PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

(11) International Publication Number: WO 99/45470

GO6F 13/00 A2 . L
(43) International Publication Date: 10 September 1999 (10.09.99)
(21) International Application Number: PCT/US99/04234 | (81) Designated States: AL, AM, AT, AT (Utility model), AU

(22) International Filing Date: 26 February 1999 (26.02.99)

(30) Priority Data:

09/034,624 4 March 1998 (04.03.98) us

(71) Applicant (for all designated States except US): INTEL COR-
PORATION [US/US]; 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DAVIS, Barry, R.
[US/US]; 1418 N.W. Slocum Way, Portland, OR 97229
(US). ESKANDARI, Nick, G. [US/US]; 1021 North Fir
Street, Chandler, AZ 85226 (US).

(74) Agents: TAYLOR, Edwin, H. et al.; Blakely, Sokoloff, Taylor
& Zafman LLP, 7th floor, 12400 Wilshire Boulevard, Los
Angeles, CA 90025 (US).

(Petty patent), AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, |
CZ, CZ (Utility model), DE, DE (Utility model), DK, DK
(Utility model), EE, EE (Utility model), ES, FI, FI (Utility
model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SK (Utility model), SL, TJ, T™M, TR, TT,
UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: TRIGGER POINTS FOR PERFORMANCE OPTIMIZATION IN BUS-TO-BUS BRIDGES

-138

144

b e e e e e e s

>

$

£

[MmO>TRIMAZ= ©»COw |§

I(__

s o G o s

Read
Size

142
Host
¥ I /134
: 104 110
148 | ——>r WRITE QUEUE
HOST | B
1'; : ls’ 114
o : I 4————1 WRITE QUEUE J<-——
e [] k== s
E
: T e ——
R I |E
1 A 122
14 I C
Host | E <—-—-| READ QUEUE
Cache [—
|
|
o . so—{ LT[LT L[]
T l_____%_%_-k_.\:kﬁ
™ Memory Write MWI !
% Request Control Memory Write Alias mew
g Non-Full State CoMe-mty

(57) Abstract

Method and apparatus for tuning the performance of bridge de
(or host bridges). The embodiments of the invention permit a multi

vices, including PCI-to-PCI bridges as well as PCI local bus bridges
ple-bus computer system to be tuned in view of the application and

the bridge queue sizes. Such applications include those concerned with raw bandwidth (such as disk storage), and those that are sensitive
to latency (such as netoworking and videoconferencing). The embodiments of the invention feature a control register that specifies storage

conditions to be met by the read and write queues of the bridge.

The programmed storage conditions are trigger points which cause

the bridge to transfer data into or remove data from the queues during read and write transactions in order to promote the performance

(throughput or latency) desired from the bridge.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
Us
UzZ
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/45470 PCT/US99/04234
TRIGGER POINTS FOR PERFORMANCE OPTIMIZATION IN
BUS-TO-BUS BRIDGES

BACKGROUND INFORMATION

This invention is related to communication between computer

buses, and more particularly to bus-to-bus bridge devices.

The development of computer bus architectures over the last thirty
years has been influential in transitioning computers from being a research
tool into becoming a practical, multi-purpose machine. Busses may now be
found both within an integrated circuit (IC) processing unit and connecting
the processing units to other agents such as external memory and
peripheral devices. The physical characteristics of a single bus, however,
place a limit on the number of agents (including peripheral devices and
processors) which may attach to it. Many modern applications of computer
systems therefore rely on multiple-bus architectures having a number of

physically separate buses to further expand their functionality.

Physically separate buses are often combined into a single logical bus
using a bridge. A bridge may include hardware (digital hardwired circuitry),
software (high or low level commands and instructions to be executed by
one or more processors), and firmware (software typically stored in different
types of read-only memory) or combinations thereof, that monitor and
control data traffic between at least two physically separate buses. The bridge
interfaces one bus protocol to another to facilitate communication between

agents on the different buses.

The bridge that couples two buses is typically configured to be
transparent, so that the physically separate buses may be treated by the
agents and the system as one bus. To achieve such a result, an address space
is shared by agents on both buses. Requests (a read or a write) bearing an
address range within the shared address space are generated by an initiator
agent on an initiating bus. The bridge recognizes the address range and can

forward the request to a target agent on a target bus. The bridge may thus be
1

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

said to automatically perform the request on the target bus on behalf of the

initiator agent.

