

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2011210690 B2

(54) Title
Electronic payment processing method and system with smart/authenticate fields and definitions

(51) International Patent Classification(s)
G06Q 20/00 (2012.01)

(21) Application No: **2011210690** (22) Date of Filing: **2011.01.28**

(87) WIPO No: **WO11/094556**

(30) Priority Data

(31) Number (32) Date (33) Country
61/299,390 **2010.01.29** **US**
61/317,425 **2010.03.25** **US**

(43) Publication Date: **2011.08.04**
(44) Accepted Journal Date: **2015.12.10**

(71) Applicant(s)
CardinalCommerce Corporation

(72) Inventor(s)
Roche, Michael;Ratica, Adam;Romano, Phillip;Yucha, Matthew;Rauhe, Scott

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
US 2002/0116333

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 August 2011 (04.08.2011)(10) International Publication Number
WO 2011/094556 A1

(51) International Patent Classification:
G06Q 20/00 (2006.01)

(21) International Application Number:
PCT/US2011/022945

(22) International Filing Date:
28 January 2011 (28.01.2011)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/299,390 29 January 2010 (29.01.2010) US
61/317,425 25 March 2010 (25.03.2010) US

(71) Applicant (for all designated States except US): **CARDINALCOMMERCE CORPORATION** [US/US]; 6119 Heisley Road, Mentor, OH 44060 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **ROCHE, Michael** [US/US]; 2380 Eardley Road, University Heights, OH 44118 (US). **RATICA, Adam** [US/US]; 7804 Chillicothe Road, Mentor, OH 44060 (US). **ROMANO, Phillip** [US/US]; 9695 Yellowwood Drive, Concord Twp., OH 44060 (US). **YUCHA, Matthew** [US/US]; 9189 Lorrach Drive, Mentor, OH 44060 (US). **RAUHE, Scott** [US/US]; 17843 Clifton Boulevard, Lakewood, OH 44107 (US).

(74) Agent: **ZANGHI, John, S.**; Fay Sharpe LLP, The Halle Building, 5th Floor, 1228 Euclid Avenue, Cleveland, OH 44115-1843 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: ELECTRONIC PAYMENT PROCESSING METHOD AND SYSTEM WITH SMART/AUTHENTICATE FIELDS AND DEFINITIONS

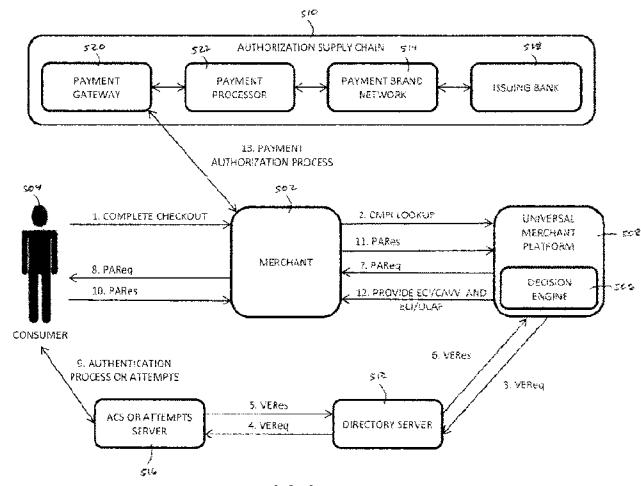


FIG. 5

(57) **Abstract:** A method and corresponding system for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants. Payment information for a commercial transaction between a consumer and a merchant is received over the communications network. The payment information identifies a payment instrument supporting an authenticated payment program. A determination is made as to whether to authenticate the consumer using the authenticated payment program based on authentication criteria defined by the merchant. The consumer is authenticated over the communications network in accordance with the authenticated payment program if authentication is determined to be appropriate based on the authentication criteria defined by the merchant.

ELECTRONIC PAYMENT PROCESSING METHOD AND SYSTEM WITH SMART/AUTHENTICATE FIELDS AND DEFINITIONS

[0001] This application claims the benefit of both U.S. Provisional Application No. 61/317,425, filed March 25, 2010, and U.S. Provisional Application No. 61/299,390, filed January 29, 2010, incorporated herein by reference in their entireties.

BACKGROUND

[0002] The present exemplary embodiments relate generally to e-commerce. They find particular application in conjunction with payment brand selection and/or consumer authentication, to conduct a commercial transaction over a communications network (e.g., the Internet), and will be described with particular reference thereto. However, it is to be appreciated that the present exemplary embodiments are also amenable to other like applications.

[0003] By way of background, Internet commerce, or e-commerce as it is otherwise known, relates to the buying and selling of products and/or services between consumers and merchants over the Internet or other like transactional exchanges of information. The convenience of shopping over the Internet has sparked considerable interest in e-commerce on behalf of both consumers and merchants. Internet sales, or like transactions, have been typically carried out using standard credit cards, for example, from Visa®, MasterCard®, Discover®, American Express®, or the like, or standard debit cards, such as check cards or automated teller machine (ATM) cards which directly access funds from an associated deposit account or other bank account.

[0004] FIGURE 1 illustrates one example of an authorization process for an e-commerce transaction. When a consumer **102** seeks to purchase a product and/or service from a merchant **104**, they complete a checkout process in which they typically provide the merchant **104** with payment information, or at least enough information to identify and/or locate payment information. Payment information typically identifies a payment instrument, such as a credit card, associated with a payment brand. Upon receiving the payment information, the merchant **104** authorizes the transfer of funds

using an authorization supply chain **106**. The authorization supply chain **106** typically includes an optional payment gateway **108**, a payment processor **110** (e.g., the merchant's financial institution or acquiring bank), a payment brand network **112**, an issuing bank **114**, and the like. In certain embodiments, the merchant **104** connects directly with the payment processor **110**, whereby the payment gateway **108** is optional.

[0005] While widely used for more traditional face-to-face transactions, use of these standard cards in connection with e-commerce presents certain difficulties, including difficulties concerning authentication or positive identification of the cardholder. For example, maintaining consumer confidence in security has become difficult with increased reports of fraud. The resulting apprehension is also fueled by consumer uncertainty of the reputation and/or integrity of a merchant with whom the consumer is dealing. Questionable security of the consumer's card information or other personal information (e.g., address, card number, phone number, and the like) typically submitted along with a traditional e-commerce transaction serves to increase apprehension even more. Additionally, cardholders, merchants and financial institutions are all concerned about safeguarding against fraudulent or otherwise unauthorized transactions.

[0006] Accordingly, various payment brand networks have implemented programs (or initiatives) aimed at safeguarding against fraud. For example, Visa® and MasterCard® both support authentication programs in which the bank or financial institution issuing the card (i.e., the issuing bank) authenticates a cardholder. FIGURE 2 illustrates one such exemplary authentication program. As shown, a consumer **202** (e.g., employing a suitable web browser or the like) attempts to purchase products and/or services (e.g., over the Internet) from a merchant **204**. As is known in the art, the illustrated authorization supply chain **206** includes an optional payment gateway **208**, a payment processor **210**, a payment brand network **212**, and an issuing bank **214**.

[0007] At a point of checkout, the consumer **202** selects an appropriate payment method based on the authentication programs supported by the merchant **204**. At this point, the consumer **202** fills out an on-line checkout form including a payment instrument, a card number, an expiration date, etc. Based on the payment information, the merchant **204**, via a plug-in **216** installed on their servers, passes a verify enrollment request (VEReq) message to a directory server **218** suitably operated by the payment

brand network **212**. The directory server **218** includes a database associating participating merchants with their payment processor and a database associating card number ranges with locations or addresses (e.g., universal resource locator (URL) addresses) of issuing banks' access control servers (ACSs). The VEReq message is a request to verify the enrollment of the card in the authentication program, and it contains the card number provided by the consumer **202**.

[0008] Based on the card number range stored within the directory server **218**, the VEReq message is sent to an ACS or attempts server **220**. If the consumer and/or the issuing bank do not participate in a payment program, the VEReq message is sent to an attempts server typically operated by the payment brand network **212**. Otherwise, the VEReq message is sent to the appropriate URL address for the issuing bank's ACS server. In either case, a response (i.e., a verify enrollment response (VERes)) to the VEReq message is returned to the merchant **204** via the directory server **218**. That is to say, the ACS or attempts server **220** responds with a VERes message to the directory server **238**, which is then passed back to the plug-in **216**. Where the ACS or attempts server **220** is an ACS, the enrollment status of the card is also verified.

[0009] Based on the VERes message (i.e., if positive), the plug-in **216** redirects the consumer's browser to the ACS or attempts server **220** by passing it a payer authentication request (PReq) message generated by the plug-in **216**. The consumer **202** then completes an authentication process or attempts directly with the ACS or attempts server **220**. The ACS or attempts server **220** authenticates the consumer **202**, if applicable, and responds to the merchant **204** with a payer authentication response (PRes) message, including a digital signature. The plug-in **206** validates the digital signature of the PRes and extracts the authentication status and other specified data that is to be used by the merchant **204** during the payment authorization process carried out via the authorization supply chain **206**. For example, the merchant **204** sends an authorization and/or sale transaction to their payment gateway **208** along with the data elements received from the PRes. The payment gateway **208** routes the data to the payment processor **210** based on the payment processor's specification. The payment processor **210** then sends the data via the appropriate payment brand network **212** to the issuing bank **214** for settlement.

