
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0304359 A1

Corbett

US 20140304359A1

(43) Pub. Date: Oct. 9, 2014

(54)

(71)

(72)

(21)

(22)

(63)

SYSTEMAND METHOD FOR SPECIFYING
BATCH EXECUTION ORDERING OF
REQUESTS IN A STORAGE SYSTEM
CLUSTER

Applicant: NetApp., Inc., Sunnyvale, CA (US)

Inventor: Peter F. Corbett, Lexington, MA (US)

Appl. No.: 14/310,430

Filed: Jun. 20, 2014

Related U.S. Application Data
Continuation of application No. 12/637,926, filed on
Dec. 15, 2009, now Pat. No. 8,762,416, which is a
continuation of application No. 1 1/119,166, filed on
Apr. 29, 2005, now Pat. No. 7,657,537.

NODE 200

CSTER
SWCNG
FABRIC
150

NODE 200

Publication Classification

(51) Int. Cl.
G06F 5/73 (2006.01)

(52) U.S. Cl.
CPC G06F 15/17331 (2013.01)
USPC .. 709/213

(57) ABSTRACT
A method for operating a computer data storage system is
described. A plurality of requests are received from a client,
each request of the plurality of requests having assigned a
unique sequence number, each request being an input/output
request to a data storage device. The plurality of requests is
divided into a plurality of Subsets of requests. A unique batch
number is assigned to each Subset of requests so that each
Subset of requests is assigned a unique batch number. A first
Subset of requests having a first batch number is executed in
arbitrary order with respect to the sequence number of each
request. A second Subset of requests is executed in response to
a second batch number after execution of all of the first subset
of requests has completed.

DISKARRAY120

US 2014/0304359 A1 Oct. 9, 2014 Sheet 1 of 11 Patent Application Publication

õõŽ EGON
KOTA-HEV-i £ON?HO LENAS YHEJLST?TO

õ?Ž EGON

US 2014/0304359 A1 Oct. 9, 2014 Sheet 2 of 11 Patent Application Publication

WOH-WOLWOH-WOLTWOOT SSHOOV YHELSTATO

qZZZ YHOSSE OORHd

?Z? AYAOINEN

002

YHE LdWCTV/ XIXHOVALEN eZZZ >HOSSE OOR-id

US 2014/0304359 A1 Oct. 9, 2014 Sheet 3 of 11 Patent Application Publication

???? HOW-IXJELNI HO ÕGÊ EGTVTE-CI

^l - - - -^);

C

00€

Patent Application Publication Oct. 9, 2014 Sheet 4 of 11 US 2014/0304359 A1

400

SPINNP PROTOCOL 410

RC 408

UDP 4O6

IP 404

MEDIA ACCESS 402

US 2014/0304359 A1 Oct. 9, 2014 Sheet 5 of 11 Patent Application Publication

555 ?T 555 GW ž55 BH ?g? SNOI LOENNOO q09G HEAVT NOI LOENNOO

ÕÕ5 NOISSES

?95 SNOLLOHNNOO ?09G HERÄVT NOI LOENNOO

US 2014/0304359 A1 Oct. 9, 2014 Sheet 7 of 11 Patent Application Publication

08Z HEGWITIN HOLVE + OZZ XJERINTAN DES + Op 2 ×EGWITN TENNWHO = OOZ CII OHAI GOGG »HEAVTË NO] 10:?NNOO§.§:80GG HHÄVT NOI LOENNOO -099 NOLLOENNOO ?75 MOGNINA ESNOdSEM.|089 MOCININA ? SETTOETH (012 HEGWnN TENNWHO) 029 TENNY/HO

õõ5 NOISSES-§N

08/ HOLW8
ow w was ms on a

had w w w

{{0|.G HELÅVT NOISSES-BOLG HEAVT NOISSES

Patent Application Publication Oct. 9, 2014 Sheet 8 of 11 US 2014/0304359 A1

800

810
INITIALIZE SEQUENCE NUMBERS

INITIALIZE BATCH NUMBERS

ASSGNSEQUENCE NUMBER AND
BATCH NUMBERTO RECUEST

SEND REQUEST

830

YES

815

INCREMENT
BATCH
NUMBER

COMPLETED
BATCH2

NO

INCREMENT SEQUENCE NUMBER

ADDITIONAL

REQUESTS? 1

FIG. 8

Patent Application Publication Oct. 9, 2014 Sheet 9 of 11 US 2014/0304359 A1

905 -900

910 NITIALIZECURRENT SEQUENCENUMBERS

INITIALIZE CURRENT BATCH NUMBERS 915

RECEIVE REQUEST 920

925
REQUEST
SEQUENCE
NUMBERN
RANGE?

930
REQUEST

SEQUENCENUMBER

AREADYUSED
O

MARKSEQUENCE NUMBER AS USED -2-940

-945

RETURN
REJECTION

REQUEST
BATCH NUMBER =
CURRENTBATCH

NUMBER,

PERFORMREQUEST 1000

955
ADDITIONAL
REQUESTS2

NO

FIG. 9A

Patent Application Publication Oct. 9, 2014 Sheet 10 of 11 US 2014/0304359 A1

965

BATCH NUMBER

CURRENT BATCH
NUMBER+11 985

ENGUEUE REQUEST

990
ALL

REQUESTS TO THIS
SEQUENCE NUMBER

RECEIVED? i

YES ADDITIONAL
REQUESTS?

YES NO

increment batch number h' Gid 995
980

PERFORMENQUEUED REQUESTS
WITH NEW BATCH NUMBER

FIG. 9B

Patent Application Publication Oct. 9, 2014 Sheet 11 of 11 US 2014/0304359 A1

1000

1010
PROCESS REQUEST

SEND RESPONSE

1020

1Of 5

REQUEST
SEQUENCE NUMBER

CURRENT SEQUENCE 1
NUMBER

INCREMENT CURRENT
SEQUENCE NUMBER

CURRENT
SEQUENCE NUMBER
RESPONSEALREADY a

SENT 1

FIG 10

US 2014/0304359 A1

SYSTEMAND METHOD FOR SPECIFYING
BATCH EXECUTION ORDERING OF
REQUESTS IN A STORAGESYSTEM

CLUSTER

CROSS-REFERENCE TO RELATED
APPLICATION

0001. The present application is a continuation of U.S.
patent application Ser. No. 12/637,926, titled SYSTEMAND
METHOD FOR SPECIFYING BATCH EXECUTION
ORDERING OF REQUESTS IN A STORAGE SYSTEM
CLUSTER, by Peter F. Corbett, filed on Dec. 15, 2009, which
is a continuation of U.S. patent application Ser. No. 1 1/119,
166, titled SYSTEMAND METHOD FOR SPECIFYING
BATCH EXECUTION ORDERING OF REQUESTS IN A
STORAGE SYSTEM CLUSTER, by Peter F. Corbett, filed
on Apr. 29, 2005, now issued as U.S. Pat. No. 7,657,537 on
Feb. 2, 2010, which is related to U.S. Pat. No. 7,443,872,
entitled SYSTEMAND METHOD FOR MULTIPLEXING
CHANNELS OVER MULTIPLE CONNECTIONS IN A
STORAGE SYSTEM CLUSTER. These patents are hereby
incorporated by reference.

FIELD OF THE INVENTION

0002 The present invention is directed to network proto
cols and, in particular, to ordering of message operation
execution in accordance with a network protocol executing
on a storage system cluster.

