

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016307806 B2

(54) Title
A machine and a method for transporting a liner into a grinding mill body

(51) International Patent Classification(s)
B02C 17/22 (2006.01) **B65G 41/00** (2006.01)

(21) Application No: **2016307806** (22) Date of Filing: **2016.08.18**

(87) WIPO No: **WO17/029435**

(30) Priority Data

(31) Number
2015903367 (32) Date
2015.08.19 (33) Country
AU

(43) Publication Date: **2017.02.23**

(44) Accepted Journal Date: **2019.03.28**

(71) Applicant(s)
Outotec (Finland) Oy

(72) Inventor(s)
Belke, Jeff;Soutar-Dawson, Rory

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, MELBOURNE, VIC, 3001, AU

(56) Related Art
GB 1352428 A
AU 2004201105 A1

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 February 2017 (23.02.2017)

(10) International Publication Number
WO 2017/029435 A8

(51) International Patent Classification:
B02C 17/22 (2006.01) *B65G 41/00* (2006.01)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/FI2016/050565

(22) International Filing Date:
18 August 2016 (18.08.2016)

(25) Filing Language:

English

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(26) Publication Language:

English

(30) Priority Data:

2015903367 19 August 2015 (19.08.2015) AU

(71) Applicant: OUTOTEC (FINLAND) OY [FI/FI];
Rauhalampi 9, 02230 Espoo (FI).

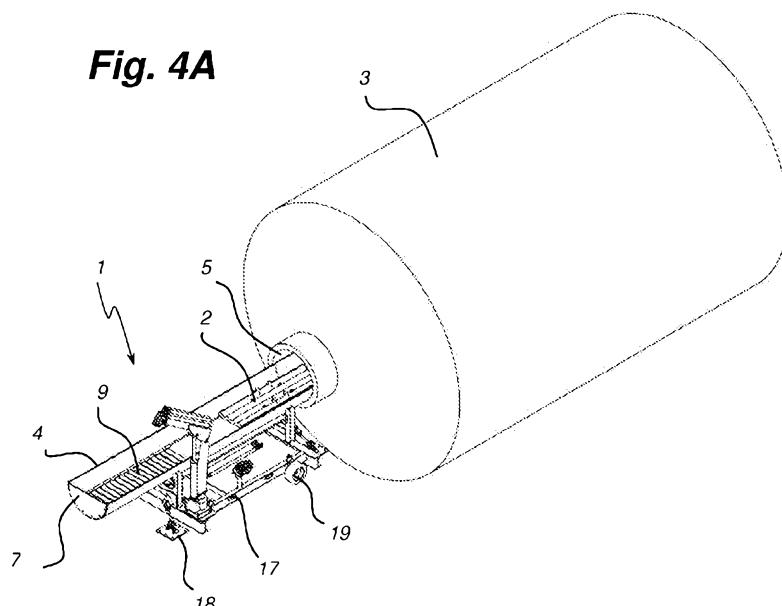
(72) Inventors: BELKE, Jeff; 11 Cowrie Crs, Mt Pleasant, Western Australia 6153 (AU). SOUTAR-DAWSON, Rory; 20 James Street, North Beach, Western Australia 6020 (AU).

(74) Agent: KOLSTER OY AB; (Salmisaarenaukio 1), P.O.Box 204, FI-00181 Helsinki (FI).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))


Published:

- with international search report (Art. 21(3))

[Continued on next page]

(54) Title: A MACHINE AND A METHOD FOR TRANSPORTING A LINER INTO A GRINDING MILL BODY

Fig. 4A

(57) **Abstract:** A machine (1) and a method for transporting a liner (2) into a grinding mill body (3). The machine (1) comprises a housing (4) for insertion through an opening (5) of said grinding mill body (3), said housing (4) having a first end (6), a second end (7) and a conduit (8) in communication with said first end (6) and said second end (7), and a conveying device (9) for conveying said liner (2) along said conduit (8) between said first and second ends (6, 7).

(48) Date of publication of this corrected version:

8 June 2017

Previous Correction:

see Notice of 20 April 2017

(15) Information about Corrections:

see Notice of 8 June 2017

A machine for transporting a liner into a grinding mill

Field of the Disclosure

[0001] The disclosure relates to a machine for transporting a liner into a grinding mill and in particular to a liner handling machine for a grinding mill. The disclosure has been developed primarily for use with a grinding mill for grinding mineral ore particles. However, it will be appreciated that the disclosure is applicable to grinding mills in general for use in the grinding of other particulate material, such as concrete, cement, recyclable materials (such as glass, ceramics, electronics and metals), food, paint pigments, abrasives and pharmaceutical substances.

Background of the Disclosure

[0002] Grinding mills may typically be used in mineral processing to grind mineral ore particles into smaller sized particles to facilitate further downstream processing, such as separation of the valuable mineral particles from unwanted gangue. The grinding mill may typically have a lining to protect the inner surface of the mill body from damage during the grinding process. The lining may be made up of several lining components, that are called 'liners', joined together to cover the inner surface of the mill body. The lining may absorb the impacts from the grinding media and particulate material being ground and so may be replaced once it is worn out or significantly damaged. This may involve dismantling the lining into individual liners and then replacing the worn liners with new liners.

[0003] The installation and replacement of liners for grinding mills may be a dangerous activity, taking place in a confined space and involving heavy pieces of equipment since liners may range from 50kg up to many tonnes. Liner handling machines have been developed to improve worker safety in performing these tasks of installation and replacement. Conventional liner handling machines may comprise a thick, solid main beam on which a conveying device may deliver new liners along an upper side of the main beam along its length through an opening within an end of the grinding mill body. In operation, the main beam of the conventional liner handling machine may be inserted through the opening of the grinding mill body into the grinding mill interior so as to minimise the amount manual handling of the liners by a worker. Cranes at either end of the main beam may also allow lifting the liners to further reduce manual handling by workers, and thus may reduce the risk of injury. Thus, the liner

handling machine may enable the transport of liners from outside the grinding mill body into the inside of the grinding mill body, and vice-versa.

