(51) International Patent Classification:
C23F 11/18

(21) International Application Number: PCT/IL97/00082
(22) International Filing Date: 6 March 1997 (06.03.97)
(30) Priority Data: 119036 8 August 1996 (08.08.96) IL
(71) Applicant (for all designated States except US): BROMINE COMPOUNDS LTD. [IL/IL]; Makleff House, P.O. Box 180, 84101 Beer-Sheva (IL).
(72) Inventors: and Inventors/Applicants (for US only): ITZHAK, David [IL/IL]; Rotem Street 32, 84965 Omer (IL); GREENBERG, Tami [IL/IL]; Vered Street 78, 83338 Lehavim (IL).
(74) Agents: LUZZATTO, Kfir et al.; Luzzatto & Luzzatto, P.O. Box 3532, 84152 Beer-Sheva (IL).

(11) International Publication Number: WO 98/06883
(43) International Publication Date: 19 February 1998 (19.02.98)

Published

With international search report.

(54) Title: METHOD OF CORROSION INHIBITION IN ABSORPTION REFRIGERATION SYSTEMS

(57) Abstract

Process for preventing or limiting the corrosion of metals due to contact with solutions containing lithium bromide, comprising causing Sn** ions to be present in the solution.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL Albania
AM Armenia
AT Austria
AU Australia
AZ Azerbaijan
BA Bosnia and Herzegovina
BB Barbados
BE Belgium
BF Burkina Faso
BG Bulgaria
BJ Benin
BR Brazil
BY Belarus
CA Canada
CF Central African Republic
CG Congo
CH Switzerland
CI Côte d’Ivoire
CM Cameroon
CN China
CU Cuba
CZ Czech Republic
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GB United Kingdom
GE Georgia
GH Ghana
GN Guinea
GR Greece
HU Hungary
IE Ireland
IL Israel
IS Iceland
IT Italy
JP Japan
KE Kenya
KG Kyrgyzstan
KR Republic of Korea
LC Saint Lucia
LI Liechtenstein
LK Sri Lanka
LR Liberia
LS Lesotho
LT Lithuania
LU Luxembourg
LV Latvia
MC Monaco
MD Republic of Moldova
MG Madagascar
MK The former Yugoslav Republic of Macedonia
ML Mali
MN Mongolia
MR Mauritania
MW Malawi
MX Mexico
NE Niger
NL Netherlands
NO Norway
NZ New Zealand
PL Poland
PT Portugal
RO Romania
RU Russian Federation
SD Sudan
SE Sweden
SG Singapore
SI Slovenia
SK Slovakia
SN Senegal
SZ Swaziland
TD Chad
TG Togo
TJ Tajikistan
TM Turkmenistan
TR Turkey
TT Trinidad and Tobago
UA Ukraine
UG Uganda
US United States of America
UZ Uzbekistan
VN Viet Nam
YU Yugoslavia
ZW Zimbabwe
METHOD OF CORROSION INHIBITION IN ABSORPTION REFRIGERATION SYSTEMS

Field of the Invention
The present invention relates to a method for inhibiting corrosion in absorption refrigeration systems using lithium bromide or lithium bromide and chloride as the absorber.

Background of the Invention
Absorption refrigeration systems use heat energy directly through the medium of generator-absorber-pump circuit which replaces the complex mechanical compressor. Absorption refrigeration systems have been known in the art for a long time. They are described, e.g., in E.K. Tanzer, "Comparing Refrigeration Systems", in Chem. Eng. June 10 and June 24, 1963, and are now attracting renewed attention. Such systems using lithium bromide as the refrigerant are described e.g. in J. Katzel, "The Rediscovery of Absorption Chillers". Plant Eng., April 23, 1992, and M. J. Lane et al, "Lithium bromide absorption chiller passes gas conditioning field test", Oil and Gas Journal, July 31, 1995, p. 70-73.

