladder wall when the bladder is arcuately expanded provides pressure to expel liquid from the bladder and through the injection cannula, whereby the distal end of the bladder moves along the arcuate path and toward the proximal end due to the elastic force in the bladder wall as liquid flows from the bladder through the injection cannula.

23. The injection device of claim 22 wherein the central portion of the housing includes a cylindrical wall and the guide includes a groove extending at least partially around the cylindrical wall and wherein a portion of the thicker radially inner wall portion of the bladder is slidably received in the groove.

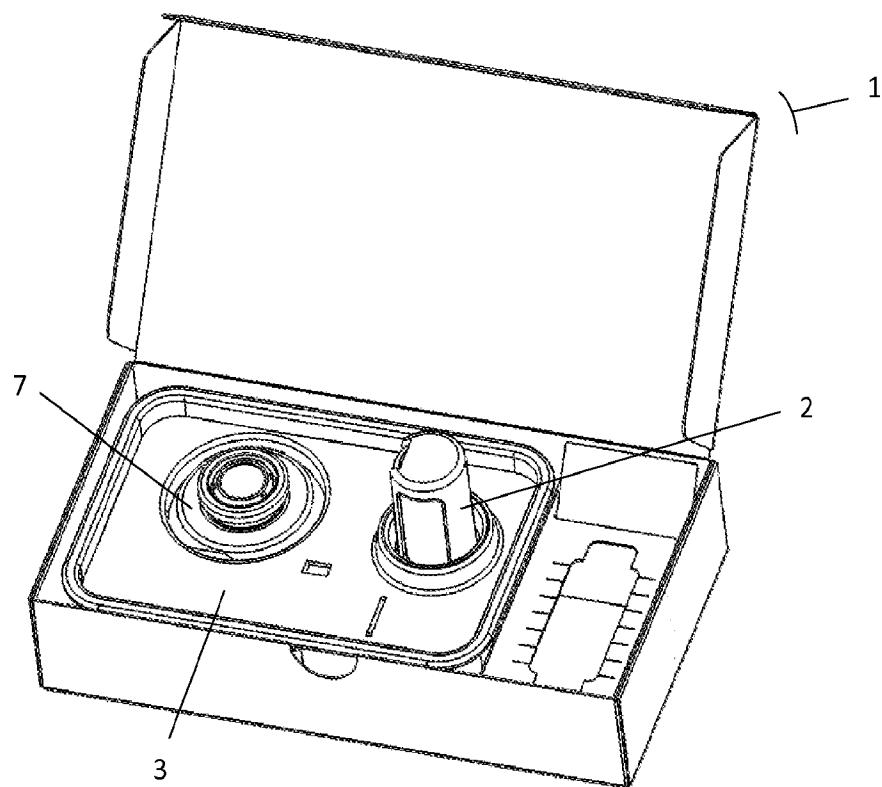



Figure 1

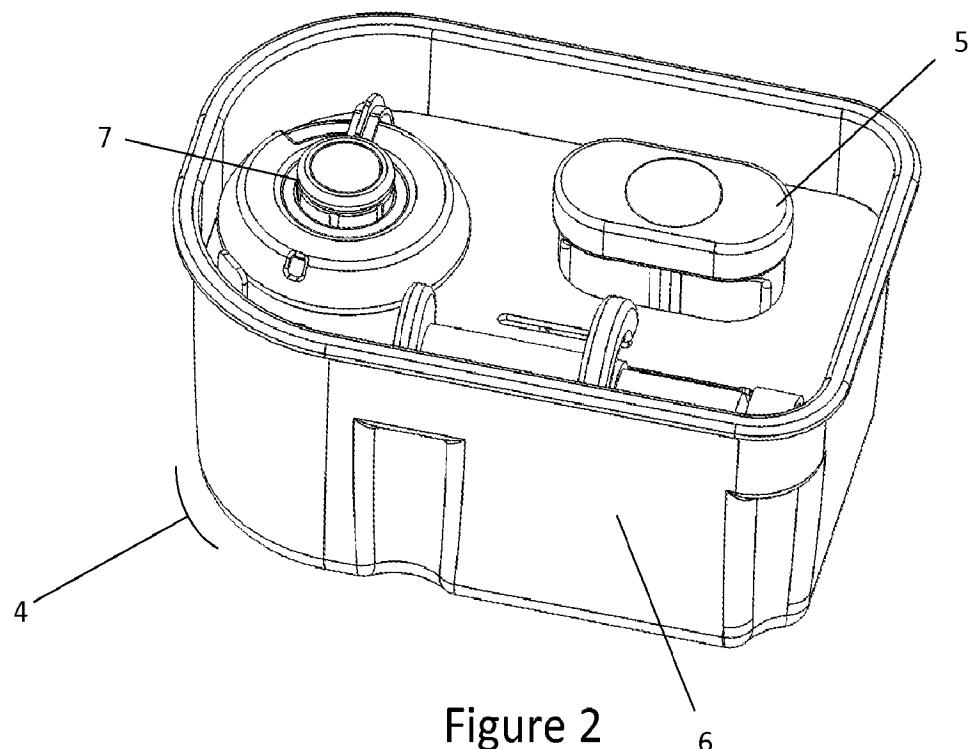



Figure 2

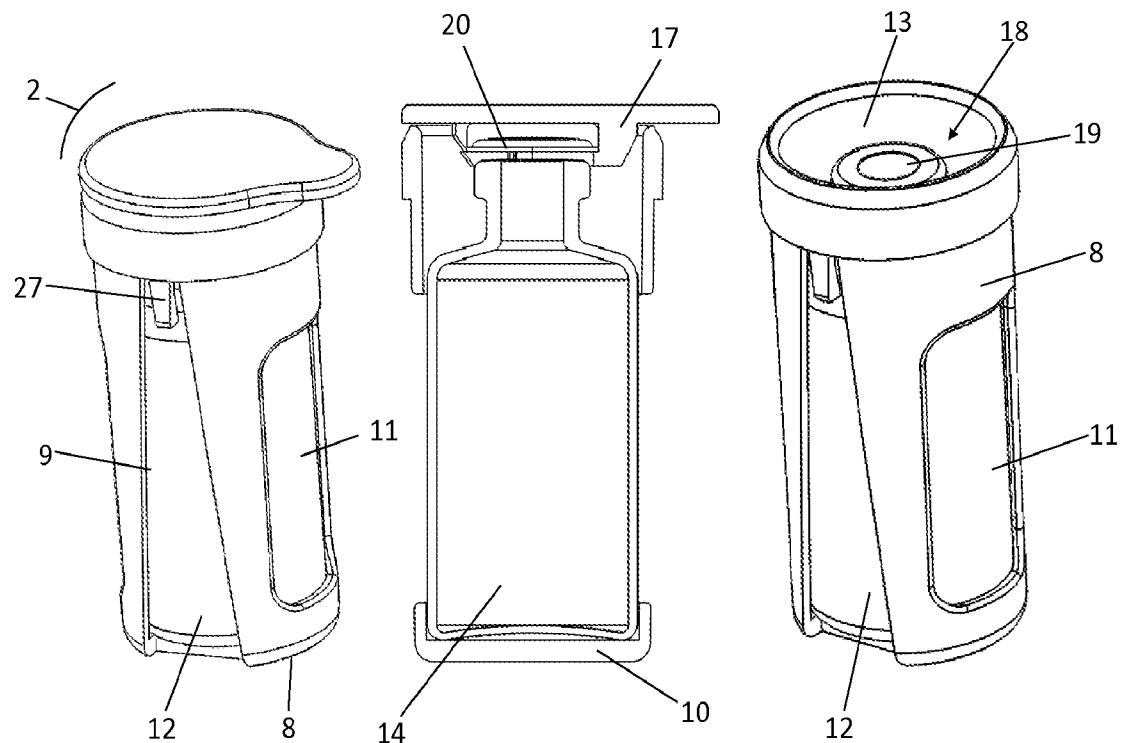



Figure 3

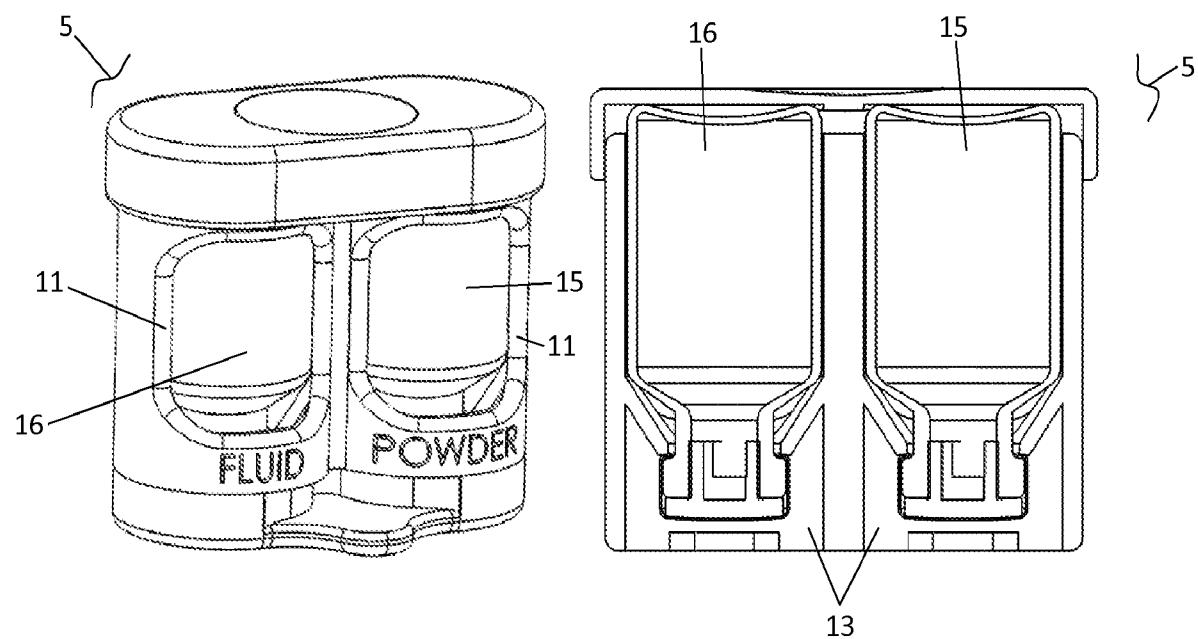



Figure 4

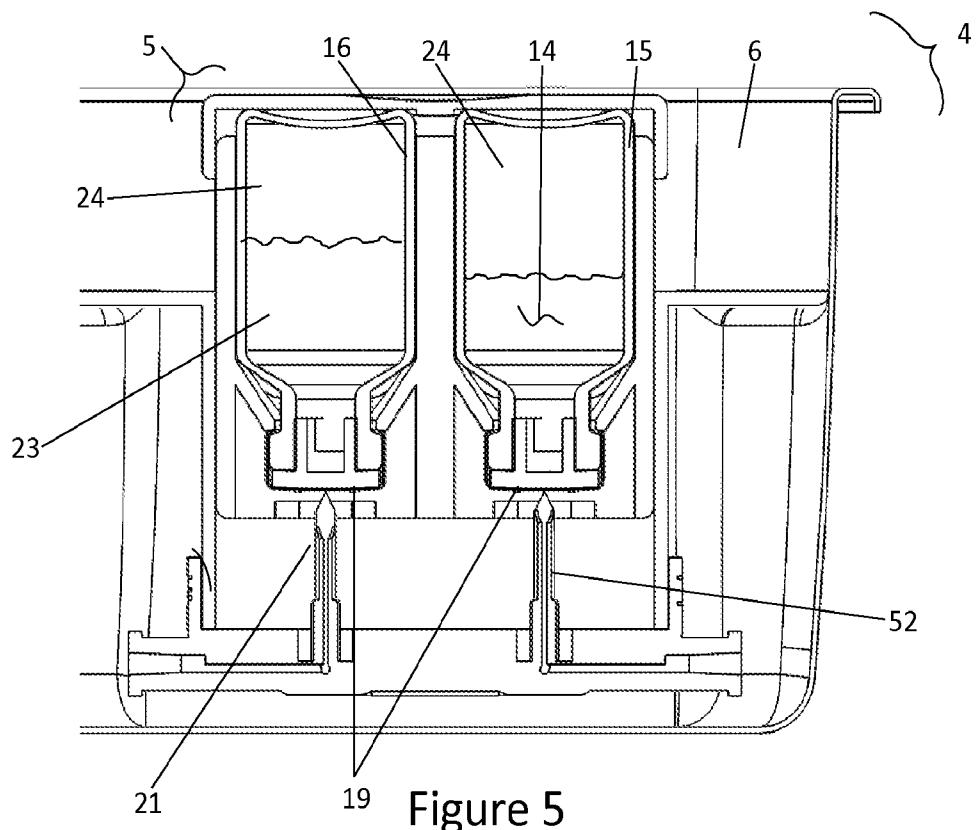



Figure 5




Figure 6

