用于保护三相马达的系统和方法

一种用于保护压缩机的三相电动马达的系统，所述马达接收来自三相电源的第一相、第二相和第三相，所述系统包括单相断线保护器、第一电流传感器和控制模块。所述单相断线保护器响应于温度大于预定温度阈值而使所述马达与第一相断开。所述第一电流传感器测量通过所述单相断线保护器的电流。所述控制模块根据所测量出的电流确定电流值，并响应于所述电流值小于或等于预定阈值而使所述马达与第二相和第三相断开。
1. 一种用于保护压缩机的三相电动马达的系统，所述马达接收来自三相电源的第
一相、第二相和第三相，所述系统包括：
单根断线保护器，所述单根断线保护器响应于温度大于预定温度阈值而使所述马达与
所述第一相断开；
第一电流传感器，所述第一电流传感器测量通过所述单根断线保护器的电流；以及
控制模块，所述控制模块（i）基于所测量出的电流确定电流值，并且（ii）响应于所述
电流值小于或等于预定阈值而使所述马达与所述第二相和第三相断开。
2. 如权利要求1所述的系统，其中，所述预定阈值为零。
3. 如权利要求1所述的系统，其中，当所述电流值小于或等于所述预定阈值时，所述控
制模块使所述马达与所述第一相、第二相和第三相断开。
4. 如权利要求1所述的系统，其中，所述电流值包括所测量出的电流在预定周期内的
峰值和所测量出的电流在所述预定周期内的均方根（RMS）之一。
5. 如权利要求1所述的系统，其中，所述控制模块允许所述马达与在所述第二相和第三
相断开后经过预定关闭周期之后再次连接至所述第二相和第三相。
6. 如权利要求1所述的系统，还包括第二电流传感器，所述第二电流传感器测量对应
于所述第二相和第三相之一的电流，其中，所述控制模块基于所测量出的电流选择性地检
测相应相位差和相位相位中至少一者，并且，所述控制模块响应于检测到所述相应相位差和所述
相位相位中一者或更多者而使所述马达与所述第二相和第三相断开。
7. 如权利要求1所述的系统，其中，所述单根断线保护器包括选择性地传导所述电流
的第一元件和第二元件，其中，所述第一元件和第二元件基于所述温度曲面，并且，所述温
度基线所述电流的大小。
8. 如权利要求7所述的系统，其中，所述第一元件和第二元件中至少一个元件是双金
属元件。
9. 如权利要求7所述的系统，其中，所述单根断线保护器还包括分别电连接至所述第
一元件和第二元件的第一接触器和第二接触器，其中，所述第一元件和第二元件通过
所述接触器与所述第一相断开时，所述第一接触器和所述第二接触器断开。
10. 如权利要求1所述的系统，其中，所述单根断线保护器位于接近所述马达的绕组的
位置处，并且，所述温度基线所述绕组在所述马达的运转期间产生的热。
11. 如权利要求1所述的系统，其中，所述控制模块响应于所述马达与所述第二相和第
三相断开的发生，经由网络远程设备发送报告。
12. 一种用于保护压缩机的三相电动马达的方法，所述马达接收来自三相电源的第一
相、第二相和第三相，所述方法包括：
使用单根断线保护器，响应于温度大于预定温度阈值而使所述马达与所述第一相断
开；
测量通过所述单根断线保护器的电流；
基于所测量出的电流确定电流值；以及
响应于所述电流值小于或等于预定阈值而使所述马达与所述第二相和第三相断开。
13. 如权利要求12所述的方法，其中，所述预定阈值为零。
14. 如权利要求12所述的方法，还包括响应于所述电流值小于或等于所述预定阈值而
使所述马达与所述第一相、第二相和第三相断开。

15. 如权利要求 12 所述的方法，其中，所述电流值包括所测量出的电流在预定周期内的峰值和所测量出的电流在所述预定周期内的均方根 (RMS) 之一。

16. 如权利要求 12 所述的方法，还包括使所述马达在与所述第二相和第三相断开后经过预定闭合周期之后再次连接至所述第二相和第三相。

17. 如权利要求 12 所述的方法，还包括：
测量对应于所述第二相和第三相中的一者的电流；
基于所测量出的电流选择性地检测相位损失和逆相序中至少一者；以及
响应于检测到所述相位损失和所述逆相序中一者或多者而使所述马达与所述第二相和第三相断开。

