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(57) ABSTRACT 

Computer implemented techniques for the partitioned simu 
lation of parallel architectures are disclosed. A high-level 
design for simulation is obtained. A graph representation for 
the high-level design is determined. The graph for the high 
level design is partitioned into Sub-graphs. A Subset of the 
Sub-graphs is selected for simulation based on input-change 
bits of the sub-graphs. The subset of the sub-graphs is subse 
quently evaluated on parallel architectures in order to produce 
a simulation result for the high-level design. 
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SELECTIVE EXECUTION FOR 
PARTITIONED PARALLEL SIMULATIONS 

RELATED APPLICATIONS 

0001. This application claims the benefit of U.S. provi 
sional patent application “Simulation on Massively Parallel 
Architectures” Ser. No. 61/639,799, filed Apr. 27, 2012. The 
foregoing application is hereby incorporated by reference in 
its entirety. 

FIELD OF ART 

0002 This application relates generally to semiconductor 
circuit simulation and more particularly to selective execu 
tion of partitioned parallel simulation. 

BACKGROUND 

0003 Modern electronic systems designs contain numer 
ous components including digital, analog, and high frequency 
components, all of which can be problematic to design. The 
design process may comprise top-down decomposition and/ 
or bottom-up assembly. Feature sizes of the components mak 
ing up the electronic systems now are routinely smaller than 
the wavelength of visible light. In addition, the rapid change 
of the market and consumer demands drives ever-increasing 
performance, feature sets, Versatility, and various other sys 
tem factors which inject contradictory design requirements 
into design processes. Logic systems are routinely con 
structed from tens or even hundreds of millions of transistors. 
System designers are required to balance system perfor 
mance, physical size, architectural complexity, power con 
Sumption, heat dissipation, fabrication complexity, and cost, 
to name only a few. Each of the related design decisions drive 
profound impacts on the resulting design. To handle the 
design complexity, developers create specifications around 
which to design their systems. The specifications attempt to 
balance the many disparate demands being made of the logic 
system and to contain what can easily be exploding design 
complexity. 
0004 Systems may be described at a variety of levels of 
abstraction ranging from low-level transistor layouts to high 
level description languages. Most designers describe and 
design their electronic systems at a high-level of abstraction 
using an IEEE standard hardware description language 
(HDL) such as Verilog, SystemVerilogTM, or VHDL. The 
high-level HDL is easier for developers to comprehend, espe 
cially for a vast system, and may describe highly complex 
concepts that are difficult to grasp using a lower level of 
abstraction. The HDL description may be converted into 
other levels of abstraction as is helpful to the developers. For 
example, a high-level description may be converted to a logic 
level register transfer level (RTL) description, a gate-level 
(GL) description, a layout-level description, or a mask-level 
description. Each lower abstraction level introduces more 
detail into the design description. The lower-levels of abstrac 
tion may be generated automatically by computer, derived 
from a design library, or created by another design automa 
tion technique. Therefore, it is critical to ensure that the 
performance of the resulting lower-level designs is still 
capable of matching the requirements of the system's speci 
fication. The process of comparing a system design to a 
design specification (or one level of abstraction to another) 
can be called verification. Verification of modern electronic 
systems can ensure that a device under test (DUT) is simu 
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lated so that the behavior of the DUT is shown to match a 
system specification for the electronic design. 

SUMMARY 

0005 Techniques implemented for the verification of inte 
grated circuits are required to stimulate the device under test 
(DUT) to a sufficient extent to ensure that the device matches 
a design specification. Further, the Verification process, 
which is by necessity computationally intensive, must be 
undertaken in Such a way as to minimize both test duration 
and computer resource utilization. A computer-implemented 
method for design simulation is disclosed comprising: 
obtaining a high-level design for simulation; determining a 
graph representation for the high-level design; partitioning 
the graph representation into Sub-graphs; selecting a Subset of 
the Sub-graphs for simulation based on input-change bits; and 
evaluating the Subset of the Sub-graphs to produce a simula 
tion result for the high-level design. 
0006. The method may further comprise propagating the 
simulation result, based on the evaluating of the subset of the 
Sub-graphs, to a remainder of the graph representation for 
further simulation. The subset of the sub-graphs for simula 
tion may be selected based on an input-change bit, for each 
Sub-graph in the Subset of the Sub-graphs, being set to true. 
The partitioning may further comprise determining Sub 
graphs based on levels of logic. The partitioning into Sub 
graphs may be based on reducing a number of signals cross 
ing Sub-graph boundaries. The method may further comprise 
using one or more of the input-change bits on a level as part of 
the selecting of the Subset for simulation. The evaluating may 
be based on an oblivious simulation model. The method may 
further comprise allocating processes from the oblivious 
simulation model to a plurality of processors. The method 
may further comprise selectively evaluating the processes 
based on an input change bit set being set to valid. The graph 
representation may include a control data flow graph. The 
control data flow graph may include a graph of a combina 
tional region of the high-level design and a state region of the 
high-level design. The partitioning may include creating 
value locality. The partitioning may include creating event 
change locality. The partitioning may include balancing of 
levels. The partitioning may include collecting of readers of a 
simulation value. The partitioning may include separating 
primitives evenly across clusters within a level. The partition 
ing may include clustering sibling primitives. The method 
may further comprise modifying clock gating. The modifying 
clock gating may include moving gating to storage elements. 
The modifying clock gating may include eliminating a clock 
gate to a combinational logic portion. The modifying clock 
gating may be only for simulation purposes. The clock gating 
may be restructured to combine phases and to occur on an 
active edge of clock. The method may further comprise deter 
mining that an output of one of the Sub-graphs has a change of 
state and copying that change of state to a processor where a 
process for a second sub-graph uses that change of State as 
input to the second Sub-graph. The method may further com 
prise copying a sequence of changes of state for that output of 
one of the Sub-graphs and using the sequence as a series of 
inputs to the second Sub-graph. The method may further 
comprise copying the high-level design and simulating the 
high-level design as well as its copy on at least two different 
processors. The copying may be performed to accomplish the 
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simulating. The method may further comprise maintaining 
primitives with the same functionina single cluster within the 
copy of the high-level design. 
0007. In embodiments, a computer system for design 
simulation may comprise: a memory which stores instruc 
tions; one or more processors coupled to the memory wherein 
the one or more processors are configured to: obtain a high 
level design for simulation; determine a graph representation 
for the high-level design; partition the graph representation 
into Sub-graphs; select a Subset of the Sub-graphs for simula 
tion based on input-change bits; and evaluate the Subset of the 
Sub-graphs to produce a simulation result for the high-level 
design. In some embodiments, a computer program product 
embodied in a non-transitory computer readable medium for 
design simulation may comprise: code for obtaining a high 
level design for simulation; code for determining a graph 
representation for the high-level design; code for partitioning 
the graph representation into Sub-graphs; code for selecting a 
Subset of the Sub-graphs for simulation based on input 
change bits; and code for evaluating the Subset of the Sub 
graphs to produce a simulation result for the high-level design 
0008 Various features, aspects, and advantages of various 
embodiments will become more apparent from the following 
further description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0009. The following detailed description of certain 
embodiments may be understood by reference to the follow 
ing figures wherein: 
0010 FIG. 1 is a flow diagram for partitioned simulation. 
0011 FIG. 2 is a flow diagram for partitioning. 
0012 FIG. 3 is a flow diagram for sub-graph usage. 
0013 FIG. 4 is an example logic block diagram. 
0014 FIG. 5 is an example flow graph of the logic design. 
0015 FIG. 6 is an example flow graph showing example 
partitions. 
0016 FIG. 7 is an example levelized hypergraph. 
0017 FIG. 8 is an example logic block for selective evalu 
ation. 
0018 FIG. 9 is an example logic combination to phase 
reduction. 
0019 FIG. 10 is a system diagram for partitioned simula 

tion. 