[0010] With industry momentum swinging in the direction of authentication of consumers, more and more merchants are implementing authenticated payment programs, such as the aforementioned example, for the first time. With these initial implementations, merchants run the risk of introducing an authenticated payment program in a way that could disrupt their current checkout process. Further, merchants are responsible for remaining current with program protocols that can change periodically. That is to say, as the authentication protocols are updated and/or changed by the respective payment brand networks, the merchants are responsible for updating and/or changing their plug-ins to reflect those updates and/or changes being mandated by the payment brand networks.

[0011] Even more, when using authentication programs, the payment brand networks often ensure participating merchants that fraudulent transactions and other charge backs, as they are known in the art, will not be the merchants' responsibility provided the specified protocols have been followed. However, there are considerable burdens placed upon the merchants to participate in the authentication programs. For example, typical installation of the merchant plug-in can be overly burdensome using up resources (e.g., computing power, memory, data storage capacity, etc.) the merchant would otherwise prefer to devote to other tasks. Often, the plug-in can be extremely large and/or cumbersome to implement on the merchant's server. Moreover, for a merchant that participates in a plurality of such authentication programs for multiple payment brand networks, the burden can be that much more (i.e., requiring a separate plug-in for each individual authentication program they wish to support), especially considering that each payment brand network may have its own particular protocols, data fields that are employed in the respective messages, specific data format requirements, etc.

[0012] To address some of these concerns, a universal merchant platform (UMP), shown in FIGURE 3, may be employed. For detailed a detailed discussion regarding the universal merchant platform, refer, for example, to U.S. Patent No. 7,051,002 entitled "Universal Merchant Platform for Payment Authentication" and U.S. Patent Publication No. 2006/0282382 entitled "Universal Merchant Platform for Payment Authentication," the disclosures of which are both incorporated herein by reference.

[0013] Generally, the UMP serves as a centralized merchant processing system for authenticated payments, allowing a merchant to securely and easily accommodate authentication of consumers in accordance with a variety of authentication programs implemented by payment brand networks, and to process electronic transactions through any payment network using a single platform. It also enables merchants to process these payments, regardless of which payment network they are to be routed through, with a single implementation. Moreover, it allows them or a funding source to use the established underlying payment processing infrastructure to process their credit and/or debit payment instruments at participating merchant sites.

[0014] While the UMP addresses some of the abovenoted concerns, there is still room for improvement. For example, known embodiments of the UMP are a "one size fits all solutions" in the sense that a merchant either employs an authenticated payment program or does not. Therefore, merchants run the risk of introducing an authenticated payment program in a way that could disrupt their current checkout process, even when employing known embodiments of the UMP.

[0015] The present disclosure contemplates a new and improved system and/or method which overcomes the above-referenced problems and others.

[0015a] Throughout this specification the word "comprise" , or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

[0015b] Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.

INCORPORATION BY REFERENCE

[0016] The following co-pending and commonly assigned applications, the disclosures of each being completely incorporated herein by reference, are mentioned:

U.S. Patent No. 7,051,002 entitled "Universal Merchant Platform for Payment Authentication," by Keresman, III et al.; and,

U.S. Patent Publication No. 2006/0282382 entitled "Universal Merchant Platform for Payment Authentication," by Balasubramanian et al.

BRIEF DESCRIPTION

[0017] Various details of the present disclosure are hereinafter summarized to provide a basic understanding. This summary is not an extensive overview of the disclosure and is intended neither to identify certain elements of the disclosure, nor to delineate the scope thereof. Rather, the primary purpose of the summary is to present certain concepts of the disclosure in a simplified form prior to the more detailed description that is presented hereinafter.

[0018] In accordance with one aspect, there is provided a method for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, said method comprising receiving: payment information for a commercial transaction between a consumer and a merchant over the communications network, wherein the payment information identifies a payment instrument supporting an authenticated payment program; receiving authentication criteria from the merchant, the authentication criteria including rules; determining whether to authenticate the consumer using the authenticated payment program by: applying the authentication criteria from the merchant to information from a rival payment brand of a payment brand of the payment instrument; and applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information; and in response to the determination as to whether to authenticate the consumer, authenticating the consumer over the communications network in accordance with the authenticated payment program.

[0018a] In accordance with another aspect, there is provided a system for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, comprising: one or more non-transient computer readable mediums that have computer executable instructions to: receive

payment information for a commercial transaction between a consumer and a merchant over the communications network, wherein the payment information identifies a payment instrument supporting an authenticated payment program; receive authentication criteria from the merchant, the authentication criteria including rules; determine whether to authenticate the consumer using the authenticated payment program by: applying the authentication criteria from the merchant to information from a rival payment brand of a payment brand of the payment instrument; and applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information; and in response to the determination as to whether to authenticate the consumer, authenticate the consumer over the communications network in accordance with the authenticated payment program; and one or more processors that execute the computer executable instructions stored on the non-transient computer readable mediums.

[0019] In accordance with another aspect, there is provided a system for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, said system comprising: a universal merchant platform and a decision engine. The universal merchant platform provides the merchants, over the communications network, a common interface to one or more authenticated payment programs and includes merchant accounts for each of the merchants, wherein each of the merchant accounts include authentication criteria defined by a corresponding merchant; and a decision engine that determines whether to authenticate the consumers in accordance with the authenticated payment programs based on: applying the authentication criteria from the merchants to information from a rival payment brand of a payment brand of a payment instrument associated with a commercial transaction between a consumer and a merchant; and applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information.

[0020] One advantage resides in the ability to cross reference data, even from rival payment brands or methods, to decide whether or not the consumer ought to go through an authentication step.

[0021] Another advantage resides in the ability to allow merchants to selectively authenticate their respective consumers.

[0022] Another advantage resides in the ability to authenticated payment programs in an intelligent fashion that does not completely disrupt current checkout processes.

[0023] Another advantage resides in the ability of merchants to receive all the benefits of authenticated payment programs as it relates to consumers they want to pinpoint.

[0024] Another advantage resides in the ability to allow merchants to begin understanding authenticated payment programs, including those aspects pertaining to consumer behavior, data transmission to the processor, interchange qualifications, chargeback protection, and the like, in an organic way.

[0025] Another advantage resides in the ability to allow merchants to strategically deploy payment brands that suit their consumers' needs, while mitigating their own risk.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] The presently disclosed subject matter may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating preferred embodiments and are not to be construed as limiting. Further, it is to be appreciated that the drawings are not to scale.

[0027] FIG. 1 is a schematic diagram of a payment process without an authenticated payment program;

[0028] FIG. 2 is a schematic diagram of a payment process incorporating an authenticated payment program;

[0029] FIG. 3 is a schematic diagram of a payment process incorporating an authenticated payment program and a universal merchant platform;

[0030] FIG. 4 is a block diagram of a payment processing system according to aspects of the present disclosure;

[0031] FIG. 5 is a schematic diagram of a payment process incorporating an authenticated payment program and a universal merchant platform, along with an decision engine, in accordance with aspects of the present disclosure; and,

[0032] FIG. 6 is a schematic diagram of a payment process incorporating an authenticated payment program, along with a decision engine, in accordance with aspects of the present disclosure.

DETAILED DESCRIPTION

[0033] With reference to FIGURE 4, a payment processing system **400** according to aspects of the present disclosure is provided. The system **400** suitably includes one or more consumers **402**, one or merchants **404**, an optional third party provider **406** of a universal merchant platform (UMP) **408**, an authentication supply chain **410**, an authorization supply chain **412**, and the like, interconnected by a communications network **414**. The communications network **414** is typically the Internet, but other communications networks are contemplated. For example, the communications network **414** may include one or more of a local area network, a wireless network, and the like.

[0034] The consumers **402** electronically purchase products and/or services from the merchants **404** over the communications network **414** via graphical user interfaces, such as e-commerce websites, of the merchants **404**. Suitably, the consumers **402** employ web browsers to access the graphical user interfaces and purchase the products and/or services. However, it is to be appreciated that other means of electronically purchasing the products and/or services are contemplated. To purchase the products and/or services over the communications network **414**, the consumers **402** submit payment information, directly or indirectly, to the merchants **404**. As noted above, the payment information is submitted indirectly if information allowing identification of the payment information from another source is provided. The payment information suitably identifies a payment instrument, such as a card number and an expiration date. Further, the consumers **402** suitably employ payment instruments supporting authenticated payment programs. For example, one of the consumers **402** purchases a product and/or service from one of the merchants **404** using a Visa® credit card supporting Verified by Visa®.

[0035] Each of the consumers **402** is suitably embodied by a digital processing device **418**, such as a computer, smart phone, PDA, and the like, connected to the

communications network **416**. Each of the digital processing devices **416** includes one or more of a communications unit **418**, a memory **420**, a display **422**, a user input device **424**, a processor **426**, and the like. The communications units **418** allow the digital processing devices **416** to interact with other components connected to the communications network **414**. The memories **420** include computer executable instructions for performing the abovenoted functions associated with the consumers **402**. The displays **422** display the graphical user interfaces (e.g., via web browsers) facilitating consumer interaction with the digital processing devices **416**. The user input devices **424** allow the consumers **402** to interact with the graphical user interfaces. The processors **426** execute the computer executable instructions on the memories **420**.