18. 如权利要求 12 所述的方法，其中，所述单相断线保护器包括响应于所述温度而使第一接触器和第二接触器电气分离的双金属元件。

19. 如权利要求 12 所述的方法，其中，所述单相断线保护器位于接近所述马达的绕组的位置处，并且，所述温度基于所述绕组在所述马达的运转期间产生的热。

20. 如权利要求 12 所述的方法，还包括；响应于所述断开的发生，经由网络向远程设备发送报告。
用于保护三相马达的系统和方法

[0001] 相关申请的交叉引用

技术领域
[0003] 本公开涉及电动马达，更具体地涉及使用单相断线保护器保护三相电动马达的系统和方法。

背景技术
[0004] 在此给出的背景描述用于概括介绍本公开的背景的目的。在本背景技术部分中描述的、当前指定的发明人的工作以及本说明书的、在提交时不能被作为现有技术的方面既不明确地也不隐含地被接受为对比本公开的现有技术。
[0005] 以三相来分发电力是电力传输的常见方法。三相电力系统使用三个交流（AC）电压源，三个交流（AC）电压源的相位分别相隔 120 度。在平衡的三相电力系统中，三条电源供给线承载同一频率（因此同一周期）的三个 AC 信号，它们在不同时刻达到它们的瞬时峰值。以由三条电源线之一承载的电流作为参考，其他两路电流在时间上分别被延迟电流的一个周期的 1/3 和 2/3。
[0006] 用于产生三个 AC 电压源的一种常见方式是构造 AC 发电机 / 交流发电机，其中旋转磁场通过三组电线绕组，每组围绕发电机 / 交流发电机的圆周相隔 120 度。相电压指的是跨过诸如 AC 发电机 / 交流发电机中的一组电线绕组等的任何一个 AC 电压源测量的电压量。相电可以被用于给马达和许多其他装置提供动力。例如，相电可以被用于给诸如往复式压缩机中的马达的封闭式压缩机马达提供动力。
[0007] 马达的绕组可以以包括图 1A 和图 1B 中所示的那些的不同配置连接到相电源线。更具体地，图 1A 显示了“Δ”（德耳塔）配置，而图 1B 显示了“Y”配置，也被称为星形配置。在德耳塔配置中，绕组连接在三条电源线之间。在星形配置中，绕组从三条电源的每条向公共节点连接。公共节点可以连接到在星形配置的一些应用中存在的中线（N）。中线 N 可以允许低压装置连接在一条电源线和中线之间，这产生比当在两条电源线之间连接时较低的电压。

发明内容
[0008] 一种用于保护压缩机的三相电动马达的系统，该马达接收来自于相电源的第一相、第二相和第三相，该系统包括单相断线保护器、第一电流传感器和控制模块。该单相断线保护器响应于温度高于预定温度阈值而使马达与第一相断开。第一电流传感器测量通过单相断线保护器的电流。控制模块基于所测量出的电流确定电流值，并响应于该电流值小于或等于预定阈值而使马达与第二相和第三相断开。
在其他特征中，该预定阈值为零。在其他特征中，该控制模块响应于电流值小于或等于预定阈值而使马达与第一相、第二相和第三相断开。在其他特征中，该电流值包括所测量出的电流在预定周期内的峰值和所测量出的电流在该预定周期内的均方根（RMS）中的一者。

在其他特征中，控制模块使马达在与第二相和第三相断开后的预定关闭周期内再次连接到第二相和第三相。在其他特征中，该系统包括第二电流传感器，该第二电流传感器测量对应于第二相和第三相中的一者的电流，并且控制模块基于所测量出的电流选择性地检测相位损失和逆相序中至少一者，并且响应于检测到相位损失和逆相序中的一者或更多者而使马达与第二相和第三相断开。在其他特征中，控制模块响应于马达与第二相和第三相断开的发生，经由网络向远程设备发送报告。

在其他特征中，单相断线保护器包括选择性地传导电流的第一元件和第二元件，其中，该第一元件和第二元件基于温度而弯曲，并且该温度基于电流的大小。在其他特征中，第一元件和第二元件中至少一个元件是双金属元件。在其他特征中，该单相断线保护器进一步包括分别电气连接至第一元件和第二元件的第一接触器和第二接触器，其中，当第一元件和第二元件弯曲由此使马达与第一相断开时，该第一接触器和第二接触器分离。在其他特征中，该单相断线保护器位于接近马达的绕组的位置处，并且该温度基于该绕组在马达运转期间产生的热。