In such absorption refrigeration systems, which use concentrated solutions of lithium bromide or containing lithium bromide, corrosion occurs since the solutions come in contact with metallic parts, such as pumps, pipes, valves, heat exchangers, condenser, and absorber, particularly when they are made or contain parts thereof are made of copper or copper alloys or carbon steel or of stainless steel. Although the corrosion occurs at all temperatures of the refrigeration cycle, it gets more severe as the temperature of the refrigerant liquid rises.
The art is aware of this corrosion problem. Thus JP 07174429 discloses an operational method of an absorbing type freezer which comprises stainless steel and copper components and has a lithium bromide solution as absorption liquid, in which method the absorption liquid solution contains lithium hydroxide by 0.3N or less, sub-sulfuric acid sodium or sub-sulfuric acid hydrogen sodium by 250 ppm or more, molybdenum acid lithium of 30 ppm or more and nitric acid lithium of 200 ppm or less. This is said to prevent local corrosion of stainless steel.

The stress corrosion of austenitic stainless steels in 55% lithium bromide environments has been discussed by D. Itzhak and O. Elias in *Corrosion* Vol. 50, No. 2. pp. 131,137 (1995).

The corrosion and stress corrosion cracking (SCC) behavior of type 316 stainless steel in a 55% lithium bromide environments was investigated by D. Itzhak, O. Elias and Y. Greenberg, using slow strain rate testing and potentiodynamic polarization measurements (*Corrosion*, Vol. 52, No. 1, pp. 72-78 (1996). Addition of 1 wt% KI to 55% LiBr brine of pH=4 was found to act as an inhibitor to SCC, while addition of 1wt% of K$_2$CrO$_4$ has an opposite effect.

The art, however, has not found a satisfactory solution to the problem of corrosion of copper, copper alloys, carbon steel and stainless steels in contact with lithium bromide solutions.

It is a purpose of this invention to provide a solution to said problem.

It is another purpose of this invention to provide such a solution that is simple and economical.
It is a further purpose of this invention to provide such a solution that involves no negative effects in the operation of an absorption refrigeration system.

Other purposes and advantages of the invention will appear as the description proceeds.

Summary of the Invention

According to the invention, corrosion of metals, in particular copper, copper alloys, carbon steel and stainless steels, in lithium bromide solution environments, is prevented, or at least substantially decreased, by causing Sn2+ ions to be present in the solutions containing lithium bromide. The solutions can also contain lithium chloride, the presence of which leads to lower vapor pressure and permits to increase the concentration, and therefore what is said hereinafter with respect to LiBr solution is equally applicable to LiBr+LiCl solutions.

The invention is particularly applicable to absorption refrigeration systems which comprise metallic components, particularly made of, or comprising parts made of, copper, copper alloys, carbon steel and stainless steels, and which further use solutions containing LiBr in their operation.

Sn2+ ions can be introduced and maintained in the solutions in various ways. They can be introduced directly, by adding to the LiBr solution a soluble tin salt, such as SnCl\textsubscript{2}. Preferably, however, metallic tin in any form - powder, granules, foil, plates, bars etc. is placed in contact with the solution, resulting in the formation of Sn2+ ions in situ. In any case, the concentration of said ions in the solution is preferably comprised between 200 and 500 ppm. The concentration of Sn2+ ions can be detected by means of atomic absorption spectroscopy. When metallic tin is placed in contact with the LiBr solution, the concentration of said ions is determined by a steady state that results.
When a tin salt is added to the LiBr solution, the concentration of said ions is determined by the amount of salt added, until saturation is reached.

The invention is preferably applied to LiBr solutions at a maximum concentration of 60%, for example 55%. When the solution contains LiCl in addition to LiBr, the concentration can be higher, e.g. up to 63%. A typical such solution may contain up to 53% of LiBr and up to 11% of LiCl. All the percentages in this specification and claims are by weight.

