
USOO6883O2OB1

(12) United States Patent (10) Patent No.: US 6,883,020 B1
Taranto et al. (45) Date of Patent: *Apr. 19, 2005

(54) APPARATUS AND METHOD FOR 5,606.669 A * 2/1997 Bertin et al................. 709/224
FILTERING DOWNLOADED NETWORK 5,721.919 A * 2/1998 Morel et al. 707/203
SITES 5,732,259 A 3/1998 Konno 707/5

5,794,006 A * 8/1998 Sanderman ... 709/223
(75) Inventors: Edward James Taranto, Boston, MA 5,825,363 A * 10/1998 Anderson 345/422

(US); William Joseph Gauvin, 5,860,073 A * 1/1999 Ferrel et al. 707/522
Leominster, MA (US); Ursula Smith, 5,870,559 A * 2/1999 Leshem et al. 709/224
Acton, MA (US); David J. Sullivan, 5,892.908 A * 4/1999 Hughes et al. 709/250
Nashua, NH (US); Louise Lemaire, 5,894.554 A * 4/1999 Lowery et al. 709/203
Newburyport, MA (US) 5.941,947 A * 8/1999 Brown et al. 709/225

5.956,720 A * 9/1999 Fernandez et al. 707/10
(73) Assignee: Hewlett-Packard Development 5,966,715 A * 10/1999 Sweeney et al............. 707/203

Company, L.P., Houston, TX (US) 5,983,351 A * 11/1999 Glogau 713/201
6,026,474. A 2/2000 Carter et al. 711/202

(*) Notice: Subject to any disclaimer, the term of this 6,029,182 A * 2/2000 Nehab et al. 707/523
patent is extended or adjusted under 35 6,038,610 A * 3/2000 Belfiore et al. 709/300
U.S.C. 154(b) by 0 days. 6,105,028 A 8/2000 Sullivan et al. 707/10

This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 08/883,241
(22) Filed: Jun. 26, 1997
(51) Int. Cl. .. G06F 15/16
(52) U.S. Cl. 709/213; 709/219; 709/229;

707/10
(58) Field of Search 709/229, 224,

709/223, 105, 203, 213, 217; 711/202

(56) References Cited

U.S. PATENT DOCUMENTS

5,274,803 A * 12/1993 Dubin et al................. 707/202

STAR

SOO SWEBPAGE
PPROPRIATE ALOWE
(PRECONFIGURED)
DEFAULTYPE

S Web PAGE ON SAME
SERVER AS FIRST PAGE

sos

is WBPAGE ON
SAMELEVeL OR WITHiiN

PRESELECted NUMBER OF
LEVELS BELOW
FRST PAGEP

PASS THROUGH

* cited by examiner

Primary Examiner William C. Vaughn, Jr.

(57) ABSTRACT

A process and apparatus for Storing, in non-volatile memory
of a local computer System, a Selected remote web page and
all web pages in a preselected number of nodes below the
Selected web page. The Stored web pages may be filtered to
cause the local computer System to Store only web pages that
are not larger than a preselected size, or web pages that are
Stored on the Same remote network device.

26 Claims, 21 Drawing Sheets

DOEFAULT
PARAMERS PERM
DOWNLOAD FROM

OFFERN SERVERS

NC paSS
HROUGH

US 6,883,020 B1 Sheet 1 of 21 Apr. 19, 2005 U.S. Patent

|W BLIS BLOWB}} B L?S BLOWER!!
?, BLIS E LOWB}}

× ×

I '9IH

969

Z HB IndWoo. TWOOT
|× TWOOT

US 6,883,020 B1 Sheet 2 of 21 Apr. 19, 2005 U.S. Patent

0

(1&V (JOINCH) Z '9IAI 992

OGZ –

HETIOHINOO || Hamoginoo Z0?? BAIHO WOH QO || BAIHO BLI EXSIO

162

HETTO HINOO STYÐ
922

(JETTO}}] NOO Å HOWNEW
HETTO?H_LNO O

U.S. Patent Apr. 19, 2005 Sheet 3 of 21 US 6,883,020 B1

200

CENT
COMPUTER

399

SYSTEM

295

(PRIOR ART)

FIG. 3A

U.S. Patent Apr. 19, 2005 Sheet 4 of 21 US 6,883,020 B1

200
^

CLENT
COMPUTER

399

BROWSER

394.