Different bus and bridge architectures abound in the current state of
computer technology. An example of a modern, computer bus is the
Peripheral Components Interconnect (PCI) bus. The PCI bus is an industry
standard, high performance, low latency system bus, generally defined by
the PCI Special Interest Group (SIG) in PCI Local Bus Specification, Revision
2.1, October 21, 1994. The PCI bus will be used throughout this disclosure to
illustrate some of the principles behind and operation of the various
embodiments of the invention. However, those principles may also be

applied to other multiple-bus architectures.

The PCI SIG also maintains a bridge architecture described in PCI-to-
PCI Bridge Architecture Specification, Revision 1.0, April 5, 1994. The PCI
bridge is also often referred to in this disclosure to illustrate some of the
principles behind and operation of the various embodiments of the
invention. However, those principles may also be applied to other bridge

designs.

Transactions Using the Bridge

Transactions are defined here as complete transfers of data between
an initiator and a target, where the initiator and target are on different
physical buses coupled by a bridge. When forwarding data from one bus to
another, bridges typically implement a number of data queues to hide the
delay associated with requesting and obtaining access to the target bus for
obtaining or forwarding the data. Each transaction is typically assigned a

logical queue which is released when the transaction is completed.

The queue will typically be part of a memory or buffer that
implements a First-In-First-Out (FIFO) data structure. The FIFO is a data
structure from which items are taken out in the same order they were put

in. It is also known as a "shelf", from the analogy with pushing items onto

2

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

one end of a shelf so that they fall off the other. Typically, the FIFO may be
written to and read from simultaneously. A FIFO in a bridge is useful for
buffering a stream of data between an initiator and a target which are not

synchronized, i.e., not sending and receiving at exactly the same rate.

A transaction as defined herein involves a request from an initiator
to read from or write to a given address range which is claimed by a target.
If the request is accepted by the bridge, then the transaction begins and an
appropriate access is started. An access typically includes an idle phase for
setup, an address phase during which address information for the particular
request is exchanged, and sometimes a data phase during which data is

exchanged.

Alternatively, the request may be denied by the bridge. In that case,
the bridge issues a termination known as a retry signal to the initiator. This
may occur if the assigned bridge queue is full or has no data to transfer.
Sometimes, the new request may be denied if there are no free queues
available to be assigned, where all the queues are being used for other
pending transactions. If the request is denied, the initiator may repeat the

request to complete an ongoing transaction or attempt to start a new one.

Where the request is accepted and a first access is started, the access
may be prematurely terminated by either the initiator, the target, or the
bridge, for various reasons. If this happens, the request may be repeated or a
subsequent request may be issued by the initiator to complete the
transaction and transfer all of the requested data. Splitting the transaction
so that the desired data is transferred in multiple accesses, however,
introduces increased overhead in the form of additional accesses having
additional idle and address phases. The increased overhead can reduce
throughput, where throughput is the amount of data transferred across the
bridge per unit time, averaged over a given period. In contrast, latency is
defined as the time needed to provide the initiator or target with the first
data block of a multiple-block transaction. These two performance criteria

will be used throughout this disclosure to help illustrate some of the
3

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

advantages of the different embodiments of the invention. It would be
desirable to have a technique that permits either an increase in throughput
or decrease in latency so that the bridge may be tuned to the particular

application.

Write Transactions

The write transaction is typically performed as a posted write
transaction in the PCI model. In such transactions, the initiator transfers
data into a queue in the bridge after the bridge accepts the initiator's request.
The bridge then requests control of the target bus and after receiving control
forwards the data from the queue to the target. The transaction, however, is

completed on the initiating bus before being completed on the target bus.

Write transactions include the typical memory write, and the
memory write and invalidate (MWI). The two write transactions differ in
that MWI must be for an integer number of cache memory lines, whereas

the plain memory write can be used to write smaller amounts of data.

On average, the buses on either side of the bridge will be kept busy for
a much longer time with MWI transactions than with plain memory
writes. This may unnecessarily tie up the target bus that has agents which
are not configured to respond to MWI requests. For example, the initiator
may be a newer generation peripheral device that is plugged into an older
multiple-bus computer system having older generation targets, where the
initiator supports MWI but its target does not. To improve performance in
such systems, the software in the initiator could be modified to not issue the
MWI and instead use plain memory writes to perform transactions aimed
at targets which don't support MWI. Such a change, however, will need to
be implemented on each device and may present a cumbersome task for the
system operator as many new devices are added over the lifetime of the
system. Therefore, it would be desirable to have a technique for handling

MWI requests in a multiple-bus computer system without having to

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 : PCT/US99/04234

modify the software in each new device that may be added to the system

over its lifetime.

