wo 2016/145377 A1 [N NI 000 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/145377 A1l

15 September 2016 (15.09.2016) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04L 29/06 (2006.01) HO04L 9/08 (2006.01) kind of national protection available): AE, AG, AL, AM,
HO04L 9/28 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
. e . BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(21) International Application Number: DO, DZ. EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT.
PCT/US2016/022125 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
11 March 2016 (11.03.2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
62/132,289 12 March 2015 (12.03.2015) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: VISA INTERNATIONAL SERVICE ASSO- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
CIATION [US/US]; 900 Metro Center Blvd, Foster City, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
California 94404 (US). DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) Inventors: MANSOUR, Rasta; P.O. Box 2270, Cuper- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
. S SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
tino, California 95015 (US). BHATTACHARYA, Sou- GW, KM, ML, MR, NE, SN, TD, TG)
mendra; 4263 Cambridge Way, Union City, California ’ ? ? T T ’
94587 (US). YOUDALE, Robert; 1341 Drake Avenue, Published:
Burlingame, California 94010 (US). — with international search report (Art. 21(3))
(74) Agents: TSE, Michael et al.; KILPATRICK TOWNSEND __

& STOCKTON LLP, Two Embarcadeo Center, 8th Floor,
San Francisco, California 94111 (US).

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: MUTUAL AUTHENTICATION OF SOFTWARE LAYERS

SOFTWARE LAYER-A 120
(e.g., SDK)

q

-Al. Generate RN1

|
I-A2. Send RN1 to layer B.

RN2, TM
I-A3. Store RN2 and TM. (

8-A1. Retrieve RN2 and TM.
8-A2. Determine DTM_A

= (current_time — TM).
S-A3. Send RN2 to layer B.

S-A4. Derive DEK = hash({RN1 xor RN2) + DTM_A). (

SOFTWARE LAYER-B 130
(e.g., NATIVE LIBRARY)

Transfer Data
encrypted with DEK

300

—FNT | I-B1. Generate RN2.
I-B2. Determine TM = current time.
I-B3. Store RN1 and TM.
I-B

4. Send RN2 and TMto layer A.

Initialization

Runtime

($-B1. Retrieve RN1 and TM.
$-B2. Determine DTM_B
= {current_time — TM
S-B:
S-B

3. Derive DEK = hash((RN1 xor RN2) + DTM_B).
4. Send RN1 to layer A.

“+ = concatenation

FIG. 3

(57) Abstract: Techniques for establishing mutual authentication of software layers of an application are described. During initializ-
ation of the application, the software layers execute a binding algorithm to exchange secrets to bind the software layers to one anoth -
er. During subsequent runtime of the software application, the software layers execute a runtime key derivation algorithm to combine
the secrets shared during initialization with dynamic time information to generate a data encryption key. The software layers can then
securely transter data with each other by encrypting and decrypting data exchanged between the sottware layers using the dynamic -
ally generated data encryption key.

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

MUTUAL AUTHENTICATION OF SOFTWARE LAYERS

CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application claims the benefit of priority to U.S. Provisional Application
No. 62/132,289 filed on March 12, 2015, which is herein incorporated by reference in

its entirety for all purposes.

BACKGROUND
[0002] A software application may have multiple software components or software
layers (may also be referred to as software libraries) that communicate or exchange
data with each other. For example, code executing in one layer may call functions
implemented in another layer, or code executing in one layer may pass parameters
or data to another layer. Because of the modularized nature of such an
environment, a security vulnerability can exist at the exposed interface between the
software layers. For instance, a man-in-the-middle application can eavesdrop on the
data being passed between the software layers to obtain sensitive information, or
unauthorized code can directly invoke functions implemented in a shared software

layer and obtain sensitive data processed by that shared software layer.

[0003] Embodiments of the present invention address these and other problems,

individually and collectively.

BRIEF SUMMARY
[0004] Embodiments of the present invention provide techniques that can be used
to mutually authenticate software layers that communicate with each other. In some
embodiments, the software layers can be part of a software application executing on
a computing device. To establish mutual authentication between a first software
layer and a second software layer of an application, a binding algorithm can be
executed at initialization of the application to exchange secrets between the software
layers. Thereafter, during runtime execution of the application, data exchanged

between the software layers can be encrypted using a data encryption key derived

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

based on the shared secrets generated during initialization of the application. In
some embodiments, a process for establishing mutual authentication between a first
software layer and a second software layer of an application may involve using a
data encryption key derived based on a first nonce generated by the first software
layer and a second nonce generated by the second software layer during

initialization of the application.

[0005] According to some embodiments, during runtime execution, a process for
establishing mutual authentication performed by the first software layer may include
retrieving, by the first software layer of the application executing on a computing
device, binding information stored by the first software layer during the initialization
of the application, and decrypting the binding information to obtain a second nonce
that was generated by the second software layer during initialization. The process
may further include receiving, by the first software layer, an encrypted first nonce
from the second software layer of the application, decrypting the encrypted first
nonce to obtain the first nonce. The first software layer may then derive a data
encryption key based on the first nonce and the second nonce, and thereafter
encrypt data being sent from the first software layer to the second software layer
using the data encryption key. The data encryption key can also be used to decrypt
data received from the second software layer. In some embodiments, the data

encryption key can be derived further based on dynamic time information.

[0006] According to some embodiments, during runtime execution, a process for
establishing mutual authentication performed by the second software layer may
include retrieving, by the second software layer executing on a computing device,
binding information stored by the second software layer during the initialization of the
application, and decrypting the binding information to obtain the first nonce. The
process may also include receiving, by the second software layer, an encrypted
second nonce from the first software layer, and decrypting the encrypted second
nonce to obtain the second nonce. The second software layer may then derive the
data encryption key based on the first nonce and the second nonce, and thereafter
encrypt data being sent from the second software layer to the first software layer
using the data encryption key. The data encryption key can also be used to decrypt
data received from the first software layer. In some embodiments, the data

encryption key can be derived further based on dynamic time information.

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

[0007] According to some embodiments, a computing device may include a
processor, and a memory coupled to the processor and storing computer readable
code for implementing an application having a first software layer and a second
software layer. The computer readable code, when executed by the processor, may
cause the first software layer and second software layer to perform their respective

mutual authentication processes:

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 illustrates a block diagram of a computing device, according to some

embodiments.

[0009] FIG. 2 illustrates a flow diagram of a process for mutual authentication of

software layers, according to some embodiments.

[0010] FIG. 3 illustrates a communication flow diagram of a process for mutual

authentication of software layers, according to some embodiments.

[0011] FIG. 4 illustrates a flow diagram of a binding algorithm performed by a

software layer, according to some embodiments.

[0012] FIG. 5 illustrates a flow diagram of a key derivation algorithm performed by

a software layer, according to some embodiments.

[0013] FIG. 6 illustrates a flow diagram of a binding algorithm performed by another

software layer, according to some embodiments.

[0014] FIG. 7 illustrates a flow diagram of a key derivation algorithm performed by

another software layer, according to some embodiments.

[0015] FIG. 8 illustrates a communication flow diagram of an example

implementation of a binding algorithm, according to some embodiments.

[0016] FIG. 9 illustrates a communication flow diagram of an example

implementation of a key derivation algorithm, according to some embodiments.

[0017] FIG. 10 illustrates a block diagram of system, according to some

embodiments.

[0018] FIG. 11 illustrates a block diagram of portable computing device, according

to some embodiments.

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

DETAILED DESCRIPTION
[0019] Embodiments of the present invention provide techniques that can be used
to mutually authenticate software layers that communicate with each other. In some
embodiments, the software layers can be part of a software application executing on
a computing device. To mitigate against vulnerabilities at the software layer
interface, each software layer can be authenticated to each other to assure that
functions in a software layer is being called by a known entity or known software
component, and that the caller is authorized to invoke the called function. The data
passed back and forth between the software layers can also be encrypted to stay
opaque to any man-in-the-middle eavesdropping on the data exchange to assure

data confidentiality and integrity.

[0020] According to some embodiments, during the first time initialization of the
software layers (e.g., when the software application is first compiled and installed on
a device, or the first time that the software application is executed), the software
layers execute a binding algorithm to exchange secrets to bind the software layers to
one another. During subsequent runtime of the software application, the software
layers execute a runtime key derivation algorithm to combine the secrets shared
during initialization with dynamic time information to generate a data encryption key.
The software layers can then securely transfer data with each other by encrypting
and decrypting data exchanged between the software layers using the dynamically

generated data encryption key.

[0021] The shared secrets and binding algorithm executed at first time initialization
provide a way for the software layers to mutually authenticate each other during
runtime, because an unauthorized application would not have knowledge of the
secrets shared during initialization. This can mitigate against a rouge application
attempting to invoke functions in one of the software layers, because a rouge
application would not be able to generate a proper data encryption key to
communicate with the software layer being called. Encryption of the data transferred
between the software layers using the data encryption key also mitigates against
man-in-the-middle eavesdropping, because the data transferred between the
software layers are not sent in the clear, but are instead sent in an encrypted form

and can only be decrypted by a proper data encryption key. Incorporation of

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

dynamic time information in the key derivation algorithm also mitigates against key
cracking, because the data encryption key is dynamically generated at runtime and
changes over time. The techniques described herein are also scalable and can be
easily deployed to millions of devices, because the binding algorithm and key
derivation algorithm can be deployed as part of the code written into the software
layers, and unlike digital certificate techniques, the dynamic nature of the key

derivation algorithm does not require periodical renewal with an external entity.

[0022] Prior to discussing the details of some embodiments of the present
invention, description of some terms may be helpful in understanding the various

embodiments.

[0023] A "communication device" may be a device that includes one or more
electronic components (e.g., an integrated chip) that can communicate with another
device. For example, a communication device can be a computing device that
includes at least one processor coupled to a memory that stores instructions or code
for execution by the processor. A “portable communication device” may be a
communication device that can be transported and operated by a user, and may
include one or more electronic components (e.g., an integrated chip). A portable
communication device may provide remote communication capabilities to a network.
The portable communication device can be configured to transmit and receive data
or communications to and from other devices. A portable communication device
may be in the form of a mobile device such as a mobile phone (e.g., smart phone,
cellular phone, etc.), tablets, portable media player, personal digital assistant devices
(PDAs), wearable device (e.g., watch, health monitoring device such as a fitness
tracker, etc.), electronic reader device, etc., or in the form of a card (e.g., smart card)
or a fob, etc. Examples of portable communication devices may also include
portable computing devices (e.g., laptops, netbooks, ultrabooks, etc.). A portable
communication device may also be in the form of a vehicle (e.g., an automobile), or

be integrated as part of a vehicle (e.g., an infosystem of a vehicle).

[0024] A “server computer’” may include a powerful computer or cluster of
computers. For example, the server computer can be a large mainframe, a
minicomputer cluster, or a group of servers functioning as a unit. In one example,

the server computer may be a database server coupled to a Web server. The server

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

computer may be coupled to a database and may include any hardware, software,
other logic, or combination of the preceding for servicing the requests from one or
more client computers. The server computer may comprise one or more

computational apparatuses and may use any of a variety of computing structures,
arrangements, and compilations for servicing the requests from one or more client

computers.

[0025] An “issuer” may typically refer to a business entity (e.g., a bank) that
maintains an account for a user that is associated with a portable communication
device such as an account enrolled in a mobile application installed on a portable
communication device. An issuer may also issue account parameters associated
with the account to a portable communication device. An issuer may be associated
with a host system that performs some or all of the functions of the issuer on behalf
of the issuer. In some embodiments, an issuer may refer to a provider of a software

application.

[0026] A “merchant’” may typically be an entity that engages in transactions and

can sell goods or services, or provide access to goods or services.

[0027] An "acquirer" may typically be a business entity (e.g., a commercial bank)
that has a business relationship with a particular merchant or other entity. Some
entities can perform both issuer and acquirer functions. Some embodiments may

encompass such single entity issuer-acquirers.

