

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2011-169582
(P2011-169582A)

(43) 公開日 平成23年9月1日(2011.9.1)

(51) Int.Cl.

F23R 3/42 (2006.01)
F23R 3/18 (2006.01)

F 1

F 23 R 3/42
F 23 R 3/18

テーマコード (参考)

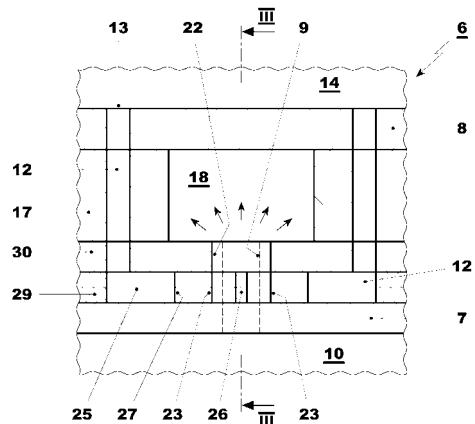
Z

審査請求 未請求 請求項の数 15 O L 外国語出願 (全 28 頁)

(21) 出願番号 特願2011-36247 (P2011-36247)
 (22) 出願日 平成23年2月22日 (2011.2.22)
 (31) 優先権主張番号 10154284.3
 (32) 優先日 平成22年2月22日 (2010.2.22)
 (33) 優先権主張国 欧州特許庁 (EP)

(71) 出願人 503416353
 アルストム テクノロジー リミテッド
 A L S T O M T e c h n o l o g y L
 t d
 スイス国 バーデン ブラウン ボヴェリ
 シュトラーーゼ 7
 B r o w n B o v e r i S t r a s s
 e 7, C H - 5 4 0 1 B a d e n ,
 S w i t z e r l a n d
 (74) 代理人 100099483
 弁理士 久野 琢也
 (74) 代理人 100061815
 弁理士 矢野 敏雄
 (74) 代理人 100112793
 弁理士 高橋 佳大

最終頁に続く


(54) 【発明の名称】ガスタービンのための燃焼装置

(57) 【要約】

【課題】より少ない空気質量流量がプレナムから減衰体積へ供給される燃焼装置を提供する。

【解決手段】ガスタービンのための燃焼装置1であって、内壁7と外壁8とが設けられた部分6を有しており、内壁7が、内壁7と外壁8との間のゾーンを燃焼装置1の内部10に接続する第1の通路9を有しており、外壁8が、内壁7を冷却するための第2の通路2を有している形式のものにおいて、内壁7と外壁8との間に中間層17が設けられており、複数のチャンバ18を形成しており、それぞれのチャンバが、少なくとも1つの第1の通路9と複数の第2の通路12とに接続されておりかつヘルムホルツダンパを形成しており、第2の通路12が、チャンバ18に接続された第3の通路22において開放しており、互いに対面する出口23を有する。

【選択図】図2

【特許請求の範囲】

【請求項 1】

ガスター・ビンのための燃焼装置(1)であつて、内壁(7)と外壁(8)とが設けられた部分(6)を有しており、内壁(7)が、内壁(7)と外壁(8)との間のゾーンを燃焼装置(1)の内部(10)に接続する第1の通路(9)を有しており、前記外壁(8)が、内壁(7)を冷却するための第2の通路(2)を有している形式のものにおいて、内壁(7)と外壁(8)との間に、複数のチャンバ(18)を形成している中間層(17)が設けられており、それぞれのチャンバが、少なくとも1つの第1の通路(9)と複数の第2の通路(12)とに接続されておりかつヘルムホルツダンバを形成しており、前記第2の通路(12)が、前記チャンバ(18)に接続された第3の通路(22)において開放しており、互いに対面する出口(23)を有することを特徴とする、ガスター・ビンのための燃焼装置。

【請求項 2】

前記第2の通路(12)が、対を成して互いに関連させられている、請求項1記載の燃焼装置。

【請求項 3】

互いに関連させられた前記第2の通路(12)が、重なり合う長手方向軸線(25)を有する、請求項2記載の燃焼装置。

【請求項 4】

互いに関連させられた第2の通路(12)の互いに対面する出口(23)の間に、障害物(26)が設けられている、請求項2記載の燃焼装置。

【請求項 5】

前記障害物(26)が、互いに関連させられた第2の通路(12)の間に配置された壁部によって形成されている、請求項4記載の燃焼装置。

【請求項 6】

それぞれの第2の通路(12)が、出口(23)においてディフューザ(27)を有する、請求項2記載の燃焼装置。

【請求項 7】

前記部分(6)が、少なくとも前記内壁(7)と、中間層(17)と、外壁(8)とから形成された層状構造を有する、請求項1記載の燃焼装置。

【請求項 8】

前記層状構造が、互いに上下に結合された、前記第1の通路(9)と、前記第2の通路(12)と、前記第3の通路(22)と、前記チャンバ(18)とを形成するための開口が設けられている、複数のプレートから形成されている、請求項7記載の燃焼装置。

【請求項 9】

前記開口のうちの少なくとも幾つか又は全てが、貫通孔である、請求項8記載の燃焼装置。

【請求項 10】

前記開口のうちの少なくとも幾つかが、止り開口である、請求項8記載の燃焼装置。

【請求項 11】

前記第3の通路(22)が、前記チャンバ(18)の、第1の通路(9)と同じ側において開放している、請求項1記載の燃焼装置。

【請求項 12】

前記第2の通路(12)が、内壁(7)に対して平行に延びた部分を有する、請求項1記載の燃焼装置。

【請求項 13】

前記第2の通路(12)を部分的に形成した、内壁(7)に隣接した層(29)が設けられている、請求項1記載の燃焼装置。

【請求項 14】

前記内壁(7)と、該内壁に隣接した前記層(29)とが、一体に形成されている、請

求項 1 3 記載の燃焼装置。

【請求項 1 5】

外壁(8)と、中間層(17)とが、一体に形成されている、請求項 1 記載の燃焼装置

。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

本発明は、ガスタービンのための燃焼装置に関する。特に、本発明は、希薄予混合低エミッション燃焼装置に関する。燃焼装置は、順次燃焼ガスタービンの第 1 及び / 又は第 2 の燃焼装置又は従来のガスタービン(すなわち順次燃焼ガスタービンではないガスタービン)の燃焼装置であつてよい。単純でかつ分かりやすくするために、以下では、再熱燃焼装置(すなわち順次燃焼ガスタービンの第 2 の燃焼装置)のみに言及する。

