8309 A2

-

0 01

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
18 October 2001 (18.10.2001)

A 0 D000 .0 O O

(10) International Publication Number

WO 01/78309 A2

(51) International Patent Classification’: HO04L 12/00

(21) International Application Number: PCT/IB01/00697

(22) International Filing Date: 4 April 2001 (04.04.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/547,034 11 April 2000 (11.04.2000) US

(71) Applicant: P-CUBE LTD. [IL/IL]; Medinat Hayehudim
St. 85, 46766 Herzelia (IL).

(72) Inventors: BEN NUN, Michael; HaHagana Street 20,
47203 Ramat Hasharon (IL). RAVID, Sagi; Yahalom
Street 6, 30900 Zichron Yakov (IL). BARAK, Itzhak;
Hapa’amon Street 12, 60920 Kadima (IL). WEIL, Offer;
1036, 99850 Moshav Aderet (IL).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA,BB,BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EE, ES, Fl, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TJ, ™™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND APPARATUS FOR WIRE-SPEED APPLICATION LAYER CLASSIFICATION OF DATA PACK-

ETS

(57) Abstract: A data packet classifier to classify a plurality of N-bit input tuples, said classifier comprising a hash address, a
~~ memory and a comparison unit. The hash address generator generate a plurality of M-bit hash addresses from said plurality of
N-bit input tuples, wherein M is significantly smaller than N. The memory has a plurality of memory entries and is addressable by
said plurality of M-bit hash addresses, each such address corresponding to a plurality of memory entries, each of said plurality of
memory entries capable of storing one of said plurality of N-bit tuples and an associated process flow information. The comparison
unit determines if an incoming N-bit tuple can be matched with a stored N-bit tuple. The associated process flow information is
output if a match is found and wherein a new entry is created in the memory for the incoming N-bit tuple if a match is not found.

10

15

20

25

WO 01/78309 PCT/1B01/00697

A Method and Apparatus for Wire-Speed Application
Layer Classification of Data Packets

I. DESCRIPTION OF THE INVENTION

A. Field of the Invention

The present invention relates generally to the classification of packets in a
full duplex communication system, and more specifically to high speed digital
communication networks transporting packets which may be monitored at the
application level of the communication model where wire speed handling of the
packet is required. The present inventionv is embodied in a network system, a
data classifier, a method for hashing and computer program products for

enabling a computer to perform data packet classification.

B. Background of the Invention

In most communication networks used for exchanging messages between
a source and a destination, a message in a digital form is divided into multiple
packets for faster and more convenient transmission and for reducing errors.
Examples of such communication networks are the Internet, Wide and Local
Area Networks. The digital packets are then transmitted over the network
between the source computer and a destination computer. It should be noted
that the source and destination could be personal computers or servers and the
like.

A modern day computer network system comprises a substantial number
of individual computers and servers. A simple computer network is shown in

FIG.1. Typically, a computer can act as both a source and a destination.

10

15

20

25

WO 01/78309 PCT/1IB01/00697

Computer sending a data packet is a source and a computer receiving a packet
is a destination. The same computer that acted as a source in a packet transfer
could act as a destination for another packet. A computer acting as a router acts
as both the source and a destination for a packet. This is because it receives a
packet from a different source and then simply routes it to a different computer.

Often, each of the computers in the network forms at least part of a
“node” of the network, and data is transferred among the various nodes by
transmitting data packets among the computers. For example, a first computer
located at a first node may run a first application program that generates first
data to be subsequently processed by a second computer at a second node. In
order to transfer the first data to the second computer so that it can be
processed, the first computer divides the first data into a plurality of data
segments and forms a data packet corresponding to each of the data segments.
Then, the data packets are transmitted downstream from the first computer to
the second computer. Also, if the network is capable of full duplex
communications, the second computer may transmit data packets upstream to
the first computer in response to the data packets received from the first
comp.uter.

Each of the data packets transmitted from the first computer to the
second computer (and transmitted from the second computer to the first
computer) typically contains a data packet header. The headers are often
referred to as tuples. The header often includes data that identifies the type of
data contained in the data packet, the source computer from which the data
packet was transmitted, the intended destination computer of the data packet,

etc. An example of a data packet header is illustrated in Fig. 4.

10

15

20

25

WO 01/78309 PCT/IB01/00697

As shown in the figure, the header HDR comprises a source internet
protocol (*IP”) address field 100, a destination IP address field 110, a protocol
field 120, a source port field 130, and a destination port field 140. The source IP
address field 100 contains a 32-bit source IP address that identifies the source
computer transmitting the data packet. The destination IP address field 110
contains a 32-bit destination address that identifies the intended destination
computer of the data packet. The protocol field 120 contains eight bits of
protocol data that identify the data format and/or the transmission format of the
data contained in the data packet. The source port field 130 includes sixteen
bits of data that identify the computer port that physically outputs the data
packet, and the destination port field 140 contains sixteen bits of data that
represent the computer port that is supposed to input the data packet. The tuple
uniquely defines the path between the source and destination and therefore
defines the origin and target for the packet being sent.