[0028] An “access device” may be any suitable device for communicating with a
merchant computer or transaction processing network, and for interacting with a
transaction device (e.g., a payment device), a user computer apparatus, and/or a
user mobile device. An access device may generally be located in any suitable
location, such as at the location of a merchant. An access device may be in any
suitable form. Some examples of access devices include POS devices, cellular
phones, PDAs, personal computers (PCs), tablet PCs, hand-held specialized
readers, set-top boxes, electronic cash registers (ECRs), automated teller machines
(ATMs), virtual cash registers (VCRs), kiosks, security systems, access systems,
Websites, and the like. An access device may use any suitable contact or
contactless mode of operation to send or receive data from, or associated with, a

portable communication device. In some embodiments, where an access device

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

may comprise a POS terminal, any suitable POS terminal may be used and may
include a reader, a processor, and a computer-readable medium. A reader may
include any suitable contact or contactless mode of operation. For example,
exemplary card readers can include radio frequency (RF) antennas, optical
scanners, bar code readers, or magnetic stripe readers to interact with a portable

communication device.

[0029] An “authorization request message” may be an electronic message that is
sent to request authorization for a transaction. The authorization request message
can be sent to a transaction processing network and/or an issuer of a transaction
card (e.g., a payment card). An authorization request message according to some
embodiments may comply with ISO 8583, which is a standard for systems that
exchange electronic transaction information associated with a transaction made by a
user using a transaction device or transaction account. The authorization request
message may include information that can be used to identify an account. An
authorization request message may also comprise additional data elements such as
one or more of a service code, an expiration date, etc. An authorization request
message may also comprise transaction information, such as any information
associated with a current transaction, such as the transaction amount, merchant
identifier, merchant location, etc., as well as any other information that may be
utilized in determining whether to identify and/or authorize a transaction. The
authorization request message may also include other information such as
information that identifies the access device that generated the authorization request

message, information about the location of the access device, etc.

[0030] An “authorization response message” may be an electronic message reply
to an authorization request message. The authorization response message can be
generated by an issuing financial institution or a transaction processing network.
The authorization response message may include, by way of example only, one or
more of the following status indicators: Approval -- transaction was approved,;
Decline -- transaction was not approved; or Call Center -- response pending more
information, merchant must call the toll-free authorization phone number. The
authorization response message may also include an authorization code, which may
be a code that a credit card issuing bank returns in response to an authorization

request message in an electronic message (either directly or through the transaction

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

processing network) to the merchant computer that indicates approval of the
transaction. The code may serve as proof of authorization. As noted above, in
some embodiments, a transaction processing network may generate or forward the

authorization response message to the merchant.

[0031] A "token" may include a substitute identifier for some information. For
example, a transaction token may include an identifier for a transaction account that
Is a substitute for an account identifier, such as a primary account number (PAN).
For instance, a token may include a series of alphanumeric characters that may be
used as a substitute for an original account identifier. For example, a token "4900
0000 0000 0001" may be used in place of a PAN "4147 0900 0000 1234." In some
embodiments, a token may be "format preserving" and may have a numeric format
that conforms to the account identifiers used in existing transaction processing
networks (e.g., ISO 8583 financial transaction message format). In some
embodiments, a token may be used in place of a PAN to initiate, authorize, settle or
resolve a transaction. The token may also be used to represent the original
credential in other systems where the original credential would typically be provided.
In some embodiments, a token value may be generated such that the recovery of the
original PAN or other account identifier from the token value may not be
computationally derived. Further, in some embodiments, the token format may be
configured to allow the entity receiving the token to identify it as a token and

recognize the entity that issued the token.

[0032] A 'real account identifier" may include an original account identifier
associated with an account. For example, a real account identifier may be a primary
account number (PAN) issued by an issuer for a card account (e.g., credit card, debit
card, etc.). For instance, in some embodiments, a real account identifier may
include a sixteen digit numerical value such as "4147 0900 0000 1234." The first six
digits of the real account identifier (e.g., "414709"), may represent a real issuer

identifier (BIN) that may identify an issuer associated with the real account identifier.

[0033] “Account parameters” may refer to information relating to an account that
can be used to conduct a transaction on the account. Examples of account
parameters may include information that can be used to identify an account of the

user (e.g., real account identifier, alternate account identifier, token, etc.), data or

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

information relating to the status of the account, one or more keys that are used to
generate cryptographic information, data or information relating to the one or more
keys, etc. An account parameter can be semi-static or dynamic. A dynamic account
parameter may be an account parameter that has a limited lifespan, and which once
expired, can no longer be used to conduct a transaction until the account parameter
is replenished, refreshed, or renewed. A dynamic account parameter may be
replenished frequently during the lifetime of an account. A semi-static account
parameter may be an account parameter that has an extended lifespan that is longer
than a dynamic account parameter, and can be replenished less frequently than a

dynamic account parameter or not at all during the lifetime of the account.

[0034] A “key” may refer to a piece of information that is used in a cryptographic
algorithm to transform input data into another representation. A cryptographic
algorithm can be an encryption algorithm that transforms original data into an
alternate representation, or a decryption algorithm that transforms encrypted
information back to the original data. Examples of cryptographic algorithms may
include triple data encryption standard (TDES), data encryption standard (DES),

advanced encryption standard (AES), etc.

[0035] A “limited-use key” or “LUK” may refer to a key that can be used for only a
limited time or a limited number of transactions, and may need to be renewed or
replenished when the limited usage has been exhausted. The LUK may be
associated with a set of one or more limited-use thresholds that limits the usage of
the LUK, where once the usage of the LUK has exhausted or exceeded the set of
one or more limited-use thresholds, a further transaction conducted using that LUK
will be declined even if the underlying account is still in good standing. The set of
one or more limited-use thresholds may include at least one of a number of
transactions that the LUK can be used for, a time-to-live indicating the duration of
time for which the LUK is valid, and/or a cumulative transaction amount indicating
the total transaction amount summed across one or more transactions for which the

LUK is valid, or any combination thereof.

[0036] A “limited-use threshold” may refer to a condition that limits the usage of a
piece of information. A limited-use threshold may be exceeded or exhausted when

the underlying condition is met. For example, a limited-use threshold may include a

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

time-to-live that indicates an amount of time that a piece of information is valid for,
and once that amount of time has elapsed, the limited-use threshold is exceeded or
exhausted, and the piece of information may become invalid and may no longer be
used. As another example, a limited-use threshold may include a number of times
that a piece of information can be used, and once the piece of information has been
used for that number of times, the limited-use threshold is exceeded or exhausted,

and the piece of information may become invalid and may no longer be used.

[0037] A “transaction processing network” may include a network that can process
and route transaction request messages. An exemplary transaction processing
network may include data processing subsystems, networks, and operations used to
support and deliver authorization services, exception file services, transaction
scoring services, and clearing and settlement services. An exemplary transaction
processing network may include VisaNet™. Transaction processing networks such
as VisaNet™ are able to process credit card transactions, debit card transactions,
and other types of commercial transactions. VisaNet™ in particular, may include a
VIP system (Visa Integrated Payments system) which processes authorization

requests and a Base Il system which performs clearing and settlement services.

[0038] Details of some embodiments of the present invention will now be

described.

[0039] FIG. 1 illustrates a software operating environment in a computing device
100, according to some embodiments. Computing device 100 can be a computer, a
communication device, a portable communication device in the form of a mobile
device such as a mobile phone (e.g., smart phone, cellular phone, etc.), a tablet, a
portable media player, a personal digital assistant device (PDA), a wearable
computing device (e.g., watch), an electronic reader device, a laptop, a netbook, an
ultrabook, etc., or in the form of a card (e.g., smart card) or a fob, etc. In some
embodiments, computing device 100 can also be part of a vehicle (e.g., an
automobile). Computing device 100 may include device hardware 104 such as one
or more processors, an operating system 114, and an application 112 executing on
computing device 100. In some embodiments, application 122 can be executed

within a virtual machine 110.

10

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

[0040] Application 112 may include multiple software layers. For example,
application 122 may include software layer 120 and software layer 130. Software
layers 120 and 130 can be provided by the same developer or be provided by
different entities. In some embodiments, software layers 120 and 130 can be written
in the same or different programming languages. For example, software layer 120
can be written in a high level programming language such as Java, and can be
implemented as a software development kit (SDK). Software layer 130 can be a
native layer or native library, and can be written in a low level programming language
such as C or C++. In some embodiments, software layer 130 can be a native library
that is shared amongst components executing in virtual machine 110. Software
layer 120 can communicate with software layer 130 to exchange data and invoke
functions implemented in software layer 130, and vice versa, via an interface
between the two software layers. In some embodiments, the interface between

software layers 120 and 130 can be a Java Native Interface (JNI).

[0041] It should also be noted that in some embodiments, software layers 120 and
130 are part of one single application 112. Thus, for example, application 112
including software layers 120 and 130 can be downloaded initially from an
application store as a single application package, and installed on communication
device 100 as a single application. Application 112 including software layers 120
and 130 can be represented as one icon on a user interface of communication
device 100, and application 112 including software layers 120 and 130 can be

treated by operating system 114 as one application.

[0042] According to some embodiments, application 112 can be an application that
uses or processes sensitive information. For example, application 112 can be a
transaction application that is used to conduct transactions with a user’s account
credentials. Due to the modularized nature of application 112, without proper
safeguards, the interface between software layers 120 and 130 can be susceptible to
man-in-the-middle eavesdropping or unauthorized invocation of functions
implemented in the software layers. For example, a rogue application 152 (e.g.,
unauthorized code, malware, etc.) may observe the functions being called by the
software layers and parameters being transferred between the software layers
(indicated by the data path M). If the function calls and parameters are sent in the

clear, it may be possible for rouge application 152 to obtain sensitive information

11

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

such as a user’s account credentials from the observed data. As another example, if
software layers 120 and 130 do not require proper authentication of a calling party,
rogue application 152 may directly invoke functions implement in software layer 130
to obtain sensitive data accessible by software layer 130 (indicated by the data path
N).

[0043] FIG. 2 illustrates a flow diagram of a process 200 that can be used to
mutually authenticate software layers (e.g., software layers 120 and 130) to mitigate
against these vulnerabilities, according to some embodiments. It should be
understood that the techniques described herein can be applied to any software
application that has multiple software layers, and that in some embodiments, the
software application can have more than two software layers. At block 202, process
200 can generate binding information that binds a first software layer to a second
software during first time initialization of the software application executing on a
computing device. In some embodiments, block 202 can be executed only once
during the lifetime of the software application (e.g., when the software application is
initially installed on the computing device, or during the first time the software
application is executed or used). The purpose of block 202 is to bind together the
software layers by exchanging and securely storing some secret data which can be
used later during runtime to authenticate the software layers to each other. Block
202 is ideally the first lines of code of the software application. The binding
established at block 202 allows subsequent function calls between the software
layers to be trusted as being invoked by an authenticated party. In some
embodiments, the presence of the binding information on the computing device can
determine if block 202 needs to be executed. The absence of binding information on
the computing device may indicate that this is the first time the software application

Is being used, and thus block 202 should be executed.

[0044] At block 204, during runtime of the software application, process 200 can
execute a key derivation algorithm to derive a data encryption key based on the
binding information generated from block 202. The data encryption key may also be
further based on dynamic time information. The dynamic time information can be,
for example, the amount of elapsed time from the time when block 202 is executed
at first time initialization to the time when block 204 is subsequently executed. Block

204 can be executed each time the software application is started or used on the

12

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

computing device (e.g., when the computing device is powered up, when a user
launches the software application, or when a user uses the software application to
perform a task, etc.). Block 204 can achieve mutual authentication of the software
layers because only authorized software layers would have knowledge of the binding
information generated at block 202. The data encryption key derived at block 204
can then be used during subsequent communication between the software layers to
encrypt function calls and data to/from the software layers to achieve data
confidentiality. It should be noted that in some embodiments, because dynamic time
information is included in the key derivation process, a different data encryption key
can be generated each time block 204 is executed, and thus the data encryption key
is dynamic in nature and changes over time as the application is used to prevent key

cracking.

