
(19) United States
US 20070136387A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0136387 A1
Malueg et al. (43) Pub. Date: Jun. 14, 2007

(54) TRANSACTION-SAFE FAT FILES SYSTEM

(75) Inventors: Michael D. Malueg, Renton, WA (US);
Hang Li, Beijing (CN): Yadhu N.
Gopalan, Redmond, WA (US); Ronald
Otto Radko, Kirkland, WA (US);
Daniel J. Polivy, Seattle, WA (US);
Sharon Drasnin, Seattle, WA (US);
Jason Ryan Farmer, Redmond, WA
(US); DaiOian Huang, Sammamish,
WA (US)

Correspondence Address:
LEE & HAYES PLLC
421 W RIVERSIDEAVENUE SUTE SOO
SPOKANE, WA 992.01

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(21)

(22)

Appl. No.: 11/668,393

Filed: Jan. 29, 2007

410

NITIATE WRITE

SELECT AND
WRITE NEWAREA

430

UPDATE CLUSTER
CHAINS

440

UPDATE FAT1

Related U.S. Application Data

(62) Division of application No. 10/431,009, filed on May
7, 2003, now Pat. No. 7,174,420.

(60) Provisional application No. 60/420,541, filed on Oct.
22, 2002.

Publication Classification

Int. C.
G06F 7/30 (2006.01)
U.S. Cl. .. 707/200

(51)

(52)

(57) ABSTRACT

In one aspect, the present disclosure describes a process for
maintaining file allocation tables (FATs) for a volume of
storage medium. The process includes triggering, by a write
operation, modification of data in an existing sector of a data
file by writing of data to a new sector of the storage medium.
The process also includes writing revised used/unused sector
information into one FAT and setting a variable indicative of
a number of FATs (NOF) to a first value. The process
additionally includes copying the one FAT to another FAT
and re-setting the variable to a second value.

4 O O

450

SET WARABLE

460

SYNCHRONIZE
FATS

470

RESET WARIABLE

RELEASE OLD
SECTORS/UPDATE
CLUSER CHAINS

Patent Application Publication Jun. 14, 2007 Sheet 1 of 7 US 2007/0136387 A1

OO

120

140

MEMORY
MANAGER

INTERFACE PROCESSOR

150

OPERATING
SYSTEM 160

TFAT CONTROL
MODULE

TFAT SYSTEM

Patent Application Publication Jun. 14, 2007 Sheet 2 of 7 US 2007/0136387 A1

212 210

214
FATO

216 2OO
FAT1

218 FILE AND DIRECTORY
REGON

Patent Application Publication Jun. 14, 2007 Sheet 3 of 7

310

ALLOCATE FIRST
REGION

32O

ENTERDIRECTORY
DATA

330

FILL REST OF
CLUSTER WITH
UNCHANGEABLE

DATA

510

52O

US 2007/0136387 A1

SETA PORTEON OF
FATO TO FIRST

WALUE

COPY FAT1 TO
FAO

Patent Application Publication Jun. 14, 2007 Sheet 4 of 7 US 2007/0136387 A1

410

4 O O NITIATE WRITE

42O

SELECT AND
WRITE NEW AREA

430

UPDATE CLUSTER
CHAINS SET WARABLE

440

SYNCHRONIZE
FATS

UPDATE FAT1

RESET WARIABLE

48O

RELEASE OLD
SECTORS/UPDATE
CLUSTER CHANS

Patent Application Publication Jun. 14, 2007 Sheet 5 of 7 US 2007/0136387 A1

IS NOF EQUAL TO 2? YES

TREATAS NON
TFAT VOLUME DOES 2ND CLUSTER

ENTRY OF FATO = OT

COPY FATO TO
FAT1

COPY FAT1 TO
FATO

Patent Application Publication Jun. 14, 2007 Sheet 6 of 7 US 2007/0136387 A1

710

7 O O ACCUMULATE
DATA TO BE
WRITTEN

FORM CUMULATIVE
RECORD OF

AMOUNT OF DATA

S THRESHOLD
CONDITION MET2

740

COMMIT
ACCUMULATED
DATA TONVM

Patent Application Publication Jun. 14, 2007 Sheet 7 of 7 US 2007/0136387 A1

810 8

SECTOR SECTOR
22 5

2O 830 840

SECTOR SECTOR SECTOR
500 3OO 15

22, Sf

830 840

3OO 15

88O

11

2O 850 810 8

22 55 500

870

77 332

890

US 2007/0136387 A1

TRANSACTION-SAFE FAT FILES SYSTEM

RELATED APPLICATIONS

0001. This divisional application claims the benefit of
U.S. patent application Ser. No. 10/431,009, filed May 7,
2003, entitled “Transaction-Safe FAT Files System.” listing
Michael D. Malueg, Hang Li, Yadlu N. Gopalan, Ronald O.
Radko, Daniel J. Polivy, Sharon Drasnin, Jason R. Farmer
and DaiOian Huang as inventors, which claims priority to
U.S. Provisional Application No. 60/420,541, filed on Oct.
22, 2002, entitled “Transaction-Safe FAT Files Subsystem.”
both of which are hereby incorporated by reference.