[0004] A problem with the state of the art liner handling machine may be that the typical smallest main beam, being a beam around 400mm deep and 600mm wide, may occupy a substantial cross-sectional area of the opening of the grinding mill body, which for example in a small grinding mill may tend to be around 1450mm to 1750mm wide in diameter. Consequently, there may be a limit as to the size of the liners that can be transported into the grinding mill body. Where grinding mills are of smaller capacity, the conventional liner handling machine may not be used at all, as none of the liners may fit into the reduced opening of the grinding mill body caused by the main beam extending through the opening.

[0005] It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

Summary of the Disclosure

[0006] A first aspect of the present disclosure provides a machine for transporting a liner into a grinding mill body, comprising a housing for insertion through an opening of said grinding mill body, said housing having a first end, a second end and a conduit in communication with said first end and said second end, and a conveying device for conveying said liner along said conduit between said first and second ends, wherein said conveying device is located inside said conduit

[0007] In some embodiments, said conveying device may be located towards a floor of said conduit.

[0008] It will be appreciated that the phrase "along said conduit" in the specification means that the liner is able to be conveyed inside or within the conduit, either in whole or in part. Thus, in some embodiments said liner may be partly within said conduit. In other embodiments, said liner may be contained inside said conduit.

[0009] In some embodiments, said conduit may be partly enclosed. In some embodiments, a portion of said housing partly may enclose said conduit to provide stiffening support to said housing and to protect the opening of said grinding mill body from damage by said liner. In some embodiments, said housing portion may comprise at least two sidewalls. In other embodiments, said housing portion may comprise curved sidewalls.

[0010] In some embodiments, said housing portion may enclose a portion of said conduit. In some embodiments, said housing portion may comprise one or more sidewalls that enclose said conduit portion. In some embodiments, said housing portion may comprise a cylindrical or tubular section of said housing.

[0011] In some embodiments, said conduit may be enclosed by said housing.

[0012] In some embodiments, said housing may comprise a base and at least two sidewalls to define said conduit. In some embodiments, said conduit may comprise a channel or trough. Alternatively, in some embodiments, said conduit may comprise a pipe or tube in said housing. In some embodiments, said conduit may comprise a passage extending along or parallel to a longitudinal axis of said housing. In some embodiments, said passage may comprise an internal passage in said housing.

[0013] In some embodiments, said conduit may have a circular cross-section. In some embodiments, said conduit may have a polygonal cross-section. In other embodiments, said conduit may comprise a hexagonal, octagonal, arcuate, semi-circular, triangular, oval-like, rectangular, square or other polygonal cross-section.

[0014] In some embodiments, said housing may comprise an elongated tubular body. In some embodiments, said housing may comprise a plurality of sections joined together. In some embodiments, said sections may be slidably moveable relative to one another. In some further embodiment, said housing may comprise telescopic sections gradually decreasing in cross-section.

[0015] In some embodiments, said housing may comprise one or more reinforcing elements to stiffen said housing. In some embodiments, said reinforcing elements may

be located adjacent at least one of said first and second ends of said housing. In some embodiments, said reinforcing elements may be located adjacent said first and second ends of said housing. In some embodiments, said reinforcing elements may extend transversely to a longitudinal axis of said housing. In some embodiments, said reinforcing elements may extend along or parallel to a longitudinal axis of said housing. In other embodiments, said reinforcing elements may extend at an angle to a longitudinal axis of said housing. In some further embodiments, at least one of said reinforcing elements may comprise a rib, stud or flange.

[0016] In some embodiments, said conveying device may comprise a roller conveyer. In some embodiments, said conveying device may additionally or alternatively comprise a conveyor belt. In some embodiments, said conveying device may comprise a carriage slidably moveable on a track along said conduit. In some further embodiments, said track may comprise a monorail located adjacent a top of said housing, said carriage being slidably moveable on said monorail.

[0017] In some embodiments, said machine may comprise a moveable frame for mounting said housing. In some embodiments, said moveable frame may comprise wheels. Alternatively, in some embodiments, said moveable frame may comprise tracked wheels.

[0018] In some embodiments, said machine may comprise at least one crane for lifting said liner from and to said housing. In some embodiments, said at least one crane may be mounted to one end of said housing. In some embodiments, said machine may comprise two of said cranes, wherein said cranes are mounted to opposite ends of said housing.

[0019] A second aspect of the present disclosure provides the use of the machine of the first aspect of the disclosure for transporting a liner through an opening of a grinding mill body.

[0020] In some embodiments, said opening of said grinding mill body may have a diameter from 400mm to 4500mm. In some embodiments, from 750mm to 2750mm. In

some embodiments, from 1000mm to 2500mm. In some embodiments, from 1250mm to 2000mm. In some embodiments, from 1450mm to 1750mm.

[0021] A third aspect of the present disclosure provides a method for transporting a liner into a grinding mill body having an opening, said method comprising:

inserting a housing through an opening of said grinding mill body, said housing comprising a first end, a second end and a conduit in communication with said first end and said second end; and

conveying said liner along said conduit between said first and second ends; and further comprising locating a conveying device inside said conduit.

[0022] In some embodiments, said method may comprise locating said conveying device towards a floor of said conduit.

[0023] In some embodiments, said method may comprise conveying said liner partly within said conduit. In some embodiments, said method may comprise conveying said liner inside said conduit.

[0024] In some embodiments, said method may comprise removing said housing through said opening after conveying said liner.

[0025] In some embodiments, said method may comprise partly enclosing said conduit to provide stiffening support to said housing and to protect the opening of said grinding mill body from damage by said liner. In some embodiments, a portion of said housing may partly enclose said conduit. In some embodiments, said housing portion may enclose a portion of said conduit.