[0045] At block 206, process 200 encrypts the data being transferred between the
first software layer and the second software layer using the data encryption key
derived at block 204. The recipient software layer can decrypt the encrypted data
using its own data encryption key. It should be noted that in some embodiments, the
communication channel itself between the software layers is not encrypted. Rather,
in some embodiments, the input data parameters and any response data that require
confidentiality can be encrypted. Blocks 204 and 206 can be repeated each time the

software application is launched on the computing device.

[0046] In some embodiments, additional safeguards can be deployed to protect the
software layers from rogue applications and unauthorized access. For example,
code obfuscation techniques can be used to mask the underlying code. Runtime
safeguards may include determining if the software layer is being called under a
debugger session or if the software layer is running with root-privilege. Detection of
these scenarios may indicate a potential breach, and the affected software layer can
be set to cease communication with other software layers or refuse authentication

with other software layers.

[0047] FIG. 3 illustrates a communication flow diagram of an overview of an
example process for establishing mutual authentication between a first software
layer (e.g., software layer-A 120) and a second software layer (e.g., software layer-B

130), according to some embodiments. The process may include a binding

13

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

algorithm that is executed during first time initialization of the application, and a key
derivation algorithm that is executed during runtime of the application. For ease of
explanation, the steps performed in the binding algorithm during the first time
initialization are denoted as “I-Xn” where X indicates the software layer, and n is the
step performed by that software layer. The steps performed in the key derivation
algorithm during runtime are denoted as “S-Xn” where X indicates the software layer,
and n is the step performed by that software layer. In some embodiments, software
layer-A 120 can be a SDK (e.g., written in Java), and software layer-B can be a
native library (e.g., written in C or C++), or vice versa. In some embodiments, the

two software layers can be written in the same language.

[0048] The mutual authentication process can be initiated by the software layer that
is executed first when the application starts up (e.g., software layer-A 120). In some
embodiments, the initiating software layer need not the software layer that is
executed first when the application starts up. If the application performs security
sensitive functions, the security sensitive functions can be implement in a software
layer other than the software layer that initiates the mutual authentication process
(e.g., software layer-B 130). In some embodiments, the security sensitive functions
can be implemented in the software layer that initiates the mutual authentication

process.

[0049] At step I-A1, software layer-A 120 begins its execution of the binding
algorithm and generates a random number RN1, which is used as a first nonce.
RN1, for example, may have a bit length of 256-bits. At step IA-2, software layer-A
120 sends RN1 to software layer-B 130. RN1 serves as a secret generated by
software layer-A 120 and shared with software layer-B 130 to bind the two software

layers. In some embodiments, RN1 is not stored by software layer-A 120.

[0050] At step I-B1, software layer-B 130 generates its own random number (RN2),
which is used as a second nonce. In some embodiments, software layer-B 130 may
generate RN2 in response to receiving RN1 from software layer-A 120. RN2, for
example, may have a bit length of 256-bits. RN2 serves as a secret generated by
software layer-B 130 and shared with software layer-A 120 to bind the two software
layers. At step I-B2, software layer-B 130 determines the initialization time

information TM, which indicates the current time at which the binding algorithm is

14

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

being executed. In some embodiments, the initialization time information TM can be
a timestamp, or a numeric value derived from the timestamp, for example, by
combining the timestamp with RN1 and/or RN2 using one or more suitable
computation operations (e.g,. TM = timestamp + (RN1 xor RN2)). At step I-B3,
software layer-B 130 stores RN1 from the first software layer-A 120 and the
initialization time information TM as binding information. At step I-B4, software layer-
B 130 sends RN2 and the initialization time information TM to software layer-A 120.

In some embodiments, RN2 is not stored by software layer-B 130.

[0051] At step I-A3, software layer-A 120 stores RN2 and TM received from
software layer-B 130 as binding information. Once both software layers have stored
their respective binding information, the binding algorithm can be terminated.
Software layer-A 120 now has RN2 and TM from software layer-B 130, and software
layer-B 130 now has RN1 from software layer-B 130. Thus, the two software layers
have exchanged shared secrets to bind the two software layers to each other. The
shared secrets can be used during runtime to derive a data encryption key to encrypt
and decrypt data being transferred between the two software layers. In this manner,
mutual authentication of the software layers can be achieved, because only
authorized software layers would have knowledge of the proper binding information

to generate a valid data encryption key.

[0052] During runtime execution of the application, at step S-A1, software layer-A
120 begins the key derivation algorithm by retrieving RN2 and TM, which were
previously stored by software layer-A 120 as binding information during initialization.
At step S-A2, software layer-A 120 determines dynamic time information DTM_A,
which provides an indication of the elapsed time from when the binding algorithm
was execute (as indicated by TM) to the current time at which the key derivation
algorithm is being executed. For example, DTM_A can be the difference between
the current time and TM. This dynamic time information DTM_A can be combined
with the binding information to generate a data encryption key in subsequent steps.
At step S-AS, software layer-A 120 sends RN2 to software layer-B 130.

[0053] At step S-B1, software layer-B 130 retrieves RN1 and TM, which were
previously stored by software layer-B 130 as binding information during initialization.

At step S-B2, software layer-B 130 determines dynamic time information DTM_B.

15

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

For example, DTM_B can be the difference between the current time and TM. At
step S-B3, software layer-B 130 derives its data encryption key DEK based on the
first nonce RN1, the second nonce RN2 received from software layer-A 120, and
dynamic time information DTM_B. The DEK is used by software layer-B 130 to
encrypt and decrypt subsequent data transferred between the two software layers in
the current runtime session. At step S-B4, software layer-B 130 sends RN1 to

software layer-A 120.

[0054] At step S-A4, software layer-A 120 derives its data encryption key DEK
based on the first nonce RN1 received from software layer-B 130, the second nonce
RN2, and dynamic time information DTM_A. The DEK is used by software layer-A
120 to encrypt and decrypt subsequent data transferred between the two software

layers in the current runtime session.

[00565] Once both software layers have derived their respective data encryption
keys, the software layers can start transferring data to one another. The data
exchanged between the software layers can be encrypted and decrypted using their
respective data encryption keys. The two software layers are now mutually
authenticated, because an unauthorized software component would not be able to
derive a proper data encryption key to encrypt and decrypt the data being

exchanged.

I FIRST SOFTWARE LAYER PROCESSES

[0056] FIGs. 4-5 illustrate flow diagrams of processes 400 and 500, respectively,
that can be performed by a first software layer executing on a computing device to
achieve mutual authentication and secure data transfer between the first software
layer and a second software layer, according to some embodiments. Process 400
implements a binding algorithm that can be executed by the first software layer, and
can be performed as part of block 202 in process 200 during first time initialization.
Process 500 implements a key derivation algorithm that can be executed by the first
software layer, and can be performed as part of block 204 in process 200 during

subsequent runtime sessions.

[0057] Referring to FIG. 4, at block 402, during first time initialization of the

software application, the first software layer generates a first nonce, and encrypts the

16

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

first nonce. In some embodiments, the first nonce generated by the first software
layer can be a random or a pseudo-random number. The first nonce can be
encrypted using a binding key derived from a computing device identifier associated
with the computing device (e.g., International Mobile Station Equipment Identity
(IMEI), device serial number, etc.), an issuer identifier associated with an issuer of
the application, or any combination thereof. At block 404, the encrypted first nonce
is sent to the second software layer. This first nonce serves as a secret from the first

software layer that is being shared with the second software layer.

[0058] At block 406, the first software layer receives an encrypted second nonce
and encrypted initialization time information from the second software layer. The
second nonce can be a random or pseudo-random number generated by the second
software layer, and serves as a secret being shared by the second software layer.
The initialization time information can be information indicative of the current time at
which the binding algorithm is executed. At block 408, the encrypted second nonce
and encrypted initialization time information are decrypted by the first software layer
to obtain the second nonce and the initialization time information in their unencrypted

form.

[0059] At block 410, the second nonce and initialization time information are re-
encrypted to generate a re-encrypted second nonce and re-encrypted initialization
time information. At block 412, the first software layer stores the re-encrypted
second nonce and re-encrypted initialization time information as binding information,
for example, in an external file or a hardware security module (HSM). The
encryption key used by the first software layer to re-encrypt the second nonce and
initialization time information can be a different key that what was used by the
second software layer. For example, the encryption key used by the first software
layer to re-encrypt the second nonce and initialization time information can be a
binding key derived by combining the first nonce and one or more computing device
identifiers associated with the computing device. This allows the second nonce and
initialization time information to be stored in a different form than what was sent from
the second software layer. When the software application is started in subsequent
runtime sessions, the binding information stored by the first software layer can be
retrieved and provided to the second software layer to authenticate the first software

layer to the second software layer. The binding information can also be used in a

17

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

key derivation algorithm such as process 500 to derive a data encryption key in each

runtime session to encrypt data being transferred between the two software layers.

[0060] Referring to FIG. 5, process 500 can be executed by the first software layer
during each subsequent runtime session of the software application to dynamically
derive a per session data encryption key. At block 502, the first software layer
retrieves the binding information stored by the first software layer during the binding
algorithm described above at initialization of the application. For example, the
binding information can be retrieved from an external file or HSM. At block 504, the
binding information is decrypted to obtain the second nonce and initialization time
information. At block 506, dynamic time information is determined based on the
initialization time information. For example, the dynamic time information can be
indicative of the elapsed time since the software application was first initialized. In
other words, the dynamic time information can be a representation of the amount of
time that have elapsed between the execution of process 400 and execution of

process 500.

[0061] At block 508, the first software layer receives an encrypted first nonce from
the second software layer. At block 510, the encrypted first nonce is decrypted to
obtain the first nonce in an unencrypted form. At block 512, the first software layer
derives a data encryption key based on the first nonce, the second nonce, and the
dynamic time information. In some embodiments, the data encryption key can be
derived by combining the first nonce and the second nonce to generate a combined
nonce, concatenating the combined nonce with the dynamic time information, and
hashing a result of the concatenating. For example, the data encryption key for the
first software layer can be derived by applying a hash to the concatenation of: (1) the
result of XOR-ing the first nonce and the second nonce; and (2) the dynamic time

information.

[0062] At block 514, the first software layer encrypts data being sent from the frist
software layer to the second software layer using the derived data encryption key,
such that the data transferred between the first and second software layers during
runtime are encrypted. The first nonce received from the second software layer
(which was originally generated by the first software layer and provided to the

second software layer during initialization) can be used by the first software layer to

18

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

authenticate the second software layer. If the first nonce received from the second
software layer is incorrect, the data encryption key derived based in part on this first
nonce received from the second software layer would be an improper key, and the
first software layer would not be able to properly decrypt communications from the
second software layer and would not be able to respond to the second software
layer. Thus, this mechanism of deriving the data encryption key using binding
information generated at initialization can provide an implicit authentication of the

software layers.

. SECOND SOFTWARE LAYER PROCESSES

[0063] FIGs. 6-7 illustrate flow diagrams of processes 600 and 700, respectively,
that can be performed by a second software layer executing on a computing device
to achieve mutual authentication and secure data transfer between the first software
layer and the second software layer, according to some embodiments. Process 600
implements a binding algorithm that can be executed by the second software layer,
and can be performed as part of block 202 in process 200 during first time
initialization. Process 700 implements a key derivation algorithm that can be
executed by the second software layer, and can be performed as part of block 204 in

process 200 during subsequent runtime sessions.

[0064] Referring to FIG. 6, at block 602, during first time initialization of the
software application, the second software layer receives an encrypted first nonce
from the first software layer to initiate the binding algorithm at the second software
layer. The first nonce can be a random or pseudo-random number generated by the
first software layer, and serves as a secret being shared by the first software layer.
At block 604, the encrypted first nonce is decrypted to obtain the first nonce in an
unencrypted form. At block 606, the first nonce is re-encrypted to generate a re-
encrypted first nonce. At block 608, initialization time information is encrypted by the
second software layer to generate a first encrypted initialization time information.
The initialization time information can be information indicative of the current time at

which the binding algorithm is executed.