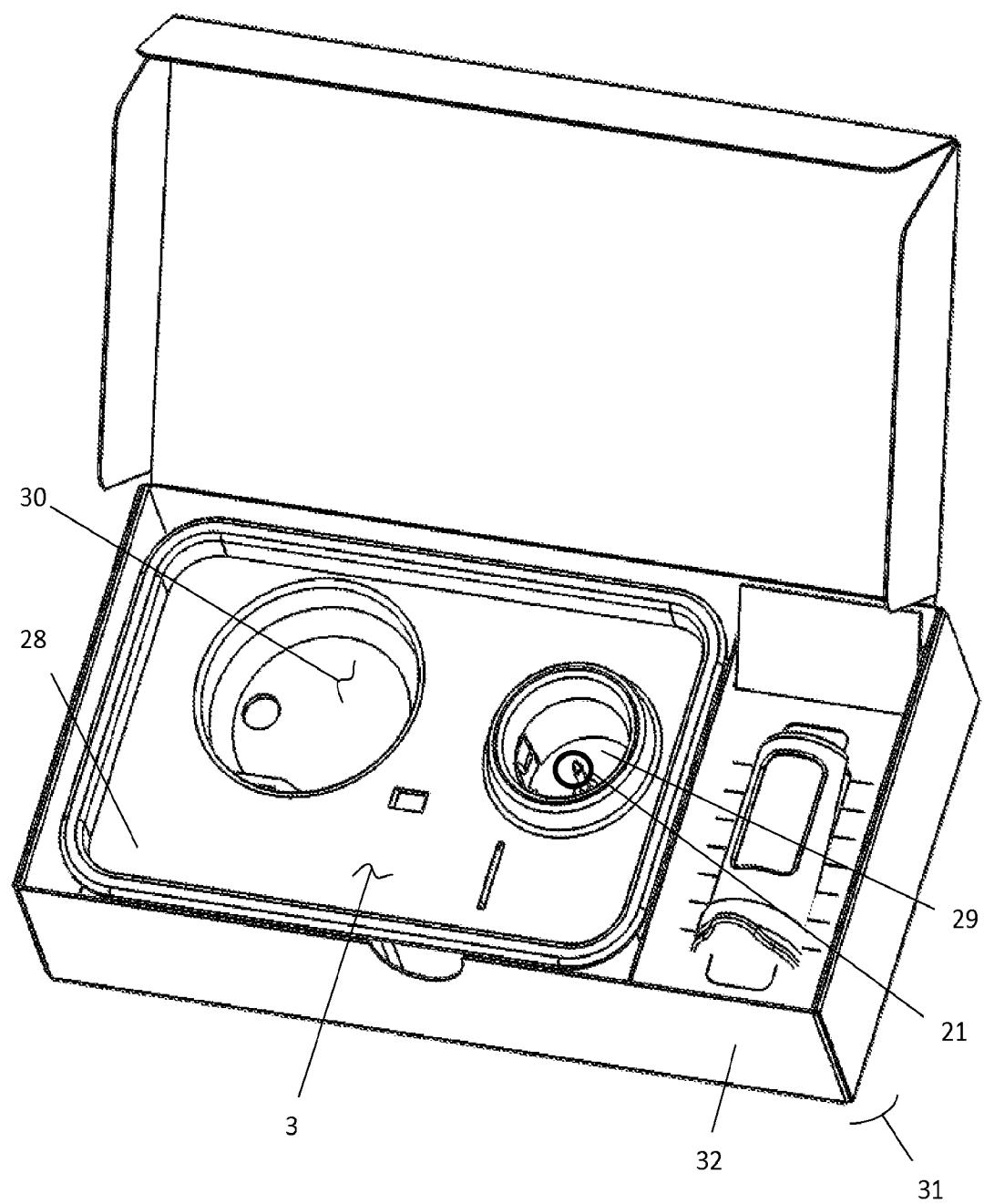



Figure 7

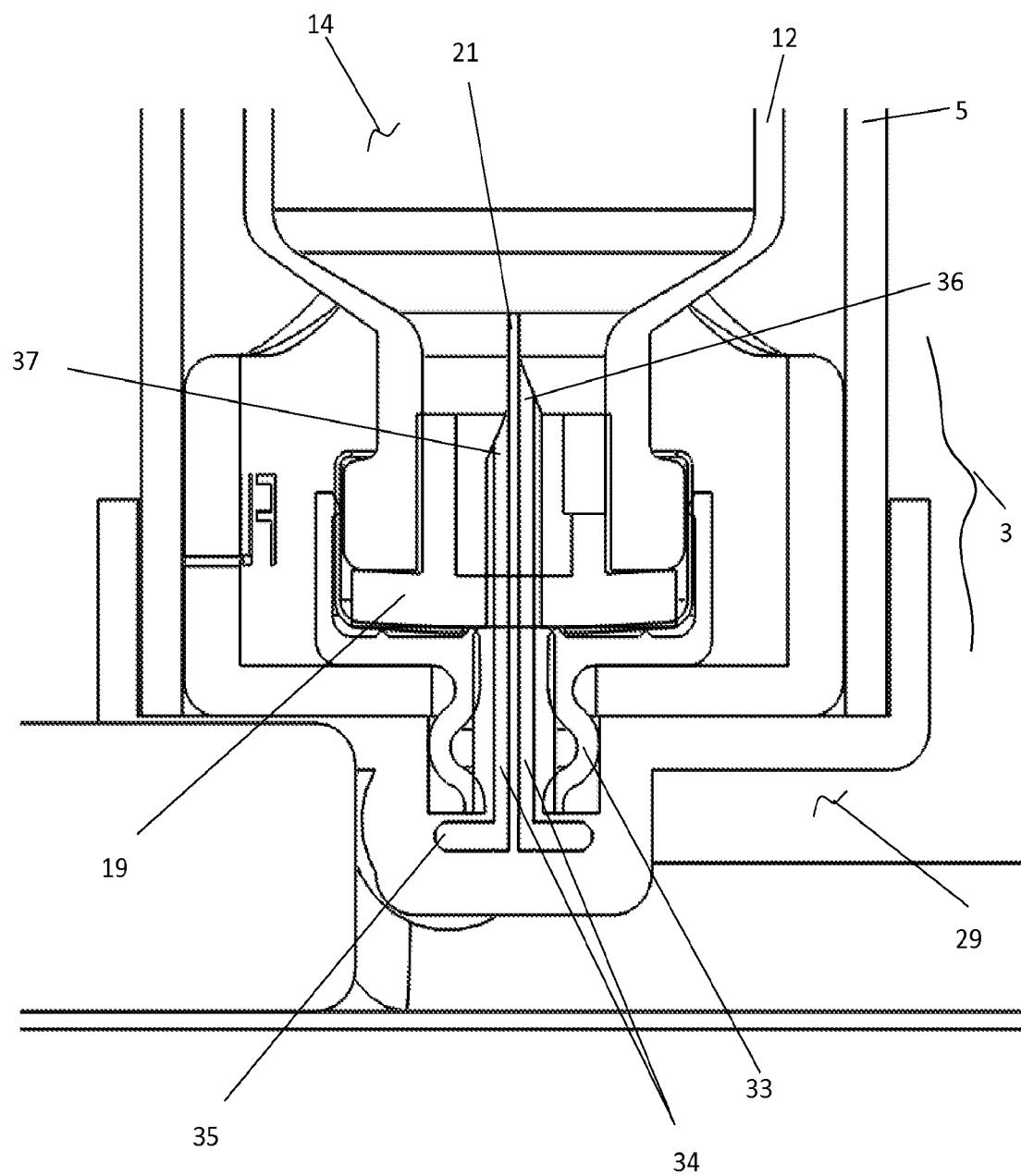



Figure 8

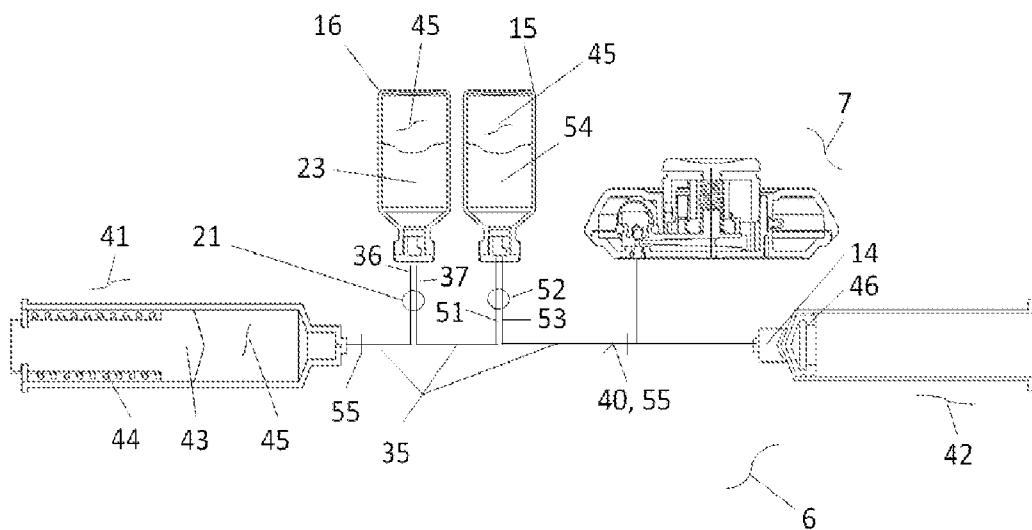



Figure 9

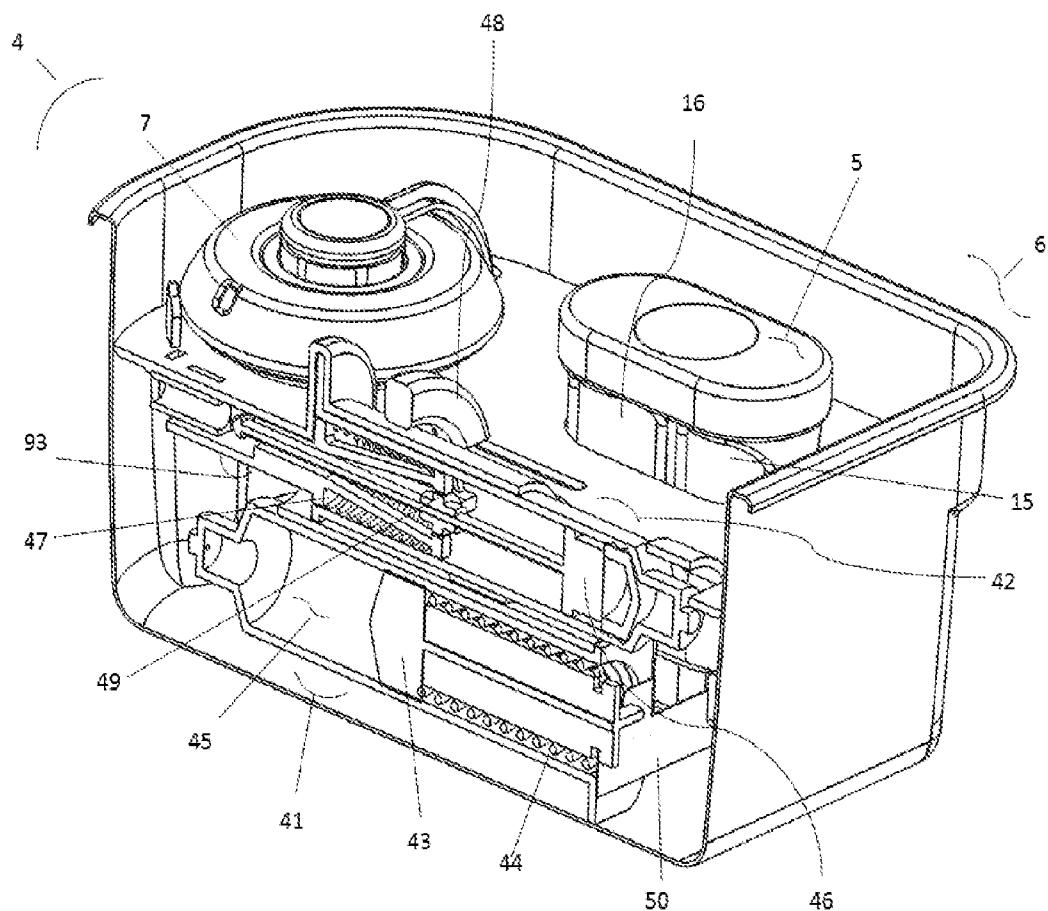



Figure 10

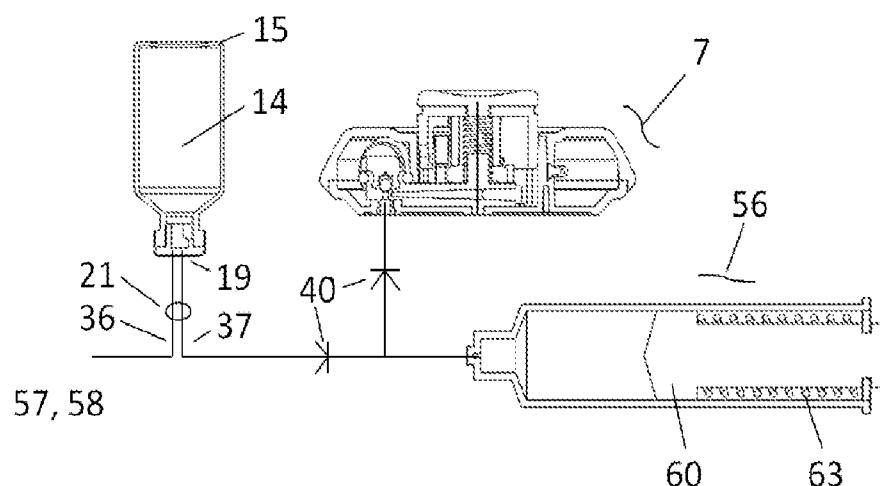



Figure 11

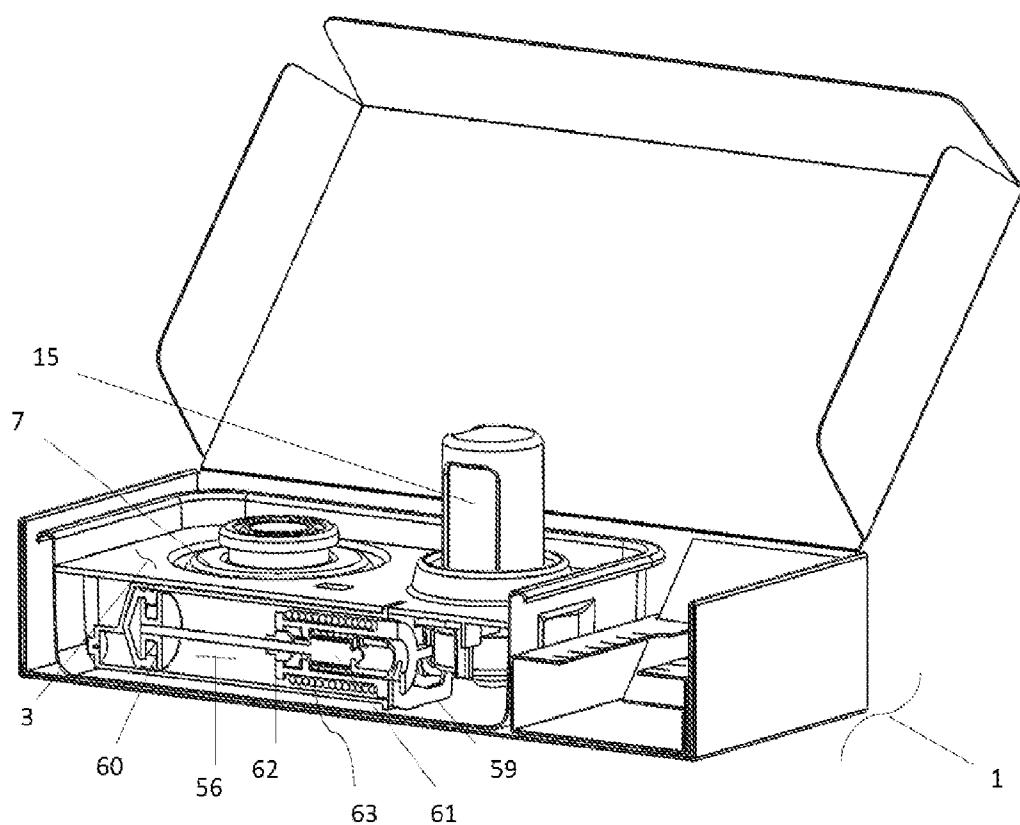



Figure 12

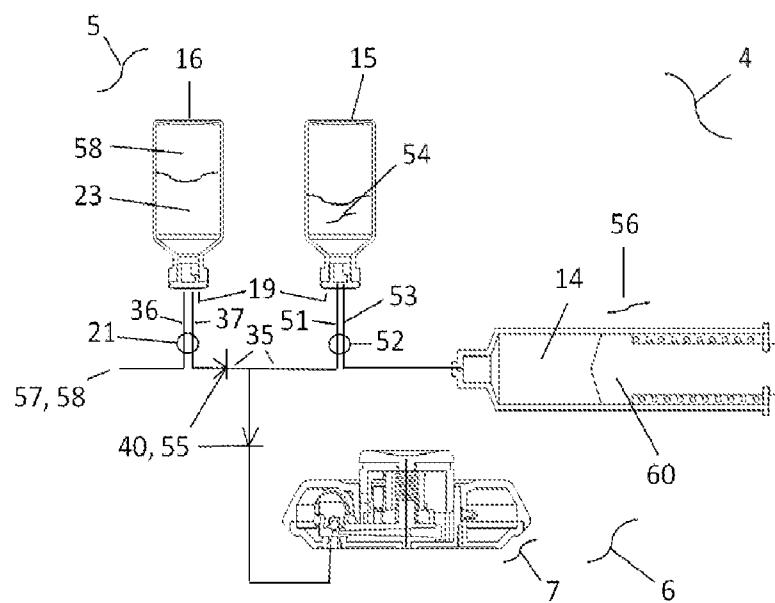



Figure 13




Figure 14

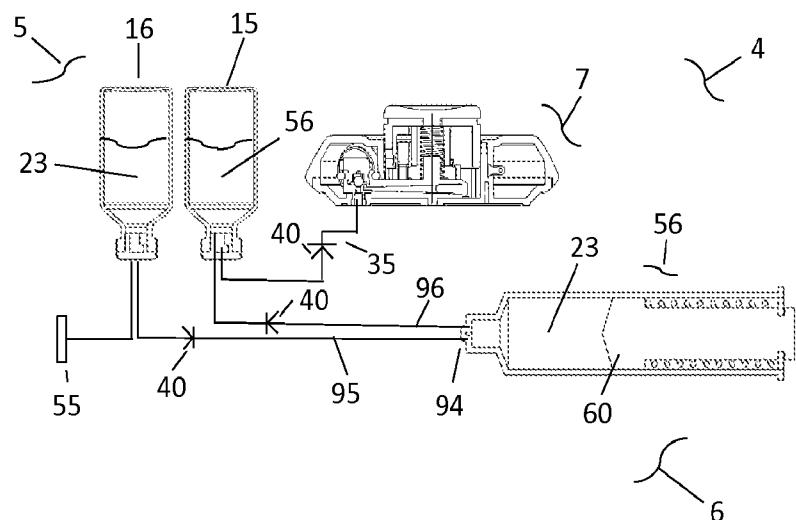



Figure 15

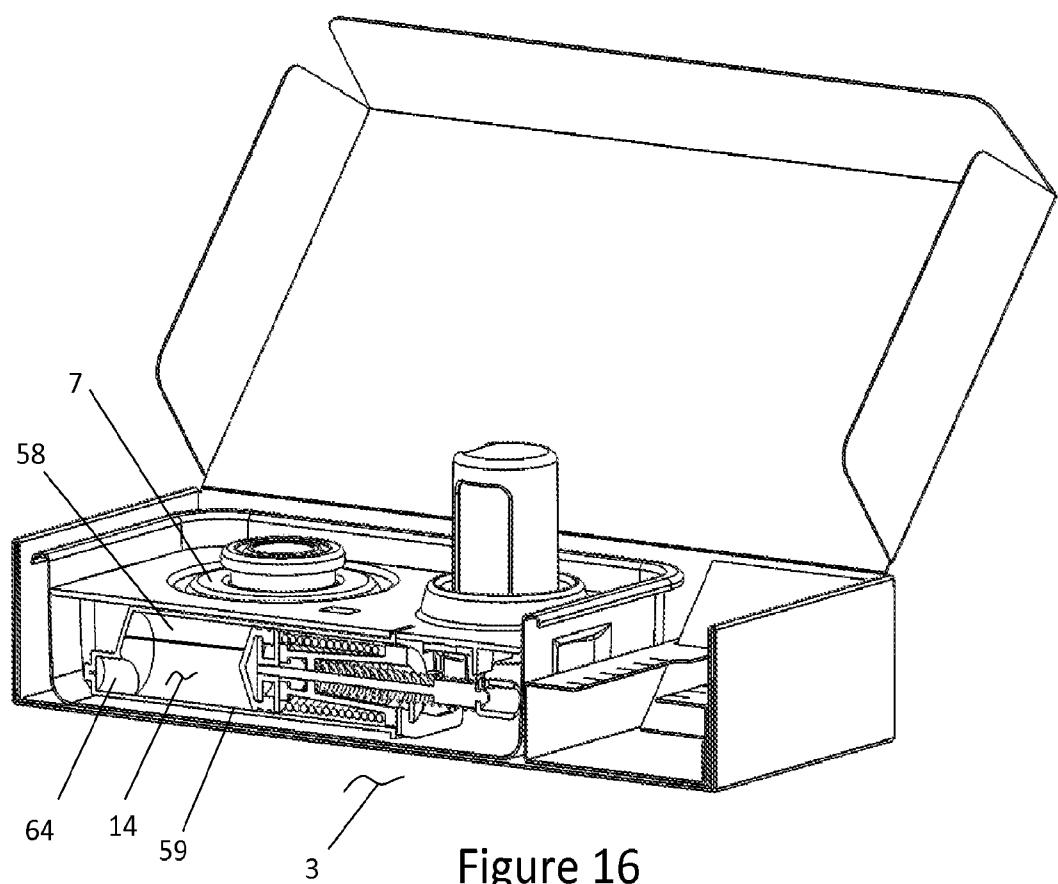



Figure 16

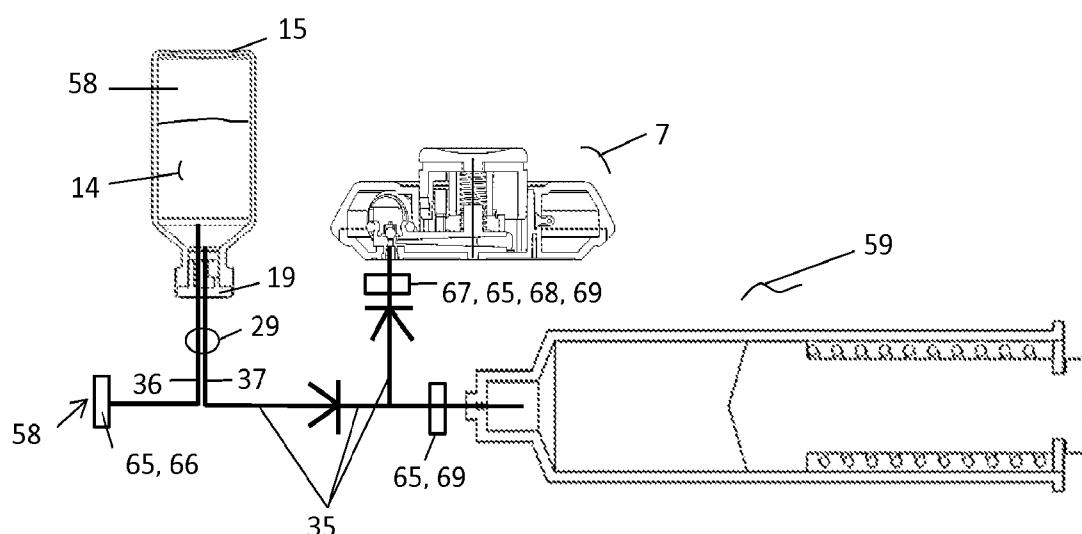



Figure 17

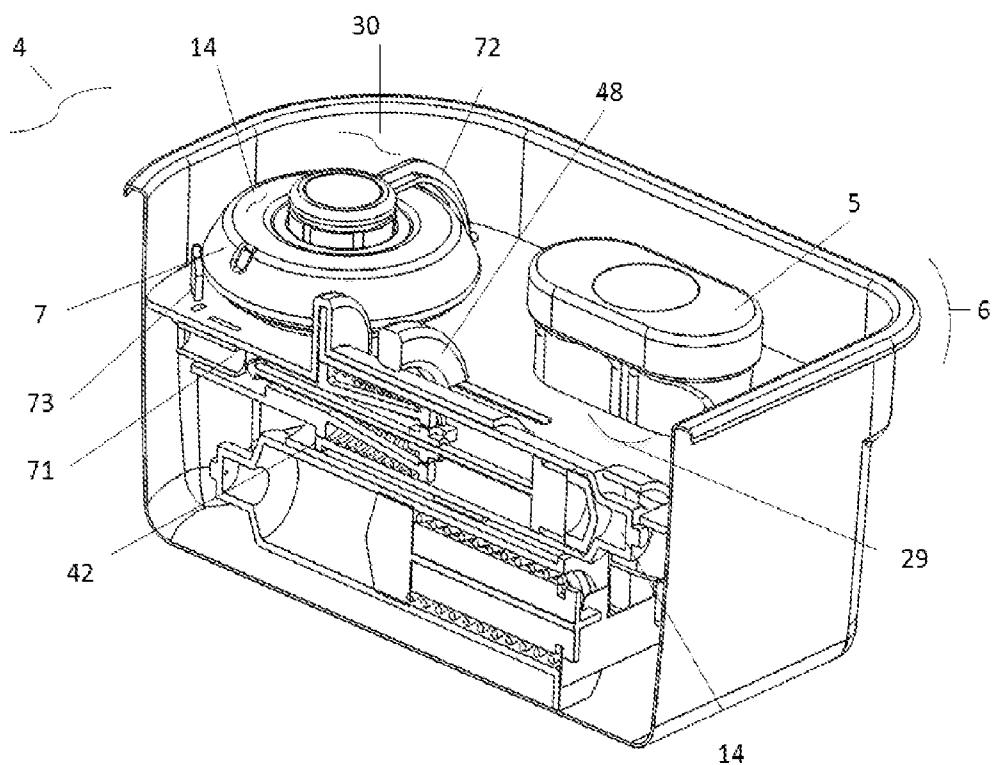



Figure 18

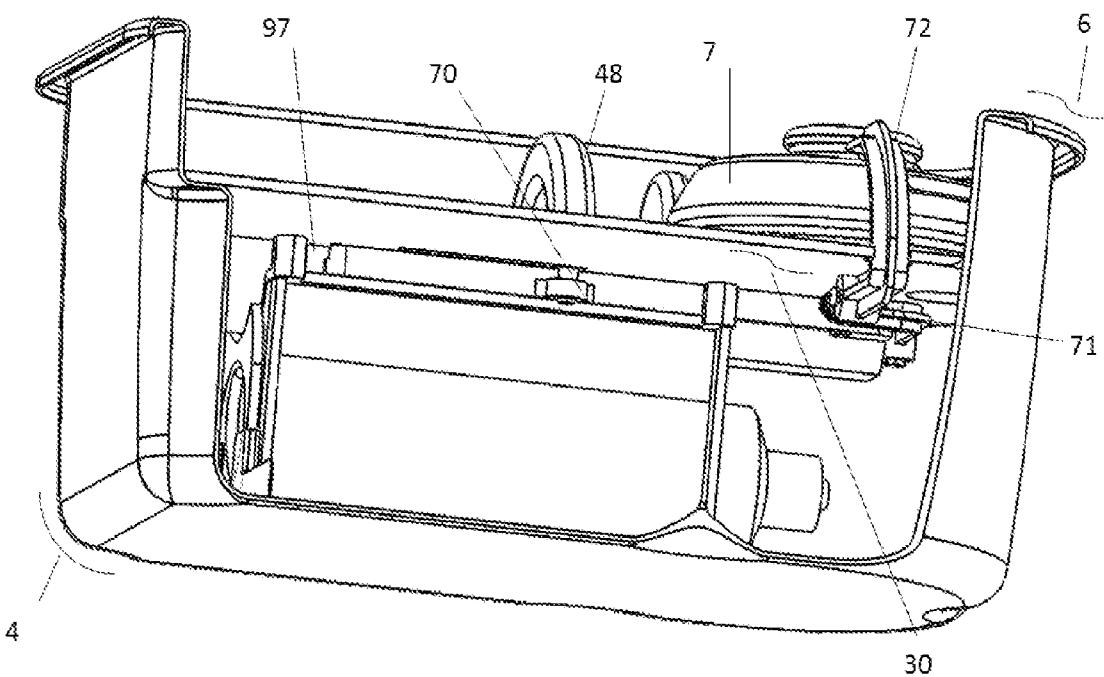



Figure 19

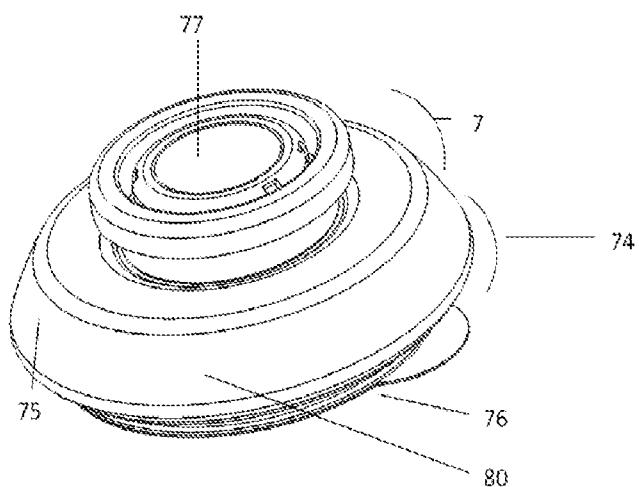



Figure 20

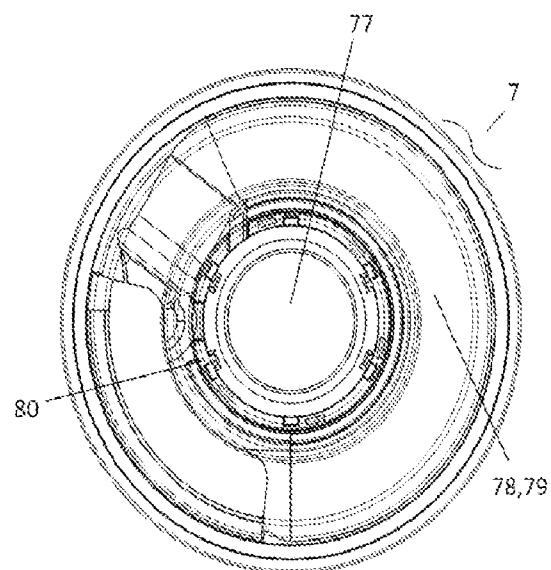



Figure 21

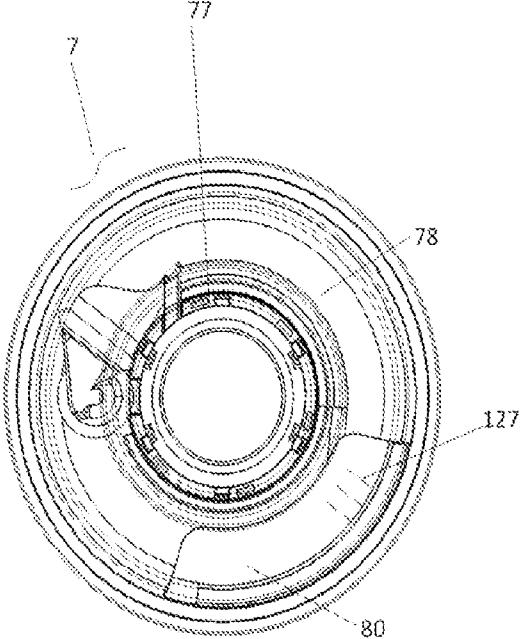
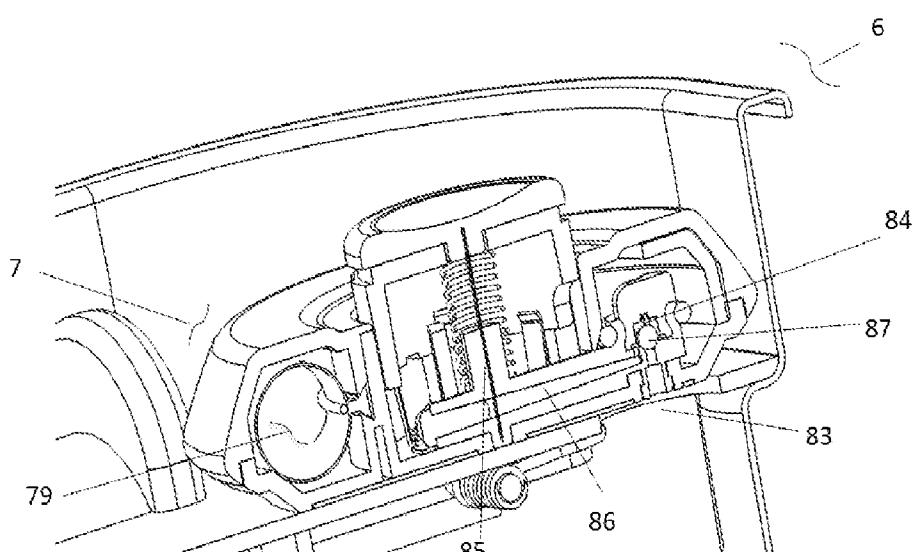
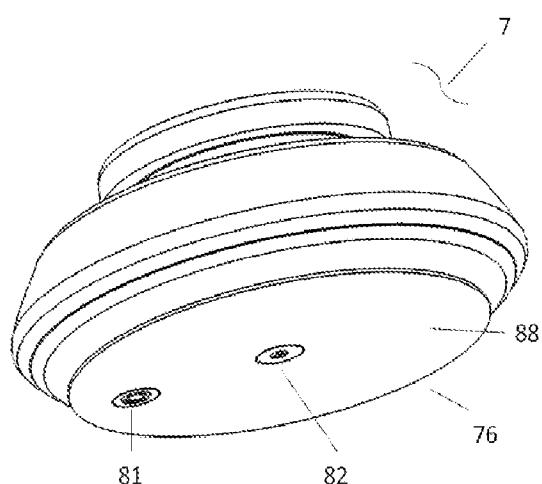
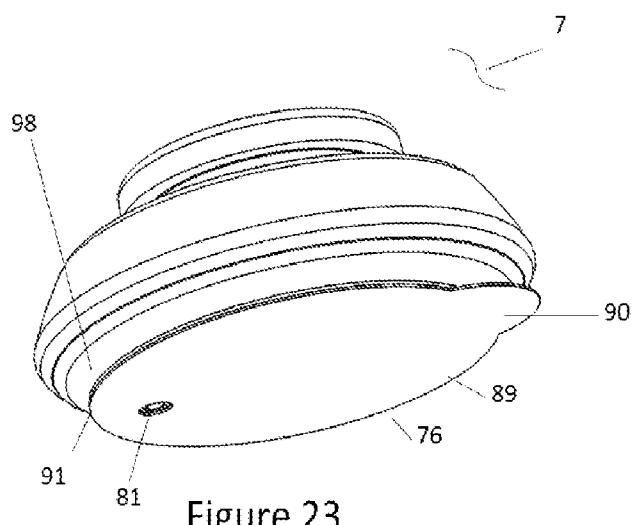






