
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0290919 A1

Narayanaswamy et al.

US 2013 0290919A1

(43) Pub. Date: Oct. 31, 2013

(54)

(71)

(72)

(73)

(21)
(22)

(60)

SELECTIVE EXECUTION FOR
PARTITIONED PARALLEL SIMULATIONS

Applicant: SYNOPSYS, INC., Mountain View, CA
(US)

Inventors: Ramesh Narayanaswamy, Palo Alto,
CA (US); Paraminder S. Sahai, San
Jose, CA (US); Chiahon Chien,
Saratoga, CA (US)

Assignee: SYNOPSYS, INC., Mountain View, CA
(US)

Appl. No.: 13/646,669
Filed: Oct. 6, 2012

Related U.S. Application Data
Provisional application No. 61/639,799, filed on Apr.
27, 2012.

200 N.

CREATEWALUE LOCALITY
230

CREATEEVENT CHANGE
LOCALITY

232

BALANCE LEWELS

COLLECT READERS
236

SEPARATE PRIMITIVES
238

CUSTER PRIMITIVES
240

234. PARTITION OF GRAPH 220
210

Publication Classification

(51) Int. Cl.
G06F 17/50 (2006.01)

(52) U.S. Cl.
USPC .. 71.6/106

(57) ABSTRACT

Computer implemented techniques for the partitioned simu
lation of parallel architectures are disclosed. A high-level
design for simulation is obtained. A graph representation for
the high-level design is determined. The graph for the high
level design is partitioned into Sub-graphs. A Subset of the
Sub-graphs is selected for simulation based on input-change
bits of the sub-graphs. The subset of the sub-graphs is subse
quently evaluated on parallel architectures in order to produce
a simulation result for the high-level design.

DETERMINEBASED
ON LOGICLEVELS

REDUCE CROSSINGS
222

US 2013/0290919 A1 Oct. 31, 2013 Sheet 1 of 10 Patent Application Publication

FGT ELVTITWIS/(S) HOSSEOOHd O L E |\/OOTIT\/

US 2013/0290919 A1 Oct. 31, 2013 Sheet 2 of 10 Patent Application Publication

?ž? S5DN|SSOR-HO E OTICIER

57? STEAET EKON\/TV/R

US 2013/0290919 A1 Oct. 31, 2013 Sheet 3 of 10 Patent Application Publication

0
0
9

FZ5 SEI?DN\/HO –|O EONETTOES WCHOO

US 2013/0290919 A1 Oct. 31, 2013 Sheet 4 of 10 Patent Application Publication

Õ?7 >HO LOETES

007

US 2013/0290919 A1 Oct. 31, 2013 Sheet 5 of 10 Patent Application Publication

009\,

099

Patent Application Publication Oct. 31, 2013 Sheet 6 of 10 US 2013/0290919 A1

-

s

Patent Application Publication Oct. 31, 2013 Sheet 7 of 10 US 2013/0290919 A1

O
O
N.

S

S s
:

s

US 2013/0290919 A1 Oct. 31, 2013 Sheet 8 of 10 Patent Application Publication

078

??? LIE

5755 ETTEV/NE ELVý5) XAOOTTO

US 2013/0290919 A1

096

5775 ETTEV/NE E_I\75) XAOOTTO

Oct. 31, 2013 Sheet 9 of 10

006\,

0 | 6

Patent Application Publication

US 2013/0290919 A1

090|| EITTIC]OWN ?|O LOETES

Oct. 31, 2013 Sheet 10 of 10

000 ||

Patent Application Publication

US 2013/02909 19 A1

SELECTIVE EXECUTION FOR
PARTITIONED PARALLEL SIMULATIONS

RELATED APPLICATIONS

0001. This application claims the benefit of U.S. provi
sional patent application “Simulation on Massively Parallel
Architectures” Ser. No. 61/639,799, filed Apr. 27, 2012. The
foregoing application is hereby incorporated by reference in
its entirety.

FIELD OF ART

0002 This application relates generally to semiconductor
circuit simulation and more particularly to selective execu
tion of partitioned parallel simulation.

BACKGROUND

0003 Modern electronic systems designs contain numer
ous components including digital, analog, and high frequency
components, all of which can be problematic to design. The
design process may comprise top-down decomposition and/
or bottom-up assembly. Feature sizes of the components mak
ing up the electronic systems now are routinely smaller than
the wavelength of visible light. In addition, the rapid change
of the market and consumer demands drives ever-increasing
performance, feature sets, Versatility, and various other sys
tem factors which inject contradictory design requirements
into design processes. Logic systems are routinely con
structed from tens or even hundreds of millions of transistors.
System designers are required to balance system perfor
mance, physical size, architectural complexity, power con
Sumption, heat dissipation, fabrication complexity, and cost,
to name only a few. Each of the related design decisions drive
profound impacts on the resulting design. To handle the
design complexity, developers create specifications around
which to design their systems. The specifications attempt to
balance the many disparate demands being made of the logic
system and to contain what can easily be exploding design
complexity.
0004 Systems may be described at a variety of levels of
abstraction ranging from low-level transistor layouts to high
level description languages. Most designers describe and
design their electronic systems at a high-level of abstraction
using an IEEE standard hardware description language
(HDL) such as Verilog, SystemVerilogTM, or VHDL. The
high-level HDL is easier for developers to comprehend, espe
cially for a vast system, and may describe highly complex
concepts that are difficult to grasp using a lower level of
abstraction. The HDL description may be converted into
other levels of abstraction as is helpful to the developers. For
example, a high-level description may be converted to a logic
level register transfer level (RTL) description, a gate-level
(GL) description, a layout-level description, or a mask-level
description. Each lower abstraction level introduces more
detail into the design description. The lower-levels of abstrac
tion may be generated automatically by computer, derived
from a design library, or created by another design automa
tion technique. Therefore, it is critical to ensure that the
performance of the resulting lower-level designs is still
capable of matching the requirements of the system's speci
fication. The process of comparing a system design to a
design specification (or one level of abstraction to another)
can be called verification. Verification of modern electronic
systems can ensure that a device under test (DUT) is simu

Oct. 31, 2013

lated so that the behavior of the DUT is shown to match a
system specification for the electronic design.

SUMMARY

0005 Techniques implemented for the verification of inte
grated circuits are required to stimulate the device under test
(DUT) to a sufficient extent to ensure that the device matches
a design specification. Further, the Verification process,
which is by necessity computationally intensive, must be
undertaken in Such a way as to minimize both test duration
and computer resource utilization. A computer-implemented
method for design simulation is disclosed comprising:
obtaining a high-level design for simulation; determining a
graph representation for the high-level design; partitioning
the graph representation into Sub-graphs; selecting a Subset of
the Sub-graphs for simulation based on input-change bits; and
evaluating the Subset of the Sub-graphs to produce a simula
tion result for the high-level design.
0006. The method may further comprise propagating the
simulation result, based on the evaluating of the subset of the
Sub-graphs, to a remainder of the graph representation for
further simulation. The subset of the sub-graphs for simula
tion may be selected based on an input-change bit, for each
Sub-graph in the Subset of the Sub-graphs, being set to true.
The partitioning may further comprise determining Sub
graphs based on levels of logic. The partitioning into Sub
graphs may be based on reducing a number of signals cross
ing Sub-graph boundaries. The method may further comprise
using one or more of the input-change bits on a level as part of
the selecting of the Subset for simulation. The evaluating may
be based on an oblivious simulation model. The method may
further comprise allocating processes from the oblivious
simulation model to a plurality of processors. The method
may further comprise selectively evaluating the processes
based on an input change bit set being set to valid. The graph
representation may include a control data flow graph. The
control data flow graph may include a graph of a combina
tional region of the high-level design and a state region of the
high-level design. The partitioning may include creating
value locality. The partitioning may include creating event
change locality. The partitioning may include balancing of
levels. The partitioning may include collecting of readers of a
simulation value. The partitioning may include separating
primitives evenly across clusters within a level. The partition
ing may include clustering sibling primitives. The method
may further comprise modifying clock gating. The modifying
clock gating may include moving gating to storage elements.
The modifying clock gating may include eliminating a clock
gate to a combinational logic portion. The modifying clock
gating may be only for simulation purposes. The clock gating
may be restructured to combine phases and to occur on an
active edge of clock. The method may further comprise deter
mining that an output of one of the Sub-graphs has a change of
state and copying that change of state to a processor where a
process for a second sub-graph uses that change of State as
input to the second Sub-graph. The method may further com
prise copying a sequence of changes of state for that output of
one of the Sub-graphs and using the sequence as a series of
inputs to the second Sub-graph. The method may further
comprise copying the high-level design and simulating the
high-level design as well as its copy on at least two different
processors. The copying may be performed to accomplish the