DETAILED DESCRIPTION 

0020 Electronic circuit designs are vastly complex sys 
tems. Verification of these systems, and portions thereof, is 
critical to produce properly functioning logic designs. Many 
simulation techniques, including event driven simulation and 
oblivious simulation, have been proposed to aid in this veri 
fication process. Event driven simulation, as opposed to 
oblivious simulation, can maintain a time-ordered queue of 
waiting processes. Events are added to the list at various 
times, and are typically processed in the order in which they 
arrive. Processing an event may generate more events or alter 
the order of the list of pending events. The components of the 
electronic system which experience value changes (i.e. the 
one or more inputs that have changed) are added to the queue 
of pending processes. Thus, simulation computation is lim 
ited to design components which undergo input changes. In 
contrast, oblivious simulation evaluates all components of the 
design regardless of whether or not a given component has 
experienced a value change. Changes to input values are not 
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monitored, and no queue insertion is performed. However, in 
this type of simulation, a computation of every component is 
performed for every simulation process; this often leads to 
redundant and unnecessary computations. Thus, the choice of 
a simulation approach and how that approach is implemented 
is critical to minimizing simulation time while maximizing 
effectiveness. 

0021. Both the event driven and oblivious simulation 
approaches may be parallelized, though the process is differ 
ent in each approach. Parallel event driven simulation 
employs multiple time-ordered queues and processes, and 
assigns sections of the design to a time-ordered queue run 
ning on a processor. Since the time-ordered queues must be 
chronologically synchronized, this approach is often limited 
to few processors. It does not scale to large numbers of pro 
cessors because synchronization costs are prohibitively high 
and processor work assignments are uneven, thus Saturating 
one processor with tasks while others remain idle. On the 
other hand, parallel oblivious simulation simplifies queue 
synchronization because only a single synchronization is 
required per level of the simulation model. Parallel oblivious 
simulation does perform redundant (i.e. unnecessary) opera 
tions. However, in a simulation with many value changes per 
design clock cycle or simulation cycle, parallel oblivious 
simulation is more efficient than parallel event driven simu 
lation because of lower computational and synchronization 
demands. 

0022. The oblivious simulation model presents a static 
simulation view which both allows for efficient partitioning 
under multiple constraints and efficient allocation of tasks to 
clusters of processors. The oblivious model may be instru 
mented for selective execution of processes, thus reducing 
computational overheadby removing from a simulation cycle 
static portions of the model which do not change in a given 
cycle. A control data flow graph (CDFG) representing the 
description of the electronic system can be folded into a graph 
of the combinational and state regions. The CDFG may then 
be partitioned statically in order to create a locality of read 
and write values, balance computations by level, determine 
event change locality, and calculate the number of unique 
node (primitive) type reductions perpartition. Such partition 
ing is accomplished by collecting most or all readers of a 
simulation value into the same cluster, partitioning primitives 
evenly across clusters, clustering 'sibling primitive 
instances together, limiting the number of unique primitives 
generated, and clustering for a small number of unique primi 
tives. The statically partitioned CDFG can be instrumented 
with a single input change bit per cluster of nodes in a given 
level. Thus, such selective evaluation can skip the evaluation 
of a cluster for which the change bit is false. In this system, a 
collection of change bits is gathered in a bit set that is both 
updated and traversed in parallel by allocating each bit to a 
processing thread. 
0023. In the disclosed concept, a control data flow Graph 
(CDFG) may be assigned to an RTL representation of a high 
level design and partitioning performed. Each partitioning 
constraint is satisfied by collecting most or all readers of a 
particular simulation value into the same cluster. This reduces 
the number of necessary writes by the result writer, as well as 
evenly partitioning primitives in a level across clusters. Clus 
tering of sibling primitive instances from multiple instances 
of large user blocks (e.g. four program counter (PC) incre 
menter primitives from a four CPU core model may be clus 
tered together) may be performed as well as limiting the 
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number of unique primitives being generated and clustered to 
a small number. Instrumenting the CDFG with an input 
change bit per cluster of nodes in a level can be helpful. 
Selective evaluation can then evaluate a cluster of nodes if the 
input change bit is true and bypass evaluation of a cluster of 
nodes if the input change bit is false. Thus, selective evalua 
tion minimizes unnecessary evaluation by skipping the evalu 
ation of clusters for which the input change bit is false. In 
addition, the use of an input change bit set per level can be 
executed efficiently on a parallel processor. An input change 
bit may have many writers, where all writers are able to make 
a lock-free write of the value “true' to the input change bit. 
(e.g. multiple writes of “true' to a single bit). The disclosed 
concept is more efficient than creating an event queue which 
requires a lock and/or the use of atomics. The disclosed con 
cept thus provides a reduction in computational complexity. 
0024. In some embodiments, clock gating check circuits 
are moved to storage elements that are controlled by the clock 
or clocks. As a result, gated clock circuits which required 
more than one clock cycle for evaluation may be evaluated in 
one clock cycle. The result is a reduced numbers of evaluation 
steps, and thus an improvement in computational efficiency. 
Safe clock gating captures the clock enable signal on the 
inactive edge of the clock. The registers implemented in the 
designs of various cores are sensitive only to the active edge 
of the clock. Since there is little simulation activity on the 
inactive edge of the clock, high overhead associated with 
parallel simulation may be eliminated for the inactive clock 
edge. 
0025. In the disclosed concept, the topology of the safe 
clock gating and the clock enable signals may be identified. 
The clock and clock enable signals can be moved into the 
process or processes which consume the gated clock. Clock 
gating processes which are sensitive to the inactive edge of 
the clock, and the gated clock net, may be removed. Thus, the 
designs sensitivity to the inactive edge of the clock is 
removed. Very low simulation activity is thereby eliminated. 
As a result, the parallel simulation overhead of many syn 
chronization barriers required to execute a simulation time 
step for the inactive edge of the clock is removed. Gated clock 
logic which is on the inactive edge of the clock is removed, 
and clock gating is fused into the process that is on the active 
edge of the clock. Improved simulation efficiency takes 
advantage of parallel computing architectures such as a 
graphics processing unit (GPU). 
0026 FIG. 1 is a flow diagram for partitioned simulation. 
A flow 100 is described for selective execution of partitioned 
parallel simulation. The flow 100 comprises a computer 
implemented method for design simulation. Effective parallel 
simulation is critical to design verification. Parallel simula 
tion can be performed on parallel architectures Such as par 
allel processors, grid computers, and graphics processor units 
(GPUs for example). The purpose of verification is to ensure 
that an electronic system design matches a predetermined 
specification. Various scheduling algorithms exist Such as 
event driven simulation and the oblivious algorithm simula 
tion. In event driven simulation, a time-order process queue is 
maintained. Components of a design which undergo value 
changes are inserted into the queue. As a result, computation 
is limited to the evaluation of parts of the design that have to 
be updated. 
0027. In oblivious simulation, all components of the 
design are evaluated. Component evaluation takes place 
whether the components undergoes a value change or not. 
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Computation of the various components is simpler because 
value changes are not checked, and there is no queue insertion 
process that must be handled. However, redundant computa 
tion is the result when components which did not undergo 
value changes are evaluated. 
0028. In the disclosed concept, clockgating plays a role in 
simulation efficiency. A gated clock may be derived from a 
main clock and may be implemented to disable regions of a 
design under control of a clock. Each gated clock in turn may 
be used to derive sub-gated clocks. Such a hierarchy of gated 
clocks may serialize the evaluation of a simulation model. 
The enable of a gated clock may be computed in one phase, 
which may trigger a change on a gated clock signal, which in 
turn may be evaluated in a second phase. If the clock gating 
check is moved into a storage element that may be controlled 
by the clock, then the evaluation may be done in one phase 
instead of two. Parallel evaluation may be increased, and the 
overhead of starting a second phase of evaluation may be 
removed. 
0029. The flow 100 includes obtaining a high-level design 
110 for simulation. Design simulation is a crucial step in the 
design, analysis, and Verification of an electronic system. In 
embodiments, the obtained design may be a high level design 
written in any of a variety of languages such as VerilogTM, 
VHDLTM, SystemVerilogTM, SystemCTM, or other design lan 
gllage. 

