This invention relates to a game and novel articles or components used in the play thereof. Various dart games and blowguns, etc., are known in the art; however, they are usually expensive, cumbersome, require considerable skill in their usage, and are not suitable for use by children or casual users because of their potentially dangerous character.

The present invention has been designed primarily as a children’s toy, but is arranged to provide sufficient accuracy so as to be attractive to persons of all ages. It is an object of this invention to provide a durable yet inexpensive article of manufacture adapted for easy manipulation by a user to form a dart. It is another object of our invention to provide a strong, yet lightweight dart which may be formed from inexpensive materials such as a thin gauge sheet of paper.

Other objects and advantages will be evident to those skilled in the art from a study of the following drawings and description. In the drawings:

FIG. 1 is a perspective view of a target, darts and blowgun according to our concepts shown in the form of an exploded view;
FIG. 2 is a substantially full-scale top plan view of a paper plate adapted to be manipulated to form the hollow, conical dart shown in FIG. 4;
FIG. 3 is the plate of FIG. 2 at one stage of its manipulation to form the dart of FIG. 4;
FIG. 4 is a front elevation of a finished dart;
FIG. 5 is an enlarged, fragmentary, isometric detail of the upper periphery of a finished dart such as shown in FIG. 4.

Before describing the drawings in detail we wish to understand that they are but illustrative of possible arrangements within our concepts and that the spirit and scope of the invention should not be limited thereto but rather by the scope of the hereinafter appended claims.

As shown in FIG. 1 a target 10, a plurality of darts 11 and an elongated, tubular blowgun 12 of uniform internal diameter are the components used in the play of our dart blowgun game. The target is preferably a block of expanded cellular plastic material which is brittle yet crushable upon penetrating impact by one of the darts.

We prefer “Styrofoam,” the expanded cellular polystyrene manufactured by the Dow Chemical Company, because of its lightweight, ready ability to cut and otherwise fabricated to a desired shape, such as the square shown in FIG. 1, and its ability to be easily marked with inexpensive coloring materials to form a scoring target, such as the exemplary numerals and circles shown in FIG. 1, arranged in a typical pattern for scoring the game.

The blowgun 12 is preferably fabricated of a clear plastic, such as Lucite, which is lightweight yet strong, provides a passage of uniform diameter, and resists breakage due to dropping, etc. The darts 11 are formed of suitable material, preferably thin, flexible, substantially inelastic sheets of material in a novel configuration and adapted to be rapidly manipulated to form a hollow, generally conical dart such as shown in FIG. 4. A surface of the sheet may be precoated with either a soluble or pressure-sensitive adhesive, as shall become apparent hereinafter.

FIG. 2 is drawn substantially to full scale and shows a plate or sheet which is particularly arranged for manipulation to form a dart which is extremely stable in flight, not tending to flutter, is accurate up to 250-300 yards in relatively still air, and is adapted to cooperate with the blowgun for ease of aiming and accuracy of ejection at the target 10.

As noted above, the sheet is preferably fabricated from thin-gauge paper and is defined by spaced substantially parallel sides of unequal length, the longer side 15 extending a relatively short distance above the shorter side 16 and a greater distance therebelow, and the bottom edge 17 is squared or substantially perpendicular to the sides. The biased side 18 joins the lower end of side 16 and the bottom edge 17 to form an inverted, generally truncated, triangular bottom portion of the sheet. The upper portions or tops of the sides 15 and 16 are joined by the upwardly inclined, convexly curving edge 19.

The so-formed sheet is comprised essentially of a lower, generally truncated, inverted triangular portion 20, a generally rectangular central portion 21, and an upper portion 22 which is about half the segment formed by the dotted line 23 extended to intersect the extension of regular curve 24 forming side 19.

In our preferred construction the length of side 15 is about six and one-half inches, while the distance between the sides 15 and 16 is about one-half the said length of the longer side. The shorter side 16 is preferably about four inches in length and the angle of side 18 relative to an extension of side 16 is about 45°. An extension of side 18 intersects an extension of side 15 at about the same angle. The curve of side 19 is a portion of a circle having a radius of about six inches and the length of the short bottom side 17 is on the order of ¾ of an inch. Of course, it is to be understood that variations may be had in the above dimensions and still be within our inventive concepts. However, as shall become apparent hereinafter, there is a critical relationship between these dimensions. In order to obtain a balanced dart projectile after assembly, and to overcome the tendency of erratic movement in flight, thereby providing accuracy over more extended ranges, the open end 30 of the completed dart 11 must be substantially flat, i.e., the circumferential edge thereof must be in the same plane and that plane should be substantially perpendicular to the longitudinal bisector 31 of fabricated dart 11. The upper edge 19 and its convexly curving characteristics assures such a flat, upper circumferential edge 19, while the bottom edge 17 provides the proper weight distribution when the dart has been formed into the dart, i.e., the center of gravity and greater weight is distributed forwardly of the center of the longitudinal bisector 31, thereby providing a lighter rear portion toward the open end which acts as a tail or stabilizer in flight.