US 2013/02909 19 A1

simulating. The method may further comprise maintaining
primitives with the same functionina single cluster within the
copy of the high-level design.
0007. In embodiments, a computer system for design
simulation may comprise: a memory which stores instruc
tions; one or more processors coupled to the memory wherein
the one or more processors are configured to: obtain a high
level design for simulation; determine a graph representation
for the high-level design; partition the graph representation
into Sub-graphs; select a Subset of the Sub-graphs for simula
tion based on input-change bits; and evaluate the Subset of the
Sub-graphs to produce a simulation result for the high-level
design. In some embodiments, a computer program product
embodied in a non-transitory computer readable medium for
design simulation may comprise: code for obtaining a high
level design for simulation; code for determining a graph
representation for the high-level design; code for partitioning
the graph representation into Sub-graphs; code for selecting a
Subset of the Sub-graphs for simulation based on input
change bits; and code for evaluating the Subset of the Sub
graphs to produce a simulation result for the high-level design
0008 Various features, aspects, and advantages of various
embodiments will become more apparent from the following
further description.

BRIEF DESCRIPTION OF THE DRAWINGS

0009. The following detailed description of certain
embodiments may be understood by reference to the follow
ing figures wherein:
0010 FIG. 1 is a flow diagram for partitioned simulation.
0011 FIG. 2 is a flow diagram for partitioning.
0012 FIG. 3 is a flow diagram for sub-graph usage.
0013 FIG. 4 is an example logic block diagram.
0014 FIG. 5 is an example flow graph of the logic design.
0015 FIG. 6 is an example flow graph showing example
partitions.
0016 FIG. 7 is an example levelized hypergraph.
0017 FIG. 8 is an example logic block for selective evalu
ation.
0018 FIG. 9 is an example logic combination to phase
reduction.
0019 FIG. 10 is a system diagram for partitioned simula

tion.

DETAILED DESCRIPTION

0020 Electronic circuit designs are vastly complex sys
tems. Verification of these systems, and portions thereof, is
critical to produce properly functioning logic designs. Many
simulation techniques, including event driven simulation and
oblivious simulation, have been proposed to aid in this veri
fication process. Event driven simulation, as opposed to
oblivious simulation, can maintain a time-ordered queue of
waiting processes. Events are added to the list at various
times, and are typically processed in the order in which they
arrive. Processing an event may generate more events or alter
the order of the list of pending events. The components of the
electronic system which experience value changes (i.e. the
one or more inputs that have changed) are added to the queue
of pending processes. Thus, simulation computation is lim
ited to design components which undergo input changes. In
contrast, oblivious simulation evaluates all components of the
design regardless of whether or not a given component has
experienced a value change. Changes to input values are not

Oct. 31, 2013

monitored, and no queue insertion is performed. However, in
this type of simulation, a computation of every component is
performed for every simulation process; this often leads to
redundant and unnecessary computations. Thus, the choice of
a simulation approach and how that approach is implemented
is critical to minimizing simulation time while maximizing
effectiveness.

0021. Both the event driven and oblivious simulation
approaches may be parallelized, though the process is differ
ent in each approach. Parallel event driven simulation
employs multiple time-ordered queues and processes, and
assigns sections of the design to a time-ordered queue run
ning on a processor. Since the time-ordered queues must be
chronologically synchronized, this approach is often limited
to few processors. It does not scale to large numbers of pro
cessors because synchronization costs are prohibitively high
and processor work assignments are uneven, thus Saturating
one processor with tasks while others remain idle. On the
other hand, parallel oblivious simulation simplifies queue
synchronization because only a single synchronization is
required per level of the simulation model. Parallel oblivious
simulation does perform redundant (i.e. unnecessary) opera
tions. However, in a simulation with many value changes per
design clock cycle or simulation cycle, parallel oblivious
simulation is more efficient than parallel event driven simu
lation because of lower computational and synchronization
demands.

0022. The oblivious simulation model presents a static
simulation view which both allows for efficient partitioning
under multiple constraints and efficient allocation of tasks to
clusters of processors. The oblivious model may be instru
mented for selective execution of processes, thus reducing
computational overheadby removing from a simulation cycle
static portions of the model which do not change in a given
cycle. A control data flow graph (CDFG) representing the
description of the electronic system can be folded into a graph
of the combinational and state regions. The CDFG may then
be partitioned statically in order to create a locality of read
and write values, balance computations by level, determine
event change locality, and calculate the number of unique
node (primitive) type reductions perpartition. Such partition
ing is accomplished by collecting most or all readers of a
simulation value into the same cluster, partitioning primitives
evenly across clusters, clustering 'sibling primitive
instances together, limiting the number of unique primitives
generated, and clustering for a small number of unique primi
tives. The statically partitioned CDFG can be instrumented
with a single input change bit per cluster of nodes in a given
level. Thus, such selective evaluation can skip the evaluation
of a cluster for which the change bit is false. In this system, a
collection of change bits is gathered in a bit set that is both
updated and traversed in parallel by allocating each bit to a
processing thread.
0023. In the disclosed concept, a control data flow Graph
(CDFG) may be assigned to an RTL representation of a high
level design and partitioning performed. Each partitioning
constraint is satisfied by collecting most or all readers of a
particular simulation value into the same cluster. This reduces
the number of necessary writes by the result writer, as well as
evenly partitioning primitives in a level across clusters. Clus
tering of sibling primitive instances from multiple instances
of large user blocks (e.g. four program counter (PC) incre
menter primitives from a four CPU core model may be clus
tered together) may be performed as well as limiting the