Figure 22



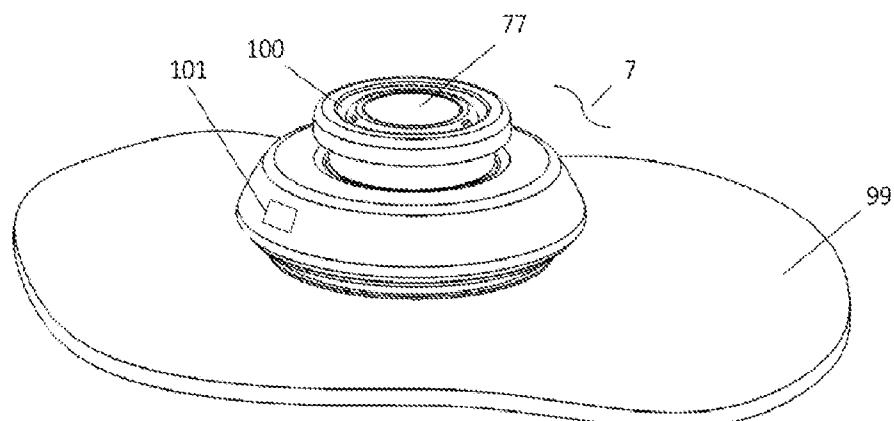



Figure 26

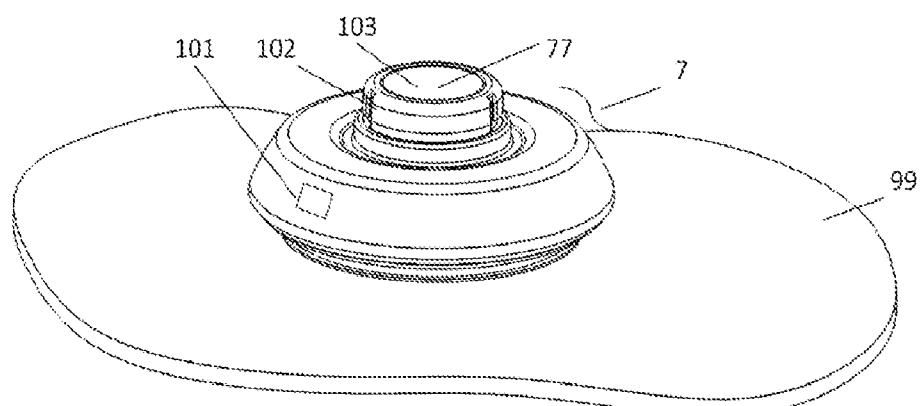



Figure 27

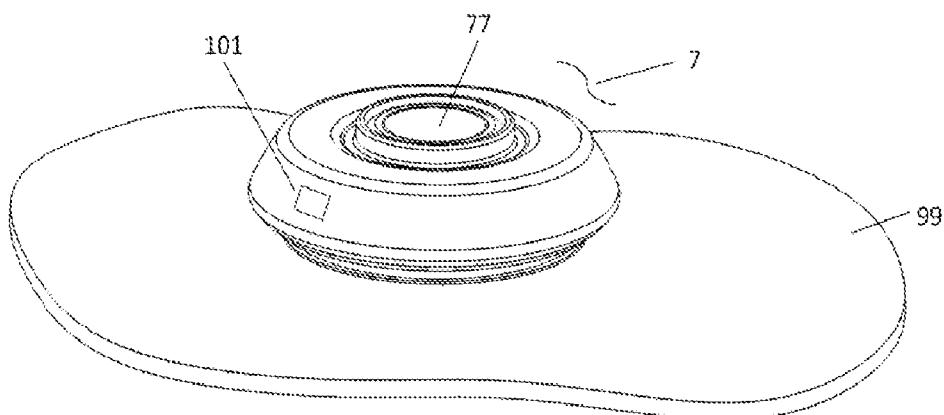



Figure 28

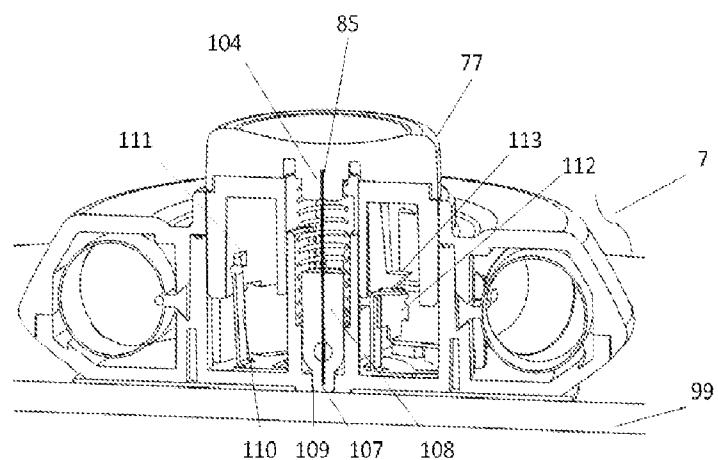



Figure 29

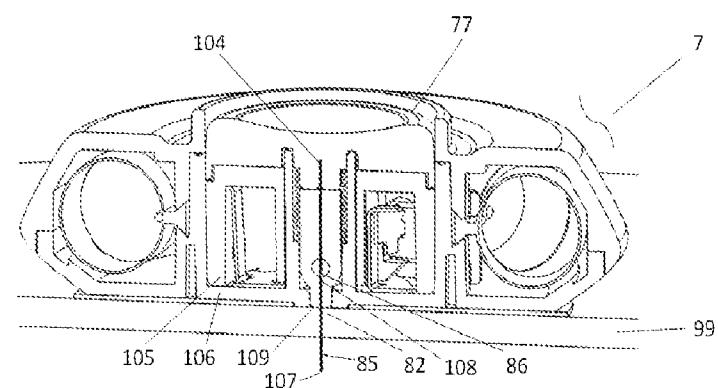



Figure 30

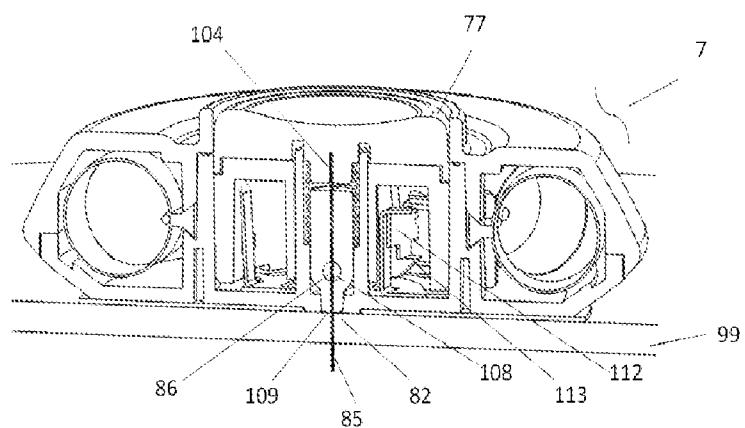



Figure 31

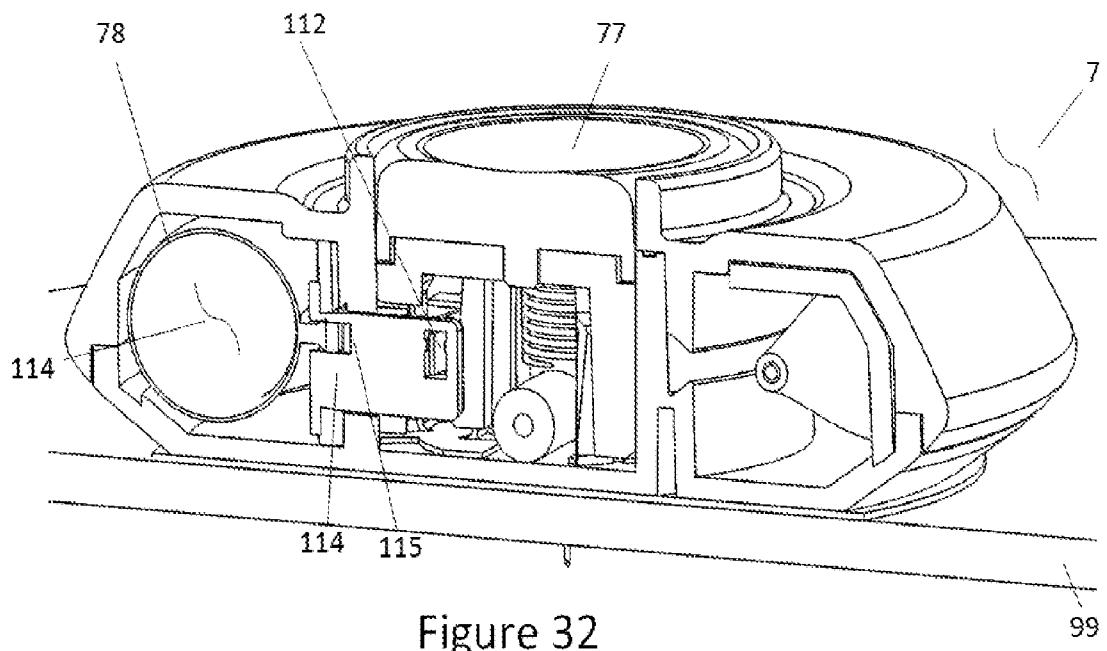



Figure 32

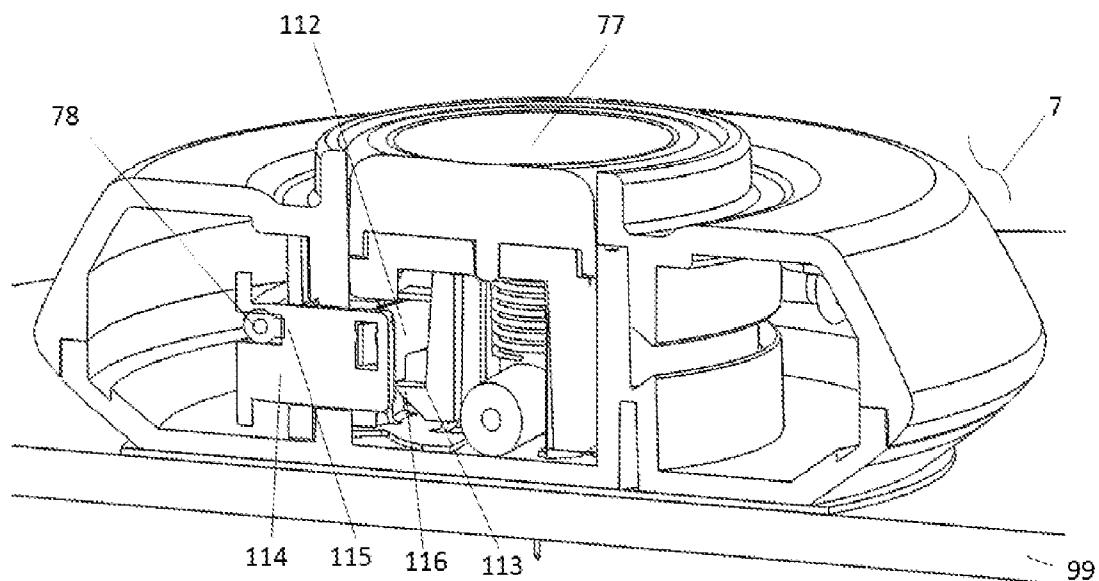



Figure 33

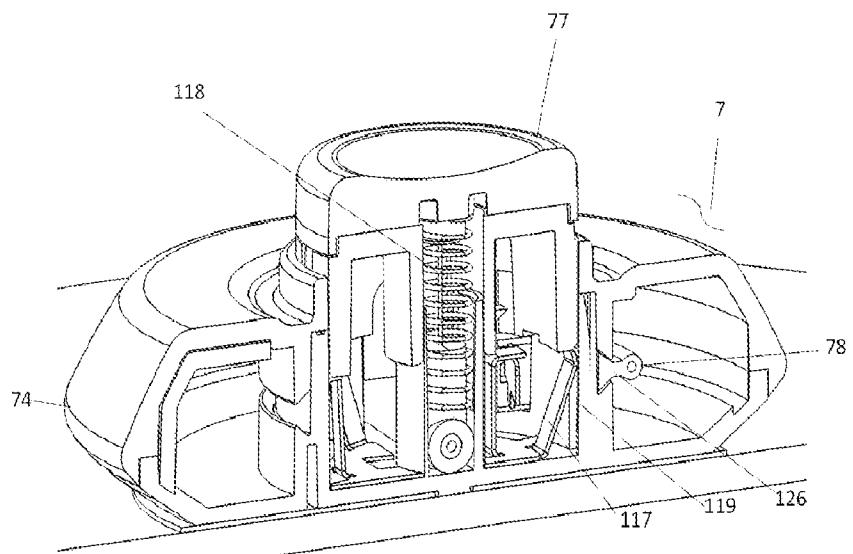



Figure 34

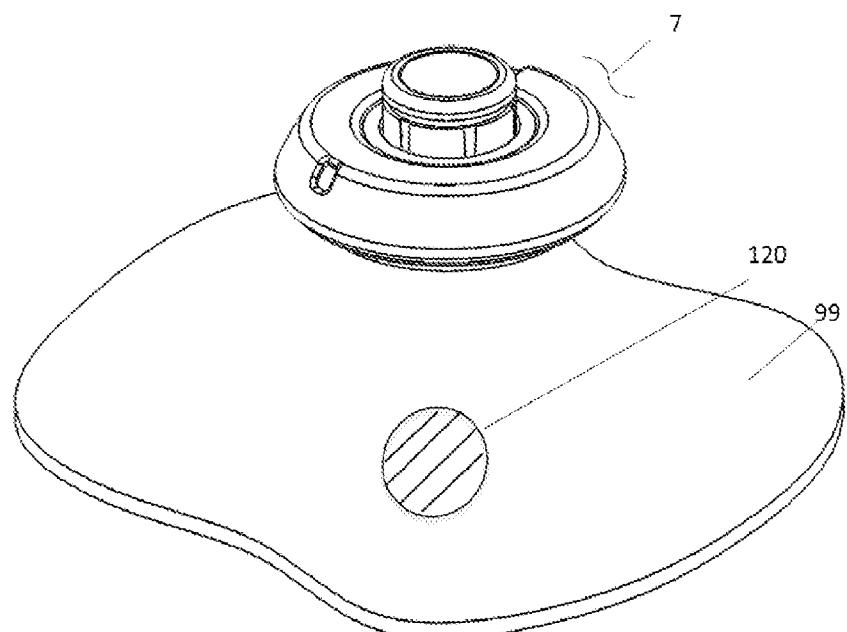



Figure 35