0030 The flow 100 continues with determining a graph 
representation 120 for the high-level design. A high-level 
design 110 may be represented by a graph. The graph may be 
manipulated in a variety of ways for simulation purposes. The 
graph may include a control data flow graph. In embodiments, 
a control data flow graph (CDFG) may be determined for an 
RTL or behavioral representation of a high-level design. A 
control data flow graph may include a graph of a combina 
tional region of the high-level design and a state region of the 
high-level design. Other graphical representations may be 
determined for a representation of a high-level design includ 
ing a directed graph, an acyclic directed graph, a PetriNet, or 
other graph appropriate to the design problem. 
0031. The flow 100 continues with partitioning the graph 
130 into Sub-graphs. A graph may be partitioned into Sub 
graphs 130 for simulation purposes. A graph can be parti 
tioned into Sub-graphs by a number of means, including static 
means, arbitrary means, and the like. Static partitioning, for 
example, may be based on creating value read/write locality, 
balancing computation by level, creating event-change local 
ity, reducing unique node (or primitive) types in a given 
partition, and the like. The partitioning may include deter 
mining Sub-graphs based on reducing a number of signals 
crossing Sub-graphboundaries. Arbitrary partitioning may be 
based on random, ad hoc, heuristic, or other means. The flow 
100 may include constructing input-change bit sets 132. An 
input-change bit may be a memory element that is added to a 
design to record when an input to a portion of the design 
changes state. By knowing that an input to the portion has 
changed, then that portion of the design can be re-evaluated 
and an output from that portion may change. The input 
change bit may only be inserted into a design for simulation 
purposes. In some embodiments, the input-change bit can be 
an artifact and is actually a memory element somewhere other 
than the design which aids in simulation. A set of input 
change bits may be assembled to track multiple portions of 
the design under simulation. The set may be optimized to 
cover properportions of the design as would be appropriate to 
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partition for simulation in separate sections. The partitioning 
may include determining Sub-graphs based on levels of logic 
where the levels of logic may be successive stages. 
0032. The flow 100 continues with selecting a subset of the 
sub-graphs for simulation 140. The selection may be based on 
input-change bits. A partition or Subset of a graph may be 
instrumented with an input change bit. An input change bit 
may be associated with a vertex (node) of a graph, or may be 
associated with a cluster of nodes of a graph. The flow 100 
may further comprise using one or more of the input change 
bits on a level as part of the selecting of the subset for simu 
lation. An input change bit may indicate that one or more 
inputs to a partition or Subset of a graph (e.g. a sub-graph) 
have changed over sometime period. The selection of a Subset 
of sub-graphs may further comprise selectively evaluating the 
processes based on an input change bit set being set to true (or 
valid). Selection of a subset of sub-graphs may be made based 
on a change in status of one or more input change bits. 
Selection of a subset of the sub-graphs may be selected for 
execution based on level, on an active edge of a clock, and the 
like. 

0033. The flow 100 may include allocating the subset of 
the Sub-graphs for simulation 140 to one or more processors 
154. The subset may then in turn be simulated. In some 
embodiments, the flow 100 includes copying the high-level 
design 144 and simulating the high-level design as well as its 
copy on at least two different processors. The flow 100 con 
tinues with evaluating the subset of the sub-graphs 156 to 
produce a simulation result for the high-level design. A subset 
of Sub-graphs which may be selected based on using one or 
more input-change bits 162 to determine a change of status. A 
change in status may cause re-evaluation of a Subset of the 
sub-graphs 156. In embodiments, the subset of the sub-graphs 
for simulation are selected based on the input-change bit for 
each sub-graph in the Subset of the Sub-graphs being set to 
true. The processors used in Such simulations can include one 
or more copies of a core, a multicore processor, a graphics 
processing unit (GPU), a parallel processor, a grid computer, 
and the like. Subsets of Sub-graphs may indicate an 
unchanged status of one or more of the input change bits 
providing selective simulation of only those Subsets of Sub 
graphs whose input change bits changed status. This strategy 
thereby reduces computation requirements by ignoring Sub 
sets of Sub-graphs without a change of status in their input 
change bits. Various approaches can be used for the evalua 
tion process. Event driven simulation may be used. In other 
embodiments, the evaluating may be based on an oblivious 
simulation approach with the simulations being executed on 
one or more processors. The allocating of processes from the 
oblivious simulation approach can be to a plurality of proces 
sors. Such allocation of processes to a plurality of processors 
may be based on the input-change bit orbits thereby including 
evaluation of a Subset of the Sub-graphs. 
0034. The flow 100 continues with propagating the simu 
lation result 160, based on the evaluating of the subset of the 
sub-graphs 156, to a remainder of the graph for further simu 
lation. A verification process may involve iterating the simu 
lation process. Such iteration may occur for both verification 
processes based on event driven simulation and for verifica 
tion based on Oblivious Simulation. Iterating the simulation 
process may cause a change in the order in which a process or 
processes are evaluated. 
0035. The flow 100 may further comprise modifying the 
clock gating 170. While determining a graph 120 for evalua 
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tion, a portion of the design may be identified with clock 
gating which is inefficient from a simulation perspective. In 
Such a case the clock gating may be modified 170, perhaps 
only for simulation purposes. In some designs, a clock signal 
may be gated for a variety of reasons including to reduce 
power consumption. With oblivious simulation an inefficient 
simulation may result if inactive segments of a design are 
nonetheless simulated. Safe clock gating may capture a clock 
enable signal on an inactive edge of a clock as can be seen 
with certain register designs. Using parallel simulation in this 
case may incura high overhead and thus be inefficient. Modi 
fication of the clock signal may be undertaken in order to 
reduce simulation during low activity. In embodiments, the 
modifying of the clock gating may include moving gating to 
storage elements. For example, a clock signal and a clock 
enable signal may be recognized. These signals may be 
moved to the process which consumes a gated clock. Further, 
removing sensitive clockgating processes to an inactive edge 
of a clock may further reduce simulation requirements. In 
embodiments, the modifying may include changing the 
design, while in other embodiments the modifying of the 
clock gating may only be for simulation purposes. 
0036. The modifying of the clock gating may include 
eliminating a clock gate to a combinational logic portion 172. 
A gated clock may be derived from a main clock and, for 
example, may be employed to disable regions of a design 
under a clock control. Each gated clock may in turn be used to 
derive Sub-gated clocks. Such a hierarchy of gated clocks may 
serialize the evaluation of a simulation model. The clock 
gating may be restructured to combine phases and to occur on 
the active edge of clock. For example, the enable signal of a 
gated clock may be computed in one phase. This single phase 
computation may trigger a change on a gated clock signal, 
which may in turn necessitate evaluation using a second 
phase. If the clock gating check were to be moved to a storage 
element controlled, in embodiments, by a clock, then an 
evaluation may be done in one clock phase. A combination of 
clock phases may increase parallel evaluation efficiency, and 
may remove the overhead of starting a second phase of evalu 
ation. The updated clock gating can be reflected in the graph 
which was determined. Various steps in the flow 100 may be 
changed in order, repeated, omitted, or the like without 
departing from the disclosed inventive concepts. Various 
embodiments of the flow 100 may be included in a computer 
program product embodied in a non-transitory computer 
readable medium that includes code executable by one or 
more processors. 