US 2013/02909 19 A1

number of unique primitives being generated and clustered to
a small number. Instrumenting the CDFG with an input
change bit per cluster of nodes in a level can be helpful.
Selective evaluation can then evaluate a cluster of nodes if the
input change bit is true and bypass evaluation of a cluster of
nodes if the input change bit is false. Thus, selective evalua
tion minimizes unnecessary evaluation by skipping the evalu
ation of clusters for which the input change bit is false. In
addition, the use of an input change bit set per level can be
executed efficiently on a parallel processor. An input change
bit may have many writers, where all writers are able to make
a lock-free write of the value “true' to the input change bit.
(e.g. multiple writes of “true' to a single bit). The disclosed
concept is more efficient than creating an event queue which
requires a lock and/or the use of atomics. The disclosed con
cept thus provides a reduction in computational complexity.
0024. In some embodiments, clock gating check circuits
are moved to storage elements that are controlled by the clock
or clocks. As a result, gated clock circuits which required
more than one clock cycle for evaluation may be evaluated in
one clock cycle. The result is a reduced numbers of evaluation
steps, and thus an improvement in computational efficiency.
Safe clock gating captures the clock enable signal on the
inactive edge of the clock. The registers implemented in the
designs of various cores are sensitive only to the active edge
of the clock. Since there is little simulation activity on the
inactive edge of the clock, high overhead associated with
parallel simulation may be eliminated for the inactive clock
edge.
0025. In the disclosed concept, the topology of the safe
clock gating and the clock enable signals may be identified.
The clock and clock enable signals can be moved into the
process or processes which consume the gated clock. Clock
gating processes which are sensitive to the inactive edge of
the clock, and the gated clock net, may be removed. Thus, the
designs sensitivity to the inactive edge of the clock is
removed. Very low simulation activity is thereby eliminated.
As a result, the parallel simulation overhead of many syn
chronization barriers required to execute a simulation time
step for the inactive edge of the clock is removed. Gated clock
logic which is on the inactive edge of the clock is removed,
and clock gating is fused into the process that is on the active
edge of the clock. Improved simulation efficiency takes
advantage of parallel computing architectures such as a
graphics processing unit (GPU).
0026 FIG. 1 is a flow diagram for partitioned simulation.
A flow 100 is described for selective execution of partitioned
parallel simulation. The flow 100 comprises a computer
implemented method for design simulation. Effective parallel
simulation is critical to design verification. Parallel simula
tion can be performed on parallel architectures Such as par
allel processors, grid computers, and graphics processor units
(GPUs for example). The purpose of verification is to ensure
that an electronic system design matches a predetermined
specification. Various scheduling algorithms exist Such as
event driven simulation and the oblivious algorithm simula
tion. In event driven simulation, a time-order process queue is
maintained. Components of a design which undergo value
changes are inserted into the queue. As a result, computation
is limited to the evaluation of parts of the design that have to
be updated.
0027. In oblivious simulation, all components of the
design are evaluated. Component evaluation takes place
whether the components undergoes a value change or not.

Oct. 31, 2013

Computation of the various components is simpler because
value changes are not checked, and there is no queue insertion
process that must be handled. However, redundant computa
tion is the result when components which did not undergo
value changes are evaluated.
0028. In the disclosed concept, clockgating plays a role in
simulation efficiency. A gated clock may be derived from a
main clock and may be implemented to disable regions of a
design under control of a clock. Each gated clock in turn may
be used to derive sub-gated clocks. Such a hierarchy of gated
clocks may serialize the evaluation of a simulation model.
The enable of a gated clock may be computed in one phase,
which may trigger a change on a gated clock signal, which in
turn may be evaluated in a second phase. If the clock gating
check is moved into a storage element that may be controlled
by the clock, then the evaluation may be done in one phase
instead of two. Parallel evaluation may be increased, and the
overhead of starting a second phase of evaluation may be
removed.
0029. The flow 100 includes obtaining a high-level design
110 for simulation. Design simulation is a crucial step in the
design, analysis, and Verification of an electronic system. In
embodiments, the obtained design may be a high level design
written in any of a variety of languages such as VerilogTM,
VHDLTM, SystemVerilogTM, SystemCTM, or other design lan
gllage.

0030 The flow 100 continues with determining a graph
representation 120 for the high-level design. A high-level
design 110 may be represented by a graph. The graph may be
manipulated in a variety of ways for simulation purposes. The
graph may include a control data flow graph. In embodiments,
a control data flow graph (CDFG) may be determined for an
RTL or behavioral representation of a high-level design. A
control data flow graph may include a graph of a combina
tional region of the high-level design and a state region of the
high-level design. Other graphical representations may be
determined for a representation of a high-level design includ
ing a directed graph, an acyclic directed graph, a PetriNet, or
other graph appropriate to the design problem.
0031. The flow 100 continues with partitioning the graph
130 into Sub-graphs. A graph may be partitioned into Sub
graphs 130 for simulation purposes. A graph can be parti
tioned into Sub-graphs by a number of means, including static
means, arbitrary means, and the like. Static partitioning, for
example, may be based on creating value read/write locality,
balancing computation by level, creating event-change local
ity, reducing unique node (or primitive) types in a given
partition, and the like. The partitioning may include deter
mining Sub-graphs based on reducing a number of signals
crossing Sub-graphboundaries. Arbitrary partitioning may be
based on random, ad hoc, heuristic, or other means. The flow
100 may include constructing input-change bit sets 132. An
input-change bit may be a memory element that is added to a
design to record when an input to a portion of the design
changes state. By knowing that an input to the portion has
changed, then that portion of the design can be re-evaluated
and an output from that portion may change. The input
change bit may only be inserted into a design for simulation
purposes. In some embodiments, the input-change bit can be
an artifact and is actually a memory element somewhere other
than the design which aids in simulation. A set of input
change bits may be assembled to track multiple portions of
the design under simulation. The set may be optimized to
cover properportions of the design as would be appropriate to

US 2013/02909 19 A1

partition for simulation in separate sections. The partitioning
may include determining Sub-graphs based on levels of logic
where the levels of logic may be successive stages.
0032. The flow 100 continues with selecting a subset of the
sub-graphs for simulation 140. The selection may be based on
input-change bits. A partition or Subset of a graph may be
instrumented with an input change bit. An input change bit
may be associated with a vertex (node) of a graph, or may be
associated with a cluster of nodes of a graph. The flow 100
may further comprise using one or more of the input change
bits on a level as part of the selecting of the subset for simu
lation. An input change bit may indicate that one or more
inputs to a partition or Subset of a graph (e.g. a sub-graph)
have changed over sometime period. The selection of a Subset
of sub-graphs may further comprise selectively evaluating the
processes based on an input change bit set being set to true (or
valid). Selection of a subset of sub-graphs may be made based
on a change in status of one or more input change bits.
Selection of a subset of the sub-graphs may be selected for
execution based on level, on an active edge of a clock, and the
like.

0033. The flow 100 may include allocating the subset of
the Sub-graphs for simulation 140 to one or more processors
154. The subset may then in turn be simulated. In some
embodiments, the flow 100 includes copying the high-level
design 144 and simulating the high-level design as well as its
copy on at least two different processors. The flow 100 con
tinues with evaluating the subset of the sub-graphs 156 to
produce a simulation result for the high-level design. A subset
of Sub-graphs which may be selected based on using one or
more input-change bits 162 to determine a change of status. A
change in status may cause re-evaluation of a Subset of the
sub-graphs 156. In embodiments, the subset of the sub-graphs
for simulation are selected based on the input-change bit for
each sub-graph in the Subset of the Sub-graphs being set to
true. The processors used in Such simulations can include one
or more copies of a core, a multicore processor, a graphics
processing unit (GPU), a parallel processor, a grid computer,
and the like. Subsets of Sub-graphs may indicate an
unchanged status of one or more of the input change bits
providing selective simulation of only those Subsets of Sub
graphs whose input change bits changed status. This strategy
thereby reduces computation requirements by ignoring Sub
sets of Sub-graphs without a change of status in their input
change bits. Various approaches can be used for the evalua
tion process. Event driven simulation may be used. In other
embodiments, the evaluating may be based on an oblivious
simulation approach with the simulations being executed on
one or more processors. The allocating of processes from the
oblivious simulation approach can be to a plurality of proces
sors. Such allocation of processes to a plurality of processors
may be based on the input-change bit orbits thereby including
evaluation of a Subset of the Sub-graphs.
0034. The flow 100 continues with propagating the simu
lation result 160, based on the evaluating of the subset of the
sub-graphs 156, to a remainder of the graph for further simu
lation. A verification process may involve iterating the simu
lation process. Such iteration may occur for both verification
processes based on event driven simulation and for verifica
tion based on Oblivious Simulation. Iterating the simulation
process may cause a change in the order in which a process or
processes are evaluated.
0035. The flow 100 may further comprise modifying the
clock gating 170. While determining a graph 120 for evalua

