

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
21 July 2005 (21.07.2005)

PCT

(10) International Publication Number
WO 2005/067309 A1

(51) International Patent Classification⁷: H04N 9/31, G03B 21/14

(21) International Application Number: PCT/US2004/042835

(22) International Filing Date: 21 December 2004 (21.12.2004)

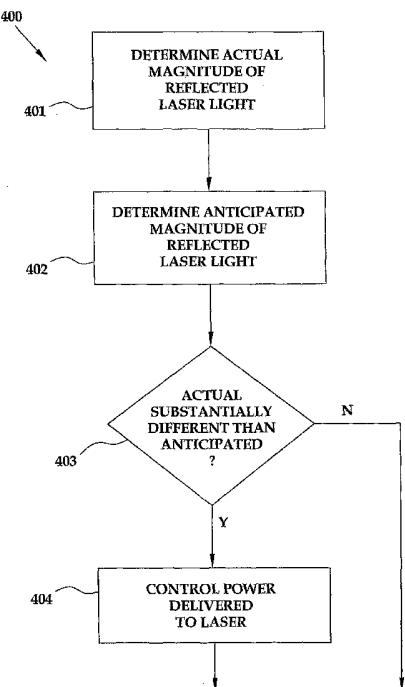
(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/534,008 31 December 2003 (31.12.2003) US
10/836,813 30 April 2004 (30.04.2004) US

(71) Applicant (for all designated States except US): SYMBOL TECHNOLOGIES, INC. [US/US]; One Symbol Plaza, Holtsville, NY 11742 (US).

(71) Applicants and


(72) Inventors: STERN, Miklos [US/US]; 329 Eastwood Road, Woodmere, NY 11598 (US). DVORKIS, Paul [US/US]; 14 Tinker Bluff Court, East Setauket, NY 11733 (US). NAMBUDIRI, Narayan [IN/US]; 37 Indian Trace, Kings Park, NY 11754 (US). WITTENBERG, Carl [US/US]; 472 Blank Lane, WaterMIII, NY 11976 (US). TAN, Chinh [US/US]; 14 Blue Top Road, Setauket, NY 11733 (US). GOLDMAN, Ron [US/US]; 42 Goose Hill Road, Cold Spring Harbor, NY 11724 (US). YAVID, Dmitriy [US/US]; 22 Cedar Drive, Stony Brook, NY 11790 (US). WOOD, Frederick, F. [US/US]; 8 Deering Court, Medford, NY 11761 (US).

(74) Agent: MORGAN, Terry, D.; Williams Morgan & Amer- son, 10333 Richmond, Suite 1100, Houston, TX 77042 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR CONTROLLABLY REDUCING POWER DELIVERED BY A LASER PROJECTION DISPLAY

(57) **Abstract:** A method and apparatus are provided to controllably reduce power of a laser projection display (LPD) in response to detecting a variation in a viewing surface. During the operation of the LPD, a controller (142) monitors laser light being reflected from the viewing surface. Since the controller (142) "knows" the amount of power that the LPD is being instructed to deliver, it may compare the known power to the reflected laser light to determine if a foreign object may be in the path of the laser light, and therefore, affecting the magnitude of the laser light. The controller (142) responds to detecting such an event by reducing power to the lasers.

WO 2005/067309 A1

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

METHOD AND APPARATUS FOR CONTROLLABLY REDUCING POWER DELIVERED BY A LASER PROJECTION DISPLAY

BACKGROUND OF THE INVENTION

5 1. FIELD OF THE INVENTION

This invention relates generally to electronic displays, and, more particularly, to a laser projection display that detects changes to the viewing surface and reduces power delivered by the laser.

10 2. DESCRIPTION OF THE RELATED ART

In a laser projection device, one or more lasers are typically arranged to project a display onto a screen or other flat viewing surface. In order to produce a display having sufficient brightness for viewing in common ambient lighting conditions, the lasers must be capable of providing at least a preselected minimum level of power. In some applications, 15 however, the space between the viewing surface and the lasers may be relatively open, and thus, objects or people may pass therebetween, exposing the objects and/or people to laser light. In such circumstances, FDA regulations (such as CDRH and/or IEC) apply, limiting the amount of power that a laser may deliver. The limited power levels are, however, generally insufficient to produce an adequately bright display.

20 The present invention is directed to overcoming, or at least reducing, the effects of one or more of the problems set forth above.