0037 FIG. 2 is a flow diagram for partitioning. A flow 200 
may continue or be part of the previous flow 100. In some 
embodiments, the flow 200 stands on its own and works from 
pre-existing system designs, graphs, and the like. A graph 
representing a system design is obtained. A graph may be 
partitioned 210 to create a set of Sub-graphs. The graph may 
be any of a variety of graphs including a control data flow 
graph (CDFG), a directed graph, an acyclic directed graph, a 
PetriNet, or other graph appropriate to the design problem. 
The graph may be partitioned into various Sub-graphs by a 
variety of means including arbitrary means, static mean, ad 
hoc means, heuristic means, and the like. 
0038. In embodiments, partitioning of a graph into sub 
graphs may be determined based on logic levels 220. A design 
may comprise one or more levels of logic. In addition, simu 
lation models may cause a simulation of a system to be 
performed in one or more levels. However, depending on 
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simulation model, the computation required at a given level 
might be significantly different from that required at another 
level. For example, the use of an event driven simulation 
model may cause an uneven work assignment from level to 
level as a result of partitioning of a graph. As a further 
example, the evaluating may be based on an oblivious simu 
lation model. Use of an Oblivious model may further com 
prise allocating processes from the oblivious simulation 
model to a plurality of processors. oblivious simulation may 
not suffer from work starvation on one or more processors. 
Synchronization may be simpler since a single synchroniza 
tion per level of the model is sufficient. However, parallel 
oblivious simulation may perform redundant computation 
since all logic blocks are evaluated each simulation cycle. 
When the number of value changes per design clock is low, 
parallel oblivious simulation may be slower than serial event 
driven simulation. 
0039. In embodiments, a graph may be partitioned into 
Sub-graphs based on a reduction of Sub-graph crossings 222. 
Sub-graph crossings may refer to the number of signals which 
flow among Sub-graphs. To minimize the number of Sub 
graph crossings, an evaluation region may be partitioned into 
Sub-regions subject to constraints of a given design. Signal 
crossings among Sub-regions may be minimized if most Val 
ues may be produced and consumed within a Sub-region; 
many consumers of a signal may be moved to a receiving 
Sub-region when a signal crosses Sub-regions; and the number 
of primitives in different Sub-regions may roughly equal. 
0040 Partitioning of a graph into sub-graphs may be 
based on a variety of parameters. For example, the partition 
ing may include creating value locality 230. To create value 
locality, signal producers and related signal consumers may 
be moved to the same partition. Producing and consuming 
signals within a given partition may reduce Sub-graph cross 
ings. For example, creating value read/write locality may 
permit data production and data consumption to remain local 
to a given processor assigned, in embodiments, to execute the 
Sub-graph. 
0041. In embodiments, the partitioning may include cre 
ating event change locality 232. Aggregate selective evalua 
tion (ASE) may evaluate all primitives in a block even if only 
one input to the block may have changed. One may choose to 
cluster many primitives that change at a given simulation time 
into a single block to improve the efficiency of ASE and to 
improve computational efficiency. In Such a partitioning 
scheme, a variety of primitives may be clustered together so 
that evaluation of all primitives within a partition remains 
relevant to a given simulation rather than simply being wasted 
cycles. 
0042. In embodiments, the partitioning includes balancing 
of levels 234. Such a partitioning may balance a given work 
load in three phases, such as fetching input values, evaluating 
primitives, and checking and writing output changes, for 
example. In embodiments, the partitioning includes collect 
ing of readers 236 of a simulation value. Simulation values 
may be created by producers, and consumed by readers. 
Computational efficiencies may result if a graph is divided 
into Sub-graphs based on clustering of producers and readers. 
Efficiencies may result from assigning Such sub-graphs to the 
same processors, because computational (e.g. data read/ 
write) efficiencies from reduced processing overhead may 
result. 

0043. In embodiments, the partitioning includes separat 
ing primitives 238 evenly across clusters within a level. A 
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processor cluster or a Sub cluster may support single instruc 
tion and/or multiple data (SIMD) instructions. A SIMD 
instruction may efficiently compute, for example, 8, 16.32, or 
more operations of the same primitive type, Such as 16 addi 
tions in a single clock cycle of the CPU. To exploit SIMD 
instructions, a single primitive type or a small set of primitive 
types may be allocated to a cluster or sub-cluster. 
0044. In embodiments, the partitioning includes cluster 
ing sibling primitives 240. Clustering of sibling processes 
may be an embodiment of change locality. In a given design 
model, multiple component instantiations can occur. For 
example, an 8-core CPU may comprise eight instantiations of 
a component Core. A component which may perform an 
operation in Core may appear eight times in the CPU. For 
example, an incrementer—which may increment a program 
counter (PC) by 1 in a core—appears eight times in a CPU. In 
this example, these multiple instances of PCs are referred to 
as “siblings. Since sibling primitives have a high probability 
of simultaneous input changes, then those sibling primitives 
can be clustered together into a given partition of a graph—a 
Sub-graph. 
0045. A user may run thousands of tests on a single simu 
lation model. Each of these tests may form an execution 
sequence. By creating a simulation model which runs 2, 4, or 
more copies of the simulation model at a time, one may 
increase parallel efficiency and achieve better utilization of a 
model. Such simulation may follow a process such as: obtain 
a simulation model then obtain 2, 4, or more copies of the 
simulation model data, one copy for each test to be supported 
by a multi-test simulation model. By having multiple copies 
different stimulus can be applied to the copies to evaluate 
different tests. In some embodiments, design representations 
can be shared across the copies. Likewise circuit structures 
can be shared across the copies. 
0046 A simulation model may comprise an interconnec 
tion of simple primitives. Simple primitives may have 
roughly equal computational and communication require 
ments. For example, a description of a logic design at a gate 
level may be in terms of simple primitives such as AND, OR, 
and NOT gates, flip-flops, latches, and the like. An RTL 
description in a high-level language such as VerilogTM, 
VHDLTM, SystemVerilogTM, SystemCTM, or other design lan 
guage, may be decomposed into primitives. Higher level 
functions of arbitrary width Such as multipliers, address, and 
the like, may be decomposed into components comprising 
fixed widths such as 32 or 64 bits, for example. Selectors 
comprising an arbitrary number of inputs may be decom 
posed into components comprising a fixed number of inputs 
such as 3, 5, and the like. Primitives may be clustered together 
for a variety of reasons that may be related to design and/or 
simulation. Such primitives can comprise a significant por 
tion of a graph or Sub-graph for evaluation. Various steps in 
the flow 200 may be changed in order, repeated, omitted, or 
the like without departing from the disclosed inventive con 
cepts. Various embodiments of the flow 200 may be included 
in a computer program product embodied in a non-transitory 
computer readable medium that includes code executable by 
one or more processors. 
0047 FIG.3 is a flow diagram for sub-graph usage. A flow 
300 may continue or be part of the previous flow 100. In some 
embodiments, the flow 300 stands on its own and works from 
pre-existing Sub-graphs. A graph representing a system 
design is obtained. A graph may be portioned into Sub-graphs. 
Sub-graphs may be used for various aspects of evaluation and 
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simulation processes. A simulation sequence may trigger 
evaluation of one or more primitives. Evaluation may be 
based on input changes to one or more Sub-graphs. Evaluation 
may result in updating the values at the outputs of the primi 
tives. 