[0026] In some embodiments, said method may comprise forming said conduit as a channel or trough. Alternatively, in some embodiments, said method may comprise forming said conduit as a pipe or tube in said housing. In some embodiments, said conduit may comprise a passage extending along or parallel to a longitudinal axis of said housing.

[0027] In some embodiments, said method may comprise forming said conduit with a circular cross-section. In some embodiments, said method may comprise forming said conduit with a polygonal cross-section. In some embodiments, said method may comprise forming said conduit with a hexagonal, octagonal, arcuate, semi-circular, triangular, oval-like, rectangular, square or other polygonal cross-section.

[0028] In some embodiments, said method may comprise providing said housing with one or more reinforcing elements to stiffen said housing. In some embodiments, said method may comprise locating said reinforcing elements adjacent at least one of said first and second ends of said housing. In some embodiments, said method may comprise locating said reinforcing elements adjacent said first and second ends of said housing. In some embodiments, said method may comprise locating said reinforcing elements on said housing so that said reinforcing elements extend transversely to a longitudinal axis of said housing. In some embodiments, said method may comprise locating said reinforcing elements on said housing so that said reinforcing elements extend along a longitudinal axis of said housing. In other embodiments, said method may comprise locating said reinforcing elements on said housing so that said reinforcing elements extend at an angle to a longitudinal axis of said housing. In some further embodiments, said method may comprise forming at least one of said reinforcing elements as a rib, stud or flange.

[0029] In some embodiments, said method may comprise mounting said housing on a moveable frame.

[0030] In some embodiments, said method may comprise providing at least one crane for lifting said liner from and to said housing. In some embodiments, said method may comprise mounting said at least one crane to one end of said housing. In some embodiments, said method may comprise mounting two of said cranes to opposite ends of said housing.

[0031] The method of the third aspect of the disclosure may have some features of the first aspect of the disclosure, where applicable.

[0032] Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

[0033] Furthermore, as used herein and unless otherwise specified, the use of the ordinal adjectives "first", "second", "third", etc., to describe a common object, merely indicate that different instances of like objects are being referred to, and are not intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or in any other manner.

Brief Description of the Drawings

[0034] Preferred embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings in which:

[0035] Figure 1 is a perspective view of a machine for transporting a liner into the grinding mill body, according to an embodiment of the disclosure;

[0036] Figure 2 is a partial perspective view of the machine in Figure 1;

[0037] Figure 3 is a partial cross-sectional view of the machine of Figure 1;

[0038] Figures 4A and 4B are perspective and cross-sectional perspective views of the machine of Figure 1 with a grinding mill body;

[0039] Figures 5A to 5F are end cross-sectional views of alternative embodiments of the disclosure;

[0040] Figures 6A to 6C are perspective views of a machine according to other embodiments of the disclosure; and

[0041] Figures 7A to 7D are perspective views of different housing configurations for the machine according to yet further embodiments of the disclosure.

Preferred Embodiments of the Disclosure

[0042] The present disclosure will now be described with reference to the following examples which should be considered in all respects as illustrative and non-restrictive. In the Figures, corresponding features within the same embodiment or common to different embodiments have been given the same reference numerals.

[0043] Referring to Figures 1 to 4B, a machine 1 for transporting a liner 2 into a grinding mill body 3 comprises a housing 4 for insertion through an opening 5 of the grinding mill body, as best shown in Figures 4A and 4B. The housing 4 has a first end 6, a second end 7 and a conduit 8 in communication with the first and second ends. In this embodiment, the first and second ends 6, 7 are opposite ends of the housing 4. A conveying device 9 for conveying the liner 2 along the conduit 8 between the first and second ends 6, 7.

[0044] In this embodiment, the conduit 8 takes the form of a passage that is partly enclosed and extends along a longitudinal axis 10 of the housing 4, as best shown in Figure 3. The use of a housing 4 with a conduit 8 for transporting the liner 2 maximises the available cross-sectional area or space at the opening 5, thus enabling liners 2 with a large cross-section to be transported into the grinding mill body 3. Consequently, as larger liners 2 can be transported compared to the prior art, a lower number of liner pieces are required, making the installation and/or replacement with new liners 2 quicker and thus more efficient. In addition, it enables the machine 1 to be used for grinding mill bodies 3 that have smaller openings which previously could not use conventional liner handling machines as the thickness of the main beam obstructed the entry of any liners 2 into the grinding mill body 3. It will be appreciated that in other embodiments, the conduit 8 need not be a partly enclosed passage but can be a channel or trough that is open or partly open, as well as an enclosed pipe or tube. However, it is preferred that the housing 4 is at least cut away at its opposite ends 6, 7 to facilitate access to the passage 8 for lifting the liner 2 to and from the machine 1.

[0045] The housing 4 has a generally elongated tubular body, a portion 12 of which encloses a portion 13 of the conduit 8 and in this embodiment comprises a tubular or cylindrical section 12 in the middle of the housing 4. The enclosed tubular section 12

provides sufficient stiffness to the housing 4 when bearing the weight of the liner 2 (which can be many tonnes but typically up to 1,000kg or 1 tonne) and also protects the opening 5 from damage as the liner 2 is transported into and out of the grinding mill body 3. In other embodiments, the housing portion 12 only partly encloses the conduit portion 13 or conduit 8. For example, the housing portion 12 may take the form of two sidewalls on either side of the conduit 8 that extend either along portion 13 or the entire length of the conduit 8, so as to define the conduit 8 or its portion 13 as a channel or trough. Alternatively, the sidewalls may be curved on either side but do not touch. The stiffness support and protective advantages stated above may be conferred by the partly enclosed and fully enclosed configurations for the housing portion 12.

[0046] The tubular section 12 also has access ports 15 for enabling manual access to the enclosed portion of the conduit 8. This allows manual repositioning of the liner 2 if it comes out of alignment as it moves along the conduit 8 and potentially causes a blockage.