在其他特征中，该预定阈值为零。在其他特征中，该方法包括响应于电流值小于或等于预定阈值而使马达与第一相、第二相和第三相断开。在其他特征中，该电流值包括所测量出的电流在预定周期内的峰值和在所测量出的电流在该预定周期内的均方根中的一者。在其他特征中，该方法包括使马达在与第二相和第三相断开后的预定关闭期间内再次连接到第二相和第三相。

在其他特征中，该方法包括：测量对应于第二相和第三相中的一者的电流；根据所测量出的电流选择性地检测相位损失和逆相序中至少一者，并且响应于检测到相位损失和逆相序中的一者或更多者而使马达与第二相和第三相断开。在其他特征中，单相断线保护器包括选择性地传导电流的第一元件和第二元件，其中，该第一元件和第二元件根据温度弯曲，并且该温度基于电流的大小。在其他特征中，第一元件和第二元件中至少一个元件是双金属元件。

在其他特征中，单相断线保护器还包括分别电气连接至第一元件和第二元件的第一接触器和第二接触器，其中，当第一元件和第二元件弯曲由此使马达与第一相断开时，该第一接触器和第二接触器分离。在其他特征中，该单相断线保护器位于接近马达的绕组的位置处，并且该温度基于该绕组在马达运转期间产生的热。在其他特征中，该方法包括，响应于断开的发生，经由网络向远程设备发送报告。

从下文提供的详细描述中，本公开的其他应用领域将变得明显。应当理解，详细描述以及具体实施例是为了说明而并非意在限制本公开的范围。
附图说明
[0017] 从详细说明和附图中，将更加全面地理解本发明，其中：
[0018] 图 1A 和图 1B 是根据现有技术的马达绕组连接的示意图；
[0019] 图 2A 是根据本公开的一种实施方式的制冷系统的示意图，该制冷系统包括具有三相电动马达的压缩机；
[0020] 图 2B 是根据本公开的一种实施方式的压缩机的剖视图；
[0021] 图 3A 和图 3B 分别是单相断线保护器和三相断线保护器的示意图；
[0022] 图 4 是根据本公开的一种实施方式的控制模块的原理图；以及
[0023] 图 5 是根据本公开的一种实施方式的使用单相断线保护器保护三相电动马达的方法的流程图。

具体实施例
[0024] 下面的描述实质性上仅仅是示例性的，并且绝不意在限制本公开，其应用或者用途。为了清楚，在附图中将使用相同的参考标记来识别类似的元件。当在这里使用时，短语 A、B 和 C 的至少一个应当被解释为使用非独占逻辑“或”来表示逻辑（A 或 B 或 C）。应说明，可以以不同的顺序执行方法中的步骤，而不改变本公开的原理。
[0025] 当在这里使用时，术语“模块”可以指的是以下所述部件，作为以下所述部件的一部分或者包括以下所述部件：专用集成电路（ASIC）、电子电路、组合逻辑电路、现场可编程门阵列（FPGA）、执行编码的处理器（共用、专用或分组）、其它提供所述功能性的适合的部件、或上述例如在片上系统中的一或全部部件的组合。术语“模块”可以包括对由处理器执行的编码进行存储的存储器（共用、专用或分组）。
[0026] 上面所使用的术语“编码”可以包括软件、硬件、和/或微码，并且可以指程序、例行程序、功能、等级和/或对象。上面所使用的术语“共用”是指可以使用单一（共用）的处理器执行来自多模块的一或全部编码。上面所使用的术语“分组”是指可以使用一组处理器执行来自单一模块的一或全部编码。此外，可以使用一组存储器存储来自单一模块的一或全部编码。
[0027] 本文所描述的装置和方法可以通过由一个或多个处理器执行的一个或多个计算机程序来实施。该计算机程序包括存储在非临时性的有形的计算机可读介质上的处理器可执行指令。该计算机程序还可以包括存储的数据。非临时性的有形计算机可读介质的非限制性示例是不易失的存储、磁存储和光存储。
[0028] 如前所述，三相电力包括三个具有相同大小和频率但不同相位的交流电。这些交流电可以产生沿指定方向旋转的磁场。该定向磁场为三相电动马达的改进设计和/或控制做好了准备。具体地，与诸如单独和两相电动马达的其他电动马达相比，三相电动马达可以实现较高的转矩和/或效率。例如，三相电动马达可以在诸如制冷系统中的压缩机中实施。
[0029] 现参照图 2A，制冷系统 10 显示为包括冷凝器 12、蒸发器 14 和在该冷凝器 12 与蒸发器 14 之间的膨胀装置 16。该制冷系统 10 还包括与冷凝器 12 相关联的冷凝器风扇 18 和与蒸发器 14 相关联的蒸发器风扇 20。冷凝器风扇 18 和蒸发器风扇 20 中的每一个都是可控制的减速和/或加热命令而被控制的速度可变的风扇。此外，冷凝器
风扇 18 和蒸发器风扇 20 中的每一个都可以由控制系统 25 控制，从而使冷凝器风扇 18 和蒸发器风扇 20 的运转可以由压缩机 30 的运转相配合。