0048. The sub-graphs are evaluated 310 as part of simula 
tion of a high-level design. Simulation of a graph may com 
prise one or more optimization criteria, including use of mas 
sively parallel architectures, selective execution of a parallel 
simulation, aggregated selective evaluation optimization for 
memory architecture, exploitation of SIMD instructions, and 
the like. 

0049 Simulation sequences for a design may be formed 
from Sub-graphs. For example, simulation sequences may 
create regions large enough to keep a parallel machine busy, 
but the regions may not be so large that computation becomes 
inefficient due to unnecessary checking or execution. In 
embodiments, if a design were to have multiple clock regions 
corresponding to each clock's flip-flopS/latches, then the 
primitives that produce the inputs to the flip-flops/latches may 
be formed into two regions. 
0050. A simulation sequence may trigger evaluation of 
one or more primitives based on input changes. The evalua 
tion may result in updating (e.g. changes to) the values at the 
outputs of the primitives. The output changes may result in 
one or more input changes to downstream logic. The flow 300 
may further comprise determining that an output of one of the 
Sub-graphs has changes 320 state and copying that change of 
state 322 to a processor. A process for a second Sub-graph may 
use that change of state as input to the second Sub-graph. The 
second Sub-graph may represent another portion of the design 
being simulated. Because of the change of input state of a 
second Sub-graph, a simulation sequence may be triggered. 
0051 Similar to the copying which may take place 
between an output change and an input change, the flow 300 
may further comprise copying a sequence of changes of state 
324 for that output of one of the Sub-graphs and using this 
sequence as a series of inputs to the second Sub-graph 326. A 
sequence of changes of State may result from one or more 
simulation steps of a Sub-graph. The series of changes of state 
may represent one or more evaluation steps. The copying of a 
sequence of changes of state from an output of a Sub-graph 
that may be used as a sequence of inputs to a second Sub 
graph may execute more efficiently if a first Sub-graph and a 
second sub-graph are executed on the same processor, for 
example. Various steps in the flow 300 may be changed in 
order, repeated, omitted, or the like without departing from 
the disclosed inventive concepts. Various embodiments of the 
flow 300 may be included in a computer program product 
embodied in a non-transitory computer readable medium that 
includes code executable by one or more processors. 
0052 FIG. 4 is an example logic block diagram 400. 
Simple primitives may have roughly equal computational and 
communication requirements. A gate level description of a 
logic design may be in terms of simple primitives such as 
AND, OR, and NOR gates, flip flops, latches, and the like. 
Register transfer level (RTL) and higher-level descriptions 
may be decomposed into simple primitives such as adders, 
multipliers, multi-bit and/or, selectors, multi-bit flip-flops, 
latches, state holding processes with arbitrary controls, loops 
with controls, etc. A description may be evaluated at various 
levels of abstraction. In embodiments, the evaluating may be 
based on an oblivious simulation model. 
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0053 A high-level or system-level description of a design 
may be partitioned for ease of evaluation. For example, a 
given RTL Description in VerilogTM, VHDLTM, SystemVer 
ilogTM, SystemCTM, or other design language, may be decom 
posed into primitives. A system design may be composed of 
hundreds of thousands of Statements. The statements may 
form primitives. Primitives such as multipliers, adders, etc. of 
an arbitrary width may be decomposed into components that 
have a fixed width such as 32 or 64 bits. Primitives such as 
Selectors that have an arbitrary number of inputs may be 
decomposed into components that have a fixed number of 
inputs, such as 3 or 5. For example, in a given HDL descrip 
tion, the description may be decomposed into simple primi 
tives with suitable a number of inputs and widths, as well as 
Sufficient complexity of operation. 
0054. In the example logic block 400, various inputs may 
be applied to the logic. For example, the logic may have 
inputs such as IN A 412 and IN B 414. The inputs IN A and 
IN B may be applied to one or more gates comprising the 
logic block 400. Control signals may also be applied to a logic 
block. For example, a control signal Control 416, and a clock 
signal Clock 418 may be among a plurality of control signals 
which may be applied to the control block. 
0055 Various operations may be performed on the one or 
more inputs applied to a logic block. For example, a multi 
plier 410 and a subtractor 420 may operate upon inputs 412 
and 414. In embodiments, any number of operations may be 
performed on inputs. Outputs of a multiplier 410 and a sub 
tractor 420, or other logic function or functions, may be 
connected to another logic block such as a selector 430. A 
selector 430 may be controlled by a control signal Control 
416. Continuing with the example, an output of a selector 430 
may be captured into a flip-flop 440. A flip-flop 440 may be 
controlled by a clock signal Clock 418. The clock signal 
Clock 418, applied to a flip-flop, may generate an output OUT 
442. The output OUT 442 may be connected to one or more 
logic blocks for design and/or simulation purposes. 
0056 FIG. 5 is an example flow graph. 500 of the logic 
design. The flow graph 500 may represent the logic block 
diagram 400. A high-level design may be mapped onto a 
graph. By determining a map representation, operators of a 
logic design may be mapped to nodes of a graph, and inter 
connections of a logic design to arcs of a graph. A graph may 
define inputs and outputs to the graph. A graph may include a 
control data flow graph, directed graph, an acyclic directed 
graph, a PetriNet, or other graph appropriate to the design 
problem. A control data flow graph may include a graph of a 
combinational region of the high-level design and a state 
region of the high-level design. A graph of a combinational 
region and a state region may be suitable to various verifica 
tion and simulation purposes. 
0057 The graph 500 comprises inputs IN A512, IN B 
514, CONTROL 516, and CLOCK 518. The input 512 and 
the input 514 may be connected by an arc 550 and an arc 552 
to node M=A*B510, and by an arc 554 and anarc 556 to node 
S=A-B 520. In embodiments, arcs to one or more nodes may 
connect one or more inputs. Continuing, the node 510 and the 
node 520 may be connected by the arc 560 and the arc 562 to 
a node SEL 530. The node 530 may be controlled by a control 
signal Control 516. Continuing, the node 530 may be con 
nected by an arc 564 to a node FF 540. In embodiments, the 
node FF 540 may represent a flip-flop. A node 540 may be 
controlled by a control signal Clock 518. A node 540 may be 
connected by an arc 566 to an output OUT 542. In embodi 
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ments, a clock signal Clock 518 controlling a node 540 may 
also control an output 542. Logic blocks may be of varying 
sizes, ranging from a single input, operator, and output, for 
example, to many inputs, many operators, and many outputs. 
Large graphs, for example, may be partitioned into a series of 
Sub-graphs for simulation purposes and/or design purposes. 
0058 FIG. 6 is an example flow graph showing example 
partitions. The example flow graph with partitions 600 may 
be derived from the flow graph 500. A graph may be generated 
as part of a computer-implemented method for design simu 
