发明名称
一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法

摘要
本发明公开了一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法，监测系统包括北斗卫星，距超高层建筑4-10km第一基准点，位于超高层建筑附近的第二基准点，设置在超高层建筑上的若干监测点，及数据处理系统；基准点与监测点上设置有能够接收北斗卫星定位信号的接收机；第一基准点与第二基准点形成固定基线，固定基线与每个监测点形成三角形，若干监测点对应的三角形构成固定基线组网；接收机获取观测数据，数据处理系统对观测数据进行处理，并获取超高层建筑的变形数据。本发明提供基于北斗卫星的超高层建筑高精度变形监测系统及监测方法，设置合理，实时对超高层建筑的变形进行监测，解决监测环境差，无法获取高精度变形数据问题。
1. 一种基于北斗卫星的超高层建筑高精度变形监测系统，包括北斗卫星，其特征在于，
其还包括距超高层建筑4-10km的第一基准点，位于超高层建筑附近的第二基准点，设置在
超高层建筑上的若干监测点，以及数据处理系统；基准点与监测点上设置有能够接收北斗
卫星定位信号的接收机；第一基准点与第二基准点形成固定基线，固定基线与每个监测点
形成三角形，若干监测点对应的三角形构成固定基线组网；接收机获取观测数据，数据处理
系统对观测数据进行处理，并获取超高层建筑的变形数据。

2. 根据权利要求1所述基于北斗卫星的超高层建筑高精度变形监测系统，其特征在于，
所述监测点设置在核心筒顶部位置，其数量为8-10个。

3. 根据权利要求1所述基于北斗卫星的超高层建筑高精度变形监测系统，其特征在于，
所述接收机的通道数为198，其可接收三个全球卫星导航系统、八频点的数据。

4. 根据权利要求1所述基于北斗卫星的超高层建筑高精度变形监测系统，其特征在于，
所述全球卫星导航系统为GPS、BDS、GLONASS。

5. 根据权利要求3所述基于北斗卫星的超高层建筑高精度变形监测系统，其特征在于，
所述八频点为L1、L2、L3、B1、B2、B3；G1、G2。

6. 根据权利要求1所述基于北斗卫星的超高层建筑高精度变形监测系统，其特征在于，
所述接收机的规格为GNSS CSCEC-HC-5。

7. 一种基于北斗卫星的超高层建筑高精度变形监测方法，其特征在于，使用权利要求1
所述的超高层建筑高精度变形监测系统，其具体包括以下步骤：
 S1. 根据超高层建筑的特点，设立监测系统第一基准点、第二基准点；
 S2. 将监测点布置在超高层建筑的核心筒顶部位置；
 S3. 将接收机安装在第一基准点、第二基准点及监测点上；
 S4. 测量超高层建筑的环境温度及风速；
 S5. 数据处理系统对接收机获取的观测数据进行处理，得到超高层建筑的变形数据。

8. 根据权利要求1所述基于北斗卫星的超高层建筑高精度变形监测方法，其特征在于，
在步骤S5中，数据处理包括以下步骤：
 S5-1. 超高层建筑基准点坐标计算；
 S5-2. 超高层建筑监测点坐标计算；
 S5-3. 卫星定位高程测量；
 S5-4. 超高层建筑受温度影响的变形计算；
 S5-5. 采用双基准固定基线静态新算法获得超高层建筑变形趋势；
 S5-6. 计算超高层建筑的振动幅度；
 S5-7. 计算超高层建筑的振动频率。
一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法

技术领域
[0001] 本发明涉及建筑物监测技术领域，尤其涉及一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法。

背景技术
[0002] 随着中国经济的蓬勃发展，超高层建筑引领城市发展趋势，目前我国超过300m以上的建筑已有50多座。这种超高层建筑在施工过程中，轴线测量、竖向精确投测、高程精确传递、建筑物的模块、基点频率的测定，无法用常规测量方法达到要求。
[0003] 为了实现上述测量和检测工作，利用北斗高精度卫星定位技术对超高层建筑进行变形监测，但对于监测环境差的超高层建筑，其受其他物体遮挡，致使监测卫星少，经常出现无法获取监测数据或获取的监测数据精度不高的问题，无法对超高层建筑施工过程实际监测。