SUMMARY OF THE INVENTION

In one aspect of the instant invention, a method is provided for controlling a laser. The 25 method comprises projecting laser light onto a viewing surface and monitoring laser light

reflected from the viewing surface. The power delivered by the laser is controlled based on the reflected laser light.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:

Figure 1 is a stylistic block diagram of a top level view of one embodiment of the present invention;

10 Figure 2 is a stylistic view of a viewing surface shown in Figure 1;

Figures 3A and 3B depict a top view of a scanning device at various times during its operation;

Figure 4 depicts one embodiment of a flow chart of a control program that may be executed by a controller shown in Figure 1; and

15 Figure 5 depicts one embodiment of a flow chart of a calibration routine that may be executed by a controller shown in Figure 1.

While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of 20 specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous 5 implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.

10 The following co-pending applications are hereby incorporated by reference herein in their entirety: Method and Apparatus for Aligning a Plurality of Lasers in an Electronic Display Device, by Mik Stern et. al.; Method and Apparatus for Displaying Information in Automotive Applications Using a Laser Projection Display, by Narayan Nambudiri et. al.; Method and Apparatus for Providing an Interface Between a Liquid Crystal Display Controller 15 and a Laser Projection Display, by Narayan Nambudiri et. al.; A Color Laser Projection Display by Paul Dvorkis et. al.; Method and Apparatus for Capturing Images Using A Color Laser Projection Display, by Chinh Tan et. al.; Method and Apparatus for Conserving Power in a Laser Projection Display, By Fred Wood et. al.; A Laser Projection Display, by Ron Goldman et. al.; Method and Apparatus for Controllably Compensating for Distortions in a 20 Laser Projection Display, by Carl Wittenberg et. al.; and Method and Apparatus for Controllably Modulating a Laser in a Laser Projection Display, by Dmitriy Yavid et. al.

Turning now to the drawings, and specifically referring to Figure 1, a stylistic block diagram of a laser projection display (LPD) 100, in accordance with one embodiment of the present invention, is shown. In the illustrated embodiment, the LPD 100 includes three lasers

102, 104, 106, each capable of emitting a beam of light 108, 110, 112 consisting of a unique color, such as red, green or blue. Those skilled in the art will appreciate that the number of lasers and the color of light emitted therefrom may be varied without departing from the spirit and scope of the instant invention.

5 In one embodiment of the instant invention, the lasers 102, 104, 106 may be arranged in a common plane 114 with the beams of light 108, 110, 112 being angularly directed relative to one another to fall on a substantially common location 116 on a first scanning device, such as a first scanning mirror 118, from where they are reflected as beams of light 120, 122, 124. In other embodiments of the instant invention, the lasers 102, 104, 106 need not be arranged in a 10 common plane, but rather may be angularly disposed in at least two dimensions with respect to the axis of rotation of the first scanning mirror 118. Deviations from the plane 114 may be compensated for by controlling the timing of the lasers 102, 104, 106, as discussed below.

15 In the illustrated embodiment, the first scanning mirror 118 oscillates on an axis 120 at a relatively high rate (e.g., about 20-30 KHz). Rotation or oscillation of the first scanning mirror 118 causes the beams of light 108, 110, 112 to be moved. That is, as the angular position of the first scanning mirror 118 alters, so to does the angle of reflection of the beams of light 120, 122, 124 from the first scanning mirror 118. Thus, as the mirror oscillates the reflected beams of light 120, 122, 124 are scanned to produce movement of the beams of light 120, 122, 124 along one component of the two-dimensional display.

20 The second component of the two-dimensional display is produced by a second scanning device, such as a mirror 126. In the illustrated embodiment, the second mirror 126 is coupled to a motor 128 at a pivot point 130 so as to produce rotational or oscillating movement about an axis that is substantially orthogonal to the axis of rotation of the first mirror 118. The beams of light 120, 122, 124 are reflected off of the second mirror 126 as beams of light 132,

134, 136 and directed to a viewing surface 138. The viewing surface 138 may take on any of a variety of forms without departing from the spirit and scope of the instant invention. For example, the viewing surface 138 may be a fixed screen that may be front or back lit by the lasers 102, 104, 106 and may be contained in a housing (not shown) that is common with the 5 LPD 100, or alternatively, the viewing surface 138 may take the form of any convenient, generally flat surface, such as a wall or screen, spaced from the LPD 100.

The second mirror 126 oscillates or rotates at a relatively slow rate, as compared to the rate of the first mirror 118 (e.g., about 60hz). Thus, it will be appreciated that, as shown in Figure 2, the beams of light 132, 134, 136 generally follow a path 140 on the display surface 10 138. Those skilled in the art will appreciate that the path 140 is similar in shape and concept to a raster scan commonly employed in cathode ray tube televisions and computer monitors.