[0036] The merchants **404** provide the consumers **402** the graphical user interfaces, suitably e-commerce websites, via the communications network **414**. The graphical user interfaces suitably allow the consumers **402** to purchase products and/or services electronically over the communications network **414**, which entails checking out and submitting payment information to the merchants **404**. Payment information typically identifies at least a payment brand and a payment instrument. In certain embodiments, the UMP **408** is employed to select payment brands to present to the consumers **402** during check out, for example. When the merchants **404** receive the payment information from the consumers **402**, the merchants **404** suitably, but not necessarily, employ the UMP **408** to partially or wholly complete the transaction. For example, the merchants **404** employ the UMP **408** for authentication. It is contemplated that UMP **408** may be employed by the merchants **404** to define when to authenticate the consumers **402**, as described in detail below.

[0037] To use the UMP **408**, each of the merchants **404** suitably registers with the third party provider **406**. This includes the merchants **404** providing merchant information (e.g., financial information, physical address, category of good or services sold, Internet address, email address, authentication criteria, payment brand criteria, etc.) to the third party provider **406**. As discussed below, the authentication criteria suitably define when the UMP **408** authenticates consumers for a merchant, and the payment brand criteria suitably define what payment brands are presented to the consumers of the merchant, as determined by the UMP **408**. Typically, the merchant

information is provided over the communications network **414** via a graphical user interface, such as a web interface, offered by the third party provider **406**. However, other means of providing the merchant information, such as via a telephone, are contemplated. Additionally, the merchant information is suitably modifiable, optionally via the graphical user interface and/or the communications network **414**. In certain embodiments, registration may further include signing and/or executing an agreement of the third party provider **406**.

[0038] Further, to use the UMP **408**, each of the merchants **404** suitably augments their graphical user interface to employ the UMP **408**. For example, a merchant may add a hosted iFrame linking their graphical user interface to the third party provider **406**. Advantageously, this allows easy integration with the UMP **408**, especially for presenting allowed payment brands to the consumers **402**.

[0039] Where the UMP **408** is not employed, the merchants **404** include plug-ins **428** and decision engines **430**. The plug-ins **428** allow the merchants **404** to support authenticated payment programs and typically behave as the plug-in **216** of FIGURE 2. The decision engines **430** allow the merchants **404** to selectively authenticate the consumers **402** based on one or more authentication factors and/or selectively present payment brands to the consumers **402** based on one or more payment brand factors. Advantageously, this allows the merchants **404** to strategically deploy payment brands that suit the consumers **402** needs, while mitigating their own risk. Another advantage resides in the ability to employ authenticated payment programs in an intelligent fashion that does not completely disrupt current checkout processes.

[0040] The authentication factors typically include one or more of the following:

1. **Currency Amount:** The merchants **404** can create thresholds on the transaction amounts they want to authenticate on. For example, a merchant may specify that they only want to authenticate transactions over \$500.

2. **Country Currency:** The merchants **404** can pick and choose which currency or currencies they want to authenticate with. For example, a merchant can specify they only want to only authenticate consumers who are paying in Russian Rubles.

3. BIN (Bank Identification Number) Range: The merchants **404** can authenticate consumers attempting to complete a transaction with a card having a particular BIN number. A BIN number refers to the first 6 digits of a card and identifies bank name, country, and card type. For example, a merchant can specify they only want to authenticate cards from Bank of America® cardholders who are located in India and have debit cards. This is advantageous in that some countries, such as India, always require authentication.

4. Acquirer Merchant ID (MID): The merchants **404** can choose to authenticate for a particular MID associated with a transaction. An MID is provided to the merchants **404** by corresponding acquiring banks and a merchant may have more than one MID. For example, a merchant can specify they only want to authenticate transactions employing a particular MID.

5. Access Control Server (ACS) URL: The merchants **404** can choose whether to authenticate based on an ACS URL of the issuing bank or the bank's ACS provider. For example, a merchant may not want to perform authentication with banks who receive their ACS service from a certain ACS provider.

6. Enrollment / Registering during Shopping: The merchants **404** can choose to ask the consumers **402** to enroll in an authenticated payment program during the checkout process and authenticate the consumers **402** based upon this. For example, a merchant may not want to authenticate consumers who enrolled and/or registered during shopping.

7. Central Servers: Some payment brands, such as Visa®, operate a server that oversees bank performance in certain countries and/or regions, such as the United States. In some cases, the information received back from these servers does not fit merchants' needs or data managing capabilities, so the merchants **404** truncate this URL because of its length. According to this factor, the merchants **404** can choose not to authenticate cardholders who come under the surveillance of a central server system.

8. Billing and Shipping Information: The merchants **404** can choose to authenticate the consumers **402** based on associated billing and/or shipping

information. For example, a merchant may not want to authenticate consumers who enter different billing and shipping information.

9. Attempts: A consumer goes through the attempts process if they have not enrolled their card in a payment program or the issuing bank is not participating in the payment program. The merchants **404** can choose whether to authenticate the consumers **402** based on whether they go through the attempts process.

10. ACS Performance: An authentication program may involve multiple third parties to enable accompanying protocols and/or processes. In certain embodiments, these third parties may be monitored and corresponding data logged to provide the merchants **404** the ability to tune-out and/or turn-off sub-performing third parties and/or any part of the network. For example, a merchant may not want to authenticate cardholders who belong to a bank with below average ACS performance.

11. Date and Time Frames: The merchants **404** can choose to authenticate during certain time periods throughout the day (e.g., EST, PST, and/or CST). For example, a merchant may only want to authenticate consumers who shop during the merchant's highest fraud time frame on 12/21 from 12:00am EST to 3:00am EST.

12. True A/B Test: The merchants **404** can perform tests on sets or batches of transactions with an authentication program on and then off. For example, a merchant may want to authenticate on every other transaction.

13. Consumer Shopped with Before: The merchants **404** can choose to authenticate based on whether the consumers **402** have previously shopped with the merchants **404**, optionally, within a predetermined amount of time, such as the last 30 days. For example, a merchant may only want to offer authentication to consumers who have gone through the authentication process smoothly in the past 30 days. To identify a consumer, a card number is suitably employed. However, other information may be employed to identify a consumer, such as a phone number. In certain embodiments, information from previous transactions may also be employed. For example, if a consumer employed a different payment brand to complete a previous transaction, a merchant may choose to authenticate. Additionally or alternatively, in certain embodiments, where the UMP **408** is employed, information may be shared across the merchants **404**. For example, if a consumer used a particular payment

brand with a first merchant, a second merchant could use this information to determine whether to authenticate.

14. Consumer Shopped with Before and Authenticated: The merchants **404** can choose to authenticate based on whether the consumers **402** have previously shopped with the merchants **404** and successfully authenticated, optionally, within a predetermined amount of time, such as the last 30 days. For example, a merchant may only want to authenticate cardholders who have successfully authenticated in the past 30 days. To identify a consumer a card number is suitably employed. However, other information may be employed to identify a consumer, such as a phone number.

15. Abandonment of Transaction: The merchants **404** can choose to authenticate based on whether the consumers **402** previously abandoned transactions. In certain embodiments, the authentication decision may be based on when and/or how many previous transactions were abandoned. For example, a merchant may want to authenticate a consumer that abandoned a transaction within the last 30 days. In certain embodiments, where the UMP **408** is employed, information may be shared across the merchants **404**.

16. Product Codes: The merchants **404** can choose to authenticate based on products codes. For example, a merchant can choose to authenticate all transactions involving products of a particular class, as identified by product codes.

[0041] The payment brand factors typically include one or more of the following:

1. Currency Amount: The merchants **404** can identify which payment brands they want to offer for transactions based on the transaction amounts. For example, a merchant may specify that they only want to allow a certain payment brand for transactions over \$500.

2. Country Currency: The merchants **404** can pick and choose which payment brands they want to allow the consumers **402** to use based on currency or currencies. For example, a merchant can specify they only want to only want to allow consumers who are paying in Russian Rubles to use a certain payment brand.

3. Billing and Shipping Information: The merchants **404** can choose which payment brands to present to the consumers **402** based on billing and/or shipping

information. For example, a merchant may not want to allow a consumer to pay with a certain payment brand if they enter different billing and shipping information.

4. Product Codes: The merchants **404** can choose what payment brands to allow based on products codes. For example, a merchant can choose to allow payment with a certain payment brand for all transactions involving products of a particular class, as identified by product codes.

5. IP Location: The merchants **404** can choose what payment brands to allow based on internet protocol (IP) location. For example, a merchant can choose to allow payment with a certain payment brand for all IP addresses associated with Russia.

6. Country: The merchants **404** can choose what payment brands to allow based on country. In certain embodiments, country is determined from the shipping information and/or the billing information. For example, a merchant can choose to allow payment with a certain payment brand for transactions shipped to Russia.

7. Repeat Payment Brand Consumers: The merchants **404** can choose what payment brands to present to the consumers **402** based on what payment brands the consumers **402** have successfully used for payment in the past. In certain embodiments, where the UMP **408** is employed, information may be shared across the merchants **404**.

8. Date and Time Frames: The merchants **404** can choose what payment brands to allow during certain time periods throughout the day (e.g., EST, PST, and/or CST). For example, a merchant may only want to allow a certain payment brand during the merchant's highest fraud time frame on 12/21 from 12:00am EST to 3:00am EST.

9. True A/B Test: The merchants **404** can perform tests on sets or batches of transactions with different combinations of one or more payment brands. For example, a merchant may want to provide a particular combination of payment brands on every other transaction.