TECHNICAL FIELD

0002 This disclosure relates to Transaction-safe File
Allocation Table (TFAT) file systems designed to reduce the
probability that a computer file system becomes corrupted in
the event of power loss during a write cycle.

BACKGROUND

0003 Computer systems employ multiple memory types,
including ROM, Volatile rapid access memories and non
volatile memories. ROM may be used to implement a basic
input output system (a.k.a. BIOS) by having a power on
reset circuit that causes the information stored in the ROM
to be read and employed by a processor when the power is
reset to the computer system. This is an example of a
non-volatile memory, or a memory that retains stored data
even when no electrical power is being Supplied to the
computer system.

0004 Volatile rapid access memories, such as cache
memories and dynamic random access memories (DRAMs),
are used to store information elements such as data and
instructions, and especially those information elements that
are repeatedly needed by the processor. Volatile memories
are incapable of storing data for any significant period of
time in the absence of externally-supplied electrical power.
0005 Computer systems typically include multiple non
volatile memory devices, which have evolved from punch
card decks and paper tape systems, through large magnetic
disc systems to include compact disc memories, floppy
discs, Small, high S capacity disc systems, flash memory
systems and other forms of non-volatile data storage
devices.

0006 Disc drive data storage systems are typically much
slower than many other types of memory but provide high
data storage capacity in a relatively attractive form factor
and at a relatively low cost per stored bit. These types of
memories include electromechanical components, and,
accordingly, are limited in speed of operation. As a result,
the probability that a power interruption may occur when
data are being written to the device is increased, relative to
some other types of memory. In order to be able to determine
which data were written to the disc, and to be able to
determine where on the disc the stored data are located, a file
allocation table (FAT) system is employed. Several different
kinds of FATs have been developed, including FAT12, 16
and 32, to address needs of different systems.
0007. In a conventional FAT file system, when a file is
modified, new data or changes to an existing file are written
over and/or appended to a previous version of the file.

Jun. 14, 2007

Additionally, a log file is created of operations that will
involve writing data to the non-volatile data storage device.
Following writing of the new data or changes, the FAT is
updated and the log is erased. Such FAT file systems track
completed transactions, and are called “transactioned file
systems.

0008. The conventional FAT file system is vulnerable to
corruption from a “tom writer, e.g., a write operation that
is interrupted Such as by an intervening power loss, or when
storage media are disconnected during a write, because of
the procedure used to store data. Should power fail after
initiation of a write of new data to a file, but before or during
the corresponding FAT write operation, the entire file system
can be damaged or destroyed. While the likelihood of
complete file system loss is Small, there is a large probability
of lost cluster chains that will require Some form of servicing
by a utility Such as Scandisk or chkdsk.
0009 FAT file systems by design are not transaction-safe

file systems. The FAT file system can be corrupted when a
write operation is interrupted during a write transaction due
to power loss or removal of the storage medium. The FAT is
corrupted when the content of the FAT does not agree with
the contents of the directory or data sections of the volume.
When this happens, the user will lose some data.
0010 This is not desirable in certain computer systems,
Such as those embedded is computer systems where the data
integrity is a high priority requirement. In order to reduce
these data corruption issues, a new FAT solution is needed
for Such computer systems that also allows existing systems
to access the storage medium and that is compatible with
existing systems.

SUMMARY

0011 A transaction-safe FAT file system is described. In
one aspect, the system includes a process for maintaining file
allocation tables (FATs) for a volume of storage medium.
The process includes triggering, by a write operation, modi
fication of data in an existing sector of a data file by writing
of data to a new sector of the storage medium and writing
revised used/unused sector information into one FAT. The
process also includes setting a variable indicative of a
number of FATs (NOF) to a first value, copying the one FAT
to another FAT and re-setting the variable to a second value.
0012. In one aspect, the FAT file system includes a
directory creation process. The process includes allocating a
first cluster on a non-volatile storage medium for a new
directory and creating a first entry within the first cluster.
The first entry represents a sector where the new directory is
stored. The process also includes creating a second entry
within the first cluster. The second entry represents a sector
where a parent directory of the new directory is stored. The
process additionally includes filling a remainder of the first
cluster with data that a file system will not permit to be
overwritten.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 FIG. 1A is a block diagram of an exemplary
embedded computer system including non-volatile memory.
0014 FIG. 1B is a block diagram representing an exem
plary operating system and FAT file system Suitable for use
with the computer of FIG. 1A.

US 2007/0136387 A1

0.015 FIG. 2 is a block diagram representing an exem
plary transaction-safe file allocation table (TFAT) file system
implemented together with a volume of the non-volatile
memory of FIG. 1A.
0016 FIG. 3 is a flowchart of an exemplary process for
creating directories and Subdirectories that finds application
with the TFAT file system of FIG. 2.
0017 FIG. 4 is a flowchart of an exemplary process for
writing data to the non-volatile memory of FIG. 1A that
includes the TFAT file system of FIG. 2.
0018 FIG. 5 is a flowchart of an exemplary process for
synchronizing TFAT volumes in the TFAT file system of
FIG 2.

0.019 FIG. 6 is a flowchart of an exemplary process for
identification of TFAT Volumes and to determine which
TFAT is the last known good FAT when a volume of
non-volatile memory is mounted a system such as the
computer system of FIG. 1A.