When data packets are transmitted over the network from the source
computer to the destination computer, they are input by various network
components that process the data packets and direct them to the appropriate
destination computer. Such network components may be included in the
destination computer and/or may be contained in an intermediate computer that
processes the data as it is being transmitted from the source computer to the
destination computer. If the data packets can be quickly and efficiently |
processed and routed between the various nodes of the network, the operation
of the entire network is enhanced. For example, by duickly and efficiently
transmitting data packets to the destination computer, the quality of real-time
applications such as internet video conferencing and internet voice conferencing

is improved. Also, the network components can quickly process the data
3

10

15

20

25

WO 01/78309 PCT/1B01/00697

packets to determine if they are authorized to be transmitted to the destination
computer, and if they are not, the network components discard the data

packets. As a result, the security of the network is greatly enhanced.

Before processing a data packet, a network component must “classify” the
data packet according to various characteristics of the data packet and/or the
data contained in the packet. Then, the network component processes the data
packet based on its classification.

The packets of data that flow among the compUters that form part of the
network can be considered to carry portions of digital information between the
different nodes of the network. For example, an application may be running at a
computer in one node of the network. The results of such an application may be
sent to a computer in a different node of the computer. The information is
divided into one or more packets before the data is transferred over the
respective network. In the full form of communication, such packets are run
upstream and then down stream in order to verify a full response loop. In many
systems it is required to analyze the packets flowing back and forth for better
network management and system administration, and other application related
activities such as billing, prioritizing, and the like.

In a robust high speed network, typically millions of data packets are sent
and received by a node ever second. Therefore, the network is required to
process millions of such packets. It is clear that these packets must be
processed at wire speed so that the transmission of the packet is efficient. For
example, in an efficient network the speed of transmission of data will be
approximately the same as the speed at which a packet is processed by a node.

In other words, the packets are processed at the maximum speed at which they

10

15

20

25

WO 01/78309 PCT/IB01/00697

can be transmitted through the network. The ability to process at wire speed
allows the system to work without performance degradation. As the bit rate of
the network increases (for example networks capable of speeds 1Gbs are

already in use) the number of packets requiring processing also increases.

An important requirement of a good network is that the packets reach
their desired destination. The packets should also be prevented from reaching
the wrong destination. Theoretically, the best way of doing so is to use the full
104 bit provided as a unique address, however, this approach is impractical as
described below.

A large tuple, for example a 104-bit wide tuple, will enable the precise
description of the source and destination nodes, the input and output ports as
well as the protocol used. However, such a large tuple in turn creates a large
address space. For example a 104-bit wide tuple would require an address space
of 2 1% addresses. But then, such a large address space would require
addressing a memory using a large tuple. Such a large address would result in
huge memory requirements and very inefficient usage of the memory.
Therefore, an important challenge is to effectively prevent the need to use such
a large tuple for addressing the memory.

A commonly used technique employs hash tables or other hashing
techniques. In such a hashing technique, address or location of an identifier is
obtained by computing some arithmetic function of the identifier. This arithmetic
function is called a hashing function. A hashing function essentially transforms
an identifier into an address in the hash table. For example, if X is an identifier,
f(X) gives the address of the identifier in the hash table. The memory available

to maintain the hash table is normally assumed to be sequential. Also hash
5

10

15

20

25

WO 01/78309 PCT/IB01/00697

table is normally partitioned into hash buckets. The buckets in turn have one or
more slots each capable of holding exactly one record. Therefore, if there are b
buckets in the hash table, the transformation f(X) transforms X into an integer O
through b-1. Since the number of possible identifiers are much larger than the
number of buckets there is a distinct possibility that two different identifiers are
mapped to the same bucket. For example, if I; and I, are two different identifiers
it is possible that f(I;) = f(I;). There is also a likelihood that a bucket can
overflow if more identifiers get allotted to the bucket than the number of slots
available in the bucket. The desired properties of a hash function are that it be
easily computable and that it minimizes the number of collisions.

Several conventional approaches use hashing techniques to store tuples.
However, the conventional techniques are deficient in that they lack the
capability of truly operating at wire speed. Furthermore, none of the
conventional techniques can handie over one million different process flows and
the full tuple range. Some of the conventional techniques use several sequential
steps that either grow linearly or exponentially with the number of process flows
identified. On the other hand, several other conventional techniques require
complex resources in order to store tuples using hashing techniques. A
disadvantage of the conventional techniques is that they require search
mechanisms that are time consuming and impractical for wire speed
applications.

Another conventional technique used to store tuples is the use of a
Content Addressable Memory (CAM). A CAM is an associative memory device
that is capable of searching a list of stored information entries based on the
content of the entries. On the other hand, conventional memories search based

on the location of the entries in the memory. An information string is provided as
6

10

15

20

25

WO 01/78309 PCT/1B01/00697

an input to the CAM. The output from the CAM is the address of all of the
memory locations in the CAM that contain the particular information string. In
conventional memory devices, an address of a memory location is provided as
input . The information string contained at that address forms the output. A
unique property of CAM memories is their ability to search (i.e., compare to the
information string) all of the entries in the CAM table simultaneously. This ability
to perform simultaneous searching greatly increases the speed with which
memory searches can be performed relative to conventional memories that
require a sequential read and compare procedure. The simultaneous search
capability is achieved, in part, by including a separate comparator means at each
memory location in the CAM device. However, a CAM is complicated in terms of
hardware required to implement. For large address spaces a CAM is simply
infeasible to implement.

U.S. Patent No. 5,414,704 (*704) discloses a way of doing source address
and destination address lookups for use in a packet data communication system.
A way of searching a relatively large database is described, using a combination
of programmable hash algorithms. In the hashing technigue used in ‘704 N-bits
are hashed into N-bits. Clearly, such a solution is not practical when the address
space is large as would be in the case of a communication network. Though ‘704
discloses the use of a content addressable memory (CAM) in parallel to the hash
function, the present invention uses a much improved method.