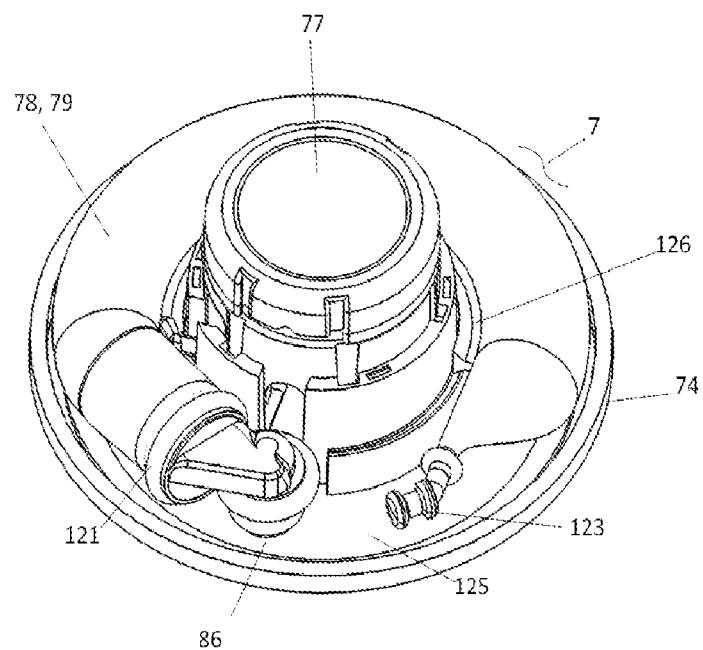



Figure 36

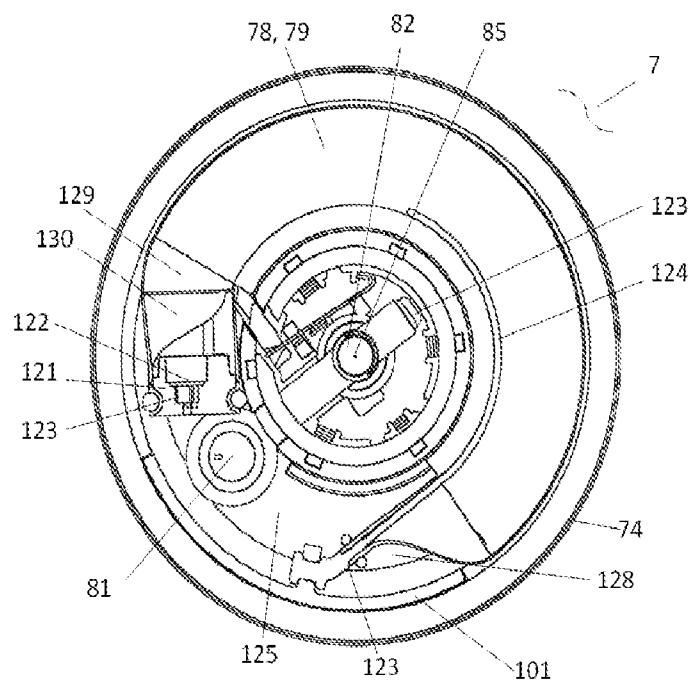



Figure 37

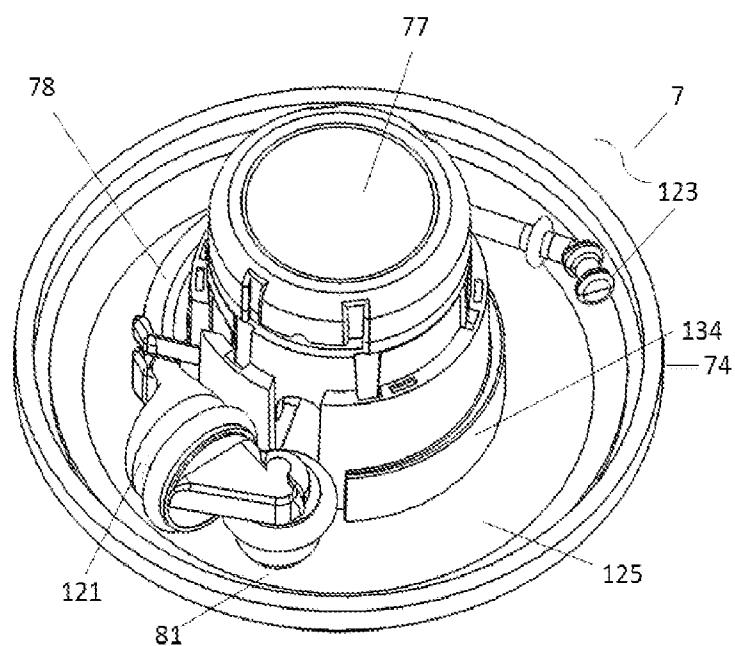



Figure 38

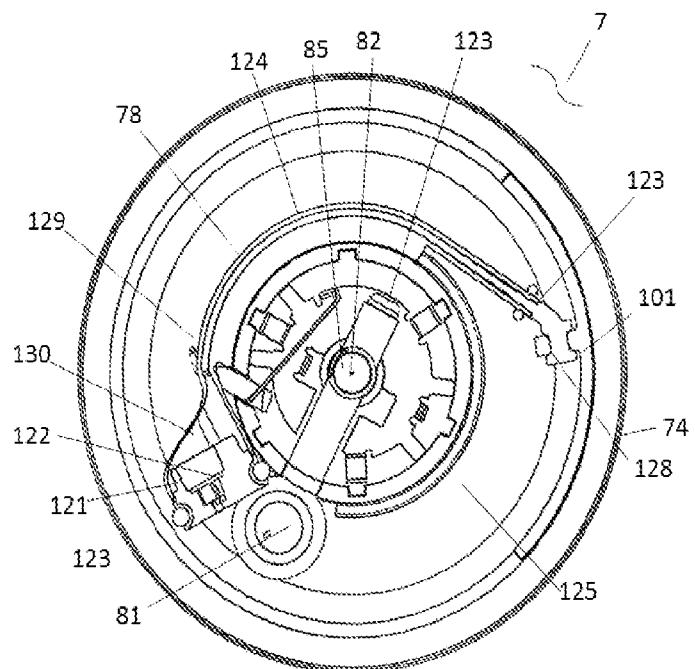



Figure 39

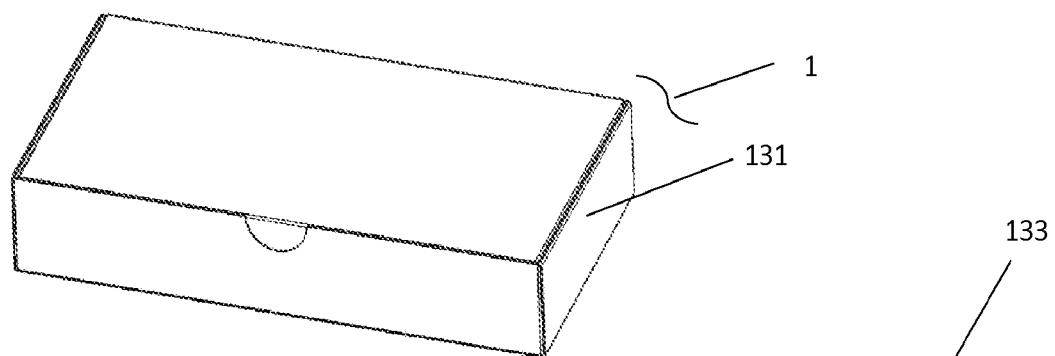



Figure 40

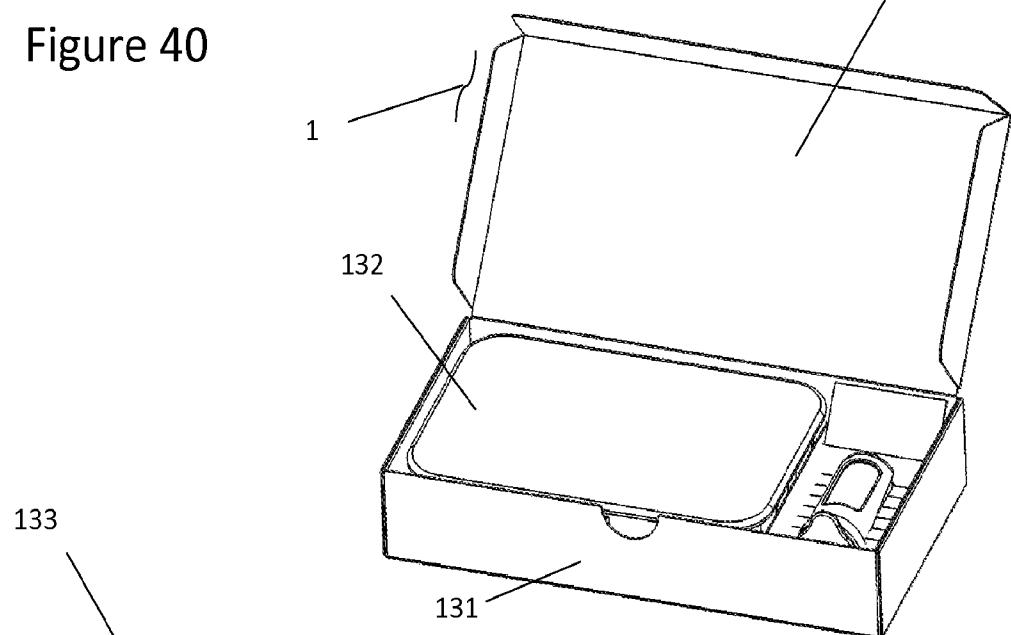



Figure 41

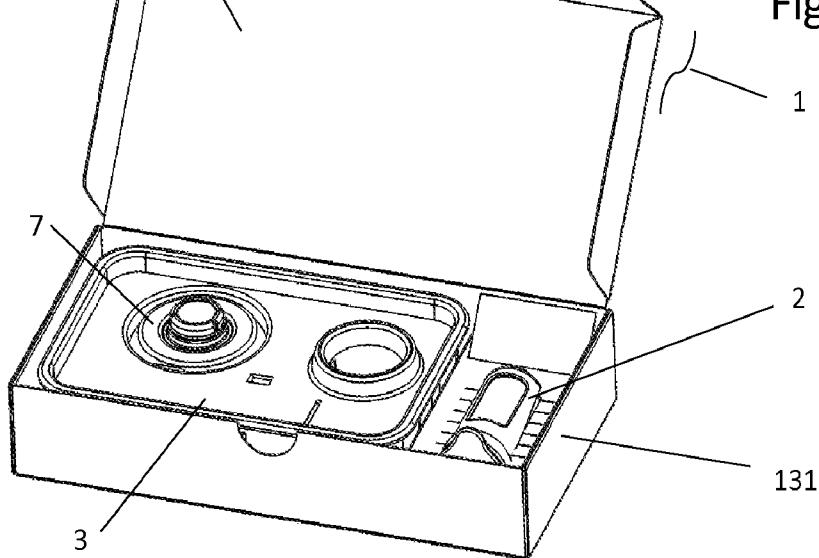



Figure 42

20/44

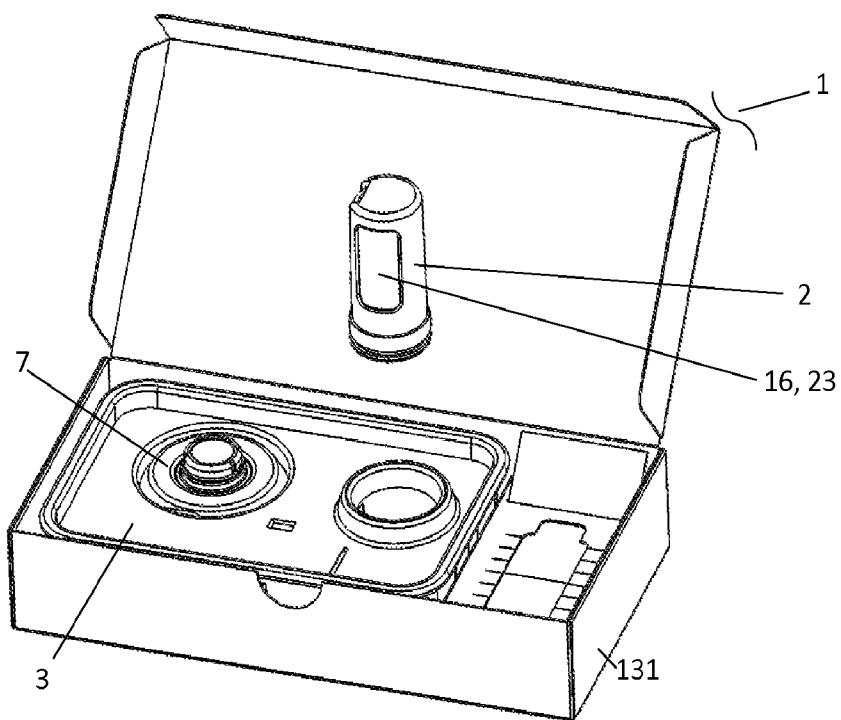



Figure 43

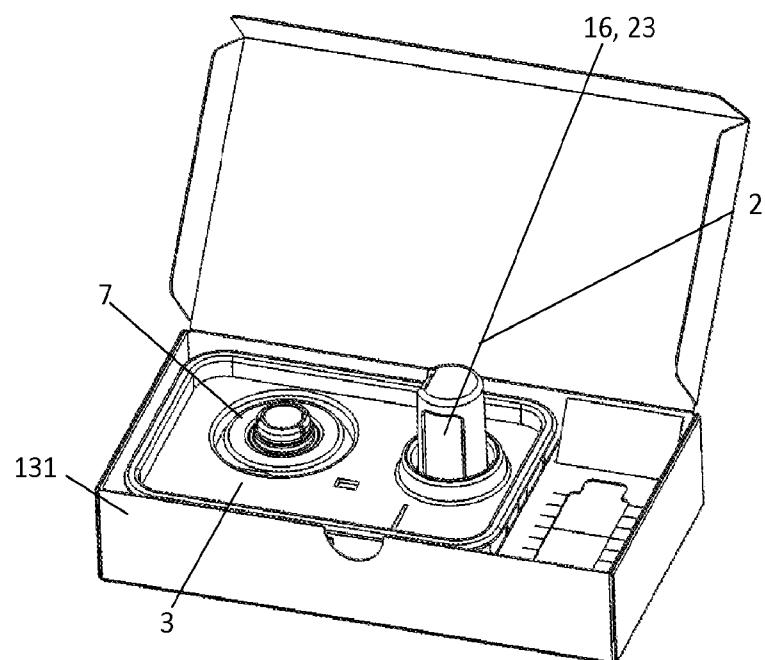



Figure 44

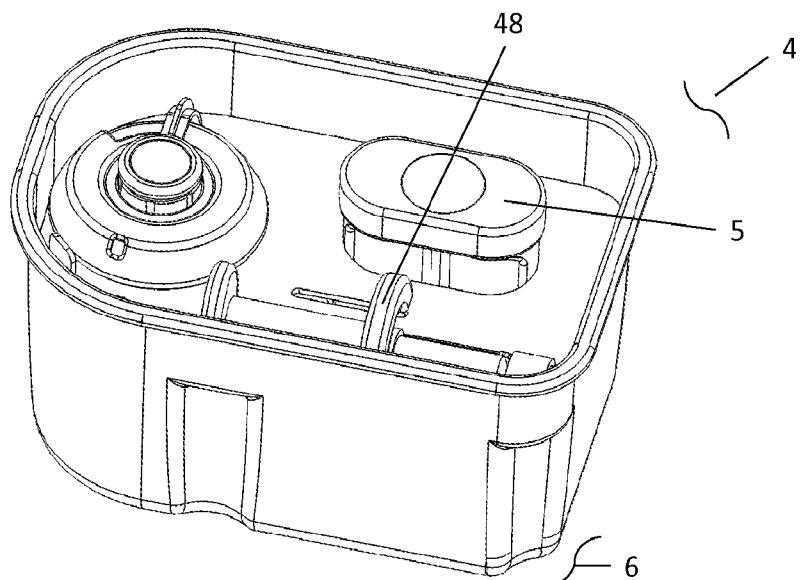



Figure 45