BACKGROUND OF THE INVENTION

0003) A storage system typically comprises one or more
storage devices into which information may be entered, and
from which information may be obtained, as desired. The
storage system includes a storage operating system that func
tionally organizes the system by, interalia, invoking storage
operations in Support of a storage service implemented by the
system. The storage system may be implemented in accor
dance with a variety of storage architectures including, but
not limited to, a network-attached storage environment, a
storage area network and a disk assembly directly attached to
a client or host computer. The storage devices are typically
disk drives organized as a disk array, wherein the term “disk’
commonly describes a self-contained rotating magnetic
media storage device. The term disk in this context is synony
mous with hard disk drive (HDD) or direct access storage
device (DASD).
0004. The storage system may be further configured to
operate according to a client/server model of information
delivery to thereby allow many clients to access data contain
ers, such as files and logical units, stored on the system. In this
model, the client may comprise an application, such as a
database application, executing on a computer that “con
nects' to the storage system over a computer network, such as
a point-to-point link, shared local area network (LAN), wide
area network (WAN), or virtual private network (VPN)
implemented over a public network such as the Internet. Each
client may request the services of the storage system by
issuing file-based and block-based protocol messages (in the
form of packets) to the system over the network.
0005. A plurality of storage systems may be intercon
nected to provide a storage system cluster configured to ser
Vice many clients. Each storage system or node may be con
figured to service one or more Volumes, wherein each Volume

Oct. 9, 2014

stores one or more data containers. Communication among
the nodes involves the exchange of information between two
or more entities interconnected by communication links.
These entities are typically Software programs executing on
the nodes. The nodes communicate by exchanging discrete
packets or messages of information according to predefined
protocols. In this context, a protocol consists of a set of rules
defining how the nodes interact with each other.
0006 Each node generally provides its services through
the execution of software modules, such as processes. A pro
cess is a Software program that is defined by a memory
address space. For example, an operating system of the node
may be implemented as a single process with a large memory
address space, wherein pieces of code within the process
provide operating system services, such as process manage
ment. Yet, the node's services may also be implemented as
separately-scheduled processes in distinct, protected address
spaces. These separate processes, each with its own process
address space, execute on the node to manage resources inter
nal to the node and, in the case of a database or network
protocol, to interact with various network entities.
0007 Services that are part of the same process address
space communicate by accessing the same memory space.
That is, information exchanged between services imple
mented in the same process address space is not transferred,
but rather may be accessed in a common memory. However,
communication among services that are implemented as
separate processes is typically effected by the exchange of
messages. For example, information exchanged between dif
ferent addresses spaces of processes is transferred as one or
messages between different memory spaces of the processes.
A known message-passing mechanism provided by an oper
ating system to transfer information between process address
spaces is the Inter Process Communication (IPC) mechanism.
0008 Resources internal to the node may include commu
nication resources that enable a process on one node to com
municate over the communication links or network with
another process on a different node. The communication
resources include the allocation of memory and data struc
tures, such as messages, as well as a network protocol stack.
The network protocol stack, in turn, comprises layers of soft
ware, such as a session layer, a transport layer and a network
layer. The Internet protocol (IP) is a network layer protocol
that provides network addressing between nodes, whereas the
transport layer provides a port service that identifies each
process executing on the nodes and creates a connection
between those processes that indicate a willingness to com
municate. Examples of conventional transport layer protocols
include the reliable connection (RC) protocol and the Trans
mission Control Protocol (TCP).
0009 Broadly stated, the connection provided by the
transport layer, such as that provided by TCP, is a reliable,
securable logical circuit between pairs of processes. A TCP
process executing on each node establishes the TCP connec
tion in accordance with a conventional "3-way handshake'
arrangement involving the exchange of TCP message or seg
ment data structures. The resulting TCP connection is iden
tified by port numbers and IP addresses of the nodes. The TCP
transport service provides reliable delivery of a message
using a TCP transport header. The TCP protocol and estab
lishment of a TCP connection are described in Computer
Networks, 3rd Edition, particularly at pgs. 521-542, which is
hereby incorporated by reference as though fully set forth
herein.

US 2014/0304359 A1

0010 Flow control is a protocol function that controls the
flow of data between network protocol stack layers in com
municating nodes. At the transport layer, for example, flow
control restricts the flow of data (e.g., bytes) over a connec
tion between the nodes. The transport layer may employ a
fixed sliding-window mechanism that specifies the number of
bytes that can be exchanged over the network (communica
tion link) before acknowledgement is required. Typically, the
mechanism includes a fixed sized window or buffer that stores
the data bytes and that is advanced by the acknowledgements.
0011. The session layer manages the establishment or
binding of an association between two communicating pro
cesses in the nodes. In this context, the association is a session
comprising a series of interactions between the two commu
nicating processes for a period of time, e.g., during the span of
a connection. Upon establishment of the connection, the pro
cesses take turn exchanging commands and data over the
session, typically through the use of request and response
messages. Flow control in the session layer concerns the
number of outstanding request messages (requests) that is
allowed over the session at a time. Laggard response mes
sages (responses) or long-running requests may force the
institution of session layer flow control to limit the flow of
requests between the processes, thereby adversely impacting
the session.

0012. A solution that enables a session to continue to
perform at high throughput even in the event of a long-run
ning request or a lost request or response is described in the
above-referenced U.S. Pat. No. 7,443,872 entitled SYSTEM
AND METHOD FOR MULTIPLEXING CHANNELS
OVERMULTIPLE CONNECTIONS IN A STORAGESYS
TEMCLUSTER. Here, a network protocol employs multiple
request channels within a session to allow high levels of
concurrency, i.e., to allow a large number of requests to be
outstanding within each channel. Multiple channels further
allow a plurality of sessions to be multiplexed over the con
nections to thereby insulate the sessions from lost throughput
due to laggard responses or long-running requests.
0013 Broadly stated, each channel is embodied as a
request window that stores outstanding requests sent over the
connection. Each request window has a predetermined initial
sequence window size and the total number of outstanding
requests in a session is the Sum of the window sizes of all the
channels in the session. In addition, each request has a
sequence number that is unique for that request and specifies
its sequence in the channel. Coupling the sequence number
with a defined sequence window size provides flow and con
gestion control, limiting the number of outstanding requests
in the channel. However, if the sequence number is also used
to specify an order of execution of requests, then no requests
can be executed out-of-order or concurrently within the chan
nel. Requests on different channels can be executed concur
rently or out-of-order respect to each other, but there is no way
to enforce an ordering of the requests in different channels
with respect to each other. It is desirable to be able to specify
that a number of requests can be executed in arbitrary order,
but then occasionally insert a barrier that requires that all
requests up to a certain point must be executed before any
request after that point. Additionally, it is desirable to specify
an exact order of execution, while occasionally allowing out
of order execution or, alternately, to permit any intermediate
degree of control from completely ordered execution to com
pletely arbitrary execution ordering.

Oct. 9, 2014

SUMMARY OF THE INVENTION

0014. The present invention overcomes the disadvantages
of the prior art by providing a system and method for speci
fying batch execution ordering of requests in a cluster of
storage systems or nodes. Each node is generally organized as
a network element and a disk element. Each element includes
a cluster fabric interface module adapted to implement a
network protocol, which integrates a session infrastructure
and an application operation set into a session layer. The
network protocol is illustratively a request/response protocol
wherein an element (requester) receiving a data access
request from a client redirects that request to another element
(responder) that services the request and, upon completion,
returns a response.

0015. In the illustrative embodiment, the session layer
manages the establishment and termination of Sessions
between requesters/responders in the cluster and is built upon
a connection layer that establishes connections between the
requesters/responders. Each session comprises a plurality of
channels disposed over the connections, wherein each chan
nel enables multiple requests to be sent over a connection.
Each request is identified by a unique identifier (“requestid’)
that is generally defined as the combination of a channel
number and a sequence number. To that end, each channel is
identified by a channel number, which is unique within the
direction of request flow in the session. In addition, each
request has a sequence number that is unique for that request
and specifies its sequence in the channel.
0016. According to an aspect of the invention, the request
id is extended to include a batch number that provides an
execution ordering directive within a channel. That is, each
request is also assigned a batch number used to impose order
ing of the request within the channel. All requests with the
same batch number in a channel can be executed in arbitrary
order or concurrently by the responder. Ordering is imposed
only when the batch number changes, e.g., increases. Illus
tratively, the batch number increases monotonically with
increasing sequence number. Although more than one request
in a channel can have the same batch number, all requests with
the same batch number are executed before any request with
a higher batch number.
0017 Advantageously, batch execution ordering allows
multiple requests to be executed concurrently or out of
sequence, while explicitly requiring ordering among Subsets
ofrequests. That is, the use of batch numbers within a channel
allows imposition of an ordering constraint on requests in the
channel, as well as issuance of multiple unordered requests in
the channel. Moreover, layering of a batch number on a
requestid allows immediate and certain detection of a bound
ary between batches with no danger of error. In other words,
the batch number enables a responder to determine whether a
request can be immediately executed or must be stalled, and
this determination can always be made optimally based on
other requests received at that point.