0020 FIG. 7 is a flowchart of an exemplary process for
determining when to write data to non-volatile storage
media using the TFAT file system of FIG. 2.
0021 FIGS. 8A and 8B are block diagrams showing
relationships between sectors forming an exemplary FAT
chain for a given file, before and after a write operation.

DETAILED DESCRIPTION

0022 FIG. 1A is a block diagram of a representative
computer system 100. In one embodiment, the computer
system 100 is embedded within an appliance or vehicle (not
illustrated) and facilitates control of various Subsystems,
coordination between Subsystems, data and usage logging
and also facilitates interfacing with external computer
devices (not shown). The computer system 100 includes a
processor 110, a bus 120 coupled to the processor 110 and
a memory system 130 coupled to the bus 120. The memory
system 130 typically includes a memory management unit
132 coupled to the bus 120 and to ROM 134, temporary
storage memory 138 such as DRAM or SRAM and non
volatile memory 138.

0023 Non-volatile memory 138 may include non-remov
able media, which may include NAND/NOR flash memory
and hard drives. Non-volatile memory 138 may also include
removable media, such as Compact-Flash (CF) cards,
Secure-Digital (SD) cards, magnetic or optical discs and
other removable mass storage devices.
0024 Discs are typically organized into portions known
as “clusters' that are differentiated by addresses. A cluster is
a sequence of contiguous sectors or linked sectors repre
senting portions of a disc, for example. When a file is written
to the disc, it may be written to one cluster or it may require
several clusters. The several clusters containing data repre
senting a file may be contiguous but often are not. As a
result, it is necessary to have a master list of the clusters into
which a given file is written and for the list to provide the
order in which the clusters are organized. Such a list is
referred to as a “chain' of clusters. A group of such lists form
a portion of the TFAT. The TFAT thus is a tool for data
retrieval that permits data to be read from the storage
medium in an organized manner. Other types of storage

Jun. 14, 2007

media may be organized to mimic the organization of a disc
in order to be able to be accessed intelligibly by modules that
are based on a disc model.

0025 Computer system 100 typically includes at least
some form of computer readable media. Computer readable
media can be any available media that can be accessed by
computer 100. By way of example, and not limitation,
computer readable media may comprise computer storage
media and communication media. Computer storage media
includes volatile and non-volatile, removable and non-re
movable media implemented in any method or technology
for storage of information Such as computer readable
instructions, data structures, program modules or other data.
0026 Computer storage media includes, but is not lim
ited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag
netic tape, magnetic disk storage or other magnetic storage
devices, or any other media which can be used to store the
desired information and which can be accessed by computer
system 100. Communication media typically embodies com
puter readable instructions, data structures, program logic or
program modules or other data in a modulated data signal
Such as a carrier wave or other transport mechanism and
includes any information delivery media.
0027. The term “modulated data signal' means a signal
that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By
way of example, and not limitation, communication media
includes wired media such as wired network or direct-wired
connection, and wireless media Such as acoustic, RX, infra
red and other wireless media. Any of the above or combi
nations of any of the above should also be included within
the scope of computer readable media.
0028. The computer system 100 also includes one or
more interfaces 140. Interfaces 140 may permit the com
puter system 100 to accept user input, for example via a
keyboard, Voice control, touch screen or other tactile, audi
tory, electrical or optical input device, and may permit
information to be passed to a user via auditory or optical
devices. Interfaces 140 may also couple the computer sys
tem 100 to an appliance (not illustrated). Such as a global
positioning system, or to a vehicle, or to other types of
systems such as the Internet or other communications sys
temS.

0029 Interfaces 140 may also allow external computer
systems (not shown) to interact with the computer system
100. For example, data such as accumulated distance trav
eled, service logs, malfunction logs applicable to associated
Subsystems, positional data describing historical perfor
mance data relevant to the computer system 100 and/or
associated equipment and the like may be accessible to
external computers via an interface 140. Similarly, modifi
cations or upgrades to Software associated with the computer
system 100 may be coupled to the computer system 100 via
an interface 140. Such could find utility in a vehicular
application of the computer system 100, for example.

0030 Alternatively, a removable portion of the non
volatile memory 138 may be decoupled from the computer
system 100, temporarily or permanently, and interfaced with
an external computer system (not shown), or vice versa. In

US 2007/0136387 A1

either case, it is important to have some commonality of
memory system organization to allow either the external
computer system or the processor 110 to be able to read
and/or write data to the memory system 130 or a detachable
component of the non-volatile memory 138.
0031 FIG. 1B is a block diagram showing an exemplary
operating system 150 and TFAT file system 170 suitable for
use with the computer 100 of FIG. 1A. The operating system
150 provides an environment in which applications may be
employed by the computer 100. When the processor 110
encounters a write command, a TFAT control module 160 is
invoked to cause the TFAT file system 170 coordinate with
the write command as data are being written to the non
volatile memory 138.
0032 FIG. 2 is a block diagram representing an exem
plary transaction-safe file allocation table (TFAT) system
200 (analogous to the TFAT file system 170 of FIG. 1B)
implemented together with a volume 210 of the non-volatile
memory 138 of FIG. 1A. The volume 210 includes a boot
sector, BS/BPB 212, a first file allocation table FAT 02, 14,
a second file allocation table FAT 12, 16 and a file and
directory data region 218.
0033. The following detailed description uses several
terms of art. Definitions for some of these terms are given
below.

