

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 January 2010 (28.01.2010)

(10) International Publication Number
WO 2010/011298 A1

(51) International Patent Classification:

B41J 2/21 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/US2009/004237

(22) International Filing Date:

22 July 2009 (22.07.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12/179,788 25 July 2008 (25.07.2008) US

(71) Applicant (for all designated States except US): EASTMAN KODAK COMPANY [US/US]; 343 State Street, Rochester, NY 14650 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): XIE, Yonglin [US/US]; 343 State Street, Rochester, NY 14650 (US).

(74) Common Representative: EASTMAN KODAK COMPANY; 343 State Street, Rochester, NY 14650 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2010/011298 A1

(54) Title: INKJET PRINTING WITH MULTIPLE DROP VOLUMES

(57) Abstract: A printhead and a method of ejecting liquid droplets are provided. The method includes providing a printhead operable to eject liquid drops having a plurality of drop volumes V_i , for i equal to 1 through n , where $n \geq 2$, with $V_j > V_i$ when $j > i$. One of the plurality of drop volumes is a minimum drop volume V_{min} , and a difference in drop volumes between successively larger drops equals $(V_{k+1} - V_k)$ which is less than V_{min} , for k equal to 1 through $n-1$. The method also includes ejecting liquid drops through the printhead.

INKJET PRINTING WITH MULTIPLE DROP VOLUMES

FIELD OF THE INVENTION

The present invention relates to inkjet printing. It finds particular application in conjunction with increasing resolution of inkjet printing and will be 5 described with particular reference thereto. It will be appreciated, however, that the invention is also amenable to other applications.

BACKGROUND OF THE INVENTION

In traditional inkjet technology, image quality is related to the volume of individual ink droplets. With all else being equal, a smaller drop 10 volume results in higher resolution and better image quality. For example, a drop volume for a 600 dpi x 600 dpi resolution inkjet printer is about 16.0 pL, while that for a higher quality 1200 dpi x 1200 dpi resolution inkjet printer is only about 4 pL. Sub-picroliter drops are required to obtain printed images at greater than 2400 dpi x 2400 dpi resolution.

15 Printheads capable of producing sub-picroliter drops are challenging to manufacture. More specifically, extremely small orifice holes are needed to achieve such sub-picroliter drops. The dimensional accuracy and uniformity of such orifice holes is beyond the capability of existing micro fabrication technologies. Moreover, it is difficult to operate a printhead with small drop 20 volumes due to problems such as jet straightness. In addition, small orifices tend to become clogged more easily by contaminants. Small orifices also have short latency and are difficult to recover after being idle for a period of time.

25 Due to finite size of spots made by inkjet droplets on the receiving substrate, a halftoning technique is used to produce various levels of gradation for mid-tone shades. Smaller drop volumes achieve higher image quality by producing a finer level of gradation in the mid-tone shades without introducing objectionable graininess or other noises associated with halftoning. Halftoning also reduces the printing speed due to the required processing time for rendering the halftone image.

Another approach for increasing color image quality uses diluted inks. Because less colorant is present in each diluted ink drop, the effect of smaller drops having higher concentration is achieved. However, certain drawbacks to this approach include a higher cost and more complex printing system, issues related to drying, and media cockle due to excess solvents.

5 The present invention provides a new and improved apparatus and method which addresses the above-referenced problems.

SUMMARY OF THE INVENTION

According to one aspect of the invention, a method of ejecting 10 liquid droplets includes providing a printhead operable to eject liquid drops having a plurality of drop volumes V_i , for i equal to 1 through n , where $n \geq 2$, with $V_j > V_i$ when $j > i$. One of the plurality of drop volumes is a minimum drop volume V_{min} , and the difference in drop volume between successively larger drops is less than V_{min} -- i.e., $\delta_{k, k+1} = V_{k+1} - V_k < V_{min}$ for k equal to 1 through $n-1$. The method 15 also includes ejecting liquid drops through the printhead.

According to another aspect of the invention, a method of ejecting ink droplets includes providing a printhead operable to eject liquid drops having a plurality of drop volumes, each of the plurality of drop volumes being ejectable from distinct nozzles, one of the plurality of drop volumes being a minimum drop 20 volume V_{min} , another of the plurality of drop volumes being a maximum drop volume V_{max} that is less than two times the minimum drop volume V_{min} ; and ejecting liquid drops through the printhead.

According to another aspect of the invention, a method of ejecting ink droplets includes providing a printhead operable to eject liquid drops having a plurality of drop volumes, a first of the drop volumes being a minimum drop 25 volume V_{min} , respective increments between adjacent drop volumes being $< V_{min}$; and ejecting liquid drops through the printhead.

According to another aspect of the invention, a liquid ejecting apparatus, includes a printhead including a first liquid ejector and a second liquid 30 ejector. The first liquid ejector is operable to eject liquid drops having a first drop volume, which is a minimum drop volume. The second liquid ejector is operable

to eject liquid drops having a second drop volume which is greater than the minimum drop volume, an increment between the first and second drop volumes being less than the minimum drop volume.

BRIEF DESCRIPTION OF THE DRAWINGS

5 In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which, together with a general description of the invention given above, and the detailed description given below, serve to exemplify the embodiments of this invention.

10 **FIG. 1** illustrates a schematic representation of an inkjet printing system in accordance with one embodiment of an apparatus illustrating principles of the present invention; and

FIG. 2 illustrates a graph of a volume per pixel versus number of color levels.

15 **DETAILED DESCRIPTION OF THE INVENTION**

With reference to **FIG. 1**, an inkjet printing system **10** is illustrated in accordance with one embodiment of the present invention. Electronic data representing pixels **12** in an image **14** are stored as source data in a storage device **16**. A controller **20** reads the electronic source data of the image **14** from the storage device **16**. The controller **20** generates electronic signals as a function of the source data. For example, an electronic signal is generated for each pixel **12** in the image **14**. The electronic signal represents a color level of the pixel **12**. The color level is achieved on a printing medium **22** by ejecting various volumes of ink drops **24a, 24b, 24c** from a printhead **26** onto an associated pixel location **30** on the printing medium **22**. Although only three (3) different drop volumes are illustrated in **FIG. 1**, it is to be understood that printheads including any number of different volume ink drops is also contemplated.

The electronic signals are transmitted from the controller **20** to an electrical pulse generator **32**. The pulse generator **32** transmits an electronic signal to the ink jet printhead **26** for causing one of the drops **24a, 24b, 24c** of a

particular volume to be ejected from the printhead **26**. Ink is supplied to printhead **26** from fluid source **18** through ink passageway **38**. The printhead **26** includes liquid ejectors **34** for ejecting the drops **24a**, **24b**, **24c** of ink. Each of the ejectors **34** includes a nozzle **36**, a liquid chamber **40** in fluid communication with ink passageway **38** as well as nozzle **36**, and a drop forming mechanism **42** operatively associated with the nozzle **36**. The electronic signal from the pulse generator **32** causes the drop forming mechanism **42** to excite ink in the liquid chamber **40** such that the ink is ejected from the printhead through the nozzle **36**. A size of the drop **24** ejected from the nozzle **36** is proportional to a desired color level (e.g., grey level) of the color at the particular pixel **12** in the image **14**.