Oct. 31, 2013

tion, a portion of the design may be identified with clock
gating which is inefficient from a simulation perspective. In
Such a case the clock gating may be modified 170, perhaps
only for simulation purposes. In some designs, a clock signal
may be gated for a variety of reasons including to reduce
power consumption. With oblivious simulation an inefficient
simulation may result if inactive segments of a design are
nonetheless simulated. Safe clock gating may capture a clock
enable signal on an inactive edge of a clock as can be seen
with certain register designs. Using parallel simulation in this
case may incura high overhead and thus be inefficient. Modi
fication of the clock signal may be undertaken in order to
reduce simulation during low activity. In embodiments, the
modifying of the clock gating may include moving gating to
storage elements. For example, a clock signal and a clock
enable signal may be recognized. These signals may be
moved to the process which consumes a gated clock. Further,
removing sensitive clockgating processes to an inactive edge
of a clock may further reduce simulation requirements. In
embodiments, the modifying may include changing the
design, while in other embodiments the modifying of the
clock gating may only be for simulation purposes.
0036. The modifying of the clock gating may include
eliminating a clock gate to a combinational logic portion 172.
A gated clock may be derived from a main clock and, for
example, may be employed to disable regions of a design
under a clock control. Each gated clock may in turn be used to
derive Sub-gated clocks. Such a hierarchy of gated clocks may
serialize the evaluation of a simulation model. The clock
gating may be restructured to combine phases and to occur on
the active edge of clock. For example, the enable signal of a
gated clock may be computed in one phase. This single phase
computation may trigger a change on a gated clock signal,
which may in turn necessitate evaluation using a second
phase. If the clock gating check were to be moved to a storage
element controlled, in embodiments, by a clock, then an
evaluation may be done in one clock phase. A combination of
clock phases may increase parallel evaluation efficiency, and
may remove the overhead of starting a second phase of evalu
ation. The updated clock gating can be reflected in the graph
which was determined. Various steps in the flow 100 may be
changed in order, repeated, omitted, or the like without
departing from the disclosed inventive concepts. Various
embodiments of the flow 100 may be included in a computer
program product embodied in a non-transitory computer
readable medium that includes code executable by one or
more processors.

0037 FIG. 2 is a flow diagram for partitioning. A flow 200
may continue or be part of the previous flow 100. In some
embodiments, the flow 200 stands on its own and works from
pre-existing system designs, graphs, and the like. A graph
representing a system design is obtained. A graph may be
partitioned 210 to create a set of Sub-graphs. The graph may
be any of a variety of graphs including a control data flow
graph (CDFG), a directed graph, an acyclic directed graph, a
PetriNet, or other graph appropriate to the design problem.
The graph may be partitioned into various Sub-graphs by a
variety of means including arbitrary means, static mean, ad
hoc means, heuristic means, and the like.
0038. In embodiments, partitioning of a graph into sub
graphs may be determined based on logic levels 220. A design
may comprise one or more levels of logic. In addition, simu
lation models may cause a simulation of a system to be
performed in one or more levels. However, depending on

US 2013/02909 19 A1

simulation model, the computation required at a given level
might be significantly different from that required at another
level. For example, the use of an event driven simulation
model may cause an uneven work assignment from level to
level as a result of partitioning of a graph. As a further
example, the evaluating may be based on an oblivious simu
lation model. Use of an Oblivious model may further com
prise allocating processes from the oblivious simulation
model to a plurality of processors. oblivious simulation may
not suffer from work starvation on one or more processors.
Synchronization may be simpler since a single synchroniza
tion per level of the model is sufficient. However, parallel
oblivious simulation may perform redundant computation
since all logic blocks are evaluated each simulation cycle.
When the number of value changes per design clock is low,
parallel oblivious simulation may be slower than serial event
driven simulation.
0039. In embodiments, a graph may be partitioned into
Sub-graphs based on a reduction of Sub-graph crossings 222.
Sub-graph crossings may refer to the number of signals which
flow among Sub-graphs. To minimize the number of Sub
graph crossings, an evaluation region may be partitioned into
Sub-regions subject to constraints of a given design. Signal
crossings among Sub-regions may be minimized if most Val
ues may be produced and consumed within a Sub-region;
many consumers of a signal may be moved to a receiving
Sub-region when a signal crosses Sub-regions; and the number
of primitives in different Sub-regions may roughly equal.
0040 Partitioning of a graph into sub-graphs may be
based on a variety of parameters. For example, the partition
ing may include creating value locality 230. To create value
locality, signal producers and related signal consumers may
be moved to the same partition. Producing and consuming
signals within a given partition may reduce Sub-graph cross
ings. For example, creating value read/write locality may
permit data production and data consumption to remain local
to a given processor assigned, in embodiments, to execute the
Sub-graph.
0041. In embodiments, the partitioning may include cre
ating event change locality 232. Aggregate selective evalua
tion (ASE) may evaluate all primitives in a block even if only
one input to the block may have changed. One may choose to
cluster many primitives that change at a given simulation time
into a single block to improve the efficiency of ASE and to
improve computational efficiency. In Such a partitioning
scheme, a variety of primitives may be clustered together so
that evaluation of all primitives within a partition remains
relevant to a given simulation rather than simply being wasted
cycles.
0042. In embodiments, the partitioning includes balancing
of levels 234. Such a partitioning may balance a given work
load in three phases, such as fetching input values, evaluating
primitives, and checking and writing output changes, for
example. In embodiments, the partitioning includes collect
ing of readers 236 of a simulation value. Simulation values
may be created by producers, and consumed by readers.
Computational efficiencies may result if a graph is divided
into Sub-graphs based on clustering of producers and readers.
Efficiencies may result from assigning Such sub-graphs to the
same processors, because computational (e.g. data read/
write) efficiencies from reduced processing overhead may
result.