U.S. Patent No. 5,708,659 (‘659) discloses performing hashing on certain
packet headers. In ‘659 a predetermined number of bits from the packet address
information is selected to use a hash key. This hash key is then used to
compute a table address. The contents of the table at that address are compared

with the packet address information. If it matches, the packet is transmitted
7

10

15

20

25

WO 01/78309 PCT/1B01/00697

over the port associated with that particular destination address. If it does not
match, the table address is incremented by one, and the contents of the new
table location identified by the incremented address are compared with the
packet address information.
However, ‘659 but does not teach the method and technique on how to associate
a packet with an existing flow in the system. An existing flow in the system
refers to one or more packets flowing through the system that was already
identified and newly arrived packet needs to be directed to the same packet
processor for efficient processing.

Similarly, in U.S. Patent No. 5,920,900 (*900) a translation is performed
by using a programmable hashing technique on an input number to generate a
hashed number. In ‘900, a subset of the hashed number bits are used to index a
first hash table. If a collision does not occur in the first hash table, an entry
contains an index into an output table which contains the desired translated
output number. If a collision occurs, an entry in the first hash table contains a
pointer to a first resolution table area in a second hash table. The first resolution
table area contains entries which are indexed by additional bits selected from the
hashed number in accordance with a mask field in the first hash table location. If
collisions occur in the resolution table, a new resolution table is created and the
process is repeated. The resolution process thus proceeds in stages until all
input numbers have been translated. As can be seen, ‘900 deals with the
problem of packet collision but does not address the issue of association
between packets forming a full process flow. Furthermore, all of the above-
mentioned conventional techniques posses very limited capabilities of scalability
of the solution. Therefore, they are unsuitable for handling the increasing

demand for high-speed packet processing at wire speed.
8

10

15

20

25

WO 01/78309 PCT/IB01/00697
Additionally, it is desirable to associate packet flow with the 7" layer

(Application layer) of the Open Systems Interconnection (OSI) 7-layer model.
The OSI 7-layer model is a commonly used framework for defining standard for
linking heterogeneous computers that form part of a network. OSI uses a
concept of layering whereby communication functions are partitioned into a
vertical set of layers. Each layer performs a related subset of functions required
for communication between two nodes in a computer network system. The seven
layers in the model are Physical layer, Data link layer, Network layer, Transport
layer, Session layer, Presentation layer and Applications layer. The Physical
layer is concerned with the transmission of unstructured bit streams over a
physical link. It deals with the mechanical, electrical, and procedural
characteristics to establish and maintain the physical link. The Data link layer
provides for the reliable transfer of data across the physical link. It sends blocks
of data with a necessary synchronization, error control and flow control. The
Network layer provides all upper layers with independence from the data
transmission and switching technologies used to connect systems. Itis
responsible for establishing maintaining and terminating connections. The
Transport layer avoids reliable and transparent transfer of data between end
points. It provides end-to-end error recovery and flow control. The Session
layer provides the control structure for communication between applications. It
establishes manages and terminates sessions between cooperating applications.
The Presentation layer performs useful transformations on data to provide a
standardized application interface and provides common communication
services. Such services include encryption, text compression and any
formatting. Finally the Application layer provides user-level services to the users

of the environment. Examples of such services are transaction service, file
9

10

15

20

25

WO 01/78309 PCT/IB01/00697

transfer, and network management. Therefore, associating packet flow with the
7™ layer (Application layer) of the Open Systems Interconnection (OSI) 7-layer

model provides for better network management.

II. SUMMARY OF THE INVENTION

To solve the above-mentioned problems in the conventional technologies,
it is an object of the present invention is to provide an apparatus which is
capable of accepting a packet tuple and uniquely identify it with an existing flow
of packets in the system, or alternatively identify it as a new flow. The
processing of packet tuples should be performed at wire speeds. By being able
to correlate a stream of related packets to a single packet processor, this
invention allows the monitoring and management of the system up to the
application layer, or the seventh layer of the 7-layer Open Systems
Interconnection (OSI) communication model. Furthermore, it allows for the
efficient data processing of such packets as all the processing is performed by
the same packet processing unit.

It is a further object of this invention to provide a method for transforming
a large tuple number associated with a packet into a reduced bit count number
while maintaining the unique identification of each fiow that the packet is a part
of. Another object of this invention is to generate a reduced bit number from
a large number based on hashing techniques incorporating certain improvements
allowing the generation of “white hashing” numbers. Because of such an
improved hashing, though tuples may be highly localized they will still be spread
throughout the much more limited range of the hashed numbers. This means

that though tuples may poses a locality in the numbers, i.e., are in close

10

10

15

20

25

WO 01/78309 PCT/IB01/00697

proximity to each other, they will still be spread evenly throughout the limited
range of the reduced number range.

To meet the objectives of the present invention there is provided a data
packet classifier to classify a plurality of N-bit input tuples, said classifier
comprising a hash address generator to generate a plurality of M-bit hash
addresses from said plurality of N-bit input tuples, wherein M is significantly
smaller than N; a memory having a plurality of memory entries, said memory
being addressable by said plurality of M-bit hash addresses, each such address
corresponding to a plurality of memory entries, each of said plurality of memory
entries capable of storing one of said plurality of N-bit tuples and an associated
process flow information; a comparison unit to determine if an incoming N-bit
tuple can be matched with a stored N-bit tuple, wherein said associated process
flow information is output if a match is found and wherein a new entry is created
in the memory for the incoming N-bit tuple if a match is not found.