In the illustrated embodiment, the printhead **26** includes a plurality of nozzles **24a**, **24b**, **24c** having different nozzle diameters (e.g., three (3) different nozzle diameters). Ink drops ejected from a nozzle with a relatively larger diameter are larger relative to ink drops ejected from a nozzle with a relatively smaller diameter. Although geometrical differences between drop generators (such as nozzle size) is one way to produce different drop volumes, for some types of inkjet printing, the size of the drop forming mechanism or the waveform of the pulse applied to the drop forming mechanism can also provide a range of different drop volumes. The electronic signals from the controller **20**, and optionally also logic circuitry (not shown) incorporated in the printhead, determine which of the nozzle(s) **24a**, **24b**, **24c** eject the ink onto the pixel **30** on the received medium **22**. More specifically, a first electronic signal is generated if a drop of a first diameter is desired from the nozzle **36a**; a second electronic signal is generated if a drop of a second diameter is desired from the nozzle **36b**; and a third electronic signal is generated if a drop of a third diameter is desired from the nozzle **36c**. The nozzles **36a**, **36b**, and **36c** are all connected to the same fluid source **18** in the example of FIG. 1. Fluid source **18** can be cyan ink for example. For a full color image, additional printheads **26** (not shown), each connected respectively to a fluid source such as magenta ink, yellow ink or black ink would be included in inkjet printing system **10**.

In the embodiment illustrated in FIG. 1, the liquid ejectors 34 are arranged in respective arrays according to nozzle diameters.

Traditionally, a drop volume of ≤ 1 pL is required to produce the smooth gradation of color tones that is characteristic of a 2,400 x 2,400 dpi quality print.

In one embodiment, it is contemplated that the three (3) drop volumes produced by the respective nozzles 36a, 36b, 36c are 2.0 pL, 2.67 pL, and 3.33 pL. In other words, the minimum drop volume in this example is $V_{min} = 2.0$ pL. The difference between the middle drop volume and the minimum drop volume is 0.67 pL, which is less than V_{min} . Similarly, the difference between the largest drop volume and the middle drop volume is also 0.67 pL, which is less than V_{min} . Using notation $\delta_{k,k+1}$ to denote the difference in drop volume between the k^{th} size drop and the next size larger drop ($k+1$), $\delta_{1,2} = 2.667 - 2.0 = 0.67$ pL and $\delta_{2,3} = 3.333 - 2.667 = 0.67$ pL in this example. If up to two (2) drops of each of the three (3) volumes may be ejected for each pixel in a 600 dpi x 600 dpi grid, a total of six (6) drops may be printed in each pixel. Therefore, a total of 16.0 pL may be ejected onto each pixel of the printing medium 22.

Level	Combi-nation	Vol 1 (2.000 pL)	Vol 2 (2.667 pL)	Vol 3 (3.333 pL)	Vol/Pxl pL	Delta Vol Δ pL
1	1	0	0	0	0.00	-
2	2	1	0	0	2.00	2.00
3	3	0	1	0	2.67	0.67
4	4	0	0	1	3.33	0.66
5	5	2	0	0	4.00	0.67
6	6	1	1	0	4.67	0.67
7	7	1	0	1	5.33	0.66
7	8	0	2	0	5.33	0.00

8	9	0	1	1	6.00	0.67
9	10	0	0	2	6.66	0.66
9	11	2	1	0	6.66	0.00
10	12	2	0	1	7.33	0.68
10	13	1	2	0	7.33	0.00
11	14	1	1	1	8.00	0.66
12	15	1	0	2	8.67	0.67
12	16	0	2	1	8.67	0.00
12	17	0	1	2	9.33	0.67
13	18	2	2	0	9.33	0.00
14	19	2	1	1	10.00	0.66
15	20	2	0	2	10.67	0.66
15	21	1	2	1	10.67	0.00
16	22	1	1	2	11.33	0.67
17	23	0	2	2	12.00	0.67
18	24	2	2	1	12.67	0.67
19	25	2	1	2	13.33	0.66
20	26	1	2	2	14.00	0.67
21	27	2	2	2	16.00	2.00

TABLE 1

Column 1 in Table 1 represents the number of different levels of ink coverage (or gray levels or color levels) achieved by the various combinations of drop volumes identified in Column 2. The numbers in the first row of columns 3–5 (i.e., Vol 1 (V1), Vol 2 (V2), and Vol 3 (V3)) represent the three (3) different respective drop volumes (i.e., 2.000 pL, 2.667 pL, and 3.333 pL). In this embodiment, the incremental volumes between the drops δ_{dvol} are uniform (i.e., 0.67 pL). The numbers in the body of the table for columns 3–5 represent 10 numbers of drops per pixel for each of the respective drop volumes. Column 6

represents the total volume of ink deposited on a pixel. Column 7 represents the increment Δ of total ink volume per pixel between the current and previous color levels.

5 The drop volumes are chosen to satisfy the following conditions to provide uniform mid-tone increments:

$$2(V1 + V2 + V3) = 16.0 \text{ pL}$$

$$V1 = V_{\min}$$

$$V2 = V_{\min} + \delta_{\text{dvol}}$$

$$V3 = V_{\min} + 2\delta_{\text{dvol}}$$

10 $2V1 = V_{\min} + 3\delta_{\text{dvol}}$

The solution gives $\delta_{\text{dvol}} = 0.67 \text{ pL}$ and $V_{\min} = 2.0 \text{ pL}$. In the illustrated embodiment, δ_{dvol} is less than V_{\min} . In addition, $V2 < V1$ and $V3 < V1$. Also, $V2 - V1 = V3 - V2$.

15 As seen in Table 1, six combinations (i.e., 8, 11, 13, 16, 18, and 21) result in redundant color levels. Such redundant volume levels are beneficial in the sense that if one of the nozzles 36 of the printhead 26 is not usable (e.g., clogged), an alternate combination may be utilized to achieve the desired total volume level.

Because of the redundant color levels, twenty-one (21) different 20 levels may be achieved with a uniform incremental volume per pixel Δ of $\sim 0.67 \text{ pL}$ in the mid-tone range (12.5% to 87.5% coverage) (i.e., between levels 2 and 20). In the present example, since the increment Δ of total ink volume per pixel between each of the adjacent levels is uniform (e.g., 0.67 pL) in the mid-tone range, an equivalent resolution of $2,940 \text{ dpi} \times 2,940 \text{ dpi}$ can be achieved. More 25 specifically, if $\delta_{\text{dvol}} = 0.67 \text{ pL}$, then 23.988 (i.e., $16.0 \text{ pL}/0.667 \text{ pL}$) levels per pixel are possible. Therefore, the resolution of a $600 \text{ dpi} \times 600 \text{ dpi}$ grid is increased by 4.8987 (i.e., $23.988^{1/2}$) to $\sim 2,940 \text{ dpi} \times 2,940 \text{ dpi}$.