While the instant invention is described herein in the context of an embodiment that employs separate first and second scanning mirrors 118, 126, those skilled in the art will appreciate that a similar path 140 may be produced by using a single mirror. The single mirror 15 would be capable of being moved about two axis of rotation to provide the fast and slow oscillating movements along two orthogonal axes.

As is apparent from Figure 1, owing to the angular positioning of the lasers 102, 104, 106, even though the lasers 102, 104, 106 have been arranged mechanically and optically to deliver the beams of light 108, 110, 112 within the same plane 114 and at the same point (on 20 the rotational axis 120) on the mirror 118), each has a different angle of reflection, which causes the beams of light 120, 122, 124 to diverge. A controller 142 is provided to controllably energize the lasers 102, 104, 106 to effectively cause the beams of light 120, 122, 124 to be collinear, such that they may be reflected off of the second mirror 126 and delivered to the

same point on the viewing surface 138 relatively independent of the distance of the viewing surface 138 from the second mirror 126.

Turning now to Figures 3A and 3B, the operation of the controller 142 to cause the beams of light 120, 122, 124 to be collinear is discussed. To simplify the discussion, only two lasers 102, 104 are illustrated in Figure 3, but those skilled in the art will appreciate that the concepts discussed herein may be extended to three or more lasers without departing from the spirit and scope of the instant invention. As shown in Figure 3A, if the lasers 102, 104 are energized simultaneously, the reflected beams of light 120, 122 diverge. However, as shown in Figure 3B, if the lasers 102, 104 are energized at slightly different times, then the beams of light 120, 122 can be made to follow a single, common path (i.e., the beams of light 120, 122 are collinear). For example, if the laser 102 is energized at a first time t_1 , then the mirror 118 will be at a first position, as represented by the solid lines, and the beam of light 108 will reflect off of the mirror 118 as the beam of light 120. Subsequently, if the laser 104 is energized at a second time t_2 , then the mirror 118 will be at a second position, as represented by the dashed lines, and the beam of light 110 will reflect off of the mirror 118 as the beam of light 122. By precisely controlling the time t_2 , the mirror 118 will be in a position to accurately reflect the beam of light 122 along substantially the same path as the beam of light 120.

Thus, through the operation of the controller 142, the beams of light 120, 122 are substantially collinear, but are slightly displaced in time. That is, the beams of light 120, 122 will now both be projected onto substantially the same point on the display surface 138, but at slightly different times. However, owing to the persistence of the human eye, the variation in timing is not detectable. That is, in the case of the three laser system described in Figure 1, each of the lasers 102, 104, 106 will controllably deliver laser light of a unique color and

intensity to substantially the same point on the viewing surface 132 within a relatively short window of time. The human eye will not detect the three separate colors, but rather will perceive a blending of the three light beams such that a consistent and desired hue appears at that point on the viewing surface. Those skilled in the art will appreciate that this process may 5 be repeated numerous times along the path 140 to recreate a picture on the viewing surface 132.

A similar concept may be used to compensate for deviations arising in an alternative embodiment in which the lasers 102, 104, 106 are not located in the same plane 114. In this embodiment, the laser light produced by each of the lasers that ultimately reaches the viewing 10 surface may be displaced vertically relative to one another. The controller 142 may compensate for this vertical displacement by energizing the offset laser on a prior or subsequent horizontal scan across the viewing surface, depending upon whether the vertical displacement is upward or downward. For example, assume that a second beam of light is displaced vertically above a first beam of light. Thus, on a first horizontal scan across the 15 viewing surface, the laser associated with the second beam of light is energized. On a subsequent horizontal scan across the viewing surface, which is vertically lower than the previous horizontal scan, the laser associated with the first beam of light is energized so that both beams of light arrive at the same vertical location on the viewing screen, but slightly displaced in time.

20 Returning to Figure 1, a photodetector 144 is arranged to receive laser light reflected from the viewing surface 138. The photodetector 144 may take any of a variety of forms, including a single photosensitive element or a plurality of photosensitive elements arranged in a grid. In some embodiments, it may be useful to include a mechanical/optical system 146 to focus the reflected laser light onto the photodetector 144.