10

【背景技術】

【0 0 0 2】

ガスタービンの運転中、音響と、発熱率(燃焼)の変動との望ましくない結合により、燃焼室において著しい熱音響脈動が発生させられることがある。ガスタービンに希薄予混合低エミッション燃焼装置が設けられている場合には、熱音響脈動の発生のリスクは特に高い。

【0 0 0 3】

これらの脈動は、燃焼装置及びタービンのハードウェアに作用し、著しい機械的振動を生じ、これは、燃焼装置又はタービンの個々の部品の損傷を生じる恐れがある。従って、脈動を抑制しなければならない。

20

【0 0 0 4】

振動を抑制するために、燃焼装置には通常、減衰装置が設けられている。通常、減衰装置は、四分の一波長管、ヘルムホルツダンパー、又は音響スクリーンから成る。

【0 0 0 5】

米国特許出願公開第 2005/0229581 号明細書は、混合管とフロントプレートとを備えた再熱燃焼装置を開示している。フロントプレートは、穴を有する音響スクリーンを有しており、この音響スクリーンに対して平行にかつ音響スクリーンから離れて、装置の冷却を保証する、穴が設けられたインピングプレートも設けられている。

30

【0 0 0 6】

運転中、(燃焼室を閉じ込めたプレナムからの)空気はインピングメントプレートを通過し、音響スクリーンに衝突し(音響スクリーンを冷却し)、次いで、音響スクリーンを通過し、燃焼室に進入する。

【0 0 0 7】

しかしながら、この減衰システムは、幾つかの欠点を有している。

【0 0 0 8】

実際、音響スクリーンの冷却は、減衰体積を冷却するためにプレナムから減衰体積へ逸らさなければならない大きな空気質量流量を必要とする。

【0 0 0 9】

このことは、減衰効率を減じるだけでなく、燃焼に関わらない空気質量流量をも増大し、火炎温度を上昇させ、その結果 NO_x 排出量が高くなる。

40

【先行技術文献】

【特許文献】

【0 0 1 0】

【特許文献 1】米国特許出願公開第 2005/0229581 号明細書

【発明の概要】

【発明が解決しようとする課題】

【0 0 1 1】

従って、本発明の技術的目標は、燃焼装置を提供することであり、この燃焼装置によっ

50

て公知技術の前記問題が排除される。

【0012】

この技術的目標の範囲において、本発明の課題は、（従来の燃焼装置と比較して）より少ない空気質量流量がプレナムから減衰体積へ逸らされる燃焼装置を提供することである。

【0013】

発明の別の態様は、対応する従来の装置と比較して高い減衰効率及び制限されたNO_x排出量を有する燃焼装置を提供することである。

【課題を解決するための手段】

【0014】

技術的目標は、これらの及びその他の態様とともに、添付の請求項に記載の燃焼装置を提供することによって本発明により達成される。

【0015】

有利には、発明の実施形態における冷却装置は、周波数及び効率の観点から減衰性能に對して影響を有さないか又は限定された影響のみを有する。

【0016】

発明の別の特徴及び利点は、添付の図面に非制限的な例によって示された、本発明による燃焼装置の好適であるが非制限的な実施形態の説明からより明らかとなるであろう。

【図面の簡単な説明】

【0017】

【図1】再熱燃焼装置の概略図である。

【図2】混合管のフロントプレートの断面図である。

【図3】図2の線I—I—I—I—I—Iに沿った断面図である。

【図4】図2に記載のフロントプレートを製造するためのプレート部分を示す上面図である。

【図5】図2に記載のフロントプレートを製造するためのプレート部分を示す上面図である。

【図6】図2に記載のフロントプレートを製造するためのプレート部分を示す上面図である。

【図7】図2に記載のフロントプレートを製造するためのプレート部分を示す上面図である。

【図8】図2に記載のフロントプレートを製造するためのプレート部分を示す上面図である。

【図9】燃焼装置の内部を区切る壁部に対して平行な導管を形成するプレートの異なる実施形態を示す図である。

【図10】燃焼装置の内部を区切る壁部に対して平行な導管を形成するプレートの異なる実施形態を示す図である。

【図11】燃焼装置の内部を区切る壁部に対して平行な導管を形成するプレートの異なる実施形態を示す図である。

【図12】燃焼装置の内部を区切る壁部に対して平行な導管を形成するプレートの異なる実施形態を示す図である。

【図13】燃焼装置の内部を区切る壁部に対して平行な導管を形成するプレートの別の実施形態を示す図であり、導管はコイル状である。

【発明を実施するための形態】

【0018】

図面は、概して参照符号1によって示された燃焼装置を示している。

【0019】

燃焼装置1は、フロントプレート4を介して互いに結合された、混合管2と、燃焼室3とを有している。これらの要素は、プレナム5に閉じ込められており、プレナム5には、圧縮機（ガスター・ビンの圧縮機）から来る圧縮空気が供給される。

10

20

30

40

50

【0020】

上記では、順次燃焼ガスタービンの第2の燃焼装置である燃焼装置が説明されたが、いずれにしても、発明の様々な実施形態において、燃焼装置は、順次燃焼ガスタービンの第1の燃焼装置、又は1つの燃焼装置又は燃焼装置列を有する従来のガスタービンの燃焼装置であってもよいことが明らかである。これらの燃焼装置は、当該技術分野において公知であるので以下では詳細に説明しない。単純で分かりやすくするために、順次燃焼ガスタービンの第2の燃焼装置のみについて以下では説明する。