【0030】 工作时，压缩机 30 通常在冷凝器 12 与蒸发器 14 之间循环制冷剂以产生所需的加热和 / 或冷却效果。压缩机 30 在入口接头 32 处经由入口管线 33 接收来自蒸发器 14 的蒸汽制冷剂。入口管线 33 可以包括诸如低压切断开关的保护性开关 34。仅作为示例，压缩机 30 可以是涡旋式压缩机或密封式往复压缩机。例如，该涡旋式压缩机可以在驱动旋转变件与定涡旋件之间压缩蒸汽制冷剂。控制系统 25 可以经由驱动组件 45 和电源 50 控制压缩机 30 的运转。

【0031】 一旦压缩机 30 将蒸汽制冷剂压缩至最高压力，该所加压力对制冷机就在排放接头 36 处离开压缩机 30 并经由排放管线 37 移动至冷凝器 12。排放管线 37 可以包括诸如高压切断开关的保护性开关 38。一旦蒸汽进入冷凝器 12，该制冷机的状态由蒸汽变为液体，由此释放热量。释放出的热量通过由冷凝器风扇 18 引起的穿过冷凝器 12 的空气的循环从冷凝器 12 中去除。当制冷机的状态从蒸汽完全变为液体时，制冷机离开冷凝器 12 并且通常朝向膨胀装置 16 和蒸发器 14 的方向在冷凝系统 10 内移动。

【0032】 离开冷凝器 12 时，制冷剂首先遇到膨胀装置 16。一旦膨胀装置 16 使液体制冷剂充分膨胀，该液体制冷剂就进入蒸发器 14，从而使制冷机的状态由液体变为蒸汽。一旦置于蒸发器 14 内，液体制冷剂就吸收热量，由此将液体变为蒸汽并产生冷却效果。如果蒸发器 14 布置于建筑物的内部，那么所需的冷却效果通过蒸发器风扇 20 被循环至该建筑物内以冷却该建筑物。如果蒸发器 14 与热泵制冷系统相关联，那么蒸发器 14 可以位于远离建筑物的位置处。在另一构型中，一旦制冷机的状态由液体完全变为蒸汽，那么气化了的制冷机就由压缩机 30 的入口接头 32 接收以便再开始循环。

【0033】 现参照图 2B，其更加详细地示出了控制系统 25 和压缩机 30 的一部分的剖视图。压缩机 30 示出为包括通常呈圆柱形的密封式壳体 52，该密封式壳体 52 在限定压缩机 30 的内部容积 54 的顶部和底部（未示出）处具有焊接盖帽（未示出）。虽然，该压缩机 30 示出为涡旋式压缩机，但该压缩机 30 也可以是诸如密封式往复压缩器的不同类型的压缩机。

【0034】 曲轴 56 由电动马达 58 相对于壳体 52 旋转地驱动。例如，电动马达 58 可以包括具有三个绕组 62 的三相电动马达。具体地，该电动马达 58 包括由壳体 52 固定地支承的定子 60，穿过该定子 60 的绕组 62，以及压配合至曲轴 56 上的转子 64。定子 60，绕组 62 和转子 64 配合以相对于壳体 52 驱动曲轴 56 从而压缩流体。

【0035】 压缩机 30 还可以包括动涡旋件 66，该动涡旋件 66 在其上表面上具有用于接收和压缩流体的螺旋叶片或涡卷 68。Oldham 式接头（未示出）通常布置于动涡旋件 66 与承载壳体 74 之间并且键连接至动涡旋件 66 和定涡旋件 76。该 Oldham 式接头将旋转力从曲轴 56 传递至动涡旋件 66 以压缩通常布置于动涡旋件 66 与定涡旋件 76 之间的流体。定涡旋件 76 还包括布置于与动涡旋件 66 的涡卷 68 紧合接合的涡卷 72。