The photodetector 144 is coupled to the controller 142 via a line 148. Signals indicative of the magnitude of the reflected laser light detected by the photodetector 144 may be communicated to the controller 142 over the line 148. In some instances, such as when the photodetector 144 is composed of a grid or an array of photosensitive elements, it may be 5 useful to also convey information regarding the location of the reflected laser light. As discussed in more detail in conjunction with Figure 4, the controller 142 may use the information regarding the magnitude of the reflected laser light to generally determine if conditions within the transmission path of the lasers have changed, such as by being interrupted by a person or object, or the viewing surface being altered. If such an event is 10 detected, the operation of the lasers may be modified by, for example, substantially reducing the power delivered therefrom or by shutting them off.

Turning now to Figure 4, one embodiment of a control routine 400 that may be used in the controller 142 is illustrated. The routine begins at block 401 with the controller 142 using signals received from the photodetector 144 to determine the actual magnitude of the reflected 15 laser light. In block 402, the controller determines the anticipated magnitude of the reflected laser light. That is, the controller 142 "knows" the amount of power that it has requested the lasers to deliver to the viewing surface. Thus, based on an algorithm, look-up table, or the like, the controller may arrive at a magnitude of the reflected laser light that it expects to be received by the photodetector 144. The controller 142 can use the anticipated magnitude to determine if 20 a variation has occurred within the optical transmission path of the lasers. If the magnitude of the actual reflected laser light substantially coincides with the expected reflected laser light, then operation continues without modification. On the other hand, if the actual reflected laser light varies substantially from the anticipated reflected laser light, as determined at block 403, then the controller 142 may be instructed to control the power of the lasers (at block 404), such

as by reducing the amount of power delivered therefrom. If the laser light is interrupted by a person or object, the amount of laser light reflected back to the photodetector 144 may vary substantially. In some instances, the actual laser light reflected back to the photodetector 144 may be substantially reduced; however, in other circumstances, the actual laser light reflected 5 back to the photodetector 144 may be substantially increased. In either case, the controller 142 may elect to reduce power from the lasers, or in some instances to shut them off.

Any of a variety of actions may be taken by the controller 142 in response to detecting a substantial variation in the actual reflected laser light. For example, the controller 142 may elect to reduce or even eliminate power for all three lasers over the entire viewing surface. 10 Alternatively, the controller 142 may be programmed to reduce or eliminate power in only those regions where a variation in reflectivity is detected. Further, the controller 142 may be programmed to reduce or eliminate power in those regions where a variation in reflectivity is detected plus an additional buffer area surrounding those area where the variation in reflectivity is detected.

15 In some embodiments, it may be useful to continue to supply at least some power to the lasers so that they may be used to display an error message. The error message may include information on how to reset or restore normal operation to the LPD. For example, a message such as, "Please aim your display at a uniform background for proper operation," may be displayed.