Also, in order for such an open-ended, conical dart to be positively ejected at sufficient velocity to maintain the desired stability in flight, it is necessary that the air flow induced into the blowgun 12 be substantially sealed and directed solely toward movement and discharge of the dart from the blowgun. To this end the circumferential dimension of the open end is slightly greater than the internal diameter of the blowgun 12; but, since the dart is fabricated of paper and is relatively thin toward the open end, it is easily deformed upon insertion in the blowgun to provide a friction fit and yet rapidly restores itself to its previous shape upon discharge from the blowgun. With such an arrangement, substantially all of the air flow induced in the blowgun behind the dart is utilized for establishing a discharge velocity therefor which is sufficient to cause high velocity travel over an extended distance in stabilized and accurate flight.

It is to be understood that the open end is of the proper circumferential dimension to obtain the foregoing conditions of cooperation with the interior of the blowgun there are indicia 35 im-
3,138,392

The distance from the indicia 35 to the longer edge 19 is substantially equal to one-half the circumference of the open end of a completed dart 11. We have provided a simple and expedient manner for inexperienced individuals to manipulate the sheet of FIG. 2 to form the dart of FIG. 4, which is as follows: The user grasps the sheet adjacent the upper end of the short side 16 at about the portion indicated by numeral 40 while simultaneously grasping the longer side 15 at about the portion indicated by reference numeral 41 for twisting said portions relative to each other, such as indicated by the arrow 42. This twisting is continued until the portion 40 envelops partially portion 41 and is moved substantially adjacent the indicia 35, as generally indicated in FIG. 5. While maintaining this top configuration the edge 17 is twisted around the partially formed dart and twisting continued until the completed open-ended, generally conical dart is formed, at which time the edge 17 is positioned slightly below the horizontal bisector of the dart.

If the paper is coated with pressure-sensitive adhesive, pressure may be exerted to join the so-manipulated sheet in the form shown in FIG. 4. When using a water-soluble adhesive, overlapping edges are suitably moistened and pressed into fixed relation. When adhesive is not previously applied to the sheet it may be applied when the manipulation is concluded. Although we have found the foregoing manner of manipulating the sheet of FIG. 2 relatively easy to master, it is obvious that individual traits of various users and their degrees of manual and digital dexterity may provide other suitable manipulations.

Referring again to FIG. 4, the above-noted weight distribution features of our completed dart are believed readily apparent. It is necessary to form a fine point at the lower end while obtaining this weight distribution and the biased or angled edge 18 assures this arrangement. The angle of the side 18 is critical in order that sufficient sheet material is left in the rectangular portion 21 so that the greatest weight is forward of the horizontal bisector of the finished dart and yet sufficient material is left to form the enlarged tail portion for the above noted stability in flight. Preferably, our game includes a plurality of sheets of the construction shown in FIG. 2 of various colors for ease of player identification.

We have found, surprisingly enough, that with our construction a very strong projectile results even though it is fabricated of paper. Once it is cast off, and it is found that very little damage results to the dart even though it is made of paper, as it merely bounces upon impact. Relatively short distances of about 25 to 30 feet our dart projectiles penetrate a "Styrofoam" target as above described to a distance of about ¾ of an inch without undue exertion by a user. Because of the brittle yet crushable characteristics of cellular bodies, such as our "Styrofoam" target, upon penetration by one of our darts it is frictionally engaged therein and maintained until user removal. Even when one dart strikes another they are rarely disengaged from the target. In use the player raises the blow gun having a dart positioned near the rear of the base as indicated in FIG. 1, and at eye level sights along the blowgun on the target, and while maintaining the blowgun in such position, he brings his lips adjacent the rear end of the blowgun and blows. A short duration exhalation fires the dart at the target, elongating accuracy. At distances up to 50 feet it is unnecessary to calculate trajectory and direct line aiming will give good results.

Having thus described our invention with sufficient accuracy and particularity as to enable those skilled in the art to practice it, what we desire to have protected by Letters Patent is set forth in the following claims.

We claim:

1. As an article of manufacture, a thin, flexible, substantially inelastic sheet of material adapted for twisting manipulation to form a tapering hollow dart and having substantially parallel sides of unequal length, the longer of said sides extending a relatively short distance above and a greater distance below the shorter side, a convexly curving edge extending between the top of the sides and the bottom, at least one of said sides extending downwardly to form a generally truncated, substantially triangular bottom portion of the sheet, whereby the larger end of the dart will lie in a plane substantially perpendicular to its lengthwise axis when the twisting manipulation is completed.