lation. A graph may be represented by any of a variety of 
graphical methods such as a directed graph, an acyclic 
directed graph, a PetriNet, or other graph appropriate to the 
design problem. The control data flow graph may include a 
graph of a combinational region of the high-level design and 
a state region of the high-level design. A graph may be parti 
tioned into simulation sequences. A simulation sequence may 
trigger evaluation of one or more primitives based on changes 
to an input or inputs. Evaluation may result in updating the 
values at the outputs of the primitives. A simulation sequence 
may be constructed for the flow graph with partitions 600. 
0059 A simulation sequence may trigger evaluation of 
one or more primitives based on input changes. A simulation 
sequence may result in updating values at an output or outputs 
of one or more primitives. For example, for the graph 600, the 
following simulation sequence may be constructed. If a 
change occurs on IN A 612, IN B 614, or Control 616, then 
Region 1652 is evaluated. If a change occurs on, for example, 
a positive edge of Clock 618, then Region 2 654 is evaluated. 
More than one simulation sequence may be generated. For 
example, one of many alternative sequences may comprise 
the following. If a change occurs on any of IN A 612 and 
IN B 614, then Region 11 650 is evaluated. Evaluating 650 
may result in evaluating M=A*B 610 and S=A-B 620. If a 
change occurs on arc 622, arc 624 or Control 616, then SEL 
630 is evaluated. If a change occurs on, for example, a posi 
tive edge of Clock 618, then Region 2 654 is evaluated. 
Evaluating 654 may result in evaluating a flip-flop FF 640. 
Evaluating 640 may result in evaluating output OUT 642. 
0060 Simulation sequences for a given design may be 
formed to create regions large enough to keep a parallel 
machine busy but not so large that unnecessary checking or 
execution is performed. Unnecessary checking or execution 
may result in excess computational utilization and thus may 
reduce efficiency. If a design comprises multiple clock 
regions that may correspond to flip-flops/latches connected to 
each clock, then primitives which may produce inputs to a 
flip-flop/latch may be formed into regions. 
0061 FIG. 7 is an example of a levelized hypergraph 700. 
The levelized hypergraph 700 may represent a portion of the 
flow graph with partitions 600. A region as discussed above 
may comprise an interconnection of primitives which may 
form a hypergraph. A hypergraph may comprise a series of 
Sub-graphs. A typical region may be acyclic. In embodiments, 
a region which may have a combinational cycle may be par 
titioned such that a cycle may be cut at an arbitrary point. A 
special primitive in a special region may be inserted at the 
point of the cut or at another location. By inserting a special 
primitive, all regions may be turned into acyclic hypergraphs. 
0062 An acyclic hypergraph for simulation may comprise 
a subset of sub-graphs. The subset of the sub-graphs for 
simulation may be selected based on the input-change bit for 
each sub-graph in the Subset of the Sub-graphs being set to 
true. An acyclic hypergraph may be levelized in Such a man 
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ner that each level may have a set of primitives which may not 
have value dependencies. In a levelized hypergraph 700, an 
operation M=A*B 710, and an operation S=A-B 720 may not 
have one or more value dependencies. For example, opera 
tions 710 and 720 may depend on inputs IN A 712 and IN B 
714, but not on each other. In the example given, operations 
710 and 720 may be evaluated in the same level Level K750. 
A SEL 730 primitive may have value dependencies on opera 
tions 710 and 720, and control signal Control 716, and may be 
evaluated in a level Level K+1752. Such a dependency may 
be permitted if the operations 710 and 720 are evaluated in a 
previous level 750 prior to the evaluation of level 752. Such a 
procedure may avoid time/event ordered queues, and Syn 
chronization of queues. There may be a single synchroniza 
tion for each level if an oblivious simulation model is used. 
0063 A subset of sub-graphs may be selected by other 
means. In embodiments, the selection may further comprise 
using one or more of the input change bits on a level as part of 
the selecting of the Subset for simulation. Input change bits 
may be used to indicate that one or more of the inputs, for 
example, if inputs 712 and 714 have changed. In other 
embodiments, the partitioning of a graph into Sub-graphs may 
include the balancing of levels. Balancing of levels may per 
mit more efficient simulation and evaluation on GPUs or 
other parallel processing chips and systems. In another 
embodiment, the partitioning may include separating primi 
tives evenly across clusters within a level. Again, such sepa 
ration may serve to improve computation efficiency of simu 
lation and evaluation processes. 
0064 FIG. 8 is an example logic block 800 for selective 
evaluation. The logic block 800 is shown which may include 
input change bits. Input change bits may indicate changes of 
input values for one or more inputs, and may refer to changes 
for a single gate or a plurality of gates. The input change bits 
may be included for the purposes of simulation, and/or may 
reflect alterations to a hardware design. Recall that oblivious 
simulation may have an advantage over event driven simula 
tion in that oblivious simulation proceeds without creating 
and maintaining an event queue required by event driven 
simulation. However, oblivious simulation may tend to simu 
late all elements rather than just those which experience an 
input change. The input change bits may be added in order to 
simulate only those elements which experience input changes 
(e.g. selective simulation), and may render simulation more 
computationally efficient. 
0065. A selective evaluation procedure may require that 
input changes be maintained for each primitive of a block of 
primitives. For example, the logic block 800 may show two 
primitives, 810 and 840, each with their own Input Change 
Bit, 830 and 860 respectively. A single input change bit may 
be assigned to a logic block comprising primitives, in a given 
simulation level, grouped together to reduce the overhead of 
maintaining individual input change bits. A single input 
change bit may indicate a change of one or more inputs into a 
block. Simulation of a block may only proceed if an input 
change bit indicates a change. 
0066. In the given example logic block 800, a single com 
mon input change value 830 may be maintained for a primi 
tive 810. Selectively evaluating the processes may be based 
on an input change bit set being set to true. If one or more 
inputs Datal 820, Data2 822, and Data3 824 changes, a 
common input change bit 830 may be set. Setting an input 
change bit 830 may result in evaluation of all primitives, 
Adder1812 and Adder2814, in block 810. For example, if 
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Data1820 transitions while Data2 822 and Data3 824 remain 
constant, then an input change bit 830 would be set to indicate 
that an input had changed, and primitives 812and814 would 
be evaluated. 
0067 Continuing, consider, for example, that a change on 
Data1820, which may cause evaluation of primitives 812 and 
814, may cause the output of Adder1812 to change. Such a 
change may be reflected on input 816 to storage 850. Also, a 
change may result in an update 818 of Input Change Bit 860. 
During a Subsequent simulation step, the primitives of block 
840 may be evaluated as a result of an input change 816— 
stored in storage 850 and indicated by input change bit 860. 
0068. In embodiments, an example procedure may 
include the steps in Table 1. 