When Sn^{++} ions are present in the refrigerant solution, tin is deposited on the metal surfaces with which the solution is in contact. The deposition of tin creates, at least in part, a crystal layer which contains tin in its crystal lattice. Hereinafter, however, for simplicity's sake, the tin deposited on an underlying metal such as copper, copper alloy or stainless steel, will be referred to as a "tin coating".

Brief Description of the Drawings

Figs. 1 and 2 are graphs illustrating the deposition of tin on metal surfaces in contact with LiBr solutions containing tin ions; and Figs. 3 and 4 are x-ray diffraction (XRD) diagrams illustrating the results of the exposure of commercial copper to a 55% LiBr solution containing tin ions.

Detailed Description of Preferred Embodiments

Fig. 1 is a bar graph illustrating the deposition of tin over various metals in contact with a 55% LiBr solution in the presence of metallic tin which causes Sn^{++} ions to be present in the solution. Tin was provided in the form of powder in an amount of about 10 wt% with respect to the solution. However, it is only required that metallic tin be always present, even though in small amounts. The concentration of Sn^{++} ions in the solution is comprised, under these conditions, between 200 and 500 ppm. The deposition of tin on the metal surfaces is illustrated by an increase of weight of the said metals during 7
days of exposure to the said solution at 145°C and pH ~10.6. Said increase -
to which the ordinate in the bar graph of Figure 1 refers - is the average
increase over the whole time of exposure expressed in grams per square
centimeter per hour. The metals tested in the test of Fig. 1, indicated by
numerals 1, 1', 2, 2', 3, 3', 4 and 4' under the abcissa were (the aforesaid test
was carried out twice for each of the metals): 1 and 1' - a copper-zinc-lead
alloy containing Cu 60% - Zn 37.5% - Pb 2.5%, 2 and 2' - Tungum, which is an
alloy containing Cu 84% - Zn 15% - Ni 1%, 3 and 3' - commercial copper, and
4 and 4' - AMP, which is an alloy containing 84% Cu - Al 10% - Fe 4% - Zn
2%.

As shown in the figure, generally there were differences in the weight
increments found in the two tests, but since the weight increments are in the
order of tens of milligrams, said differences are in the order of experimental
errors. However, in no tests was a decrease in the weight of the sample
found, viz. no evidence for corrosion was found, and this is the decisive fact as
far as this invention is concerned.

Fig. 2 is a bar graph comparing the increase of weight of several copper alloys
exposed to a 55% LiBr solution at 140°C and pH~10.6 to the decrease in
weight of the metallic tin. Both increase of weight of the various copper
alloys (unshaded rectangles indicated by numerals 1, 2, 3 and 4 according to
the meanings referred to in Figure 1) and decrease in weight of the tin
(shaded rectangles) are given in grams per square centimeter per hour. The
tin was present in the form of plates. The samples were exposed for a week
(168 hours). The figure does not show a constant relationship between the
decrease of weight of the tin and the increase of weight of the copper samples,
but indicates in each case that the corrosion process has been inhibited.
Figs. 3 and 4 show the result of the exposure of commercial copper to a 55% LiBr solution at 140°C and pH~10.6. The concentration of the Sn^{++} ions was 200 ppm. Fig. 3 refers to an exposure for one day, and Fig. 4 to an exposure for seven days. Both figures show the XRD results (the abcissa being the glancing angle and the ordinate being the peak intensity), said results indicating the presence of a Cu_6Sn_5 phase with the corresponding decrease of the Cu peaks. This indicates that the copper-tin crystalline phase was formed at the expense both of the copper sample and of the tin ions.

EXAMPLE 1

Table I shows the results of exposing various samples of copper and metal alloys to 55% LiBr solution at 140°C and pH~10.6, with and without the introduction into the solution of SnCl_2 salt, which provides Sn^{++} ions. As indicated, the tested metals were commercial copper, Tungum, and various types of AISI. Specifically: AISI-316 is stainless steel containing 0.08% C, 2% Mn, 1% Si, 16-18% Cr, 10-14% Ni, 2% Mo; AISI-1040 is stainless steel containing 0.4% C; and AISI-430 is stainless steel containing 0.2% C, 1% Mn, 1% Si, 16-18% Cr.