Preferably the data packet classifier further comprises a content
addressable memory (CAM) to store overflowing N-bit tuples and their
corresponding process flow information wherein said overflowing N-bit tuple can
not be stored in the memory.

Preferably the process flow information in the memory comprises a flow
identification number.

Preferably the process flow information in the memory can be updated.

Preferably, an entry in the memory can be deleted.

Preferably searching for an entry in the memory can be ceased when a
kill-process command is received.

Preferably the process flow information in the CAM comprises a flow

identification number.
11

10

15

20

25

WO 01/78309 PCT/1IB01/00697

Preferably the process flow information in the CAM can be updated.

Preferably an entry in the CAM can be deleted.

Preferably searching for an entry in the CAM can be ceased when a kill-
process command is received.

Still preferably, the data packet classifier is further capable of generating
a trap if both the memory and the CAM are full.

Still preferably both the memory and CAM are searched in parallel.

Still preferably N > 96.

Still preferably the hash address generator performs hashing on a first 96
bits of an associated N-bit tuple.

Still preferably a comparison of tuple stored in the memory and an
incoming tuple is performed using three 32-bit comparators.

Another aspect of the present invention is a network system comprising a
plurality of nodes, each of said nodes having a unique N-bit tuple, each of said
plurality of nodes comprising a data packet classifier, said address classifier
comprising: a hash address generator to generate a plurality of M-bit hash
addresses from said plurality of N-bit input tuples, wherein M is significantly
smaller than N; a memory having a plurality of memory entries, said memory
being addressable by said plurality of M-bit hash addresses, each of said
plurality of memory entries capable of storing one of said plurality of N-bit tuples
and an associated process flow information; a comparison unit to determine if
an incoming N-bit address can be matched with a stored N-bit tuple, wherein
said associated process flow information is output if a match is found and
wherein a new entry is created in the memory for the incoming N-bit tuple if a

match is not found.

12

10

15

20

25

WO 01/78309 PCT/1B01/00697

Yet another aspect of the present invention is a method of generating an
M-bit hash address from an N-bit input tuple comprising: splitting said N-bit
input tuple into a first range of X bits and a second range of Y bits wherein X is
equal to or smaller than M; applying a hash function to said X bits to generate a
white hash address with Z bits wherein Z is equal to or smaller than M; creating
said M-bit hash address by combining said Z-bit white hash address and said
second range of Y bits using a Boolean operator.

Preferably X is significantly larger than Y.
Preferably X is significantly larger than Z.
Preferably the Boolean operator is an OR.
Preferably the Boolean operator is an XOR.
Preferably the Boolean operation is an AND.
Still preferably N is 104.

Still preferably X is 96 and Y is 8.

Still preferably Z is 20 and M is 20.

Still another aspect of the present invention is a computer program
product, inciuding a computer-readable medium comprising instructions, said
instructions enabling a computer to perform a hashing function on an N-bit input
tuple according to the following steps: splitting said N-bit input tuple into a first
range of X bits and a second range of Y bits; applying a hash function to said X
bits to generate a white hash address with Z bits; creating said M-bit hash
address by combining said Z-bit white hash address and said second range of Y
bits using a Boolean operator.

Yet another aspect of the present invention is a computer program
product, including a computer-r:eadable medium comprising instructions, said

instructions comprising: a hash address generator code to enable a computer
13

10

15

20

WO 01/78309 PCT/1IB01/00697

to generate a plurality of M-bit hash addresses from said plurality of N-bit input
tuples, wherein M is significantly smaller than N; a memory code to enable a
computer to store data in a memory having a plurality of memory entries, said
memory code further enabling the computer to address said plurality of M-bit
hash addresses, each of said plurality of memory entries capable of storing one
of said plurality of N-bit addresses and an associated process flow information; a
comparison code to determine if an incoming N-bit tuple can be matched with a
stored N-b.it tuple, wherein said associated process flow information is output if a
match is found and wherein a new entry is created in the memory for the

incoming N-bit tuple if a match is not found.

III. BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the present invention will
become more apparent by describing in detail preferred embodiments thereof

with reference to the attached drawings in which:

FIG.1 shows a preferred embodiment of a network system according to

the present invention.

FIG. 2 is a block diagram of a preferred embodiment of a data packet
classifier according to the present invention.

FIG. 3 is a block diagram illustrating the hashing function of the Hash
Generator.

FIG.4 shows an example of a tuple or a header.

14

10

15

20

WO 01/78309 PCT/IB01/00697

IV. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiments discloses specific
configurations, components, and process steps. However, the preferred
embodiments are merely examples of the present invention, and thus, the
specific features described below are merely used to more easily describe such
embodiments and to provide an overall understanding of the present invention.
Accordingly, one skilled in the art will readily recognize that the present
invention is not limited to the specific embodiments described below.
Furthermore, the descriptions of various configurations, components, and steps
of the present invention that would have been known to one skilled in the art are

omitted for the sake of clarity and brevity.