BRIEF DESCRIPTION OF THE DRAWINGS

0018. The above and further advantages of invention may
be better understood by referring to the following description
in conjunction with the accompanying drawings in which like
reference numerals indicate identical or functionally similar
elements:

US 2014/0304359 A1

0019 FIG. 1 is a schematic block diagram of a plurality of
nodes interconnected as a cluster in accordance with an
embodiment of the present invention;
0020 FIG. 2 is a schematic block diagram of a node in
accordance with an embodiment of the present invention;
0021 FIG. 3 is a schematic block diagram of a storage
operating system that may be advantageously used with the
present invention;
0022 FIG. 4 is a schematic block diagram illustrating the
format of a SpinnP message in accordance with an embodi
ment of with the present invention;
0023 FIG. 5 is a schematic block diagram illustrating the
organization of cluster fabric interface modules adapted to
implement a SpinnP protocol in accordance with an embodi
ment of the present invention;
0024 FIG. 6 is a schematic block diagram illustrating
channels of a session in accordance with an embodiment the
present invention;
0025 FIG. 7 is a schematic block diagram illustrating the
use of batch numbers within a channel of the session in
accordance with the present invention;
0026 FIG. 8 is a flowchart illustrating a procedure for
specifying batch execution ordering in accordance with the
present invention;
0027 FIG. 9A is a flowchart illustrating a procedure for
processing received batch execution ordered requests in
accordance with the present invention;
0028 FIG.9B is a flowchart illustrating a procedure for
processing received batch execution ordered requests in
accordance with the present invention; and
0029 FIG. 10 is a flowchart illustrating a procedure for
processing requests in accordance with the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

0030 A. Cluster Environment
0031 FIG. 1 is a schematic block diagram of a plurality of
nodes 200 interconnected as a cluster 100 and configured to
provide storage service relating to the organization of infor
mation on storage devices. The nodes 200 comprise various
functional components that cooperate to provide a distributed
storage system architecture of the cluster 100. To that end,
each node 200 is generally organized as a network element
(N-blade 310) and a diskelement (D-blade 350). The N-blade
310 includes functionality that enables the node 200 to con
nect to clients 180 over a computer network 140, while each
D-blade 350 connects to one or more storage devices, such as
disks 130 of a disk array 120. The nodes 200 are intercon
nected by a cluster switching fabric 150 which, in the illus
trative embodiment, may be embodied as a Gigabit Ethernet
switch. An exemplary distributed file system architecture is
generally described in U.S. Pat. No. 6,671,773 titled
METHOD AND SYSTEM FOR RESPONDING TO FILE
SYSTEM REQUESTS, by M. Kazaret al., issued Dec. 30,
2003. It should be noted that while there is shown an equal
number of Nand D-blades in the illustrative cluster 100, there
may be differing numbers of Nand/or D-blades in accordance
with various embodiments of the present invention. For
example, there may be a plurality of N-blades and/or
D-blades interconnected in a cluster configuration 100 that
does not reflect a one-to-one correspondence between the N
and D-blades. As such, the description of a node 200 com
prising one N-blade and one D-blade should be taken as
illustrative only.

Oct. 9, 2014

0032. The clients 180 may be general-purpose computers
configured to interact with the node 200 in accordance with a
client/server model of information delivery. That is, each
client may request the services of the node, and the node may
return the results of the services requested by the client, by
exchanging packets over the network 140. The client may
issue packets including file-based access protocols, such as
the Common Internet File System (CIFS) protocol or Net
work File System (NFS) protocol, over the Transmission
Control Protocol/Internet Protocol (TCP/IP) when accessing
information in the form of files and directories. Alternatively,
the client may issue packets including block-based access
protocols, such as the Small Computer Systems Interface
(SCSI) protocol encapsulated over TCP (iSCSI) and SCSI
encapsulated over Fibre Channel (FCP), when accessing
information in the form of blocks.
0033 B. Storage System Node
0034 FIG. 2 is a schematic block diagram of a node 200
that is illustratively embodied as a storage system comprising
a plurality of processors 222a, b, a memory 224, a network
adapter 225, a cluster access adapter 226, a storage adapter
228 and local storage 230 interconnected by a system bus 223.
The local storage 230 comprises one or more storage devices,
Such as disks, utilized by the node to locally store configura
tion information (e.g., in configuration table 235) provided by
one or more management processes that execute as user mode
applications. The cluster access adapter 226 comprises a plu
rality of ports adapted to couple the node 200 to other nodes
of the cluster 100. In the illustrative embodiment, Ethernet is
used as the clustering protocol and interconnect media,
although it will be apparent to those skilled in the art that other
types of protocols and interconnects may be utilized within
the clusterarchitecture described herein. In alternate embodi
ments where the N-blades and D-blades are implemented on
separate storage systems or computers, the cluster access
adapter 226 is utilized by the N/D-blade for communicating
with other N/D-blades in the cluster 100.

0035. Each node 200 is illustratively embodied as a dual
processor storage system executing a storage operating sys
tem 300 that preferably implements a high-level module,
Such as a file system, to logically organize the information as
a hierarchical structure of named directories, files and special
types of files called virtual disks (hereinafter generally
“blocks”) on the disks. However, it will be apparent to those
of ordinary skill in the art that the node 200 may alternatively
comprise a single or more than two processor System. Illus
tratively, one processor 222a executes the functions of the
N-blade 310 on the node, while the other processor 222b
executes the functions of the D-blade 350.
0036. The memory 224 illustratively comprises storage
locations that are addressable by the processors and adapters
for storing software program code and data structures asso
ciated with the present invention. The processor and adapters
may, in turn, comprise processing elements and/or logic cir
cuitry configured to execute the Software code and manipu
late the data structures. The storage operating system 300,
portions of which is typically resident in memory and
executed by the processing elements, functionally organizes
the node 200 by, inter alia, invoking storage operations in
Support of the storage service implemented by the node. It
will be apparent to those skilled in the art that other process
ing and memory means, including various computer readable
media, may be used for storing and executing program
instructions pertaining to the invention described herein.

US 2014/0304359 A1

0037. The network adapter 225 comprises a plurality of
ports adapted to couple the node 200 to one or more clients
180 over point-to-point links, wide area networks, virtual
private networks implemented over a public network (Inter
net) or a shared local area network. The network adapter 225
thus may comprise the mechanical, electrical and signaling
circuitry needed to connect the node to the network. Illustra
tively, the computer network 140 may be embodied as an
Ethernet network or a Fibre Channel (FC) network. Each
client 180 may communicate with the node over network 140
by exchanging discrete frames or packets of data according to
pre-defined protocols, such as TCP/IP.
0038. The storage adapter 228 cooperates with the storage
operating system 300 executing on the node 200 to access
information requested by the clients. The information may be
stored on any type of attached array of writable storage device
media Such as video tape, optical, DVD, magnetic tape,
bubble memory, electronic random access memory, micro
electro mechanical and any other similar media adapted to
store information, including data and parity information.
However, as illustratively described herein, the information is
preferably stored on the disks 130 of array 120. The storage
adapter comprises a plurality of ports having input/output
(I/O) interface circuitry that couples to the disks over an I/O
interconnect arrangement, such as a conventional high-per
formance, FC link topology.
0039 Storage of information on each array 120 is prefer
ably implemented as one or more storage “volumes” that
comprise a collection of physical storage disks 130 cooper
ating to define an overall logical arrangement of Volume
block number (vbn) space on the Volume(s). Each logical
Volume is generally, although not necessarily, associated with
its own file system. The disks within a logical volume/file
system are typically organized as one or more groups,
wherein each group may be operated as a Redundant Array of
Independent (or Inexpensive) Disks (RAID). Most RAID
implementations, such as a RAID-4 level implementation,
enhance the reliability/integrity of data storage through the
redundant writing of data 'stripes' across a given number of
physical disks in the RAID group, and the appropriate storing
of parity information with respect to the striped data. An
illustrative example of a RAID implementation is a RAID-4
level implementation, although it should be understood that
other types and levels of RAID implementations may be used
in accordance with the inventive principles described herein.
0040 C. Storage Operating System
0041. To facilitate access to the disks 130, the storage
operating system 300 implements a write-anywhere file sys
tem that cooperates with one or more virtualization modules
to “virtualize' the storage space provided by disks 130. The
file system logically organizes the information as a hierarchi
cal structure of named directories and files on the disks. Each
“on-disk” file may be implemented as set of disk blocks
configured to store information, such as data, whereas the
directory may be implemented as a specially formatted file in
which names and links to other files and directories are stored.
The virtualization module(s) allow the file system to further
logically organize information as a hierarchical structure of
blocks on the disks that are exported as named logical unit
numbers (luns).
0042. In the illustrative embodiment, the storage operating
system is preferably the NetApp.R. DataONTAPTM operating
system available from Network Appliance, Inc., Sunnyvale,
Calif. that implements a Write Anywhere File Layout

Oct. 9, 2014

(WAFLTM) file system. However, it is expressly contemplated
that any appropriate storage operating system may be
enhanced for use in accordance with the inventive principles
described herein. As such, where the term “WAFL is
employed, it should be taken broadly to refer to any storage
operating system that is otherwise adaptable to the teachings
of this invention.