【0021】

燃焼装置1は、内壁7と外壁8とが設けられた部分6を有している。

【0022】

これらの部分6は、フロントプレート4にかつ部分的に燃焼室壁部（図1に示されている）に配置されているか、又は別の実施形態においては、混合管壁部、フロントプレート、燃焼室壁部、又はこれらの組合せ（すなわち混合管2及び／又は燃焼室3及び／又はフロントプレート4の壁部）に配置されていてよい。

10

【0023】

内壁7は、内壁7と外壁8との間の領域を燃焼装置1の内部10に接続する第1の通路9を有している。

【0024】

さらに、第2の通路12が設けられており、この第2の通路12は、燃焼装置1の外部14に接続された入口13を有しており、内壁7を冷却するために外壁8を貫通している。

20

【0025】

内壁7と外壁8との間には、複数のチャンバ18を形成する中間層17が設けられている。

【0026】

それぞれのチャンバ18は、1つ又は2つ以上の第1の通路9と、複数の第2の通路12とに接続されており、1つ又は複数のヘルムホルツダンパを形成している。

30

【0027】

第2の通路12は、チャンバ18に接続された第3の通路22において開放している。さらに、第2の通路12は、互いに対面する出口23を有している。

【0028】

第1の通路9と第2の通路12とは、内壁7に対して平行に延びた部分を有しているので、第3の通路22はチャンバ18の同じ側において開放している。

【0029】

分かりやすくするために、図2には、第1の通路9と第3の通路22とが異なる直径を有するように示されている。いずれにしても、様々な実施形態において、第1の通路9と第3の通路22との直径は同じであってもよく、又はそれぞれ第1の通路9と第3の通路22との間において最大及び／又は最小直径を有していてよいことが明らかである。

【0030】

図示のように、第2の通路12は、重なり合う長手方向軸線25を有する、対を成して互いに関連させられた部分を有している。

40

【0031】

好適には、互いに関連させられた第2の通路12の互いに対面する出口23の間には、例えば関連させられた通路12の間に配置された壁部によって形成された、障害物26が設けられている。

【0032】

さらに、有利には第2の通路12のそれぞれは、出口23においてディフューザ27を有している。

【0033】

部分6は、少なくとも内壁7と、中間層17と、外壁8とから形成された層状構造（及

50

び場合によっては、第1の壁部7と第2の壁部8との間に配置された1つ又は2つ以上の別の層)を有している。この層状構造は、複数のプレート(内壁7、外壁8、間に配置された層17、及び場合によっては別の層を形成する)から形成されており、これらのプレートは、互いに結合されていて、第1の通路9と、第2の通路12と、第3の通路22と、チャンバ18とを形成するための開口が設けられている。

【0034】

1つの実施形態において、第1の通路9と、第2の通路12と、第3の通路22と、チャンバ18とを形成する開口は、貫通孔である。この実施形態は図2に示されている。

【0035】

この実施形態において、第1の壁部7と第2の壁部8との間には、中間層17に加えて、2つの別の層29(冷却通路層)と、30(分離層)とが設けられており、層状構造は、(例えばろう付けによって又はねじを介して)互いに結合された5つのプレートから成っている。

【0036】

別の実施形態において、第1の通路9と、第2の通路12と、第3の通路22と、チャンバ18とを形成する開口は、1つ又は2つ以上の止り穴を含む。

【0037】

この態様においては、内壁7と層29とは、1つの要素に、つまり一体に製造されていてよく、この場合は、層29における第1の通路12の部分は、止り穴(例えば止りミリング)によって形成されている。第3の通路22の部分は、同じミリングの部分によって又はこれに結合された止り穴によって形成される(例えば止り穴、示されていない例)。内壁7及び層29における第1の通路9の部分は貫通孔によって形成されている。

【0038】

層30は、この層30を貫通した第1の通路9と、第2の通路12と、第3の通路22との一部を形成する(貫通孔のような)貫通開口を備えた、1つの要素に実現されてよい。

【0039】

外壁8と、中間層17とは、これらを貫通する第2の通路12の一部を形成する(貫通孔のような)貫通開口と、チャンバ18を形成する止り開口(止り穴)、つまり貫通していない開口、とを備えた、1つの要素に実現されてもよい。

【0040】

当然、別の様々な実施形態が可能であり、例えば、内壁7は1つの要素に製造されてよく、2つの層29、30は1つの要素に製造されてよく、中間層17と外壁8とは1つの要素に製造されてよい。択一的に、外側層は1つの要素に製造されてよく、層17、30は1つの要素であり、内壁7及び層29は1つの要素である。簡略にするために、また、説明に基づいて当業者に明らかであるために詳細に説明されていない、別の実施形態も可能であることが明らかである。

【0041】

分かりやすくするために、図4から図8は、5つの異なる要素から形成された層状構造の可能な態様を示している。これらの要素における全ての開口は貫通開口(孔又はミリング)である。

【0042】

図4は外壁8を示している。この図には、この壁部を貫通した第2の通路12の一部を形成する開口が示されている。さらに、チャンバ18(中間層17に形成されている)が点線で示されている。

【0043】

図5は中間層17を示している。この図には、この壁部を貫通した第2の通路12の一部を形成する開口と、チャンバ18とが示されている。

【0044】

図6は分離層30を示している。この図には、この壁部を貫通する、第2の通路12と

10

20

30

40

50

、第1の通路9と、さらに第3の通路22との一部を形成する開口が示されている。さらに、チャンバ18（中間層17に形成されている）が、点線で示されている。

【0045】

図7は層29を示している。この図において、この壁部を貫通した、第2の通路12の一部を形成する開口（ミリング）と、第1の通路9の一部を形成する開口（通常は孔）とが、示されている。第3の通路22（層30に形成されている）と、チャンバ18（中間層17に形成されている）も点線で示されている。さらに、層29における第3の通路22の一部と、出口23とが、示されている。障害物26も、この図に示されている。