INTERCEPTOR

393

NETWORK STACK

2

OPERATING SYSTEM

29O

NETWORKADAPTER

295

92

FIG. 3B

U.S. Patent Apr. 19, 2005 Sheet 6 of 21 US 6,883,020 B1

5OO

USER ACCESSES
REMOTE WEB PAGE

USER SELECTS CFHD
BUTTON ON SELECTED

WEB PAGE

502

504

CERTAIN WEB PAGES
ARE DOWNLOADED
INTO MEMORY BY
BACKGROUND
PROCESS

506

DOWNLOADED WEB
PAGES MARKED AS

BOOKMARKS

FIG. 5

U.S. Patent Apr. 19, 2005 Sheet 7 of 21 US 6,883,020 B1

START

S WEB PAGE
APPROPRIATE ALLOWED

(PRECONFIGURED)
DEFAULT TYPE2

600

DO DEFAULT
PARAMETERS PERMIT
DOWNLOAD FROM

DIFFERENT SERVERS2

SWEB PAGE ON SAME
SERVER AS FIRST PAGE?

606

JS WEB PAGE ON
SAME LEVEL OR WITHN

PRESELECTED NUMBER OF
LEVELS BELOW
FIRST PAGE?

NO PASS
THROUGH

FIG. 6

PASS THROUGH

U.S. Patent Apr. 19, 2005 Sheet 8 of 21 US 6,883,020 B1

STAR

O 70

CFHD SELECTED
70

CREATE LIST DATABASE

SET "FRST PAGE" VARABLE is WEB PAGE
ON DISPLAY

1.

702

704

SET "CURREN PAGE" VARASLEs FIRST
PAGE VARIABLE

7O6
SCAN CURRENT. PAGE FOR HYPER-LINKS

08

FILTER URL OF EACH HYPERLINK
710

ADO URL OF WEB PAGES THAT PASS
THROUGH FILTER TO ST DATABASE

7

72

YES

FIG. 74

U.S. Patent Apr. 19, 2005 Sheet 9 of 21 US 6,883,020 B1

714. /
SET "CURRENT PAGE" VARIABLE =

NEXT WEB PAGE IN LIST
DATABASE

DOWNLOADWEB PAGE HAVING URL
OF CURRENT PAGE

718

716

1S CURREN
PAGE GREATER

THAN PRESELECTED
SZE?

STORE CURRENT PAGE IN
NON-VOLATILE MEMORY

S

WSEN CURRENT WEB
EMORY FOR CFHD PAGE IN THE SAME

FULLP SERVER AS THE
RST PAGE2

FIG 7B

U.S. Patent Apr. 19, 2005 Sheet 10 of 21 US 6,883,020 B1

START

SET WARIABLE"FLENAME" TO
SASE DIRECTORY IN MEMORY

740.

/ 742
APPEND "V" AND PROTOCOL TO

FLENAME
-744

APPEND "\" AND HOSTNAME TO
FLENAME

746

APPENO "W" TO FILENAME
va 748

SET WARIABLE "NEXTCHAR" TO
FIRST CHARACTER IN DOCUMENT

PATH NAME

750

DO ANY CHARACTERS ENO
REMAN N PATHNAME?

SNEXTCHARA"/"?

APPEND "V" TO FENAME

DO ANY CHARACTERS
REMAN N PATHNAME?

YES 756

SET WARIABLE "NEXTCHAR'
TO THE NEXT CHARACTERN

PATH NAME

FIG. 7C 's--

U.S. Patent Apr. 19, 2005 Sheet 11 of 21 US 6,883,020 B1

ves

S THERE A NEXTCHAR +
AND A NEXTCHAR-27

YES
760

ARENEXTCHAR +
AND NEXTCHAR + 2 BOTH

WITH IN SPECIFIED HEXADECIMAL
SE7

NO

VALID FELENAME CHARACTER2
YES 766

APPEND THE CHARACTER FROM STEP 764
ABOVE TO FILENAME

767

DO ANY CHARACTERS
REMAIN IN PATHNAME AFTER

NEXTCHAR + 22
NO

769
YES

SET NEXTCHARTONEXTCHAR + 3

(e)...(?) FIG. 7D

U.S. Patent Apr. 19, 2005 Sheet 12 of 21 US 6,883,020 B1

USING THE ASC VALUE OF
NEXTCHAR, APPEND"%"

FOLLOWED BY THE TWO DIGIT
HEXADECMAL VALUE TO

FENAME

S NEXTCHAR AWALD
FILENAME CHARACTER2

APPEND NEXTCHARTO
FILENAME

FIG 7E

U.S. Patent Apr. 19, 2005 Sheet 13 of 21 US 6,883,020 B1

START

DOES DOWNLOADED
WEB PAGE INCLUDE
AN MAGE MAP FLEP

800

YES
DVOE GRAPHICAL MAGE INTO
PREDETERMINED NUMBER OF

SECTIONS

SET WARIABLE "CURRENT
SECTION" TO HE FIRST SECTION

SELECT CENTERPOINT OF
CURRENT SECTION

DOWNLOAD ASSOCATED WEB
PAGE VIA OUERY REQUEST, THEN
STORE NECESSARY INFORMATION
N LOCA MAGE MAP MAPPNG

TABLE

SET CURRENT
SECTION TO NEXT

SECTION

LAST SECTION
REACHED?