[0047] The conveying device 9 comprises a roller conveyor that is located towards the bottom of the housing 4 in the passage 8. This facilitates maximising the available cross-sectional area or space in the passage 8 to enable larger sized liners 2 to be transported through the opening 5 into the grinding mill body 3. In other embodiments, the conveying device 9 comprises a conveyor belt or a carriage slidably moveable on a track in the passage 8, where the track is located at the bottom of the housing 4. In some embodiments, the conveying device 9 is located towards the top of the housing 4 in the passage 8, with the liner 2 suspended from the conveying device as it is transported along the passage 8. For example, an overhead or suspended conveyor with a track located at the top of the housing 4 may be used in this alternative embodiment. The conveying device may also take the form of a carriage suspended on a monorail at the top of the housing 4, the carriage carrying the liner 2 as it slidably moves along the monorail between the ends 6, 7 of the housing.

[0048] The housing 4 is mounted to a moveable frame 17 for moving the housing into and out of the grinding mill body 3 through the opening 5. In this embodiment, the moveable frame 17 comprises wheels 19, as best shown in Figures 4A and 4B. The wheels can be rail-type wheels, which permit axial movement only, or transverse rail-type

wheels that permit transverse movement as well as axial movement. In some embodiments, the moveable frame 17 is moved into and out of position using a forklift or crane. The machine 1 also has a crane 20 mounted to one end 6 and a crane 22 fitted to the moveable frame 17 adjacent the opposite end 7 for lifting the liner 2 to and from the roller conveyor 9 in the housing 4.

[0049] In operation, the machine 1 is moved via its wheels 19 so that the housing is inserted through the opening 5 into the grinding mill body 3 and the tubular section 12 extends on either side of the opening 5, as best shown in Figures 4A and 4B. For ease of reference, the housing portion 12 has been omitted for the purposes of clarity. The crane 20 at the inserted end 6 is put into a retracted position lying in the passage 8, as best shown in Figure 3, to reduce its cross-sectional profile, thus permitting entry of the housing end 6 into the grinding mill body 3. The cranes 20, 22 inside and outside the grinding mill body 3 are then moved into their operational positions, as best shown in Figure 1. A liner 2 is then moved next to the housing 4 adjacent the end 7 outside of the grinding mill body 3. The crane 22 adjacent the end 7 lifts the liner 2 and places it onto the roller conveyor 9, which then operates to convey the liner 2 along the passage 8 from the outside end 7 to the opposite end 6 inside the grinding mill body 3. The tubular section 12 protects the opening 5 from the liner 2 while providing the necessary structural support to the housing 4 so that it does not buckle under the weight of the liner 2. The liner 2 can be repositioned where necessary as it moves along the passage 8, including when within the tubular section 12 via the access holes 15. Upon reaching the housing end 6 inside the grinding mill body 3, the crane 20 lifts the liner 2 from the roller conveyor 9 and then moves the liner 2 into position for mounting to the interior of the grinding mill body 3. This typically requires manual involvement for correctly placing the liner 2 into position and then mounting the liner 2. The process is repeated for each liner 2 until the lining is mounted to the interior of the grinding mill body 3. Once the liners 2 have been installed, the crane 20 is returned to its retracted position and the housing 4 is then removed through the opening 5 to withdraw the machine 1 out of the grinding mill body 3.

[0050] Where the lining of the grinding mill body 3 is being replaced, the machine 1 is inserted into the grinding mill body 3 and old lining is first removed piece by piece, with the old liners being placed by the crane 20 onto the roller conveyor 9. The liner 2 is then

conveyed along the passage 8 by the roller conveyor 9 from the housing end 6 to the opposite housing end 7, where it is removed by the crane 20. The new liner 2 is transported into the grinding mill body 3 as described above and installed where the old liner was mounted to the grinding mill body. This process is repeated until all the old liners are progressively replaced with new liners 2. This progressive replacement of the old liners minimises turning or rotating the grinding mill body 3, thus reducing the shutdown period for the grinding mill. To remove all the old liners and then install the new liners would involve more time and so would extend the shutdown period. It may be seen from this description that the disclosure may provide numerous advantages over conventional liner handling machines. In the disclosure, there is more space available at the opening 5 of the grinding mill body 3 for the liner 2 to fit through, due to the housing 4 having a conduit 8 for transporting the liner 2. This available space is further maximised by placing the conveying device 9 towards the base or top of the conduit 8. The partly enclosing housing portion 12 also provides sufficient structural strength to the machine 1 to support the weight of the liner 2 without compromising this maximised available space. Consequently, the machine 1 has a greater capacity to transport liners 2 having a larger size into the grinding mill body 3 through the opening 5, as well as being able to transport liners 2 for smaller grinding mill bodies that have smaller openings. In addition, the provision of a housing portion 12 that partly encloses the conduit 8 protects the opening 5 of the grinding mill body 3 from damage by the liner 2. The housing portion 12 also prevents the liner 2 falling off or out of the housing 4 as it moves from the outside end 7 to the inside end 6, and vice-versa, reducing the risk of damage to the liner 2 and injury to workers using the machine 1. A further advantage may be that personnel can be transported into and out of the grinding mill body 3 using a stretcher placed on the conveying device 9, thus improving access to the grinding mill body and providing a safe means of moving personnel not previously available where a worker has suffered an injury inside the grinding mill body 3. Thus, the disclosure provides a safer, more efficient means of installing and/or replacing liners for a grinding mill body.

[0051] In contrast, conventional liner handling machines are limited in the size of the liner size that can be transported into the grinding mill body since the thick, solid main beam occupies a substantial part of the available space, being around 400mm deep by 600mm wide compared to the opening 5 of the grinding mill body 3 having a typical diameter of around 1450mm to 1750mm. The main beam also occupies space that

includes the area below the centre line of the opening 5, which is preferably required to move the liner 2. Also, the main beam does not provide any protection to the grinding mill body opening from damage caused by the liner 2 impacting the opening at it enters the grinding mill body. The main beam also does not provide any side support to prevent a liner 2 falling over the side of the main beam during transport, thus presenting a risk of damage to the liner 2 or injury to workers operating the conventional liner handling machine 1. Moreover, the conventional liner handling machine is unable to be used for smaller grinding mill bodies as the thick main beam obstructs the opening to prevent the transport of the liner into the grinding mill body. Furthermore, personnel are unable to be readily transported using the conventional liner handling machine, thus requiring the conventional liner handling machine to be moved out of the grinding mill body when personnel need to move into and out of the grinding mill body, especially where there is an injured worker inside the grinding mill body.