0043 FIG. 3 is a schematic block diagram of the storage
operating system 300 that may be advantageously used with
the present invention. The storage operating system com
prises a series of Software layers organized to form an inte
grated network protocol stack or, more generally, a multi
protocol engine 325 that provides data paths for clients to
access information stored on the node using block and file
access protocols. The multi-protocol engine includes a media
access layer 312 of network drivers (e.g., gigabit Ethernet
drivers) that interfaces to network protocol layers, such as the
IP layer 314 and its supporting transport mechanisms, the
TCP layer 316 and the User Datagram Protocol (UDP) layer
315. A file system protocol layer provides multi-protocol file
access and, to that end, includes Support for the Direct Access
File System (DAFS) protocol 318, the NFS protocol 320, the
CIFS protocol 322 and the Hypertext Transfer Protocol
(HTTP) protocol 324. A VI layer 326 implements the VI
architecture to provide direct access transport (DAT) capa
bilities, such as RDMA, as required by the DAFS protocol
318. An iSCSI driver layer 328 provides block protocol
access over the TCP/IP network protocol layers, while a FC
driver layer 330 receives and transmits block access requests
and responses to and from the node. The FC and iSCSI drivers
provide FC-specific and iSCSI-specific access control to the
blocks and, thus, manage exports of luns to either iSCSI or
FCP or, alternatively, to both iSCSI and FCP when accessing
the blocks on the node 200.

0044. In addition, the storage operating system includes a
series of Software layers organized to form a storage server
365 that provides data paths for accessing information stored
on the disks 130 of the node 200. To that end, the storage
server 365 includes a file system module 360 in cooperating
relation with a volume striping module (VSM) 370, a RAID
system module 380 and a disk driver system module 390. The
RAID system 380 manages the storage and retrieval of infor
mation to and from the volumes/disks in accordance with I/O
operations, while the disk driver system 390 implements a
disk access protocol Such as, e.g., the SCSI protocol. The
VSM 370 illustratively implements a striped volume set
(SVS) and cooperates with the file system 360 to enable
storage server 365 to service a volume of the SVS. In particu
lar, the VSM 370 implements a Locate() function 375 to
compute the location of data container content in the SVS
Volume to thereby ensure consistency of Such content served
by the cluster.
0045. The file system 360 implements a virtualization sys
tem of the storage operating system 300 through the interac
tion with one or more virtualization modules illustratively
embodied as, e.g., a virtual disk (vdisk) module (not shown)
and a SCSI target module 335. The Vdisk module enables
access by administrative interfaces, such as a user interface of
a management framework (not shown), in response to a user
(system administrator) issuing commands to the node 200.
The SCSI target module 335 is generally disposed between
the FC and iSCSI drivers 328,330 and the file system 360 to
provide a translation layer of the virtualization system

US 2014/0304359 A1

between the block (lun) space and the file system space,
where luns are represented as blocks.
0046. The file system 360 is illustratively a message-based
system that provides logical Volume management capabilities
for use in access to the information stored on the storage
devices, such as disks. That is, in addition to providing file
system semantics, the file system 360 provides functions
normally associated with a Volume manager. These functions
include (i) aggregation of the disks, (ii) aggregation of storage
bandwidth of the disks, and (iii) reliability guarantees, such as
mirroring and/or parity (RAID). The file system 360 illustra
tively implements the WAFL file system (hereinafter gener
ally the “write-anywhere file system') having an on-disk
format representation that is block-based using, e.g., 4 kilo
byte (kB) blocks and using index nodes (“inodes') to identify
files and file attributes (such as creation time, access permis
sions, size and block location). The file system uses files to
store meta-data describing the layout of its file system; these
meta-data files include, among others, an inode file. A file
handle, i.e., an identifier that includes an inode number, is
used to retrieve an inode from disk.
0047 Broadly stated, allinodes of the write-anywhere file
system are organized into the inode file. A file system (fs) info
block specifies the layout of information in the file system and
includes an inode of a file that includes all otherinodes of the
file system. Each logical Volume (file system) has an fisinfo
block that is preferably stored at a fixed location within, e.g.,
a RAID group. The inode of the inode file may directly
reference (point to) data blocks of the inode file or may
reference indirect blocks of the inode file that, in turn, refer
ence data blocks of the inode file. Within each data block of
the inode file are embedded inodes, each of which may ref
erence indirect blocks that, in turn, reference data blocks of a
file.
0048 Operationally, a request from the client 180 is for
warded as a packet over the computer network 140 and onto
the node 200 where it is received at the network adapter 225.
A network driver (of layer 312 or layer 330) processes the
packet and, if appropriate, passes it on to a network protocol
and file access layer for additional processing prior to for
warding to the write-anywhere file system 360. Here, the file
system generates operations to load (retrieve) the requested
data from disk 130 if it is not resident “in core', i.e., in
memory 224. If the information is not in memory, the file
system 360 indexes into the inode file using the inode number
to access an appropriate entry and retrieve a logical vbn. The
file system then passes a message structure including the
logical vbn to the RAID system 380; the logical vbn is
mapped to a disk identifier and disk block number (disk.dbn)
and sent to an appropriate driver (e.g., SCSI) of the disk driver
system 390. The disk driver accesses the dbn from the speci
fied disk 130 and loads the requested data block(s) in memory
for processing by the node. Upon completion of the request,
the node (and operating system) returns a reply to the client
180 over the network 140.

0049. It should be noted that the software “path’ through
the storage operating system layers described above needed
to perform data storage access for the client request received
at the node may alternatively be implemented in hardware.
That is, in an alternate embodiment of the invention, a storage
access request data path may be implemented as logic cir
cuitry embodied within a field programmable gate array
(FPGA) or an application specific integrated circuit (ASIC).
This type of hardware implementation increases the perfor

Oct. 9, 2014

mance of the storage service provided by node 200 in
response to a request issued by client 180. Moreover, in
another alternate embodiment of the invention, the process
ing elements of adapters 225, 228 may be configured to
offload some or all of the packet processing and storage
access operations, respectively, from processor 222, to
thereby increase the performance of the storage service pro
vided by the node. It is expressly contemplated that the vari
ous processes, architectures and procedures described herein
can be implemented in hardware, firmware or software.
0050. As used herein, the term “storage operating system'
generally refers to the computer-executable code operable on
a computer to perform a storage function that manages data
access and may, in the case of a node 200, implement data
access semantics of a general purpose operating system. The
storage operating system can also be implemented as a micro
kernel, an application program operating over a general-pur
pose operating system, such as UNIX(R) or Windows NTR), or
as a general-purpose operating system with configurable
functionality, which is configured for storage applications as
described herein.