0043. In embodiments, the partitioning includes separat
ing primitives 238 evenly across clusters within a level. A

Oct. 31, 2013

processor cluster or a Sub cluster may support single instruc
tion and/or multiple data (SIMD) instructions. A SIMD
instruction may efficiently compute, for example, 8, 16.32, or
more operations of the same primitive type, Such as 16 addi
tions in a single clock cycle of the CPU. To exploit SIMD
instructions, a single primitive type or a small set of primitive
types may be allocated to a cluster or sub-cluster.
0044. In embodiments, the partitioning includes cluster
ing sibling primitives 240. Clustering of sibling processes
may be an embodiment of change locality. In a given design
model, multiple component instantiations can occur. For
example, an 8-core CPU may comprise eight instantiations of
a component Core. A component which may perform an
operation in Core may appear eight times in the CPU. For
example, an incrementer—which may increment a program
counter (PC) by 1 in a core—appears eight times in a CPU. In
this example, these multiple instances of PCs are referred to
as “siblings. Since sibling primitives have a high probability
of simultaneous input changes, then those sibling primitives
can be clustered together into a given partition of a graph—a
Sub-graph.
0045. A user may run thousands of tests on a single simu
lation model. Each of these tests may form an execution
sequence. By creating a simulation model which runs 2, 4, or
more copies of the simulation model at a time, one may
increase parallel efficiency and achieve better utilization of a
model. Such simulation may follow a process such as: obtain
a simulation model then obtain 2, 4, or more copies of the
simulation model data, one copy for each test to be supported
by a multi-test simulation model. By having multiple copies
different stimulus can be applied to the copies to evaluate
different tests. In some embodiments, design representations
can be shared across the copies. Likewise circuit structures
can be shared across the copies.
0046 A simulation model may comprise an interconnec
tion of simple primitives. Simple primitives may have
roughly equal computational and communication require
ments. For example, a description of a logic design at a gate
level may be in terms of simple primitives such as AND, OR,
and NOT gates, flip-flops, latches, and the like. An RTL
description in a high-level language such as VerilogTM,
VHDLTM, SystemVerilogTM, SystemCTM, or other design lan
guage, may be decomposed into primitives. Higher level
functions of arbitrary width Such as multipliers, address, and
the like, may be decomposed into components comprising
fixed widths such as 32 or 64 bits, for example. Selectors
comprising an arbitrary number of inputs may be decom
posed into components comprising a fixed number of inputs
such as 3, 5, and the like. Primitives may be clustered together
for a variety of reasons that may be related to design and/or
simulation. Such primitives can comprise a significant por
tion of a graph or Sub-graph for evaluation. Various steps in
the flow 200 may be changed in order, repeated, omitted, or
the like without departing from the disclosed inventive con
cepts. Various embodiments of the flow 200 may be included
in a computer program product embodied in a non-transitory
computer readable medium that includes code executable by
one or more processors.
0047 FIG.3 is a flow diagram for sub-graph usage. A flow
300 may continue or be part of the previous flow 100. In some
embodiments, the flow 300 stands on its own and works from
pre-existing Sub-graphs. A graph representing a system
design is obtained. A graph may be portioned into Sub-graphs.
Sub-graphs may be used for various aspects of evaluation and

US 2013/02909 19 A1

simulation processes. A simulation sequence may trigger
evaluation of one or more primitives. Evaluation may be
based on input changes to one or more Sub-graphs. Evaluation
may result in updating the values at the outputs of the primi
tives.

0048. The sub-graphs are evaluated 310 as part of simula
tion of a high-level design. Simulation of a graph may com
prise one or more optimization criteria, including use of mas
sively parallel architectures, selective execution of a parallel
simulation, aggregated selective evaluation optimization for
memory architecture, exploitation of SIMD instructions, and
the like.

0049 Simulation sequences for a design may be formed
from Sub-graphs. For example, simulation sequences may
create regions large enough to keep a parallel machine busy,
but the regions may not be so large that computation becomes
inefficient due to unnecessary checking or execution. In
embodiments, if a design were to have multiple clock regions
corresponding to each clock's flip-flopS/latches, then the
primitives that produce the inputs to the flip-flops/latches may
be formed into two regions.
0050. A simulation sequence may trigger evaluation of
one or more primitives based on input changes. The evalua
tion may result in updating (e.g. changes to) the values at the
outputs of the primitives. The output changes may result in
one or more input changes to downstream logic. The flow 300
may further comprise determining that an output of one of the
Sub-graphs has changes 320 state and copying that change of
state 322 to a processor. A process for a second Sub-graph may
use that change of state as input to the second Sub-graph. The
second Sub-graph may represent another portion of the design
being simulated. Because of the change of input state of a
second Sub-graph, a simulation sequence may be triggered.
0051 Similar to the copying which may take place
between an output change and an input change, the flow 300
may further comprise copying a sequence of changes of state
324 for that output of one of the Sub-graphs and using this
sequence as a series of inputs to the second Sub-graph 326. A
sequence of changes of State may result from one or more
simulation steps of a Sub-graph. The series of changes of state
may represent one or more evaluation steps. The copying of a
sequence of changes of state from an output of a Sub-graph
that may be used as a sequence of inputs to a second Sub
graph may execute more efficiently if a first Sub-graph and a
second sub-graph are executed on the same processor, for
example. Various steps in the flow 300 may be changed in
order, repeated, omitted, or the like without departing from
the disclosed inventive concepts. Various embodiments of the
flow 300 may be included in a computer program product
embodied in a non-transitory computer readable medium that
includes code executable by one or more processors.
0052 FIG. 4 is an example logic block diagram 400.
Simple primitives may have roughly equal computational and
communication requirements. A gate level description of a
logic design may be in terms of simple primitives such as
AND, OR, and NOR gates, flip flops, latches, and the like.
Register transfer level (RTL) and higher-level descriptions
may be decomposed into simple primitives such as adders,
multipliers, multi-bit and/or, selectors, multi-bit flip-flops,
latches, state holding processes with arbitrary controls, loops
with controls, etc. A description may be evaluated at various
levels of abstraction. In embodiments, the evaluating may be
based on an oblivious simulation model.

Oct. 31, 2013

0053 A high-level or system-level description of a design
may be partitioned for ease of evaluation. For example, a
given RTL Description in VerilogTM, VHDLTM, SystemVer
ilogTM, SystemCTM, or other design language, may be decom
posed into primitives. A system design may be composed of
hundreds of thousands of Statements. The statements may
form primitives. Primitives such as multipliers, adders, etc. of
an arbitrary width may be decomposed into components that
have a fixed width such as 32 or 64 bits. Primitives such as
Selectors that have an arbitrary number of inputs may be
decomposed into components that have a fixed number of
inputs, such as 3 or 5. For example, in a given HDL descrip
tion, the description may be decomposed into simple primi
tives with suitable a number of inputs and widths, as well as
Sufficient complexity of operation.
0054. In the example logic block 400, various inputs may
be applied to the logic. For example, the logic may have
inputs such as IN A 412 and IN B 414. The inputs IN A and
IN B may be applied to one or more gates comprising the
logic block 400. Control signals may also be applied to a logic
block. For example, a control signal Control 416, and a clock
signal Clock 418 may be among a plurality of control signals
which may be applied to the control block.
0055 Various operations may be performed on the one or
more inputs applied to a logic block. For example, a multi
plier 410 and a subtractor 420 may operate upon inputs 412
and 414. In embodiments, any number of operations may be
performed on inputs. Outputs of a multiplier 410 and a sub
tractor 420, or other logic function or functions, may be
connected to another logic block such as a selector 430. A
selector 430 may be controlled by a control signal Control
416. Continuing with the example, an output of a selector 430
may be captured into a flip-flop 440. A flip-flop 440 may be
controlled by a clock signal Clock 418. The clock signal
Clock 418, applied to a flip-flop, may generate an output OUT
442. The output OUT 442 may be connected to one or more
logic blocks for design and/or simulation purposes.
0056 FIG. 5 is an example flow graph. 500 of the logic
design. The flow graph 500 may represent the logic block
diagram 400. A high-level design may be mapped onto a
graph. By determining a map representation, operators of a
logic design may be mapped to nodes of a graph, and inter
connections of a logic design to arcs of a graph. A graph may
define inputs and outputs to the graph. A graph may include a
control data flow graph, directed graph, an acyclic directed
graph, a PetriNet, or other graph appropriate to the design
problem. A control data flow graph may include a graph of a
combinational region of the high-level design and a state
region of the high-level design. A graph of a combinational
region and a state region may be suitable to various verifica
tion and simulation purposes.
0057 The graph 500 comprises inputs IN A512, IN B
514, CONTROL 516, and CLOCK 518. The input 512 and
the input 514 may be connected by an arc 550 and an arc 552
to node M=A*B510, and by an arc 554 and anarc 556 to node
S=A-B 520. In embodiments, arcs to one or more nodes may
connect one or more inputs. Continuing, the node 510 and the
node 520 may be connected by the arc 560 and the arc 562 to
a node SEL 530. The node 530 may be controlled by a control
signal Control 516. Continuing, the node 530 may be con
nected by an arc 564 to a node FF 540. In embodiments, the
node FF 540 may represent a flip-flop. A node 540 may be
controlled by a control signal Clock 518. A node 540 may be
connected by an arc 566 to an output OUT 542. In embodi