[0052] While the embodiment has been described and illustrated as having a conduit with a circular cross-section, as best shown in Figure 5A, it will be appreciated that in other embodiments, the conduit has other cross-sectional shapes. For example, the conduit 8 may have a hexagonal, octagonal, arcuate, semi-circular, triangular, oval-like, rectangular, square or other polygonal cross-section. The conduit may also have an irregular cross-sectional shape if so desired. Figures 5B to 5F illustrate examples of some of these possible cross-sections for the conduit 8. Figure 5B illustrates a conduit 8 having a rectangular or square cross-sectional; Figure 5C illustrates a conduit 8 having an oval or ovoid cross-section; Figure 5D illustrates a conduit 8 having an arcuate or semi-circular cross-section; Figure 5E illustrates a conduit 8 having a hexagonal cross-section and Figure 5F illustrates a conduit 8 having a half-hexagonal cross-section.

[0053] Referring to Figures 6A and 6B, another embodiment of the disclosure is illustrated, where the housing 4 has one or more reinforcing elements 30 to stiffen the housing and thus provide structural support to the machine 1 when bearing the load of a liner 2, which can typically reach up to 1,000kg or greater in mass. In the embodiments of Figures 6A and 6B, the reinforcing elements take the form of ribs 30 that are situated near the edges of the housing 4 along its length or parallel to its longitudinal axis 10. In Figure 6A another reinforcing rib is located beneath a floor 35 of the conduit 8 while there is no such rib or floor in Figure 6B. A further embodiment is illustrated in Figure 6C,

where reinforcing ribs 38 extend at an angle to the longitudinal axis 10, similar to a helical pattern. In other embodiments, the ribs 38 extend transversely or longitudinally parallel to the longitudinal axis 10 of the housing 4. In further embodiments, the reinforcing elements 30, 38 are located only at the ends 6, 7 of the housing 4. Moreover, in some embodiments, the reinforcing elements comprise flanges or studs.

[0054] Referring to Figures 7A to 7D, further configurations for the housing 4 are illustrated, where Figure 7A shows a basic configuration corresponding to the housing 4 illustrated in Figures 1 to 4B. Figure 7B shows a configuration where the housing portion 12 comprises sidewalls that are curved and are connected by bridging ribs 40, which permit access to the enclosed portion 13 of the conduit 8 (similar to the access holes 15) while still providing sufficient stiffening support to the housing 4. Figure 7C shows a housing 4 where the housing portion 12 has cut-away sections 50 on either side, again to permit access to the enclosed portion 13 of the conduit 8 while still providing sufficient stiffening support to the housing 4. Figure 7D shows a housing 4 with the same housing portion 12 as shown in Figure 7B, but instead of bridging ribs 40, a mesh 60 connects the sidewalls of the housing portion 12.

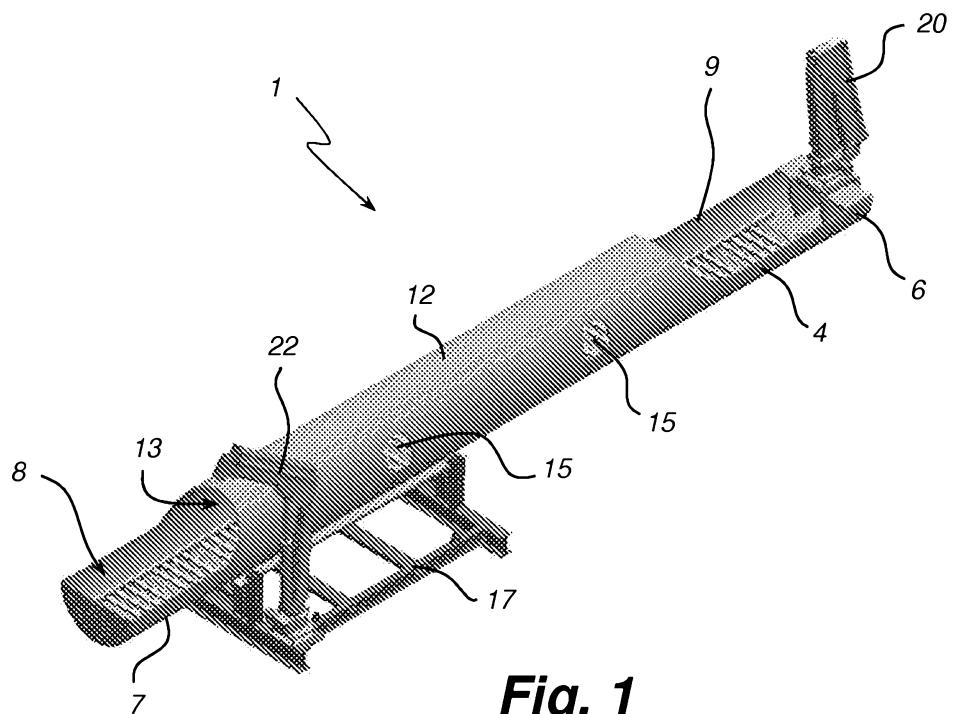
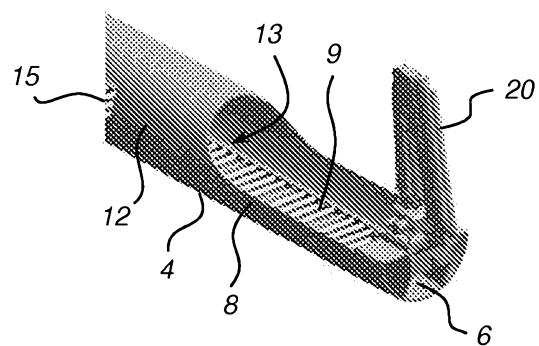
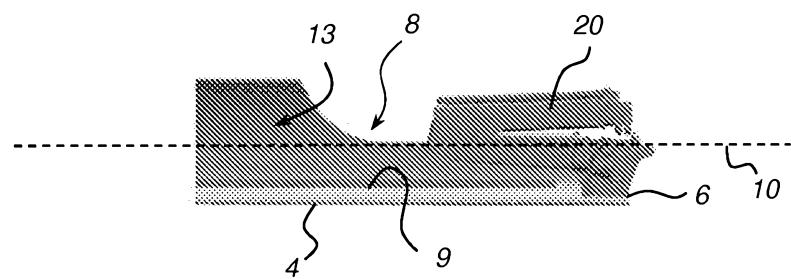
[0055] In some embodiments, there are multiple housing portions 12 along the length of the housing 4 to partly or fully enclose multiple portions 13 of the conduit 8 to provide greater access to the conduit 8 while maintaining a strong structure for the machine 1 to bear heavier liners 2. In other embodiments, the conduit 8 is fully enclosed by the housing 4, with housing ends 6, 7 having open platforms to receive and deliver the liner 2 to the conveying device 9 in the conduit 8.