[0065] At block 610, the re-encrypted first nonce and first encrypted initialization
time information are stored as binding information, for example, in an external file or

HSM. The encryption key used by the second software layer to re-encrypt the first

19

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

nonce and initialization time information can be a different key that what was used by
the first software layer. For example, the encryption key used by the second
software layer to re-encrypt the first nonce and initialization time information can be a
binding key derived from combining the second nonce and one or more computing
device identifiers associated with the computing device. This allows the first nonce
and initialization time information to be stored in a different form than what was sent
from the first software layer. When the software application is started in subsequent
runtime sessions, this binding information stored by the second software layer can
be retrieved and provided to the first software layer to authenticate the second
software layer to the first software layer. The binding information can also be used in
a key derivation algorithm such as process 700 to derive a data encryption key in
each runtime session to encrypt data being transferred between the two software

layers.

[0066] At block 612, the second software layer generates a second nonce, and
encrypts the second nonce. In some embodiments, the second nonce generated by
the second software layer can be a random or a pseudo-random number. The
second nonce can be encrypted using a binding key derived from a computing
device identifier associated with the computing device (e.g., IMEI, device serial
number, etc.), an issuer identifier associated with an issuer of the application, the
first nonce that was generated by and received from the first software layer, or any
combination thereof. This second nonce serves as a secret from the second
software layer that is being shared with the first software layer. At block 614, the
initialization time information is encrypted to generate a second encrypted
initialization time information. The initialization time information can be encrypted
using the same binding key that is used to encrypt the second nonce. At block 616,
the encrypted second nonce and second encrypted initialization time information are
sent to the first software layer to provide the first software layer with binding

information generated by the second software layer.

[0067] Referringto FIG. 7, process 700 can be executed by the second software
layer during each subsequent runtime session of the software application to
dynamically derive a per session data encryption key. At block 702, the second
software layer retrieves the binding information stored by the second software layer

during the initialization of the application. The binding information can be retrieved,

20

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

for example, from an external file or HSM. At block 704, the binding information is
decrypted to obtain the first nonce and initialization time information. At block 7086,
dynamic time information is determined based on the initialization time information.
For example, the dynamic time information can be indicative of the elapsed time
since the software application was first initialized. In other words, the dynamic time
information can be a representation of the amount of time that have elapsed

between the execution of process 600 and execution of process 700.

[0068] At block 708, the second software layer receives an encrypted second
nonce from the first software layer. At block 710, the encrypted second nonce is
decrypted to obtain the second nonce in its unencrypted form. At block 712, the
second software layer derives a data encryption key based on the first nonce, the
second nonce, and the dynamic time information. In some embodiments, the data
encryption key can be derived by combining the first nonce and the second nonce to
generate a combined nonce, concatenating the combined nonce with the dynamic
time information, and hashing a result of the concatenating. For example, the data
encryption key for the second software layer can be derived by applying a hash to
the concatenation of: (1) the result of XOR-ing the first nonce and the second nonce;

and (2) the dynamic time information.

[0069] At block 714, the second software layer encrypts data being sent from the
second software layer to the first software layer using the derived data encryption
key, such that the data transferred between the first and second software layers
during runtime are encrypted. The second nonce received from the first software
layer (which was originally generated by the second software layer and provided to
the first software layer during initialization) can be used by the second software layer
to authenticate the first software layer. If the second nonce received from the first
software layer is incorrect, the data encryption key derived based in part on this
second nonce received from the first software layer would be an improper key, and
the second software layer would not be able to properly decrypt communications
from the first software layer and would not be able to respond to the first software
layer. Thus, this mechanism of deriving the data encryption key using binding
information generated at initialization can provide an implicit authentication of the

software layers.

21

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

M. EXAMPLE IMPLEMENTATION OF BINDING ALGORITHM

[0070] FIG. 8 illustrates a communication flow diagram of an example
implementation of a binding algorithm to bind a first software layer (e.g., software
layer-A 120) to a second software layer (e.g., software layer-B 130) during the first
time initialization of a software application, according to some embodiments. In
some embodiments, software layer-A 120 can be a SDK (e.g., written in Java), and
software layer-B can be a native library (e.g., written in C or C++), or vice versa. In
some embodiments, the two software layers can be written in the same language.
For ease of explanation, the steps performed in the binding algorithm during the first
time initialization are denoted as “I-Xn” where X indicates the software layer, and n is
the step performed by that software layer. Various encryption keys (referred to as
binding keys) are derived and used in the binding algorithm. The binding keys used

in the binding algorithm are denoted as BKn.

[0071] At step I-A1, software layer-A 120 generates a random number RN1, which
is used as a first nonce. RN1, for example, may have a bit length of 256-bits. At
step IA-2, a first binding key BK1 is derived from information about the computing
device and/or software application known to the software layers. For example, BK1
can be derived from applying a cryptographic function (Func) to a device identifier
and an issuer identifier (IssuerlD). In implementations in which the computing device
IS @ mobile phone, the device identifier can be an International Mobile Station
Equipment Identity (IMEI) associated with the mobile phone. IssuerlD can be an
identifier of the software application provider. In implementations in which the
software application is a transaction application, IssuerlD can be a non-mutable
identifier uniquely identifying that issuer of the account whose credentials are used
by the transaction application to conduct transactions. It should be noted that the
IssuerlID is not the same as the code version label (or version ID), as the Version ID

Is mutable and changes across software releases.

[0072] At step I-A3, software layer-A 120 encrypts RN1 with BK1 resulting in
RN1_encgks. The encryption function used can be AES (Advanced Encryption
Standard) or other suitable encryption algorithm. At step |-A4, software layer-A 120
calls the binding function in software layer-B 130 with RN1_encgk1 as the parameter,

and passes RN1_encgks to software layer-B 130. RN1 serves as a secret generated

22

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

by software layer-A 120 and shared with software layer-B 130 to bind the two
software layers. It should be noted that RN1_encgy4 is not sent in the clear, but is

sent in an encrypted form to prevent a man-in-the middle from obtaining RN1.

[0073] At step I-B1, software layer-B 130 begins its execution of the binding
function and derives BK1 using the same information as what was used by software
layer-A 120 (e.g., IMEI and IssuerlD). At step I-B2, RN1_encgy4 received from
software layer-A 120 is decrypted with BK1 to obtain RN1. At step I-B3, software
layer-B 130 generates its own random number (RN2), which is used as a second
nonce. RN2, for example, may have a bit length of 256-bits. At step |-B4, software
layer-B 130 derives a second binding key BK2 by applying Func to RN2 and
information about the computing device. For example, the information about the
computing device can be a serial number (Serial#) and an IMEI associated with the
computing device. At I-B5, RN1 is encrypted with BK2 using AES or other suitable

encryption algorithms resulting in RN1_encggo.

[0074] At step I-B6, software layer-B 130 determines the initialization time
information TM indicating the current time at which the binding algorithm is being
executed. At step I-B7, software layer-B 130 derives a third binding key BK3 based
on information about the computing device and/or software application and TM. For
example, BK3 can be derived from applying Func to the serial number, IME],
IssuerlD, and a hash of TM. At step I-B8, TM is encrypted with BK3 using AES or
other suitable encryption algorithms resulting in TM_encggs. At step 1-B9, software
layer-B 130 stores RN1_encek2 and TM_encgks as binding information in an external
file or HSM. It should be noted that both RN1 and TM are stored in an encrypted

form to protect the actual values of the binding information.

[0075] At step I-B10, software layer-B 130 derives a fourth binding key BK4 by
applying Func to RN1 and information about the computing device such as the serial
number associated with the computing device. At step I-B11, RN2 and TM are
encrypted with BK4 using AES or other suitable encryption algorithms resulting in
RN2_TM_enceks. At step I-B12, software layer-B 130 returns the value
RN2_TM_encgk4 to software layer-A 120. RN2 serves as a secret generated by
software layer-B 130 and shared with software layer-A 120 to bind the two software

layers. It should be noted that RN2_TM_encgk4 is not sent in the clear, but is sent in

23

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

an encrypted form to prevent a man-in-the middle from obtaining RN2 and TM. At
step [-B13, at the completion of the binding algorithm for software layer-B 130, the
unencrypted forms of RN1, RN2, and TM are destroyed or deleted from memory.

The binding keys BK1, BK2, BK3, and BK4 used by software layer-B 130 are also

destroyed or deleted from memory.

[0076] Upon receiving RN2_TM_encgks as the response data from calling the
binding function in software layer-B 130, at step I-A5, software layer-A 120 derives
BK4 using the same information as what software layer-B 130 used. For example,
BK4 can be derived from applying Func to RN1 and the serial number. At step I-AB,
software layer-A 120 decrypts RN2_TM_encgks with BK4 to obtain RN2 and TM in
their unencrypted form. At step I-A7, software layer-A 120 derives a fifth binding key
BK5 based on information about the computing device and/or software application,
and optional user input (e.g., PIN or passcode) if available. For example, BK5 can
be derived by applying Func to the IMEI, serial number, and IssuerlD, and further
applying Func to that result and user input (if available). At step I-A8, software layer-
A 120 encrypts RN2 and TM with BK5 using AES or other suitable encryption
algorithms resulting in RN2_TM_encgks. At step I-A9, software layer-A 120 stores
RN2_TM_encgks as binding information in an external file or HSM. It should be
noted that RN2 and TM are stored in an encrypted form to protect the actual values
of the binding information. At step I1-A10, at the completion of the binding algorithm
for software layer-A 120, the unencrypted forms of RN1, RN2, and TM are destroyed
or deleted from memory. The binding keys BK1, BK4, and BK5 used by software

layer-A 120 are also destroyed or deleted from memory.

[0077] Referring back to the generating of BK5, in some embodiments, if the user
experience of the software application can tolerate requesting entry of user input
(e.g., PIN or passcode) when the software application is used, user input that is not
statically stored on the device can be incorporated into the algorithms to increase the
security assurance level. Inclusion of use input that only an authorized user would
have knowledge of can prevent unauthorized users from executing the software
layers. In some embodiments, the inclusion of user input can be omitted from the
algorithms to improve the user experience (to avoid requiring the user to manually
enter a PIN or passcode). In such embodiments, BK5 can be generated without the

user input, and the techniques described herein can still provide a sufficient security

24

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

assurance level, because the algorithms incorporate the use of dynamic time
information (as described further below), which is also not statically stored on the

device.

IV. EXAMPLE IMPLEMENTATION OF KEY DERIVATION ALGORITHM

[0078] FIG. 9 illustrates a sequence diagram of an example implementation of a
key derivation algorithm to generate data encryption keys by a first software layer
(e.g., software layer-A 120) and a second software layer (e.g., software layer-B 130)
during runtime sessions of a software application, according to some embodiments.
The process in FIG. 9 can be performed each time the software application is started
or used subsequent to the first time initialization. For ease of explanation, the steps
performed in the key derivation algorithm during runtime sessions are denoted as “S-
Xn” where X indicates the software layer, and n is the step performed by that
software layer. Various encryption keys (referred to as session keys) are derived
and used in the key derivation algorithm. The session keys used in the key

derivation algorithm are denoted as SKn.

[0079] At step S-A1, software layer-A 120 retrieves RN2_TM_encgks from an
external file or HSM, which was stored by software layer-A 120 as binding
information from the first time initialization. At step S-A2, software layer-A 120
derives a first session key SK1, which is the equivalent of BK5, For example, SK1
can be derived by applying Func to the IMEI, serial number, and IssuerlD, and
further applying Func to that result and user input (if available). At step S-A3,
RN2_TM_encgks is decrypted with SK1 to obtain RN2 and TM. At step S-A4,
software layer-A 120 determines dynamic time information DTM_A that provides an
indication of the elapsed time from when the binding algorithm was execute (as
indicated by TM) to the current time at which the key derivation algorithm is being
executed. For example, DTM_A can be computed by hashing the absolute value of
the difference between the current time and TM. This dynamic time information
DTM_A can be combined with the binding information to generate a data encryption

key in subsequent steps.

[0080] At step S-A5, software layer-A 120 derives a second session key SK2
based on information about teh computing device and/or the software application

and DTM_A. For example, SK2 can be derived by applying Func to the IME],

25

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

IssuerlD, and DTM_A. At step S-A6, RN2 is encrypted with SK2 using AES or other
suitable encryption algorithms resulting in RN2_encsko. At step S-A7, software layer-
A 120 invokes the key derivation function in software layer-B 130 with the

parameters RN2_encsk2 and a hash of TM.