【0046】

図8は内壁7を示している。この図において、この壁部を貫通する第1の通路9の一部が示されている。さらに、チャンバ18（中間層17に形成されている）も点線で示されている。

【0047】

前記説明に従い、図9から図11はさらに層29の可能な態様を示している。同じ参照符号は、これらの図において、同じ又は類似の要素を示している。その他の壁部及び層も、これに対応して変更されなければならないが、添付図面には示していない。これらの図面においても、全ての開口は貫通孔である。

【0048】

図9は、第2の通路12の一部を形成する4つの開口（ミリング）を有する態様を示しており、この図においても、この壁部を貫通した第1の通路9の一部を形成する開口（孔）が示されている。さらに、第3の通路22（層30に形成されている）と、チャンバ18（中間層17に形成されている）と、層29及び30が互いに結合されているときに形成される出口23とが、示されている。

【0049】

図10は、ディフューザ27を有する2つの開口（ミリングである）を備えた態様を示しており、図11は、第2の通路12の間に障害物26が設けられていない態様を示しており、図12は、それぞれの第3の通路22に関連した、互いに対面する出口23を有する、3つの第2の通路12を備えた態様を示している。

【0050】

図13は、2つのコイル状の開口を備えた別の態様を示している。

【0051】

本発明の実施態様における燃焼装置の運転は、説明及び図示されたものから明らかであり、実質的に以下のとおりである。

【0052】

空気は、入口13から進入し、第2の通路12を通過し、部分6を冷却した後、空気はチャンバ18内へ排出される。さらに、高温ガスは、第1の通路9において振動し、音響脈動を減衰させる。

【0053】

チャンバ18に進入する時、通路12から来るそれぞれの空気流は、対面する通路12から来る別の空気流と衝突するので、チャンバ18に進入する強い空気流は存在せず、空気は、全ての方向に拡散しながらチャンバ18に進入する。このことは、減衰効果に影響する、第1の通路9を通るガス振動に影響する、チャンバ18内の空気再循環ゾーンの形成を回避する。同じ理由から、障害物26が好適には設けられており、それぞれの空気流が別の空気流に衝突する前に、空気流は障害物26に衝突し、チャンバ18に向かって全ての方向に拡散する。

【0054】

同様に、ディフューザ27は、チャンバ18に進入する空気流の運動エネルギーを減じ、チャンバ18内における空気再循環ゾーンの形成の可能性を減じる。

【0055】

冷却は極めて効率的であるので、チャンバ18と層状構造とを冷却するために、より少

10

20

30

40

50

ない量の空気が、第2の通路12を介してチャンバ18内へ提供される。これは、高い減衰率と、より少ないNO_x排出量とを提供する。

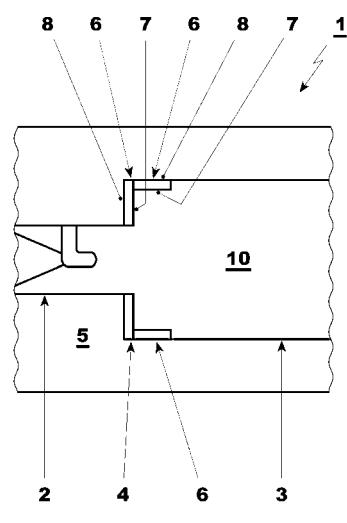
【 0 0 5 6 】

さらに、改良された冷却により、減衰性能に対する冷却の影響が妨げられる。

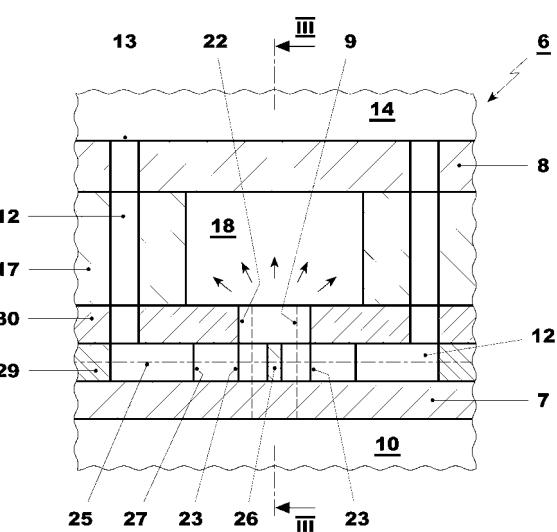
〔 0 0 5 7 〕

当然のことながら、前記特徴は、互いに独立して提供されてよい。

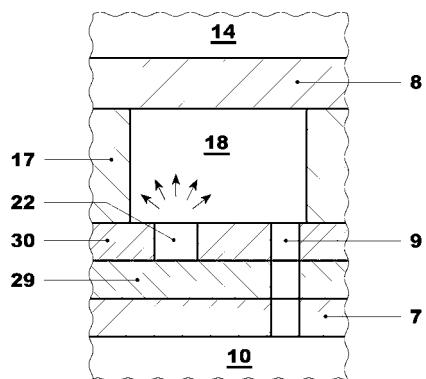
(0 0 5 8)

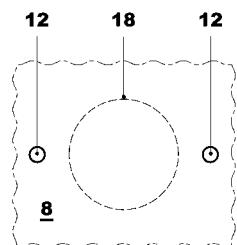

実用上、使用される材料と、寸法とは、要求及び技術水準に従って任意に選択することができる。

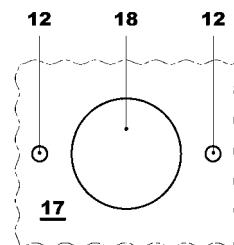
【符号の説明】

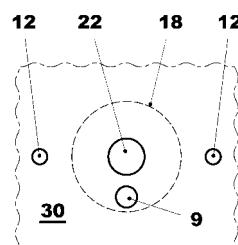

【 0 0 5 9 】
1 燃焼装置、 2 混合管、 3 燃焼チャンバ、 4 フロントプレート、 5
プレナム、 6 部分、 7 内壁、 8 外壁、 9 第1の通路、 10 内部、
12 第2の通路、 13 入口、 14 外部、 17 中間層、 18 チャンバ、
22 第3の通路、 23 出口、 25 長手方向軸線、 26 障害物、 27
ディフューザ、 29 層、 30 層