Figure 46

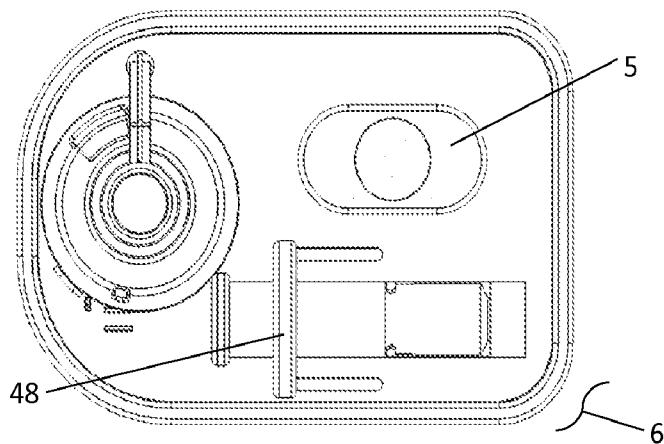



Figure 47

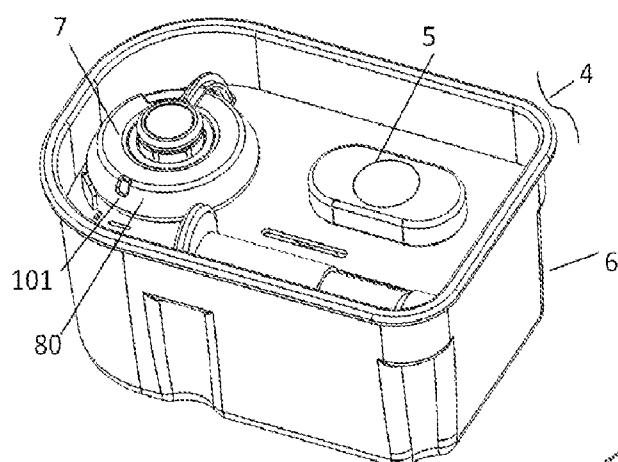



Figure 48

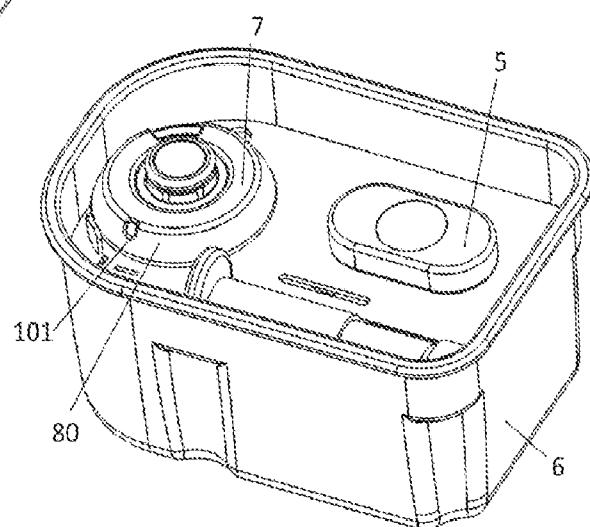



Figure 49

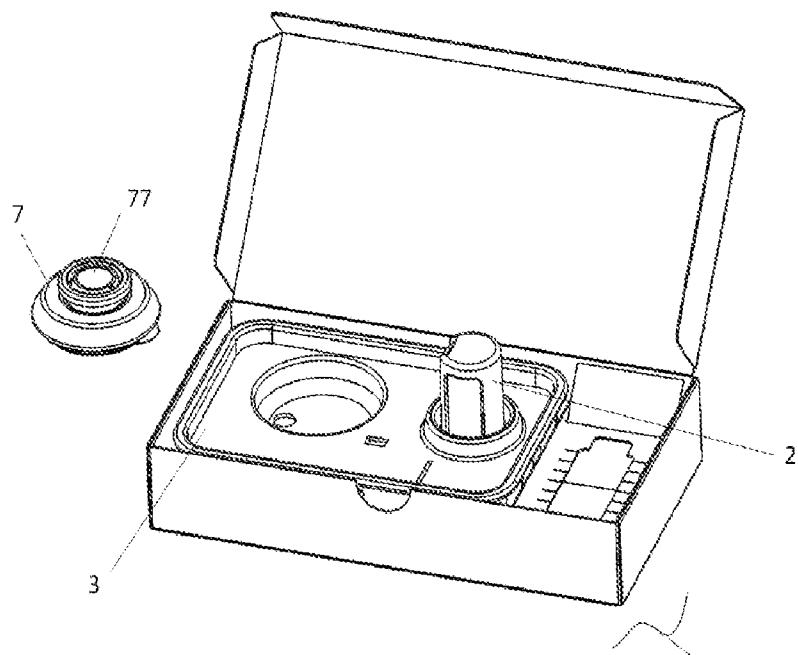



Figure 50

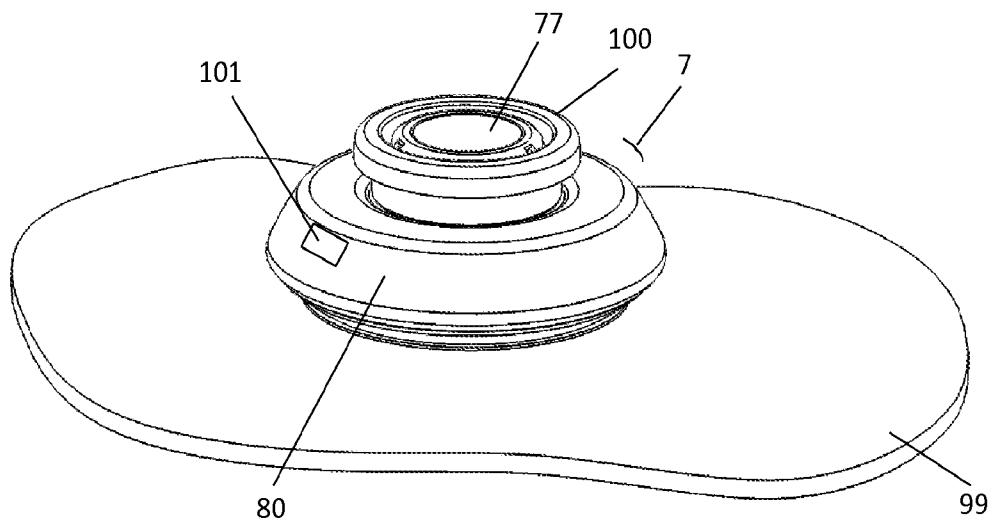



Figure 51

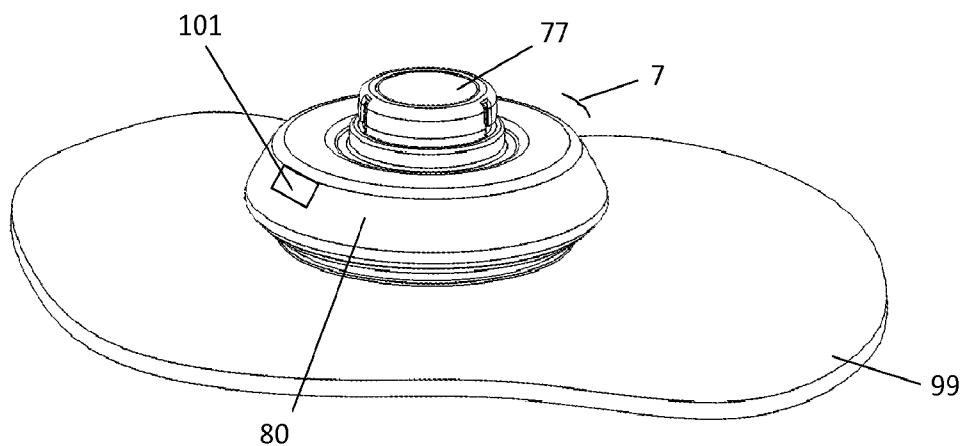



Figure 52

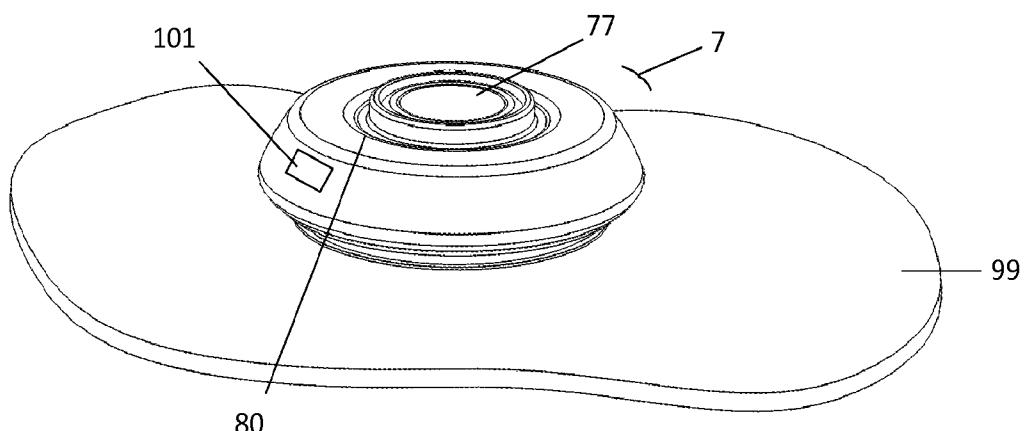



Figure 53

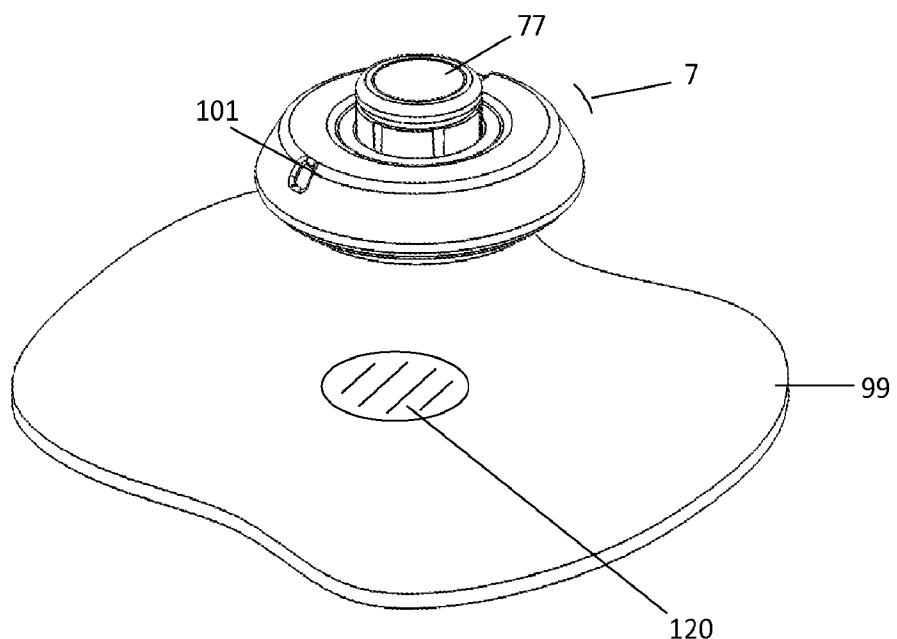



Figure 54

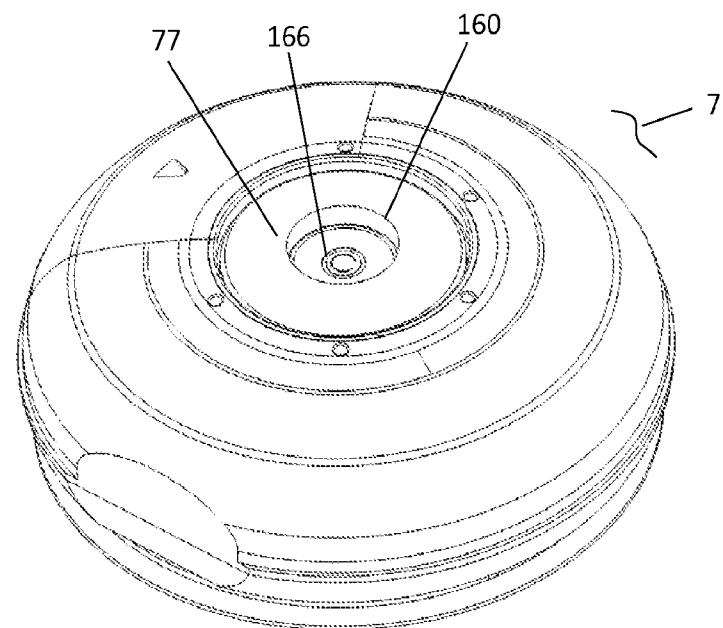



Figure 55

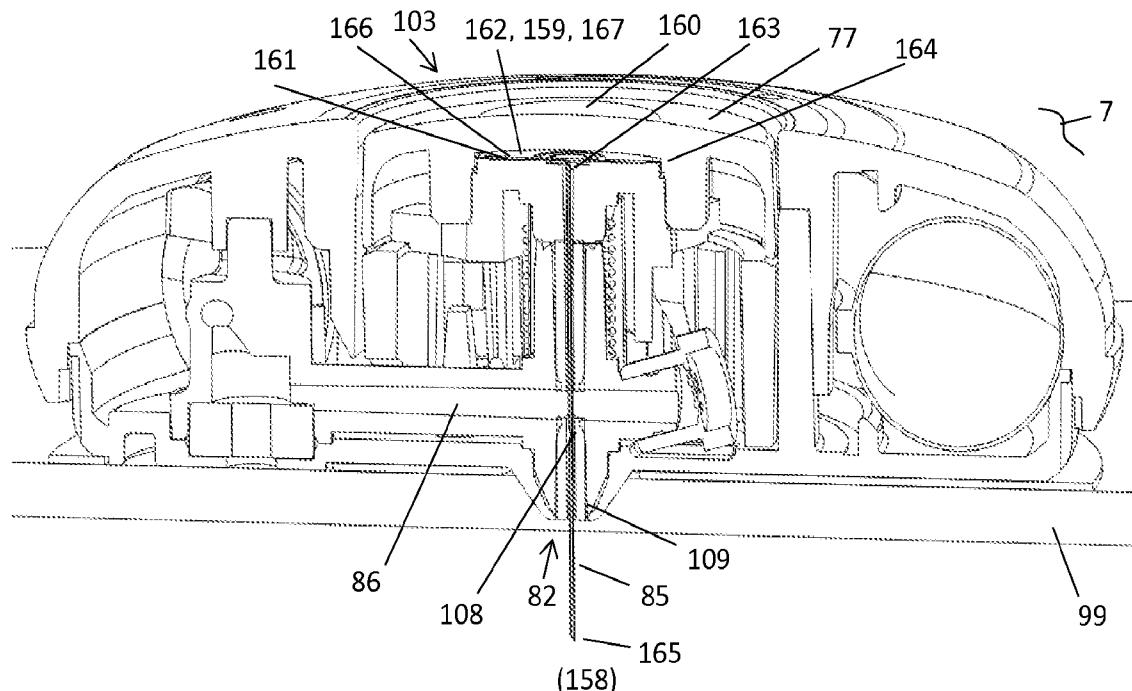



Figure 56

