A METHOD FOR WEAVING CURVED WARP YARNS AND A WOVEN FABRIC

This invention relates to a method for weaving curved warp yarns and a woven fabric. The method is characterized in that weaving warp yarns are delivered in an inclined direction by using a reed with vertical and inclined dents, the spacing between which is variable. Inclined warp yarns and weft yarns are not interwoven in a vertical direction to form a curved warp yarn pattern in the fabric. The fabric woven by the method according to the invention has an irregular and variable pattern and good appearance.
Description

Technical Field

[0001] The present invention relates to the method for weaving curves on shuttle woven fabrics in the field of textile art.

Background art

[0002] Shuttle woven fabrics are means of livelihood and means of production widely used by mankind nowadays. They have wide applications in the field of clothing face fabric, decoration cloth materials and cloth used by the industries. The conventional shuttle woven fabrics follow all along the art requirement of perpendicular crossing of warp (longitudinal direction) and weft (transverse direction) and the cloth is woven by means of coordinative operation of five motions of warp let off, shedding, weft insertion, weft beating-up and take-up of the weaving machine. Especially all the current conventional metal reeds adopt vertical dents, all reeds dents are the same length, all metal reed dents are arranged in paralleled upright (of straight) direction and the density is all the same. The metal reed is fixed by the slay, during the motion of weft beating up, the metal reed is not allowed to have any looseness.

The structure of the current weaving machine is shown in Fig.1. It includes, loom beam 11, back beam 12, warp stopping blade 13, heddle frame 14, reed blade 15, weft insertion device 16, take-up wheel 17, guiding roller 18, cloth roller 19. Shuttle woven fabrics (also called woven fabrics or fabrics for short) are sheet like complex interwoven by warp 100 (longitudinal length) parallel to cloth edge and weft 200 (transverse width) perpendicular to cloth edge according to a regular rule. The principle for forming the fabric is: The loom beam 11 is located in the lower part at the back of the weaving machine on which are wound parallel warps. The loom beam is driven by warp let-off unit. After the warp 100 is sent out from the loom beam 11, it rounds the back beam 12, penetrates into the warp stopping blade 13 of the warp broken-end stop motion, the heddle 6 on the heddle frame 14 and the reed blade 15 of the metal reed. The weft 200 is guided into the shed by the weft insertion unit 16 (shown in the Fig.1 is a shuttle) and the fabric 10 is formed at the shed. Afterwards, the fabric, drawn by the take-up wheel 17, passes through the guiding roller 18, and finally is wound on the cloth roller 19. The above mentioned current weaving method and equipment make the outer appearance of the woven fabric rather dull, that is, all warp and weft cross into right angle crossed state, all warp and weft on cloth face side present straight line crossing, with all transverse lines being horizontal and all vertical lines being straight, and the density being the same. Therefore the design and the color of the fabric is limited in a certain degree.

Summary of the Invention

[0003] In order to overcome the monotony of the current loom woven fabrics, the present invention aims to provide a kind of curve weaving method for shuttle woven fabrics and to provide fabric products. Such method, with new texture and ingenious designs, enables the woven fabrics to have the curved strip shape pattern of orderly sparseness and denseness which can upgrade the grade of the products by means of simple process. The technical scheme adopted by the present invention has the following steps:

a) Straight and slant warp let-off: by means of the cooperation of the warp let-off unit of the weaving machine, feeding the warp on the loom beam to the cloth-fell of fabric, the fed quantity of the warp matches the take-up quantity required by the take-up unit. During the course of feeding warp, the lifting and descending unit draws the metal reed with vertical and slant dents the spacing between which is variable to make up and down reciprocating movement and to make the warp restricted by the slant reed blade of the metal reed to form the slant line state with respect to the fell of cloth, in which state, the slant (inclined) degree of the warp varies, and the warp will be sent to the fell of cloth of the fabric in the straight and slant line state.