发明内容
[0004] 本发明的目的是针对上述技术问题，提供一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法，用于解决监测环境差、无法获取监测数据或获取的监测数据精度不高的问题，实现对超高层建筑施工过程实际监测，提高超高层建筑施工的安全性。
[0005] 本发明的技术方案：

为解决上述技术问题，本发明提供了一种基于北斗卫星的超高层建筑高精度变形监测系统，包括北斗卫星。
[0006] 其还包括距超高层建筑4~10km的第一基准点，位于超高层建筑附近的第二基准点，设置在超高层建筑上的若干监测点，以及数据处理系统；基准点与监测点上设置有能够接收北斗卫星定位信号的接收机；第一基准点与第二基准点形成固定基线，固定基线与每个监测点形成三角形，若干监测点对应的三角形构成固定基线网组；接收机获取观测数据，数据处理系统对观测数据进行处理，并获取超高层建筑的变形数据。
[0007] 进一步地，所述检测点设置在核心筒顶部位置，其数量为8~10个。
[0008] 进一步地，所述接收机的通道数为198，其可接收三个全球卫星导航系统、八频点的数据。
[0009] 进一步地，所述全球卫星导航系统为GPS、BDS、GLONASS。
[0010] 进一步地，所述八频点为L1、L2、L3；B1、B2、B3；G1、G2。
[0011] 进一步地，所述接收机的规格为GNSS CSCEC-HC-5。
[0012] 本申请还公开了一种基于北斗卫星的超高层建筑高精度变形监测方法，使用上述超高层建筑高精度变形监测系统，其具体包括以下步骤：

S1.根据超高层建筑的特点，设立监测系统第一基准点、第二基准点；
S2.将监测点布置在超高层建筑的核心筒顶部位置；
S3. 将接收机安装在第一基准点、第二基准点及监测点上；
S4. 测量超高层建筑的环境温度及风速；
S5. 数据处理系统对接收机获取的观测数据进行处理，得到超高层建筑的变形数据。

[0013] 进一步地，在步骤S5中，所述数据处理包括以下步骤：
S5-1. 超高层建筑基准点坐标计算；
S5-2. 超高层建筑监测点坐标计算；
S5-3. 卫星定位高程测量；
S5-4. 超高层建筑受温度影响的变形计算；
S5-5. 采用双基站固定基线静态新算法获得超高层建筑变形趋势；
S5-6. 计算超高层建筑的摆动幅度；
S5-7. 计算超高层建筑的振动频率。

[0014] 本发明有益效果：

本发明提供的一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法，其设置合理，采用双基站固定基线静态新算法，实时对超高层建筑的变形进行监测，解决了监测环境差，超高层建筑物遮挡严重，同步观测卫星数量少，观测数据质量差，无法通过常规算法解算，不能获取高精度变形数据的问题。

附图说明

[0015] 通过结合以下附图所作的详细描述，本发明的上述优点将变得更为清楚和更容易理解，这些附图只是示意性的，并不限制本发明，其中：
图1是本发明的结构示意图；
图2是本发明之固定基线组网的示意图；
图3所示为监测点单历元E、N方向振动曲线；
图4是超高层建筑在南北方向的摆动幅度示意图；
图5是超高层建筑在东西方向的摆动幅度示意图；
图6是超高层建筑在南北方向的振动频率示意图；
图7是超高层建筑在东西方向的振动频率示意图；
图8是超高层建筑在高程方向的振动频率示意图。

[0016] 附图中，各标号所代表的部件如下：
1. 第一基准点；2. 第二基准点；3. 固定基线；4. 监测点；5. 三角形；6. 北斗卫星。

具体实施方式

[0017] 下面结合具体实施例和附图对本发明一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法进行详细说明。

[0018] 在此记载的实施例为本发明的特定的具体实施方式，用于说明本发明的构思，均是解释性和示例性的，不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外，本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案，这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案。
说明书

第019条 本说明书的附图示意图，辅助说明本发明的构思，示意性地表示各部分的形状及相互关系。请注意，为了便于清楚地表现出本发明实施例的各部件的结构，各附图之间并未按照相同的比例线示。相同的参考标记用于表示相同的部分。

第020条 图1至图8是本发明所述一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法的相关示意图。

第021条 一种基于北斗卫星的超高层建筑高精度变形监测系统，如图1所示，其包括北斗卫星6，还包括距超高层建筑4～10km的第一基准点1，位于超高层建筑附近的第二基准点2，设置在超高层建筑上的若干监测点4，以及数据处理系统。