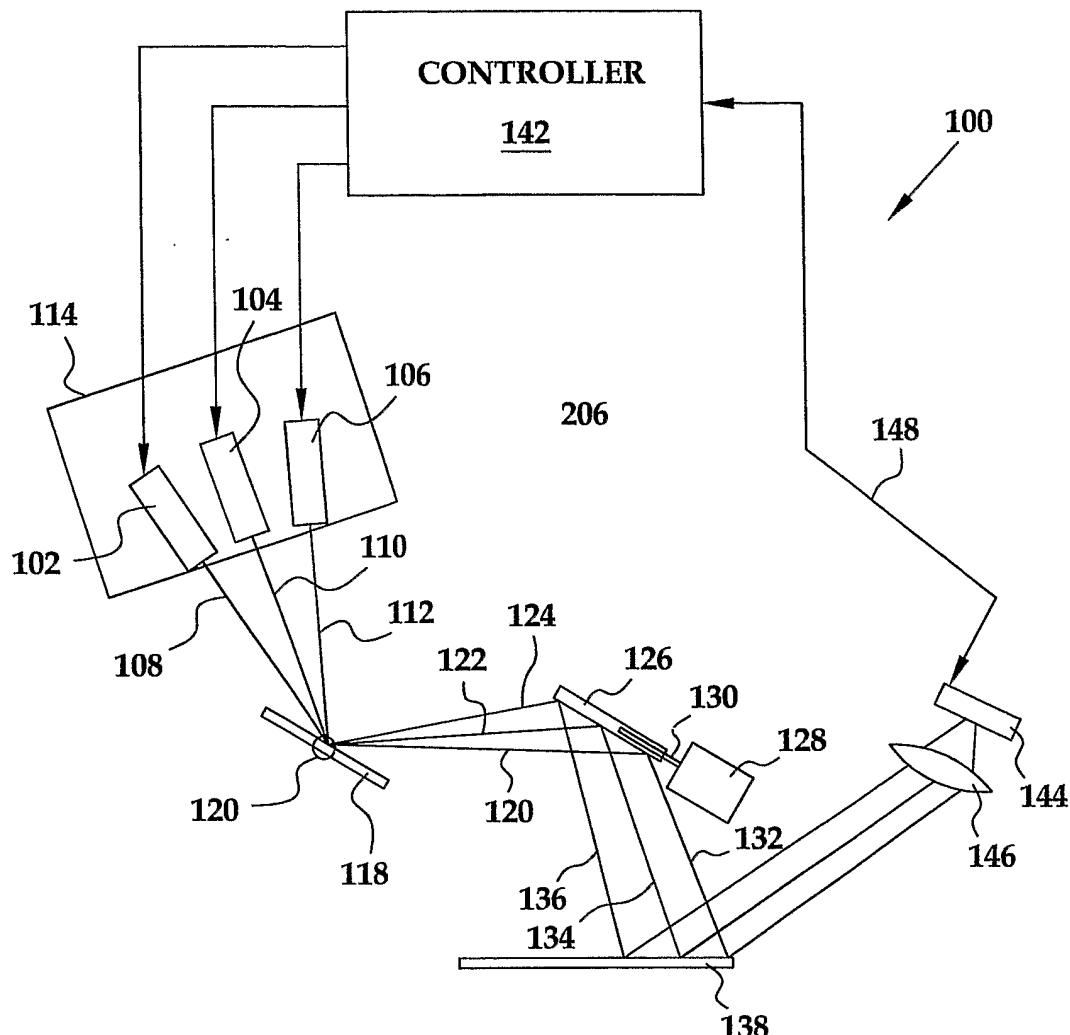
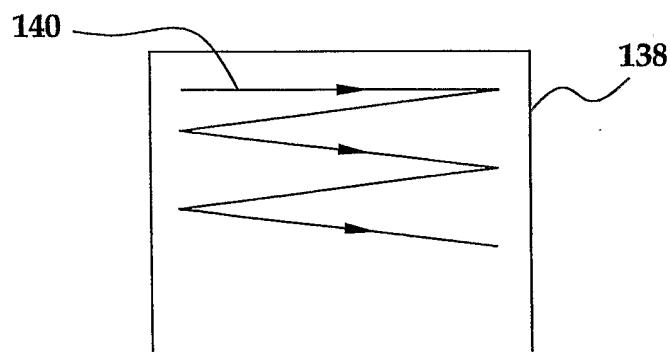
20 For the controller 142 to determine the anticipated magnitude of the reflected laser light (as discussed above with respect to block 402 of figure 5), it may be useful to perform a calibration process when the LPD is first turned on. One embodiment of a calibration process 500 that may be performed by the controller 142 is set forth in the flow chart of Figure 5. The calibration process begins at block 501, with the controller 142 turning the lasers on for a short

period of time, such as a period of time sufficient to scan at least a substantial portion of the viewing surface 138 at least one time. This first calibration scan may be accomplished with the lasers operating at relatively low power. The controller 142 receives feedback signals from the photodetector 144, indicating at least two types of useful information. First, the controller 142 5 can determine if the LPD is directed to a relatively uniform viewing surface by monitoring the signals delivered by the photodetector 144 for any substantial variations (at block 502). If substantial variations are detected, the controller 142 may discontinue the calibration process (at block 503) and display a message, such as, "Please aim your display at a uniform background for proper operation."