b) Shedding: the warp is divided into two upper and lower layers according to the process conditions of the fabric by the shedding unit of the weaving machine to form a rhombus shed and the shed thus formed makes the alternating up-down movement to provide the space for weft insertion.

c) Weft insertion: under the action of the weft insertion unit, the weft insertion device inserts the weft between the two layers of warp which have formed into a rhombus shed.

d) Beating up by lifting and descending movement: beating up the weft into the fell of cloth by means of the lifting and descending motion of straight vertical and slant dent metal reed mounted in the sliding groove of the slay and by making the forward and backward sector swing following the slay.

e) Take-up: the take-up unit draws the fabric away from the fell of cloth.

[0004] In the above-mentioned method, the lifting and descending range (amplitude) and the lifting and descending speed of the lifting and descending mechanism can be varied according to the process requirement.

[0005] A kind of warp curve fabric of shuttle woven fabric, its feature is that the woven fabric product is woven by the slant line let-off warp and the weft which are in a non perpendicular crossing manner, the said warp presents a gradually and orderly varied curve arrangement in the fabric. The outward appearance of the fabric
presents an obvious or hidden curve pattern.

In the above-mentioned warp curve fabric of shuttle woven fabric, the warp and the weft are raw materials of various textile fibers, their colors may be the same or different one from the other.

A kind of special equipment for weaving warp curve fabrics, its feature is that it includes the lifting and descending component which is connected to the metal reed on the weaving machine and the driving component for driving the lifting and descending component; the said metal reed is a reed with straight and slant dents the spacing between which is variable. This metal reed with straight and slant dents the spacing between which is variable includes reed balk, reed blade and side reed crosspiece; said reed balk consists of upper reed balk and lower reed balk, multiple reed blades are respectively fixed in a slant or vertical manner between the upper reed balk and the lower reed balk; there are two side reed crosspieces which are situated on the two ends of the metal reed and are fixed respectively between the upper reed balk and the lower reed balk, the said driving component is disposed between the lifting and descending component and the cloth roller of the weaving machine.

In the above-mentioned special equipment for weaving warp curve fabrics, the said reed with the straight and slant dents the spacing between which is variable is formed by the combination of multiple dent segments, the reed blades of each dent segment are arranged in a manner of sparseness and denseness from top to bottom or in a manner of sparseness and denseness from bottom to top. There is a or multiple reed blades disposed upright in each dent segment. The reed blades which form each such dent segment are arranged as straight-slant dent sparseness and denseness combination form, there is also a sliding groove which is fixed on frame of the machine, and the two ends of the metal reed with straight and slant dents the spacing between which is variable are disposed in the said sliding groove and can lift or descend in the sliding groove.

In the above-mentioned special equipment for weaving warp curve fabrics, there is still a bush mounted on the loom swing shaft and the lifting and descending component is fixed on the bush.

In the above-mentioned special equipment for weaving warp curve fabrics, the lifting and descending unit may consist of a lifting and descending mechanism in which the lifting and descending speed and travel distance can be changed.

In the above-mentioned special equipment for weaving warp curve fabrics, the said driving component is a chain type driving mechanism, its driving chain wheel is mounted on the cloth roller of the weaving machine, and the driven chain wheel is mounted on the bush of the loom swing shaft.

The present invention features the new structure, it can weave fabrics with curve patterns having orderly sparseness and denseness, especially, the warp direction color strips on the face side of the dyed-yarn woven fabric have the graceful curve form state and it can be used on currently available weaving machines having shuttle or without shuttle, it can upgrade markedly the rank (grade) of the products.

Brief Introduction of the Accompanying Drawings

The concrete structure, performance will be further described in details by the following embodiments and the accompanying drawings. Among the drawings:

Fig. 1 is a schematic view of the prior art weaving machine.

Fig. 2 is the schematic texture view of the first embodiment of the fabric product according to the present invention.

Fig. 3 is the schematic texture view of the second embodiment of the fabric product according to the present invention.