Generally, the printhead 26 is operable to eject liquid drops having a plurality of drop volumes V_i , for i equal to 1 through n , where $n \geq 2$, with $V_j > V_i$ when $j > i$. One of the plurality of drop volumes is the minimum drop volume $V_1 = V_{\min}$, and $\delta_{k, k+1} = (V_{k+1} - V_k) < V_{\min}$, for k equal to 1 through $n-1$. In the example 5 described above corresponding to Table 1, $n = 3$, but n can be greater than 3 in some embodiments. In addition, in the example described above, $\delta_{1,2} = 0.67 \text{ pL} = \delta_{2,3}$, i.e. $\delta_{k, k+1} = \delta_{k+1, k+2}$ in this example for k equal to 1 through $n-2$, but in some embodiments the differences in drop volumes between successively larger drops is not always the same.

10 Fabricating a printhead to produce a minimum drop volume (V_{\min}) of 2.0 pL (which requires a nozzle of $\sim 9.8 \mu\text{m}$) is more feasible than fabricating a printhead to produce a minimum drop volume of 0.67 pL (which requires a nozzle of $\sim 5.7 \mu\text{m}$). Thus, the present invention is advantageous for providing an equivalent smoothness of gradation in gray levels, while not requiring such a 15 small nozzle diameter.

With reference to FIG. 1, the controller 20 determines how many drops of the respective volumes are to be ejected onto the various pixel locations 30 as a function of the desired color level at the respective pixel locations 12. For example, if color level 12 is desired at the pixel location 30 on the printing 20 medium 22, the controller 20 determines that two (2) drops of drop volume 2 (2.667 pL) and one drop of drop volume 3 (3.333 pL) are to be ejected to achieve a total volume of 8.67 pL at the pixel location 30.

With reference to Table 2, additional color levels may be achieved if the incremental volumes between the drops δ_{dvol} is not uniform.

Level	Vol 1 (2.0 pL)	Vol 2 (2.8 pL)	Vol 3 (3.2 pL)	Vol/Pxl pL	Delta Vol Δ pL
1	0	0	0	0.0	-
2	1	0	0	2.0	2.0
3	0	1	0	2.8	0.8
4	0	0	1	3.2	0.4
5	2	0	0	4.0	0.8
6	1	1	0	4.8	0.8
7	1	0	1	5.2	0.4
8	0	2	0	5.6	0.4
9	0	1	1	6.0	0.4
10	0	0	2	6.4	0.4
11	2	1	0	6.8	0.4
12	2	0	1	7.2	0.4
13	1	2	0	7.6	0.4
14	1	1	1	8.0	0.4
15	1	0	2	8.4	0.4
16	0	2	1	8.8	0.4
17	0	1	2	9.2	0.4
18	2	2	0	9.6	0.4
19	2	1	1	10.0	0.4
20	2	0	2	10.4	0.4
21	1	2	1	10.8	0.4
22	1	1	2	11.2	0.4
23	0	2	2	12.0	0.8
24	2	2	1	12.8	0.8
25	2	1	2	13.2	0.4
26	1	2	2	14.0	0.8
27	2	2	2	16.0	2.0

TABLE 2

In Table 2, the drop volumes are chosen to satisfy the following conditions:

$$2(V1 + V2 + V3) = 16.0 \text{ pL}$$

$$V1 = V_{\min}$$

$$V2 = V_{\min} + 2\delta_{\text{dvol}}$$

5 $V3 = V_{\min} + 3\delta_{\text{dvol}}$

$$2V1 = V_{\min} + 5\delta_{\text{dvol}}$$

The solution gives $\delta_{\text{dvol}} = 0.40 \text{ pL}$ and $V_{\min} = 2.0 \text{ pL}$. In the illustrated embodiment, δ_{dvol} is less than V_{\min} . In addition, $V2 < 2V1$ and $V3 < 2V1$. In Table 2, $(V2 - V1) \neq (V3 - V2)$, i.e. $\delta_{1,2} \neq \delta_{2,3}$.

10 As seen in Table 2, twenty-seven (27) different levels may be achieved with a uniform incremental volume per pixel Δ of $\sim 0.4 \text{ pL}$ in the mid-tone range (30% to 70% coverage) (i.e., between levels 3 and 25). In the present example, since the increment Δ of total ink volume per pixel between each of the adjacent levels is uniform (e.g., 0.4 pL) in the mid-tone range, an equivalent 15 resolution of $3,795 \text{ dpi} \times 3,795 \text{ dpi}$ can be achieved. More specifically, if $\delta_{\text{dvol}} = 0.40 \text{ pL}$, then 40.0 (i.e., $16.0 \text{ pL}/0.40 \text{ pL}$) levels per pixel are possible. Therefore, the resolution of a $600 \text{ dpi} \times 600 \text{ dpi}$ grid is increased by 6.3246 (i.e., $40^{1/2}$) to $\sim 3,795 \text{ dpi} \times 3,795 \text{ dpi}$.

20 Generally, the printhead 26 is operable to eject liquid drops having a plurality of drop volumes V_i , for i equal to 1 through n , where $n \geq 2$, with $V_j > V_i$ when $j > i$. (In other words, in this numbering convention for the different drop volumes, the larger the subscript, the larger the drop volume.) One of the plurality 25 of drop volumes is the minimum drop volume $V1 = V_{\min}$, and $\delta_{k, k+1} = (V_{k+1} - V_k) < V_{\min}$, for k equal to 1 through $n-1$. In addition $\delta_{k, k+1} \neq \delta_{k+1, k+2}$, for some k for examples of the type corresponding to Table 2. Therefore, $V_{k+1} - V_k$, for k equal to 1 through $n-1$, is not substantially uniform for some value of k .

30 With reference to FIG. 2, a graph 50 illustrates a volume per pixel versus number of gray levels. A printhead capable of only a single drop volume (e.g., 2.67 pL , which is $16.0 \text{ pL}/6$) can produce seven (7) gray levels when printing six (6) drops per pixel (see line 52). On the other hand, a printhead capable of multiple drop volume printing (as described above in Table 2) can

produce twenty-seven (27) gray levels when printing six (6) drops per pixel (see line 54). Comparing the lines 52 and 54 shows the number of gray levels may be increased by almost 4 times when a printhead capable of multiple drop volume printing is used in place of a printhead capable of only single drop volume

5 printing.

Traditionally, a drop volume of ≤ 0.36 pL is required to produce a 4,000 x 4,000 dpi quality print.

In another embodiment, a printhead contains nozzles of four (4) different diameter sizes that eject drops of four (4) different volumes (e.g., 1.45 10 pL, 1.82 pL, 2.18 pL, and 2.55 pL). Up to two (2) drops of each volume (i.e., a total of eight (8) drops) can be printed to obtain 16.0 pL on each of the pixels of a 600 dpi x 600 dpi grid.