0034 STREAM. A stream is an abstraction of a file or
directory and represents a continuous run of data, starting at
offset 0, in one embodiment. Data can be read and written to
the stream arbitrarily, and in arbitrary sizes by a file system.
The file system maps the stream to the actual physical layout
of the file on disk. An internal DSTREAM data structure
stores information about the stream, and is often used in the
file system code.

0035 RUN. A run is a set of contiguous blocks of a file.
Disk operations operate on contiguous data in a single
operation. Accordingly, the run is an important part of all
disk operations to a file or directory. The RUN data structure
contains information about a run; the RUN stricture stored
in the DSTREAM contains information about the current
run used in the last operation on the stream. The run usually
contains information Such as the starting and ending stream
relative offsets, and the volume-relative blocks correspond
ing to the offsets on disk.
0036) Directory Entry (DIRENTRY). In one embodi
ment, DIRENTRY is a 32-byte structure. DIRENTRY con
tains information about a file or directory, and directories are
composed of DIRENTRY structures. The internal DIREN
TRY structure matches the format of the on-disk structure
exactly.

0037 BUFFER. A buffer is an internal data structure that
is used to buffer data that has been read from non-volatile
memory such as a disk. The BUF structure stores informa
tion pertinent to a buffer. Such as its current status, Volume
relative block number, and a pointer to the actual data.
Unless stream I/O is done in individual block-size chunks,
it goes through the buffer subsystem.

0038 SID or Unique Stream Identifier. This is an internal
data structure that represents a unique ID for internal stream
structures. SIDs are used throughout the file system code as
a means for identifying streams, and in file system notifi

Jun. 14, 2007

cations. The DSID structure contains the cluster of the
directory which contains the stream's DIRENTRY, and the
ordinal in the directory of the stream's DIRENTRY. In
conventional FAT Volumes, this is guaranteed to be unique
for each file (stream), and to never change.
0039 Conventional FAT file systems assume that the
starting cluster of a directory will never change. As a result,
Such systems use the directory cluster numbers as part of
Stream IDs (SID). In TFAT file systems, changes to the first
cluster of a file/directory would also necessitate rewriting
the directory entry, for reasons discussed in more detail
below. If all directory entries were in the first clusters of their
parents streams, then these changes propagate all the way
to the root (because each modification requires a write to a
new cluster, and if it is the first cluster of a file/directory, the
directory entry needs to be updated for that new cluster, and
so on).
0040. In many file systems, a conventional directory is
merely a collection of 32-byte DIRENTRYs, one after
another, starting with two special system directory entries
that are typically represented as . (“dot) and ... ("dot
dot). In a conventional FAT file system, these two system
directory entries are associated with each directory, Subdi
rectory and file stored on the storage device, except the root
directory. With respect to each directory or subdirectory, the
“dot’ entry points to a current sector where the directory or
subdirectory is stored. The “dot dot entry points to a parent
directory.

0041. In one embodiment of TFAT, a modified directory
structure prevents any changeable data from being stored in
the first cluster of a directory stream to prevent propagation
of these first-cluster modifications. The modified directory
structure is implemented with a process 300, discussed
below with reference to FIG. 3.

0042 FIG. 3 is a flowchart of an exemplary process 300
for creating directories and Subdirectories that finds appli
cation with the TFAT file system 200 of FIG. 2.
0043. The process 300 begins (block 310) by allocating a

first region of the non-volatile memory 138 of FIG. 1A. In
one embodiment. Such corresponds to allocating first and
second clusters for a Subdirectory.
0044) The process 300 then enters data corresponding to
a directory or a subdirectory into a first portion of the
directory or subdirectory in a block 320. In one embodiment,
Such corresponds to a parent directory and to a sector
corresponding to the associated directory or Subdirectory,
i.e., entries analogous to the . and ... entries discussed
above.

0045. In a block 330, the process 300 fills a remainder of
the first cluster with unchangeable data. In one embodiment,
Such unchangeable data comprises Volume labels. The pro
cess 300 then ends.

0046. In many conventional file systems, a single cluster
is allocated for each newly created directory. Note that the
root directory is a special case, and does not have the or .
entries present.

0047. In one embodiment of a TFAT Volume, when a first
cluster is allocated for a new directory or subdirectory, only
two DIRENTRYs (... and ... entries) are written when the
new directory or subdirectory is created (block 310). The

US 2007/0136387 A1

rest of the first cluster is filled (block 330) with data that are
typically not overwritten by conventional system operations,
i.e., data that are unchangeable. Examples of Such data
include volume labels.