[0081] At step S-B1, software layer-B 130 begins its execution of the key derivation
function and retrieves RN1_encgk, and TM_encgks from an external file or HSM,
which were previously stored by software layer-B 130 as binding information from
the binding algorithm during first time initialization. At step S-B2, software layer-B
130 derives a third session key SK3 which is the equivalent of BK3. For example,
SK3 can be derived from applying Func to the serial number, IMEI, IssuerlD, and a
hash of TM. The hash of TM is one of the parameters received from software layer-
A 120. At step S-B3, TM_encegxs is decrypted with SK3 to obtain TM in an
unencrypted form. At S-B4, software layer-B 130 determines dynamic time
information DTM_B that provides an indication of the elapsed time from when the
binding algorithm was execute (as indicated by TM) to the current time at which the
key derivation algorithm is being executed. For example, DTM_B can be computed
by hashing the absolute value of the difference between the current time and TM.
This dynamic time information DTM_B can be combined with the binding information
to generate a data encryption key in subsequent steps. In some embodiments, to
ensure that DTM_A and DTM_B have the same value, the current time used in the
determination of the dynamic time information is expressed in minutes (as opposed

to smaller units of time such as seconds or milliseconds).

[0082] At step S-B5, software layer-B 130 derives a fourth session key SK4, which
is the equivalent of SK2. For example, SK4 can be derived by applying Func to the
IMEI, IssuerlD, and DTM_B as determined by software layer-B 130. At step S-B6,
RN2_encskz, as received from software layer-A 120, is decrypted using SK4 to
obtain RN2 in its unencrypted form. At step S-B7, software layer-B 130 derives a
fifth session key SK5, which is the is the equivalent of BK2 using the unencrypted
RN2. For example, SK5 can be derived by applying Func to RN2, the serial number,
and IMEI associated with the computing device. At step S-B8, RN1_encgko, as
received from software layer-A 120, is decrypted with SK5 resulting in RN1 in its
unencrypted form. At step S-B9, software layer-B 130 derives its data encryption
key DEK by applying a hash to the result of XOR-ing RN1 and RN2, concatenated

26

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

with DTM_B. The DEK is used by software layer-B 130 to encrypt and decrypt
subsequent data transferred between the two software layers in the current runtime
session. At step S-B10, RN1_encgk; is returned to software layer-A 120 as the
response data. At step S-B11, at the completion of the key derivation algorithm for
software layer-B 130, the unencrypted forms of RN1, RN2, TM, and DTM_B are
destroyed or deleted from memory. The session keys SK3, SK4, and SK5 used by

software layer-B 130 are also destroyed or deleted from memory.

[0083] Upon receiving RN1_encgke as the response data from calling the key
derivation function in software layer-B 130, at step S-A8, software layer-A 120
derives SK5, which is the equivalent of BK2. For example, SK5 can be derived from
applying Func to RN2, the serial number, and IMEI. At step S-A9, RN1_encgxkz is
decrypted with SK5 to obtain RN1 in its unencrypted form. At step S-A10, software
layer-A 120 derives its data encryption key DEK by applying a hash to the result of
XOR-ing RN1 and RN2, concatenated with DTM_A. The DEK is used by software
layer-A 120 to encrypt and decrypt subsequent data transferred between the two
software layers in the current runtime session. This DEK should be equivalent to the
DEK derived by software layer-B 130 if the two software layers were properly bound
at first time initialization. At step S-A11, at the completion of the key derivation
algorithm for software layer-A 120, the unencrypted forms of RN1, RN2, TM, and
DTM_A are destroyed or deleted from memory. The session keys SK1, SK2, and
SKS5 used by software layer-A 120 are also destroyed or deleted from memory.
Once both software layers have derived their respective DEKs, subsequent data

transferred between the software layers can be encrypted with the DEK.

V. CRYPTOGRAPHIC FUNCTION

[0084] According to some embodiments, the cryptographic function Func described
herein to derive the various binding and session keys can be a multipath
cryptographic function in which the computational path is selected based on the input
data to the cryptographic function. Each path can be computationally equivalent
(use the same computational operations), but the operands fed into the computation
can include different input data fragments. The runtime input data bits can be used

to select which one of the computation paths to use.

27

10

15

20

25

WO 2016/145377 PCT/US2016/022125

[0085] For example, a cryptographic function may include a number of different
computation paths. The computational path can be selected based on the values of
particular bits of the input data to the cryptographic function. Each path is
computationally equivalent and may perform, for example, a hash (e.g., Secure Hash
Algorithm SHA-256) on the input data concatenated with the result of multiplying a
selected byte from the input data with another selected byte form the input data. The
particular bytes selected for the multiplication and the order of the concatenation can
vary depending on which computational path is selected. Using such a multi-path
approach can add more complexity to algorithm to prevent an adversary from

reverse engineering the algorithms.

[0086] An example of a cryptographic function that has eight computation paths is

listed below.
Path Computation

000 OUT_data = Hash(IN_data + (IN_data[3] * IN_data[5]))
001 OUT_data = Hash(IN_data + (IN_data[4] * IN_data[6]))
010 OUT_data = Hash(IN_data + (IN_data[5] * IN_data[7]))
011 OUT_data = Hash(IN_data + (IN_data[6] * IN_data[8]))
100 OUT_data = Hash((IN_data[3] * IN_data[5]) + IN_data)
101 OUT_data = Hash((IN_data[4] * IN_data[6]) + IN_data)
110 OUT_data = Hash((IN_data[5] * IN_data[7]) + IN_data)
111 OUT_data = Hash((IN_data[6] * IN_data[8]) + IN_data)

In this example, the selection of which of the eight computation paths to take can be
determined using three bits from the input data (IN_data). For example, the most
significant three bits, least significant three bits, or three bits at particular bit locations
can be used as the computation path selection bits. By way of example, if the three
bits of the input data is ‘000", the first computation path is selected, and the output of
the cryptographic function (OUT_data) is the hash of the concatenation (‘+’) of the
input data (IN_data) with the result of multiplying the third byte of the input data
(IN_data[3]) and the fifth byte of the input data (IN_data[5]). As this example
illustrates, the computation operations for each computation path is the same, except
different operands (e.g., variations or segments of the input data) or different order of
concatenation are used depending on the computation path selected. It should be
understood that a cryptographic function in other embodiments can have any

number of different computation paths, depending on the desired complexity, and

28

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

that the computations can include other types of operations not specifically

described.

VI. EXAMPLE SYSTEM

[0087] FIG. 10 illustrates a block diagram of an exemplary system 1000 in which
the mutual authentication techniques described herein can be used, according to
some embodiments. System 1000 can be, for example, a cloud-based transaction
system for conducting cloud-based transactions. It should be understood that the
mutual authentication techniques described herein can be applied to other types of

systems which may or may not relate to transaction processing.

[0088] System 1000 includes a portable communication device 1010 (e.g., a mobile
device), a cloud-based transaction platform (CBP) 1080, and a mobile application
platform (MAP) 1070. CBP 1080 may be implemented using one or more computing
devices, and can be associated with or operated by an issuer, transaction processor,
and/or other suitable entities. CBP 1080 implements a set of functionalities including
account management, and account parameters generation and replenishment to
enable could-based transactions to be conducted via portable communication device
1010.

[0089] MAP 1070 is used to facilitate communications between CBP 1080 and
mobile application 1014 (e.g., a transaction application) in portable communication
device 1010. MAP 1070 may be implemented using one or more computing
devices, and can be associated with or operated by the service provider of mobile
application 1014 (e.g., mobile software application), such as an issuer, a mobile
wallet provider, a merchant, and/or other suitable entities. In some embodiments,
MAP 1070 can be associated with or operated by the same entity as CBP 1080, or
they can be separate. MAP 1070 is used to intermediate requests between the
mobile application 1014 and CBP 1080, and to ensure that requests and responses
initiated by either party are fulfilled once connectivity to portable communication
device 1010 is established, for example, via a communications network 1082 (e.g.,
internet, mobile or cellular network, etc.). It should be understood that in some
embodiments, one or more functionalities of CBP 1080, MAP 1070, and/or issuer or
host processing system 1072, may be integrated into the same computing system or

different computing systems.

29

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

[0090] Portable communication device 1010 can be used to conduct cloud-based
transactions (e.g., payment transactions) facilitated by CBP 1080 and/or MAP 1070.
Portable communication device 1010 includes device hardware 1032, mobile
operating system (OS) 1022, and applications environment 1012. Device hardware
1032 includes a contactless interface 1034 that can contactlessly communicate or
otherwise present information to another device such as a contactless reader 1062
of an access device 1060. Examples of contactless interface 1034 can include a
near-field communications (NFC) interface that can send and receive
communications using radio frequency, or other wireless communication protocols
such as Bluetooth, Bluetooth Low Energy (BLE), Wi-Fi, etc. Examples of contactless
interface 1034 may also include an optical interface such as a display to present

information such as quick response (QR) codes, bar codes, etc.

[0091] Applications environment 1012 of portable communication device 1010 may
include a mobile application 1014 such as a transaction application provided by a
service provider (e.g., an issuer). For example, if the service provider of mobile
application 1014 is an issuer, mobile application 1014 may be a mobile banking
application or a mobile payment application. If the service provider is a mobile wallet
provider such as a mobile network operator or third-party wallet provider that
supports multiple issuers, mobile application 1014 may be a mobile wallet
application. For merchants, mobile application 1014 may be a merchant’s own
transaction application from which consumers can conduct e-commerce or point of

sale transactions, or a mobile wallet application supporting multiple merchants.

[0092] In some embodiments, mobile application 1014 may include on-device
cloud-based transaction logic integrated into mobile application 1014 to support
cloud-based transactions. The on-device cloud-based transaction logic performs
functions to facilitate cloud-based transactions such as to take account parameters
provided for use in payment transactions and deliver them to mobile operating
system 1022 for transmission over contactless interface 1034. For example, the on-
device cloud-based transaction logic may use a cryptogram key (e.g., a limited-use
key) provisioned from CBP 1080 to generate a transaction cryptogram that is
transmitted over contactless interface to access device 1060 to conduct a payment
transaction. The transaction cryptogram can be sent over to the transaction

processing network 1084 to obtain authorization for the payment transaction. The

30

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

on-device cloud-based transaction logic also manages the initial service profile
parameters that are provided after an account has been provisioned to ensure that
requests for account parameter replenishment and other account parameter

management activities are initiated.

[0093] To provision portable communication device 1010 for cloud-based payment
transactions, CBP 1080 can be used to configure account portfolios associated with
issuers and to provide portable communication device 1010 with account parameters
for use when conducting cloud-based transactions. The account portfolios
established by CBP 1080 can include characteristics such as risk parameters (e.g.,
velocity controls) that manages the triggers of when account parameters on a
provisioned device will need to be refreshed for accounts in each portfolio. To
ensure consistent performance and usability, a set of minimum parameters
configurable in a service profile can be implemented by CBP 1080. To ensure that
cloud-based payment transactions are processed according to the rules specified in
the service profile for an account portfolio, CBP 1080 performs various core
functions during the lifetime of an account that has been enabled. These functions
can include provisioning, active account management, verification for payment,

transaction processing, lifecycle management and post-payment.

[0094] CBP 1080 may create a service profile for a portfolio before an account is
provisioned as a cloud-based transaction account. Provisioning may include taking
an enrolled account, create account information such as an alternate account
identifier (e.g., alternate Primary Account Number (PAN)) or a token acting as an
account identifier substitute that can be used instead of a real account identifier (e.g.,
a real PAN) to conduct transactions, and inheriting service profile has been
established for the portfolio. Once an account is provisioned, the relevant service
profile details are shared with both the transaction processing and the on-device
cloud-based transaction logic to ensure that decision making can be done at

transaction processing and during mobile application usage by the user.