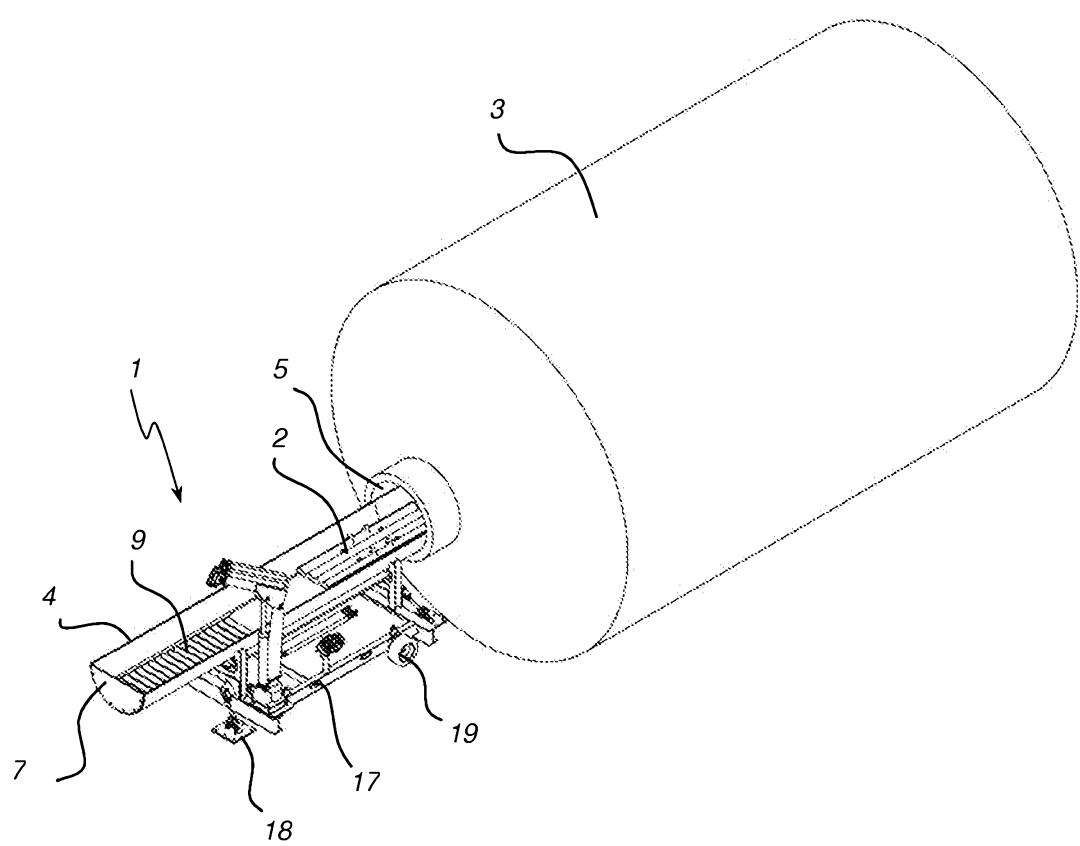
[0056] In yet another embodiment, the housing 4 comprises telescopic sections that gradually reduce in cross-section to enable the machine to be used in grinding mill bodies that that floor space limitations that would prevent insertion of the housing 4 into the grinding mill body.

[0057] It will further be appreciated that any of the features in the preferred embodiments of the disclosure can be combined together and are not necessarily applied in isolation from each other. For example, there may be reinforcing elements 30 used in combination with multiple housing portions 12 to partly enclose the conduit 8 to