0.048. In this embodiment, a second cluster is also allo
cated by TFAT (block 310) when the first cluster is allocated
and written because the first cluster is already going to be
filled (block 330). This embodiment requires a fixed over
head of an additional cluster for each directory. However,
the performance gains obtained by not having propagating
changes often outweigh the extra space required for each
stored data file or subdirectory. In this embodiment, rewrit
ing a directory entry does not cause changes to propagate up
or down the directory hierarchy and instead requires relink
ing the FAT chain for the directory.
0049. Because the first cluster is filled with unchanging
data such as volume labels instead of other data that may be
changeable, file systems such as those for desktop comput
ers never access the data stored in the portion of the first
cluster after the . and ... files or accidentally delete those
data. However, such directories cannot be deleted by such
types of computers and file systems running on operating
systems such as the family of Windows(R operating systems
produced by Microsoft Corporation for application in desk
top computers.
0050 Files added to this directory by desktop-type com
puters using conventional file systems will also not occupy
the first cluster because the first directory cluster is filled
with unchangeable data such as volume labels. When a
conventional directory is created by Such computers, the first
cluster will not be filled with data such as volume labels. As
a result, file write operations performed by Such computers
on Such directories are not transaction-safe.

0051) For FAT12 and FAT16 file systems, the root direc
tory is in a fixed location on the storage medium and has a
fixed size. In such systems, the first root directory cluster
cannot be filled with data such as volume labels. In FAT32
file systems, the root directory need not have a fixed location
or size, but none of these FAT file systems provide a root
directory that is transaction-safe, i.e., one which can be
moved or remapped without risk of corruption.
0.052 In one embodiment, TFAT employs a first root
directory in the conventional location that includes a pointer
to a first subdirectory (block 310), which then effectively
becomes the working “root directory. When portions of the
first root directory other than the pointer are filled (block
330) with unchangeable data, the data in the first root
directory never changes. As a result, the first root directory
cannot be corrupted by interruption of a write cycle and thus
is transaction-safe. When the first subdirectory is also con
figured such that the first cluster contains “..” and “...” entries
followed by unchangeable data, it also is transaction-safe.
Additionally, this embodiment is backwards compatible
with conventional FAT file systems.
0053. In one embodiment of TFAT, at least two file
allocation tables (corresponding to FATO 214 and FAT 1216
of FIG. 2) are maintained, with one being active and the
other being non-active at any one time. When a change
occurs to data stored on a mass non-volatile data storage
device (e.g., NVM 138 of FIG. 1A) such as a magnetic disk,
that change is recorded in the non-active FAT table. In one
embodiment, one bit in a master boot record (MBR) controls
which FAT table is active.

Jun. 14, 2007

0054 When the entire write is complete and the non
active FAT table is completely updated to reflect the com
pleted write, the active FAT bit in the MBR is flipped and the
previously non-active FAT becomes the active FAT. This
newly active TFAT is then copied over the new non-active
TFAT. TFAT will only guarantee that the file system will stay
intact during power loss. When a write and TFAT update
operation is not yet complete and an interruption occurs,
data involved in that write operation may be lost and it is up
to the application or user to address the data loss.
0055. In one embodiment, the system maintains two
FATs. A default TFAT write/file modification proceeds as
follows. Initially the FATs are set up with FATO as a primary
file allocation table and FAT1 as a secondary file allocation
table. A write to a volume on a storage medium proceeds as
described below with reference to process 400 as shown in
the flowchart of FIG. 4.

0056 FIG. 4 is a flowchart of an exemplary process 400
for writing data to the non-volatile memory 138 of FIG. 1A
that includes the TFAT file system 200 of FIG. 2. In one
embodiment, one or more computer readable media (e.g.,
138, FIG. 1A) have stored thereon a plurality of instructions
that, when executed by one or more processors (e.g., 110.
FIG. 1A), causes the one or more processors to modify data
represented by at least a first sector on the non-volatile
storage medium Such that the one or more processors
perform acts to effect the process 400.
0057. In block 410, an application initiates a write opera
tion to write data to the volume.

0058. In block 420, the write triggers the memory man
ager 130 of FIG. 1A to write a new sector of the medium via
block drivers. In one embodiment, the application writes a
new sector of the storage medium via an atomic block write.
In one embodiment, the memory manager 130 of FIG. 1A
writes the new sector in response to an instruction to close
the file. Writing data to modify a file to a new sector
preserves all old data because the sector containing the old
data is not overwritten by the new data.
0059)
0060. In block 440, used/unused sector information are
written in FAT1 (216, FIG. 2). In one embodiment, the
processor 100 enters file allocation data including data
describing the new sector in a first file allocation table.
0061. In block 450, a variable is set to a first value. In one
embodiment, the variable is set to a first value configured to
block access to the storage medium by first types of file
systems and configured to permit access to the storage
medium by second types of file systems, such as the TFAT
described in this disclosure. In one embodiment, the first
types of file systems may include FAT 12, FAT 16 or FAT32.
In one embodiment the first value disables conventional file
systems from accessing the storage medium. In one embodi
ment, the variable corresponds to a number of FATs (NOF)
field located in the boot sector of the volume.

0062). In block 460, the FAT1 is copied to the FATO (214,
FIG. 2). This synchronizes FAT1 and FAT0.
0063. In block 470, the variable is reset to a second value.
The second value indicates to a TFAT file system that the
FATO is a last known good FAT. In one embodiment, the
second value also enables conventional file systems to

In block 430, cluster chains are updated.