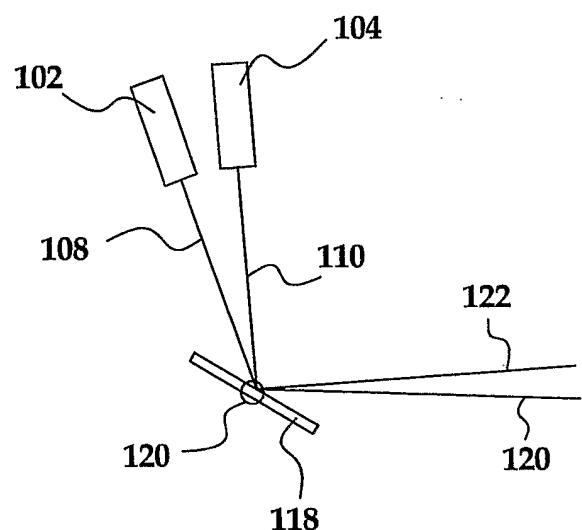
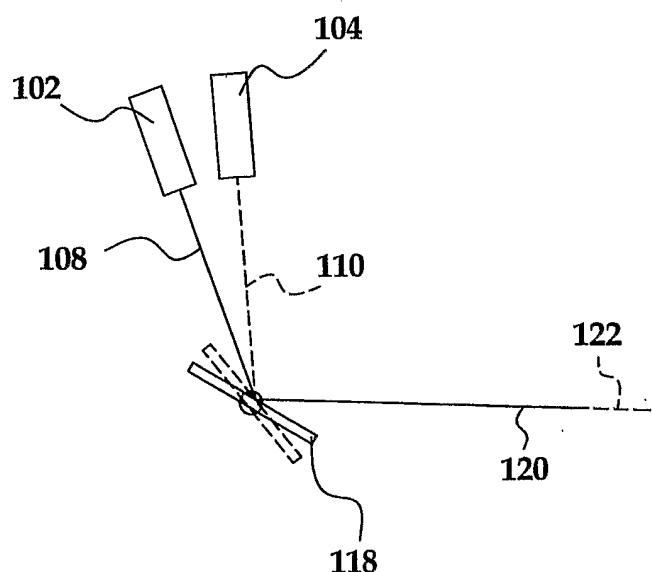
10 On the other hand, if the variations are sufficiently small, then the calibration process may be allowed to continue. At block 504, the controller 142 may derive information regarding the expected magnitude of the reflected laser light at other power levels based on the detected magnitude of the reflected laser light in the first calibration pass. For example, the controller may derive a formula that correlates the magnitude of the transmitted power level 15 with the magnitude of the reflected laser light. The relationship may vary from a simple mathematical approximation based on an average ratio of the total laser light to a more complex algorithm that attempts to account for variations in reflectivity for each color of laser light. Alternatively, a more empirical approach may be had by performing additional scans at varying power levels. These additional scans may be recorded in a series of look-up tables that 20 the controller 142 may later access to estimate the expected magnitude of the reflected laser light. The controller 142 may access the table that most closely matches the current operating conditions of the lasers, or the controller 142 may include algorithms for interpolating between the tables.

Unless specifically stated otherwise, or as is apparent from the discussion, terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical, electronic quantities within the 5 computer system’s registers and memories into other data similarly represented as physical quantities within the computer system’s memories or registers or other such information storage, transmission or display devices.

Those skilled in the art will appreciate that the various system layers, routines, or modules illustrated in the various embodiments herein may be executable control units. The 10 control units may include a microprocessor, a microcontroller, a digital signal processor, a processor card (including one or more microprocessors or controllers), or other control or computing devices. The storage devices referred to in this discussion may include one or more machine-readable storage media for storing data and instructions. The storage media may include different forms of memory including semiconductor memory devices such as dynamic 15 or static random access memories (DRAMs or SRAMs), erasable and programmable read-only memories (EPROMs), electrically erasable and programmable read-only memories (EEPROMs) and flash memories; magnetic disks such as fixed, floppy, removable disks; other magnetic media including tape; and optical media such as compact disks (CDs) or digital video disks (DVDs). Instructions that make up the various software layers, routines, or modules in 20 the various systems may be stored in respective storage devices. The instructions when executed by the control units cause the corresponding system to perform programmed acts.



The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the

details of construction or design herein shown, other than as described in the claims below. Consequently, the method, system and portions thereof and of the described method and system may be implemented in different locations, such as the wireless unit, the base station, a base station controller and/or mobile switching center. Moreover, processing circuitry required 5 to implement and use the described system may be implemented in application specific integrated circuits, software-driven processing circuitry, firmware, programmable logic devices, hardware, discrete components or arrangements of the above components as would be understood by one of ordinary skill in the art with the benefit of this disclosure. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all 10 such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.



CLAIMS**WE CLAIM:**

1. A method for controlling a laser, comprising:
 - 5 Projecting laser light onto a viewing surface;
 - monitoring laser light reflected from the viewing surface; and
 - controlling power delivered by the laser based on the reflected laser light.