US 2013/02909 19 A1

ments, a clock signal Clock 518 controlling a node 540 may
also control an output 542. Logic blocks may be of varying
sizes, ranging from a single input, operator, and output, for
example, to many inputs, many operators, and many outputs.
Large graphs, for example, may be partitioned into a series of
Sub-graphs for simulation purposes and/or design purposes.
0058 FIG. 6 is an example flow graph showing example
partitions. The example flow graph with partitions 600 may
be derived from the flow graph 500. A graph may be generated
as part of a computer-implemented method for design simu
lation. A graph may be represented by any of a variety of
graphical methods such as a directed graph, an acyclic
directed graph, a PetriNet, or other graph appropriate to the
design problem. The control data flow graph may include a
graph of a combinational region of the high-level design and
a state region of the high-level design. A graph may be parti
tioned into simulation sequences. A simulation sequence may
trigger evaluation of one or more primitives based on changes
to an input or inputs. Evaluation may result in updating the
values at the outputs of the primitives. A simulation sequence
may be constructed for the flow graph with partitions 600.
0059 A simulation sequence may trigger evaluation of
one or more primitives based on input changes. A simulation
sequence may result in updating values at an output or outputs
of one or more primitives. For example, for the graph 600, the
following simulation sequence may be constructed. If a
change occurs on IN A 612, IN B 614, or Control 616, then
Region 1652 is evaluated. If a change occurs on, for example,
a positive edge of Clock 618, then Region 2 654 is evaluated.
More than one simulation sequence may be generated. For
example, one of many alternative sequences may comprise
the following. If a change occurs on any of IN A 612 and
IN B 614, then Region 11 650 is evaluated. Evaluating 650
may result in evaluating M=A*B 610 and S=A-B 620. If a
change occurs on arc 622, arc 624 or Control 616, then SEL
630 is evaluated. If a change occurs on, for example, a posi
tive edge of Clock 618, then Region 2 654 is evaluated.
Evaluating 654 may result in evaluating a flip-flop FF 640.
Evaluating 640 may result in evaluating output OUT 642.
0060 Simulation sequences for a given design may be
formed to create regions large enough to keep a parallel
machine busy but not so large that unnecessary checking or
execution is performed. Unnecessary checking or execution
may result in excess computational utilization and thus may
reduce efficiency. If a design comprises multiple clock
regions that may correspond to flip-flops/latches connected to
each clock, then primitives which may produce inputs to a
flip-flop/latch may be formed into regions.
0061 FIG. 7 is an example of a levelized hypergraph 700.
The levelized hypergraph 700 may represent a portion of the
flow graph with partitions 600. A region as discussed above
may comprise an interconnection of primitives which may
form a hypergraph. A hypergraph may comprise a series of
Sub-graphs. A typical region may be acyclic. In embodiments,
a region which may have a combinational cycle may be par
titioned such that a cycle may be cut at an arbitrary point. A
special primitive in a special region may be inserted at the
point of the cut or at another location. By inserting a special
primitive, all regions may be turned into acyclic hypergraphs.
0062 An acyclic hypergraph for simulation may comprise
a subset of sub-graphs. The subset of the sub-graphs for
simulation may be selected based on the input-change bit for
each sub-graph in the Subset of the Sub-graphs being set to
true. An acyclic hypergraph may be levelized in Such a man

Oct. 31, 2013

ner that each level may have a set of primitives which may not
have value dependencies. In a levelized hypergraph 700, an
operation M=A*B 710, and an operation S=A-B 720 may not
have one or more value dependencies. For example, opera
tions 710 and 720 may depend on inputs IN A 712 and IN B
714, but not on each other. In the example given, operations
710 and 720 may be evaluated in the same level Level K750.
A SEL 730 primitive may have value dependencies on opera
tions 710 and 720, and control signal Control 716, and may be
evaluated in a level Level K+1752. Such a dependency may
be permitted if the operations 710 and 720 are evaluated in a
previous level 750 prior to the evaluation of level 752. Such a
procedure may avoid time/event ordered queues, and Syn
chronization of queues. There may be a single synchroniza
tion for each level if an oblivious simulation model is used.
0063 A subset of sub-graphs may be selected by other
means. In embodiments, the selection may further comprise
using one or more of the input change bits on a level as part of
the selecting of the Subset for simulation. Input change bits
may be used to indicate that one or more of the inputs, for
example, if inputs 712 and 714 have changed. In other
embodiments, the partitioning of a graph into Sub-graphs may
include the balancing of levels. Balancing of levels may per
mit more efficient simulation and evaluation on GPUs or
other parallel processing chips and systems. In another
embodiment, the partitioning may include separating primi
tives evenly across clusters within a level. Again, such sepa
ration may serve to improve computation efficiency of simu
lation and evaluation processes.
0064 FIG. 8 is an example logic block 800 for selective
evaluation. The logic block 800 is shown which may include
input change bits. Input change bits may indicate changes of
input values for one or more inputs, and may refer to changes
for a single gate or a plurality of gates. The input change bits
may be included for the purposes of simulation, and/or may
reflect alterations to a hardware design. Recall that oblivious
simulation may have an advantage over event driven simula
tion in that oblivious simulation proceeds without creating
and maintaining an event queue required by event driven
simulation. However, oblivious simulation may tend to simu
late all elements rather than just those which experience an
input change. The input change bits may be added in order to
simulate only those elements which experience input changes
(e.g. selective simulation), and may render simulation more
computationally efficient.
0065. A selective evaluation procedure may require that
input changes be maintained for each primitive of a block of
primitives. For example, the logic block 800 may show two
primitives, 810 and 840, each with their own Input Change
Bit, 830 and 860 respectively. A single input change bit may
be assigned to a logic block comprising primitives, in a given
simulation level, grouped together to reduce the overhead of
maintaining individual input change bits. A single input
change bit may indicate a change of one or more inputs into a
block. Simulation of a block may only proceed if an input
change bit indicates a change.
0066. In the given example logic block 800, a single com
mon input change value 830 may be maintained for a primi
tive 810. Selectively evaluating the processes may be based
on an input change bit set being set to true. If one or more
inputs Datal 820, Data2 822, and Data3 824 changes, a
common input change bit 830 may be set. Setting an input
change bit 830 may result in evaluation of all primitives,
Adder1812 and Adder2814, in block 810. For example, if

US 2013/02909 19 A1

Data1820 transitions while Data2 822 and Data3 824 remain
constant, then an input change bit 830 would be set to indicate
that an input had changed, and primitives 812and814 would
be evaluated.
0067 Continuing, consider, for example, that a change on
Data1820, which may cause evaluation of primitives 812 and
814, may cause the output of Adder1812 to change. Such a
change may be reflected on input 816 to storage 850. Also, a
change may result in an update 818 of Input Change Bit 860.
During a Subsequent simulation step, the primitives of block
840 may be evaluated as a result of an input change 816—
stored in storage 850 and indicated by input change bit 860.
0068. In embodiments, an example procedure may
include the steps in Table 1.

TABLE 1.

Example handling steps for circuit with input change bits.

Check input change bit value
If input change bit value is “1”, evaluate blocks of primitive
Set input change bit for block to "O' (reset)
Evaluate the primitives of a block-this may cause an output change and
may trigger a process
Write output value to receivers
Write output change to receiving block or blocks.