US 2007/0136387 A1

access the storage medium. In one embodiment, resetting the
variable to a second value permits access to the storage
medium by the first and second types of file systems.
0064. In block 480, the clusters corresponding to the
previous version of the newly-written data are “unfrozen'.
that is, are marked as unallocated chains. The previous
version of the file is thus recoverable until such time as the
new data have been written, the FAT1 has been updated and
FAT 1 and FATO have been synchronized.
0065. The process 400 then ends.
0066. In one embodiment, the variable of block 450
represents a number of FATs (NOF) field. In one embodi
ment, the first value for the variable is zero and the second
value for the variable is two.

0067. In one embodiment, the first two cluster entries of
the second FAT table are reserved. All the bits in the second
cluster entry are, by default, set to 1. When one of the
highest two bits of the second cluster entry is set to 0.
conventional desktop computers are likely to be triggered to
perform a scandisk utility operation when the operating
system is booted. However, it does not trigger any activity
when the storage device is inserted and mounted.
0068. This embodiment works well for hard-drive type
media because a power failure in hard drive during a write
operation can corrupt a sector being written. Because there
are two FAT tables, the other FAT table is still available
when one of the FAT tables is corrupted, assuming that the
block driver will return a read error if the sector is corrupted
during a write operation.

0069. At end of each transaction, FAT1 is copied to FATO
by a process described below with reference to an exemplary
process 500 as shown in the flowchart of FIG. 5.
0070 FIG. 5 is a flowchart of an exemplary process 500
for synchronizing TFAT volumes in the TFAT file system
200 of FIG. 2. The process 500 may be implemented by the
processor 110 of FIG. 1A, for example.
0071. In block510, the second cluster entry in FAT0 is set
to a first value. In one embodiment, the first value is zero.
0072. In block 520, FAT1 is copied to FAT0, resetting the
second cluster entry to a second value. The first sector is
copied last. In one embodiment, the second cluster entry is
set to all ones. The process 500 then ends.
0073 FIG. 6 is a flowchart of an exemplary process 600
for identification of TFAT Volumes and to determine which
FAT is the last known good FAT when a volume of non
volatile memory 138 is mounted in a system such as the
computer system 100 of FIG. 1A. The process 600 may be
implemented by the processor 110 of FIG. 1A, for example.
The process 600 begins with query task 610.
0074) When query task 610 determines that NOF is set to
2, the process 600 treats that volume as a non-TFAT Volume.
In block 620, the process 600 selects FATO as the last known
good FAT and the process 600 ends. When query task 610
determines that NOF is not 2, control passes to query task
630.

0075) When query task 630 determines that the second
cluster entry of FATO is not 0, the process 600 treats that
volume as a TFAT volume. In block 640, FATO is copied to

Jun. 14, 2007

FAT1. The process 600 then ends. When query task 630
determines that the second cluster entry of FATO is 0 or
determines that the sector-read on the first sector of the FATO
failed, control passes to block 650.
0076). In block 650, FAT1 is copied to FAT0. The process
600 then ends.

0077. In one embodiment, TFAT includes a registry set
ting to allow selection between setting NOF to first and
second values or second cluster entry values in FATO to
identify TFAT media and to determine which FAT to employ.
0078. In one embodiment, this registry setting is bit
0x40000 in the “Flags' value of the conventional FAT
registry key (“Ox’ signifies that the number is hexadecimal,
i.e., base 16). When this bit is set, TFAT uses the second
cluster entry in FATO for last known good FAT determina
tion.

0079. In one embodiment, access to the storage medium
via conventional file systems is blocked by setting a bit on
the storage medium to a value that corresponds to an
indication of a defective storage medium.
0080. In one embodiment, the TFAT control module 160
of FIG. 1B causes the FATs, and possibly also the directory
file, to be re-written for every file system write. A series of
Small file system writes compromises system performance
because each write to the storage medium is transacted and
the TFAT is updated for each of these write operations.
0081 FIG. 7 is a flowchart of a process 700 for deter
mining when to write data to non-volatile storage media
(e.g., 138, FIG. 1A) using the TFAT file system 200 of FIG.
2. The process 700 may be implemented by the processor
110 of FIG. 1A, for example.
0082) The process 700 begins (block 710) with accumu
lation (e.g., in RAM 136) of data to be written from a
plurality of instructions to write data to the storage medium
138. A cumulative record of an amount of data to be written
is maintained (block 720).
0083) A query task 730 tests for presence of a first
predetermined threshold condition. In one embodiment, the
threshold condition is met at the time when the file is closed.
In one embodiment, the threshold condition is met when a
predetermined or adjustable amount of data to be written has
been accumulated. When the amount of accumulated data is
less than the predetermined threshold, control passes back to
block 710 to await further write data commands.

0084. When the query task 730 determines that the pre
determined threshold condition has been met, the process
700 causes the processor 110 of FIG. 1A to write the
accumulated data to the storage medium 138 (block 740).
The process 700 then ends.
0085. In one embodiment, the “Delayed Commit” feature
allows flexibility to choose whether to commit FAT tables at
the time the file is closed or not. In one embodiment, the
TFAT control module 160 of FIG. 1B causes the application
to merge several Small writes into one single one.
0086) However, because a write can fail if there is not
enough free storage space in the storage medium, storing
very large data blocks (>500KB) in one single write can
result in failure. In order to avoid such write failure, the
TFAT control module 160 finds enough free sectors in the

US 2007/0136387 A1

volume of storage medium to be able to write a new sector
for each sector of data to be written or modified.