Read Transactions

In addition to write transactions, another area of performance
optimization in bridges lies in read transactions. Read transactions across a
bridge are more involved than write transactions in that a read transaction
is typically performed as a delayed transaction rather than as a posted
transaction. For example, in the PCI model, the PCI bridge in a delayed
transaction latches the information required to complete the initial request,
and the initiator is then signaled a retry. The bridge then performs the
initial request over the target bus on behalf of the initiator. Any returning
data or response from the target is stored in a bridge queue. The initiator
must then repeat the original request to retrieve the data from the queue

and complete the transaction.

With read transactions in a PCI system, the exact amount of data that
the bridge reads over the target bus is not specified, but rather may depend
on the particular PCI command type and whether the memory address
space to be read from is prefetchable or not. While the initiator knows the
exact amount of data it needs to read, it cannot specify this amount under
the PCI model.

When the memory space is prefetchable, the bridge in response to a
read request reads and stores data from the target up to a fixed and
predetermined number of blocks, or until the assigned bridge queue is full.
This speculative operation on behalf of the initiator is done in anticipation
of any subsequent or repeated read requests from the initiator. Upon arrival
of the repeated read request, the read data begins to flow to the initiator
from the bridge queue, but can be stopped by the initiator at any time. Any
data in the queue which the bridge had read from the target but which is not

transferred to the initiator is then discarded.

5
SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

A drawback of this read prefetching scheme is that it wastes valuable
bus time keeping the target bus busy. During any access, the initiating
and/or target buses may be occupied or busy while data is transferred into or
out of the queue in the bridge. While occupied, a bus normally cannot be
used by other agents. If some of the prefetched data in a read access is
subsequently discarded, the target bus was kept busy without resulting in
any data transfer through the bridge. Therefore, an optimization scheme is
desirable to help reduce the time during which the target bus is

unnecessarily kept busy in this way.

Another area of bridge performance optimization lies in controlling
the rate of data transfer between the initiator and the target. In the PCI
multiple-bus architectures, the initiator and target agents on either side of a
bridge are allowed to "throttle” the rate of data flow between them.
Throttling occurs when either agent requests and obtains wait states from
the bridge while data for a transaction is being stored in the bridge. The wait
states reduce the rate at which data is accepted into or removed from the

bridge.

If, however, the data rates on either side of the bridge differ by too
much in one direction for too long, then the bridge queue will become
either full (blocking the initiator in a write transaction) or empty (not
providing any data to the target), halting the simultaneous flow of data into
and out of the bridge. Given the above observations, therefore, it would be
desirable to have further techniques that allow the optimization of data
flow through the bridge so as to improve throughput or latency (depending
on the application of the bridge) and increase the likelihood of

simultaneous flow.

SUMMARY

In one embodiment, the invention is directed at a bridge for coupling

a first computer bus to a second computer bus. The bridge has first and
6

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

second bus interfaces, a queue for temporarily storing data to be transferred
from one bus interface to the other as part of a transaction, and a control
register that represents one or more storage conditions to be met by the

queue while performing the transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates part of a computer system having a bridge

according to an embodiment of the invention.

Figure 2 is a flow diagram of the steps performed by a bridge in
implementing a queue non-full state according to another embodiment of

the invention.

Figure 3 is a flow diagram of the steps performed by a bridge in
implementing write request control according to another embodiment of

the invention.

Figure 4 shows the steps performed by a bridge in implementing read

completion control according to another embodiment of the invention.

Figure 5 is a block diagram of an intelligent I/O subsystem featuring a
performance-tunable bridge, according to another embodiment of the

invention.

DETAILED DESCRIPTION

The embodiments of the invention are described in greater detail
below while referring to the figures. For purposes of explanation, specific
embodiments are set forth below to provide a thorough understanding of
the invention. However, as understood by one skilled in the art, from

reading this disclosure, the invention may be practiced without such details.

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

Furthermore, well-known elements, devices, process, steps, and the like, are

not set forth in detail in order to avoid obscuring the invention.

Figure 1 illustrates an embodiment of the invention as a computer
system having first and second buses 134 and 138 coupled by a bridge or
bridge device 100. The bridge 100 includes a number of logical queues 110,
114, 118, and 122 that are used to buffer data transfers between the two buses.
Each queue is used on a per transaction basis in that each new transaction
when initiated is assigned a separate queue. The bridge 100 also has a first
bus interface 104 and second bus interface 108 which couple the queues to
the respective buses. A control register 130 is provided which identifies
trigger points according to the different embodiments of the invention

which are more fully described below.

In the following discussion, the first bus 134 is taken to be the
initiating bus where a transaction is initiated by the initiator 140, while the
second bus 138 is the target bus coupled to the target 144. A host processor
148 coupled to the first bus 134 may also be used to execute a program which

configures the control register 130 with the appropriate values.