0069. Writing of an output change to an Input Change Bit
860 of block 840 may result in evaluation of primitives
Adder 1842 and Adder2844 of block 840.
0070 A procedure such as the one indicated in the
example may balance the workload in three phases. In the
example, the three phases may comprise fetching of input
values, evaluation of primitives, and checking and writing of
output changes. A procedure Such as the one indicated in the
example may optimize memory access by fetching input val
ues for a given logic block as a single contiguous region of
memory. Since only blocks which undergo input changes
may be evaluated, redundant evaluation may be reduced in
comparison to a conventional Oblivious simulation.
0071 FIG. 9 is an example logic combination to create a
phase reduction. A logic block 900 may be obtained for
simulation by a computer-implemented method for design
simulation. Gated clock designs, such as logic block 900, may
result from a variety of design decisions. For example, a gated
clock 93.4 may be derived from a Main Clock 922 (e.g. system
clock) and may be implemented to disable regions of a design
under a clock control. The main clock 922 may also permit
capture of Data 920 into a storage element 912. In some
designs, each gated clock may in turn be used to derive
Sub-gated clocks, and so on. Such a hierarchy of gated clocks
may permit serialization of evaluation of a given simulation
model. In some designs, a gated clock may be enabled by an
enable signal 924.
0072 An enable 924 may control the Clock Gate 914 of a
gated clock 934. A gated clock 93.4 may be computed in one
phase 910. An enable 924 of a gated clock 93.4 may be
computed in one phase 910, and may trigger a change on
gated clock 934 which may be evaluated in a second phase.
For example, a change on gated clock 93.4 may cause evalu
ation of Storage B 930.
0073. An example logic combination may include modi
fying clock gating. The modifying of the clock gating may
include moving gating to storage elements. For example, if a
clock gating check were moved to a storage element that is
controlled by a clock, then evaluation may be accomplished

Oct. 31, 2013

in one phase. For example, consider a logic block 902. A
clock enable gate has been moved into a storage element 950.
The modifying of the clock gating may include eliminating a
clock gate to a combinational logic portion. In embodiments,
the modifying of the clock gating may only be for simulation
purposes. As with logic block 900, logic block 902 retains
inputs Data 960, Main Clock 962, and Clock Gate Enable
964. However, in the example, a Main Clock 962 may be
connected to two storage elements 942 and 950. The clock
gating may be restructured to combine phases and to occur on
the active edge of clock. Since a clock enable gate may be
moved into a storage element 950, then two primitives 942
and 950 may be combined into a single phase 940, thus
reducing the number of phases required for simulation to one.
Reducing the number of simulation phases required may
increase parallel evaluation and may remove computational
overhead of starting additional phases.
0074 FIG. 10 is a system diagram for partitioned simula
tion. In embodiments, the computer system 1000 for parti
tioned design simulation may comprise one or more proces
sors 1010 coupled to a memory 1012 and a display 1014. The
one or more processors 1010 may be coupled to a Design
Library 1020, a Graph Module 1030, a Partition Module
1040, a Selector Module 1050, and an Evaluation Module
1060. In at least one embodiment, the one or more processors
1010 may accomplish the one or more of the graph, partition,
selector, and evaluation functions. In at least one embodi
ment, all of these functions will be accomplished by the one
or more processors 1010.
(0075. The one or more processors 1010 are coupled to the
memory 1012 which stores instructions, system Support data,
intermediate data, analysis, and the like. The one or more
processors 1010 may be coupled to an electronic display
1014. The display 1014 may be any electronic display, includ
ing but not limited to, a computer display, a laptop screen, a
net-book Screen, a tablet computer screen, a cell phone dis
play, a mobile device display, a remote with a display, a
television, a projector, or the like.
0076. The one or more processors 1010 may be configured
to obtain a high-level design 1020 for simulation. The high
level design may comprise various aspects of a design includ
ing a system to be simulated, a simulation test bench, simu
lation models, simulation vectors, and the like.
(0077. The system 1000 may be configured to determine a
graph representation for the high-level design 1030. A control
data flow graph (CDFG) may be determined for an RTL
representation of a high-level design. The CDFG may be
folded into a graph of a combinational region and a state
region. Other graphical representations may be determined
for a representation of a high-level design including a directed
graph an acyclic directed graph, a PetriNet, or other graph
appropriate to the design problem.
0078. The system 1000 may be configured to partition the
graph into Sub-graphs. A graph may be partitioned into Sub
graphs by a variety of means including static means, arbitrary
means, and the like. Static partitioning, for example, may be
based on creating value read/write locality, balancing of com
putation by level, creating event-change locality, reducing
unique node (or primitive) types in a given partition, and the
like. Arbitrary partitioning may be based on random, ad hoc,
heuristic, and other means, for example.
(0079. The system 1000 may be configured to select a
Subset of the Sub-graphs for simulation based on input
change bits. A partition or Subset of a graph may be instru

US 2013/02909 19 A1

mented with an input change bit. An input change bit may be
associated with a vertex (node) of a graph, or may be associ
ated with a cluster of nodes of a graph. An input change bit
may indicate that one or more inputs to a partition or Subset of
a graph (e.g. a sub-graph) have changed over Some time
period. Selection of a Subset of Sub-graphs may be made
based on a change in status of one or more input change bits.
0080. The system 1000 may be configured to and evaluate
the Subset of the Sub-graphs to produce a simulation result for
the high-level design. A Subset of Sub-graphs may be simu
lated based on a change of status of one or more input change
bits. Other subsets of sub-graphs may indicate that there may
have been no change of status of one or more input change
bits. Thus, selective simulation of, for example, only subsets
of sub-graphs that had a change of status of one or more input
change bits may reduce computational complexity by ignor
ing Subsets of Sub-graphs that did not have a change of status
of one or more input change bits.
0081. The system 1000 may include computer program
product comprising code for obtaining a high-level design for
simulation; code for determining a graph representation for
the high-level design; code for partitioning the graph into
Sub-graphs; code for selecting a Subset of the Sub-graphs for
simulation based on input-change bits; and code for evaluat
ing the Subset of the Sub-graphs to produce a simulation result
for the high-level design.
0082 Each of the above methods may be executed on one
or more processors on one or more computer systems.
Embodiments may include various forms of distributed com
puting, client/server computing, and cloud based computing.
Further, it will be understood that the depicted steps or boxes
contained in this disclosure's flow charts are solely illustra
tive and explanatory. The steps may be modified, omitted,
repeated, or re-ordered without departing from the scope of
this disclosure. Further, each step may contain one or more
Sub-steps. While the foregoing drawings and description set
forth functional aspects of the disclosed systems, no particu
lar implementation or arrangement of Software and/or hard
ware should be inferred from these descriptions unless explic
itly stated or otherwise clear from the context. All such
arrangements of software and/or hardware are intended to fall
within the scope of this disclosure.
0083. The block diagrams and flowchart illustrations
depict methods, apparatus, Systems, and computer program
products. The elements and combinations of elements in the
block diagrams and flow diagrams, show functions, steps, or
groups of steps of the methods, apparatus, systems, computer
program products and/or computer-implemented methods.
Any and all Such functions—generally referred to herein as a
“circuit,” “module, or “system may be implemented by
computer program instructions, by special-purpose hard
ware-based computer systems, by combinations of special
purpose hardware and computer instructions, by combina
tions of general purpose hardware and computer instructions,
and so on.