【0036】 电气外壳 82 可以被布置于压缩机 30 的壳体 52 上并且可被用于容纳控制系统 25 的各个部件和 / 或其他用于控制压缩机 30 和 / 或制冷系统 10 的运转的硬件。例如，该电气外壳 82 可以包括控制压缩机 30 的运转的控制模块 100。致动组件 45 选择性地调节压缩机 30 的容积。致动组件 45 可以包括连接至动涡旋件 66 的螺线管 78 和联接至该螺线管 78 以便控制该螺线管 78 在延伸位置与缩回位置之间的运动的控制的控制器 80。
螺线管 78 至延伸位置的运动使围绕定涡旋结构件 76 的环形阀（未示出）旋转以使吸入气体从旁路通过形成于定涡旋结构件 76 中的至少一个通道（未示出），以便减少压缩机 30 的输出。相反，螺线管 78 至缩回位置的运动使环形阀移动至关闭该通道以增加压缩机 30 的容积并使得压缩机 30 能够满负荷运行。这样的话，可以根据需要或随故障状态而调节压缩机 30 的容积。

密封式终端组件 88 可以与开关、阀、和 / 或传感器一起使用从而将壳体 52 的密封性质保持到使得这些开关、阀和传感器中任意项被置于壳体 52 内并控制模块 100 通不通的程度。此外，多个密封终端组件 88 可以被用于提供通过壳体 52 的密封的电气连通。

温度传感器 84 测量压缩机 30 外侧的环境温度。第一和第二电流传感器 86 和 87 测量流至压缩机 30 内的电流。具体地，第一和第二电流传感器 86,87 可以分别测量三个输入交流电中不同的那个交流电。例如，第一电流传感器 86 可以测量具有第一相与单相断线保护器 90 相关联的第一电流（I1）。附加地，例如，第二电流传感器 87 可以与该两相中的一相相相关联的第二电流（I2）。中断系统 92 可以位于接近电气外壳 82 的位置处或位于该电气外壳 82 内。

中断系统 92 可以包括可在断开状态与“触发”状态之间移动以限制从电源 50 至压缩机 30（即，至电动马达 58）的电力供应的接触器或断路器 94。具体地，该中断系统 92 可将由电源 50 供给的所有三相交流电与电动马达 58 断开。例如，该接触器或断路器 94 可以是电磁（EM）开关。该电磁开关具有在电源断开时自动断开该 EM 开关的线圈或其他类型的弹簧。然而，该接触器或断路器 94 还可以是其他适合类型的开关。

单相断线保护器 90 位于压缩机 30 内接近绕组 62 的位置处。该单相断线保护器 90 电气连接在电源 50 与电动马达 58 的绕组 62 之间。具体地，该单相断线保护器 90 将三个交流电中的一一个连接至一个绕组 62。该单相断线保护器 90 通过在故障状态下断开电源 50 而保护电动马达 58。例如，故障状态可以包括温度大于预定温度和 / 或电流大于预定电流。虽然图 2B 中未示出，在不同的实施方案中，中线也可被连接至电动马达 58。

现参考图 3A，其示出为单相断线保护器 110 的一个示例。例如，该单相断线保护器 110 可用于作为图 2B 的单相断线保护器 90。该单相断线保护器 110 保护单一的交流电路。具体地，该单相断线保护器 110 使（在输入处或“IN”处接收的）单一的交流线路与（连接至输入或“OUT”处的）电动马达断开。该单相断线保护器 110 包括保护器体部 120 以及第一元件和第二元件 124 和 128。例如，该保护器体部 120 可以包括气密的金属外壳。在不同的实施方案中，该保护器体部 120 可以物理附连至马达绕组 62。

第一元件 124 电气连接至单一的交流线路 IN，第二元件 128 电气连接至电动马达 OUT。例如，由于电流，第一元件和第二元件 124,128 可以作用为加热器。该第一元件和第二元件 124,128 可分别被附连于热敏传感器的接触器 132 和 136，接触器 132 和 136 电存在热时弯曲。具体地，该热敏传感器的接触器 132,136 可以根据热敏传感器 132,136 的温度将电流选择性地从输入端 IN 传导至输出端 OUT。例如，该热敏传感器的接触器 132,136 可以是双金属接触器。