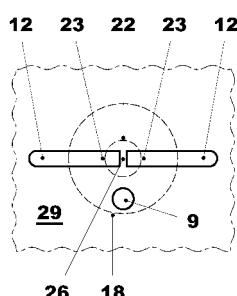
10

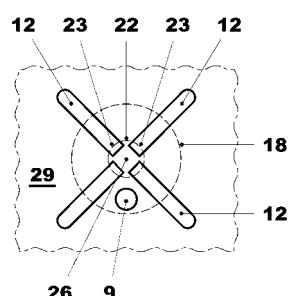

〔 1 〕

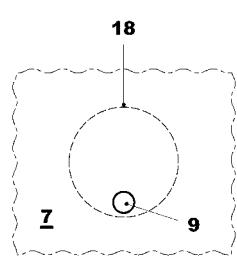

〔 図 2 〕

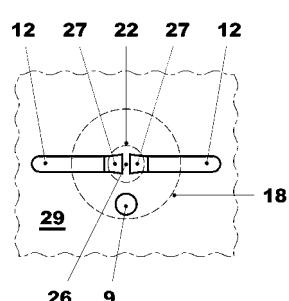

【図3】

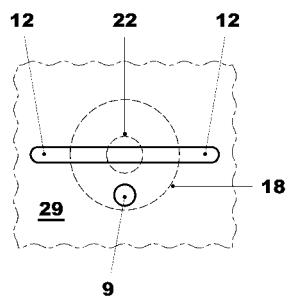

【図4】

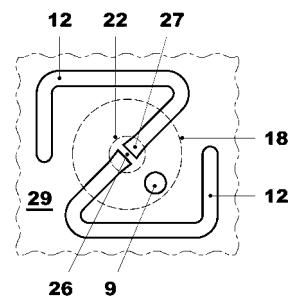

【図5】

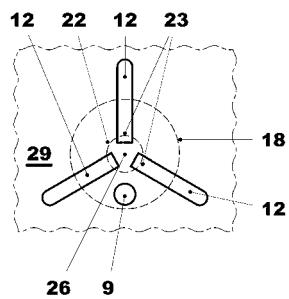

【図6】


【図7】


【図9】


【図8】


【図10】


【図 1 1】

【図 1 3】

【図 1 2】

フロントページの続き

(74)代理人 100128679
弁理士 星 公弘
(74)代理人 100135633
弁理士 二宮 浩康
(74)代理人 100156812
弁理士 篠 良一
(74)代理人 100114890
弁理士 アインゼル・フェリックス=ラインハルト
(72)発明者 アンドレアス フーバー
スイス国 バーデン メーダーシュトラーセ 17
(72)発明者 ニコラ ヌワレ
スイス国 ヴェティンゲン ヴィーゼンシュトラーセ 7
(72)発明者 ウルス ベンツ
スイス国 ギップフ - オーバーフリック メアテンヴェーク 7
(72)発明者 フェリクス ライナート
スイス国 ヴェティンゲン ブルーメンシュトラーセ 8
(72)発明者 ディアーネ ラウファー
スイス国 ヴェティンゲン ブリュッケンシュトラーセ 2

【外国語明細書】

Title of Invention

COMBUSTION DEVICE FOR A GAS TURBINE

Detailed Explanation of the Invention

TECHNICAL FIELD

The present invention relates to a combustion device for a gas turbine.

In particular the present invention refers to lean premixed low emission combustion devices.

The combustion device may be the first and/or the second combustion device of a sequential combustion gas turbine or a combustion device of a traditional gas turbine (i.e. a gas turbine not being a sequential combustion gas turbine).

For sake of simplicity and clarity, in the following only reference to a reheat combustion device (i.e. the second combustion device of a sequential combustion gas turbine) is made.

BACKGROUND OF THE INVENTION

During gas turbine operation, heavy thermo acoustic pulsations may be generated in the combustion chamber, due to an unfavourable coupling of acoustic and fluctuation of heat release rate (combustion). The risk of thermo acoustic pulsation generation is particularly high when the gas turbine is provided with lean premixed low emission combustion devices.

These pulsations act upon the hardware of the combustion device and the turbine to heavy mechanical

vibrations that can result in the damage of individual parts of the combustion device or turbine; therefore pulsation must be suppressed.

In order to suppress oscillations, combustion devices are usually provided with damping devices; typically damping devices consist of quarter wave tubes, Helmholtz dampers or acoustic screens.

US2005/0229581 discloses a reheat combustion device with a mixing tube and a front plate. The front plate has an acoustic screen having holes; parallel to the acoustic screen and apart from it, an impingement plate also provided with holes, ensuing cooling of the device, is provided.

During operation, air (from a plenum containing the combustion device) passes through the impingement plate, impinges on the acoustic screen (cooling it) to then pass through the acoustic screen and enter the combustion chamber.

Nevertheless this damping system has some drawbacks.

In fact, cooling of the acoustic screen requires a large air mass flow, which must be diverted from the plenum into the damping volume in order to cool it.

This, in addition to reducing the damping efficiency, also increases the air mass flow, which does not take part in the combustion, such that the flame temperature increases and the NO_x emissions are consequently high.

SUMMARY OF THE INVENTION

The technical aim of the present invention is therefore to provide a combustion device by which the said problems of the known art are eliminated.

Within the scope of this technical aim, an object of the invention is to provide a combustion device in which a reduced air mass flow (when compared to traditional combustion devices) is diverted from the plenum into the damping volume.

Another aspect of the invention is to provide a combustion device that has a high damping efficiency and limited NO_x emissions when compared to corresponding traditional devices.