Memory Write Non-Full State

This first embodiment of the invention is based on the idea that it is
not desirable to completely fill a bridge queue during a write transaction if
doing so prevents the bridge from accepting any data in subsequent write
requests, or prevents accepting such data in a single access. If the bridge is
forced to reject such data because its write queue for that particular
transaction is full, then simultaneous flow into and out of the bridge is
halted. This reduces throughput if, in addition, the bridge cannot move
data already in the queue to the target, perhaps because the target bus or
agent is busy Throughput is also reduced due to the overhead of multiple
accesses needed on the initiating bus if the data from a subsequent request

cannot be accepted in a single access because the queue had become full.
8

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

In this first embodiment, the bridge 100 is configured with a "non-
full" state of the write queue 110. The non-full state is a condition of the
queue 110 between completely empty and completely full. The queue 110
must be in the non-full state, i.e. have a minimum amount of free space
(one or more data blocks as specified in the control register) available before
a write request may be accepted by the bridge. The state may be defined in
the control register 130 in response to a user command or configuration
program executed by the host processor 148 on either bus 134 or bus 138. For
example, two bits may be used in the control register to encode up to four

different non-full states, as shown in Figure 1.

Operation of the first embodiment of the invention may be
illustrated as follows, according to the flow diagram in Figure 2 and the
system in Figure 1. The bridge 100 is configured (in hardware and software,
as described earlier) to perform the operations in Figure 2. Beginning with
block 204, a request for a write transaction from the initiator 140 is received
over the initiating bus 134 and interface 104. The bridge then assigns a
queue 110 to the transaction and begins an access to fill the queue with write
data from the initiator. At any time thereafter, the initiator may terminate
the access and resume the transaction at a later time by issuing a subsequent

write request.

When a subsequent write request is received for the same
transaction, operation continues with block 208 where the control register
130 is checked to identify the non-full state for the queue 110. Step 208 may
be performed in response to detecting each write request, or may be
performed any time earlier or after the transaction is started, depending on
the particular implementation. In either case, operation continues with
step 212.

In step 212, a comparison is made to determine if the queue 110 is in
the non-full state. The non-full state is a storage condition of the queue,
other than completely full or completely empty. If the write queue 110 has

reached in the non-full state, the queue is deemed "full" and operation
9

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

continues with step 220. There, the bridge signals a retry in response to the
subsequent write request, and the request is not accepted. Meanwhile, the
data in the queue may be transferred to the target 144 independent of

requests by the initiator.

If, however, the write queue 110 is emptier than the non-full state by
the time the subsequent request is received, the queue is "non-full", and
operation continues instead of step 220 with step 216. There, the bridge is
allowed to accept the write request. If accepted, then a write access over the
initiating bus may begin in step 220 and more data for the transaction may
be transferred to the queue 110. The above-described subsequent requests
may be repeated several times during a transaction, depending on the total
amount of data to be written, the size of the queue, and the ability to
transfer the data from the queue to the target. A benefit of operating the
bridge in this way may be illustrated by the following performance tuning

example.

A computer such as a network server or a workstation may be
designed with a bridge and the multiple-bus architecture of Figure 1. If
there is an acceptable likelihood that, given the expected traffic patterns
across the bridge and the data processing capabilities of the different agents
on the buses, the target bus 138 will stay relatively busy and/or relatively
large burst transactions (having a relatively large amount of data) are
requested on the initiating bus 134, then the non-full state of the queue is
set closer to empty. This means that the queue 110 must be close to empty
before the bridge accepts a write request. In this way, there will be a greater
likelihood that the queue will have sufficient space to store all of the write
request data in a single data phase, thereby reducing overhead associated
with packetizing or splitting the transaction into multiple accesses on the
initiating bus. In comparison, if the non-full state were set closer to full,
then there will be greater likelihood that the queue will fill up prematurely
(and thereby block or force the initiator to stop sending data) because of a

busy target bus or a large amount of write data requested.

10

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

On the other hand, if it is expected that the target bus will remain
relatively quiet and/or that mostly small amounts of write data are
requested, then the non-full state is set closer to full. In this case, the
likelihood of the queue becoming completely full (and therefore blocking
the initiator) is less (even though the non-full state is set closer to full),
because either the target bus is fast enough to remove data from queue
and/or only small amounts of data are to be transferred in each access on
the initiating bus. At the same time, the initiator is allowed to use almost
the entire capacity of the queue, thereby further reducing the likelihood of

blocking the initiator by reason of a full queue.