[0095] Once an account is provisioned, active account management can be
performed by CBP 1080. Active account management can be initiated either from
transaction processing activity or from mobile application activity. After the account

has been provisioned, the active account management capability generates the

31

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

initial set of account parameters to be deployed to portable communication device
1010. The account parameters may include account information generated during
provisioning (e.g., alternate account identifier or token), as well as dynamic
information to ensure the set of account parameters have only a limited use or
limited lifespan once delivered to the device. Dynamic information may include
limited-use cryptogram keys or dynamic data depending on what type of transaction
is being supported. For example, the dynamic information may include limited-use
keys (LUK) to calculate cryptograms, as well as limited use dynamic data to support

legacy dynamic card verification value or code based implementations.

[0096] During transaction processing, if the service profile parameters maintained
by CBP 1080 for a particular account indicate that account parameters on portable
communication device 1010 need to be replaced, the active account management
capability of CBP 1080 may connect to portable communication device 1010 via
MAP 1070 to replenish account parameters. Likewise, if the on-device service
profile parameters stored on portable communication device 1010 indicate that
account parameter replenishment is needed or is close to be being needed (i.e., by
monitoring account parameter thresholds), then mobile application 1014 can make a

request to CBP 1080 for account parameter replenishment.

[0097] Once portable communication device 1010 has been provisioned to conduct
cloud-based transactions, transactions can be conducted via portable
communication device 1010 by interacting with a contactless reader 1062 of an
access device 1060 (e.g., at a merchant location). Components of access device
1060 may include point-of-sale (POS) terminal 1064 and/or electronic cash register
1066. Access device 1060 can be coupled to acquirer 1074 (e.g., via a merchant
computer not shown). Acquirer 1074 may be connected to an issuer or host
processing system 1072 via transaction processing network 1084. Transaction
processing network 1084 may include one or more server computers. A server
computer is typically a powerful computer or cluster of computers. For example, the
server computer can be a large mainframe, a minicomputer cluster, or a group of
servers functioning as a unit. In one example, the server computer may be a
database server coupled to a Web server. Transaction processing network 1084

may use any suitable wired or wireless network, including the Internet.

32

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

[0098] Transaction processing network 1084 may include data processing
subsystems, networks, and operations used to support and deliver authorization
services, exception file services, transaction scoring services, and clearing and
settlement services. An exemplary transaction processing network may include
VisaNet™. Transaction processing networks such as VisaNet™ are able to process
credit card transactions, debit card transactions, and other types of commercial
transactions. VisaNet™ in particular, includes a VIP system (Visa Integrated
Payments system) which processes authorization requests and a Base Il system

which performs clearing and settlement services.

[0099] Each of the entities (e.g., acquirer 1074, transaction processing network
1084, issuer or host processing system 1072) may include one or more computers to

enable communications, or to perform one or more of the functions described herein.

[0100] To conduct a cloud-based transaction, a user of portable communication
device 1010 may tap portable communication device 1010 against contactless
reader 1062 (e.g., via NFC) of access device 1060, or display an image such as a
bar code or QR code on a screen of portable communication device 1010 that can
be scanned by contactless reader 1062 (e.g., an optical scanner or reader) of access
device 1060. In some embodiments, portable communication device 1010 may
provide access device 1060 with an account identifier (e.g., an alternate account
identifier, a token, etc.) and additional information such as limited-use account
parameters or information derived from the limited-use account parameters. For
example, an account identifier or token, and/or additional information (e.g.,
transaction cryptogram) can be encoded in a bar code or QR code that is scanned
by access device 1060; or the account identifier or token, and/or additional
information can be transmitted to access device 1060 via NFC. In some
embodiments, the limited-use account parameters may include a transaction

cryptogram.

[0101] Access device 1060 or a merchant computer coupled to access device 1060
may generate an authorization request message including the account identifier and
additional information (e.g., limited-use account parameters, or information derived
from the limited-use account parameters), and forward the authorization request

message to acquirer 1074. The authorization request message is then sent to

33

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

transaction processing network 1084. Transaction processing network 1084 then
forwards the authorization request message to the corresponding issuer or host
processing system 1072 associated with an issuer of the account associated with

portable communication device 1010.

[0102] After issuer or host processing system 1072 receives the authorization
request message, the authorization request message may be parsed, and
information in the authorization request message may be sent to CBP 1080 for
verification. An authorization response message is then sent back to transaction
processing network 1084 to indicate whether the current transaction is authorized (or
not authorized). Transaction processing network 1084 then forwards the
authorization response message back to acquirer 1074. In some embodiments,
transaction processing network 1084 may decline the transaction even if issuer or
host processing system 1072 has authorized the transaction, for example depending
on a value of a fraud risk score or depending if limited-use account parameters are
verified by CBP 1080. Acquirer 1074 then sends the authorization response
message to the merchant computer and/or access device 1060. The authorization
response results may be displayed by access device 1060, or may be printed out on
a physical receipt. Alternately, if the transaction is an online transaction, the
merchant may provide a web page or other indication of the authorization response
message as a virtual receipt. The receipts may include transaction data for the

transaction.

[0103] At the end of the day, a normal clearing and settlement process can be
conducted by transaction processing network 1084. A clearing process is a process
of exchanging financial details between an acquirer and an issuer to facilitate posting

to a customer’s payment account and reconciliation of the user’s settlement position.

[0104] FIG. 11 illustrates a block diagram of a portable communication device 1101
(e.g., implementing portable communication device 1010) in which some
embodiments of the processes described herein can be implemented. Portable
communication device 1101 may include device hardware 1104 coupled to a
memory 1102. Device hardware 1104 may include a processor 1105, a
communications subsystem 1109, use interface 1106, a display screen 1107 (which

may be part of user interface 1106), and a contactless interface 1108. Processor

34

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

1105 can be implemented as one or more integrated circuits (e.g., one or more
single core or muiticore microprocessors and/or microcontrollers), and is used to
control the operation of portable communication device 1101. Processor 1105 can
execute a variety of programs in response to program code or computer-readable
code stored in memory 1102, and can maintain multiple concurrently executing
programs or processes. Communications subsystem 1106 may include one or more
RF transceivers and/or connectors that can be used by portable communication
device 1101 to communicate with other devices and/or to connect with external
networks. User interface 1106 can include any combination of input and output
elements to allow a user to interact with and invoke the functionalities of portable
communication device 1101. In some embodiments, display screen 1107 may be

part of user interface 1106.

[0105] Contactless interface 1108 may include one or more RF transceivers to
interact with a contactless reader of an access device to conduct a transaction (e.g.,
payment transaction, access transaction, information exchange, etc.). In some
embodiments, contactless interface 1108 can be accessed by the mobile OS 1114
using card emulation APls 1116 without requiring the use of a secure element. In
some embodiments, display 1107 can also be part of contactless interface 1108, and

is used, for example, to perform transactions using QR codes, bar codes, etc.

[0106] Memory 1102 can be implemented using any combination of any number of
non-volatile memories (e.g., flash memory) and volatile memories (e.g., DRAM,
SRAM), or any other non-transitory storage medium, or a combination thereof media.
Memory 1102 may store a mobile OS 1114 and a mobile application environment
1110 where one or more mobile applications reside including transaction application
1112 (e.g., mobile wallet application, mobile banking application, mobile payments
application, merchant application, etc.) to be executed by processor 1105. In some
embodiments, mobile OS 1114 may implement a set of card emulation APIs 1116
that can be invoked by transaction application 1112 to access contactless interface

1108 to interact with an access device.

[0107] According to some embodiments, transaction application 1112 can include
multiple software layers. For example, transaction application 1112 may include a

first software layer 1120 (e.g., SDK) and a second software layer 1130 (e.g., NDK).

35

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

The first software layer 1120 may include a set of public APls that is used to
implement non-security sensitive functions such user interface functions, networking
or communications functions, as well as functions that may invoke security-sensitive
functions implemented in the second software layer 1130. The first software layer
1120 can be written in a high level programming language such as Java. The
second software layer 1130 may include a native library to implement security-
sensitive functions such as token request function 1134, account parameters
replenishment function 1136, cryptogram generation function 1138, etc. The second
software layer 1130 may be written in a low level programming language such as C

or C++.

[0108] Token request function 1134 can be invoked to request a token from a
remote server (e.g., CBP, or issuer or host processing system). The token can be
used as a substitute for a real account identifier to conduct transactions, for example,
by sending the token to an access device. Using a token instead of a real account
identifier can be more secure because the real account identifier is not transmitted
when conducting a transaction. Token request function 1134 can be invoked, for
example, at enrolliment time to request an initial token, or when the lifespan of the

current token has expired.

[0109] Account parameters replenishment function 1136 can be invoked to
replenish or renew account parameters such as a limited-use key from a remote
server (e.g., CBP, or issuer or host processing system). At the time of a transaction,
the limited-use key is used to generate a transaction cryptogram that is provided to
an access device to conduct the transaction. The limited-use key may be associated
with a set or one or more limited-use thresholds (e.g., valid for a predetermined
period of time, predetermined number of transactions, and/or predetermined
cumulative transaction amount) to limit the usage of the LUK. When one or more of
the limited-use thresholds of the LUK has expired or is about to expire, account

parameters replenishment function 1136 can be invoked to request a new LUK,

[0110] Cryptogram generation function 1138 can be invoked at transaction time to
generate a transaction cryptogram that is provided to an access device to conduct
the transaction. The transaction cryptogram can be generated by receiving dynamic

transaction data from the access device (e.g., transaction amount, transaction date,

36

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

unpredictable number, etc.), and encrypting the dynamic transaction data with the
LUK. In some embodiments, the transaction cryptogram can be generate by
encrypting a static string instead with the LUK (e.g., if the access device does not

support transmission of dynamic data to the portable communication device).

[0111] According to some embodiments, the security-sensitive functions
implemented in the second software layer 1130 (e.g., token request function 1134,
account parameters replenishment function 1136, cryptogram generation function
1138, etc.) can be protected from malicious code and man-in-the-middle attacks
using the mutual authentication techniques described herein. When the first
software layer 120 invokes these functions in the second software layer 130, the
data and parameters passed between the software layers can be encrypted and
decrypted using data encryption keys derived from binding information shared
between the software layers during initialization of transaction application 1112

according to the mutual authentication techniques described herein.

[0112] Although the description above may have descried the mutual
authentication techniques for use in an application having a first software layer and a
second software layer, it should be understood that the techniques can be used to
protect functions implemented in any software layer of an application. Furthermore,
the application is not restricted to have only two software layers and can have any
number of software layers (e.g., three or more software layers, portions, or libraries).
Moreover, the mutual authentication techniques described herein can also be
extended to software components that are not part of the same application. For
example, the mutual authentication techniques described herein can be used to
establish mutual authentication of two software applications that communicate with

each other, or between a software application and an operating system, etc.

[0113] Any of the computing devices, communication devices, computers, servers,
and the like described herein can be implemented using one or more processors
coupled to a memory that store code or instructions, which when executed by the
one or more processors, cause the device to perform one or more of the methods
and processes described herein. Memory, storage media, and computer-readable
media for containing code, or portions of code described herein, can include any

appropriate media known or used in the art, including storage media and

37

10

15

20

25

30

WO 2016/145377 PCT/US2016/022125

communication media, such as but not limited to volatile and non-volatile, removable
and non-removable media implemented in any method or technology for storage
and/or transmission of information such as computer-readable instructions, data
structures, program modules, or other data, including RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, data signals, data transmissions, or any other medium
which can be used to store or transmit the desired information and which can be
accessed by the computer. Based on the disclosure and teachings provided herein,
a person of ordinary skill in the art will appreciate other ways and/or methods to

implement the various embodiments.

[0114] The above description is illustrative and is not restrictive. Many variations of
the various embodiments may become apparent to those skilled in the art upon
review of the disclosure. The scope of the invention may, therefore, be determined
not with reference to the above description, but instead may be determined with

reference to the pending claims along with their full scope or equivalents.

[0115] The methods and processes described herein are exemplary in nature, and
the methods and processes in accordance with some embodiments may perform
one or more of the steps in a different order than those described herein, include one
or more additional steps not specially described, omit one or more steps, combine
one or more steps into a single step, split up one or more steps into multiple steps,

and/or any combination thereof.