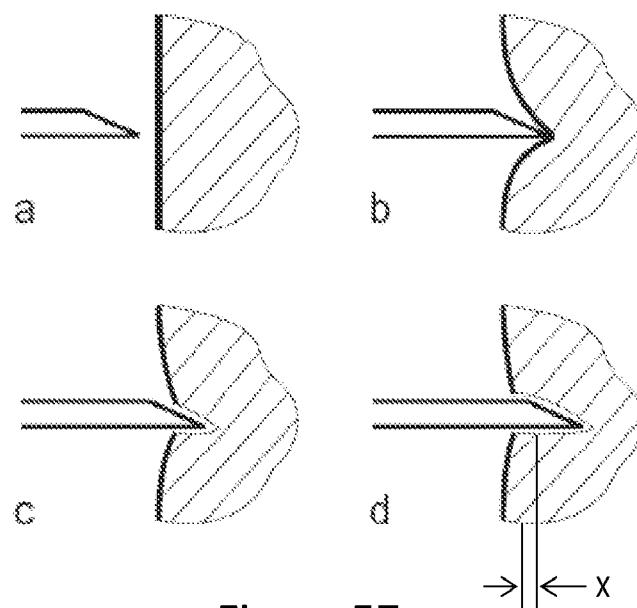



Figure 57

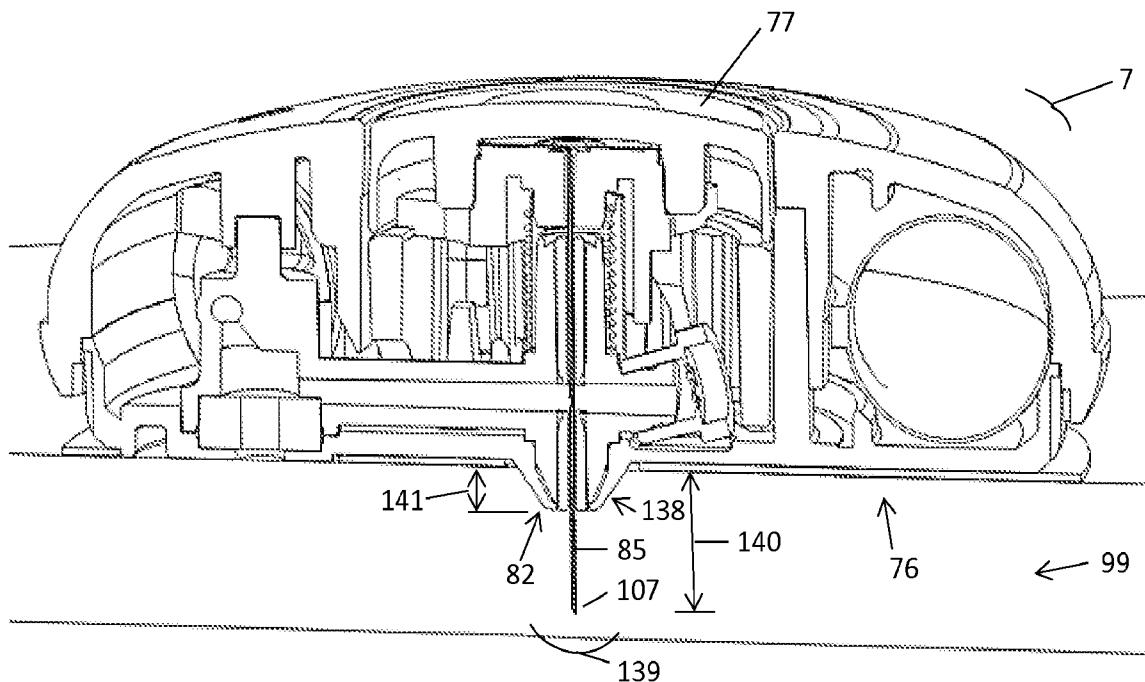



Figure 58

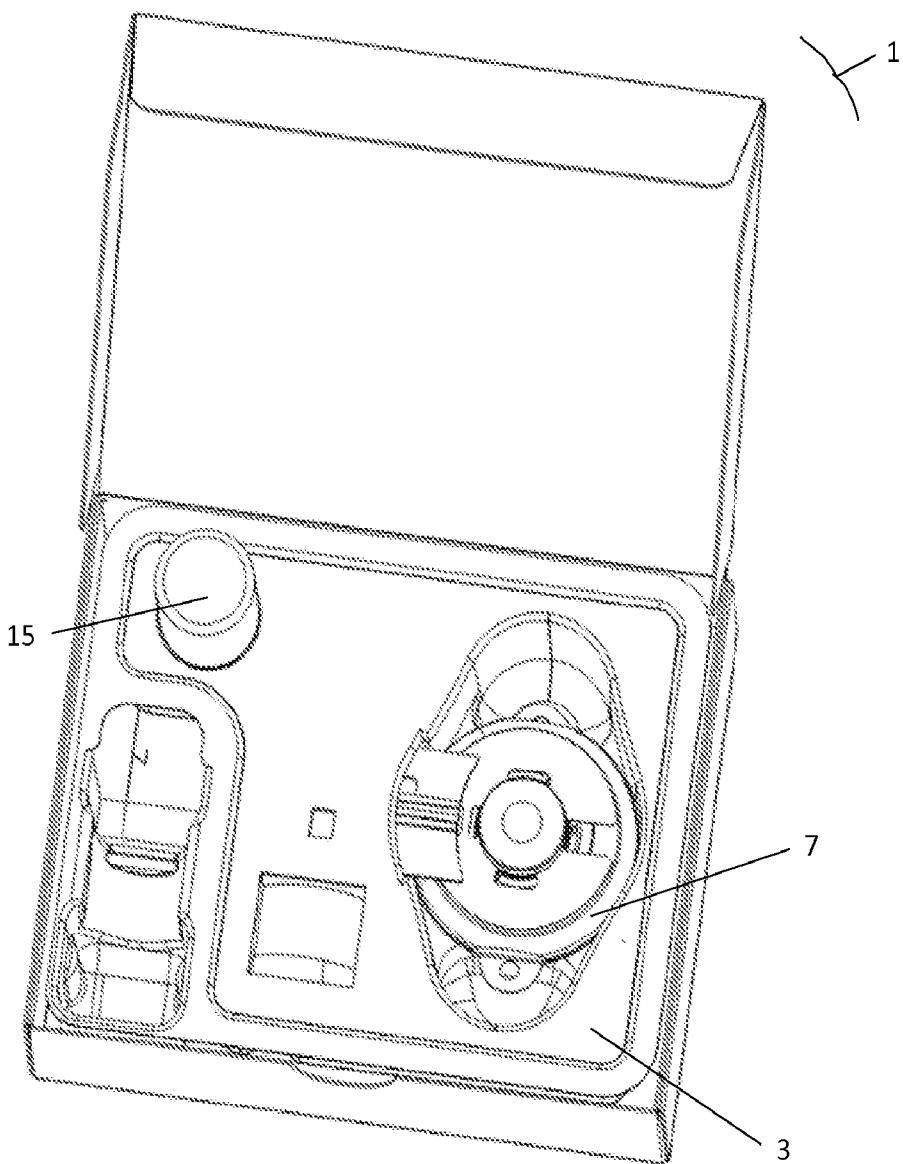



Figure 59

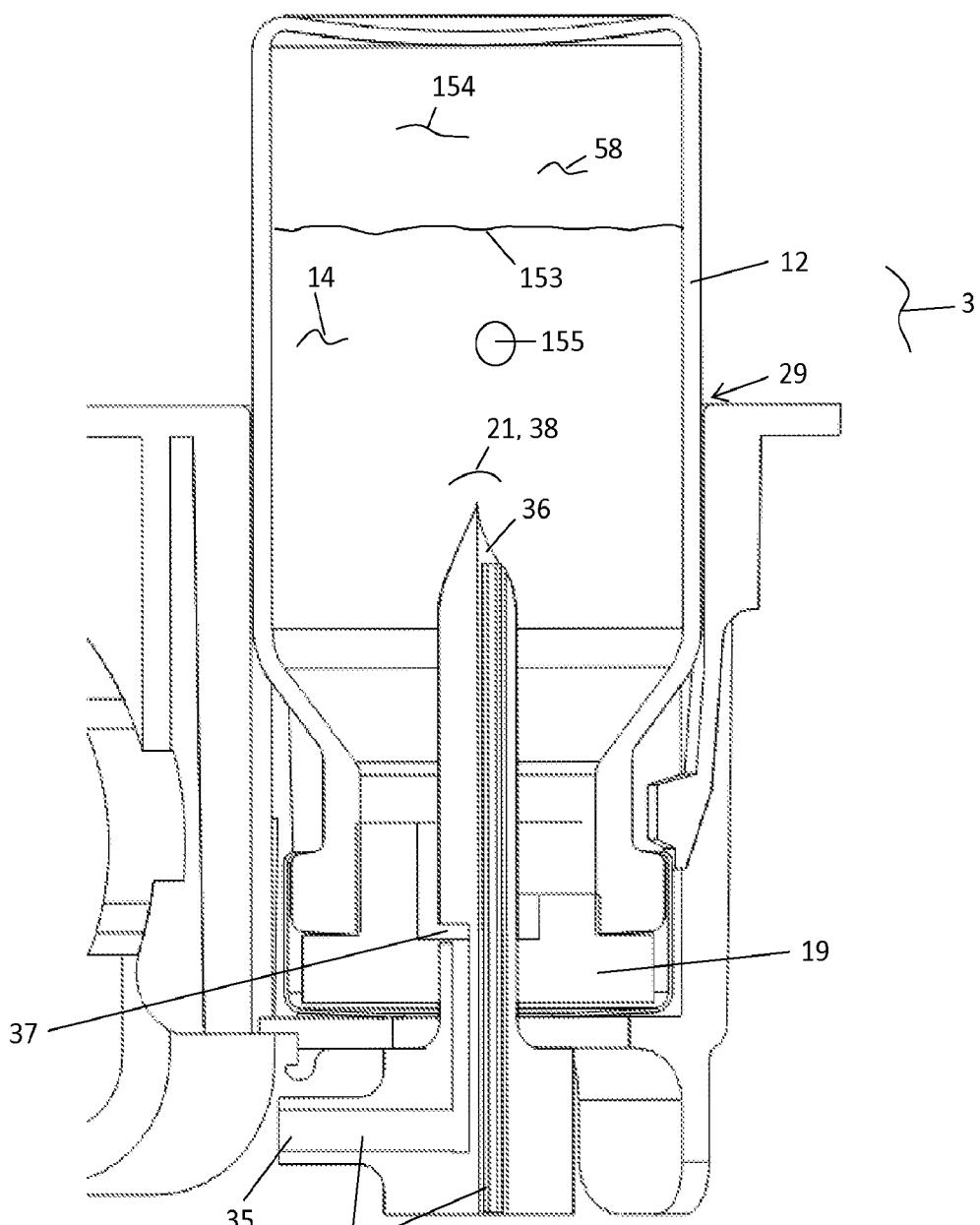



Figure 60

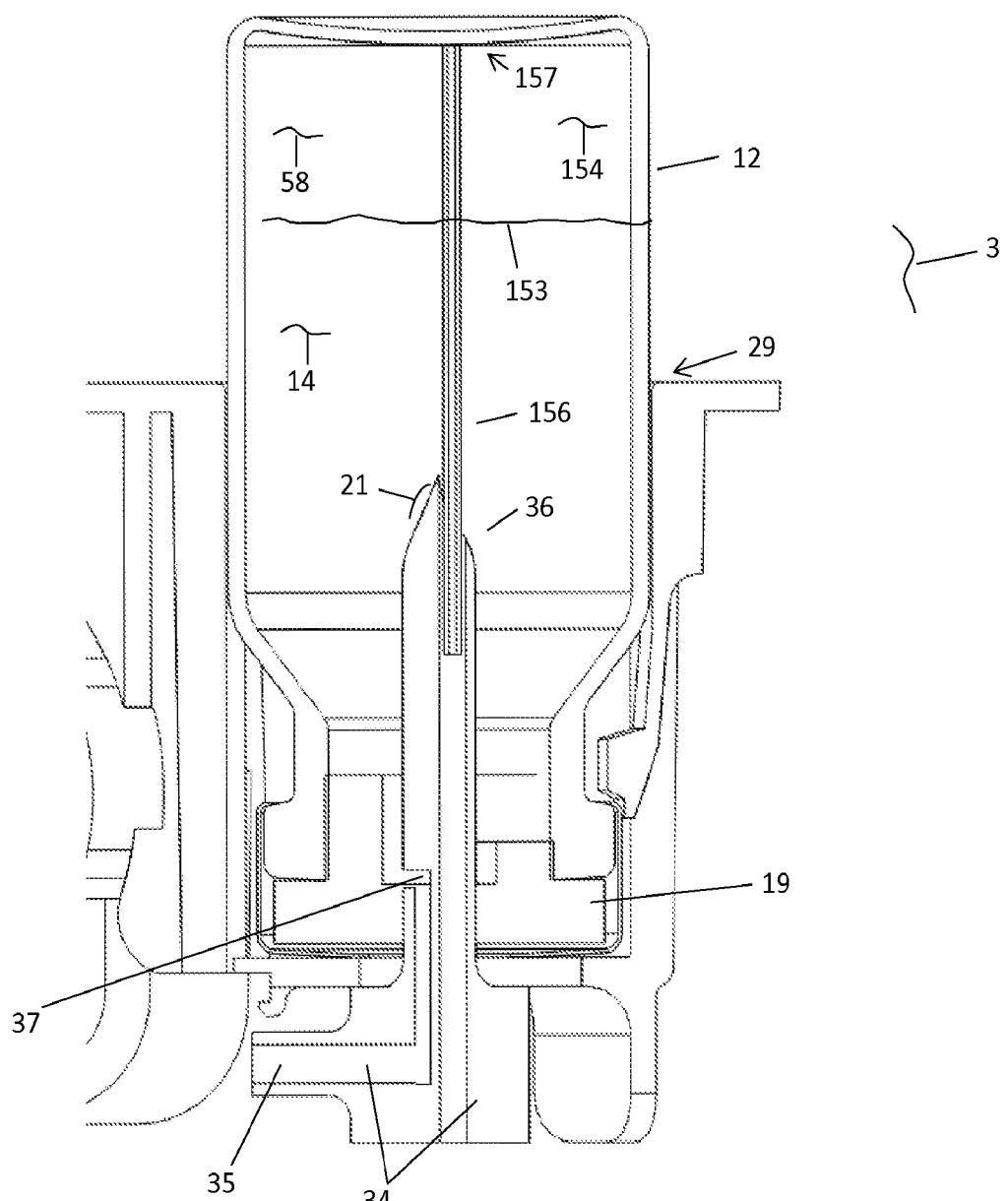



Figure 61

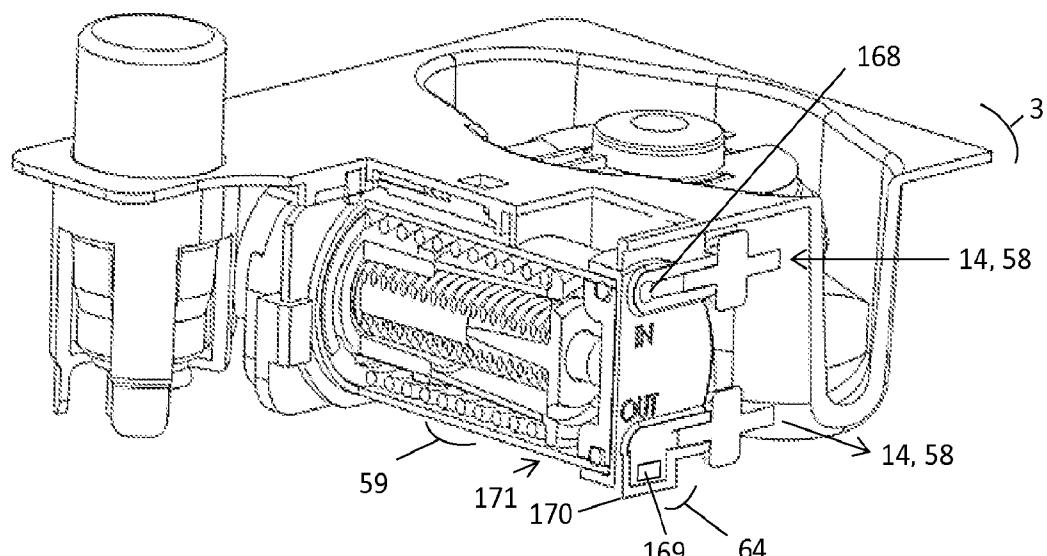



Figure 62

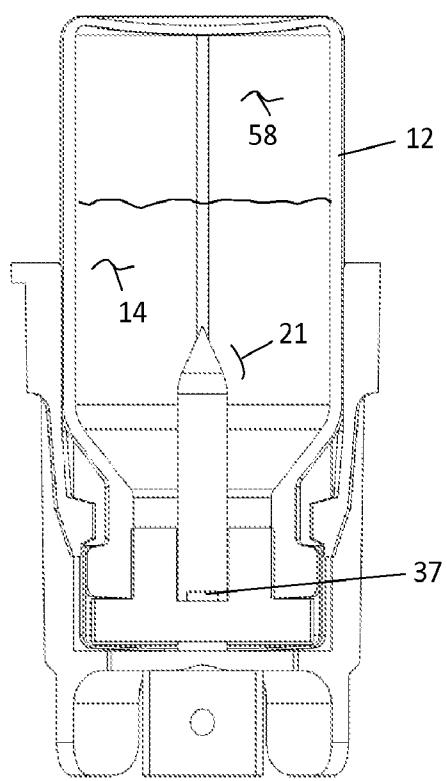



Figure 63

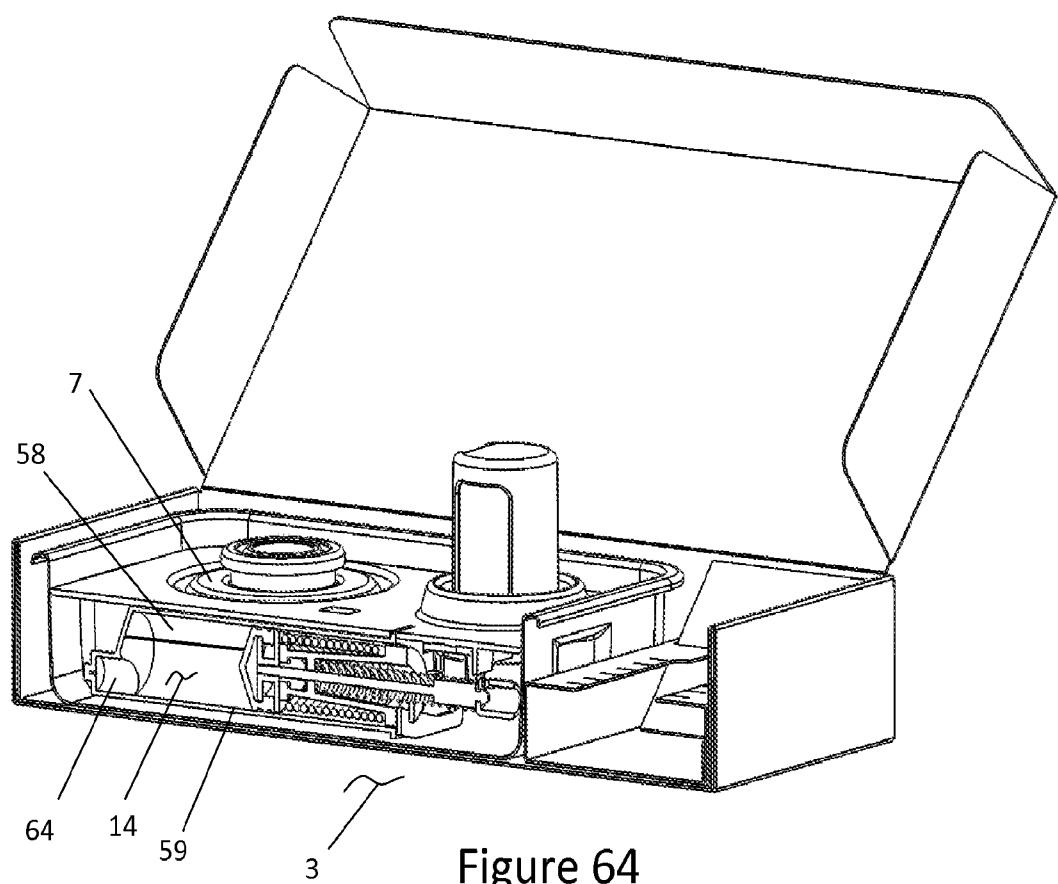



Figure 64

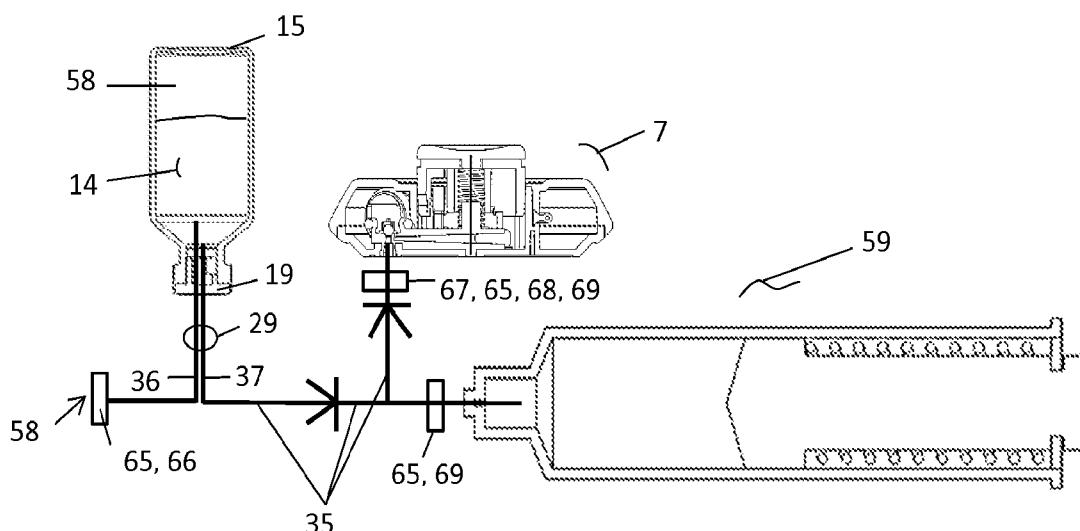



Figure 65

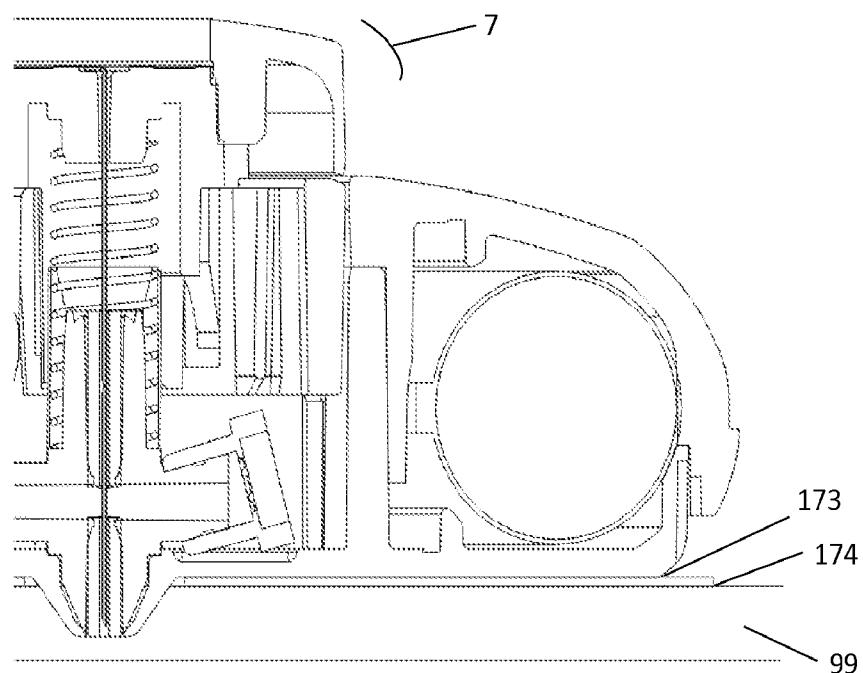



Figure 66