For each particular case, the predictions concerning the queue
behavior may be determined based on bus traffic simulations or monitoring
of actual traffic on the initiating and/or target buses, and the queue size.
Indeed, simulation results have shown that varying the non-full state of

the write queues in a bridge has a significant impact on throughput.

Memory Write Request Control

This second embodiment of the invention focuses in part on how
quickly the bridge 100 requests control of the target bus 138 in order to
remove and forward write data from the queue 110 to the target 144. This
embodiment is based on the idea that it is not always desirable to allow the
bridge to request control of the target bus as soon as the bus becomes
available. As described below in connection with Figures 1 and 3, this
embodiment of the invention may be useful for performance tuning of the
latency of the bridge, in particular when the initiating and target buses have
different bandwidth requirements, e.g., initiating bus is 64 bits wide while

the target bus is only 32 bits wide.

The embodiment in Figure 1 includes the bridge 100 having the
queue 110 for temporarily storing data received from the initiator over the
bus 134 and to be forwarded to the target over bus 138 as part of a write

transaction. The control register 130 includes Memory Write Request
11

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

Control bits which determine a trigger point when the target bus may be
requested by the interface 108 for forwarding the data that was received from
the initiating bus and had been stored in the queue 110. The bits may
specify a non-zero amount of data (greater than one data block) that must be
received and stored in the queue (as part of the write transaction) before the
bridge 100 may request control of the target bus. For example, two bits may
be used to encode at least three different quantities of QWORD:s in the
queue, where each QWORD is a block of data having a width of 64 bits. As
with the first embodiment described above, the queue 110 may be the posted

memory write queue in a PCI bridge.

If it is desired to decrease latency in a write transaction, then the write
request control storage condition is set to a relatively small number of
blocks of data. Data may begin to be transferred to the target from the queue

as soon as the specified number of blocks have been received and stored.

Another situation in which setting a lower storage condition may be
beneficial is when the target bus is expected to be relatively busy, such that
the queue might become full and block the initiator before the target bus can
be acquired. Under those conditions, a lower storage condition will give the
bridge a head start in emptying the queue, and may provide enough time
for the bridge to acquire the target and begin unloading write data from the

queue before the queue has become full.

If it is desired to improve throughput rather than latency, and the
bridge's surrounding environment is such that the target bus may be
acquired relatively quickly, e.g., relatively quiet target bus, then the write
request control storage condition may be set to indicate a larger amount of
data, an amount less than the full capacity of the queue. This will help
ensure that a large amount of data is available to be forwarded to the target
in a single access when the target bus is acquired, thereby improving

throughput.

12

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

Yet another situation in which it might be beneficial to set the write
request trigger point to a larger amount is when the initiator 140 is likely to
request delays during a transaction, for example in the form of wait states,
from the bridge 100. This will help ensure that the queue 110 is less likely to
become empty during the transaction and retains enough data to be
forwarded over the target bus while the initiator delays the arrival of
further data, in order to increase the likelihood of simultaneous data flow

through the bridge, thus increasing or maintaining a desired throughput.

Figure 3 illustrates an exemplary method of performing a write
transaction using the write request control mechanism in a bridge
embodiment of the invention. In step 304, the bridge 100 receives an initial
write request from the initiator to begin a write transaction. Operation
continues with step 308 where data begins to transfer into the queue 110
over the initiating bus 134. In step 312, a determination is made as to
whether the queue meets the write request control storage condition
specified in the control register 130, i.e., sufficient data has been transferred
to the queue. If yes, then in step 320, the target bus may be requested. When
the target bus is subsequently acquired, the bridge begins to transfer the
write data from the queue to the target. Meanwhile, fresh write data may

continue to be received into the queue from the initiator.

Returning to step 312, if the storage condition has not been met, then
the bridge is not permitted to request the target bus, but may continue to
receive fresh write data into the queue. The transfers into and out of the

queue may otherwise occur independently of one another.

MWI Alias

In a further embodiment of the invention which deals with the write
request, the bridge 100 is configured to forward a MWI request on the
initiating bus as a conventional memory write over the target bus if it is
expected that the target bus couples agents, such as target 144 in Figure 1,

which are not equipped to process the MWI request. Such agents include,
13

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

for example, older generation memory controllers and bridges. In this way,
the software and hardware configuration of each new initiator 140 need not
be altered. The computer system operation may be optimized for the plain
memory write transaction by configuring the control register 130 to enable
the MWI conversion feature. When enabled, logic circuitry in the bridge is
directed to change the command portion of the MWI transaction into that
of a plain memory write before performing the transaction on the target

bus.