Fig. 4 is a schematic view of a photo-print copy of the fabric product according to the present invention.

Fig. 5 is a structure schematic view of the special equipment for weaving warp curve fabrics.

Fig. 6 is a side view viewed from E-E direction of Fig. 5

Fig. 7 is a schematic view of the structure of the metal reed with straight and slant dents the spacing between which is variable adopted by the present invention.

Fig. 8 is a schematic view of the structure of another steel reed with straight and slant dents the spacing between which is variable adopted by the present invention.

The Preferred Embodiments of the Present Invention

The method for weaving warp curve fabrics according to the present invention including the following steps:

a) Straight and slant warp let-off: by means of the cooperation of the let-off unit of the weaving machine, feeding the warp into the shedding member of the weaving machine, the fed quantity of warp matches the take-up quantity required by the take-up unit. At the same time, the lifting and descending member draws the metal reed with the straight and slant dents the spacing between which is variable to make it to do up and down reciprocating movement and to make the warp restricted by slant reed blade of the reed to form slant line state with respect to the fell of cloth of fabric in which state the inclination degree varies relative to the fell of cloth. The straight-slant warp let-off and the forming of straight
and slant warp is due to such process that the straight and slant dent metal reed mounted in the sliding frame on the slay is drawn by the metal reed lifting and descending unit to make it to do up-down reciprocating movement, thereby to make horizontal line position of the beating up unit of the metal reed plane and the fabric fell of cloth (fixed position) to move up and down reciprocatingly. During such movements, the warp restricted by the slant dents of the metal reed produces slant line movement with varied degree of slope, so that the warp restricted by metal reed slant dents and the warp of the fabric fell of cloth form, relative to the fabric fell of cloth, the straight-slit line state with varied slope degree. The warp let-off unit, which matches the weaving process and take-up quantity, feeds the warp to the fabric fell of cloth according to the straight and slant line state.

b) Shedding: The warp is divided into two upper and lower layers by the shedding unit of the weaving machine according to the process conditions of the fabric to form a rhombus shed and the shed thus formed makes the alternating up-down movement to provide the space for weft insertion.

c) Weft insertion: under the action of the weft insertion unit, the weft insertion device inserts the weft between the two layers of warp which have formed into a rhombus shed.

d) Weft beating up: beating up the weft into the fell of cloth by means the straight and slant dent metal reed mounted in the sliding groove of the slay, said metal reed makes forward and backward sector swing following the slay.

e) Weaving: the warp restricted by the reed blades of the metal reed having different slope degree makes limited up and down reciprocating lifting and descending following the metal reed under the driving of the lifting and descending device and makes off-center slant line movement with different degree, so that, when beating-up the weft into the fell of cloth, the weft is all along in the different horizontal positions, making the warp and weft to present the state of crossing but not perpendicular to each other, thereby completing the weaving of warp curve fabric.

f) Take-up: the take-up unit draws the fabric away from the fell of cloth. The lifting and descending range and speed of the above mentioned lifting and descending member can be changed according to the requirement of the process. Please refer to Fig. 2 and Fig. 3, in which are shown the schematic views of first and second embodiments of warp curve fabric according to the method of the present invention.

[0015] The fabric products are woven by slant line let-off warp 100 and weft 200 which are crossing but not perpendicular to each other. The colors of the warp 100 and weft 200 may be the same or different. The warp 100 is arranged in a curve of gradual change and orderly manner. The outer appearance of the fabric presents a clear or hidden pattern 300. The direction of the arrows in the Figs indicates warp direction.

[0016] Fig. 4 is a schematic view of photo-offset copy of the woven product according to the present invention.

[0017] Please refer to Fig.5 and Fig.6, in which a special equipment for weaving warp curve fabrics according to the above-mentioned method of the present invention is shown, it includes the lifting and descending unit 32 which is connected to the metal reed 31 of the weaving machine and the driving unit 33 which drives the lifting and descending unit.