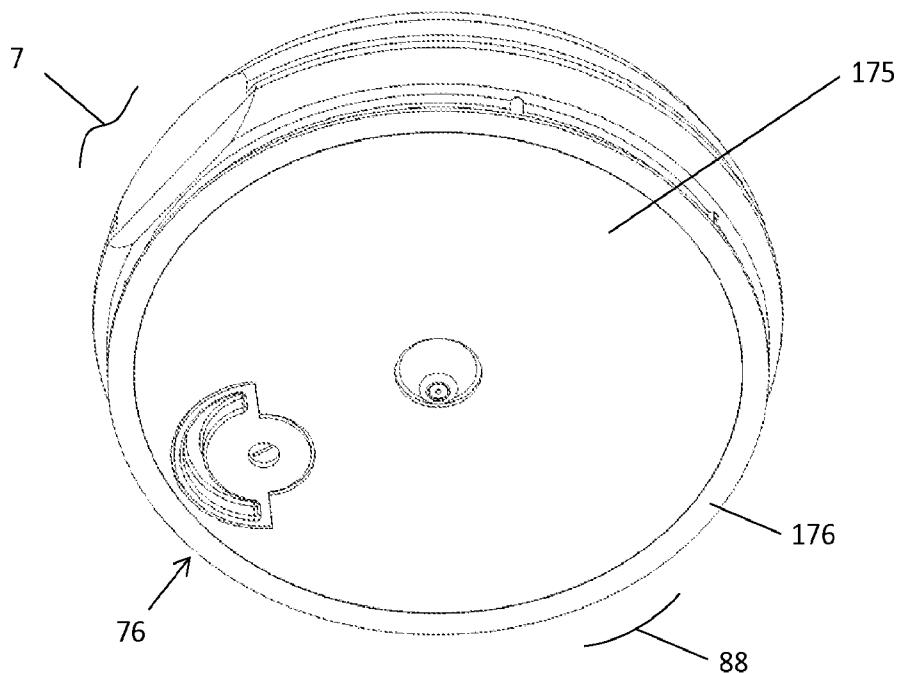



Figure 67

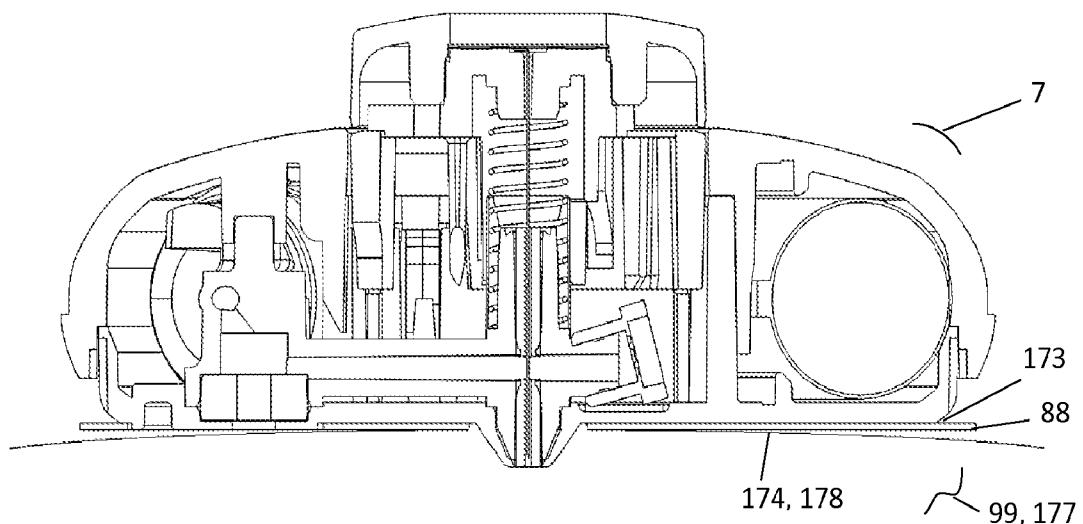



Figure 68

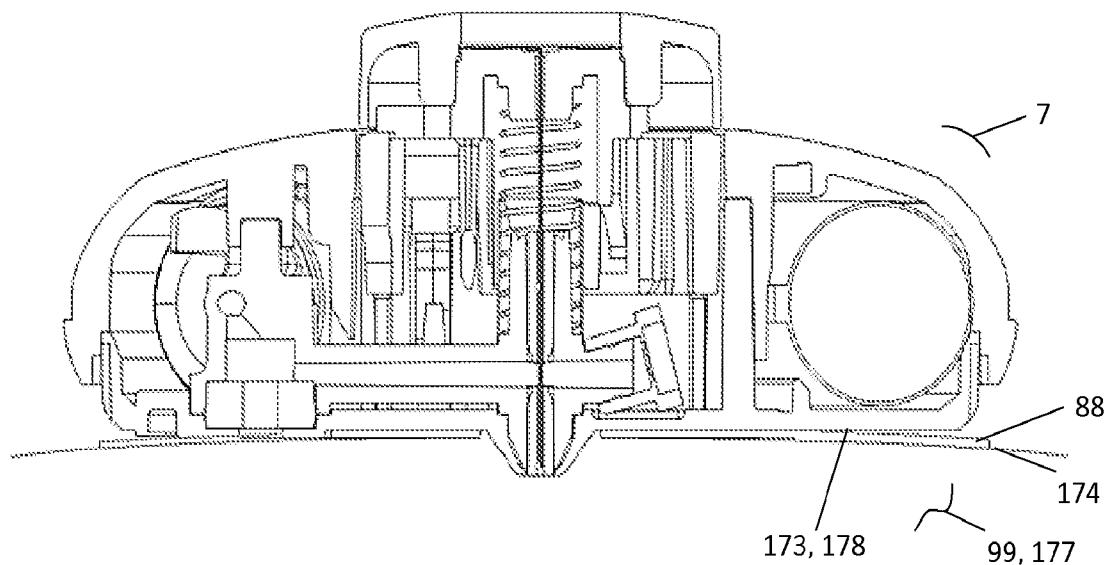



Figure 69

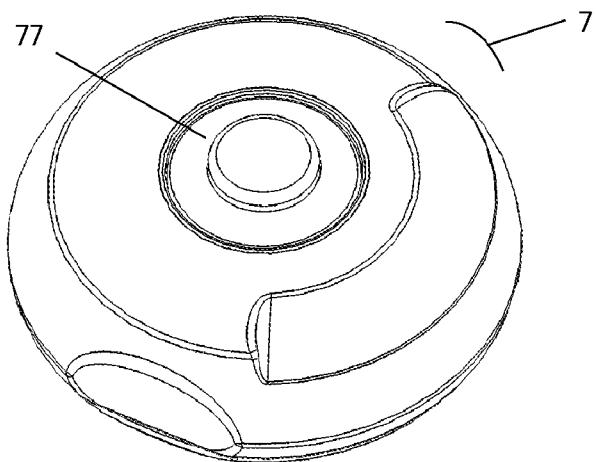



Figure 70

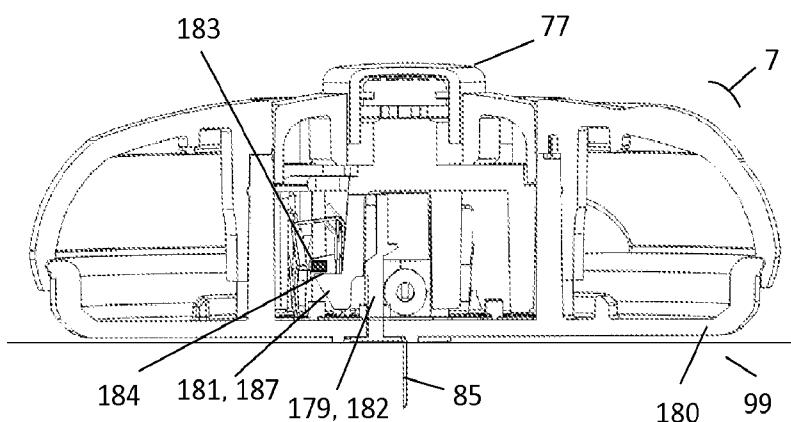



Figure 71

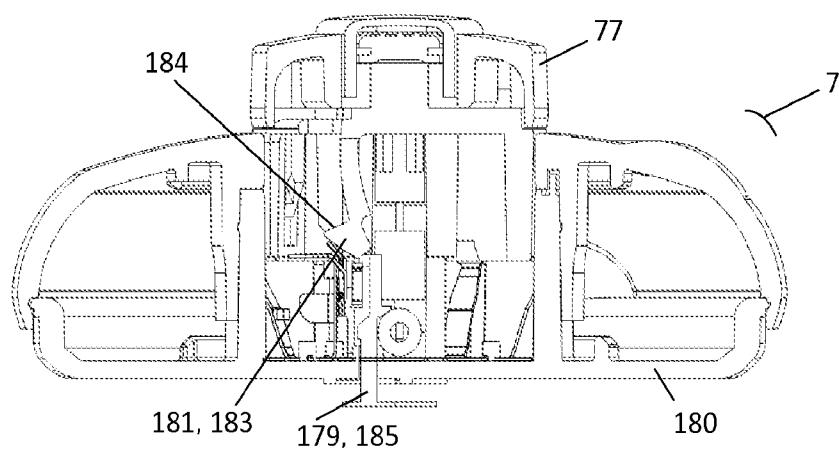



Figure 72

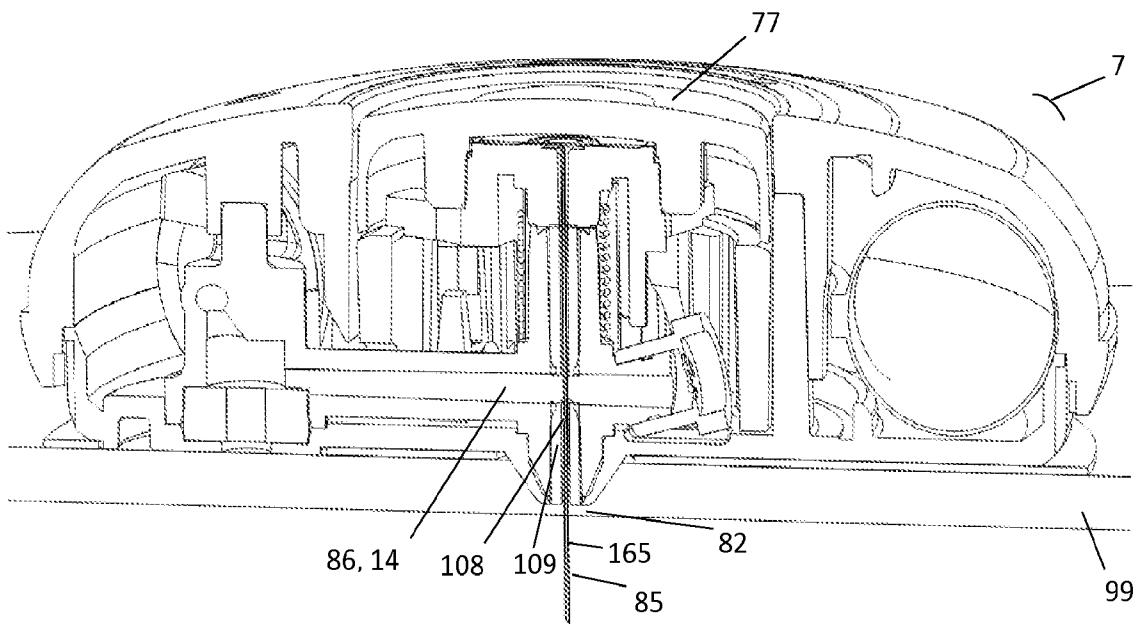



Figure 73

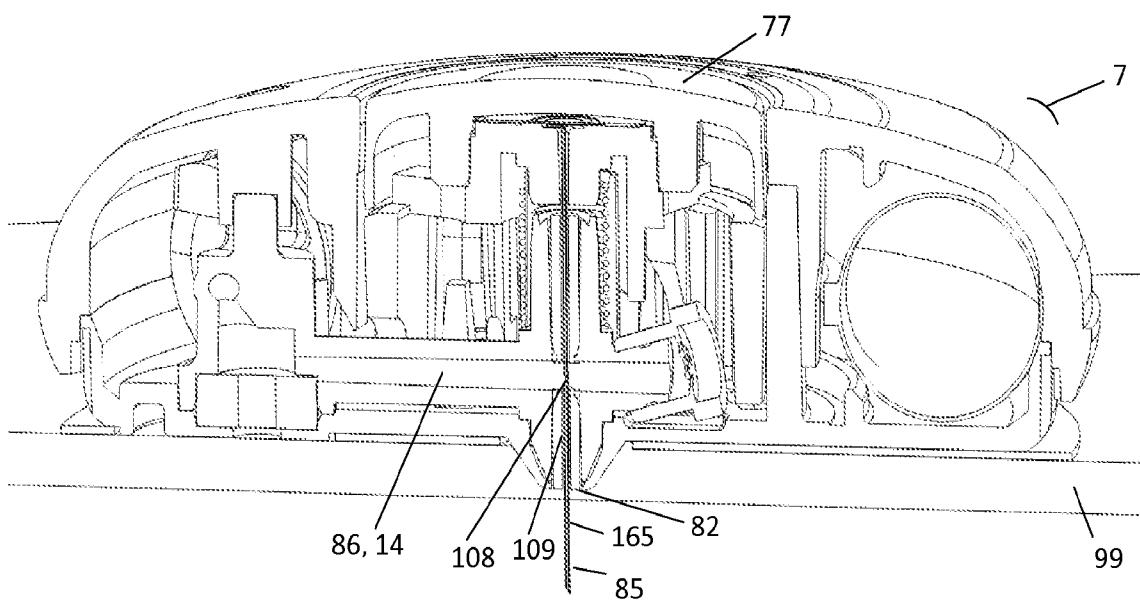



Figure 74

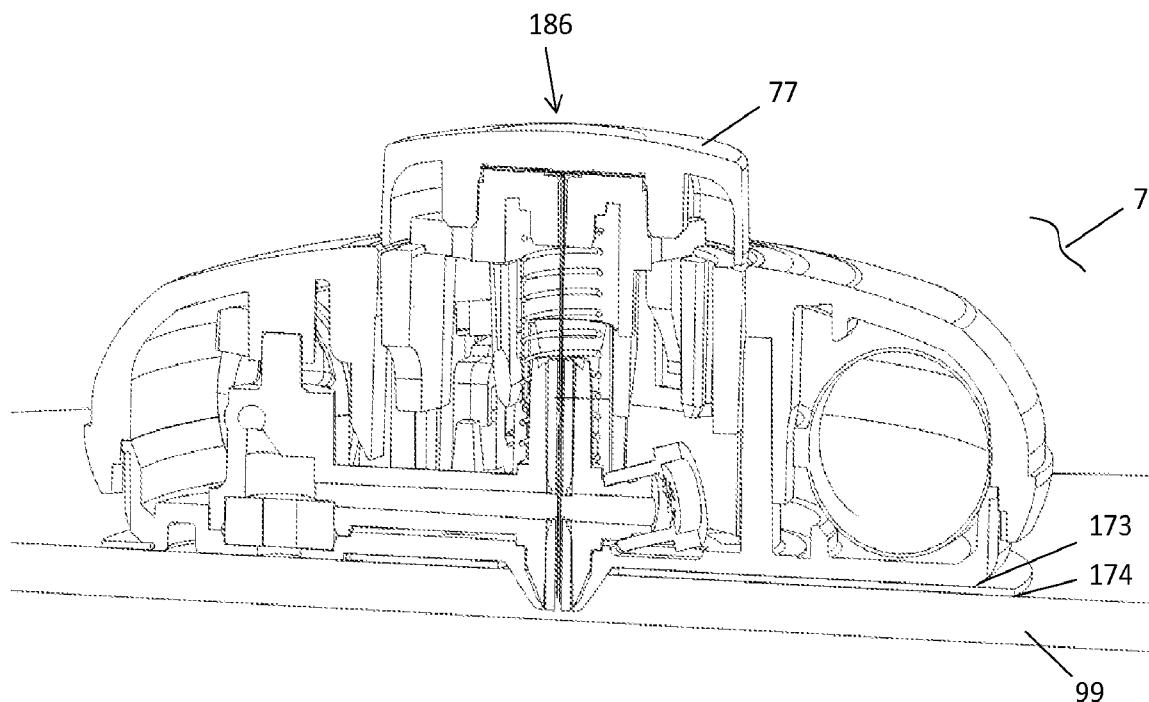



Figure 75

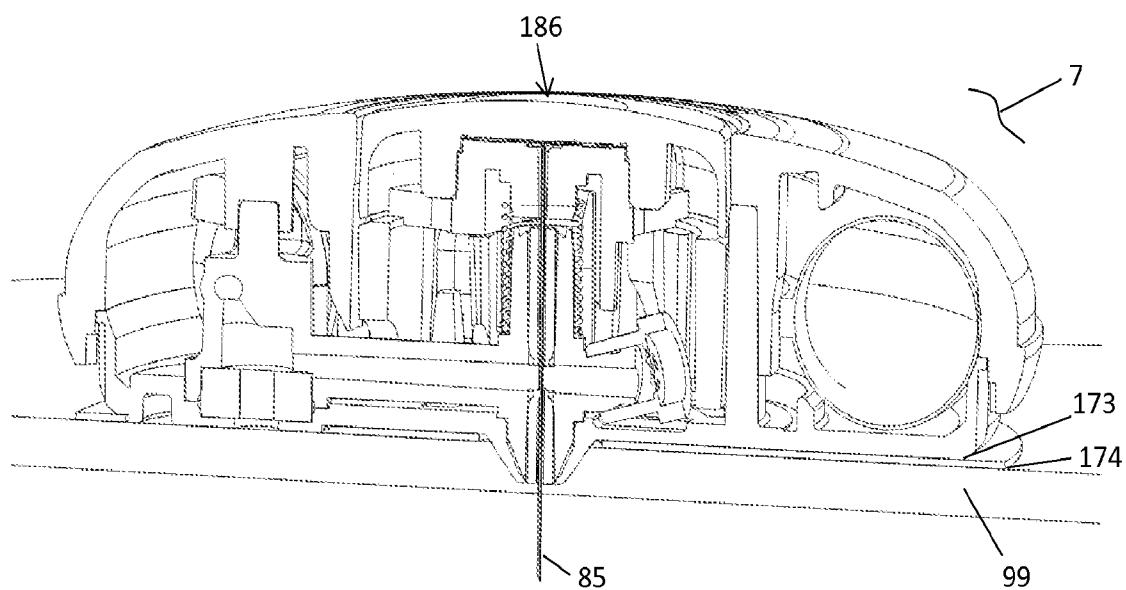



Figure 76