Memory Read Prefetch Size

The embodiments of the invention that work with read transactions
are as follows. A first embodiment of the invention dealing with read
transactions permits the maximum size of data prefetched from the target
during a read transaction to be adjusted by bits in the control register 130.
This improvement may be particularly effective in improving bridge
performance when the bridge is configured to discard an unrequested

portion of the prefetched data that resides in a bridge read queue.

After receiving an initial read request and signaling a retry on the
initiating bus, the bridge determines the maximum data size to be
prefetched by checking the appropriate bits in the control register 130. Only
after the bridge obtains as much data as possible (up to the maximum
amount stated in the control register 130) from the target and stores the data
in the read queue 122 may the bridge accept a repeated read request on the
initiating bus, and cause the transfer of the read data from the queue 122 to

the initiator 140.

The system operator or designer reduces the amount of unrequested
data that may be subsequently discarded by adjusting the prefetch size in
control register 130 to any number of data blocks. The bridge may thus be
tuned to the particular application. For example, if the application is mass
storage and the initiator is likely to request large burst read transactions

from the target 144 being a magnetic disk storage controller, then the
14

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

prefetch size may be set to a larger amount with some confidence that a
relatively large amount of data will be subsequently requested by the
initiator. The prefetch size should be adjusted to reduce the amount of
unrequested data that will be discarded, thereby making more efficient use

of the target bus, in view of the particular bridge application.

Memory Read Completion Control

This second embodiment of the invention concerning read
transactions is described using Figures 1 and 4. The embodiment provides
bits in the control register 130 that control the behavior of the initiating bus
interface 104 for a delayed memory read transaction. The bits identify a read
completion control storage condition for the queue 122 that determines
when to allow the initiator 140 access to the read data stored in the queue
122. The control register 130 may be programmed to change the minimum
number of data blocks that must be received from the target and stored in
the queue 122 before the bridge may accept a repeated read request on the
initiating bus 134 and return data from the queue 122. For example, two bits
may be used to encode four different quantities of QWORDS (blocks of data
64 bits wide) that must be received and stored in the queue before a repeat

request may be accepted.

In a slightly different embodiment, if all of the requested read data
has been received and stored in the queue 122, i.e., the transaction is
completed on the target bus, then the stored data may be delivered to the
initiator regardless of whether or not the completion control storage

condition specified in the control register 130 has been met by the queue.

Figure 4 illustrates a series of steps to be performed by the bridge in
implementing this embodiment of the invention. Beginning with block
404, a first read request is received from the initiating bus 134 to begin a read
transaction. In a PCI embodiment, the read transaction could be any one of

memory read, memory read line (MRL) and memory read multiple (MRM).

15

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

After assigning a read queue 122 to the transaction (provided, of
course, that a free read queue is available) and obtaining the read address
information, the bridge then signals a retry on the initiating bus 134 in step
406. The bridge then attempts to acquire the target bus 138. If successful,
transfer of read data from the target 144 will start in step 408. The bridge
may otherwise continue to attempt to acquire the target bus in order to

begin the transaction on the target bus.

When a repeated request is received on the initiating bus prior to
completion of the read on the target bus, as in step 412, then a decision is
made in block 416 as to whether enough read data has been received in the
queue to meet the completion control storage condition specified in the
control register 130. If not, then the initiator is signaled a retry in block 406.
Meanwhile, data may continue to be transferred to the queue 122 from the
target in block 408.

If, however, in decision block 416, the queue has received a sufficient
amount of read data from the target to satisfy the storage condition, then the
repeated request may be accepted and the read transaction may be completed
on the initiating bus by attempting to transfer read data for the transaction

from the queue to the initiator, preferably in a single read access.

By varying the completion control storage condition as a function of
the depth of the read queue and bridge traffic conditions, a user can tune
bridge performance to better match the bridge to its surrounding
environment. For example, consider a mass storage application such as
data backup where the initiator is a disk controller seeking to read data from
the target 144 which is a memory controller. The initiator in this case might
not be concerned with latency, but rather would desire high throughput.
Therefore, the user would configure the Memory Read Completion Control
portion of the control register 130 to indicate a relatively large amount of
data. In this way, more data may be transferred to the initiator in a single

access to complete the transaction, at the expense of increasing latency.