第022条 基准点与监测点上设置有能够接收北斗卫星定位信号的接收机；第一基准点1与第二基准点2形成固定基线3，固定基线3与每个监测点4形成三角形5，若干监测点4对应的三角形5构成固定基线组网，如图2所示：接收机获取观测数据，数据处理系统对观测数据进行处理，并获取超高层建筑的变形数据。

第023条 所述监测点设置在核心筒顶部位置，其数量为8～10个，用于超高层建筑的变形监测。

第024条 在本申请中，所述接收机的规格为GNSS CSCEC-HC-5，其通道数为198，其可接收三个全球卫星导航系统，八频点的数据。其中，所述全球卫星导航系统为GPS、BDS、GLONAS，所述八频点为L1、L2、L3；B1、B2、B3；G1、G2。

第025条 本发明还公开了一种基于北斗卫星的超高层建筑高精度变形监测方法，使用上述超高层建筑高精度变形监测系统，其具体包括以下步骤：

S1. 根据超高层建筑的结构特点，设立监测系统第一基准点1，第二基准点2；
S2. 将监测点布置在超高层建筑的核心筒顶部位置；
S3. 将接收机安装在第一基准点1，第二基准点2及监测点4上；
S4. 测量超高层建筑的环境温度及风速；
S5. 数据处理系统对接收机获取的观测数据进行处理，得到超高层建筑的变形数据。

第026条 在步骤S5中，数据处理包括以下步骤：

S5-1. 超高层建筑基准点坐标计算；
具体地，利用第一基准点1，第二基准点2的观测数据，选择同时间段北京、武汉、台湾、拉萨等168站的观测数据，采用GAMIT软件，进行联合解算，获得基准站WGS框架下的地心坐标，并将其投影到500m平面，作为已知起始坐标，该坐标是超高层建筑基准点坐标。

S5-2. 超高层建筑监测点坐标计算；
具体地，将每个监测点4分别与第一基准点1，第二基准点2构成三角形5。每个三角形5进行了X、Y、Z三个方向坐标量增闭合差检验，即同步环闭合差检验，然后进行平差处理，计算出各个监测点4的三维坐标。

第027条 S5-3. 卫星定位高程测量；
具体地，卫星定位测出的高程是相对于椭球面的高程，即大地高。大地高与海拔高之间存在高程异常。一般用水准测量测出基准点的海拔高，各测量点用卫星定位求出大地高，经高程异常改正得到海拔高，减去±0.003点高程，即可得到超高层建筑高度。

第028条 计算过程中要考虑到建筑物施工过程中的地基沉降及层间压缩。卫星定位实测高程与设计高程相差之间的最大误差在4mm以内。
S5-4. 超高层建筑受温度影响的变形计算；
S5-5. 采用双基站固定基线静态新算法获得超高层建筑变形趋势；
具体地，将三系统多频观测值经周跳探测、修复、双差解求出整周模糊度，然后采用序贯平差方法求出各历元解。
S5-6. 计算超高层建筑的摆动幅度。
采样时间为24小时，采样率10Hz，即1小时采样数据为36000个历元数，观测数据量太大，以某监测点为例，截取其中的400个点的X、Y坐标绘制时程曲线图。图4、图5分别为超高层建筑在南北方向、东西方向的摆动幅度示意图。
S5-7. 计算超高层建筑的振动频率。
具体地，将10Hz采样数据经小波分解及傅里叶变换可得到大楼振动频率。如图6-图8所示，分别为超高层建筑在南北方向、东西方向及高程方向的振动频率示意图。
S5-8. 本发明提供的一种基于北斗卫星的超高层建筑高精度变形监测系统及监测方法，其设置合理，解决了监测环境差，超高层建筑物遮挡严重，同步观测卫星数量少，观测数据质量差，无法通过常规算法解算，不能获取高精度变形数据的问题；采用双基站固定基线静态新算法，实时对超高层建筑的变形进行监测，获取高精度变形数据，实时监测超高层建筑施工过程。
S5-9. 本发明不局限于上述实施方式，任何人在本发明的启示下都可得出其他各种形式的产品，但不论在其形状或结构上作任何变化，凡是具有与本申请相同或相近似的技术方案，均落在本发明的保护范围之内。