1/4

FIGURE 1**FIGURE 2**

2/4

FIGURE 3A**FIGURE 3B**

3/4

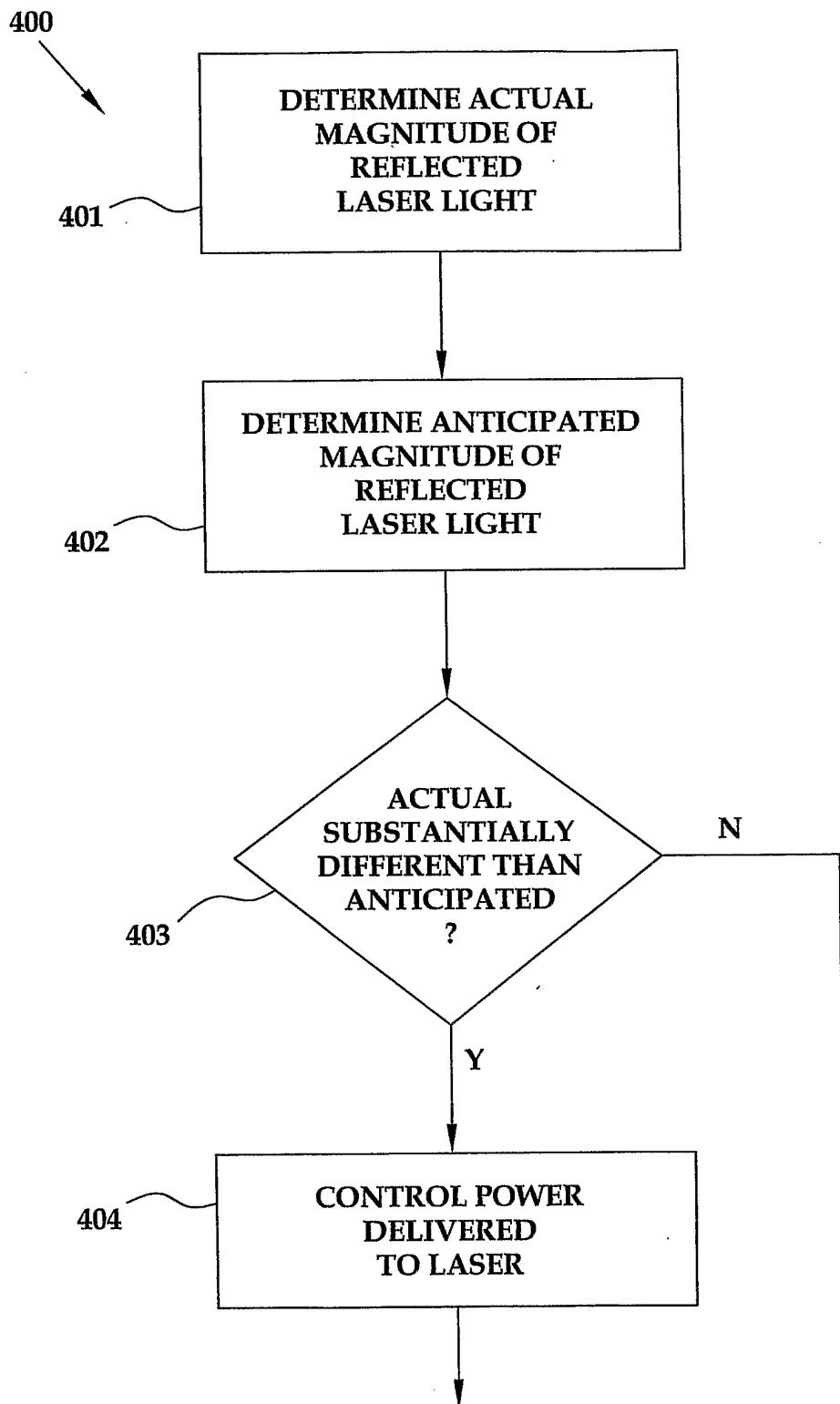
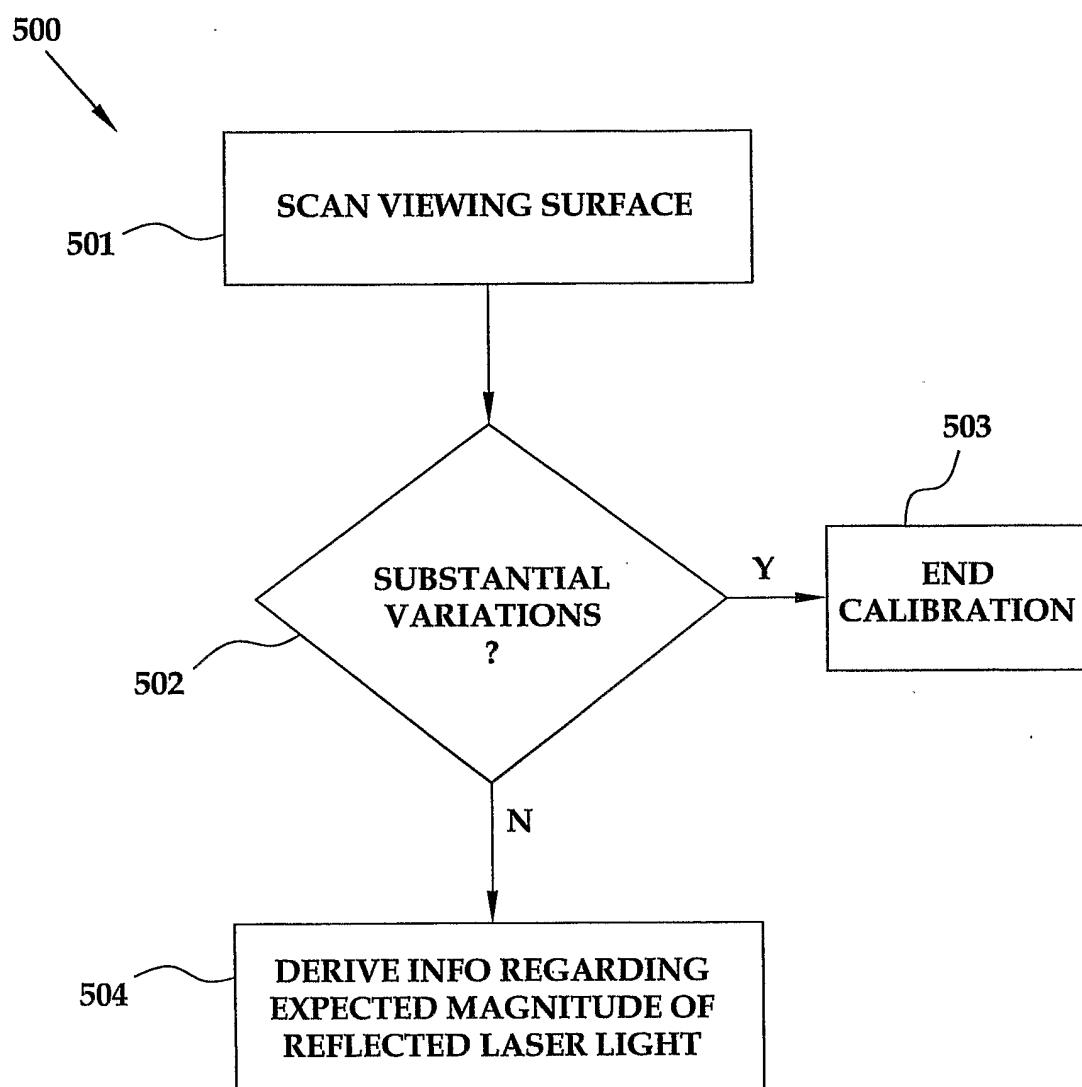