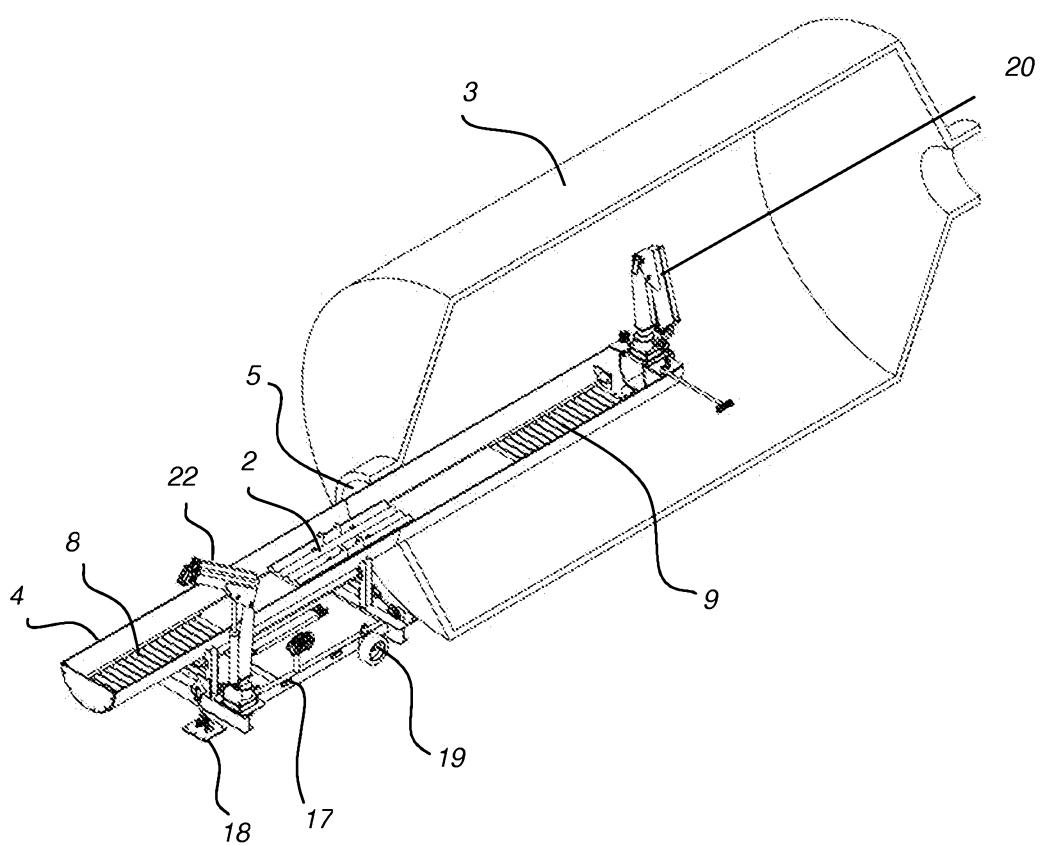
provide further structural support and protection. Similar combinations of two or more features from the above described embodiments or preferred forms of the disclosure can be readily made by one skilled in the art.

[0058] By providing a housing 4 with a conduit 8 for transporting the liner 2, the disclosure may provide numerous advantages over conventional liner handling machines. There is more space available to transport liners 2 at the opening 5 of the grinding mill body 3, thus enabling liners 2 having a larger size to be used. Also, this greater space means that the machine 1 can be used to transport liners 2 for smaller grinding mill bodies that have smaller openings, which were previously not permissible using conventional liner handling machines. The machine 1 is sufficiently strong to support the weight of the liner 2 without compromising this available transport space, protects the opening 5 of the grinding mill body 3 from damage by the liner 2, prevents or reduces the liner 2 falling off or out of the machine and thus the risk of damage to the liner 2 and injury to workers. Moreover, the machine 1 enables personnel to be transported into and out of the grinding mill body 3, thus improving access to the grinding mill body and providing a safe means of moving injured personnel not previously available. Thus, the disclosure provides a safer, more efficient means of installing and/or replacing liners for a grinding mill body. Thus, in all these respects, the disclosure represents a practical and commercially significant improvement over the prior art.

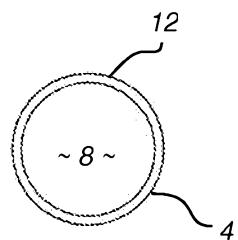



[0059] Although the disclosure has been described with reference to specific examples, it will be appreciated by those skilled in the art that the disclosure may be embodied in many other forms.

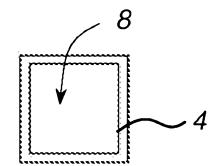

Claims

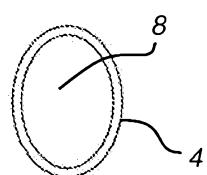
1. A machine for transporting a liner into a grinding mill body, comprising a housing for insertion through an opening of said grinding mill body, said housing having a first end, a second end and a conduit in communication with said first end and said second end, and a conveying device for conveying said liner along said conduit between said first and second ends, wherein said conveying device is located inside said conduit.
2. The machine of claim 1, wherein said liner is partly within said conduit.
3. The machine of claim 1, wherein said liner is contained inside said conduit.
4. The machine of any one of the preceding claims, wherein said conduit is partly enclosed.
5. The machine of any one of the preceding claims, wherein a portion of said housing partly encloses said conduit to provide stiffening support to said housing and to protect said opening of said grinding mill body from damage by said liner.
6. The machine of claim 1, wherein said conduit is enclosed by said housing.
7. The machine of any one of claims 1 to 5, wherein said conduit comprises a passage extending along or parallel to a longitudinal axis of said housing.
8. The machine of claim 7, wherein said passage comprises an internal passage in said housing.
9. The machine of any one of the preceding claims, wherein said conduit comprises at least one of a circular, hexagonal, octagonal, arcuate, semi-circular, triangular, oval-like, rectangular, square or other polygonal cross-section.
10. The machine of any one of the preceding claims, wherein said housing comprises an elongated tubular body.


11. The machine of any one of the preceding claims, wherein said conveying device comprises at least one of a roller conveyer, a conveyor belt, a carriage slidably moveable on a track, an overhead conveyor and a suspended conveyor.
12. The machine of any one of the preceding claims, further comprising a moveable frame for mounting said housing.
13. The machine of any one of the preceding claims, further comprising at least one crane for lifting said liner from and to said housing.
14. **Use** of the machine of any of the preceding claims for transporting a liner through an opening of a grinding mill body.
15. A **method** for transporting a liner into a grinding mill body having an opening, said method comprising:
 - inserting a housing through said opening, said housing comprising a first end, a second end and a conduit in communication with said first end and said second end;
 - conveying said liner along said conduit between said first and second ends; and further comprising locating a conveying device inside said conduit.