The technical aim, together with these and further aspects, are attained according to the invention by providing a combustion device in accordance with the accompanying claims.

Advantageously, the cooling device in the embodiments of the invention does not have any influence or only a limited influence on the damping performance in terms of frequency and efficiency.

Further characteristics and advantages of the invention will be more apparent from the description of a preferred but non-exclusive embodiment of the combustion device according to the invention, illustrated by way of non-limiting example in the accompanying drawings.

Brief Explanation of the Drawings

Figure 1 is a schematic view of a reheat combustion device;

Figure 2 is a cross section of the front plate of the mixing tube;

Figure 3 is a cross section through lines III-III of figure 2;

Figures 4-8 are top views of plate portions for manufacturing a front plate according to figure 2;

Figures 9-12 are different embodiments of the plate defining conduits parallel to a wall delimiting the inner of the combustion device; and

Figure 13 is a further embodiment of the plate defining conduits parallel to a wall delimiting the inner of the combustion device; the conduits have a coil shape.

DETAILED DESCRIPTION OF THE INVENTION

With reference to the figures, these show a combustion device generally indicated by the reference number 1.

The combustion device 1 has a mixing tube 2 and a combustion chamber 3 connected to each other via a front plate 4; these elements are contained in a plenum 5 into which compressed air coming from a compressor (the compressor of the gas turbine) is fed.

Above a combustion device being the second combustion device of a sequential combustion gas turbine was described, it is anyhow clear that in different embodiments of the

invention the combustion device may also be the first combustion device of a sequential combustion gas turbine or also the combustion device of a traditional gas turbine having one single combustion device or combustion device row. These combustion devices are well known in the art and are not described in detail in the following; for sake of simplicity and clarity reference only to the second combustion device of a sequential combustion gas turbine is hereinafter made.

The combustion device 1 comprises portions 6 provided with an inner and an outer wall 7, 8.

These portions 6 may be located at the front plate 4 and partly at the combustion chamber wall (as shown in figure 1) or, in other embodiments, at the mixing tube wall, at the front plate, at the combustion chamber wall or also a combination thereof (i.e. at the wall of the mixing tube 2 and/or combustion chamber 3 and/or front plate 4).

The inner wall 7 has first passages 9 connecting the zone between the inner and outer wall 7, 8 to the inside 10 of the combustion device 1.

In addition second passages 12 are provided, having inlets 13 connected to the outer 14 of the combustion device 1 and passing through the outer wall 8 for cooling the inner wall 7.

Between the inner and outer wall 7, 8 an intermediate layer 17 is provided defining a plurality of chambers 18.

Each chamber 18 is connected to one or more than one first passage 9 and a plurality of second passages 12 and

defines one or a plurality of Helmholtz dampers.

The second passages 12 open in third passages 22 connected to the chamber 18; in addition, the second passages 12 have facing outlets 23.

The third passages 22 open at the same side of the chambers 18 as the first passages 9 and the second passages 12 have a portion extending parallel to the inner wall 7.

For sake of clarity, in figure 2 the first passage 9 and the third passage 22 are shown with a different diameter; it is anyhow clear that in different embodiments their diameter may also be the same or each between the first passage 9 and the third passage 22 may have the largest and/or the smallest diameter.

As shown, the second passages 12 have portions associated in couples with overlapping longitudinal axis 25.

Preferably, between the facing outlets 23 of the associated second passages 12 an obstacle 26 is provided, for example defined by a wall interposed between the associated passages 12.

In addition, advantageously each of the second passages 12 has a diffuser 27 at its outlet 23.

The portion 6 has a layered structure made of at least the inner wall 7, the intermediate layer 17 and outer wall 8 (and eventually also one or more further layers interposed between the first and second wall 7, 8); this layered structure is made of a plurality of plates (defining the inner and outer wall 7, 8, the interposed layer 17 and the eventual further layers) connected one to

the other and provided with apertures to define the first, the second and the third passages 9, 12, 22 and the chambers 18.

In one embodiment the apertures defining the first, the second and the third passages 9, 12, 22 and the chambers 18 are through apertures; this embodiment is shown in figure 2.

In this embodiment between the first and the second wall 7, 8, in addition to the intermediate layer 17, also two further layers 29 (cooling passage layer), 30 (separation layer) are provided, such that the layered structure is made of five plates one connected to the other (for example brazed or via screws).

In a different embodiment the apertures defining the first, the second and the third passages 9, 12, 22 and the chambers 18 comprise one or more blind apertures.

In this respect the inner wall 7 and the layer 29 may be manufactured in one element, in this case the portions of the first passages 12 in the layer 29 are defined by blind apertures (for example blind millings); the portions of the third passages 22 are defined by a portion of the same millings or by a blind aperture connected thereto (for example a blind hole, example not shown). The portions of the first passages 9 in the wall 7 and layer 29 are defined by through apertures (for example through holes).

The layer 30 may be realised in one element with through apertures (such as through holes) defining the portion of the first, second and third passages 9, 12, 22

through it.

The outer wall 8 and the intermediate layer 17 may be realised in one element with through apertures (through holes) defining the portion of the second passages 12 through it and blind apertures (blind holes) defining the chambers 18.

Naturally further different embodiments are possible, for example the inner wall 7 may be manufactured in one element, the two layers 29, 30 may also be manufactured in one element and the intermediate layers 17 and outer wall 8 in one element; alternatively the outer layers may be manufactured in one element, the layers 17 and 30 in one element and the inner wall 7 and layer 29 in one element. It is clear that also further embodiments are possible that are not described in detail for brevity and because they are clear for the skilled in the art on the basis of what explained.

For sake of clarity, figures 4-8 show a possible implementation of a layered structure made of five different elements; all the apertures in these elements are through apertures (holes or millings).

Figure 4 shows the outer wall 8; in this figure the apertures defining the portion of the second passages 12 through this wall are shown; in addition the chamber 18 (defined in the intermediate layer 17) is shown in dotted line.