FIGURE 4

FIGURE 5

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US2004/042835

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04N9/31 G03B21/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G08B H04N G03B G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data, INSPEC, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 117 080 A (SONY CORPORATION) 18 July 2001 (2001-07-18) the whole document -----	1
X	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 05, 3 May 2002 (2002-05-03) -& JP 2002 006397 A (SONY CORP), 9 January 2002 (2002-01-09) abstract -----	1
X	PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12, 5 December 2003 (2003-12-05) -& JP 2004 070298 A (SONY CORP), 4 March 2004 (2004-03-04) abstract ----- -/-	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
4 April 2005	31/05/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer PAVON

INTERNATIONAL SEARCH REPORT

1. International Application No
PCT/US2004/042835

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 002 505 A (KRAENERT ET AL) 14 December 1999 (1999-12-14) abstract -----	1

INTERNATIONAL SEARCH REPORT

Oonal Application No

PCT/US2004/042835

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 1117080	A 18-07-2001	JP 2001249399 A		14-09-2001
		EP 1117080 A2		18-07-2001
		US 2001005262 A1		28-06-2001
JP 2002006397	A 09-01-2002	NONE		
JP 2004070298	A 04-03-2004	EP 1513008 A1		09-03-2005
		WO 03104892 A1		18-12-2003
US 6002505	A 14-12-1999	DE 19640404 A1		09-04-1998
		AT 210358 T		15-12-2001
		AU 734560 B2		14-06-2001
		AU 4382497 A		24-04-1998
		BR 9706764 A		20-07-1999
		CA 2237764 A1		09-04-1998
		CN 1209935 A ,C		03-03-1999
		DE 59705662 D1		17-01-2002
		WO 9815127 A1		09-04-1998
		EP 0864230 A1		16-09-1998
		IL 124357 A		19-03-2001
		JP 2994469 B2		27-12-1999
		JP 11501419 T		02-02-1999
		ZA 9707965 A		23-03-1998