A. The Network System with a Data Packet Classifier

The preferred embodiment is described using a policy-based network. Such a
network system is capable of associating the packets flowing in the system with
the Application layer of the 7-layer OSI communication model. It is to be noted
that, this ability to associate packet flow with the application it is related to
allows for better system and network management. Further, many other
enhanced functionality allows for better implementation of a policy-based
network. An example of the use of this invention would be in systems that have
to provide special priority to packets containing voice over IP or video over IP.
Moreover, such a system also provides the ability to route the packets in a
defined manner and provide billing specific information. Another example would
be differentiated billing system based on the type of application data being

transmitted over the network.

15

10

15

20

25

WO 01/78309 PCT/IB01/00697

An example of a policy-based network system is shown in FIG.1. The network
system of FIG.1 comprises hosts 1.1-1.4. A host can be any type of computer
including, but not limited to a server 1.2 and 1.3, a workstation 1.4 or a desktop
Personal Computer 1.1. The individual hosts are connected using network
connections 1.5-1.11. It should be noted that though only four hosts are shown,
the network comprises many more hosts. Each host in the network has a unique
tuple. Information can ideally flow from any host in the network to any other
host in the network.

Each host in the network includes a data packet classifier. The data packet
classifier further comprises a hash address generator, a memory and a
comparison unit. A preferred embodiment of a data packet classifier is described
subsequently with reference to FIG.2. The data packet classifier in such a
network system is required to process a substantial number of flows.
Additionally, each such flow is associated with a plurality of packets all of which
move around the various components of the network.

The host that sends digital information is called the source and the host that
receives the information is called the destination. Each message or information
flow is divided into oné or more packets. Each packet is processed separately
and sent from the source to the destination. Such a packet contains a header.
The packet header is uniquely identified by a tuple which is 104 bits. Since a bit
can have a value of a 0 or 1. Therefore, using 104 bits, 2'° tupies possible.
However, if each tuple is uniquely identified with its entire number, the number
of possible tuples to be handled and classified becomes substantially large for
any practical implementation of the system. A real time processing of such a

large number of tuples is likely to be impossible.

16

10

15

20

25

WO 01/78309 PCT/IB01/00697

Extensive simulation studies were performed to determine the maximum
possible number of information flows in a network during a short period of time.
These simulation studies revealed that that allowing for a miilion different flows

at a given relatively short period of time in a system is sufficient for providing a

high quality of service for the system. For more detailed information on these

simulations see, for example, Stiliadis, D. “High-Speed Policy-Based Packet
Forwarding Using Efficient Multi-Dimensional Range Matching” ACM SIGCOMM

1998 published in February 1998.

B. The Data Packet Classifier

FIG.2 shows a preferred embodiment of a data packet classifier. 104 bit
tuples are received by a hash address generator 2.4. The hash address
generator is capable of transforming the 104 bits of the tuple into a 20 bit long
number. Therefore, using the results of the hashing, 2%° or more than a million
unique digital information flows can be represented. The operation of the Hash
Generator is further discussed below. It should be noted that though the
preferred embodiment is described using a tuple with 104 bits, tuples of any
length can be used without deviating from the spirit of the invention. Likewise,
the hash address can be of any length less than the length of the tuple to be
within the scope of the present invention.

The 20 bit hash address generated by the Hash Generator is used to access
the memory 2.5. Each hash address corresponds to a hash bucket. The memory
2.5 is designed in such a way that each hash bucket is capable of storing eight
separate entries. As noted in the background section, it is possible that two

different tuples on applying the hashing function resuit in the same hash
17

10

15

20

25

WO 01/78309 PCT/IB01/00697

address. This memory is designed so that it has actual»ly eight separate entries
for each hush address accessing the memory unit. This specific number of
entries for each hash address is chosen based on extensive system simulations
balanced with the need to ensure wire speed performance. However, as
technology develops, additional entries may be added as necessary. Providing
eight different entries for a hash address would ensure eight different entries
could be stored in the same hash bucket. That is up to eight different tuples
resulting in the same hash address can still be stored in the hash table. This
substantially reduces the chance of a tuple being bounced off from the hash
table because a particular hash bucket is full.

The hash address generator performs hashing on a tuple associated with an
incoming data packet. The result of such a hashing is used to identify a hash
bucket that is associated with the incoming tuple. The comparison unit 2.3
which is attached to the CAM, compares data associated with the incoming data
packet and the data in each of the eight entries. The comparison unit determines
that a successful match has resulted if a match is found between the incoming
tuple and an entry in the memory. Upon finding a successful match, the stored
process flow information corresponding to the matched entry is output. This
process flow information includes a unique ID. If no match is found with an
existing entry, a new entry is created corresponding to the incoming packet.

According to another improvement, a CAM is provided as an additional
storage facility to deal with incoming packets having tuples that produce a hash
address of a hash bucket that is already full. The CAM 2.1 unit is accessed with
the full tuple corresponding to the incoming packet. Though remote, it is
possible that more than eight unique tuple would hash into a single hash

number. The CAM is used for storing process flow information related to such
18

10

15

20

25

WO 01/78309 PCT/1B01/00697

packets having tuples that produce hash addresses that represent hash buckets
that are already full. The CAM is accessed with the full tuple. Simulations have
shown that a CAM containing 8K entries is sufficient to reduce the risk of inability
to handle a tuple in the classifier unit to a practically negligible number. As
systems and technology develops, it is easy to add entries to the CAM to handle
additional requirements.