With reference to Table 3, eight-one (81) different combinations of drop volumes are possible.

Level	Combi-nation	Vol 1 (1.450 pL)	Vol 2 (1.815 pL)	Vol 3 (2.180 pL)	Vol 4 (2.545 pL)	Vol/ Pxl pL	Delta Vol Δ pL
1	1	0	0	0	0	0.00	-
2	2	1	0	0	0	1.45	1.45
3	3	0	1	0	0	1.82	0.36
4	4	0	0	1	0	2.18	0.36
5	5	0	0	0	1	2.55	0.36
6	6	2	0	0	0	2.91	0.36
7	7	1	1	0	0	3.27	0.36
8	8	0	2	0	0	3.64	0.36
8	9	1	0	1	0	3.64	0.00
9	10	0	1	1	0	4.00	0.36
9	11	1	0	0	1	4.00	0.00
10	12	0	0	2	0	4.36	0.36
10	13	0	1	0	1	4.36	0.00

11	14	2	1	0	0	4.73	0.36
11	15	0	0	1	1	4.73	0.00
12	16	1	2	0	0	5.09	0.36
12	17	2	0	1	0	5.09	0.00
12	18	0	0	0	2	5.09	0.00
13	19	1	1	1	0	5.45	0.36
13	20	2	0	0	1	5.45	0.00
14	21	0	2	1	0	5.82	0.36
14	22	1	0	2	0	5.82	0.00
14	23	1	1	0	1	5.82	0.00
15	24	0	1	2	0	6.18	0.36
15	25	0	2	0	1	6.18	0.00
15	26	1	0	1	1	6.18	0.00
16	27	2	2	0	0	6.55	0.36
16	28	0	1	1	1	6.55	0.00
16	29	1	0	0	2	6.55	0.00
17	30	2	1	1	0	6.91	0.36
17	31	0	0	2	1	6.91	0.00
17	32	0	1	0	2	6.91	0.00
18	33	1	2	1	0	7.27	0.36
18	34	2	0	2	0	7.27	0.00
18	35	2	1	0	1	7.27	0.00
18	36	0	0	1	2	7.27	0.00
19	37	1	1	2	0	7.64	0.36
19	38	1	2	0	1	7.64	0.00
19	39	2	0	1	1	7.64	0.00
20	40	0	2	2	0	8.00	0.36
20	41	1	1	1	1	8.00	0.00
20	42	2	0	0	2	8.00	0.00

21	43	0	2	1	1	8.36	0.36
21	44	1	0	2	1	8.36	0.00
21	45	1	1	0	2	8.36	0.00
22	46	2	2	1	0	8.73	0.36
22	47	0	1	2	1	8.73	0.00
22	48	0	2	0	2	8.73	0.00
22	49	1	0	1	2	8.73	0.00
23	50	2	1	2	0	9.09	0.36
23	51	2	2	0	1	9.09	0.00
23	52	0	1	1	2	9.09	0.00
24	53	1	2	2	0	9.46	0.36
24	54	2	1	1	1	9.46	0.00
24	55	0	0	2	2	9.46	0.00
25	56	1	2	1	1	9.82	0.36
25	57	2	0	2	1	9.82	0.00
25	58	2	1	0	2	9.82	0.00
26	59	1	1	2	1	10.18	0.36
26	60	1	2	0	2	10.18	0.00
26	61	2	0	1	2	10.18	0.00
27	62	0	2	2	1	10.55	0.36
27	63	1	1	1	2	10.55	0.00
28	64	2	2	2	0	10.91	0.36
28	65	0	2	1	2	10.91	0.00
28	66	1	0	2	2	10.91	0.00
29	67	2	2	1	1	11.27	0.36
29	68	0	1	2	2	11.27	0.00
30	69	2	1	2	1	11.64	0.36
30	70	2	2	0	2	11.64	0.00
31	71	1	2	2	1	12.00	0.36

31	72	2	1	1	2	12.00	0.00
32	73	1	2	1	2	12.36	0.36
32	74	2	0	2	2	12.36	0.00
33	75	1	1	2	2	12.73	0.36
34	76	0	2	2	2	13.09	0.36
35	77	2	2	2	1	13.46	0.36
36	78	2	2	1	2	13.82	0.36
37	79	2	1	2	2	14.18	0.36
38	80	0	2	2	2	14.55	0.36
39	81	1	2	2	2	16.00	1.45

TABLE 3

Column 1 in Table 3 represents the number of different gray levels (i.e., 39 levels having distinctly different ink volume per pixel) achieved by the 5 various combinations (see column 2) of drop volumes. The numbers in the first row of columns 3–6 (i.e., Vol 1 (V1), Vol 2 (V2), Vol 3 (V3), and Vol 4 (V4)) represent the four (4) different respective drop volumes (i.e., 1.450 pL, 1.815 pL, 2.180 pL and 2.545 pL). In this embodiment, the incremental volumes between the drops δ_{dvol} are substantially uniform (i.e., ~ 0.365). The numbers in the body of 10 the table for columns 3–6 represent numbers of drops per pixel for each of the respective drop volumes. Column 7 represents the total volume of ink deposited on a pixel. Column 8 represents the increment Δ of total ink volume per pixel between the current and previous combinations.

It is to be noted in Table 3 that 42 of the combinations result in 15 redundant (not unique) total volume levels (see Vol/Pxl in column 7).

The drop volumes are chosen to satisfy the following conditions to provide uniform mid-tone increments:

$$2(V1 + V2 + V3 + V4) = 16.0 \text{ pL}$$

$$V1 = V_{\min}$$

$$V2 = V_{\min} + \delta_{dvol}$$

$$5 \quad V3 = V_{\min} + 2\delta_{dvol}$$

$$V4 = V_{\min} + 3\delta_{dvol}$$

$$2V1 = V_{\min} + 4\delta_{dvol}$$

The solution gives $\delta_{dvol} = 0.365 \text{ pL}$ and $V_{\min} = 1.45 \text{ pL}$. In the illustrated embodiment, δ_{dvol} is less than V_{\min} . In addition, $V2 < 2V1$, $V3 < 2V1$, and $V4 < 2V1$. In Table 3, $V4 - V3 = V3 - V2 = V2 - V1$.

As seen in Table 3, the thirty-nine (39) different color levels may be achieved with a uniform incremental volume per pixel Δ of $\sim 0.365 \text{ pL}$ in the mid-tone range (9% to 91% coverage) (i.e., between levels 2 and 38). In the present example, since the increment Δ of total ink volume per pixel between each 15 of the adjacent levels is substantially uniform (e.g., $\sim 0.365 \text{ pL}$) in the mid-tone range, an equivalent resolution of $3,973 \text{ dpi} \times 3,973 \text{ dpi}$ can be achieved. More specifically, if $\delta_{dvol} = 0.365 \text{ pL}$, then 43.8356 (i.e., $16.0 \text{ pL}/0.365 \text{ pL}$) levels per pixel are possible. Therefore, the resolution of a $600 \text{ dpi} \times 600 \text{ dpi}$ grid is increased by 6.6208 (i.e., $43.8356^{1/2}$) to $\sim 3,973 \text{ dpi} \times 3,973 \text{ dpi}$.