TABLE I

<table>
<thead>
<tr>
<th>Weight Loss gr/[cm² x hour]</th>
<th>Solution of</th>
<th>Metal Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 10^{-4}</td>
<td>LiBr + SnCl_2</td>
<td>commercial copper</td>
</tr>
<tr>
<td>1.5 x 10^{-4}</td>
<td>LiBr</td>
<td>commercial copper</td>
</tr>
<tr>
<td>3 x 10^{-4}</td>
<td>LiBr + SnCl_2</td>
<td>Tungum</td>
</tr>
<tr>
<td>>1 x 10^{-3}</td>
<td>LiBr</td>
<td>Tungum</td>
</tr>
<tr>
<td>nil</td>
<td>LiBr + SnCl_2</td>
<td>AISI - 316</td>
</tr>
<tr>
<td>nil</td>
<td>LiBr</td>
<td>AISI - 316</td>
</tr>
<tr>
<td>1 x 10^{-4}</td>
<td>LiBr + SnCl_2</td>
<td>AISI - 1040</td>
</tr>
<tr>
<td>2.5 x 10^{-4}</td>
<td>LiBr</td>
<td>AISI - 1040</td>
</tr>
<tr>
<td>nil</td>
<td>LiBr + SnCl_2</td>
<td>AISI - 430</td>
</tr>
<tr>
<td>nil</td>
<td>LiBr</td>
<td>AISI - 430</td>
</tr>
</tbody>
</table>
It is seen that the presence of tin ions reduces the loss of weight of the tested metals, except when no corrosion occurs anyway. The inhibition of corrosion is most marked in the case of Tungom.

EXAMPLE II

Table II lists the change of weight, in grams per square centimeter per hour, of various metals exposed to a 55% LiBr solution at 140°C and pH~6.1, with or without the introduction of tin powder into the LiBr solution or, in some cases, to a solution of LiBr and LiCl of 63% concentration.

<table>
<thead>
<tr>
<th>Observations</th>
<th>Weight Change Per Unit Area [gr² x hour]</th>
<th>Solution of</th>
<th>Metal Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>The metal acquired a dark color, the solution a brown/red color</td>
<td>-340 x 10⁻⁷</td>
<td>LiBr</td>
<td>AISI 1040</td>
</tr>
<tr>
<td></td>
<td>-16 x 10⁻⁷</td>
<td>LiBr</td>
<td>Commercial Copper</td>
</tr>
<tr>
<td>The metal acquired in part a dark color</td>
<td>-18 x 10⁻⁷</td>
<td>Sn ions + LiBr</td>
<td>AISI 1040</td>
</tr>
<tr>
<td></td>
<td>+98 x 10⁻⁷</td>
<td>Sn ions + LiBr</td>
<td>Commercial Copper</td>
</tr>
<tr>
<td>The metal became slightly opaque</td>
<td>-13 x 10⁻⁷</td>
<td>Sn ions + LiBr + LiCl</td>
<td>AISI 1040</td>
</tr>
<tr>
<td></td>
<td>+59 x 10⁻⁷</td>
<td>Sn ions + LiBr + LiCl</td>
<td>Commercial Copper</td>
</tr>
</tbody>
</table>

The above examples illustrate the application of the invention to an LiBr solution at 140°C and pH~6.1. Similar results are obtained at temperatures up to 155°C and pH 6 to 11.