The data packet classifier is also capable of updating the process flow
information associated with a data packet. Entries stored in both the memory as
well as the CAM can be updated. The data packet classifier is also capable of
deleing an entry in the memory.

If the CAM aiso gets filled up and an incoming packet can not be stored in the
memory or the CAM, a trap is generated. Such a trap indicates that the
corresponding incoming packet can not be handled by the data packet classifier.
Additionally a “kill process” command can be issued to the data packet classifier.
On receiving a “kill process” command, the data packet classifier ceases
searching the memory as well as the CAM.

As noted before, if in the search of the memory and CAM, which may take
place in parallel, no match is found then a new entry is created. Such a new
entry is created in the memory if a corresponding hash bucket has not been
filled up. If space exists in the memory to store the entry, it is registered in the
memory. As part of the entry, full tuple information, the flow identification and
other control information is stored. This stored information will be later attached
to each incoming packet incoming with a tuple that matches the corresponding
entry. After this information is attached, the incoming packet is sent to the
packet processor. The ability to update an entry is provided because

incoming packets may have undergone further processing. Such a processing
19

10

15

20

25

WO 01/78309 PCT/IB01/00697

may create a need for making further changes in the stored entry. An update
command is used to perform such an updating. When an update command is
initiated, the control information associated with the tuple is modified.

In the case where all eight entries of the memory corresponding to a hash
bucket that is dedicated for a specific hash address are occupied, the entry is
written into the CAM. Simulations have shown that only a fraction of the 8K
associated with the CAM is used even when over a million process flow through
the system.

An important advantage of the architecture of this system is its ability to
easily scale as system demands grow and require handling of millions of more

process flow in short periods of time and at wire speed.

C. The Hashing Function

Another aspect of the invention is an improved method to perform hashing
that is used by the Hash Address Generator. A preferred embodiment of this
hash function is described using Fig.3. Conventionally, the hashing function is
applied to all the bits corresponding to a tuple. Instead of applying the hash
function on all 104 bits of the tuple, the tuple is divided into two portions, 96
bits of the tuple and the remaining 8 bit indicating the protocol type. Hashing is
performed on the 96 bits. Again it should be noted that the fixed number of bits
(104, 96, 8, etc) used to describe the preferred embodiment are merely
illustrative. The division of bits can be done in any convenient manner without
deviating from the spirit of the invention.

While any hash function could be used it is necessary to ensure that the

specific hash function used generates a “white hash address”. This would mean

20

10

15

20

25

WO 01/78309 PCT/IB01/00697

that when taking a group of tuples, which in many times can be different in oniy
a minimal way from other tuples, the Hash Generator will still generate hash
numbers that are equally spread through the range of address spanned by the
20 bit address space available. While less than the 96 bits could be used for the
hash function (in fact, as little as 84 bits would suffice), it is advisable to use the
maximum number of bits possible in order to increase the spread and
effectiveness of the hash function. The reason for selecting 96 bits specifically is
that this allows the use of three 32-bit comparators to compare the incoming
tuple and the memory content and get a unique comparison result and further
permit the use of six standard 16-bit memory banks to hold the memory
content. The hash operation performed on the 96 bits result in a preliminary 20
bit hash address. This is then followed by a logical "OR"” or an “XOR" operation
performed between the 20-bit result of the preliminary hash operation and the
remaining 8 bits from the tuple that did not form part of the hashing operation.
Instead of performing a logical "OR” or an “XOR" a Boolean "AND" operation can
also be performed. Such a two-step hashing operation results in producing a

final hash address that spans the entire 20-bit hash address range.

D. Computer Program Products

Another important aspect of the present invention is a computer program
product to enable a computer to perform the hashing operation according to the
present invention. The preferred embodiment of such a program product
includes a computer-readable medium. The computer-readable medium
comprises instructions to enable a computer to perform a hashing function on an

N-bit input tuple. The instructions enable the computer to split the N-bit input
21

10

15

20

25

WO 01/78309 PCT/1IB01/00697

tuple into a first range of X bits and a second range of Y bits. The instructions
further enable the computer to apply a hash function to the X bits to generate a
white hésh address with Z bits. Further instructions enable the computer to
create a M-bit hash address by combining the Z-bit white hash address and the
second range of Y bits using a Boolean operator. The Boolean operator could be
a logical “Or” or an "XOR".

Another important aspect of the present invention is a computer program
product, iﬁcluding a computer-readable medium comprising instructions to
implement the data packet classifier in software. The instructions comprise a
hash address generator code to enable a computer to generate a plurality/ of M-
bit hash addresses from a plurality of N-bit input tuples, wherein M is
significantly smaller than N. The instructions further comprise a memory code to
enable a computer to store data in a memory having a plurality of memory
entries. The memory code further enables the computer to address the plurality
of M-bit hash addresses. Each of the plurality of memory entries capable of
storing one of the plurality of N-bit tuples and an associated process flow
information. The instructions further comprise a comparison code to determine
if an incoming N-bit tuple can be matched with a stored N-bit tuple. The
associated process flow information is output if a match is found and new entry
is created in the memory for the incoming N-bit tuple if a match is not found.

It should be noted that the computer readable medium includes any fixed
media including, but not limited to, fioppy disk, hard disk, CD, chips, tapes,
cartridges with ICs, etc. The computer readable media also includes instructions
transmitted through a network or downloaded from the Internet.