The special equipment includes also a sliding groove 34 and a bush 35. The sliding groove is fixed to the frame (not shown). The two ends of the reed with the straight and slant dents the spacing between which is variable are disposed in the sliding groove and can slide up and down in the sliding groove 34. The bush 35 is mounted on the swing shaft 37.

[0018] The lifting and descending unit 32 of the present invention adopts the lifting and descending mechanism in which the speed and travel distance can be changed. In the embodiments, a cam type lifting and descending mechanism is adopted. The cam type lifting and descending mechanism 32 includes a pair of step-up gearing 321 and a lifter rod 322 connected to the step-up gearing. The step-up gearing 321 includes a cam 3211 connected to the bush 35 and a driven wheel 3212 engaged with the cam 3211. One end of the lifter rod 322 is connected to the output shaft of the driven wheel 3212, and the other end is connected to the slay 36. In order to locate the lifter rod, the special equipment of the present invention includes also a support bracket 4. One end of the support bracket 4 is fixed on the swing shaft 37 of the weaving machine, the other end has a hole, the lifter rod 322 passes through the hole and can make up and down movement.

[0019] The driving unit 33 of the present invention is arranged between the lifting and descending mechanism 32 and the cloth roller 38 of the weaving machine. In the embodiments, the driving unit 33 is a chain type driving mechanism, the driving chain wheel 331 of which is mounted on cloth roller 38 of the weaving machine, the driven chain wheel 332 is mounted on the bush 35 of the swing shaft of the weaving machine and they are driven by the chain between them. This structure can make use of the powder generated by the rotation of the cloth roller 38 which power can be transferred to the bush 35 connected to the driven chain wheel via the chain, then the power can be transferred from bush 35 to the cam 3211 to finally make the lifter rod 322 to move up and down reciprocatingly. This structure can save energy source and can make the whole structure of the weaving machine to be simpler.

[0020] Please refer to Fig.7. The metal reed of the
1. A kind of method for weaving warp curve fabric of the shuttle woven fabrics, characterized in that it includes the following steps:

a) Straight and slant warp let-off: by means of the cooperation of the warp let-off of the weaving machine, feeding the warp on the loom beam to the cloth-fell of fabric, the fed quantity of warp matches the take-up quantity required by the take-up unit, during the course of feeding warp, the lifting and descending unit draws the metal reed with the straight and slant dents the spacing between which is variable to make up and down reciprocating movement and to make the warp restricted by the slant reed blade of the metal reed to form the slant line state with respect to the fell of cloth, in which state, the slant degree varies and the warp will be sent to the fell of cloth of the fabric in straight and slant line state.

2. A kind of warp curve fabric of shuttle woven fabrics, characterized in that the fabric products are formed by the slant line let-off warp and weft which are in a non perpendicular crossing manner, the said warp presents gradual change and orderly curve arrangement in the fabric, the outer appearance of the fabric has obvious or hidden warp curve patterns.

3. The method as claimed in Claim 1, characterized in that the range of the lifting and descending and the speed of the lifting and descending mechanism can be changed according to requirement of the process.

4. The warp curve fabric of the shuttle woven fabrics according to Claim 3, characterized in that the said warp and weft are the raw materials of various textile fibers, the colors of which may be the same or different.

5. A kind of special equipment for weaving warp curve fabrics, characterized in that it includes the lifting
and descending unit connected to the metal reeds on the weaving machine and the driving mechanism which drives the lifting and descending unit, the said metal reed is a reed with straight and slant dents the spacing between which is variable, said reed with straight and slant dents the spacing between which is variable includes reed balk, reed blade and side reed crosspieces, the said reed blade is formed by the upper reed balk and the lower reed balk, the said reed blade has multiple blades, which are respectively inclinedly or vertically fixed between the upper reed balk and the lower reed balk; there are two side reed crosspieces which are located on the two ends of the metal reeds and are fixed between the upper reed balk and the lower reed balk, the said driving mechanism is disposed between the lifting and descending unit and the cloth roller of the weaving machine.