0084. A programmable apparatus which executes any of
the above mentioned computer program products or com
puter-implemented methods may include one or more micro
processors, microcontrollers, embedded microcontrollers,
programmable digital signal processors, programmable
devices, programmable gate arrays, programmable array
logic, memory devices, application specific integrated cir
cuits, or the like. Each may be Suitably employed or config

Oct. 31, 2013

ured to process computer program instructions, execute com
puter logic, store computer data, and so on.
I0085. It will be understood that a computer may include a
computer program product from a computer-readable storage
medium and that this medium may be internal or external,
removable and replaceable, or fixed. In addition, a computer
may include a Basic Input/Output System (BIOS), firmware,
an operating system, a database, or the like that may include,
interface with, or support the software and hardware
described herein.

I0086 Embodiments of the present invention are neither
limited to conventional computer applications nor the pro
grammable apparatus that run them. To illustrate: the embodi
ments of the presently claimed invention could include an
optical computer, quantum computer, analog computer, or the
like. A computer program may be loaded onto a computer to
produce a particular machine that may performany and all of
the depicted functions. This particular machine provides a
means for carrying out any and all of the depicted functions.
I0087 Any combination of one or more computer readable
media may be utilized including but not limited to: a non
transitory computer readable medium for storage; an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor computer readable storage medium or any Suitable
combination of the foregoing; a portable computer diskette; a
hard disk; a random access memory (RAM); a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM, Flash, MRAM, FeRAM, or phase change
memory); an optical fiber; a portable compact disc; an optical
storage device; a magnetic storage device; or any Suitable
combination of the foregoing. In the context of this document,
a computer readable storage medium may be any tangible
medium that can contain or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

I0088. It will be appreciated that computer program
instructions may include computer executable code. A variety
of languages for expressing computer program instructions
may include without limitation C, C++, Java, JavaScriptTM,
ActionScriptTM, assembly language, Lisp, Perl, Tcl, Python,
Ruby, hardware description languages, database program
ming languages, functional programming languages, impera
tive programming languages, and so on. In embodiments,
computer program instructions may be stored, compiled, or
interpreted to run on a computer, a programmable data pro
cessing apparatus, a heterogeneous combination of proces
sors or processor architectures, and so on. Without limitation,
embodiments of the present invention may take the form of
web-based computer software, which includes client/server
Software, Software-as-a-service, peer-to-peer Software, or the
like.

I0089. In embodiments, a computer may enable execution
of computer program instructions including multiple pro
grams or threads. The multiple programs or threads may be
processed approximately simultaneously to enhance utiliza
tion of the processor and to facilitate Substantially simulta
neous functions. By way of implementation, any and all
methods, program codes, program instructions, and the like
described herein may be implemented in one or more threads
which may in turn spawn other threads, which may them
selves have priorities associated with them. In some embodi
ments, a computer may process these threads based on prior
ity or other order.

US 2013/02909 19 A1

0090. Unless explicitly stated or otherwise clear from the
context, the verbs “execute” and “process” may be used inter
changeably to indicate execute, process, interpret, compile,
assemble, link, load, or a combination of the foregoing.
Therefore, embodiments that execute or process computer
program instructions, computer-executable code, or the like
may act upon the instructions or code in any and all of the
ways described. Further, the method steps shown are intended
to include any Suitable method of causing one or more parties
or entities to perform the steps. The parties performing a step,
or portion of a step, need not be located within a particular
geographic location or country boundary. For instance, if an
entity located within the United States causes a method step,
or portion thereof, to be performed outside of the United
States then the method is considered to be performed in the
United States by virtue of the causal entity.
0.091 While the invention has been disclosed in connec
tion with preferred embodiments shown and described in
detail, various modifications and improvements thereon will
become apparent to those skilled in the art. Accordingly, the
forgoing examples should not limit the spirit and scope of the
present invention; rather it should be understood in the broad
est sense allowable by law.
What is claimed is:
1. A computer-implemented method for design simulation

comprising:
obtaining a high-level design for simulation;
determining a graph representation for the high-level

design;
partitioning the graph representation into Sub-graphs;
Selectinga Subset of the Sub-graphs for simulation based on

input-change bits; and
evaluating the Subset of the Sub-graphs to produce a simu

lation result for the high-level design.
2. The method of claim 1 further comprising propagating

the simulation result, based on the evaluating of the subset of
the Sub-graphs, to a remainder of the graph representation for
further simulation.

3. The method of claim 1 wherein the subset of the sub
graphs for simulation is selected based on an input-change
bit, for each Sub-graph in the Subset of the Sub-graphs, being
Set to true.

4. The method of claim 1 wherein the partitioning further
comprises determining Sub-graphs based on levels of logic.

5. The method of claim 1 wherein the partitioning into
Sub-graphs is based on reducing a number of signals crossing
Sub-graph boundaries.

6. The method of claim 1 further comprising using one or
more of the input-change bits on a level as part of the selecting
of the subset for simulation.

7. The method of claim 1 wherein the evaluating is based on
an oblivious simulation model.

8. The method of claim 7 further comprising allocating
processes from the oblivious simulation model to a plurality
of processors.

9. The method of claim 8 further comprising selectively
evaluating the processes based on an input change bit set
being set to valid.

10. The method of claim 1 wherein the graph representa
tion includes a control data flow graph.

11. The method of claim 10 wherein the control data flow
graph includes a graph of a combinational region of the high
level design and a state region of the high-level design.

Oct. 31, 2013

12. The method of claim 1 wherein the partitioning
includes creating value locality.

13. The method of claim 1 wherein the partitioning
includes creating event change locality.

14. The method of claim 1 wherein the partitioning
includes balancing of levels.

15. The method of claim 1 wherein the partitioning
includes collecting of readers of a simulation value.

16. The method of claim 1 wherein the partitioning
includes separating primitives evenly across clusters within a
level.

17. The method of claim 1 wherein the partitioning
includes clustering sibling primitives.

18. The method of claim 1 further comprising modifying
clock gating.

19. The method of claim 18 wherein the modifying clock
gating includes moving gating to storage elements.

20. The method of claim 19 wherein the modifying clock
gating includes eliminating a clock gate to a combinational
logic portion.

21. The method of claim 19 wherein the modifying clock
gating is only for simulation purposes.

22. The method of claim 18 wherein clock gating is restruc
tured to combine phases and to occur on an active edge of
clock.

23. The method of claim 1 further comprising determining
that an output of one of the Sub-graphs has a change of State
and copying that change of state to a processor where a
process for a second sub-graph uses that change of State as
input to the second sub-graph.

24. The method of claim 23 further comprising copying a
sequence of changes of State for that output of one of the
Sub-graphs and using the sequence as a series of inputs to the
second Sub-graph.

25. The method of claim 1 further comprising copying the
high-level design and simulating the high-level designas well
as its copy on at least two different processors.

26. The method of claim 25 wherein the copying is per
formed to accomplish the simulating.

27. The method of claim 25 further comprising maintain
ing primitives with the same function in a single cluster
within the copy of the high-level design.

28. A computer system for design simulation comprising:
a memory which stores instructions;
one or more processors coupled to the memory wherein the

one or more processors are configured to:
obtain a high-level design for simulation;
determine a graph representation for the high-level

design;
partition the graph representation into Sub-graphs;
Select a Subset of the Sub-graphs for simulation based on

input-change bits; and
evaluate the Subset of the Sub-graphs to produce a simu

lation result for the high-level design.
29. A computer program product embodied in a non-tran

sitory computer readable medium for design simulation com
prising:

code for obtaining a high-level design for simulation;
code for determining a graph representation for the high

level design;
code for partitioning the graph representation into Sub

graphs;
code for selecting a Subset of the Sub-graphs for simulation

based on input-change bits; and
code for evaluating the Subset of the Sub-graphs to produce

a simulation result for the high-level design.
k k k k k