Figure 5 shows the intermediate wall 17; in this figure the apertures defining the portion of the second

passages 12 through this wall and the chamber 18 are shown.

Figure 6 shows the layer 30; in this figure the apertures defining the portion of the second passages 12 and of the first passages 9 and, in addition, the third passage 22 through this wall are shown; in addition the chamber 18 (defined in the intermediate layer 17) is shown in dotted line.

Figure 7 shows the layer 29; in this figure the apertures (millings) defining the portion of the second passages 12 and the aperture (typically a hole) defining the portion of the first passages 9 through this wall are shown; the third passage 22 (defined in the layer 30) and the chamber 18 (defined in the intermediate layer 17) are also shown in dotted line; in addition the portion of the third passages 22 in the layer 29 and the outlets 23 are indicated. Also the obstacle 26 is shown in this figure.

Figure 8 shows the inner wall 7; in this figure the portion of the first passage 9 through this wall is shown; in addition the chamber 18 (defined in the intermediate layer 17) is also shown in dotted line.

In compliance with what already described, figures 9-11 show further possible embodiments for the layer 29. Like reference numbers define in these figures identical or similar elements; the other walls and layer must be modified accordingly and are not shown in the attached figures. Also in these figures all apertures are through apertures.

Figure 9 shows an embodiment with four apertures

(millings) defining portions of the second passages 12, also in this figure the aperture (hole) defining the portion of the first passages 9 through this wall is shown. Moreover, the third passage 22 (defined in the layer 30), the chamber 18 (defined in the intermediate layer 17), the outlets 23 defined when the layers 29 and 30 are connected one onto the other are shown.

Figure 10 shows an embodiment with two apertures (being millings) having the diffuser 27, figure 11 shows an embodiment without the obstacle 26 between the second passages 12 and figure 12 shows an embodiment with three second passages 12 having facing outlets 23 associated to each third passage 22.

Figure 13 shows a further embodiment with two coil shaped apertures.

The operation of the combustion device in the embodiments of the invention is apparent from what described and illustrated and is substantially the following.

Air enters via the inlet 13 and passes through the second passages 12, cooling the portion 6; afterwards air is discharged into the chamber 18. In addition, hot gas oscillates in the first passage 9 damping acoustic pulsations.

When entering the chamber 18, since each air flow coming from a passage 12 impinges on another air flow coming from a facing passage 12, there is no intense air flow entering the chamber 18, but air enters the chamber 18

spreading in all directions; this avoids the formation of an air recirculation zone inside the chamber 18 that may influence the gas oscillation through the first passage 9 affecting the damping effect. For the same reason, the obstacle 26 is preferably provided, such that before each air flow impinges on another air flow, it impinges on the obstacle 26 spreading towards the chamber 18 in all directions.

Likewise, the diffuser 27 causes the air flow that enters the chamber 18 to reduce its kinetic energy, in order to reduce the probability of formation of air recirculation zones within the chamber 18.

Since cooling is very efficient a reduced amount of air may be provided via the second passages 12 into the chambers 18 in order to cool the chambers 18 and the layered structure; this allows high damping efficiency and reduced NO_x emissions.

In addition, thanks to the improved cooling, an impact of the cooling on the damping performance is prevented or hindered.

Naturally the features described may be independently provided from one another.

In practice the materials used and the dimensions can be chosen at will according to requirements and to the state of the art.

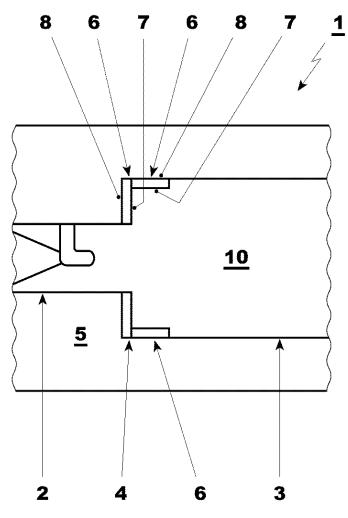
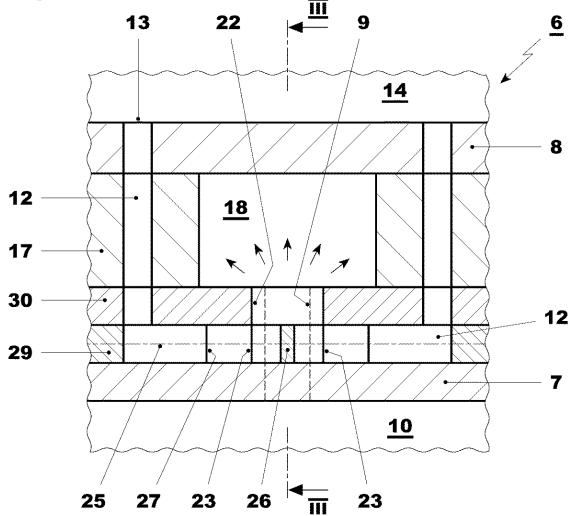
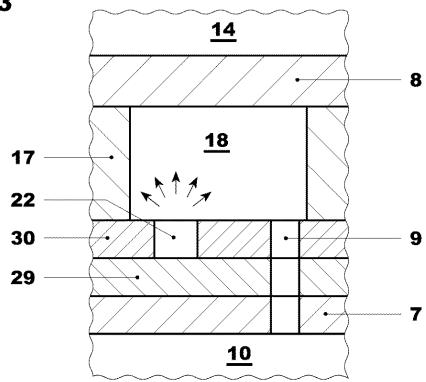
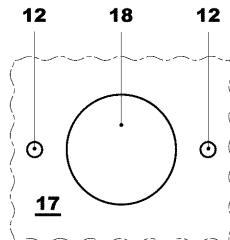
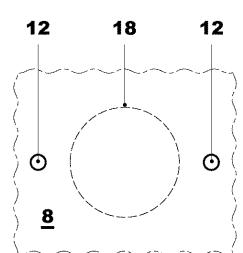
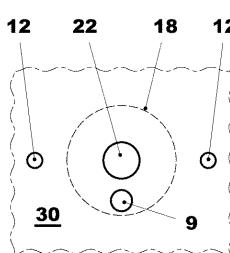
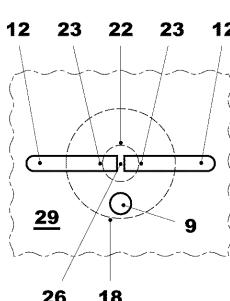
REFERENCE NUMBERS