2. The article of manufacture described in claim 1 in which the distance between sides is less than about one-half the length of the longer side.

3. The article of manufacture described in claim 1 in which the inelastic sheet is fabricated of a thin-gauge sheet of paper.

4. As an article of manufacture, a thin, flexible, substantially inelastic sheet of material adapted for twisting manipulation to form a hollow, generally conical dart, said sheet having substantially parallel sides of unequal length, the longer of said sides extending a relatively short distance above and a greater distance below the shorter side, an inclined water-soluble edge extending between the tops of the sides, and the longer portion of the sides joining a relatively short bottom edge perpendicular thereto, the shorter of said sides joining said bottom edge through a biased edge portion to form an integral inverted, generally truncated, triangular bottom portion of the sheet, whereby the larger end of the dart will lie in a plane substantially perpendicular to its lengthwise axis when the twisting manipulation is completed.

5. The article of manufacture described in claim 4 in which the biased edge portion is at an angle of about 45° relative to an extension of the shorter side.

6. As an article of manufacture, a thin, flexible, substantially inelastic sheet of material adapted for twisting manipulation to form an open-ended, hollow, generally conical dart, the sheet being of greater length than width and defined by spaced apart, substantially parallel sides of unequal length, the longer of these sides extending a relatively short distance above and a greater distance below the shorter side, a convexly curving edge extending between the tops of the sides, the lower portion of said sides joining bottom edges adapted to cooperate with said sides to form an integrally joined, inverted, generally truncated, triangular bottom portion of the sheet, there being formed between the curving edge dividing said curving edge such that the distance from the longer edge to said indicia is substantially equal to one-half the circumference of the open end of a manipulated dart, whereby the larger end of the dart will lie in a plane substantially perpendicular to its lengthwise axis when the twisting manipulation is completed.

7. As an article of manufacture, a thin, flexible, substantially inelastic sheet of material adapted for twisting manipulation to form an open-ended, hollow, generally conical dart, the sheet being divisible into three sections consisting of a substantially rectangular center portion, an inverted, generally truncated, triangular bottom portion, and an upper portion which is substantially one-half of the segment formed by a regular curve and a chord perpendicular to the sides of the rectangular center portion, and one surface of said sheet including an adhesive coating adapted to hold a manipulation shown completed, an open-ended hollow, conical dart form, whereby the larger end of the dart will lie in a plane substantially perpendicular to its lengthwise axis when the twisting manipulation is completed.

8. As an article of manufacture, a thin, flexible, substantially inelastic sheet of material adapted for twisting manipulation to form an open-ended, hollow, generally conical dart, the sheet being divisible into three sections...
consisting of a substantially rectangular center portion, an inverted, generally truncated, triangular bottom portion, and an upper portion which is substantially one-half of the segment formed by a regular curve and a chord perpendicular to the sides of the rectangular center portion, and one surface of said sheet including an adhesive coating adapted to hold a manipulated sheet in its completed, open-ended, hollow, conical dart form, there being indicia on said sheet adjacent the curving portion of the upper segment adjacent the longer side thereof dividing said segment such that the distance from the longer edge to said indicia is substantially equal to one-half the circumference of the open end of a manipulated dart, whereby the larger end of the dart will lie in a plane substantially perpendicular to its lengthwise axis when the twisting manipulation is completed.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Inventor</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,346,639</td>
<td>Davis</td>
<td>July 13, 1920</td>
</tr>
<tr>
<td>1,419,554</td>
<td>Ganse</td>
<td>June 13, 1922</td>
</tr>
<tr>
<td>1,576,515</td>
<td>Kinney</td>
<td>Mar. 16, 1926</td>
</tr>
<tr>
<td>2,011,749</td>
<td>Brading</td>
<td>Aug. 20, 1935</td>
</tr>
<tr>
<td>2,504,757</td>
<td>Terry</td>
<td>Apr. 18, 1950</td>
</tr>
<tr>
<td>2,622,881</td>
<td>Fritsche</td>
<td>Dec. 23, 1952</td>
</tr>
<tr>
<td>2,821,397</td>
<td>Hartigan</td>
<td>Jan. 28, 1958</td>
</tr>
<tr>
<td>2,891,794</td>
<td>Meyer</td>
<td>June 23, 1959</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>80,971</td>
<td>Norway</td>
<td>Nov. 3, 1952</td>
</tr>
</tbody>
</table>