10. Risk Assessment: The merchants **404** can choose which payment brands to offer to the consumers **402** based on risk assessments of the consumers **402**. For example, when a consumer is determined to be "high risk", a merchant can offer a payment brand where they assume no liability.

11. Fraud Score: The merchants **404** can choose which payment brands to offer to the consumers **402** based on fraud scores of the consumers **402**. For example, a merchant may offer a particular payment brand if the fraud score of a consumer is within a certain range.

12. Consumer Shopped with Before: The merchants **404** may choose payment brands to present to the consumers **402** based on whether the consumers **402** have previously shopped with the merchants **404**, optionally, within a predetermined amount of time, such as the last 30 days. For example, a merchant may only want to offer certain payment brands to consumers who have gone through the authentication process smoothly in the past 30 days. To identify a consumer, a card number is suitably employed. However, other information may be employed to identify a consumer, such as a phone number. In certain embodiments, information from previous transactions may also be employed. Additionally or alternatively, in certain embodiments, where the UMP, information may be shared across the merchants **404**.

13. Consumer Shopped with Before and Authenticated: The merchants **404** may choose which payment brands to present to the consumers **402** based on whether the consumers **402** have previously shopped with the merchants **404** and successfully authenticated, optionally, within a predetermined amount of time, such as the last 30 days. For example, a merchant may only want to offer certain payment brands to consumers who have successfully authenticated in the past 30 days. To identify a consumer, a card number is suitably employed. However, other information may be employed to identify a consumer, such as a phone number.

14. BIN (Bank Identification Number) Range: The merchants **404** can choose which payment brands to present to the consumers **402** based on a provided BIN number. A BIN refers to the first 6 digits of a card and identifies bank name, country, and card type.

15. Authorization Result: The merchants **404** can choose what payment brands to present the consumers **402** after a transaction is denied authorization. For example, a merchant who is unable to accept a credit based transaction can display additional payment options after a transaction is denied authorization.

[0042] To allow the merchants **404** to selectively choose which of the consumers **402** to authenticate and/or which payment brands to offer to the consumers **402**, the decision engines **430** allow the merchants **404** to establish authentication criteria and/or payment brand criteria using the foregoing factors. Suitably a graphical user interface is employed, optionally, accessible via the communications network **414**. However, other means of defining the criteria are contemplated. For example, the telephone may be employed to define the criteria. It is contemplated that the criteria may be modified once generated. In certain embodiments, the merchants **404** may select from one or more predefined profiles of criteria rather than defining their own criteria.

[0043] The criteria are suitably defined using one or more rules, which match based on the factors, such as IP Location or Attempts, noted above. In certain embodiments, the factors may employ data collected from previous transactions (i.e., there may be a feedback loop). Additionally or alternatively, in certain embodiments, the priorities of the rules may be defined. For example, a rule specifying that authentication or a particularly payment brand should be employed for transactions employing Rubles may take priority over a rule specifying transactions less than \$500 do not require authentication or may not use the particular payment brand.

[0044] A rule suitably includes match criteria and an action to perform if the match criteria are met. Depending upon whether the rule is being applied to authentication or payment brand, actions include enable or disable authentication or allow or disallow a defined set of one or more payment brands. It is contemplated that an action may be explicit or implicit. An action may be implicitly known if all defined rules or a grouping of rules are defined to perform the same action, such as enable authentication. To define the match criteria, Boolean logic based on the factors noted above is typically employed. However, it is to be understood that other approaches to defining the match criteria, such as fuzzy logic and/or thresholding weighted summations of the factors, may also be employed.

[0045] One or more servers **432** connected to the communications network **414** suitably embody each of the merchants **404**. Each of the servers **432** includes one or more of a communications unit **434**, a memory **436**, a processor **438**, and the like. The communications units **434** allow the servers **432** to interact with other components

connected to the communications network **414**. The memories **436** include computer executable instructions for performing the abovenoted functions associated with the merchants **404**. The processors **438** execute the computer executable instructions on the memories **436**. Further, in certain embodiments, the servers **432** include the plug-ins **428** and the decision engines **428**. Suitably, the plug-ins **428** and the decision engines **430** are embodied by computer executable instructions stored on computer readable mediums, where the processors **438** execute the computer executable instructions. In some embodiments, the computer readable mediums may be the memories **436**.

[0046] The third party provider **406** facilitates the completion of transactions between the consumers **402** and the merchants **404** by way of the UMP **408**. As noted above, the third party provider **406** is not a necessary party to the system **100**. Among other things, the UMP **408** provides the merchants **404** with a unified interface from which to carry out authenticated payment programs for different payment instruments, such as a credit cards and/or debits card. Advantageously, this allows the merchants **404** to offload the work involved with staying current with protocols associated with authenticated payment protocols and reduces the amount of resources the merchants **404** have to expend on implementing authenticated payment programs. In certain embodiments, the UMP **408** further allows the merchants **404** to employ the UMP **408** for settlement (i.e., the authorization and capture of funds) and/or payment brand selection.

[0047] The UMP **408** suitably includes a decision engine **440** allowing the merchants **404** to selectively authenticate the consumers **402** based on one or more authentication factors and/or selectively present payment brands to the consumers **402** based on one or more payment brand factors. Examples of these factors are described above. Advantageously, this allows the merchants **404** to strategically deploy payment brands that suit the consumers **402** needs, while mitigating their own risk. Another advantage resides in the ability to utilize authenticated payment programs in an intelligent fashion that does not completely disrupt current checkout processes. Suitably, the decision engine **440** employed by the UMP **408** includes the same functionality as the decision engines **430** employed by the merchants **404**.

[0048] To use the UMP **408**, each of the merchants **404** suitably registers with the third party provider **406**. The merchant registration process begins with the third party provider **406** receiving merchant information (e.g., financial information, physical address, category of good or services sold, Internet address, email address, authentication criteria, payment brand criteria, etc.) from a merchant. The authentication criteria suitably define when the UMP **408** authenticates consumers for a merchant, and the payment brand criteria suitably define what payment brands are present to the consumers of the merchant, as determined by the UMP **408**. Suitably, such information is collected via a graphical user interface, such as a web interface, via the communications network **414**, but other means of collecting the information, such as via a telephone, are contemplated.

[0049] In certain embodiments, upon receiving the merchant information, the third party provider **406** evaluates the worthiness of the merchant for participation with the UMP **408**. To evaluate the worthiness of the merchant, a predetermined or otherwise selected algorithm that acts on quantifiable values representing the merchant information is employed. In this manner, the merchant's credit worthiness may be determined and/or the merchant's reliability and/or reputation for customer service and sound business practice may be determined using objective, subjective, or a combination of objective and subjective criteria. Advantageously, the verification program ensures that the merchant is able to meet potential obligations. If the merchant is unworthy, a notification is suitably sent to the merchant and the merchant registration process ends.

[0050] Additionally or alternatively, in certain embodiments, a merchant agreement is forwarded to the merchant. It is contemplated that the merchant agreement is sent upon receiving the merchant information or, if an evaluation is performed, after a determination that the merchant is suitable for participation with the UMP **408**. Suitably, the merchant agreement is sent to the merchant by way of the communications network **414**, but other means are contemplated, such as by mail. The merchant agreement typically outlines the rights and responsibilities and/or duties of the merchant with respect to their participation in the UMP **408**. After the merchant physically signs,

electronically signs, or otherwise executes the merchant agreement, it is returned to the third party provider **406** by, for example, the communications network **414** or mail.

[0051] Upon receipt of the executed merchant agreement, or upon receipt of the merchant information if no merchant agreement is provided to the merchant, the third party provider **406** creates and maintains a record of one or more of the merchant information, the merchant's approval, the merchant agreement, and the like in one or more databases **442**. In certain embodiments, the third party provider **406** further forwards to the merchant software and/or documentation as to how to integrate with the UMP **408**, so as to allow the merchant to employ the UMP **408** with the consumers **402**.

[0052] After registration with the third party provider **406**, the merchant information, including the authentication criteria and/or the payment brand criteria, is suitably modifiable. Suitably, modification of the merchant information is performed via the communications network **414** using a graphical user interface similar to that used for registration. However, as above, other means of modifying the merchant information are contemplated. For example, the merchant information may be modified via the telephone.

[0053] One or more servers **444** connected to the communications network **414** suitably embody the third party provider **406**. Each of the servers **444** includes one or more of a communications unit **446**, a memory **448**, a processor **450**, and the like. The communications units **446** allow the servers **444** to interact with other components connected to the communications network **414**. The memories **448** include computer executable instructions for performing the abovenoted functions associated with the third party provider **406**. The processors **450** execute the computer executable instructions on the memories **448**. Further, the servers **444** include the UMP **408**. Suitably, the UMP **408** is embodied by computer executable instructions stored on computer readable mediums, where the computer executable instructions are executed by the processors **450**. In some embodiments, the computer readable mediums may be the memories **448**.

[0054] The authentication supply chain **410** facilitates authentication, which is typically conducted as described above in connection with FIGURE 2. The authentication supply chain **410** suitably includes one or more directory servers, such as

the directory server **218** of FIGURE 2, and one or more access control servers (ACSSs) and/or attempt servers, such as the ACS or attempts server **220**. As noted above, the directory servers are employed to determine whether payment instruments are enrolled in an authenticated payment program and the URL to be used for authentication, and the ACSSs authenticate the consumers **402**. Attempt servers act as ACSSs, even if authentication is not available due to lack of enrollment of the consumer and/or the issuer, allowing the authentication process to proceed. A payment brand network typically operates the directory servers and attempts servers. The issuer of a payment instrument typically operates an ACS for the payment instrument.