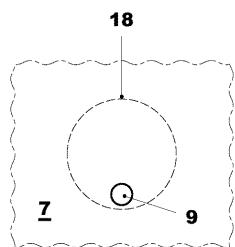
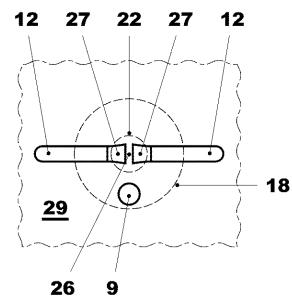
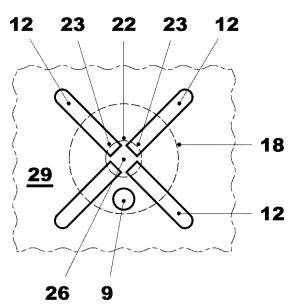
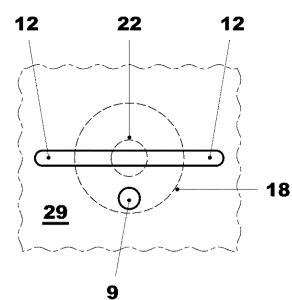
- 1 combustion device
- 2 mixing tube
- 3 combustion chamber
- 4 front plate
- 5 plenum
- 6 portion
- 7 inner wall
- 8 outer wall
- 9 first passages
- 10 inner of 1
- 12 second passages
- 13 inlet of 12
- 14 outer of 1
- 17 intermediate layer
- 18 chambers
- 22 third passages
- 23 outlets of 12
- 25 longitudinal axis of portion of 12
- 26 obstacle
- 27 diffuser
- 29 layer
- 30 layer

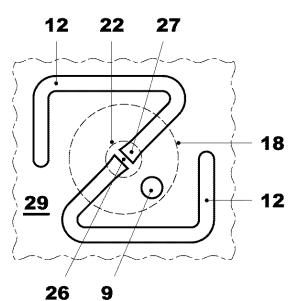
Claims

1. Combustion device (1) for a gas turbine comprising a portion (6) provided with an inner and an outer wall (7, 8), the inner wall (7) comprising first passages (9) connecting the zone between the inner and outer wall (7, 8) to the inner (10) of the combustion device (1) and said outer wall (8) comprising second passages (12) for cooling the inner wall (7), characterised in that between the inner and outer wall (7, 8) an intermediate layer (17) is provided defining a plurality of chambers (18), each connected to at least one first passage (9) and a plurality of second passages (12) and defining Helmholtz dampers, wherein said second passages (12) open in third passages (22), connected to said chambers (18), and have facing outlets (23).
2. Combustion device (1) as claimed in claim 1, characterised in that said second passages (12) are associated in couples.
3. Combustion device (1) as claimed in claim 2, characterised in that said associated second passages (12) have overlapping longitudinal axis (25).
4. Combustion device (1) as claimed in claim 2, characterised in that between the facing outlets (23) of associated second passages (12) an obstacle (26) is provided.
5. Combustion device (1) as claimed in claim 4, characterised in that said obstacle (26) is defined

by a wall interposed between the associated second passages (26).








6. Combustion device (1) as claimed in claim 2, characterised in that each of the second passages (12) has a diffuser (27) at its outlet (23).
7. Combustion device (1) as claimed in claim 1, characterised in that said portion (6) has a layered structure made of at least said inner wall (7), intermediate layer (17) and outer wall (8).
8. Combustion device (1) as claimed in claim 7, characterised in that said layered structure is made of a plurality of plate connected one over the other and provided with apertures to define said first, said second and said third passages (9, 12, 22) and said chambers (18).
9. Combustion device (1) as claimed in claim 8, characterised in that at least some of or all said apertures are through apertures.
10. Combustion device (1) as claimed in claim 8, characterised in that at least some of said apertures are blind apertures.
11. Combustion device (1) as claimed in claim 1, characterised in that said third passages (22) open at the same side of said chambers (18) as the first passages (9).
12. Combustion device (1) as claimed in claim 11, characterised in that said second passages (12) have a portion extending parallel to the inner wall (7).


13. Combustion device (1) as claimed in claim 1, characterised by further comprising a layer (29) adjacent to the inner wall (7) and partly defining said second passages (12).
14. Combustion device (1) as claimed in claim 13, characterised in that said inner wall (7) and said layer (29) adjacent thereto are manufactured in one piece.
15. Combustion device (1) as claimed in claim 1, characterised in that the outer wall (8) and the intermediate layer (17) are manufactured in one piece.

Abstract

The combustion device (1) for a gas turbine comprises a portion (6) provided with an inner and an outer wall (7, 8). The inner wall (7) comprises first passages (9) connecting the zone between the inner and outer wall (7, 8) to the inner (10) of the combustion device (1). The outer wall (8) comprises second passages (12) for cooling the inner wall (7). Between the inner and outer wall (7, 8) an intermediate layer (17) is provided defining a plurality of chambers (18), each connected to at least one first passage (9) and a plurality of second passages (12) and defining Helmholtz dampers. These second passages (12) open in third passages (22) connected to the chambers (18) and have facing outlets (23).

(Fig. 2)

FIG. 1**FIG. 2****FIG. 3****FIG. 5****FIG. 4****FIG. 6****FIG. 7**

FIG. 8**FIG. 10****FIG. 9****FIG. 11****FIG. 12****FIG. 13**