[0116] It may be understood that some embodiments as described above can be
implemented in the form of control logic using computer software in a modular or
integrated manner. Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art may know and appreciate other ways and/or
methods to implement the present invention using hardware and a combination of

hardware and software.

[0117] Any of the software components or functions described in this application,
may be implemented as software code to be executed by a processor using any
suitable computer language such as, for example, Java, C++ or Perl using, for

example, conventional or object-oriented techniques. The software code may be

38

10

WO 2016/145377 PCT/US2016/022125

stored as a series of instructions, or commands on a computer readable medium,
such as a random access memory (RAM), a read only memory (ROM), a magnetic
medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-
ROM. Any such computer readable medium may reside on or within a single
computational apparatus, and may be present on or within different computational

apparatuses within a system or network.

[0118] One or more features from any embodiment may be combined with one or
more features of any other embodiment without departing from the scope of the

invention.

[0119] A recitation of "a", "an" or "the" is intended to mean "one or more" unless

specifically indicated to the contrary.

39

O 0 1 O W R W N =

e e e T e S S S Sy S Gy GG
0 AN L DR W N = O

(O N S N \S

Rk W N

WO 2016/145377 PCT/US2016/022125

WHAT IS CLAIMED IS:

1. A method for establishing mutual authentication between a first
software layer and a second software layer of an application using a data encryption
key derived based on a first nonce generated by the first software layer and a
second nonce generated by the second software layer during initialization of the
application, the method comprising:

retrieving, by the first software layer of the application executing on a
computing device, binding information stored by the first software layer during the
initialization of the application;

decrypting, by the first software layer, the binding information to obtain the
second nonce;

receiving, by the first software layer, an encrypted first nonce from the second
software layer of the application;

decrypting, by the first software layer, the encrypted first nonce to obtain the
first nonce;

deriving, by the first software layer, a data encryption key based on the first
nonce and the second nonce; and

encrypting, by the first software layer, data being sent from the first software

layer to the second software layer using the data encryption key.

2. The method of claim 1, further comprising:

decrypting, by the first software layer, the binding information to obtain
initialization time information; and

determining, by the first software layer, dynamic time information based on
the initialization time information, wherein the data encryption key is further derived

based on the dynamic time information.

3. The method of claim 2, wherein the data encryption key is derived by:

combining the first nonce and the second nonce to generate a combined
nonce;

concatenating the combined nonce with the dynamic time information; and

hashing a result of the concatenating.

40

O 0 1 N W N =

p—
N o= O

(o RS N NS N \S]

e W N

WO 2016/145377 PCT/US2016/022125

4. The method of claim 2, further comprising:
prior to retrieving the binding information:

receiving, from the second software layer, an encrypted second nonce
and encrypted initialization time information;

decrypting, by the first software layer, the encrypted second nonce and
the encrypted initialization time information to obtain the second nonce and
the initialization time information;

re-encrypting, by the first software layer, the second nonce and the
initialization time information to generate a re-encrypted second nonce and re-
encrypted initialization time information; and

storing the re-encrypted second nonce and the re-encrypted

initialization time information as the binding information

. The method of claim 1, further comprising:
prior to retrieving the binding information:
generating, by the first software layer, the first nonce;
encrypting, by the first software layer, the first nonce; and
sending, by the first software layer, the encrypted first nonce to the

second software layer.

6. The method of claim 4, wherein the first nonce is encrypted using a
binding key derived from at least a computing device identifier associated with the

computing device.

7. The method of claim 4, wherein the first nonce is encrypted using a
binding key derived from at least an issuer identifier associated with an issuer of the

application.

8. A method for establishing mutual authentication between a first
software layer and a second software layer of an application using a data encryption
key derived based on a first nonce generated by the first software layer and a
second nonce generated by the second software layer during initialization of the

application, the method comprising:

41

NoREN I)

10
11
12
13
14
15
16
17
18

Wk W N [)NV, I O VS N\

~ O = W

WO 2016/145377 PCT/US2016/022125

retrieving, by the second software layer executing on a computing device,
binding information stored by the second software layer during the initialization of the
application;

decrypting, by the second software layer, the binding information to obtain the
first nonce;

receiving, by the second software layer, an encrypted second nonce from the
first software layer:;

decrypting, by the second software layer, the encrypted second nonce to
obtain the second nonce;

deriving, by the second software layer, the data encryption key based on the
first nonce and the second nonce; and

encrypting, by the second software layer, data being sent from the second

software layer to the first software layer using the data encryption key.

9. The method of claim 8, further comprising:

decrypting, by the second software layer, the binding information to obtain
initialization time information; and

determining, by the second software layer, dynamic time information based on
the initialization time information, wherein the data encryption key is further derived

based on the dynamic time information.

10. The method of claim 9, wherein the data encryption key is derived by:

combining the first nonce and the second nonce to generate a combined
nonce;

concatenating the combined nonce with the dynamic time information; and

hashing a result of the concatenating.

11. The method of claim 8, further comprising:
prior to retrieving the binding information:
receiving, from the first software layer, an encrypted first nonce;
decrypting, by the second software layer, the encrypted first nonce to
obtain the first nonce;
re-encrypting, by the second software layer, the first nonce to generate

a re-encrypted first nonce;

42

10
11

W 1 N W N

O 0 1 O wn B~ W N =

e e e e T
AW N = O

WO 2016/145377 PCT/US2016/022125

encrypting initialization time information to generate encrypted
initialization time information; and
storing the re-encrypted first nonce and the encrypted initialization time

information as the binding information.

12. The method of claim 8, further comprising:
prior to retrieving the binding information:
generating, by the second software layer, the second nonce;
encrypting, by the second software layer, the second nonce;
encrypting, by the second software layer, initialization time information;
and
sending the encrypted second nonce and the encrypted initialization

time information to the first software layer.

13. The method of claim 12, wherein the second nonce and the
initialization time information are encrypted using a binding key derived from at least

a computing device identifier associated with the computing device

14. The method of claim 12, wherein the first nonce is encrypted using a

binding key derived from at least the first nonce generated by the first software layer

15. A computing device comprising:
a processor; and
a memory coupled to the processor and storing computer readable code for
implementing an application having a first software layer and a second software
layer;
wherein the computer readable code, when executed by the processor,
causes the first software layer to:
receive an encrypted first nonce from the second software layer;
decrypt the encrypted first nonce to obtain the first nonce;
retrieve first binding information stored by the first software layer during
initialization of the application;
decrypt the first binding information to obtain a second nonce; and
derive a data encryption key based on the first nonce and the second

nonce;

43

15
16
17
18
19
20
21
22
23
24
25

WO 2016/145377 PCT/US2016/022125

wherein the code, when executed by the processor, causes the second
software layer to:
retrieve second binding information stored by the second software
layer during the initialization of the application;
decrypt the second binding information to obtain the first nonce;
receive an encrypted second nonce from the first software layer;
decrypt the encrypted second nonce to obtain the second nonce;
deriving the data encryption key based on the first nonce and the
second nonce; and
wherein data being transferred between the first and second software

layers are encrypted using the data encryption key.

16. The computing device of claim 15, wherein the data encryption key is
derived further based on dynamic time information representing an elapsed time

since the initialization of the application.

17. The computing device of claim 16, wherein initialization time
information representing an initialization time of the application is generated by the
second software layer during the initialization of the application, and provided to the

first software layer by the second software layer

18. The computing device of claim 17, wherein the initialization time

information is encrypted prior to being provided to the first software layer

19. The computing device of claim 18, wherein the initialization time

information is encrypted using a binding key derived from at least the first nonce.

20. The computing device of claim 18, wherein the binding key is derived

from at least a computing device identifier associated with the computing device.

44

WO 2016/145377 PCT/US2016/022125
1/10

COMPUTING DEVICE 100

VIRTUAL MACHINE 110

APPLICATION 112
SOFTWARE LAYER
(e.g., JAVA SDK)
120 yeeecccecascnnnmnns
i ROGUE |
..... @ -9 APPLICATION i
i 152
SOFTWARE LAYER A '
(e.g., NATIVE LIB.) |- @
130

OPERATING SYSTEM 114

DEVICE HARDWARE 104

FIG. 1

200

4 N

GENERATE BINDING INFORMATION THAT BINDS A FIRST bj‘

SOFTWARE LAYER TO A SECOND SOFTWARE LAYER.
202

!

DERIVE A DATA ENCRYPTION KEY BASED ON THE
BINDING INFORMATION AND DYNAMIC TIME
INFORMATION
204

Y

ENCRYPT DATA TRANSFERRED BETWEEN THE FIRST
SOFTWARE LAYER AND THE SECOND SOFTWARE LAYER
USING THE DATA ENCRYPTION KEY
206

FIG. 2

7

S

PCT/US2016/022125

WO 2016/145377

2/10

m : w_n_ uoljeus)eduod = +,

< Y3Q ym perdhious
ele(Jejsuel |

B 'y Joke| 0} |NY pues 78-S —] NS
(@ INLa + (ZNY Jox |NY))ysey = W3 oaled '€g-S
(AL — 8w jusuno) =
g L@ euleleq zg-S
WL PUB |NY eremiey 18-S <] ZNY

awnuny
uolezijeniuj
u L PUE ZNY BI0IS "EV-|
'y Jofe] O\ pue ZNY Pues pd-| —___WL'TNY |
WL PUE |NY 8I0)S "€F-|
"aWI) JUSLIND = || suILIsleq Zg-|
ZNY Sjeseuss) " |g-|] 0 _
‘g Jofe] 0} |NY pUes ‘Zv-|
LNY 8jessuss ‘L y-|
\ﬂA (A¥VHEIT1 IAILYN “S°9) (nas “8-9)
0ET 9-43AV1 JYVYMLIOS 02T V-4IAV1 IVMLIOS

00¢

(v INLQ + (ZNY Jox L NY))usey = ¥3J eAleq #v-S

'q Joke| 0} ZNY pues €v-S

‘(L — Swi} JueLno) =

Y WL suueieq zv-S
N1 PUE ¢NY eAsl}ey “| V=S

WO 2016/145377 PCT/US2016/022125
3/10

400

ENCRYPT, BY THE FIRST SOFTWARE LAYER, A FIRST NONCE
GENERATED BY THE FIRST SOFTWARE LAYER
402

Y

SEND THE ENCRYPTED FIRST NONCE TO THE SECOND SOFTWARE
LAYER
404

I

RECEIVE, FROM THE SECOND SOFTWARE LAYER, AN ENCRYPTED
SECOND NONCE AND ENCRYPTED INITIALIZATION TIME
INFORMATION
406

!

DECRYPT THE ENCRYPTED SECOND NONCE AND ENCRYPTED
INITIALIZATION TIME INFORMATION TO OBTAIN THE SECOND
NONCE AND INITIALIZATION TIME INFORMATION
408

!

RE-ENCRYPT THE SECOND NONCE AND THE INITIALIZATION TIME
INFORMATION TO GENERATE A RE-ENCRYPTED SECOND NONCE
AND RE-ENCRYPTED INITIALIZATION TIME INFORMATION
410

!

STORE THE RE-ENCRYPTED SECOND NONCE AND THE RE-
ENCRYPTED INITIALIZATION TIME INFORMATION AS BINDING
INFORMATION
412

~
J

~
J

FIG. 4

WO 2016/145377 PCT/US2016/022125
4/10

500

E

1

RETRIEVE BINDING INFORMATION STORED BY THE FIRST
SOFTWARE LAYER DURING INITIALIZATION
202

Y

DECRYPT THE BINDING INFORMATION TO OBTAIN THE SECOND
NONCE AND INITIALIZATION TIME INFORMATION
204

Y

DETERMINE DYNAMIC TIME INFORMATION FROM THE
INITIALIZATION TIME INFORMATION
206

!

RECEIVE AN ENCRYPTED FIRST NONCE FROM THE SECOND
SOFTWARE LAYER
208

Y

DECRYPT THE ENCRYPTED FIRST NONCE TO OBTAIN THE FIRST
NONCE
210

Y

[DERIVE A DATA ENCRYPTION KEY BASED ON THE FIRST NONCE, THE |
SECOND NONCE, AND THE DYNAMIC TIME INFORMATION
212

!