While some embodiments of the invention have been illustrated, it will be clear that the invention may be carried out by persons skilled in the art with
many modifications, variations and adaptations, without departing from its spirit or exceeding the scope of the claims. Thus, e.g., metals different from those exemplified may be protected by the addition of tin ions to the Li salt solution and different means of creating and maintaining the presence of tin ions in the solution may be used, and the invention may be applied to apparatus different from that herein mentioned.
CLAIMS

1. Process for preventing or limiting the corrosion of metals due to contact with solutions containing lithium bromide, comprising causing Sn++ ions to be present in the solution.

2. Process according to claim 1, wherein the metals are chosen from among copper, copper alloys, carbon steel and stainless steels.

3. Process according to claim 1, wherein the metals constitute at least parts of components of absorption refrigeration systems.

4. Process according to claim 1, wherein the concentration of the Sn++ ions in the solution is comprised between 200 and 500 ppm.

5. Process according to claim 1, wherein Sn++ ions are introduced and maintained in the solutions containing lithium bromide by placing metallic tin in contact with the solution.

6. Process according to claim 1, wherein Sn++ ions are introduced and maintained in the solutions containing lithium bromide by introducing soluble tin compounds into the solution.

7. Process according to claim 6, wherein Sn++ ions are introduced and maintained in the solutions containing lithium bromide by introducing SnCl\textsubscript{2}.

8. Process according to claim 1, wherein the solution containing lithium bromide is a LiBr solution of lithium bromide at a concentration up to 60%.

9. Process according to claim 1, wherein the solution containing lithium bromide is a solution of lithium bromide and lithium chloride.
10. Process according to claim 9, wherein the solution contains up to 53% of lithium bromide and up to 11% of lithium chloride.

11. Process according to claim 1, wherein the metals constitute metallic components of absorption refrigeration systems or are comprised in such components.

12. Process according to claim 11, wherein the metals are chosen from among copper, copper alloys, carbon steel and stainless steels.

13. Process for preventing or limiting the corrosion of metals due to contact with solutions containing lithium bromide or lithium bromide and lithium chloride, substantially as described and exemplified.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C23F11/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C23F C09K F25B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 095, no. 010, 30 November 1995 & JP 07 174429 A (OSAKA GAS CO LTD), 14 July 1995, cited in the application see abstract</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>CORROSION, vol. 52, no. 1, 1 January 1996, HOUSTON US, pages 72-78, XP002032943 ITZHAK D.: "Behavior of type 316 austenitic stainless steel under slow strain rate technique conditions in lithium bromide heavy brine environment" cited in the application see abstract</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "I" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
- "O" document referring to an oral presentation, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
17 June 1997

Date of mailing of the international search report
24.06.97

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HJ Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer
Torfs, F
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 202 058 A (RIGGS JR OLEN L) 13 April 1993 see column 5, line 42-45</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 3 440 170 A (HEK JILLES DE) 22 April 1969</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 1 678 776 A (GRAVELL J. H.) 31 July 1928</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 609 086 A (MODAHL ROBERT J ET AL) 28 September 1971</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 200 604 A (GREELEY E.M.) 17 August 1965</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 3 218 259 A (VERDIECK R. G.) 16 November 1965</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 5202058 A</td>
<td>13-04-93</td>
<td>AU 3065492 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2122896 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9309268 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5510057 A</td>
</tr>
<tr>
<td>US 3440170 A</td>
<td>22-04-69</td>
<td>NL 6406533 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6501527 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 660838 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 665816 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 447764 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 466670 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1546213 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1546214 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 88099 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1425820 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1048804 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1055677 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 48112 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 48852 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 6506673 A,B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 308051 B</td>
</tr>
<tr>
<td>US 1678776 A</td>
<td>31-07-28</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3609086 A</td>
<td>28-09-71</td>
<td>NONE</td>
</tr>
<tr>
<td>US 3200604 A</td>
<td>17-08-65</td>
<td>CH 420226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1243214 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1351641 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1020550 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 287468 A</td>
</tr>
<tr>
<td>US 3218259 A</td>
<td>16-11-65</td>
<td>NONE</td>
</tr>
</tbody>
</table>