0051. In addition, it will be understood to those skilled in
the art that the invention described herein may apply to any
type of special-purpose (e.g., file server, filer or storage serv
ing appliance) or general-purpose computer, including a stan
dalone computer orportion thereof, embodied as or including
a storage system. Moreover, the teachings of this invention
can be adapted to a variety of storage system architectures
including, but not limited to, a network-attached storage envi
ronment, a storage area network and disk assembly directly
attached to a client or host computer. The term "storage sys
tem’ should therefore be taken broadly to include such
arrangements in addition to any Subsystems configured to
perform a storage function and associated with other equip
ment or systems. It should be noted that while this description
is written in terms of a write anywhere file system, the teach
ings of the present invention may be utilized with any suitable
file system, including a write in place file system.
0.052 D. SpinNP Network Protocol
0053. In the illustrative embodiment, the storage server
365 is embodied as D-blade 350 of the storage operating
system 300 to service one or more volumes of array 120. In
addition, the multi-protocol engine 325 is embodied as
N-blade 310 to (i) perform protocol termination with respect
to a client issuing incoming data access request packets over
the network 140, as well as (ii) redirect those data access
requests to any storage server 365 of the cluster 100. More
over, the N-blade 310 and D-blade 350 cooperate to provide
a highly-scalable, distributed storage system architecture of
the cluster 100. To that end, each blade includes a cluster
fabric (CF) interface module 500a, b adapted to implement a
network protocol that enables intra-cluster communication
among the blades, as described herein.
0054) The protocol layers, e.g., the NFS/CIFS layers and
the iSCSI/FC layers, of the N-blade 310 function as protocol
servers that translate file-based and block based data access
requests from clients into network protocol messages used for
communication with the D-blade 350. That is, the N-blade
servers convert the incoming data access requests into primi
tive operations (commands) that are embedded within mes
sages by the CF interface module 500 for transmission to the
D-blades 350 of the cluster 100. Notably, the CF interface
modules 500 cooperate to provide a single file system image
across all D-blades 350 in the cluster 100. Thus, any network

US 2014/0304359 A1

port of an N-blade that receives a client request can access any
data container within the single file system image located on
any D-blade 350 of the cluster.
0055. Further to the illustrative embodiment, the N-blade
310 and D-blade 350 are implemented as separately-sched
uled processes of storage operating system 300; however, in
an alternate embodiment, the blades may be implemented as
pieces of code within a single operating system process.
Communication between an N-blade and D-blade is thus
illustratively effected through the use of message passing
between the blades although, in the case of remote commu
nication between an N-blade and D-blade of different nodes,
Such message passing occurs over the cluster Switching fabric
150. A known message-passing mechanism provided by the
storage operating system to transfer information between
blades (processes) is the Inter Process Communication (IPC)
mechanism.

0056. The network protocol illustratively described herein
is the Spin network protocol (SpinnP) that comprises a col
lection of methods/functions constituting a SpinnP applica
tion programming interface (API). SpinnP is a proprietary
protocol of Network Appliance of Sunnyvale, Calif. The term
SpinnP is used herein without derogation of any trademark
rights of Network Appliance, Inc. The SpinnP API, in this
context, is a set of Software calls and routines that are made
available (exported) by a process and that can be referenced
by other processes. As described herein, all SpinnP protocol
communication in the cluster occurs via connections. Com
munication is illustratively effected by the D-blade exposing
the SpinNP API to which an N-blade (or another D-blade)
issues calls. To that end, the CF interface module 500 is
organized as a CF encoder and CF decoder. The CF encoder
of, e.g., CF interface 500a on N-blade 310 encapsulates a
SpinnP mesas sage as (i) a local procedure call (LPC) when
communicating a command to a D-blade 350 residing on the
same node 200 or (ii) a remote procedure call (RPC) when
communicating the command to a D-blade residing on a
remote node of the cluster 100. In either case, the CF decoder
of CF interface 500b on D-blade 350 de-encapsulates the
SpinNP message and processes the command.
0057 FIG. 4 is a schematic block diagram illustrating the
format of a SpinnP message 400 in accordance with an
embodiment of with the present invention. The SpinnP mes
sage 400 is illustratively used for RPC communication over
the switching fabric 150 between remote blades of the cluster
100; however, it should be understood that the term “SpinNP
message' may be used generally to refer to LPC and RPC
communication between blades of the cluster. The SpinnP
message 400 includes a media access layer 402, an IP layer
404, a UDP layer 406, a reliable transport layer, such as a
reliable connection (RC) layer 408, and a SpinnP protocol
layer 410. As noted, the SpinnP protocol conveys commands
related to operations contained within, e.g., client requests to
access data containers stored on the cluster 100; the SpinnP
protocol layer 410 is that portion of message 400 that carries
those commands. Illustratively, the SpinnP protocol is data
gram based and, as such, involves transmission of messages
or “envelopes' in a reliable manner from a sender (e.g., an
N-blade 310) to a receiver (e.g., a D-blade 350). The RC layer
408 implements a reliable transport protocol that is adapted to
process such envelopes in accordance with a connectionless
protocol, such as UDP 406.
0058 According to the invention, the SpinnP network
protocol is a multi-layered protocol that integrates a session

Oct. 9, 2014

infrastructure and an application operation set into a session
layer that obviates encapsulation and buffering overhead
typically associated with protocol layering. The session layer
manages the establishment and termination of Sessions
between blades in the cluster and is illustratively built upon a
connection layer that defines a set of functionality or services
provided by a connection-oriented protocol. The connection
oriented protocol may include a framing protocol layer over a
network transport, such as RC and/or TCP, or a memory
based IPC protocol. These connections are formed via the
network transport, or via the local memory-to-memory or
adapter-to-memory transport, and provide a packet/message
transport service with flow control. It should be noted that
other connection-oriented protocols, perhaps over other
transports, can be used, as long as those transports provide the
same minimum guaranteed functionality, e.g., reliable mes
sage delivery.
0059. The SpinNP network protocol is illustratively a
request/response protocol wherein a blade (requester) receiv
ing a data access request from a client redirects that request to
another blade (responder) that services the request and, upon
completion, returns a response. The network protocol is illus
tratively implemented by the CF interface modules 500 and,
as such, a SpinnP session provides a context for uni-direc
tional flow of request messages (requests) and uni-directional
flow of corresponding response messages (responses) to
those requests. Each request consists of one SpinNP message
and generates one response, unless the connection is lost or
the session terminates abnormally. FIG. 5 is a schematic
block diagram illustrating the organization of the CF interface
modules 500a, b adapted to implement the SpinnP protocol in
accordance with an embodiment of the present invention.
Each module 500a, b comprises a SpinnP session layer
510a, b and a connection layer 550a, b.
0060. The SpinnP session layer 510 allows implementa
tion of different operation protocols, hereinafter referred to
generally as "operation interfaces'. Examples of Such inter
faces include a session interface 512 that defines a set of
protocol operations that is used to provide the session infra
structure and a file operations interface 514 that defines file
access operations that are generally translated requests com
ing from external clients. Other interfaces implemented by
the session layer include those used by data management,
system management or other'application” Subsets of cluster
functionality, as needed. Notably, the session infrastructure
operations exist in the network protocol at the same level of
encapsulation as the application operations to enable an effi
cient and highly functional implementation. All interfaces
share common features of the session layer, including creden
tials, authentication, Verification, sessions, recovery, and
response caches. Each operation provided by an interface is
illustratively defined by an interface number coupled with a
procedure number.
0061. As noted, the SpinnP network protocol 410 relies
on connections for reliable message delivery. As such, a ses
sion 600 is disposed over one or more connections 560 and is
illustratively established between a pair of blades or other
participants. For example, a session can be established
between D-blades, between an N-blade and a D-blade, and
between N-blades (if there proves to be a need for N-blade
to-N-blade SpinnP calls). The session can also be used to
inter-connect other entities or agents, including user-space
processes and services, to blades or to each other. Each pair of
blades typically requires only one session to communicate;

US 2014/0304359 A1

however, multiple sessions can be opened simultaneously
between the same pair of blades. Each session requires bi
directional request flow over the same connection. The ses
sion 600 also provides an infrastructure that makes messages
secure and Supports recovery without requiring an additional
protocol layer between the network transport layer (RC or
TCP) and the application layer (e.g., file access operations).
Each session is independently negotiated and initiated to
thereby enable a high level of message concurrency and asyn
chrony.
0062. The connections 560 are established by the connec
tion layers 510a, b and provide the network transport for the
sessions between the blades. At least one connection is
required for each session, wherein the connection is used for
both requests and responses. Although more than one con
nection can be bound to a session, only connections that are
bound to the session can be used to carry the requests and
responses for that session. The connections 560 are bi-direc
tional, allowing message flow in each direction. For example,
requests flow in both directions on each session, thereby
allowing forward (operational) and reverse (callback) flows
to be sent through the same session. Responses for both
directions of request flow are also carried in the session.
Connections that are bound to sessions cannot be shared by
multiple sessions; however, multiple sessions may be multi
plexed onto a single connection. That is, operational and
callback sessions between an N-blade/D-blade pair can be
multiplexed onto a single connection. Sessions can also mul
tiplex operations for different clients and different users.
0063. Each session 600 is illustratively identified by a
globally unique identifier (id) formed of the universal unique
ids (UUIDs) of its two participant blades, with the session
initiator's UUID listed first. The globally unique id is com
bined with a 64-bit uniquifier that is unique for all concurrent
sessions between the pair of blades, regardless of which blade
is the initiator, as well as for any dormant recoverable session
for which any state is still stored on either of the two blades.
The uniquifier may be generated using the current time, indi
cating the time of constructing a session initiation operation,
i.e., SPINNP CREATE SESSION, conveyed within an
appropriate request. The resulting sessionid uniquifier is then
confirmed to be unique by the receiver blade. Note that the id
uniquifier should be unique unless both blades are trying to
create a session to each other simultaneously. If so, eachblade
can counter-propose a different sessionid, possibly by simply
adding a small random number to the original proposed ses
sion id uniquifier.
0064. In the illustrative embodiment, each connection 560
has an assigned priority level and each session 600 is bound to
at least three connections, each of which is independently
flow-controlled and has a different priority level. Illustra
tively, the connections include a high priority level connec
tion 562, a medium priority level connection 564 and a low
priority connection level 566. The priority level indicates the
minimum priority of message that the connection will accept.
To that end, each request has one of the three priority levels:
high, medium and low. Every response is sent with the same
priority as its request. Low priority is used for the vast major
ity of requests and, as such, each session may include multiple
low priority connections 566. Medium priority is used for
Some callback requests. Callback requests are requests that
flow in the reverse of the typical direction, e.g., from server to
client. The medium priority callback requests are those
requests that are issued to inform the client that it must take