更具体地，当电流的大小大于预定值时，由于电流导致由第一元件和第二元件 124,128 产生的热量会暂时引发热敏传感器 132,136 弯曲由此断开连接和流至马达的电流。例如，该电流的大小可以是预定周期内的电流的均方根（RMS）。因此，单相断线保护器 110
可以阻止由于电源电流中的电涌导致电流流向马达。附加地或可替代地，马达在运转期间产生的热量也可能引起热激活接触器 132、136 弯曲并破坏由于单相断线保护器 110 物理接近马达导致的连接。因此，该单相断线保护器 110 可以阻止由于马达过热导致电流流向马达。

[0045] 图 3A 的单相断线保护器 110 可以保护具有一个绕组和具有一个相的三个交流电的单相马达。另一方面，三相马达分别接收具有三个相位的三个交流电。因此，三相马达可以要求三相断线保护器保护三相马达免受故障状态期间的操作的影响。例如，图 3B 示例出了三相断线保护器 150 的示例。

[0046] 三相断线保护器 150 包括保护器主体 154 以及相应的第一、第二和第三元件 158、162 和 166。第一、第二和第三元件 158、162 和 166 分别电气连接至三个交流电 I₁、I₂ 和 I₃。例如，由于电流，该第一、第二和第三元件 158、162 和 166 可以作为加热器。热激活金属圆盘 170 位于接近该第一、第二和第三元件 158、162 和 166 的位置处。例如，该热激活金属盘 170 可以位于图 3B 中示出的第一、第二和第三元件 158、162 和 166 的下方。

[0047] 例如，电流导致该第一、第二和第三元件 158、162 和 166 中一个元件或多个元件的电流可以产生热量，该热量增加了热激活金属圆盘 170 的温度。附加地或可替代地，马达的运转期间产生的热量可增加热激活金属圆盘 170 的温度。当热激活金属圆盘 170 的温度增加至大于预定温度阈值的温度时，该热激活金属圆盘 170 弯曲，由此断开所有三个交流电 I₁、I₂ 和 I₃ 与马达之间的连接。可替代地，热激活金属圆盘 170 可中断具有星形推型或 Y 构型的马达中的中线 (N)。

[0048] 然而，实施三相断线保护器可增加马达保护系统的成本和/或复杂度。具体地，根据交流大小，热激活金属圆盘可具有不同的表现。例如，产生较大马力的电动马达可具有较大的电流量级并且因此可能需要较厚的热激活金属圆盘和/或较厚的第一、第二和第三元件。附加地，该热激活金属圆盘的预定温度阈值可以根据所使用的热激活金属的类型和/或数量而变化。因此，对每一个应用来说，三相断线保护器需要特定的设计。

[0049] 本公开描述了使用单相断线保护器保护三相电动马达的系统和方法。该系统和方法可以测量具有第一相位第一电流 I₁。具体地，该第一电流 I₁ 可以与单相断线保护器相关联。该系统和方法可以根据第一测量电流 I₁ 确定电流值。例如，该电流值可以是一周期内第一测量电流 I₁ 的峰值或均方根 (RMS) 值。然后，该系统和方法可以确定该电流值是否小于或等于预定阈值。例如，该预定阈值可以为零。当该电流值小于或等于预定阈值时，该系统和方法使马达与电源断开。例如，中断系统可致动接触器或断路器以便使马达与电源断开。

[0050] 该系统和方法还可以测量具有第二相位的第二电流 I₂。具体地，该第二电流 I₂ 与电源的第二相和第三相位中之一相关联。该系统和方法可以根据第一和第二测量电流 I₁、I₂ 检测相位损失和/或相序。逆向序的检测还可以指示马达的错误旋转方向。当检测到相位损失和逆相序中之一者或两者时，该系统和方法可以使电源与马达断开。使电源与马达断开可以防止由于错误操作对马达造成损害。例如，该错误操作可以包括马达的单相操作、两相操作、旋转方向倒置等。

[0051] 现参考图 4，示出为控制模块 100 的示例性实施方案。该控制模块 100 包括电流值确定模块 205、断开检测模块 210、相位损失检测模块 220、逆相序检测模块 230 以及电力控
制模块 250。

[0052] 电流值确定模块 205 从第一电流传感器 86 接收与单相断线保护器 90 相关联的、指示第一测量电流 I_1 的信号。该电流确定模块 205 根据第一测量电流 I_1 确定电流值。例如，该电流值可以是预定周期内第一测量电流 I_1 的峰值或是预定周期内第一测量电流 I_1 的 RMS 值。仅作为示例，该预定周期可以是第一测量电流 I_1 的一个周期。