20 Fabricating a printhead to produce a minimum drop volume (V_{\min}) of 1.45 pL (which requires a nozzle diameter of $\sim 8.3 \mu\text{m}$) is significantly more feasible than fabricating a printhead to produce a minimum drop volume of 0.365 pL (which requires a nozzle diameter of $\sim 4.2 \mu\text{m}$).

25 In another embodiment, a printhead containing nozzles of four (4) different diameters sized to eject drops of four (4) different volumes such that increments between the volumes (e.g., 1.50 pL , 1.75 pL , 2.25 pL , and 2.75 pL) ejected from adjacent nozzles (e.g., $8.5 \mu\text{m}$, $9.2 \mu\text{m}$, $10.4 \mu\text{m}$, and $11.5 \mu\text{m}$) are not uniform. Up to two (2) drops of each volume (i.e., a total of eight (8) drops) can be printed to obtain 16.5 pL on each of the pixels of a $600 \text{ dpi} \times 600 \text{ dpi}$ grid.

With reference to Table 4, at least fifty-three (53) different combinations of drop volumes are possible.

Level	Combi-nation	Vol 1 (1.50 pL)	Vol 2 (1.75 pL)	Vol 3 (2.25 pL)	Vol 4 (2.75 pL)	Vol/ Pxl	Delta Vol
1	1	0	0	0	0	0.00	-
2	2	1	0	0	0	1.50	1.50
3	3	0	1	0	0	1.75	0.25
4	4	0	0	1	0	2.25	0.50
5	5	0	0	0	1	2.75	0.50
6	6	2	0	0	0	3.00	0.25
7	7	1	1	0	0	3.25	0.25
8	8	0	2	0	0	3.50	0.25
9	9	1	0	1	0	3.75	0.25
10	10	0	1	1	0	4.00	0.25
11	11	1	0	0	1	4.25	0.25
12	12	0	1	0	1	4.50	0.25
13	13	0	0	2	0	4.50	0.00
13	14	2	1	0	0	4.75	0.25
14	15	0	0	1	1	5.00	0.25
15	16	1	2	0	0	5.00	0.00
15	17	2	0	1	0	5.25	0.25
16	18	0	0	0	2	5.50	0.25
16	19	1	1	1	0	5.50	0.00
17	20	2	0	0	1	5.75	0.25
17	21	0	2	1	0	5.75	0.00
18	22	1	1	0	1	6.00	0.25
18	23	1	0	2	0	6.00	0.00
19	24	0	2	0	1	6.25	0.25
19	25	0	1	2	0	6.25	0.00
20	26	1	0	1	1	6.50	0.25

20	27	2	2	0	0	6.50	0.00
21	28	0	1	1	1	6.75	0.25
22	29	1	0	0	2	7.00	0.25
22	30	2	1	1	0	7.00	0.00
23	31	0	1	0	2	7.25	0.25
23	32	0	0	2	1	7.25	0.00
23	33	1	2	1	0	7.25	0.00
24	34	2	1	0	1	7.50	0.25
24	35	2	0	2	0	7.50	0.00
25	36	0	0	1	2	7.75	0.25
25	37	1	2	0	1	7.75	0.00
25	38	1	1	2	0	7.75	0.00
26	39	2	0	1	1	8.00	0.25
26	40	0	2	2	0	8.00	0.00
27	41	1	1	1	1	8.25	0.25
28	42	2	0	0	2	8.50	0.25
28	43	0	2	1	1	8.50	0.00
29	44	1	1	0	2	8.75	0.25
29	45	1	0	2	1	8.75	0.00
29	46	2	2	1	0	8.75	0.00
30	47	0	2	0	2	9.00	0.25
30	48	0	1	2	1	9.00	0.00
31	49	1	0	1	2	9.25	0.25
31	50	2	2	0	1	9.25	0.00
31	51	2	1	2	0	9.25	0.00
32	52	0	1	1	2	9.50	0.25
32	53	1	2	2	0	9.50	0.00
33	54	2	1	1	1	9.75	0.25
34	55	0	0	2	2	10.00	0.25

34	56	1	2	1	1	10.00	0.00
35	57	2	1	0	2	10.25	0.25
35	58	2	0	2	1	10.25	0.00
36	59	1	2	0	2	10.50	0.25
36	60	1	1	2	1	10.50	0.00
37	61	2	0	1	2	10.75	0.25
37	62	0	2	2	1	10.75	0.00
38	63	1	1	1	2	11.00	0.25
38	64	2	2	2	0	11.00	0.00
39	65	0	2	1	2	11.25	0.25
40	66	1	0	2	2	11.50	0.25
40	67	2	2	1	1	11.50	0.00
41	68	0	1	2	2	11.75	0.25
42	69	2	2	0	2	12.00	0.25
42	70	2	1	2	1	12.00	0.00
43	71	1	2	2	1	12.25	0.25
44	72	2	1	1	2	12.50	0.25
45	73	1	2	1	2	12.75	0.25
46	74	2	0	2	2	13.00	0.25
47	75	1	1	2	2	13.25	0.25
48	76	0	2	2	2	13.50	0.25
49	77	2	2	2	1	13.75	0.25
50	78	2	2	1	2	14.25	0.50
51	79	2	1	2	2	14.75	0.50
52	80	1	2	2	2	15.00	0.25
53	81	2	2	2	2	16.50	1.50

TABLE 4

Column 1 in Table 4 represents the number of different color levels (i.e., 53 levels) achieved by the various combinations (see column 2) of drop volumes. The numbers in the first row of columns 3–6 (i.e., Vol 1 (V1), Vol 2 (V2), Vol 3 (V3), and Vol 4 (V4)) represent the four (4) different respective drop volumes (i.e., 1.50 pL, 1.75 pL, 2.25 pL and 2.75 pL). In this embodiment, not all of the incremental volumes between the drops δ_{dvol} are substantially uniform. The numbers in the body of the table for columns 3–6 represent numbers of drops per pixel for each of the respective drop volumes. Column 7 represents the total volume of ink deposited on a pixel. Column 8 represents the increment Δ of total ink volume per pixel between the current and previous combinations.

It is to be noted in Table 4 that 28 of the combinations result in redundant (not unique) total volume levels (see Vol/Pxl in column 7).

The drop volumes are chosen to satisfy the following conditions to provide uniform mid-tone increments:

$$\begin{aligned}
 15 \quad & 2(V1 + V2 + V3 + V4) = 16.5 \text{ pL} \\
 & V1 = V_{\min} \\
 & V2 = V_{\min} + \delta_{dvol} \\
 & V3 = V_{\min} + 3\delta_{dvol} \\
 & V4 = V_{\min} + 5\delta_{dvol} \\
 20 \quad & 2V1 = V_{\min} + 6\delta_{dvol}
 \end{aligned}$$

The solution gives $\delta_{dvol} = 0.25 \text{ pL}$ and $V_{\min} = 1.50 \text{ pL}$. In the illustrated embodiment, δ_{dvol} is less than V_{\min} . In addition, $V2 < 2V1$, $V3 < 2V1$, and $V4 < 2V1$. In Table 4, $V4 - V3 = V3 - V2$. However, neither $V4 - V3$ nor $V3 - V2$ equals $V2 - V1$.