Oct. 9, 2014

some action that will allow the server to free some resources
or unblock a different client. Finally, high priority is reserved
for requests that the client issues to fulfill the demands of a
callback. SpinnP session operations can be performed at any
priority.
0065 E. SpinNP Channels
0.066 Each session comprises a plurality of channels dis
posed over the connections that, unlike a session, are not
bound to the channels. FIG. 6 is a schematic block diagram
illustrating channels 620 of a session 600 in accordance with
an embodiment of the present invention. A channel 620 is a
light-weight construct that enables multiple requests to be
sent asynchronously over a connection 560. Each channel
620 is illustratively embodied as a request buffer (request
window 630) capable of storing a plurality of in-flight
requests. Within a session, the session layer 510 selects any
request window 630 with available space to send a request,
thereby obviating the possibility of one long-running or lost
request (or response) blocking the progress (performance) of
the session. Each request window 630 has a predetermined
initial sequence window size and the total number of out
standing requests in a session is the Sum of the window sizes
of all the channels in the session.
0067 Moreover, each channel 620 has an assigned priority
level, e.g., high priority channel 622, medium priority chan
nel 624 and low priority channel 626. Although this arrange
ment imposes a binding between channels and connections of
a particular priority level, the requests for any number of
channels at that priority level can be sent over any set of
connections used to service that priority level. That is, any
request from a channel 620 that is staged in a request window
630 can be sent over any connection 560, as long as the
priority levels of the request, channel and connection are the
same. Although a request is associated with a channel 620 of
the session layer 510, this notion disappears at the connection
layer 550 (and connections 560).
0068. Notably, there is no mapping between channels and
connections; e.g., requests within a channel 620 may be dis
tributed among (sent over) different connections 560 of the
same priority, primarily because the session layer 510 per
forms its own matching of request to response messages
within various sessions. This aspect of the invention enables
the SpinnP session layer 510 to multiplex (i.e., send) requests
from channels 620 (request windows 630) over any connec
tion 560 that is available at the proper priority level. Any
messages delivered over a channel can be annotated at the
receiver with the priority level, which can speed the process
ing of higher priority messages through the layers of process
ing at the receiver. Note that certain numbers of connections
are always kept clear of low priority traffic to keep higher
priority traffic from being delayed unnecessarily by low pri
ority traffic; however, any connection can, in theory, carry any
priority of request. It should be noted that a message sent over
a channel of a given priority may be sent over any connection
of that specified priority or lower. Thus, a message sent over
a high priority channel may utilize a low, medium or high
priority connection.
0069. Each session 600 illustratively contains a limited
number of channels 620, defined during session negotiation.
Initially, each channel 620 is opened with a sequence window
size of one; however, the window size for any channel can be
subsequently negotiated via a SPINNP SET SEQ WIN
DOW SIZE operation. The total number of outstanding
requests in a session is the Sum of the window sizes of all the

US 2014/0304359 A1

channels in the session. This total is also negotiated at session
creation and can be renegotiated at any time. Every time a
channel's sequence window is resized, the new window size
is counted against the total budget available to the session.
0070. Each channel 620 is identified by a channel number,
which is unique within the direction of request flow in the
session. In addition, each request has a sequence number that
is guaranteed to be unique for that request and that specifies
its sequence in the channel. Illustratively, the unique
sequence number of each request is one greater than the
sequence number of the request that immediately precedes it
in the channel. In alternate embodiments, the sequence num
ber may be decremented from the sequence number immedi
ately preceding it. The use of unique sequence numbers for
requests prevents reexecution of replayed or duplicated
requests, and allows the detection of lost requests in a session.
Sequence numbers in each channel wrap-around when the
maximum sequence number is reached. The requester is gen
erally required to issue all requests in a channel in strictly
increasing order until wrap-around, without skipping any
sequence numbers. At wrap-around, the sequence decreases
from its maximum value to Zero, then resumes its strictly
increasing pattern, e.g., S(n)=n mod 2", where S(n) is the
sequence number of the nth request sent on the channel.
0071 Moreover, each request is identified by a unique
identifier (“requestid’), which is placed in a request header of
the request message. A request id is generally defined as the
combination of a channel number and a sequence number.
Each response includes the request id of its corresponding
request in a response header of the response message.
Requests are otherwise distinguished from responses by a
protocol tag byte in the message header, so that each message
in a session is guaranteed to be unique. Note that the session
layer 510 does not depend upon ordering or identifying prop
erties of the connections 560 to resolve the association of a
request to a channel 620, or its sequence in that channel.
0072 Windowing is used within each channel 620 to
accomplish flow control, bounding the maximum number of
outstanding requests per channel, and therefore the total
maximum number of outstanding requests per session.
Request windowing is defined by the combination of a per
request sequence number and a sequence window maintained
on the responder. Only requests that fall within the current
window of the request channel are accepted for processing by
the responder. Any requests outside of the current window are
failed promptly with a SPINNP ERR BADSEQ response.
The window of requests initially accepted Starts at sequence
number 0 and extends to the sequence number equal to that
channel's sequence window size w minus 1. The window on
the responder is only advanced when the responder sends the
response to the oldest outstanding request (the one with the
lowest sequence number). The window of sequence numbers
that the requester is allowed to send is correspondingly
advanced when it receives the response to the oldest outstand
ing request. The requester can then advance the window by
the number of contiguously numbered responses that it has
received at the tail of the window in that channel.

0073. In other words, the responder advances the window
ofrequests it will accept in a channel when it sends a response
for the oldest outstanding request in the window. At any time,
the maximum sequence number that can be accepted in a
channel equals the lowest sequence number of any request
that has not been responded to, plus w-1. The requester can
send a request with sequence number (n+w) mod 2 when it

Oct. 9, 2014

receives the response for the request with sequence number n.
Note that the sequence window affects the size of a response
cache, if Such a cache is kept. Response cache entries are
preserved in the response cache until the responder receives
confirmation that a response has been received. This confir
mation is received implicitly for the request with sequence
number n when the request with sequence number n+w is
received, where w is the window size.
0074 Connections 560 can also be unbound from a ses
sion 600, which is generally performed during the process of
closing a connection. Unbinding a connection from a session
ensures that the connection is flushed of all outstanding
requests and responses. All but one connection can be
unbound from a session at a time without destroying the
session to which it is bound. Unbinding the connection from
a session does not cause the termination of the session. An
abandoned session will eventually time itself out and termi
nate. However, a session that is reconnected before the tim
eout period expires does not lose its session state or identity.
A connection can buffer and queue requests and responses,
but it is expected to deliver complete messages to a SpinnP
target as quickly as possible.
(0075 Specifically, a session 600 is closed by a SPINNP
CLOSE SESSION operation, which also unbinds the last
connection in the session. Individual connections can be dis
associated from a session by a SPINNP UNBIND CON
NECTION operation. Session termination unbinds all con
nections in the session. Safe termination of a session requires
that all requests in the connections are delivered, and all the
matching responses are received before the connections are
unbound. Immediate termination of a session unbinds the
connections without guaranteeing delivery of outstanding
requests or responses. The SPINNP CLOSE SESSION
operation takes an enumerator argument to specify the man
ner in which connections are unbound in the session. Imme
diate session termination should only be used in the event of
a failure where rapid recovery is needed, or in the event of an
immediate need to remove a node from the cluster.
(0076 F. Batch Execution Ordering
0077. The present invention is directed to a system and
method for specifying batch execution ordering of requests in
a cluster of nodes. The strict sequence numbering of requests
in each channel provides a capability of defining the ordering
of request execution within the channel. According to an
aspect of the invention, the requestidis extended to include a
batch number that provides an execution ordering directive
within a channel. That is, each request is also assigned a batch
number used to impose ordering of execution the request
within the channel. All requests with the same batch number
in a channel can be executed in arbitrary order or concurrently
by the responder. Any requests that have different batch num
bers in the same channel are executed in order of ascending
batch number. Illustratively, requests within different chan
nels may be executed in an arbitrary order with respect to each
other.
0078. Any number of contiguous requests (i.e., requests
with a contiguous set of sequence numbers) in a channel can
be issued with the same batch number. Ordering is imposed
only when the batch number changes, e.g., increases. Illus
tratively, the batch number increases monotonically in order
of increasing sequence number, such that B(S1)>=B(s2) if
S1 >S2 where S1 and S2 are sequence numbers and B(S) is the
batch number of the request with sequence numbers. More
over, the batch number illustratively increases only in incre