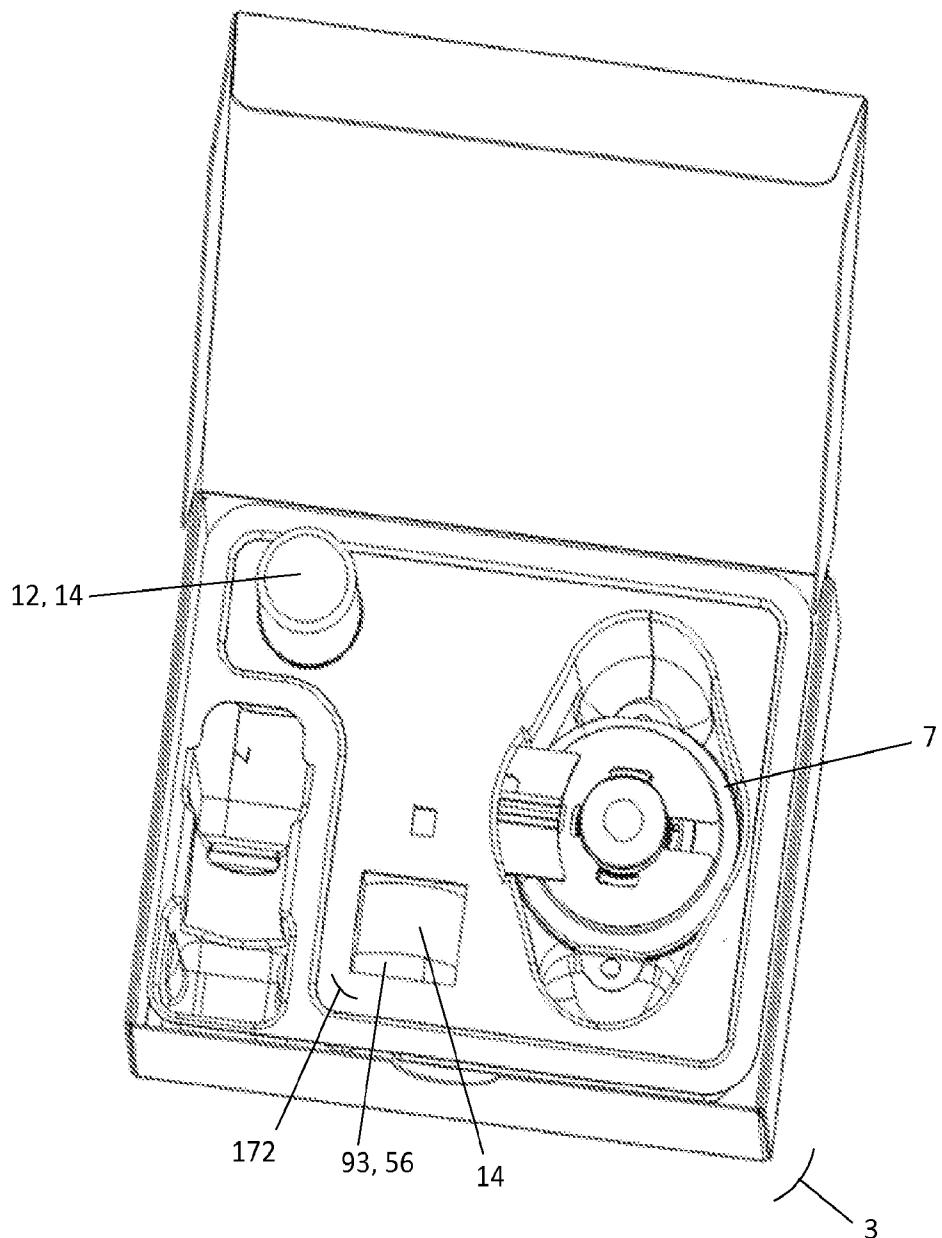



FIGURE 77

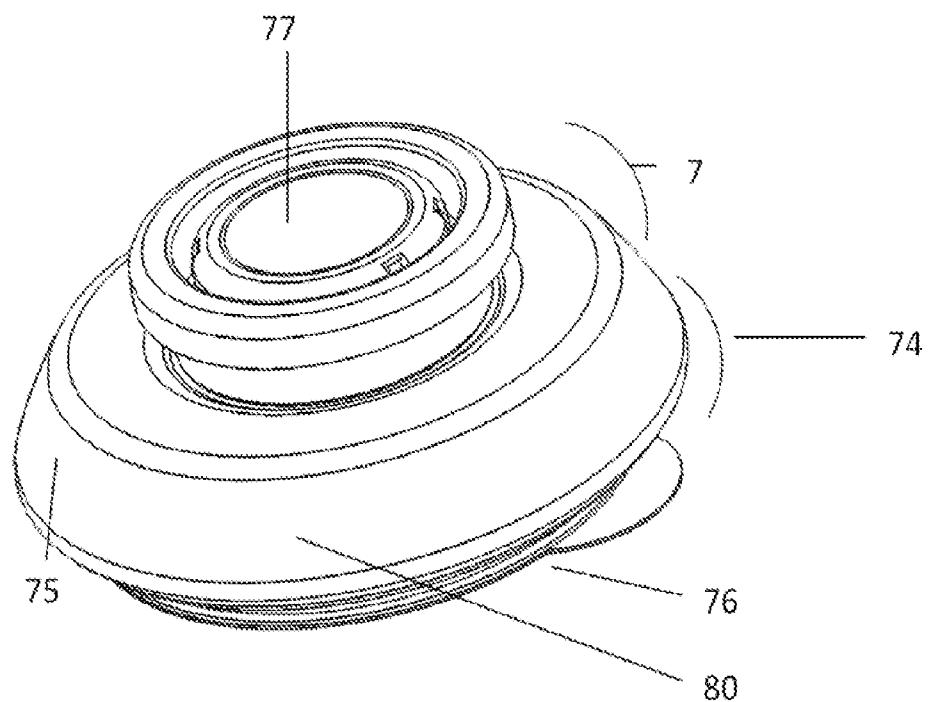



FIGURE 78

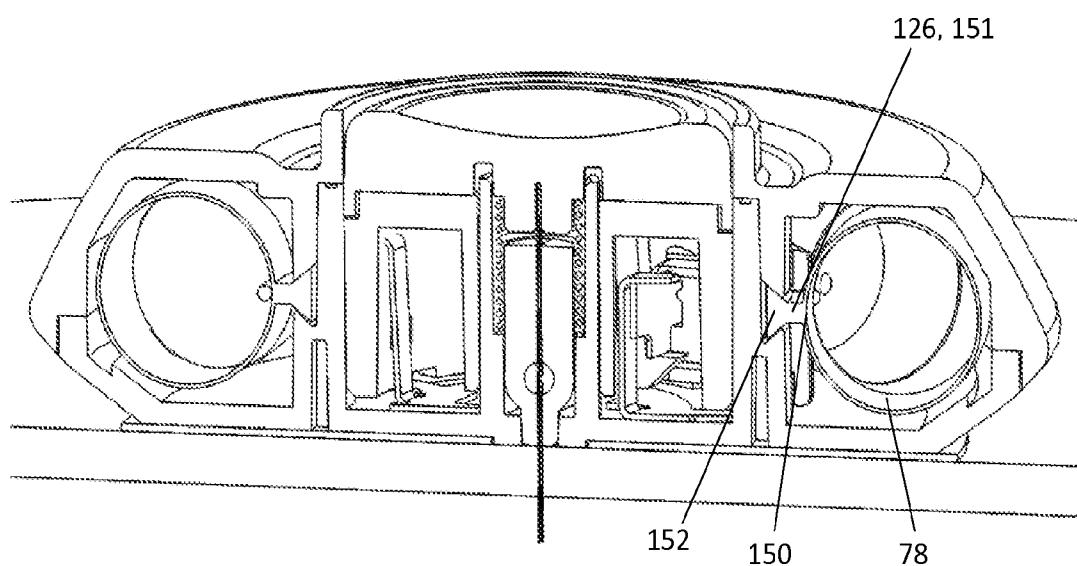



FIGURE 79

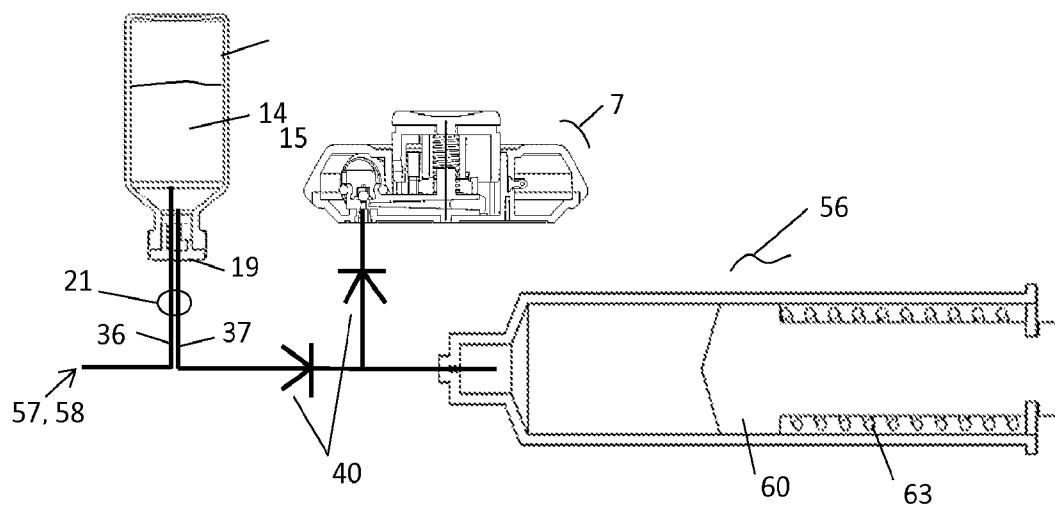



FIGURE 80

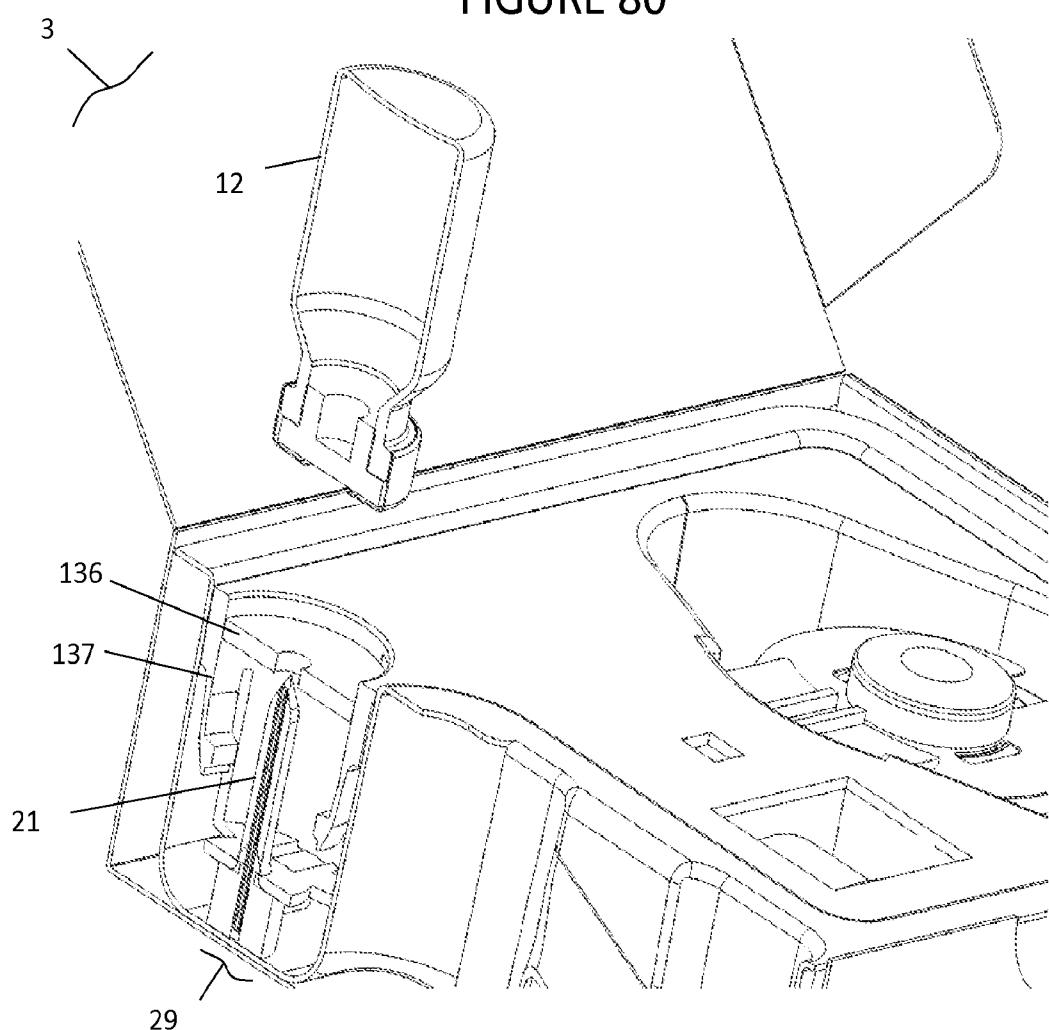



FIGURE 81

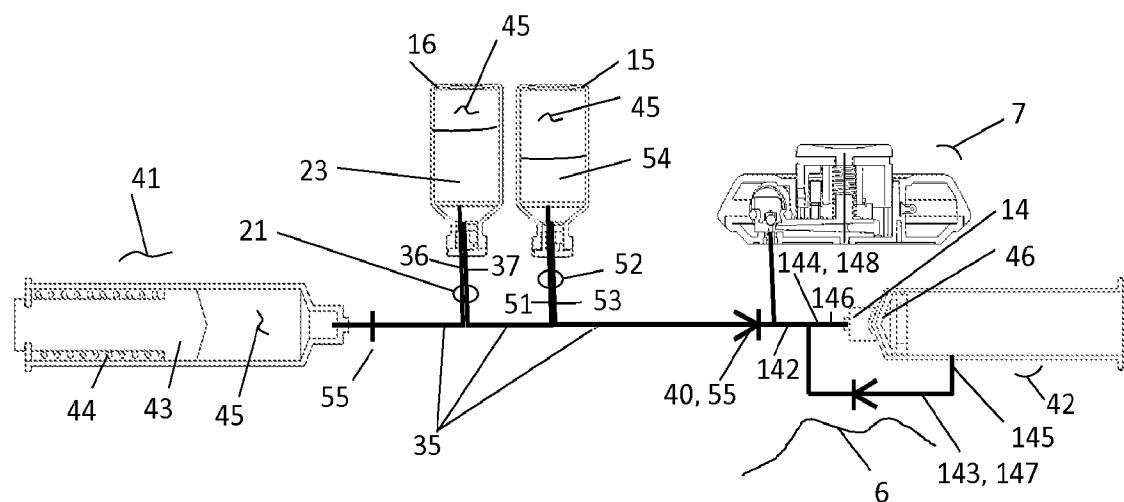



FIGURE 82

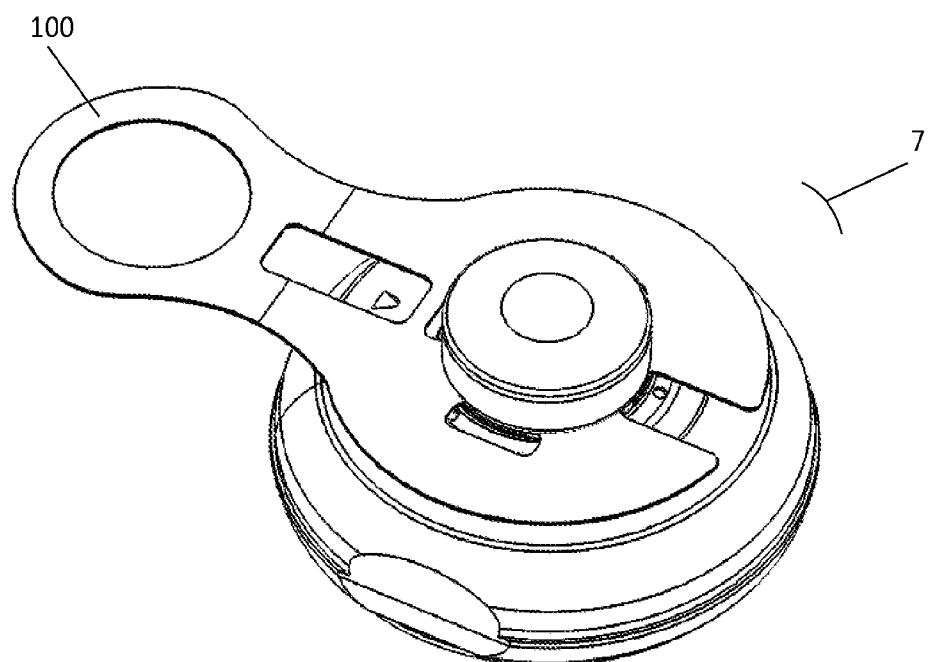
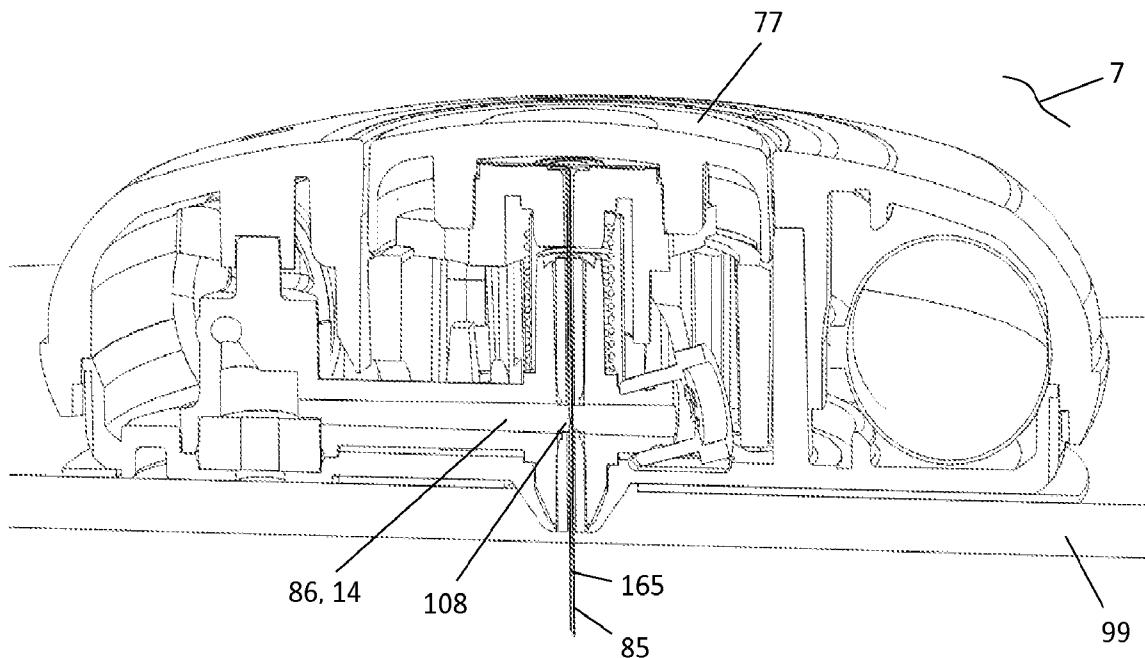
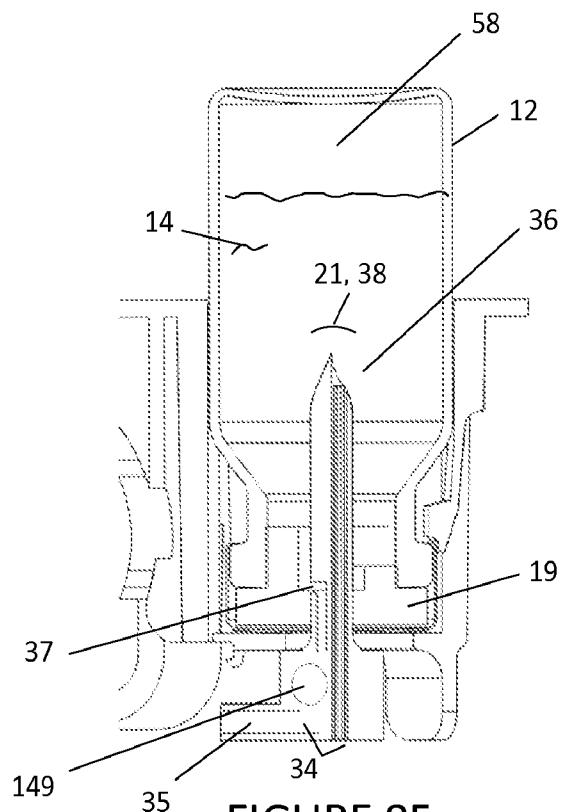





FIGURE 83

41/44



**FIGURE 84**

**FIGURE 85****FIGURE 86**

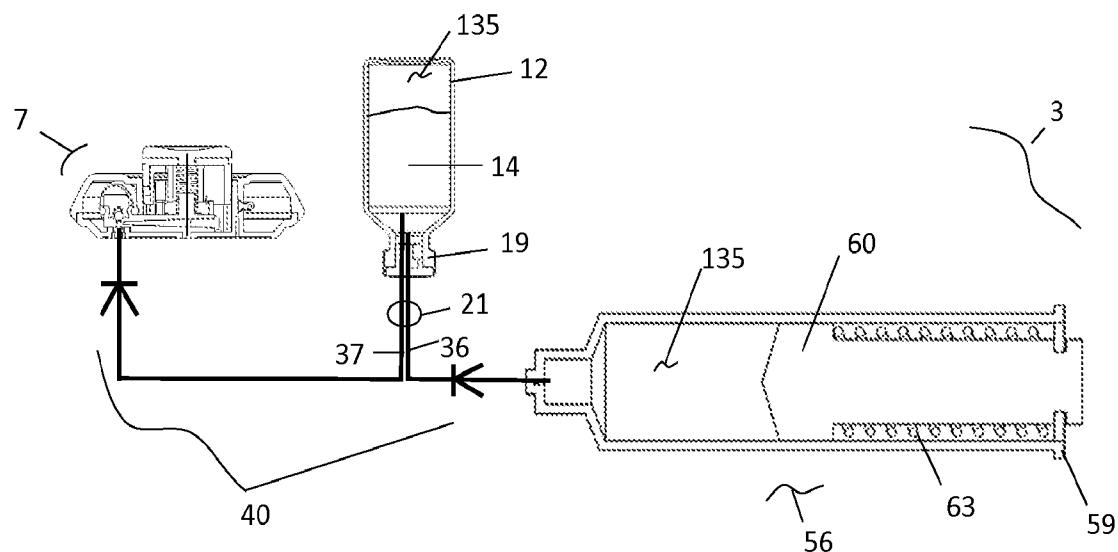



Figure 87