25 As seen in Table 4, the fifty-three (53) different color levels may be achieved with a uniform incremental volume per pixel Δ of $\sim 0.25 \text{ pL}$ in the mid-tone range (16.7% to 83.3% coverage) (i.e., between levels 5 and 49). In the present example, since the increment Δ of total ink volume per pixel between each of the adjacent levels is substantially uniform (e.g., $\sim 0.25 \text{ pL}$) in the mid-tone range, an equivalent resolution of 4,874 dpi x 4,874 dpi can be achieved. More

specifically, if $\delta_{dvol} = 0.25 \text{ pL}$, then 66.0000 (i.e., $16.5 \text{ pL}/0.25 \text{ pL}$) levels per pixel are possible. Therefore, the resolution of a $600 \text{ dpi} \times 600 \text{ dpi}$ grid is increased by 8.1240 (i.e., $66.0000^{1/2}$) to $\sim 4,874 \text{ dpi} \times 4,874 \text{ dpi}$.

5 In a color printer capable of printing three (3) colors (e.g., cyan, magenta, yellow (CMY)), a total of $148,877$ colors may be achieved at each pixel by combining the fifty-three (53) levels (see Table 4) of each of the three (3) colors. As discussed above, only eight (8) possible colors are achieved from a single drop per pixel binary printing operation and 729 possible colors are achieved from eight (8) drop per pixel printing operation using a single drop size.

10 It is to be understood that the number of different drop volumes (which are produced by a printhead having nozzles of different diameters), the numbers of drops per pixel for each volume, and the pixel grids described in the various embodiments discussed above are merely examples. Other embodiments having different drop volumes, numbers of drops of pixel for each volume, and
15 pixel grids are also contemplated.

In addition, it is also contemplated that the drops of ink for each drop volume may be printed by the same nozzle or by different nozzles.

20 In each of the embodiments discussed above, the maximum drop volume V_{max} is less than twice the minimum drop volume V_{min} . For example, with reference to Table 1, the minimum drop volume V_{min} is 2.0 pL and the maximum drop volume V_{max} is 3.33 pL . In Table 2, the minimum drop volume V_{min} is 2.0 pL and the maximum drop volume V_{max} is 3.2 pL . In Table 3, the minimum drop volume V_{min} is 1.45 pL and the maximum drop volume V_{max} is 2.55 pL . In Table 4, the minimum drop volume V_{min} is 1.50 pL and the maximum drop volume V_{max} is 2.75 pL . In addition, the increments between the adjacent drop volumes are less than the minimum drop volume V_{min} .

25 With reference to Table 5, a given number of drops per pixel (Drops/Pxl)/total number of possible drop volume combinations (#comb) for a pixel depends on the available number of different drop sizes (#DV) and the number of drops for each drop size ejected onto the pixel (#drops/DV). As seen in
30

Table 5, higher numbers of combinations are achieved with a maximum number of different drop sizes.

Drops/Pxl	#DV	#drops/DV	#comb
4	2	2	9
4	4	1	16
6	2	3	16
6	3	2	27
6	6	1	64
8	2	4	25
8	4	2	81
8	8	1	256

TABLE 5

PARTS LIST

- 10 Inkjet System
- 12 Pixel
- 14 Image
- 16 Storage Device
- 18 Fluid Source
- 20 Controller
- 22 Printing Medium
- 24 Ink Drop
- 26 Printhead
- 30 Pixel Location on Printing Medium
- 32 Electrical Pulse Generator
- 34 Liquid Ejector
- 36 Nozzle
- 38 Ink Passageway
- 40 Liquid Chamber
- 42 Drop Forming Mechanism
- 50 Graph
- 52 Graph Line for Printhead Capable of Single Drop Volume
- 54 Graph Line for Printhead Capable of Multiple Drop Volumes

CLAIMS:

1. A method of ejecting liquid droplets, comprising:
providing a printhead operable to eject liquid drops having a plurality of drop volumes V_i , for i equal to 1 through n , where $n \geq 2$, with $V_j > V_i$
5 when $j > i$, one of the plurality of drop volumes being a minimum drop volume V_{min} , and, wherein a difference in drop volumes between successively larger drops $\delta_{k, k+1} = (V_{k+1} - V_k) < V_{min}$, for k equal to 1 through $n-1$; and
ejecting liquid drops through the printhead.
- 10 2. The method of ejecting liquid droplets as set forth in claim 1, wherein $\delta_{k, k+1} = \delta_{k+1, k+2}$, for k equal to 1 through $n-2$.
- 15 3. The method of ejecting liquid droplets as set forth in claim 1, wherein $\delta_{k, k+1} \neq \delta_{k+1, k+2}$, for some value of k .
4. The method of ejecting liquid droplets as set forth in claim 1, wherein:
 δ_{min} is a minimum value of $\delta_{k, k+1}$ for all k ; and
 $\delta_{k, k+1}$ for any k value is an integer multiple of δ_{min} .
- 20 5. The method of ejecting liquid droplets as set forth in claim 1, wherein:
 δ_{min} is a minimum value of $\delta_{k, k+1}$ for all k ; and
 $2V_1 - V_n$ is an integer multiple of δ_{min} .
- 25 6. The method of ejecting liquid droplets as set forth in claim 1, wherein $V_{k+1} - V_k$, for k equal to 1 through $n-1$, is substantially uniform.

7. The method of ejecting liquid droplets as set forth in claim 1, wherein $V_{k+1} - V_k$, for k equal to 1 through n-1, is not substantially uniform for some value of k.

5 8. A method of ejecting ink droplets, comprising:
providing a printhead operable to eject liquid drops having a plurality of drop volumes, each of the plurality of drop volumes being ejectable from distinct nozzles, one of the plurality of drop volumes being a minimum drop volume V_{min} , another of the plurality of drop volumes being a maximum drop
10 volume V_{max} that is less than two times the minimum drop volume V_{min} ; and
ejecting liquid drops through the printhead.

9. The method of ejecting ink droplets as set forth in claim 8, wherein the minimum drop volume V_{min} is ≤ 2.0 pL.

15 10. The method of ejecting ink droplets as set forth in claim 8, wherein $\delta_{k, k+1} = (V_{k+1} - V_k) < V_{min}$, for k equal to 1 through n-1.

20 11. The method of ejecting ink droplets as set forth in claim 10, wherein an incremental volume between each of the drop volumes is substantially equal.