US 2014/0304359 A1

ments of one, e.g., either B(n+1)-B(n) or B(n+1)=(B(n)+1)
mod 2, where B(n) is the batch number of the nth request
sent on a channel. Although more than one request in a chan
nel can have the same batch number, all requests with the
same batch number B are executed before any request with
batch number B+1 or higher.
0079. In the illustrative embodiment, the batch number is
a 32-bit value, allowing window sizes to be effectively unlim
ited (maximum of 2°-1). The number of requests in a chan
nel is generally limited to a sequence window size, with the
outstanding requests having sequence numbers that fall
within the range of the sequence window of each other. In
addition, the magnitude of the batch numbers is large enough
Such that the numbers cannot wrap-around within the
sequence window, i.e., bmax>seq window. Nevertheless, the
batch number can wrap-around independently of the
sequence number. That is, batch numbers and sequence num
bers can wrap-around independently in a binary numbering
scheme.
0080 FIG. 7 is a schematic block diagram illustrating the
use of batch numbers within a channel of a session in accor
dance with the present invention. Each channel 620 is illus
tratively embodied as a request window 630 within the ses
sion layer 510a (e.g., at a requester blade/element) and a
response window 640 within session layer 510b (e.g., at a
responder blade/element). Each window 630, 640 has a
sequence number range for storing outstanding requests sent
over a connection 560; each request is identified by a unique
request id 700:

Request ID 700=Channel Number 710+Sequence
Number 720--Batch Number 730

I0081 wherein (i) the channel number 710 specifies the
channel 620 over which the request is sent from, e.g., an
N-blade 310 to a D-blade 350, (ii) the sequence (seq) number
720 specifies the sequence of that request within the channel
and (iii) the batch number 730 specifies the ordering imposed
on that request within the channel. The request (req) id 700
thus specifies the order in which requests are sent over the
channel between the blades in the cluster.
0082. As noted, requests (i.e., Req ID 700) having the
same batch number 730 within a channel can be executed at a
responder (e.g., D-blade 350) in any order. For example,
requests with Seq numbers 1-5 can be executed in any order
because they are all associated with batch number 1. How
ever, execution of each of those requests must be completed
before the request with seq number 6 can be executed because
the latter request is associated with a different batch number,
e.g., batch number 2. Similarly, execution of the request with
seq number 6 must be completed before the request with seq.
number 7 can be executed because that later request is asso
ciated with batch number 3.
0083. According to another aspect of the invention, the
responder does not execute a request associated with a differ
ent batch number until it identifies a transition or boundary
between an immediately preceding batch number and a next
batch number, and determines that all intervening requests
associated with the preceding batch number have been com
pleted. In this context, a “boundary may be defined as the
point at which the preceding seq numbers in the preceding
batch number B(n) moves to the next seq numbers+1 in the
next batch number B(n+1). A key to the operation of batch
numbering is that boundaries between adjacent batches can
be identified with complete certainty, since the sequence
numbers 720 establish an exact order in which the requests

Oct. 9, 2014

are issued, regardless of their order of arrival at the responder.
Once the first request in a batch is identified and all requests
in the immediately preceding batch have been executed, any
requests in the next (current) batch that have been received by
the responder can be executed, even if the entire batch has not
yet been seen. The responder maintains a current batch index,
and any request arriving with that batch number can be dis
patched immediately. Any request with a higher batch num
ber is delayed until the transition from the previous batch
number to the new batch number is observed in a pair of
requests that have adjacent sequence numbers, and all
requests in the previous batch have been received and pro
cessed.

I0084 Batch numbering can be used to achieve several
different ordering behaviors within a channel. For example, a
completely unordered set of requests can be sent on a channel
by issuing all the requests with the same batch number. Such
un-ordered behavior can extend indefinitely, although the
number of outstanding requests at any one time is always
limited by the size of the sequence window. In addition, a
strictly ordered sequence of requests can be issued with
strictly increasing batch numbers, incremented by one each
time. Furthermore, a mixture of ordered and unordered opera
tions can be sent on a channel. As an example, a requester may
first lock a byte range of a file, then perform multiple unor
dered I/O operations to that byte range.
I0085. A common usage of batch execution ordering
involves SCSI protocol processing, wherein barrier opera
tions are inserted into a channel of requests that is otherwise
unordered within arbitrarily large groups of requests. All
operations occurring prior to the barrier must be completed
before any operations after the barrier are executed. Accord
ing to the invention, ordering can be achieved by increment
ing the batch number when a barrier is encountered. Batch
numbering of requests further allows the benefits of explicit
request ordering controls, while also allowing request chain
ing (as in DAFS) without depending on in-order message
delivery. This feature of the invention offers the benefits of
NFSv4 compound without its extra layer of request encapsu
lation.

I0086 FIG. 8 is a flowchart illustrating a procedure 800 for
specifying batch execution ordering of requests in accor
dance with an embodiment the present invention. The proce
dure 800 illustrates the steps performed by a requestor origi
nating a series of requests. The procedure starts in step 805
and continues to step 810 where requester initializes the
sequence numbers to be utilized. Then, in step 815, the
requester initializes the batch numbers to be utilized. This
initialization of sequence and batch numbers may be accom
plished by starting the sequence and batch numbers from
predetermined values, e.g., Zero. In step 820, a sequence
number and a batch number are assigned to a request, which
is then sent to the destination (responder) in step 825. The
requester then, in step 830, determines whether it has com
pleted the current batch. If it has completed the current batch,
the requester branches to step 835 and increments the batch
number before continuing to step 840. However, if the batch
has not been completed, the requester branches from step 830
to step 840. In step 840 the requestor increments the sequence
number. The requester then determines in step 845, whether
there are additional requests. If there are no additional
requests, the procedure ends in step 850. However, if there are
additional requests, the procedure branches back to step 820