[0053] 断开检测模块 210 从电流值确定模块 205 接收电流值。该断开检测模块 210 确定单相断线保护器 90 是否已经供电线与电动马达 58 断开。具体地，该断开检测模块 210 可以确定电流值是否小于或等于预定阈值。例如，该预定阈值可以为零。当该电流值小于或等于该预定阈值时，该断开检测模块 210 可以产生断开信号。

[0054] 相位损失检测模块 220 接收第一测量电流 I_1。该相位损失检测模块 220 还从第二电流传感器 87 接收与其他交流电之一关联的、指示第二测量电流 I_2 的信号。该相位损失检测模块 220 检测三个交流电中一者或更多者的损失，也被称作“相位损失”。具体地，该相位损失检测模块 220 可以确定检测第一测量电流 I_1 与检测第二测量电流 I_2 之间的周期。例如，检测第一测量电流 I_1 与检测第二测量电流 I_2 之间的周期可以是从第一测量电流 I_1 大于预定电流阈值时起直到第二测量电流 I_2 大于预定电流阈值之间的周期。

[0055] 当预定周期大于所需周期和预定容差的和的条件时，该相位损失检测模块 220 可以产生相位损失信号。例如，所需周期可以是输入交流电的周期的三分之一（即，对应于 120 度的相位差）。附件地或可替换地，当在预定检测周期的周期内没有检测到第一测量电流 I_1 时，相位损失检测模块 220 就会产生相位损失信号。例如，该预定检测周期可以是输入交流电的一个周期。

[0056] 逆相序检测模块 230 也接收第一和第二测量电流 I_1、I_2。该逆相序检测模块 230 确定第一和第二电流 I_1、I_2 的顺序是否与所需顺序相反。例如，所需顺序可以包括三项交流电 I_1、I_2 和 I_3 的重复顺序。具体地，该逆相序检测模块 230 可以确定一个周期内该第一测量电流 I_1 是在第二测量电流 I_2 前被检测到或是在第二测量电流 I_2 后被检测到。当根据所需顺序在错误的时间处（相应于第一测量电流 I_1）检测到第一测量电流 I_2 时，逆相序检测模块 230 就会产生逆相序信号。该逆相序信号还可以指示电动马达 58 的错误旋转方向。

[0057] 电力控制模块 250 可以接收断开信号、相位损失信号和，或逆相序信号。根据接收到的信号，该电力控制模块 250 控制中断系统 92。具体地，当接收到断开信号、相位损失信号和逆相序信号中的一者或更多者时，该电力控制模块 250 会致动接触器或断路器 94 以使电动马达 58 的全部三个相位与电源 50 断开。使电动马达 58 的全部三个相位与电源 50 断开可以防止电动马达 58 在一种或多种检测到的故障状态下运转。

[0058] 在电动马达 58 与电源 50 断开之后，该电力控制模块 250 可以等待预定关闭周期。该预定关闭周期可以提供时间以便为压缩机 30 内冷却并由此关闭单相断线保护器 90。仅作为示例，该预定关闭周期可以是十分钟。该电力控制模块 250 便使电动马达 58 再次连接至电源 50 并试图重新启动电动马达 58。然而，如果该单相断线保护器 90 仍然打开，那么断开检测模块 210 能够检测到断线并命令电力控制模块 250 使电动马达 58 与电源 50 断开。

[0059] 该电力控制模块 250 可以记录电动马达 58 何时与电源 50 断开。仅作为示例，该电力控制模块 250 可以保存电力被中断的次数的计数并且可以存储一个或多个发生次数的
时间戳。仅作为示例，如果在预定的时间周期内该计数还未增加，那么该电力控制模块 250 可以将该计数重置为零。这个预定的时间周期可以以秒或分为单位，并且引起该计数覆盖间隔相当紧密的最近的电力中断而忽略与当前间隔很远的电力中断。一旦这个计数超过阈值，那么该电力控制模块 250 就可以停止试图重新启动电动马来 58。该阈值可以是适应性的，例如，该阈值可以响应于中断发生地更加频繁而减小。

[0060] 该电力控制模块 250 可以经由分布式通信系统 260 向服务器 256 报告个别中断。仅作为示例，该分布式通信系统 260 可以包括因特网和 / 或诸如电力电网的附加网络。控制模块 100 可以经由诸如开关、路由器和 / 或网关的网络设备与该分布式通信系统 260 交互。