25 12. A method of ejecting ink droplets, comprising:
providing a printhead operable to eject liquid drops having a plurality of drop volumes, a first of the drop volumes being a minimum drop volume V_{min} , respective increments between adjacent drop volumes being $< V_{min}$;
and
ejecting liquid drops through the printhead.

13. The method of ejecting ink droplets as set forth in claim 12, wherein a maximum of the drop volumes V_{\max} is less than two times the minimum drop volume V_{\min} .

5 14. The method of ejecting ink droplets as set forth in claim 12, wherein each of the increments is substantially uniform.

10 15. The method of ejecting ink droplets as set forth in claim 14, wherein one of the increments is not substantially uniform with at least one of the other increments.

15 16. The method of ejecting ink droplets as set forth in claim 12, wherein one of the increments is an integer multiple of the increment between the first drop volume and a second of the drop volumes adjacent to the first drop volume.

17. The method of ejecting ink droplets as set forth in claim 12, further including:

20 providing a recording medium having a pixel location;
determining if at least one of the liquid drops having the first drop volume is to be deposited on the receiving medium at the pixel location; and
if it is determined that a liquid drop having the first drop volume is to be deposited on the receiving medium at the pixel location, ejecting the liquid drop of the first drop volume onto the pixel location.

25 18. The method of ejecting ink droplets as set forth in claim 17, further including:

determining if at least one of the liquid drops having a second drop volume is to be deposited on the receiving medium at the pixel location; and
if it is determined that a liquid drop having the second drop volume

is to be deposited on the receiving medium at the pixel location, ejecting the liquid drop of the second drop volume onto the pixel location.

19. The method of ejecting ink droplets as set forth in claim 12,

5 further including:

providing a recording medium having a pixel location;

determining a first number of liquid drops having the first drop volume and a second number of liquid drops having a second drop volume to be deposited at the pixel location based on a desired total liquid volume for the pixel 10 location;

selecting a combination of the liquid drops having the first and second drop volumes to be deposited at the pixel location to achieve the desired total liquid volume at the pixel location; and

ejecting the combination of liquid drops onto the pixel location.

15

20. The method of ejecting ink droplets as set forth in claim 19, further including:

selecting the combination from a plurality of combinations that would result in the desired total liquid volume for the pixel location.

20

21. The method of ejecting ink droplets as set forth in claim 12, wherein providing the printhead operable to eject liquid drops having a plurality of drop volumes includes:

providing a printhead operable to eject liquid drops of different 25 drop volumes from respective nozzles.

22. A liquid ejecting apparatus, comprising:

a printhead, including:

a first liquid ejector operable to eject liquid drops

30 having a first drop volume, which is a minimum drop volume; and

a second liquid ejector operable to eject liquid drops

having a second drop volume which is greater than the minimum drop volume, an increment between the first and second drop volumes being less than the minimum drop volume.

5 23. The liquid ejecting apparatus as set forth in claim 22, wherein the printhead further includes:
a third liquid ejector operable to eject a third drop volume which is greater than the second drop volume, an increment between the second and third drop volumes being less than the minimum drop volume.

10 24. The liquid ejecting apparatus as set forth in claim 23, wherein the third drop volume is less than twice the minimum drop volume.

15 25. The liquid ejecting apparatus as set forth in claim 23, wherein the increment between the first and second drop volumes substantially equals the increment between the second and third drop volumes.

20 26. The liquid ejecting apparatus as set forth in claim 23, wherein the increment between the first and second drop volumes does not equal the increment between the second and third drop volumes.

25 27. The liquid ejecting apparatus as set forth in claim 23, wherein the increment between the second and third drop volumes is an integer multiple of the increment between the first and second drop volumes.

28. The liquid ejecting apparatus as set forth in claim 22, wherein each of the first and second liquid ejectors includes:
a nozzle;
a liquid chamber in fluid communication with the nozzle; and
a drop forming mechanism operatively associated with the nozzle.

29. The liquid ejecting apparatus as set forth in claim 28,

wherein:

the nozzle of the first liquid ejector has a first diameter;

5 the nozzle of the second liquid ejector has a second diameter; and
the first diameter is different from the second diameter.

30. The liquid ejecting apparatus as set forth in claim 28,

wherein:

10 the drop forming mechanism of the first liquid ejector has a first
geometry or size;

the drop forming mechanism of the second liquid ejector has a
second geometry or size; and

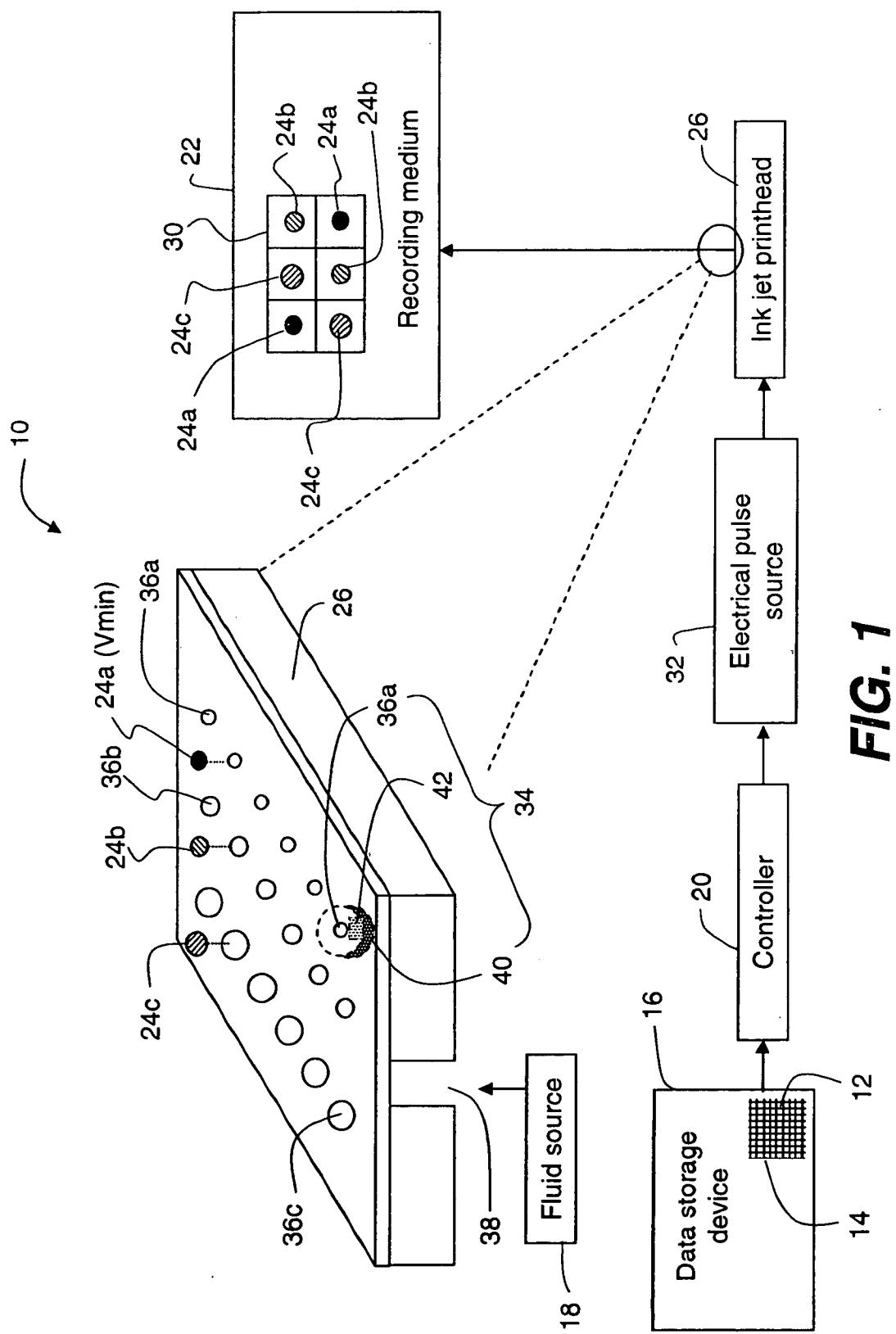
15 the first geometry or size is different from the second geometry or
size.