TABLE 1. 

Example handling steps for circuit with input change bits. 

Check input change bit value 
If input change bit value is “1”, evaluate blocks of primitive 
Set input change bit for block to "O' (reset) 
Evaluate the primitives of a block-this may cause an output change and 
may trigger a process 
Write output value to receivers 
Write output change to receiving block or blocks. 

0069. Writing of an output change to an Input Change Bit 
860 of block 840 may result in evaluation of primitives 
Adder 1842 and Adder2844 of block 840. 
0070 A procedure such as the one indicated in the 
example may balance the workload in three phases. In the 
example, the three phases may comprise fetching of input 
values, evaluation of primitives, and checking and writing of 
output changes. A procedure Such as the one indicated in the 
example may optimize memory access by fetching input val 
ues for a given logic block as a single contiguous region of 
memory. Since only blocks which undergo input changes 
may be evaluated, redundant evaluation may be reduced in 
comparison to a conventional Oblivious simulation. 
0071 FIG. 9 is an example logic combination to create a 
phase reduction. A logic block 900 may be obtained for 
simulation by a computer-implemented method for design 
simulation. Gated clock designs, such as logic block 900, may 
result from a variety of design decisions. For example, a gated 
clock 93.4 may be derived from a Main Clock 922 (e.g. system 
clock) and may be implemented to disable regions of a design 
under a clock control. The main clock 922 may also permit 
capture of Data 920 into a storage element 912. In some 
designs, each gated clock may in turn be used to derive 
Sub-gated clocks, and so on. Such a hierarchy of gated clocks 
may permit serialization of evaluation of a given simulation 
model. In some designs, a gated clock may be enabled by an 
enable signal 924. 
0072 An enable 924 may control the Clock Gate 914 of a 
gated clock 934. A gated clock 93.4 may be computed in one 
phase 910. An enable 924 of a gated clock 93.4 may be 
computed in one phase 910, and may trigger a change on 
gated clock 934 which may be evaluated in a second phase. 
For example, a change on gated clock 93.4 may cause evalu 
ation of Storage B 930. 
0073. An example logic combination may include modi 
fying clock gating. The modifying of the clock gating may 
include moving gating to storage elements. For example, if a 
clock gating check were moved to a storage element that is 
controlled by a clock, then evaluation may be accomplished 
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in one phase. For example, consider a logic block 902. A 
clock enable gate has been moved into a storage element 950. 
The modifying of the clock gating may include eliminating a 
clock gate to a combinational logic portion. In embodiments, 
the modifying of the clock gating may only be for simulation 
purposes. As with logic block 900, logic block 902 retains 
inputs Data 960, Main Clock 962, and Clock Gate Enable 
964. However, in the example, a Main Clock 962 may be 
connected to two storage elements 942 and 950. The clock 
gating may be restructured to combine phases and to occur on 
the active edge of clock. Since a clock enable gate may be 
moved into a storage element 950, then two primitives 942 
and 950 may be combined into a single phase 940, thus 
reducing the number of phases required for simulation to one. 
Reducing the number of simulation phases required may 
increase parallel evaluation and may remove computational 
overhead of starting additional phases. 
0074 FIG. 10 is a system diagram for partitioned simula 
tion. In embodiments, the computer system 1000 for parti 
tioned design simulation may comprise one or more proces 
sors 1010 coupled to a memory 1012 and a display 1014. The 
one or more processors 1010 may be coupled to a Design 
Library 1020, a Graph Module 1030, a Partition Module 
1040, a Selector Module 1050, and an Evaluation Module 
1060. In at least one embodiment, the one or more processors 
1010 may accomplish the one or more of the graph, partition, 
selector, and evaluation functions. In at least one embodi 
ment, all of these functions will be accomplished by the one 
or more processors 1010. 
(0075. The one or more processors 1010 are coupled to the 
memory 1012 which stores instructions, system Support data, 
intermediate data, analysis, and the like. The one or more 
processors 1010 may be coupled to an electronic display 
1014. The display 1014 may be any electronic display, includ 
ing but not limited to, a computer display, a laptop screen, a 
net-book Screen, a tablet computer screen, a cell phone dis 
play, a mobile device display, a remote with a display, a 
television, a projector, or the like. 
0076. The one or more processors 1010 may be configured 
to obtain a high-level design 1020 for simulation. The high 
level design may comprise various aspects of a design includ 
ing a system to be simulated, a simulation test bench, simu 
lation models, simulation vectors, and the like. 
(0077. The system 1000 may be configured to determine a 
graph representation for the high-level design 1030. A control 
data flow graph (CDFG) may be determined for an RTL 
representation of a high-level design. The CDFG may be 
folded into a graph of a combinational region and a state 
region. Other graphical representations may be determined 
for a representation of a high-level design including a directed 
graph an acyclic directed graph, a PetriNet, or other graph 
appropriate to the design problem. 
0078. The system 1000 may be configured to partition the 
graph into Sub-graphs. A graph may be partitioned into Sub 
graphs by a variety of means including static means, arbitrary 
means, and the like. Static partitioning, for example, may be 
based on creating value read/write locality, balancing of com 
putation by level, creating event-change locality, reducing 
unique node (or primitive) types in a given partition, and the 
like. Arbitrary partitioning may be based on random, ad hoc, 
heuristic, and other means, for example. 
(0079. The system 1000 may be configured to select a 
Subset of the Sub-graphs for simulation based on input 
change bits. A partition or Subset of a graph may be instru 
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mented with an input change bit. An input change bit may be 
associated with a vertex (node) of a graph, or may be associ 
ated with a cluster of nodes of a graph. An input change bit 
may indicate that one or more inputs to a partition or Subset of 
a graph (e.g. a sub-graph) have changed over Some time 
period. Selection of a Subset of Sub-graphs may be made 
based on a change in status of one or more input change bits. 
0080. The system 1000 may be configured to and evaluate 
the Subset of the Sub-graphs to produce a simulation result for 
the high-level design. A Subset of Sub-graphs may be simu 
lated based on a change of status of one or more input change 
bits. Other subsets of sub-graphs may indicate that there may 
have been no change of status of one or more input change 
bits. Thus, selective simulation of, for example, only subsets 
of sub-graphs that had a change of status of one or more input 
change bits may reduce computational complexity by ignor 
ing Subsets of Sub-graphs that did not have a change of status 
of one or more input change bits. 
0081. The system 1000 may include computer program 
product comprising code for obtaining a high-level design for 
simulation; code for determining a graph representation for 
the high-level design; code for partitioning the graph into 
Sub-graphs; code for selecting a Subset of the Sub-graphs for 
simulation based on input-change bits; and code for evaluat 
ing the Subset of the Sub-graphs to produce a simulation result 
for the high-level design. 
0082 Each of the above methods may be executed on one 
or more processors on one or more computer systems. 
Embodiments may include various forms of distributed com 
puting, client/server computing, and cloud based computing. 
Further, it will be understood that the depicted steps or boxes 
contained in this disclosure's flow charts are solely illustra 
tive and explanatory. The steps may be modified, omitted, 
repeated, or re-ordered without departing from the scope of 
this disclosure. Further, each step may contain one or more 
Sub-steps. While the foregoing drawings and description set 
forth functional aspects of the disclosed systems, no particu 
lar implementation or arrangement of Software and/or hard 
ware should be inferred from these descriptions unless explic 
itly stated or otherwise clear from the context. All such 
arrangements of software and/or hardware are intended to fall 
within the scope of this disclosure. 
0083. The block diagrams and flowchart illustrations 
depict methods, apparatus, Systems, and computer program 
products. The elements and combinations of elements in the 
block diagrams and flow diagrams, show functions, steps, or 
groups of steps of the methods, apparatus, systems, computer 
program products and/or computer-implemented methods. 
Any and all Such functions—generally referred to herein as a 
“circuit,” “module, or “system may be implemented by 
computer program instructions, by special-purpose hard 
ware-based computer systems, by combinations of special 
purpose hardware and computer instructions, by combina 
tions of general purpose hardware and computer instructions, 
and so on. 

0084. A programmable apparatus which executes any of 
the above mentioned computer program products or com 
puter-implemented methods may include one or more micro 
processors, microcontrollers, embedded microcontrollers, 
programmable digital signal processors, programmable 
devices, programmable gate arrays, programmable array 
logic, memory devices, application specific integrated cir 
cuits, or the like. Each may be Suitably employed or config 
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ured to process computer program instructions, execute com 
puter logic, store computer data, and so on. 
I0085. It will be understood that a computer may include a 
computer program product from a computer-readable storage 
medium and that this medium may be internal or external, 
removable and replaceable, or fixed. In addition, a computer 
may include a Basic Input/Output System (BIOS), firmware, 
an operating system, a database, or the like that may include, 
interface with, or support the software and hardware 
described herein. 