[0055] The authorization supply chain **412** facilitates settlement (i.e., authorization and capture of funds) after successful authentication. The authorization supply chain **412** typically includes an optional payment gateway, a payment processor (e.g., a merchant's financial institution or acquiring bank), a payment brand network (e.g., a credit card network), an issuing bank, and the like. In certain embodiments, merchants connect directly with the payment processor, whereby the payment gateway is optional. A traditional authorization process is illustrated in FIGURE 1.

[0056] With reference to FIGURE 5, a schematic diagram of an embodiment of a payment process incorporating an authenticated payment program is provided. After browsing a graphical user interface, such as an e-commerce website, of a merchant **502** and selecting products and/or services to purchase, a consumer **504** completes a checkout process in which they provide the merchant **502** with payment information. To do so, the consumer **504** enters the payment information, or at least enough information to identify and/or locate the payment information, on one or more checkout pages of the graphical user interface. As noted above, the payment information typically identifies a payment brand and a payment instrument corresponding to the payment brand. In certain embodiments, a decision engine **506** of a universal merchant platform (UMP) **508**, as described above, determines which payment brands are allowed. For example, the checkout pages may include an iFrame linking to the UMP **508** for identifying the payment brand and/or the payment instrument.

[0057] After receiving the payment information from the consumer **504**, the merchant **502** performs a CMPI lookup request to the UMP **508**. Such a request typically includes

the payment information collected from the consumer **504**. Based on this information, the UMP **508** determines whether authentication is appropriate using the decision engine **506**, as described above, and/or instantiates a merchant plug-in for the pending transaction between the consumer **504** and the merchant **502**. Insofar as authentication is determined to be inappropriate, the merchant **502** is notified thereof (not shown) and traditional settlement processes are carried. Suitably, the merchant **502** performs settlement via an authorization supply chain **510**, but it is contemplated that the UMP **508** performs settlement via the authorization supply chain **510** on behalf of the merchant **502**. Insofar as authentication is determined to be appropriate, the merchant plug-in proceeds to authenticate the consumer **504**.

[0058] Authentication typically, but not necessarily, includes the merchant plug-in generating a VEReq message and providing it to a directory server **512** maintained by a payment brand network **514** of the payment instrument. The directory server **512** then passes the VEReq message to an ACS or attempts server **516** typically maintained by the payment brand network **514** or an issuing bank **518** of the payment instrument, depending upon whether the ACS or attempts server **516** is an ACS or an attempts server. The ACS or attempts server **516** generates a VERes message and provides the VERes message to the directory server **512** in response to the VEReq message, which the directory server **512** then returns to the UMP **508**. Insofar as enrollment verification succeeds, the UMP **508** generates a PAREq message and provides the merchant **502** with the PAREq message. The merchant **502**, in turn, provides the message to the consumer **504** and the consumer **504** directly authenticates, if appropriate, with the ACS or attempts server **516**. Thereafter, the consumer **502** returns a PAREs message to the merchant **502**, which is passed to the UMP **508**. The UMP **508** extracts the ECI/CAAV and/or the ECI/UCAF from the PAREs message and verifies the same. The ECI/CAAV and/or ECI/UCAF are typically provided to the merchant **502** next.

[0059] Once authentication is completed, assuming it is successful, settlement is carried out in which the funds for products and/or services of the transaction are transferred from the consumer **504** to the merchant **502**. Typically, this is performed using the authorization supply chain **510**, which typically includes an optional payment gateway **520**, a payment processor **522**, the payment brand network **514**, and the

issuing bank **518**. As discussed above, the payment gateway **520** is optional in that the merchant **502** can directly connect with the payment processor **522**. Suitably, the merchant **502** performs the settlement process, as illustrated, but the UMP **508** may alternatively perform the settlement process.

[0060] With reference to FIGURE 6, a schematic diagram of an embodiment of a payment process incorporating an authenticated payment program is provided. After browsing a graphical user interface, such as an e-commerce website, of a merchant **602** and selecting products and/or services to purchase, a consumer **604** completes a checkout process in which they provide the merchant **602** with payment information. To do so, the consumer **604** enters the payment information, or at least enough information to identify and/or locate the payment information, on one or more checkout pages of the graphical user interface. As noted above, the payment information typically identifies a payment brand and a payment instrument corresponding to the payment brand. In certain embodiments, a decision engine **606** of the merchant **602**, as described above, determines which payment brands are allowed.

[0061] After receiving the payment information from the consumer **604**, the merchant **602** determines whether authentication is appropriate using the decision engine **606**, as described above, and/or instantiates a plug-in **608** for the pending transaction between the consumer **604** and the merchant **602**. Insofar as authentication is determined to be inappropriate, the merchant **602** carries out traditional settlement processes suitably via an authorization supply chain **610**. Insofar as authentication is determined to be appropriate, the merchant plug-in proceeds to authenticate the consumer **504**.

[0062] Authentication typically, but not necessarily, includes the plug-in **608** generating a VEReq message and providing it to a directory server **612** maintained by a payment brand network **614** of the payment instrument. The directory server **612** then passes the VEReq message to an ACS or attempts server **616** typically maintained by the payment brand network **614** or an issuing bank **618** of the payment instrument, depending upon whether the ACS or attempts server **616** is an ACS or an attempts server. The ACS or attempts server **616** generates a VERes message and provides the VERes message to the directory server **612** in response to the VEReq message, which the directory server **612** then returns to the plug-in **608**. Insofar as enrollment

verification succeeds, the plug-in **608** generates a PAReq message and provides the merchant **602** with the PAReq message. The merchant **602**, in turn, provides the message to the consumer **604** and the consumer directly authenticates, if appropriate, with the ACS or attempts server **616**. Thereafter, the consumer **604** returns a PARes message to the merchant **602**, which is passed to the plug-in **608**. The plug-in **608** extracts the ECI/CAAV and/or the ECI/UCAF from the PARes message and verifies the same.

[0063] Once authentication is completed, assuming it is successful, settlement is carried out in which the funds for products and/or services of the transaction are transferred from the consumer **604** to the merchant **602**. Typically, this is performed using the authorization supply chain **610**, which typically includes an optional payment gateway **620**, a payment processor **622**, the payment brand network **614**, and the issuing bank **618**. As discussed above, the payment gateway **620** is optional in that the merchant **602** can directly connect with the payment processor **622**.

[0064] It is to be appreciated that suitably, the methods and systems described herein are embodied by a computer, or other digital processing device including a digital processor, such as a microprocessor, microcontroller, graphic processing unit (GPU), etc. and storage. In other embodiments, the systems and methods may be embodied by a server including a digital processor and including or having access to digital data storage, such server being suitably accessed via the Internet or a local area network, or by a personal data assistant (PDA) including a digital processor and digital data storage, or so forth. The computer or other digital processing device suitably includes or is operatively connected with one or more user input devices, such as a keyboard, for receiving user input, and further includes, or is operatively connected with, one or more display devices. In other embodiments, the input for controlling the methods and systems is received from another program running previously to or concurrently with the methods and systems on the computer, or from a network connection, or so forth. Similarly, in other embodiments the output may serve as input to another program running subsequent to or concurrently with methods and systems on the computer, or may be transmitted via a network connection, or so forth.

[0065] In some embodiments, the exemplary methods, discussed above, the system employing the same, and so forth, of the present application are embodied by a storage medium storing instructions executable (for example, by a digital processor) to implement the exemplary methods and/or systems. The storage medium may include, for example: a magnetic disk or other magnetic storage medium; an optical disk or other optical storage medium; a random access memory (RAM), read-only memory (ROM), or other electronic memory device or chip or set of operatively interconnected chips; an Internet server from which the stored instructions may be retrieved via the Internet or a local area network; or so forth.

[0066] It is to further be appreciated that in connection with the particular exemplary embodiments presented herein certain structural and/or functional features are described as being incorporated in defined elements and/or components. However, it is contemplated that these features may, to the same or similar benefit, also likewise be incorporated in other elements and/or components where appropriate. It is also to be appreciated that different aspects of the exemplary embodiments may be selectively employed as appropriate to achieve other alternate embodiments suited for desired applications, the other alternate embodiments thereby realizing the respective advantages of the aspects incorporated therein.

[0067] It is also to be appreciated that particular elements or components described herein may have their functionality suitably implemented via hardware, software, firmware or a combination thereof. Additionally, it is to be appreciated that certain elements described herein as incorporated together may under suitable circumstances be stand-alone elements or otherwise divided. Similarly, a plurality of particular functions described as being carried out by one particular element may be carried out by a plurality of distinct elements acting independently to carry out individual functions, or certain individual functions may be split-up and carried out by a plurality of distinct elements acting in concert. Alternately, some elements or components otherwise described and/or shown herein as distinct from one another may be physically or functionally combined where appropriate.

[0068] Even more, it is to be appreciated that, as used herein, a memory includes one or more of a non-transient computer readable medium; a magnetic disk or other

magnetic storage medium; an optical disk or other optical storage medium; a random access memory (RAM), read-only memory (ROM), or other electronic memory device or chip or set of operatively interconnected chips; an Internet server from which the stored instructions may be retrieved via the Internet or a local area network; or so forth. Further, as used herein, a controller includes one or more of a microprocessor, a microcontroller, a graphic processing unit (GPU), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), and the like; a communications network includes one or more of the Internet, a local area network, a wide area network, a wireless network, a wired network, a cellular network, a data bus, such as USB and I2C, and the like; a user input device includes one or more of a mouse, a keyboard, a touch screen display, one or more buttons, one or more switches, one or more toggles, and the like; and a display includes one or more of a LCD display, an LED display, a plasma display, a projection display, a touch screen display, and the like.