[ENCRYPT DATA TRANSFERRED BETWEEN THE FIRST AND SECOND |
SOFTWARE LAYERS USING THE DATA ENCRYPTION KEY
214

FIG. 5

WO 2016/145377 PCT/US2016/022125
5/10

600

S

RECEIVE AN ENCRYPTED FIRST NONCE FROM THE FIRST SOFTWARE
LAYER
602

Y

DECRYPT THE ENCRYPTED FIRST NONCE TO OBTAIN THE FIRST
NONCE
604

Y

RE-ENCRYPT THE FIRST NONCE TO GENERATE A RE-ENCRYPTED
FIRST NONCE
606

Y

ENCRYPT INITIALIZATION TIME INFORMATION TO GENERATE A
FIRST ENCRYPTED INITIALIZATION TIME INFORMATION
608

v

| |
| |
| |
| |
| |
| |
| |

INITIALIZATION TIME INFORMATION AS BINDING INFORMATION
610

Y

ENCRYPT A SECOND NONCE GENERATED BY THE SECOND
SOFTWARE LAYER
612

!

ENCRYPT THE INITIALIZATION TIME INFORMATION TO GENERATE A
SECOND ENCRYPTED INITIALIZATION TIME INFORMATION
614

!

SEND THE ENCRYPTED SECOND NONCE AND SECOND ENCRYPTED
INITIALIZATION TIME INFORMATION TO THE FIRST SOFTWARE
LAYER
616

FIG. 6

WO 2016/145377 PCT/US2016/022125
6/10

700

g

RETRIEVE BINDING INFORMATION STORED BY THE SECOND
SOFTWARE LAYER DURING INITIALIZATION
702

Y

[DECRYPT THE BINDING INFORMATION TO OBTAIN A FIRST NONCE |
AND INITIALIZATION TIME INFORMATION
704

Y

DETERMINE DYNAMIC TIME INFORMATION FROM THE
INITIALIZATION TIME INFORMATION
706

Y

RECEIVE AN ENCRYPTED SECOND NONCE FROM THE FIRST
SOFTWARE LAYER
708

v

rDECRYPT THE ENCRYPTED SECOND NONCE TO OBTAIN THE SECOND‘
NONCE
710

Y

[DERIVE A DATA ENCRYPTION KEY BASED ON THE FIRST NONCE, THE |
SECOND NONCE AND THE DYNAMIC TIME INFORMATION
712

!

[ENCRYPT DATA TRANSFERRED BETWEEN THE FIRST AND SECOND |
SOFTWARE LAYERS USING THE DATA ENCRYPTION KEY
714

FIG. 7

PCT/US2016/022125
7/10

WO 2016/145377

. Uoljeus}eoun? = +,

8 Ol uonounj olydelboidAio = ,oun4,

'SIME ‘PMA 'IMEG INL 'ZNY INY Aodseq 0Ly-

‘ASH 10 9|l [eulaixa Ul aEgue _>_._. ¢NY 2101S 'BY-

‘9¥80Us N1 ZNY <- G)d Buisn (W1 ZNY) 1dous gy-
‘(Indui”Jesn + (qenss| + #elss + [JN|)oun4)

oun4 = gyg eAalleq '/ v-

WL 'ZNY <- #)g Buisn migous ™| | “gNY 1dAioe(q "9y-

‘(#leUeS + |NY)oUN = p)g oAleq Gy-

—1 '9ua AL ZNY >

‘P ‘eNE ‘239 ‘1M WL INY ‘LNY Aosiseq gl g

'y Jehe| 01»i8oUS N ZNY uIniey ‘Z19-l
80U N1 ZNY

< p)g Buisn (N1 ‘ZNY) 1dAioug "} 1g-|

‘(#leues + | NY)ound =)g eAusq 0l g-|
‘INSH 10 9|l] [eulgixe

ul mxmocol_\/_._. pue Nxmocol_‘zm_ 2I01S ‘64

eX8Us || <- £Mg Buisn | 1dAioug gg-|
((INL)usey + guenss| + |J|\| + #leleg)ouny

= £)g eAue(/gl

‘aWll} Juadind = |\ sulwleleq '9g-|

US| NY <- Z)Mg UM |NY 1dAioug gg-|

(I3 + #leuss + ZNY)oUNS = Z)g eAueq v4-|

INY ejessuss) ‘£g-|

"INY < L)g Yim ous™ | NY 1dAioeq zg-|

(@enss| + [FNJ)Lound = | yg eAleq "L g-|

‘I— ™e — —|
21O TN "MBoUS | NY UYIM g Jeke| Ui uonouny Buipuiq 8D ¢

Al
"DIEOUST LNY <- | ME UM |NY 1dAioug gy
(guenss| + [FNI)ound = | Mg 8ALe(q ‘Zv-|
"INY 8leleuss) ‘||
(A¥VYEIT ALLYN “S°9) (nas “8-9)
0€T 9-Y3AV1 IYYMLI0S 02T V-43AV1 FJYVYMLIOS

008

PCT/US2016/022125

WO 2016/145377

8/10

UOBUS)BOU0D = +

W

uonouny olydesboidAlo = oun4,

6 Ol

'GYS 'PUS ‘ENS '8 INLA WL ZNY LNY Aosseq 'L 1g-S
Y 5>m_ 0} a8oue [N unjey '019-S
(7 WLA + (ZNY Jox LNY))ysey = ¥3d enleq '68-S
"INY <- GMS Buisnaygous™ | NY 1dAioeq 'gg-S
(13N + #leueS + ZNY)oun
= Z)d = GYS 8AleQ '/8-S
"INY <-) Buisnaisous gNY 1dAioe(q 9g-S
(@ WLQ+ Quenss| + |JI)oung
= Z0S = #)S eAle('Gg-S

(WL — swn usuno)sqe)ysey = g~ N1 [sulwleled 'vg-S

WL <- €4S Buisn exgous |y | 1dAioeq €8-S
((IN1)uUsey + qdenss| + [J|N| + #feues)ound
= EMg = eXS eAle(¢g-S
INSH Jo 8yl [pulelxe
WO} EX80US || pUB 2¥8oUS | NY oAeLeY 'L g-S

(A¥VYEIT IAILYN “S°9)
0ET 9-43AV1 IUVMLIOS

006

Y3 yym peydhious

A

A 4

Ble(Jojsuel |

— 280U | NN >

—] N1 H ‘@¥sous gNY |——

'GYS ZHS ‘IS 'V INLA ‘WL ‘ZNY LNY Aonseq 'L Lv-S
(v INLA + (ZNY Jox |NY))ysey = ¥3a ened '0Lv-S
"INY <- G)S Buisn i8ous™ | NY 1dAIoe(‘BY-S

(13N + #leles + ZNY)oun
= 209 = G)S enieQ 8y-S

(INDusey pue 24sous™ gNY
Uym g JeAe| uj uopouny uolleusp Aoy [lBD “/v-S
_ 'oIsous gNY <- g)S Buisn gNY 1dAioug gv-S
(V" INL@+ @Henss|+ |JN[)oun = ZYS enled 'Gy-S
(WL — e juednd)sge)ysey = ¥ N LJ sulwisleq yy-S
WL ‘ZNY <- L MS Buisn9¥8ous N1 ZNY 1dAioeq gv-S
‘(Indui”Jesn + (qlenss| + #eles + [JA)oun4)
oun4 = GYg = | 1S eAleq 2v-S
'NSH 10 |} [eUIBIX® WOy MiBOUS N | ZNY 8rekiey 'LY-S

(as “8-9)
02T V-43AV1 I¥VMLIOS

9/10

PCT/US2016/022125

1000

E

A 4

WO 2016/145377
MOBILE <
APPLICATION
PLATFORM
1070 < >

COMMUNICATIONS
NETWORK
1082

A 4

PORTABLE COMMUNICATION
DEVICE 1010

: APP ENVIRONMENT 1012
MOBILE TX APP

1014
5
MOBILE 051022 &
HCE APIS 1024
A

DEVICE HARDWARE 1033
CONTACTLESS

CLOUD BASED
TX PLATFORM

ISSUER / HOST
1072

1080

A

A 4

A

TX PROCESSING
NETWORK
1084

Y.

ACQUIRER
1074

A

A 4

ACCESS DEVICE 1060

INTERFACE 1034 <

CONTACTLESS ELECTRONIC
> READER POS CASH
- 1062 1064 REGISTER
— 1066

FIG. 10

WO 2016/145377 PCT/US2016/022125
10/10

PORTABLE COMMUNICATION DEVICE 1101

MEMORY 1102
APPLICATION ENVIRONMENT 1110
TXAPP 1112

....................... geesscessscsssssssesssesseesscssse

SOFTWARE LAYER-B E
(e.g., NDK) E
1130 '

SOFTWARE LAYER-A

E (e.g., SDK)

TOKEN REQUEST 1134

1120 ACCT. PARAMETERS

REPLENISHMENT 1136

CRYPTOGRAM
GENERATION 1138

MOBILE OS 1114

HCE APIS 1115

DEVICE HARDWARE 1104
PROCESSOR 1105 USER INTERFACE 1106

DISPLAY 1107
COMMUNICATION
SUBSYSTEM 1109 CONTACTLESS INTERFACE 1108

FIG. 11

International application No.

A A AR
INTERNATIONAL SEARCH REPORT PCT/US2016/022125

A. CLASSIFICATION OF SUBJECT MATTER
HO04L 29/06(2006.01)i, HO4L 9/28(2006.01)i, HO4L 9/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO04L 29/06; GO6F 11/28; GO6F 12/14; HO4L 9/32; HO4L 9/00; GOGF 21/00; HO4L 9/28; HO4L 9/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: software, layer, binding, information, encryption, key, nonce

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 6615350 Bl (ROGER R. SCHELL et al.) 02 September 2003 1-20
See column 9, lines 21-52; column 10, lines 9-11; column 13, lines 27-32;
column 15, lines 16-34; column 17, lines 11-18; column 34, lines 41-58;
column 38, lines 27-31; abstract; and figures 10-11.

A US 2011-0314279 A1 (OCTAVIAN T. URECHE et al.) 22 December 2011 1-20
See paragraphs [0035]-[0040], [0081]-[0085]; and figures 2, 5.

A US 2009-0293117 A1 (MEI YAN et al.) 26 November 2009 1-20
See paragraphs [0036], [0040], [0091]; and figure 5.

A US 2003-0035547 A1 (JOHN NEWION) 20 February 2003 1-20
See paragraphs [0008], [0049]-[0052]; and figure 3.

A US 5757907 A (THOMAS EDWARD COOPER et al.) 26 May 1998 1-20
See column 3, lines 8-46; column 8, lines 57-67; and figure 4.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

i

K

nQr

npr

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search
21 July 2016 (21.07.2016)

Date of mailing of the international search report

22 July 2016 (22.07.2016)

Name and mailing address of the [SA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer

KIM, KI HO

Telephone No. +82-42-481-8691

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/US2016/022125

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 6615350 Bl 02/09/2003 None

US 2011-0314279 Al 22/12/2011 CN 102948114 A 27/02/2013
CN 102948114 B 05/08/2015
EP 2583410 A2 24/04/2013
JP 2013-531436 A 01/08/2013
US 8745386 B2 03/06/2014
WO 2011-162990 A2 29/12/2011
WO 2011-162990 A3 19/04/2012

US 2009-0293117 Al 26/11/2009 CN 102089765 A 08/06/2011
EP 2294528 Al 16/03/2011
JP 2011-523481 A 11/08/2011
KR 10-2011-0033112 A 30/03/2011
TW 201003457 A 16/01/2010
US 2009-0293118 Al 26/11/2009
US 8621601 B2 31/12/2013
WO 2009-142689 Al 26/11/2009

US 2003-0035547 Al 20/02/2003 None

US 5757907 A 26/05/1998 EP 679980 Al 02/11/1995
EP 679980 B1 18/06/2003
JP 07295801 A 10/11/1995
KR 10-0200443 B1 15/06/1999

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - wo-search-report
	Page 57 - wo-search-report