16

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

A performance-tunable bridge 100 featuring the control register 130
may be used as a component of an intelligent I/O subsystem 510 in Figure 5.
The 1/0 subsystem 510 features a subsystem processor 512 and memory
controller 514 on a third bus (local bus 516). The local bus is coupled to the
primary 521 and secondary 522 PCI buses through respective address
translation units (ATUs) 526 and 528. The I/O subsystem 510 may be
implemented as a single IC and used as part of a system application such as
a network server motherboard. The motherboard would include, in
addition to the I/O subsystem 510 and the PCI buses 521 and 522, a host
processor and memory coupled to the primary bus 521, and one or more
network interface controllers coupled to the secondary bus 522. The
network controllers may be depicted by several instances of the target 144 in
Figure 1. The bridge 100 in the I/O subsystem 510 may be tuned as described
above to optimize its latency in order to improve the performance of the

network server motherboard.

To summarize, the embodiments of the invention described above
are directed at a bridge and computer system, in which the performance of
the bridge may be tuned in view of the depth of the data queues and the
particular system application. The embodiments of the invention are, of
course, subject to other variations in structure and implementation. For
example, the bits in the control register 130 may be programmable (read and
write) or alternatively, one-time programmable (programmable read-only-
memory), in-circuit programmable (such as in a flash memory), or even test
bits (programmable during a test batch of the IC, but then fixed as read-only
production). The control register 130 may be accessed by either the host
processor 148 (see Figure 1) or by the subsystem processor 510 of the I/O

subsystem 510 embodiment in Figure 5.

Also, although the embodiments of the control register 130 described
above have two bits representing up to four different trigger point/storage

conditions of the different data queues, a greater number of bits may

17

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

alternatively be used, thus allowing finer granularity in the performance

tuning of the bridge and the surrounding computer system.

Therefore, the scope of the invention should be determined not by
the embodiments illustrated but by the appended claims and their legal

equivalents.

18

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

CLAIMS

What is claimed is:

1. A bridge comprising:

first and second bus interfaces;

a queue for storing data to be transferred between the first and
second bus interfaces as part of a transaction initiated over the first bus
interface; and

a control register that represents at least one storage condition

to be met by the queue during the transaction.

2. A bridge as in claim 1 wherein the storage condition is to be

met by the queue before the bridge may accept a write request.

3. A bridge as in claim 2 wherein the control register has a
plurality of bits that specify an amount of space to be available in the queue

before the write request may be accepted.

4. A bridge as in claim 1 wherein the storage condition is to be
met by the queue before the bridge may request control of a second bus via

the second bus interface.

5. A bridge as in claim 4 wherein the control register has a
plurality of bits that represent an amount of data to be stored in the queue
before the second bus is requested for forwarding said data as part of a write

transaction.

19

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

6. A bridge as in claim 1 wherein the storage condition is to be
met by the queue before the data may be transferred from the queue to the
first bus interface in response to a subsequent read request following a read

request initiated over the first bus interface.

7. A bridge as in claim 6 wherein the control register comprises at
least one bit representing an amount of data to be stored in the queue before
said data may be transferred to the initiator in response to the subsequent

read request.

8. A bridge as in claim 6 wherein the bridge is a PCI bridge and

the repeated read request is part of a delayed read transaction.

9. A bridge as in claim 1 wherein the bridge is a PCI bridge and

the queue is a posted memory write queue.

10. A bridge as in claim 1 wherein the queue comprises a FIFO

device for storing said data.

11. A bridge as in claim 1 wherein the control register is in part

both readable and writable.

12. A bridge comprising:
logic circuitry for causing the bridge to forward a memory write
and invalidate (MWI) request received at first bus interface as a memory

write request over a second bus interface.

20

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

13. Abridge as in claim 12 wherein the logic circuitry comprises a

bit in a register.

14. Abridge as in claim 13 wherein the register is in part both

readable and writable.

15. In a bridge for coupling an initiator on a first computer bus to a
target on a second computer bus, the bridge having a queue for storing data
read from the target in response to a first read request, the bridge further
configured to discard an unrequested portion of said data in response to the
initiator requesting less data than the bridge has read from the target, an
improvement comprising:

a control register for representing a maximum amount of data to be

read by the bridge from the target in response to said first read request.

16. An improvement as in claim 15 wherein the control register is

in part both readable and writable.

17. Ina bridge coupling an initiating bus to a target bus through a
data queue, a method comprising the steps of:

receiving a write request on the initiating bus;

checking the content of a control register to determine a non-full
state of the queue; and

signaling a retry on the initiating bus if the queue is not in the non-
full state, and beginning a write access to transfer data from the initiating

bus to the queue if the queue is in the non-full state.

21

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

18. A method as in claim 17 wherein the step of checking the
content of a control register is performed in response to receiving the write

request.