[0061] 服务器 256 可以追踪一段时间上的中断并且当电动马来 58 的重启应当暂停时可以给电力控制模块 250 发出信号。此外，出于预防性的维护的目的，该服务器 256 可以分析统计数据。此外，该服务器 256 可以记录何时暂停电动马来 58 的重启并识别何时需要现场服务。

[0062] 服务器 256 可以向用户计算设备 264 发送信息，该用户计算设备可以是属于包括电动马来 58 的系统的所有者的计算机、移动电话等。仅作为示例，该所有者可以是住宅的房主或房东。然后，该用户计算设备 264 可以与服务提供商计算设备 268 进行通信，该服务提供商的计算设备可以是服务提供商的、装配为用以维修电动马来 58 并诊断相关部件的、计算机、移动电话等。

[0063] 对服务提供商的要求可在用户的指导下在用户计算设备 264 上执行。附加地或可替代地，该服务器 256 可以被配置为自动向服务提供商计算设备 268 发送故障信息。在不同的实施方式中，该服务提供商计算设备 268 可以配置为对电动马来 58 和 / 或控制模块 100 进行远程诊断。因此，在某些情况下，该服务提供商计算设备 268 可以指示电力控制模块 250 尝试再次重启电动马来 58。这可被用于在发现并解决潜在问题时，例如当电网返回正常运转时，尝试远程重启电动马来 58。

[0064] 现参照图 5，示出为利用单相断线保护器保护三相电动马达的示例性方法从 304 处开始。在 304 处，控制程序测量与单相断线保护器相关的第一电流 I1。在 308 处，控制程序根据该第一测量电流 I1 确定电流值。在 312 处，控制程序确定该电流值在预定时间内是否小于或等于预定阈值。仅作为示例，该预定阈值可以为零并且该预定时间周期可以为 1 秒。该预定时间周期可以用线周期指定，其中，60Hz 电力的每个线周期大约为 16.7 毫秒。

[0065] 如果在至少预定时间周期内确定的电流值小于或等于预定阈值，那么该控制程序转移至 316；否则，控制程序转移至 320。在 320 处，控制程序测量对应于其他两相交流电信号之一的第二电流。控制程序继续前进至 324 处，控制程序在 324 处确定是否存在相位损失和 / 或逆相序。例如，可以如上面所述那样根据第一和第二测量电流 I1 和 I2 确定相位损失和逆相序。如果检测到相位损失或逆相序，控制程序转移至 316；否则控制程序返回至 304。

[0066] 在 316 处，控制程序使电动马达与电源断开并且继续进行到 328 处。在 328 处，控制程序选择性地记录该断开并且也可以记录断开的次数。仅作为示例，断开的计数可被保持并且在 328 处增加。最近断开的时间戳可与计数相关联，并且该时间戳将在 328 处更新。周期性地（图 5 中未示出），当最近的时间戳先于当前时间大一个预定时间时，该计数会被。
重置。这防止不可能与当前线误差相关的过去瞬时误差影响该计数。

【0067】在 328 处，控制程序也可以向诸如服务器或数据历史记录器等的外部设备报告该误差。控制程序继续到 332 处，在 332 处，控制程序确定累积的断开测量值是否超过阈值。如果是的，控制程序转移至 336 处。否则，控制程序转移至 340 处。累积的断开测量值可以简单地是诸如上文关于 328 所述的一个计数。仅作为示例，332 的阈值可被设为 5。该阈值可以是适应性的。例如，如果断开发生的更加频繁，该阈值可以降低。

【0068】在 340 处，控制程序将关闭计时器初始化为零并使该关闭计时器开始运行。使用该关闭计时器，在重新起动电动马达之前提供了延迟以使得能够潜在地减轻电源故障。该预定的关闭周期可以具有随机要素。例如，每次关闭电动马达时，可以根据随机数或伪随机数在特定范围内调节该预定关闭周期。这样，使用图 5 的方法的多个电动马达将不会随后都同时重新起动。

【0069】控制程序继续到 344 处，在 344 处，控制程序确定关闭计时器中的当前时间是否大于预定的关闭周期。如果是的，控制程序转移至 348 处。否则，控制程序保持在 344 处。在 348 处，控制程序使电动马达再次连接至电源并尝试重新起动电动马达。然后，控制程序返回至 304。

【0070】本公开的广泛教示可以多种形式实施。因此，虽然本公开包括特定的示例，但本公开的真实范围不应当被如此限制，因为对本领域的技术人员来说。在研究了附图、说明书以及权利要求的基础上，其他改型将是显而易见的。
图 2A