6. The special equipment for weaving warp curve fabrics according to Claim 5, characterized in that, the reed with the straight and slant dents the spacing between which is variable is formed by the combinations of multiple dent segments, the reed blades of each dent segment are arranged in a manner of sparse on upper part and dense on lower part or sparse on lower part and dense on upper part; in each dent segment, there is one or multiple reed blades arranged in upright direction. The reed blades which form each dent segment are arranged in a sparse and dense straight-slit dent combination form.

7. The special equipment for weaving warp curve fabrics according to Claim 5, characterized in that the special equipment includes also a sliding groove which is fixed on the frame, the two ends of the reed with the straight and slant dents the spacing between which is variable are disposed in the sliding groove and can lift and descend in the sliding groove.

8. The special equipment for weaving warp curve fabrics, characterized in that the special equipment includes also a bush mounted on swing shaft of the weaving machine, said lifting and descending unit is fixedly mounted on the bush.

9. The special equipment for weaving warp curve fabrics according to Claim 5, characterized in that the lifting and descending unit is formed by a lifting and descending mechanism which can change lifting and descending speed and the travel distance of the lifting and descending motion.

10. The special equipment for weaving warp curve fabrics according to Claim 5, characterized in that the said driving mechanism is a chain type driving mechanism, the driving chain wheel of which is mounted on the cloth roller of the weaving machine and the driven chain wheel is mounted on the bush of swing shaft of the weaving machine.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC D03D13/00 49/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC D03D13/00, 1/00, 3/00, 3/08, 15/00, 49/62, 49/60, 49/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPDOC WP1, PAJ AND CNPAT

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A,5472020 (HOWA MACHINERY,LTD.) 05 DEC 1995 (05:12: 95)</td>
<td>1,5</td>
</tr>
<tr>
<td>X</td>
<td>Abstract; figure 11</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>US,A,2410394 (MANUFACTURE OF TEXTILE) 28 APRIL 1944 (28:04:44)</td>
<td>1,5</td>
</tr>
<tr>
<td>X</td>
<td>Column 4, line 1-23; figure 3</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>CN1111691A (TOSHIMITSU MUSHA) 15 NOV 1995 (15:11:95)</td>
<td>1,3,5</td>
</tr>
<tr>
<td>A</td>
<td>The whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>The whole document</td>
<td></td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. See patent family annex.

- *: Special categories of cited documents:
- "A": document defining the general state of the art which is not considered to be of particular relevance
- "E": earlier application or patent but published on or after the international filing date
- "L": document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O": document referring to an oral disclosure, use, exhibition or other means
- "P": document published prior to the international filing date but later than the priority date claimed

- "": later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- "X": document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

- "Y": document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

- "&": document member of the same patent family

Date of the actual completion of the international search

20 MARCH 2003 (20.03.03)

Date of mailing of the international search report

(10.05.03)

Name and mailing address of the ISA/CN
6 Xiucheng Rd., Jimen Bridge, Haidian District,
100088 Beijing, China
Facsimile No. 86-10-62019451

Authorized officer

Telephone No. 86-10-62019451
<table>
<thead>
<tr>
<th>Patent document</th>
<th>Publication date</th>
<th>Patent family Member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>JP-A-7279006</td>
<td>24-02-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-69510598</td>
<td>12-08-99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-3788697</td>
<td>17-02-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A-0571461</td>
<td>01-12-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A-2268193</td>
<td>05-01-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-6027198</td>
<td>07-08-98</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US,A,5431193 (SHORT BROTHERS PLC) 11 JUL 1995 (11.07.95)</td>
<td>1,3,5</td>
</tr>
<tr>
<td></td>
<td>The whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US,A,6213163(ORIGITECH LLC) 10 APRIL 2001 (10.04.01)</td>
<td>1,3,5</td>
</tr>
<tr>
<td></td>
<td>The whole document</td>
<td></td>
</tr>
</tbody>
</table>