[0069] In short, the present specification has been set forth with reference to preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the present specification. For example, the decision engines **430, 440** may be employed for more than authentication and/or payment brand selection, such as rejecting transactions. It is intended that the disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. That is to say, it will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications, and also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are similarly intended to be encompassed by the following claims.

CLAIMS:

1. A computer-implemented method of supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, said method comprising:

receiving payment information for a commercial transaction between a consumer and a merchant over the communications network, wherein the payment information identifies a payment instrument supporting an authenticated payment program;

receiving authentication criteria from the merchant, the authentication criteria including rules;

determining whether to authenticate the consumer using the authenticated payment program by:

applying the authentication criteria from the merchant to information from a rival payment brand of a payment brand of the payment instrument;
and

applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information; and

in response to the determination as to whether to authenticate the consumer, authenticating the consumer over the communications network in accordance with the authenticated payment program.

2. The method according to claim 1, wherein the payment information is received from the merchant over the communications network.

3. The method according to claim 1 or 2, further including:

receiving second payment information for a second commercial transaction between a second consumer and a second merchant over the communications network, wherein the second payment information identifies a second payment instrument supporting a second authenticated payment program, wherein the merchant and the second merchant are different;

determining whether to authenticate the second consumer using the second authenticated payment program based on the second authentication criteria defined by the second merchant; and

authenticating the second consumer over the communications network in accordance with the second authenticated payment program if authentication is determined to be appropriate for the second commercial transaction based on the second authentication criteria defined by the second merchant.

4. The method according to claim 1, 2 or 3, wherein the determination is further based on the payment information.

5. The method according to any one of claims 1 to 4, wherein the authentication criteria include one or more rules, said method further including:
ranking the rules in order of priority.

6. The method according to any one of claims 1 to 5, wherein the authentication criteria are based on one or more authentication factors.

7. The method according to claim 6, wherein the authentication factors include at least one of currency amount, country currency, enrollment / registering during shopping, billing and shipping information, date and time frames, consumer shopped with before, consumer shopped with before and authenticated, abandonment of transaction, and product codes.

8. The method according to claim 6, wherein the authentication factors include at least one of BIN (Bank Identification Number) range, acquirer merchant ID (MID), access control server (ACS) URL, central servers, attempts, ACS performance, and true A/B test.

9. The method according to claim 1, further including:
determining one or more payment brands the consumer is allowed to use for completing the commercial transaction based on one or more payment brand criteria defined by the merchant; and,
presenting the determined payment brands to the consumer, wherein a

payment brand of the payment instrument is one of the determined payment brands.

10. The method according to claim 9, wherein the payment brand criteria include one or more rules, said method further including:

ranking the rules in order of priority.

11. The method according to claim 9, wherein the payment brand criteria are based on one or more payment brand factors.

12. The method according to claim 11, wherein the payment brand factors include at least one of currency amount, country currency, billing and shipping information, product codes, IP location, country, date and time frames, consumer shopped with before, and consumer shopped with before and authenticated.

13. The method according to claim 11, wherein the payment brand factors include at least one of true A/B test, risk assessment, fraud score, repeat payment brand consumers, and BIN (Bank Identification Number) range.

14. A computer-implemented system for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, comprising:

one or more non-transient computer readable mediums that have computer executable instructions to:

receive payment information for a commercial transaction between a consumer and a merchant over the communications network, wherein the payment information identifies a payment instrument supporting an authenticated payment program;

receive authentication criteria from the merchant, the authentication criteria including rules;

determine whether to authenticate the consumer using the authenticated payment program by:

applying the authentication criteria from the merchant to information from a rival payment brand of a payment brand of the payment instrument; and

applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information; and

in response to the determination as to whether to authenticate the consumer, authenticate the consumer over the communications network in accordance with the authenticated payment program; and,

one or more processors that execute the computer executable instructions stored on the non-transient computer readable mediums.

15. The system according to claim 14, wherein the authentication criteria include one or more rules ranked in order of priority.

16. The system according to claim 14 or 15, wherein the computer executable instructions are further operative to:

determine one or more payment brands the consumer is allowed to use for completing the commercial transaction based on one or more payment brand criteria defined by the merchant; and,

present the determined payment brands to the consumer, wherein a payment brand of the payment instrument is one of the determined payment brands.

17. The system according to claim 16, wherein the payment brand criteria include one or more rules ranked in order of priority.

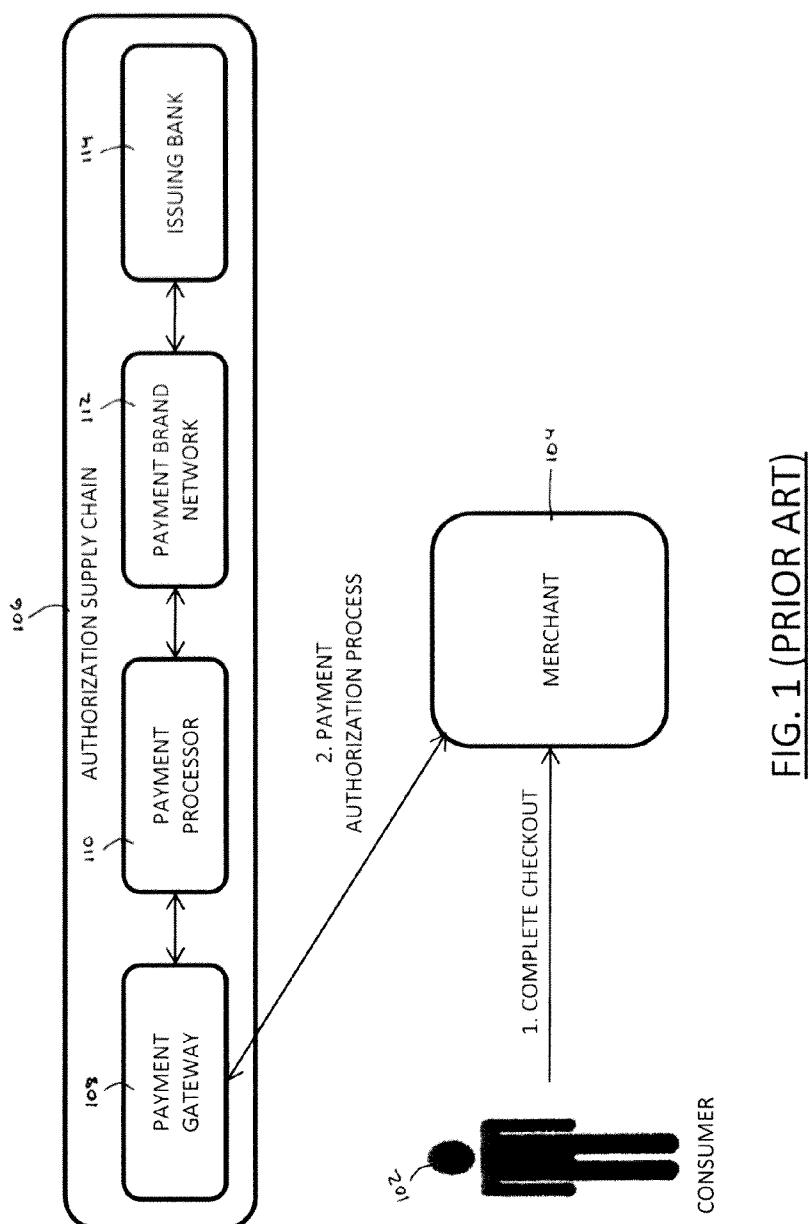
18. The system according to any one of claims 14 to 17, wherein the payment information is received from the merchant over the communications network.

19. The system according to claim 14, wherein the computer executable instructions are further operative to:

receive second payment information for a second commercial transaction between a second consumer and a second merchant over the communications network, wherein the second payment information identifies a second payment instrument supporting a second authenticated payment program, wherein the merchant and the second merchant are different;

determines whether to authenticate the second consumer using the second authenticated payment program based on the second authentication criteria defined by the second merchant; and,

authenticates the second consumer over the communications network in accordance with the second authenticated payment program if authentication is determined to be appropriate for the second commercial transaction based on the second authentication criteria defined by the second merchant.


20. A computer-implemented system for supporting authentication processing of commercial transactions conducted over a communications network between consumers and merchants, said system comprising:

a universal merchant platform that provides the merchants, over the communications network, a common interface to one or more authenticated payment programs and includes merchant accounts for each of the merchants, wherein each of the merchant accounts include authentication criteria defined by a corresponding merchant; and,

a decision engine that determines whether to authenticate the consumers in accordance with the authenticated payment programs based on:

applying the authentication criteria from the merchants to information from a rival payment brand of a payment brand of a payment instrument associated with a commercial transaction between a consumer and a merchant; and

applying the authentication criteria from the merchant to at least one of information identifying a payment instrument, information from other merchants, and historical information;.