The previous description of the preferred embodiments is provided to

enable a person skilled in the art to make or use the present invention.
22

WO 01/78309 PCT/1B01/00697

Moreover, various modifications to these embodiments will be readily apparent
to those skilled in the art, and the generic principles defined herein may be
applied to other embodiments without the use of inventive faculty. Therefore,
the present invention is not intended to be limited to the embodiments described
herein but is to be accorded the widest scope as defined by the claims and

equivalents thereof.

23

10

WO 01/78309 PCT/IB01/00697

WHAT IS CLAIMED IS
1. A data packet classifier to classify a plurality of N-bit input tuples, said
classifier comprising:

a hash address generator to generate a plurality of M-bit hash addresses
from said plurality of N-bit input tuples, wherein M is significantly smaller than
N;

a memory having a plurality of memory entries; said memory being
addressable by said plurality of M-bit hash addresses, each such address
corresponding to a plurality of memory entries, each of said plurality of memory
entries capable of storing one of said plurality of N-bit tuples and an associated
process ﬂow information;

a comparison unit to determine if an incoming N-bit tuple can be matched
with a stored N-bit tuple, wherein said associated process flow information is
output if a match is found and wherein a new entry is created in the memory for

the incoming N-bit tuple if a match is not found.

2. The data packet classifier of claim 1 further comprising:
a content addressable memory (CAM) to store overflowing N-bit tuples
and their corresponding flow information wherein said overflowing N-bit tuple

cannot be stored in the memory.

3. The data packet classifier of claim 1 wherein said process flow information

in the memory comprises a flow identification number.

24

WO 01/78309 PCT/IB01/00697

10.

11.

The data packet classifier of claim 1 wherein said process flow information

in the memory can be updated.

The data packet classifier of claim 1 wherein an entry in the memory can be

deleted.

The data packet classifier of claim 1 wherein searching for an entry in the

memory can be ceased when a kill-process command is received.

The data packet classifier of claim 2 wherein said process flow information

in the CAM comprises a process flow identification number.

The data packet classifier of claim 2 wherein said process flow information

in the CAM can be updated.

The data packet classifier of claim 2 wherein an entry in the CAM can be

deleted.

The data packet classifier of claim 2 wherein searching for an entry in the

CAM can be ceased when a kill-process command is received.

The data packet classifier of claim 2 further capable of generating a trap if

both the memory and the CAM are full.

25

10

15

WO 01/78309 PCT/IB01/00697

12.

13.

14,

15.

16.

The data packet classifier of claim 2 wherein both the memory and CAM are
searched in paralilel.

The data packet classifier of claim 2 wherein N > 96.

The data packet classifier of claim 13 wherein said hash address generator

performs hashing on a first 96 bits of an associated N-bit tuple.

The data packet classifier of claim 14 wherein a comparison of tuple stored
in the memory and an incoming tuple is performed using three 32-bit

comparators and standard 16 or 32 bit wide memories.

A network system comprising a plurality of nodes, each of said nodes
having a unique N-bit tuple, each of said plurality of nodes comprising a
data packet classifier, said data packet classifier comprising:

a hash address generator to generate a plurality of M-bit hash addresses
from said plurality of N-bit input tuples, wherein M is significantly smaller
than N;

a memory having a plurality of memory entries, said memory being
addressable by said plurality of M-bit hash addresses, each such address
corresponding to a plurality of memory entries, each of said plurality of
memory entries capable of storing one of said plurality of N-bit tuples and
an associated process flow information;

a comparison unit to determine if an incoming N-bit tuple can be
matched with a stored N-bit tuple, wherein said associated process flow
information is output if a match is found and wherein a new entry is created

in the memory for the incoming N-bit tuple if a match is not found.
26

WO 01/78309 PCT/IB01/00697

17.

The data packet classifier of claim 16 further comprising:

a content addressable memory (CAM) to store overflowing N-bit tuples

and their corresponding process flow information wherein said overflowing N-bit

tuple cannot be stored in the memory.

18.

19.

20.

21.

22.

23.

The data packet classifier of claim 16 wherein said process flow information

in the memory comprises a process flow identification number.

The data packet classifier of claim 16 wherein said process flow information

in the memory can be updated.

The data packet classifier of claim 16 wherein an entry in the memory can

be deleted.

The data packet classifier of claim 16 wherein searching for an entry in the

memory can be ceased when a kill-process command is received.

The data packet classifier of claim 17 wherein said process flow information

in the CAM comprises a process flow identification number.

The data packet classifier of claim 17 wherein said process flow information

in the CAM can be updated.

27

WO 01/78309 PCT/IB01/00697

24. The data packet classifier of claim 17 wherein an entry in the CAM can be

25.

26.

27.

28.

29.

30.

31.

deleted.

The data packet classifier of claim 17 wherein searching for an entry in the

CAM can be ceased when a kill-process command is received.

The data packet classifier of claim 17 further capable of generating a trap if

both the memory and the CAM are full.

The data packet classifier of claim 17 wherein both the memory and CAM

are searched in parallel.

The data packet classifier of claim 17 wherein N > 96.

The data packet classifier of claim 17 wherein said hash address generator

performs hashing on a first 96 bits of an associated N-bit tuple.

The data packet classifier of claim 29 wherein a comparison of tuple stored
in the memory and an incoming tuple is performed using three 32-bit

comparators.

A method of generating an M-bit hash address from an N-bit input tuple
comprising:
a) splitting said N-bit input tuple into a first range of X bits and a second

range of Y bits, where X is equal to or smaller than M;

28

WO 01/78309 PCT/1B01/00697

32.