31. The liquid ejecting apparatus as set forth in claim 28,

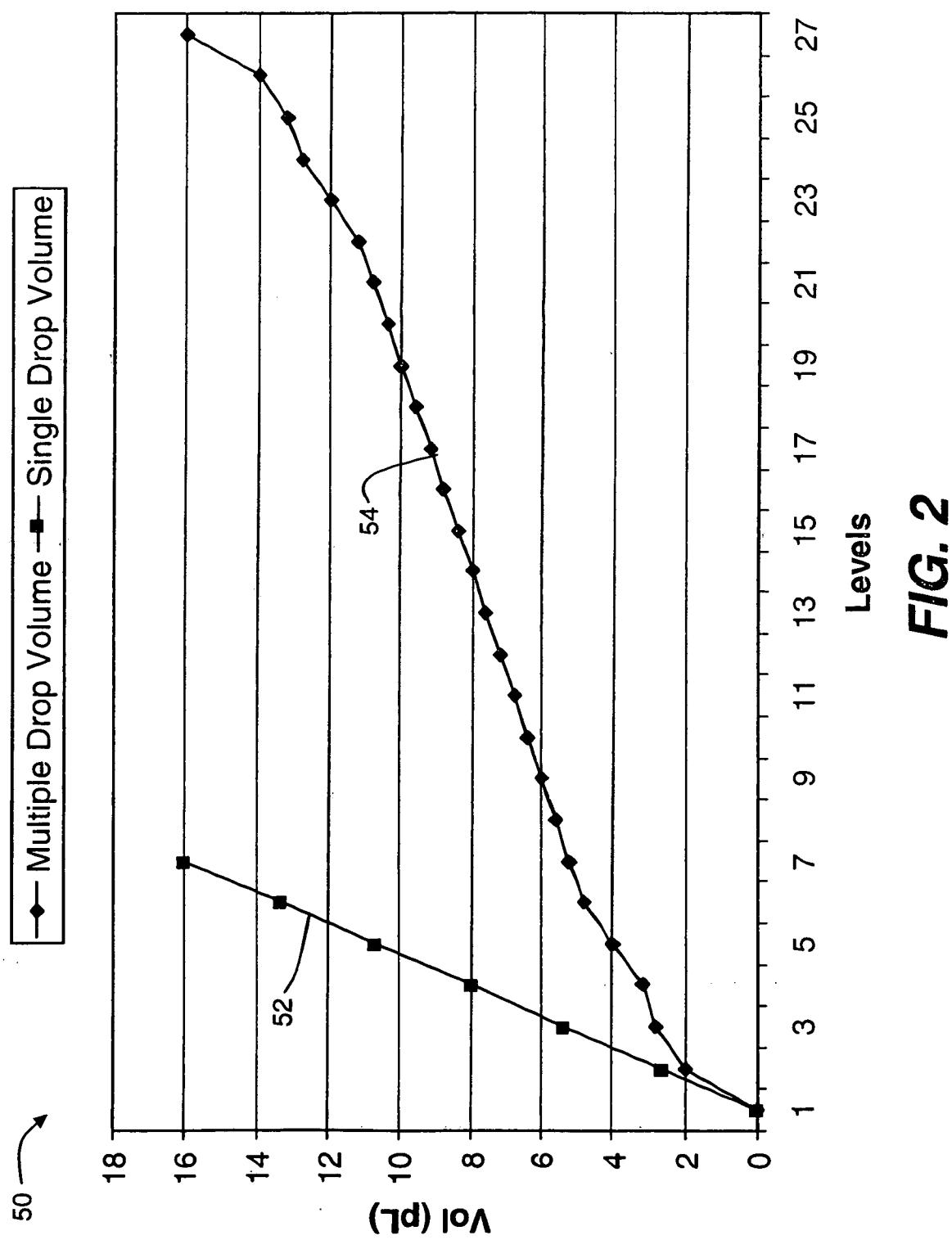
further including:

20 a controller operable to provide a first electronic signal to the drop
forming mechanism of the first liquid ejector and provide a second electronic
signal to the drop forming mechanism of the second liquid ejector, the first
electronic signal being different from the second electronic signal.

32. The liquid ejecting apparatus as set forth in claim 28,


25 wherein:

a plurality of the first liquid ejectors are arranged in a first array on
the printhead;


a plurality of the second liquid ejectors are arranged in a second
array on the printhead; and

30 the first array is spaced apart from the second array.

1/2

2/2

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2009/004237

A. CLASSIFICATION OF SUBJECT MATTER
INV. B41J2/21

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B41J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2007/126769 A1 (USUI TOSHIKI [JP]) 7 June 2007 (2007-06-07) paragraph [0221] – paragraph [0225]; figures 16,17	1-3,6,7, 12, 17-19, 21-25, 28,32
A	----- -/-	4,5, 8-11, 13-16, 27,29,30

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
---	--

28 October 2009

06/11/2009

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer
--	--------------------

De Groot, Ronald

INTERNATIONAL SEARCH REPORT

International application No PCT/US2009/004237

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 157 844 A (SONY CORP [JP]) 28 November 2001 (2001-11-28)	1,3,8, 10,12, 13, 15-20, 22-26, 28,31,32
A	paragraph [0082] – paragraph [0086]; figure 19 -----	9,11,14, 27,29,30
A	US 2008/143786 A1 (OIKAWA MASAKI [JP] ET AL) 19 June 2008 (2008-06-19) paragraph [0041] – paragraph [0043]; figures 4,10 -----	29,32

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/US2009/004237

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2007126769	A1 07-06-2007	JP 2007152618	A	21-06-2007
EP 1157844	A 28-11-2001	WO 0139981	A1	07-06-2001
		US 6631963	B1	14-10-2003
US 2008143786	A1 19-06-2008	CN 101177066	A	14-05-2008
		JP 2008119895	A	29-05-2008