US 2014/0304359 A1

and the next request is assigned the newly incremented
sequence number and batch number.
I0087 FIGS. 9A and 9B are flowcharts illustrating a pro
cedure 900 for processing received requests including batch
numbers by a responder in accordance with an embodiment
of the present invention. The procedure 900 begins in step 905
and proceeds to step 910 where the responder initializes the
current sequence number. Then, in step 915, the responder
initializes the current batch number. The responder then
receives a request in step 920. In step 925, the responder
determines if the sequence number of the request is within an
acceptable range. The acceptable range is illustratively the
window size. For example, if the window size is 10 and the
current sequence number is 70, only those messages with
sequence numbers 70-79 are within the window. If so, the
responder then, in step 930 determines whether the request
sequence number has already been utilized. If the answer is
negative for step 925 or yes for step 930, the responder
branches to step 935 and returns a rejection message.
0088. However, if the sequence number is in the appropri
ate range and the sequence number has not previously been
utilized, the responder then marks the sequence number as
used in step 940. The responder then determines whether the
batch number associated with request equals the currentbatch
number. If the batch numbers match, the responder continues
to step 1000 where the request is performed. Step 1000 is
described infurther detail below in reference to FIG.10. Once
the request is performed, the responder determines, in step
955, whether there are additional requests. If there are no
additional requests, the procedure ends in step 960. However
if, in step 955, it is determined that there are additional
requests, the responder loops back to step 920 to receive the
next request.
I0089. If, in step 945 it is determined that the batch number
associated with the request does not equal the current batch
number, the responder branches to step 965 where it deter
mines if the requests batch number equals the current batch
number plus one. If it does not, the requester branches to step
985, where the responder enqueues the request for later pro
cessing before determining, in step 990, whether additional
requests. If there are no additional requests, the responder
ends in step 995. However, if there are additional requests, the
procedure loops back to step 920.
0090. Ifin step 965 it is determined that the request’s batch
number equals the current batch number plus one, the
responder continues to step 970, where a determination is
made whether all requests up to the sequence number have
been received. If so, the batch number is incremented in step
975 and all enqueued requests with the new batch number are
performed in step 980. The responder then continues to step
1000 to perform the current request. If, in step 970 it is
determined that all requests up to the sequence number have
not been received, the responder branches to step 985 and
enqueues the request as described above.
0091 FIG. 10 is a flowchart illustrating a procedure 1000
for performing the requestinaccordance with an embodiment
the present invention. The procedure 1000 begins in step 1005
and continues to step 1010 where the request is processed.
This may be accomplished by, for example, passing the
operations to the file system for processing. The requests
response is then sent in step 1015. The response may com
prise a status indicator or, in the case of a read operation, the
requested data. Then, in step 1020, a determination is made
whether the requests sequence number equals the current

Oct. 9, 2014

sequence number. If they are not equal, the responder
branches to step 1035 and ends. However if they are equal, the
sequence window may then be propagated forward as the
oldest sequence number has been processed. As such, the
procedure then increments the current sequence number in
step 1025 before deciding, in step 1030 whether the current
sequence number has already had a response sent. if a
response has not already been sent, the procedure then ends in
step 1035. However, if a response has already been sent, the
procedure loops back to step 1025 and further increments the
current sequence number.
0092 Advantageously, batch execution ordering allows
multiple requests to be executed concurrently or out of
sequence, while explicitly requiring ordering among Subsets
ofrequests. That is, the use of batch numbers within a channel
allows imposition of an ordering constraint on requests in the
channel, as well as issuance of multiple unordered requests in
the channel. Layering of a batch number on a request ID
allows immediate and certain detection of a boundary
between batches with no danger of error. In other words, the
batch number enables a responder to determine whether a
request can be immediately executed or must be stalled, and
this determination canalways be made optimally based on the
requests received at that point.
0093 Moreover, batch numbering allows a client to
specify a precise ordering of batches of requests of any size
with respect to each other. This provides a solution to con
straints imposed on network protocols by SCSI, NFS, CIFS
and any arbitrary protocol that may require ordering of
request execution, while retaining the benefits offlow control,
resource constraining and immunity to long-running
requests, provided by multiple channels and per-request
sequence numbers with predetermined sequence windows.
Strict ordering is possible simply by incrementing the batch
number by one for every request sent. Complete unordered
execution is possible by sending all requests with the same
batch number. Any intermediate level of ordering is possible,
including sending a stream of unordered requests with the
knowledge that some future request may need to be ordered,
but without knowing how many requests need to be issued
before the request requiring ordering is issued.
0094 Batch ordering further provides a substantial
improvement over the ordering mechanism in NFS and
improves upon the ordering mechanism in DAFS, while Sup
porting the type of ordering needed to achieve an efficient
implementation of SCSI in a client/server model. The novel
ordering capability provided by the batch numbers is pro
vided at little cost in either requester/responder endpoint of
the session. Both endpoints maintain a current batch number
and the responder enqueues requests that are from a higher
batch than the current batch number. However, the number of
Such requests in a channel is limited by the sequence number
window size.
0.095 The foregoing description has been directed to par
ticular embodiments of this invention. It will be apparent,
however, that other variations and modifications may be made
to the described embodiments, with the attainment of some or
all of their advantages. Specifically, it should be noted that the
principles of the present invention may be implemented in
non-distributed file systems. Furthermore, while this descrip
tion has been written in terms of N and D-blades or elements,
the teachings of the present invention are equally suitable to
systems where the functionality of the N and D-blades are
implemented in a single system. Alternately, the functions of

US 2014/0304359 A1

the N and D-blades may be distributed among any number of
separate systems, wherein each system performs one or more
of the functions. Additionally, the procedures, processes, lay
ers and/or modules described herein may be implemented in
hardware, Software, embodied as a computer-readable
medium having program instructions, firmware, or a combi
nation thereof. Therefore, it is the object of the appended
claims to coverall such variations and modifications as come
within the true spirit and scope of the invention.
What is claimed is:
1. A computer data storage system apparatus, comprising:
a plurality of requests received from a client, each request

of the plurality of requests having assigned a unique
sequence number, each request being an input/output
request to a data storage device;

a plurality of subsets of requests formed by dividing the
plurality of requests into Subsets;

a unique batch number assigned to each Subset of requests;
a processor to execute a first Subset of requests having a

first batch number in arbitrary order with respect to the
sequence number of each request; and

the processor to execute a second Subset of requests having
a second batch number in arbitrary order with respect to
the sequence number of each request, after execution of
all of the first subset of requests, having the first batch
number, have completed, where execution of the second
Subset of requests, further comprises:
the processor further configured to receive a particular

request having a different batch number than the first
batch number and the second batch number, enqueue
the particular request in response to the different
batch number of the particular request not being the
second batch number plus one, and perform at least
one of enqueing the particular request and processing
the particular request in response to the different
batch number of the particular request being the sec
ond batch number plus one.

2. The apparatus as in claim 1, further comprising:
an optical storage device used as the data storage device.
3. The apparatus as in claim 1, further comprising:
a magnetic tape used as the data storage device.
4. The apparatus as in claim 1, further comprising:
a bubble memory used as the data storage device.
5. The apparatus as in claim 1, further comprising:
an electronic memory used as the data storage device.
6. The apparatus as in claim 1, further comprising:
a micro-electro mechanical device used as the data storage

device.
7. The apparatus as in claim 1, further comprising:
a media configured to store information used as the data

storage device.
8. A method for operating a computer data storage system,

comprising:
receiving a plurality of requests from a client, each request

of the plurality of requests having assigned a unique
sequence number, each request being an input/output
request to a data storage device;

dividing the plurality of requests into a plurality of subsets
of requests;

Oct. 9, 2014

assigning a unique batch number to each Subset of requests
So that each Subset of requests is assigned a unique batch
number, and

using the batch number as an execution ordering directive
So that a plurality of requests having the same batch
number are executed before a plurality of requests hav
ing a second batch number, and execution of the requests
with the same batch number is arbitrary of the sequence
number of the requests, wherein during the execution of
a current batch number, a particular request is received
and associated with a different batch number that is
different than the current batch number being executed,
and the particular request is at least one of enqueued or
processed based on the different batch number being the
current batch number plus one.

9. The method as in claim 8, further comprising:
using an attached array of writable storage device media as

the data storage device.
10. The method as in claim 8, further comprising:
using an optical storage device as the data storage device.
11. The method as in claim 8, further comprising:
using a magnetic tape as the data storage device.
12. The method as in claim 8, further comprising:
using a bubble memory as the data storage device.
13. The method as in claim 8, further comprising:
using an electronic memory as the data storage device.
14. The method as in claim 1, further comprising:
using a micro-electromechanical device as the data storage

device.
15. The method as in claim 8, further comprising:
using a media configured to store information as the data

storage device.
16. A computer readable medium containing executable

program instructions executed by a processor, comprising:
program instructions that receive a plurality of requests

from a client, each request of the plurality of requests
having assigned a unique sequence number, each
request being an input/output request to a data storage
device;

program instructions that divide the plurality of requests
into a plurality of Subsets of requests;

program instructions that assign a unique batch number to
each Subset of requests so that each Subset of requests is
assigned a unique batch number; and

program instructions that use the batch number as an
execution ordering directive so that a plurality of
requests having the same batch number are executed
before a plurality of requests having a second batch
number, and execution of the requests with the same
batch number is arbitrary of the sequence number of the
requests, wherein during the execution of a current batch
number, a particular request is received and associated
with a different batch number that is different than the
current batch number being executed, and the particular
request is at least one of enqueued or processed based on
the different batch number being the current batch num
ber plus one.