I0086 Embodiments of the present invention are neither 
limited to conventional computer applications nor the pro 
grammable apparatus that run them. To illustrate: the embodi 
ments of the presently claimed invention could include an 
optical computer, quantum computer, analog computer, or the 
like. A computer program may be loaded onto a computer to 
produce a particular machine that may performany and all of 
the depicted functions. This particular machine provides a 
means for carrying out any and all of the depicted functions. 
I0087 Any combination of one or more computer readable 
media may be utilized including but not limited to: a non 
transitory computer readable medium for storage; an elec 
tronic, magnetic, optical, electromagnetic, infrared, or semi 
conductor computer readable storage medium or any Suitable 
combination of the foregoing; a portable computer diskette; a 
hard disk; a random access memory (RAM); a read-only 
memory (ROM), an erasable programmable read-only 
memory (EPROM, Flash, MRAM, FeRAM, or phase change 
memory); an optical fiber; a portable compact disc; an optical 
storage device; a magnetic storage device; or any Suitable 
combination of the foregoing. In the context of this document, 
a computer readable storage medium may be any tangible 
medium that can contain or store a program for use by or in 
connection with an instruction execution system, apparatus, 
or device. 

I0088. It will be appreciated that computer program 
instructions may include computer executable code. A variety 
of languages for expressing computer program instructions 
may include without limitation C, C++, Java, JavaScriptTM, 
ActionScriptTM, assembly language, Lisp, Perl, Tcl, Python, 
Ruby, hardware description languages, database program 
ming languages, functional programming languages, impera 
tive programming languages, and so on. In embodiments, 
computer program instructions may be stored, compiled, or 
interpreted to run on a computer, a programmable data pro 
cessing apparatus, a heterogeneous combination of proces 
sors or processor architectures, and so on. Without limitation, 
embodiments of the present invention may take the form of 
web-based computer software, which includes client/server 
Software, Software-as-a-service, peer-to-peer Software, or the 
like. 

I0089. In embodiments, a computer may enable execution 
of computer program instructions including multiple pro 
grams or threads. The multiple programs or threads may be 
processed approximately simultaneously to enhance utiliza 
tion of the processor and to facilitate Substantially simulta 
neous functions. By way of implementation, any and all 
methods, program codes, program instructions, and the like 
described herein may be implemented in one or more threads 
which may in turn spawn other threads, which may them 
selves have priorities associated with them. In some embodi 
ments, a computer may process these threads based on prior 
ity or other order. 
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0090. Unless explicitly stated or otherwise clear from the 
context, the verbs “execute” and “process” may be used inter 
changeably to indicate execute, process, interpret, compile, 
assemble, link, load, or a combination of the foregoing. 
Therefore, embodiments that execute or process computer 
program instructions, computer-executable code, or the like 
may act upon the instructions or code in any and all of the 
ways described. Further, the method steps shown are intended 
to include any Suitable method of causing one or more parties 
or entities to perform the steps. The parties performing a step, 
or portion of a step, need not be located within a particular 
geographic location or country boundary. For instance, if an 
entity located within the United States causes a method step, 
or portion thereof, to be performed outside of the United 
States then the method is considered to be performed in the 
United States by virtue of the causal entity. 
0.091 While the invention has been disclosed in connec 
tion with preferred embodiments shown and described in 
detail, various modifications and improvements thereon will 
become apparent to those skilled in the art. Accordingly, the 
forgoing examples should not limit the spirit and scope of the 
present invention; rather it should be understood in the broad 
est sense allowable by law. 
What is claimed is: 
1. A computer-implemented method for design simulation 

comprising: 
obtaining a high-level design for simulation; 
determining a graph representation for the high-level 

design; 
partitioning the graph representation into Sub-graphs; 
Selectinga Subset of the Sub-graphs for simulation based on 

input-change bits; and 
evaluating the Subset of the Sub-graphs to produce a simu 

lation result for the high-level design. 
2. The method of claim 1 further comprising propagating 

the simulation result, based on the evaluating of the subset of 
the Sub-graphs, to a remainder of the graph representation for 
further simulation. 

3. The method of claim 1 wherein the subset of the sub 
graphs for simulation is selected based on an input-change 
bit, for each Sub-graph in the Subset of the Sub-graphs, being 
Set to true. 

4. The method of claim 1 wherein the partitioning further 
comprises determining Sub-graphs based on levels of logic. 

5. The method of claim 1 wherein the partitioning into 
Sub-graphs is based on reducing a number of signals crossing 
Sub-graph boundaries. 

6. The method of claim 1 further comprising using one or 
more of the input-change bits on a level as part of the selecting 
of the subset for simulation. 

7. The method of claim 1 wherein the evaluating is based on 
an oblivious simulation model. 

8. The method of claim 7 further comprising allocating 
processes from the oblivious simulation model to a plurality 
of processors. 

9. The method of claim 8 further comprising selectively 
evaluating the processes based on an input change bit set 
being set to valid. 

10. The method of claim 1 wherein the graph representa 
tion includes a control data flow graph. 

11. The method of claim 10 wherein the control data flow 
graph includes a graph of a combinational region of the high 
level design and a state region of the high-level design. 
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12. The method of claim 1 wherein the partitioning 
includes creating value locality. 

13. The method of claim 1 wherein the partitioning 
includes creating event change locality. 

14. The method of claim 1 wherein the partitioning 
includes balancing of levels. 

15. The method of claim 1 wherein the partitioning 
includes collecting of readers of a simulation value. 

16. The method of claim 1 wherein the partitioning 
includes separating primitives evenly across clusters within a 
level. 

17. The method of claim 1 wherein the partitioning 
includes clustering sibling primitives. 

18. The method of claim 1 further comprising modifying 
clock gating. 

19. The method of claim 18 wherein the modifying clock 
gating includes moving gating to storage elements. 

20. The method of claim 19 wherein the modifying clock 
gating includes eliminating a clock gate to a combinational 
logic portion. 

21. The method of claim 19 wherein the modifying clock 
gating is only for simulation purposes. 

22. The method of claim 18 wherein clock gating is restruc 
tured to combine phases and to occur on an active edge of 
clock. 

23. The method of claim 1 further comprising determining 
that an output of one of the Sub-graphs has a change of State 
and copying that change of state to a processor where a 
process for a second sub-graph uses that change of State as 
input to the second sub-graph. 

24. The method of claim 23 further comprising copying a 
sequence of changes of State for that output of one of the 
Sub-graphs and using the sequence as a series of inputs to the 
second Sub-graph. 

25. The method of claim 1 further comprising copying the 
high-level design and simulating the high-level designas well 
as its copy on at least two different processors. 

26. The method of claim 25 wherein the copying is per 
formed to accomplish the simulating. 

27. The method of claim 25 further comprising maintain 
ing primitives with the same function in a single cluster 
within the copy of the high-level design. 

28. A computer system for design simulation comprising: 
a memory which stores instructions; 
one or more processors coupled to the memory wherein the 

one or more processors are configured to: 
obtain a high-level design for simulation; 
determine a graph representation for the high-level 

design; 
partition the graph representation into Sub-graphs; 
Select a Subset of the Sub-graphs for simulation based on 

input-change bits; and 
evaluate the Subset of the Sub-graphs to produce a simu 

lation result for the high-level design. 
29. A computer program product embodied in a non-tran 

sitory computer readable medium for design simulation com 
prising: 

code for obtaining a high-level design for simulation; 
code for determining a graph representation for the high 

level design; 
code for partitioning the graph representation into Sub 

graphs; 
code for selecting a Subset of the Sub-graphs for simulation 

based on input-change bits; and 
code for evaluating the Subset of the Sub-graphs to produce 

a simulation result for the high-level design. 
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