0087. Accordingly, in one embodiment, the TFAT control
module 160 determines amounts of data to be written in
response to individual write commands and accumulates
these data until a predetermined threshold quantity of data to
be written is achieved. In one embodiment, the threshold
may be adjustable as a function of the amount of available
storage on the storage medium as that amount fluctuates. In
other words, when the amount of unallocated Storage
medium is small, the threshold may be reduced or smaller,
while when the amount of unallocated Storage medium is
relatively large (at least compared to the amount of storage
medium required for each write), the threshold may be
increased or larger.
0088. In one embodiment an intermediate TFAT is cre
ated in volatile memory to keep track of the non-volatile
memory write operations to be carried out, either at when the
file is closed or when the predetermined threshold is
achieved. The intermediate TFAT is maintained at least until
the FAT1 is updated.
0089. In one embodiment, when a single block of data
needs to be modified, the TFAT file system first reads the
existing disk block into a system buffer. The TFAT file
system then finds and allocates a new cluster on disk. The
TFAT is then traversed to find any entries corresponding to
the old cluster, and the new cluster is relinked to replace
such. This completes the FAT chain modifications. Then the
system buffer is “renamed to correspond to the newly
allocated cluster on disk. In one embodiment, it is also
marked as “dirty,’ which causes the system buffer to be
written out to disk when the buffer is ever released (avoiding
having to perform an immediate and duplicate write; the
TFAT control module 160 can modify the buffer, and then
write it all out to non-volatile storage at once).
0090. In one embodiment, the approach taken is slightly
different. WriteFile can write an arbitrary amount of data to
an arbitrary location in a file. In one embodiment, a stream
process is used to clone streams.
0.091 When there is an attempt to write to an existing part
of a stream, this embodiment attempts to allocate enough
space for the entire write, or uses the most contiguous space
available. Since stream-based operations operate on “runs'
(e.g., contiguous blocks of data on storage media Such as
disks), cloning is performed in the same fashion. An unal
located run of appropriate length is located, and this is
termed a “parallel run. For example, if data in a run
corresponded to sectors 51-55, a parallel run might be 72-76.
0092. After a parallel run has been allocated, it is linked
in to the existing FAT chain for the file, and the streams
current run information is updated with this new informa
tion. The rest of the function call proceeds conventionally,
except instead of writing to the old run of the file, data are
written to the new, parallel run, and the original copy of the
run is preserved on the storage medium. This only occurs for
data composed of block-sized chunks of data that are
block-aligned.

0093. Thus, before any data is written to storage media
Such as disks, the portion to be written to is reallocated, and
the structures updated, so the writes occur to new clusters.
When a stream needs to be expanded (i.e., the write is

Jun. 14, 2007

occurring past EOF, the end of the file), then these new
clusters are not cloned; there is no backup to preserve.
0094. The strategy outlined by example with respect to
processes 300-700 maintains a backup of the most recent
“good version of the FAT in case power is lost during sector
writing or FAT updating. In one embodiment, when a
power-on reset occurs, NOF=0 means that TFAT file systems
will use FAT1 as the valid or last known good FAT; while
NOF=2 means that TFAT file systems will use FATO as the
valid FAT and similarly that desktop-compatible file systems
should be able to use FATO.

0095. This embodiment allows compatibility with exist
ing desktop systems (that do not comprehend TFAT) when
a transaction has been completed and the NOF flag=0. It also
prevents such a conventional desktop system from reading
the Volume when power has been lost in mid-transaction,
i.e., after the NOF field was set to two but prior to updating
of FATO and/or resetting of the NOF field.
0096 TFAT can be incorporated in and operate on all
sorts of physical storage media. Non-removable media
include NAND/NOR flash memory and hard drives. Remov
able media include Compact-Flash (CF) cards, Secure
Digital (SD) cards, floppy discs and other removable mass
storage devices.
0097. In one embodiment, a block driver module associ
ated with the physical mass storage device employs atomic
block write operations. In one embodiment, block size
equals sector size, e.g., 512 bytes. In one embodiment, TFAT
supports any block driver that does atomic sector-size (512
bytes) disk I/O operation.

0098. As used herein, "atomic' means that if a failure
happens (due to power cycle or media removal) during a
sector-sized write-operation, a read-operation on the same
sector at a later time can only have the following three
results:

0099)
0.100 2. Read returns new sector data.
0101 3. Read returns failure.
0102) For some types of NAND-flash media, only the

first two results are possible. For hard-drive type media, all
three results are possible. For general media and other types
of block write module, at least one other possible outcome
is that the read operation returns corrupted data. TFAT
Supports at least those systems and media where atomic
block write operations are employed. In one embodiment,
TFAT Supports media employing transacted block modules.