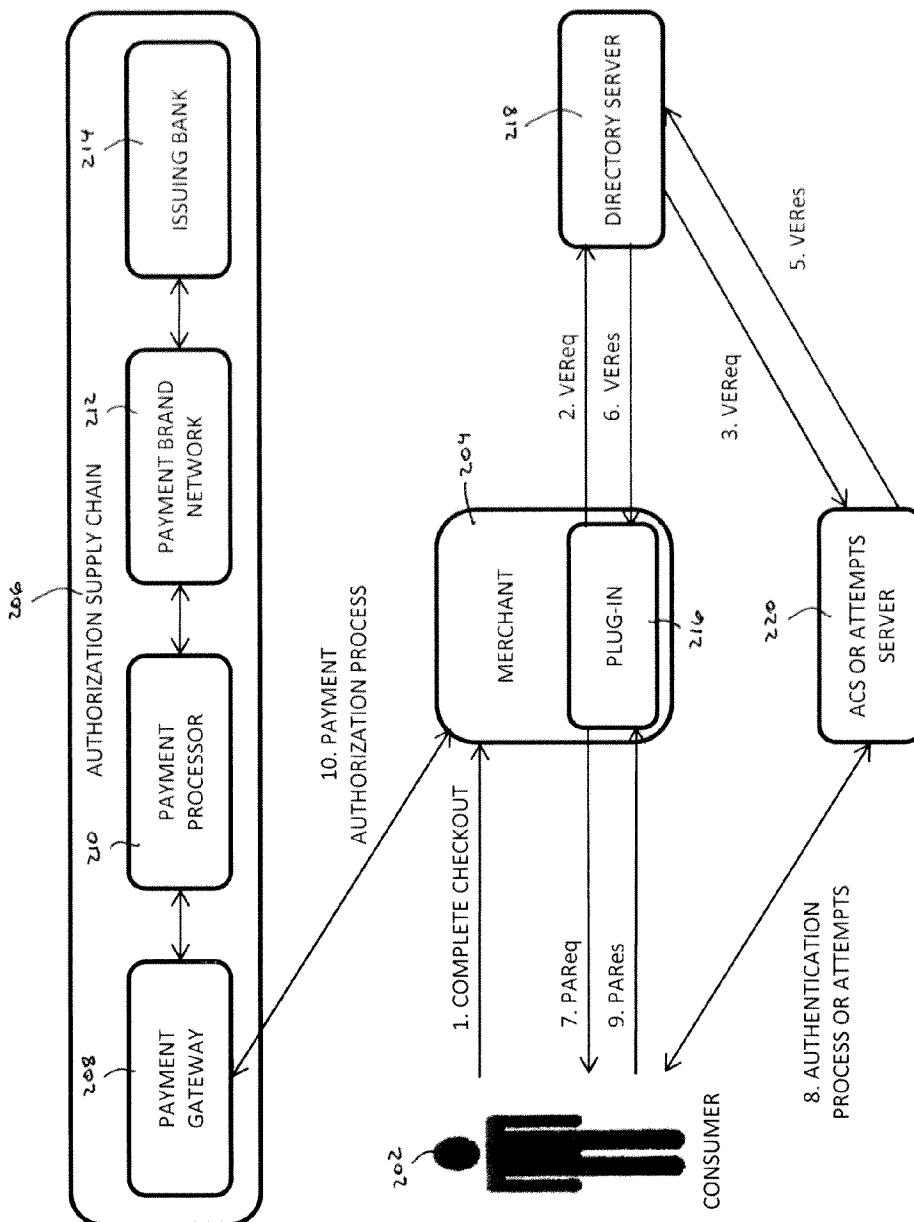


FIG. 2 (PRIOR ART)

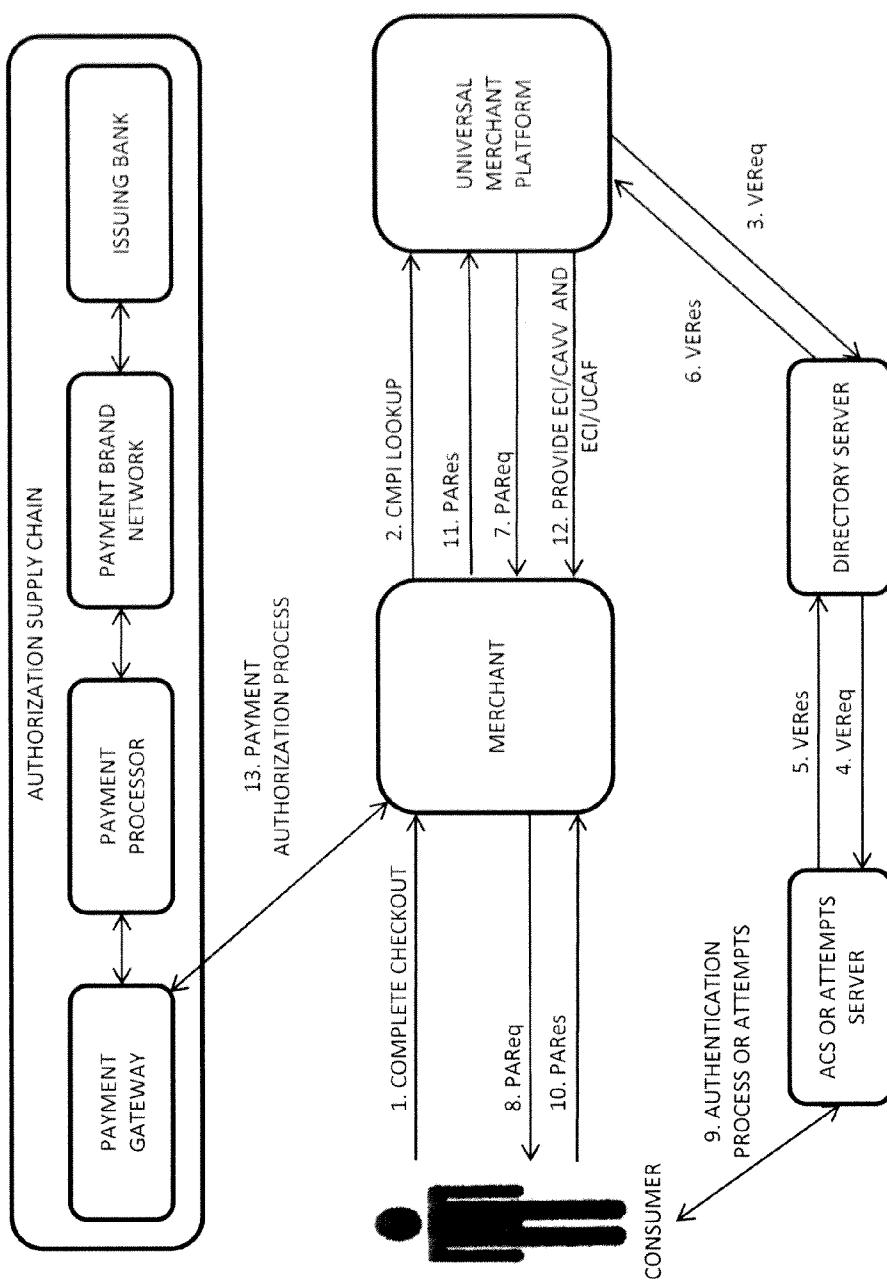


FIG. 3 (PRIOR ART)