1/7


Fig. 1**Fig. 2****Fig. 3**


Fig. 4A


Fig. 4B

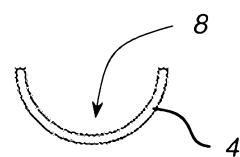
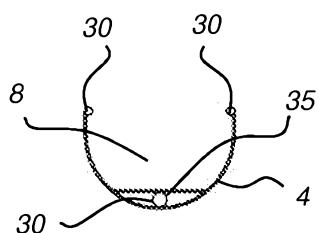
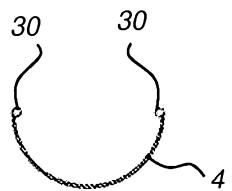
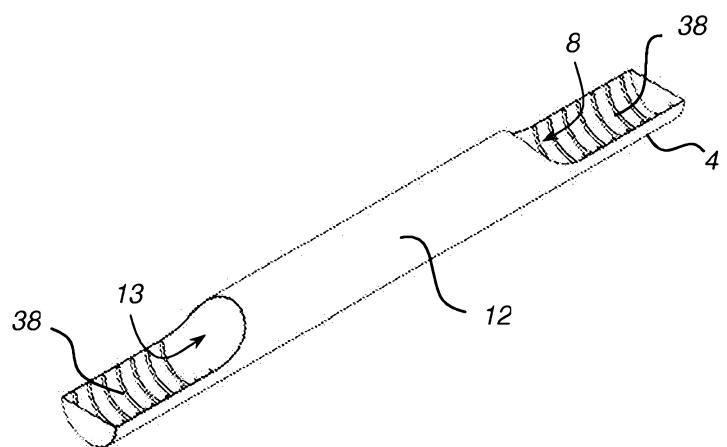

Fig. 5A

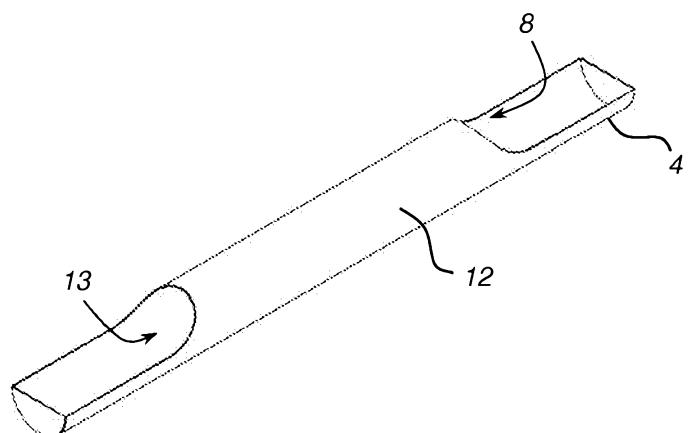

Fig. 5B


Fig. 5C


Fig. 5D


Fig. 5E


Fig. 5F


Fig. 6A

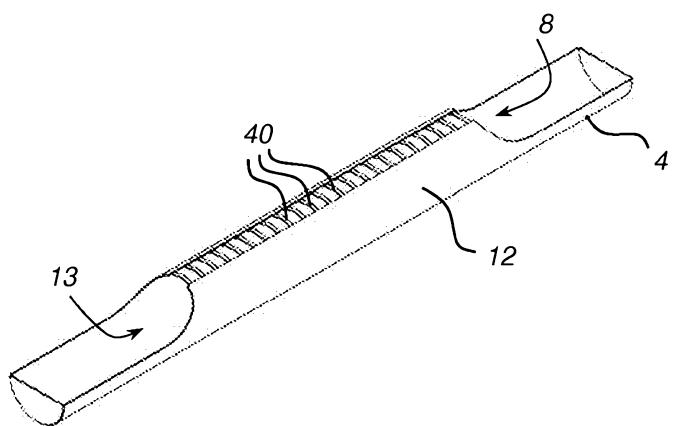

Fig. 6B

Fig. 6C

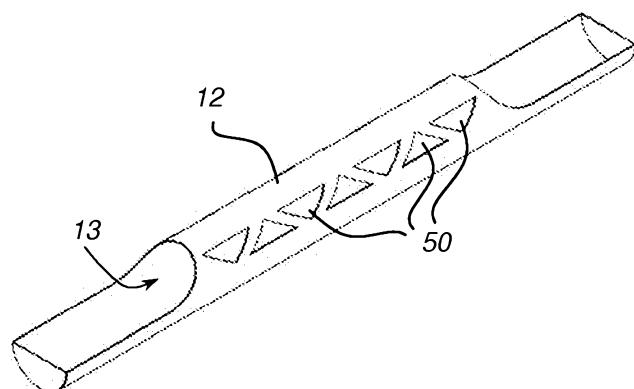


Fig. 7A

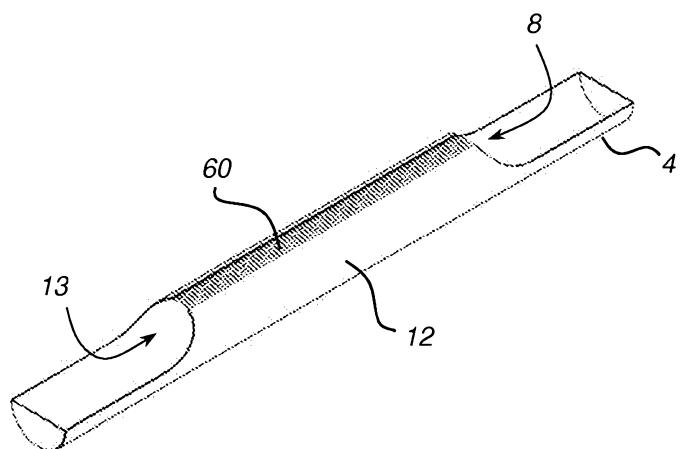


Fig. 7B

7/7

Fig. 7C

Fig. 7D