33.

34.

35.

36.

37.

38.

39.

b) applying a hash function to said X bits to generate a white hash address
with Z bits, where Z is equal to or smaller than M;
¢) creating said M-bit hash address by combining said Z-bit white hash

address and said second range of Y bits using a Boolean operator.

The method of claim 31 wherein X is significantly larger than Y.

The method of claim 31 wherein X is significantly larger than Z.

The method of claim 31 wherein said Boolean operator is an OR.

The method of claim 31 wherein said Boolean operator is an XOR.

The method of claim 31 wherein N is 104.

The method of claim 36 wherein X is 96 and Y is 8.

The method of claim 37 wherein Z is 20 and M is 20.

A computer program product, including a computer-readable medium
comprising instructions, said instructions enabling a computer to perform a
hashing function on an N-bit input tuple according to the following steps:
a) splitting said N-bit input tuple into a first range of X bits and a second
range of Y bits;

b) applying a hash function fo said X bits to generate a white hash address

with Z bits;
29

WO 01/78309 PCT/1B01/00697

40.

41.

42.

43.

44,

45.

46.

47.

c) creating said M-bit hash address by combining said Z-bit white hash

address and said second range of Y bits using a Boolean operator.

The program product of claim 39 wherein X is significantly larger than Y.
The program product of claim 39 wherein X is significantly larger than Z.
The brogram product of claim 39 wherein said Boolean operator is an OR.
The program product of claim 39 wherein said Boolean operator is an XOR.
The program product of claim 39 wherein N is 104.

The program product of claim 44 wherein X is 96 and Y is 8.

The program product of claim 45 wherein Z is 20 and M is 20.

A computer program product, including a computer-readable medium
comprising instructions, said instructions comprising:

a hash address generator code to enable a computer to generate a plurality
of M-bit hash addresses from said plurality of N-bit input tupies, wherein M
is significantly smaller than N;

a memory code to enable a computer to store data in a memory having a
plurality of memory entries, said memory code further enabling the
computer to address said plurality of M-bit hash addresses, each of said

plurality of memory entries capable of storing one of said plurality of N-bit
30

10

WO 01/78309 PCT/1B01/00697

tuples and an associated process flow information;

a comparison code to determine if an incoming N-bit tuple can be matched
with a stored N-bit tuple, wherein said associated process flow information
is output if a match is found and wherein a new entry is created in the

memory for the incoming N-bit tuple if a match is not found.

48. The computer program product of claim 47 further comprising:
a content addressable memory (CAM) code to enable a computer to store
overflowing N-bit tuples and their corresponding process flow information in a

CAM wherein said overflowing N-bit tuple cannot be stored in the memory.

49. The computer program code of claim 47 wherein said process flow

information in the memory comprises a flow identification number.

50. The computer program code of claim 47 wherein said instructions enable a

computer to update the process flow information.

51. The computer program code of claim 47 wherein said instructions enable a

computer to delete an entry in the memory.

52. The computer program code of claim 47 wherein said instructions enable a
computer to cease searching for an entry in the memory when a kill-

process command is received.

53. The computer program code of claim 48 wherein said process flow

information in the CAM comprises a flow identification number.
31

WO 01/78309 PCT/1B01/00697

54.

55.

56.

57.

58.

59.

60.

The computer program code of claim 48 wherein said instructions enable a

computer to update the process flow information in the CAM.

The computer program code of claim 48 wherein said instructions enable a

computer to delete an entry in the CAM.
The computer program code of claim 48 wherein said instructions enable a
computer to cease searching for an entry in the CAM when a kill-process

command is received.

The computer program product of claim 48 wherein said instructions enable

the computer to generate a trap if both the memory and the CAM are full.

The computer program product of claim 48 wherein said instructions enable

a computer to search both the memory and CAM in parallel.
The computer program product of claim 48 wherein N > 96.
The computer program product of claim 59 wherein said hash address

generator code enables a computer to performs hashing on a first 96 bits of

an associated N-bit tuple.

32

WO 01/78309 PCT/1B01/00697

61. The computer program product of claim 60 wherein said comparison code

enables the computer to compare an address stored in the memory and an

incoming tuple using three 32-bit comparators.

62. The method of claim 31 wherein said Boolean operator is an "AND".

63. The computer program product of claim 39 wherein said Boolean operator

is an “AND".

33

WO 01/78309 PCT/IB01/00697

1/4 /—

BIT /E

1.7

18

‘2/ B 3/):
| |
/]

— = [=2

-

(il
e

FIG. 1

N
/>

SUBSTITUTE SHEET (RULE 26)

WO 01/78309 PCT/1B01/00697

2/4

24— HASHADDRESS
GENERATOR
COMPARISON | 94
UNIT |
23] OMA
2571 MEMORY
CONTROL UNIT
22~
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 01/78309 PCT/1B01/00697

3/4
TUPLE (96 BITS) PROTOCOL (8 BITS)
//96 s
\ d 8
CRCBLOCK
AN
- +
2

SUBSTITUTE SHEET (RULE 26)

PCT/1B01/00697

WO 01/78309

4/4

¥ "Old

180d NOILVYNI1S3d

140d 304N0S

1000104d

SS3HAAV dI NOLLYNILS3a

$S340aav dI 304N0S

7
vl

’
0€l

’
0cl

7’
0t

’
001

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