19. Ina bridge coupling an initiating bus to a target bus through a
data queue, a method comprising the steps of:

receiving a write request on the initiating bus;

determining a write request control condition of the queue by
checking a control register;

transferring data from initiating bus to queue until the queue has
met the write request control condition; and

requesting the target bus to transfer said data from the queue to the

target bus.

20. A method as in claim 19 wherein the step determining a write
request control condition is performed in response to receiving the write

request.

21. Ina bridge coupling an initiator on an initiating bus to a target
on a target bus through a data queue, a method comprising the steps of:

receiving a read request on the initiating bus;

transferring read data from the target to the queue until a repeated
read request is received;

determining a completion control condition of the queue by checking
a control register; and

completing the repeated read request by transferring the read data
from the queue to the initiator if the queue has met the completion control

condition.

SUBSTITUTE SHEET (RULE 26)

WO 99/45470 PCT/US99/04234

22. A method as in claim 21 wherein the step of determining a
completion control condition is performed in response to receiving the read

request.

23. A network server system, comprising:

primary PCI bus, a host processor and host memory coupled to the
primary bus;

secondary PCI bus;

a network interface controller (NIC) coupled to the secondary bus;
and bridge coupling the primary bus to the secondary bus, the bridge
having a queue for temporarily storing data to be transferred between
primary and secondary buses as part of a transaction between the host
processor and the NIC, and a control register that represents at least one

storage condition to be met by the queue during the transaction.

23

SUBSTITUTE SHEET (RULE 26)

[onuo) uonajdwo))

~ MNMDOHHM peay KIoWS aeIS [[N4-UON

PCT/US99/04234

WO 99/45470

1/5

JHOUV.L [

144!

8¢l

001 VATSRIRIEIEIE seify MM AIOWIN [onuo)) 1sanbay
/ pray AIOWIN / IMIN \ LA AIOWIN

es e e om—

> ANdNO avad >

1 8|
o) zel D
v \%
A d
a1 |- 4N9ano avay < A
q q
L 8l L
N N
I > a4N4N0 ALINM | !
S v S
n n
q d

<« ANHN0 ALIEM -

01

ovl

ayoe)
1SOH

QUL

LSOH
8yl

AIOWIN
1SOH

(44!

WO 99/45470 PCT/US99/04234

2/5

RECEIVE A WRITE REQUEST ON
INITIATINGBUS

208

CHECK CONTROLREGISTERTO
IDENTIFY NON-FULLSTATE

216
IS QUEUE IN THE BRIDGEMAY ACCEPT THE
NON-FULLSTATE? WRITE REQUEST ON THE
' INITIATINGBUS
220 218
S ARETRY O Rk
INITIATINGBUS
INITIATINGBUS TO QUEUE

FIGURE 2

WO 99/45470 PCT/US99/04234

3/5

l START I

RECEIVE INITIAL WRITE 304
REQUEST ON INITIATINGBUS
AS PART OF A WRITE

TRANSACTION

BEGINOR CONTINUETO | 308

TRANSFER WRITE DATA

FROM INITIATINGBUS TO
WRITE QUEUE

HAS QUEUEMET THE WRITE
REQUEST CONTROL STORAGE
CONDITIONSPECIFIEDIN THE
CONTROL REGISTER?

MAY REQUEST TARGETBUS | 320
FOR TRANSFERRING WRITE
DATA FROM THE QUEUE TO THE
TARGET

FIGURE 3

WO 99/45470
4/5

RECEIVE FIRST READ REQUEST | 404
ON THE INITIATINGBUS AS
PART OF A READ TRANSACTION

PCT/US99/04234

406
SIGNAL A RETRY ON

INITIATINGBUS

408
TRANSFER DATA FROM TARGET
TO THE READ QUEUE

412
RECEIVEREPEATED READ
REQUEST ON INITIATINGBUS

HAS QUEUEMET THE
COMPLETIONCONTROL

NO

STORAGE CONDITION
SPECIFIEDIN THE CONTROL
REGISTER?

420
ACCEPT THE REPEATED

REQUEST

COMPLETE THE READ 424
TRANSACTIONBY
TRANSFERRINGDATA FROM
THE QUEUE TO THE INITIATOR

FIGURE 4

WO 99/45470 PCT/US99/04234

v

Y /‘/ > PCI-to-PCI <‘L
Primary PCI Bus Bridge Unit Secondary PCI Bus

5/5
Local Memory

———— e e
| |
| I
| 512 514 :
|
I Subsystem Memory |
[Processor Controller :
|
l A |
| I
| |
| 516 |

| |
: A Local Bus A |
|
| v 526 528
|
I Primary Secondary
| ATU ATU
|
| A A
: 521 522
|
1
|
|
|

FIGURE 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