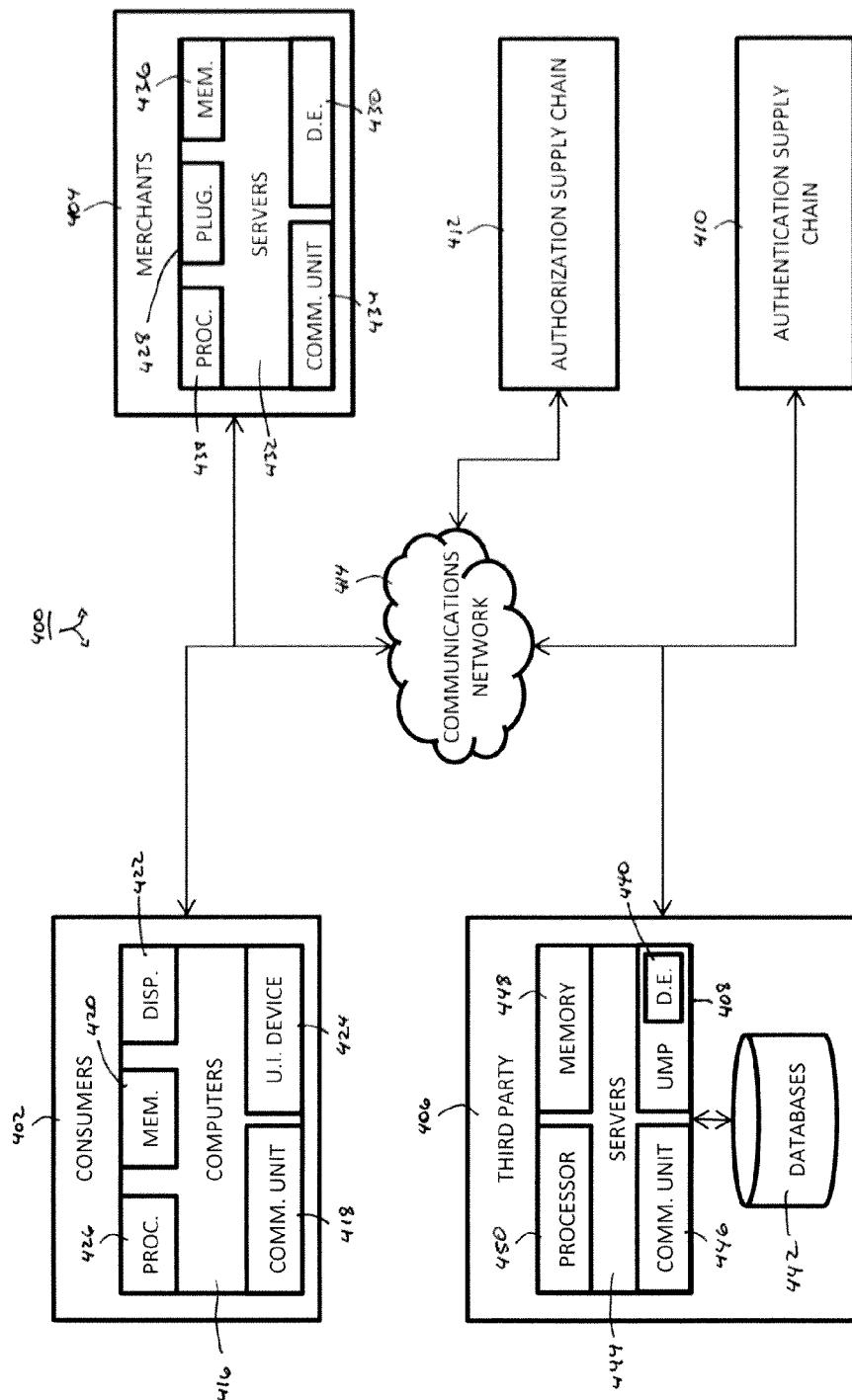


FIG. 4

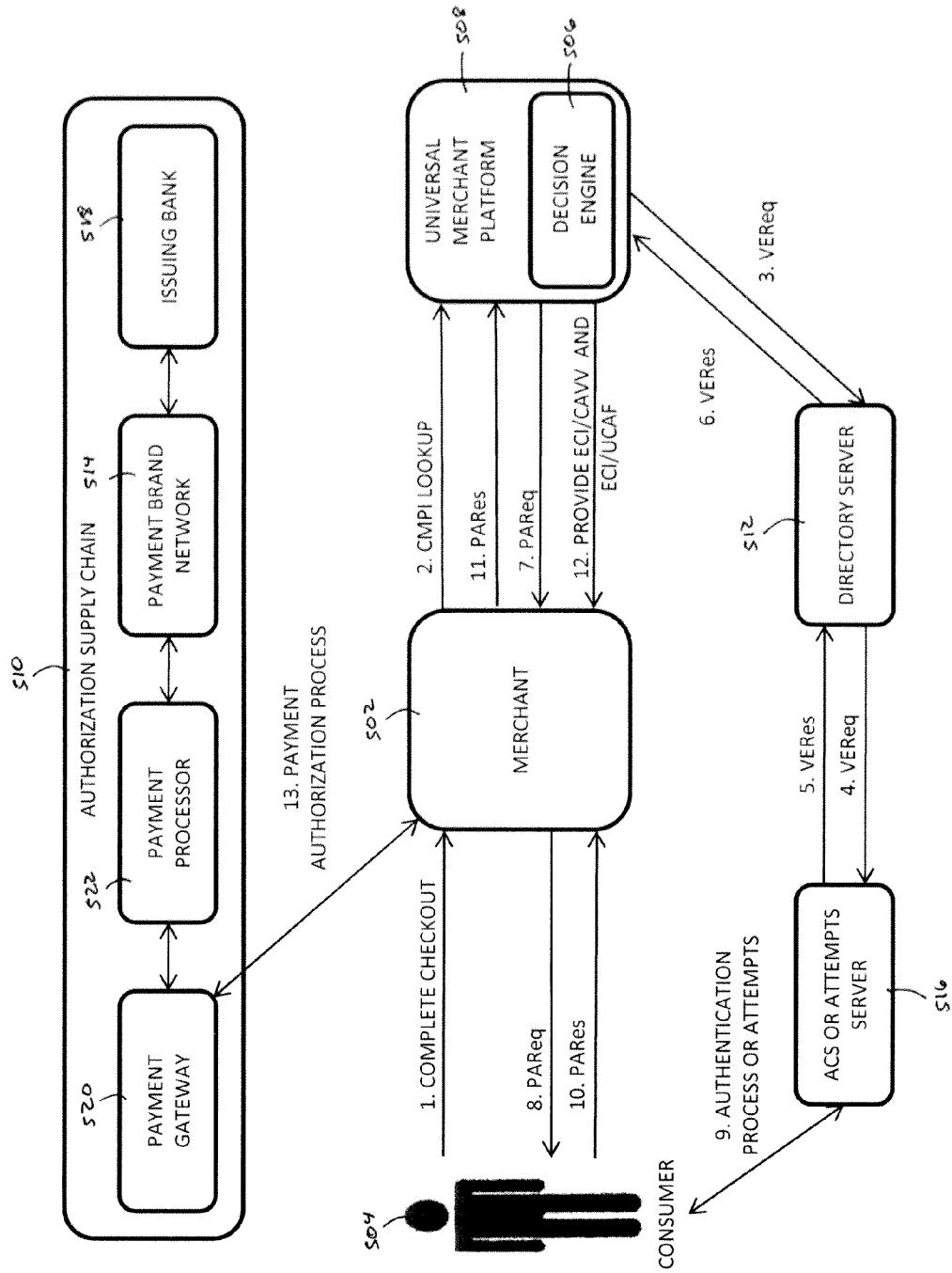


FIG. 5

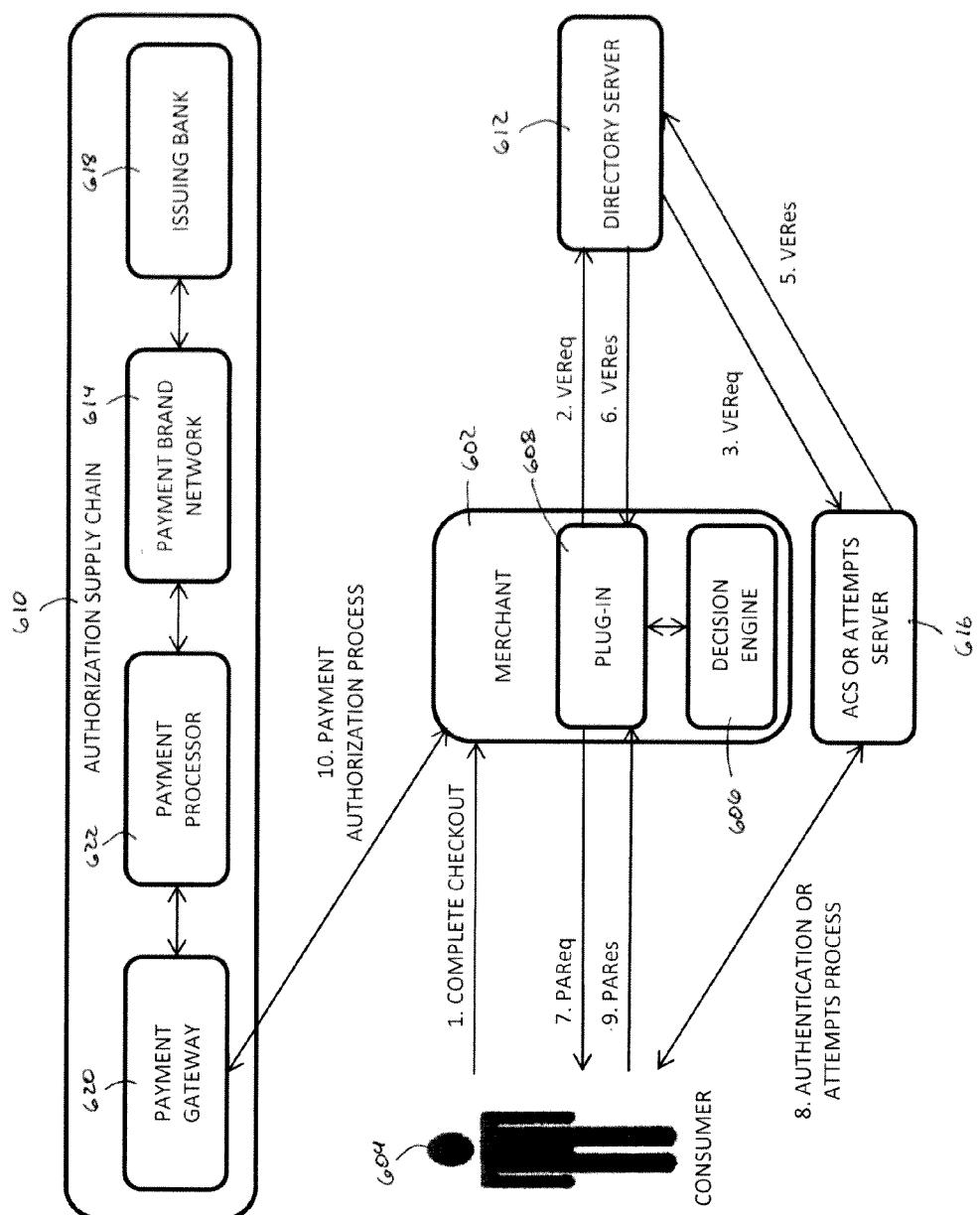


FIG. 6