1. Read returns old sector data.

0.103 Because the TFAT file system writes an entire new
sector or file when data are modified in any file, TFAT may
be slower than conventional FAT file systems. A system
employing TFAT may be, for example, 2.5 to 1.05 times
slower than a conventional FAT file system. In one embodi
ment, this ratio can be lowered by committing the write to
the TFAT control module 160 when the file is closed instead
of with every write to the file.
0.104 FIGS. 8A and 8B are block diagrams showing
relationships between sectors forming a FAT chain for a
given file, before and after a write operation. FIG. 8A
illustrates a portion 800 of a hypothetical FAT chain for the
file prior to a write operation. The portion 800 includes

US 2007/0136387 A1

sector 22 (block 810), sector 55 (block 820), sector 500
(block 830), sector 300 (block 840) and sector 15 (block
850). FIG. 8B illustrates a portion 860 of the hypothetical
FAT chain after the write operation, which updates the data
contained in blocks 820, 820 and 840, but which does not
modify the data contained in those blocks. Instead, sector 77
(block 870), sector 332 (block 880) and sector 11 (block
890) are allocated and written, and the FAT chain is updated
to reflect the new file structure. In the event that the write
process is interrupted by a power failure or other system
disturbance, the data contained in the file prior to the write
(blocks 810-850) are uncorrupted and thus are recoverable.
0105. The TFAT discussed herein has been described in
part in the general context is of computer-executable instruc
tions, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. that perform particular tasks or implement par
ticular abstract data types. Typically the functionality of the
program modules may be combined or distributed as desired
in various embodiments.

0106 For purposes of illustration, programs and other
executable program components such as the file system are
illustrated herein as discrete blocks, although it is recog
nized that Such programs and components reside at various
times in different storage components of the computer and
are executed by the data processor(s) of the computer.
01.07 Alternatively, TFAT may be implemented in hard
ware or a combination of hardware, Software, and/or firm
ware. For example, one or more application specific inte
grated circuits (ASICs) could be designed or programmed to
carry out aspects of the TFAT file system.
0108. Although TFAT has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the recitation in the appended claims
is not necessarily limited to the specific features or steps
described. Rather, the specific features and steps are dis
closed as preferred forms of implementing the claimed
Subject matter.

1. A directory creation process comprising:

allocating a first cluster on a storage medium for a new
directory;

creating a first entry within the first cluster, the first entry
representing a sector where the new directory is stored;

creating a second entry within the first cluster, the second
entry representing a sector where a parent directory of
the new directory is stored; and

filling a remainder of the first cluster with data that a file
system will not permit to be overwritten.

2. The method of claim 1, wherein filling a remainder
comprises filling the remainder of the first cluster with
volume labels.

3. The method of claim 1, further comprising:

modifying data in a file within the new directory; and
relinking a chain of entries corresponding to the new

directory in a file allocation table.

Jun. 14, 2007

4. A computer system comprising:
a processor;

a bus coupled to the processor and configured to couple
data to and from the processor,

a memory system coupled to the bus and configured to
store and retrieve data via the bus, the memory system
including a portion configured to store a plurality of
instructions that, when executed by the processor,
cause the processor to employ directory creation pro
cess Such that the processor performs acts to:

allocate first and second clusters on a storage medium
coupled to the memory system for a new directory;

create entries within the first cluster representing a current
cluster where the new directory is stored and another
cluster where a parent directory of the new directory is
stored;

fill a remainder of the first cluster with data that cannot be
overwritten; and

employ the second cluster for DIRENTRIES correspond
ing to the new directory.

5. The computer system of claim 4, wherein the instruc
tions to cause the processor to fill the remainder comprise
instructions to cause the processor to fill the remainder of the
first cluster with volume labels.

6. The computer system of claim 4, further comprising
instructions to cause the processor to:

modify data in a file within the new directory; and
relink a chain of entries corresponding to the new direc

tory in a file allocation table.
7. The computer system of claim 4, further comprising

instructions to cause the processor to modify data repre
sented by at least a first sector on a non-volatile storage
medium such that the processor perform-S acts including:

write a new sector of the storage medium via an atomic
block write;

enter file allocation data including data describing the new
sector in a first file allocation table;

set a variable to a first value configured to block access to
the storage medium by first types of file systems and
configured to permit access to the storage medium by
second types of file systems;

copy the first file allocation table into a second file
allocation table; and

reset the variable to a second value configured to permit
access to the storage medium by the first and second
types of file systems.

8. The computer system of claim 4, further comprising
instructions to cause the processor to perform acts including
setting a variable to block access to the non-volatile storage
medium by operating systems chosen from a group consist
ing of FAT 12, FAT 16 and FAT32 and to not block access to
the non-volatile storage medium by transaction-safe file
systems.

9. A process for transaction-safe data storage comprising:
entering a pointer to a Subdirectory into a root directory;

and

US 2007/0136387 A1

filling a remainder of the root directory with unchange
able data.

10. The process of claim 9, further comprising:

allocating first and second clusters for the Subdirectory;

entering data corresponding the root directory and to a
sector associated with the subdirectory into a first
portion of the subdirectory; and

filling a remainder of the first cluster with unchangeable
data.

Jun. 14, 2007

11. The process of claim 9, wherein filling a remainder
comprises filling a remainder of the root directory with
volume labels.

12. The process of claim 9, wherein filling a remainder
comprises filling a remainder of the root directory with
Volume labels, and further comprising:

allocating first and second clusters for the Subdirectory;
entering data corresponding the root directory and to a

sector associated with the subdirectory into a first
portion of the subdirectory; and

filling a remainder of the first cluster with volume labels.
k k k k k