FIG. 8

US 6,883,020 B1 Sheet 14 of 21 Apr. 19, 2005 U.S. Patent

Z06 006

HBAHES N|9}}{O

6 (OICH

U.S. Patent Apr. 19, 2005 Sheet 15 of 21 US 6,883,020 B1

START
1 OOO

CLIENT SELECTS AUTO
UPDATE FUNCTION WHEN
CLIENT COPY DISPLAYED

1 OO2

OCAL AUTOUPDATE
DATABASE CREATED AND/OR

UPDATED
1004

CLIENT UPLOADS. UPDATE
MESSAGE TO UPDATE
SERVER WITH URL OF

OSPLAYED WEB PAGE AND
LAST UPDATE TIME

1 OO6

NFORMATION FROM UPDATE
MESSAGE ENTERED INTO
CENT DATABASE ON
UPDATE SERVER

1008

SWEB PAGE
STORED IN UPDATE

SERVER2

YES

DOWNLOADWEB PAGE
FROM ORGEN SERVER AND
UPDATE CLIENT DATABASE
AND MASTER DATABASE

END

FIG. IO

U.S. Patent Apr. 19, 2005 Sheet 16 of 21 US 6,883,020 B1

START 1100

UPDATE SERVER ACCESSES
ORGEN SERVER

COMPARE "LAST UPDATE"
FELD IN THE MASTER LIST
TO LAST UPDATE TIME OF

WEB PAGE

1102

1 104

S WEBPAGE TIME
MORE RECENTP

DOWNLOADWEB PAGE TO
UPDATE SERVER

MODIFY "LAST UPDATE"
FIELD IN MASTER LIST

END

FIG. II

U.S. Patent Apr. 19, 2005 Sheet 17 of 21 US 6,883,020 B1

1200

CLENT RECONNECTS TO
NETWORK

CLIENT UPLOADS RECONNECT
MESSAGE TO UPDATE SERVER
THAT CLIENT RECONNECTED TO

NETWORK

- 1202

1204

UPDATE SERVER COMPARES
CLEN DATABASE AND MASTER

DATABASE 12O6

UPDATE SERVER UPLOADS ST
OF MODIFIED WEB PAGESTO

CLEN 1208

CLIENT UPLOADS.TIME MESSAGET
To UPDATE SERVER WITH LAST
UPDATE TIMES OF WEB PAGES IN

LST 1210

UPDATE SERVER COMPARES
TIMES OF WEB PAGES IN TIME
MESSAGE AGAINST TIMES IN

MASTER LIST
1212

UPDATE SERVER UPLOADS TO
CLENTA COPY OF ALL WEB

PAGES THAT HAVE BEEN MODIFED
SINCE TIMES IN TIME MESSAGE

ENO

FIG. I2

U.S. Patent Apr. 19, 2005 Sheet 18 of 21 US 6,883,020 B1

2OO

BROWSER

INTERCEPTOR

HYPERTEXT
SERVER

398

DOWNLOADER

CLENT COMPUTER

1304

DATABASE
COPY

1302

LOCAL
APPLICATION
PROGRAM

1310

HYPERTEX
SERVER

ORIGIN

SERVER
INTERFACE

APPLICATION
PROGRAM

DATABASE

FIG. I.3

U.S. Patent Apr. 19, 2005 Sheet 20 of 21 US 6,883,020 B1

START

REO UEST TO ORIGIN SERVER
FROM CLENT COMPUTER TO

15OO

DOWNLOAD DATABASE

1502

ONNECTED TO
NETWORK?

1504
RECUEST TRANSMITTED TO

ORIGN SERVER

1506
ORIGN SERVER TRANSMTS

DOWNLOAD LST WITH HEADER
TO CLIENT

CACHER RECEIVES DOWNLOAD
STAND CAUSES DATA PUMP
TO DOWNLOAD LISTED
DATABASE FROM ORIGN

SERVER

1508

1510 CACHER CREATES URL
DIRECTORY MAPPING TABLE

WHEN DOWNLOAD COMPLETED

FIG. I.5
END

U.S. Patent Apr. 19, 2005 Sheet 21 of 21 US 6,883,020 B1

1600

BROWSER REO UESTS ACCESS
TO DATABASE WA REDIRECTOR

1604
1602

ACCESS

CONNECTED YES DATABASE ON
ORIGN

NETWORK? SERVER

REDIRECTOR ACCESSES
MAPPNG TABLE TO ASCERTAN
LOCATION OF DATABASE COPY

REDIRECTOR TRANSMITS
LOCATION OF DATABASE COPY
AND DATA To MODIFY DATABASE

TO LOCAL ENGINE

LOCAL ENGINE LOCATES
DATABASE COPY, TRANSLATES

DATA TO MODIFY DATABASE COPY
AND TRANSMITS DAA TO LOCAL

APPLICATION PROGRAM

OCAL APPLICATION PROGRAM
MOD FES DATABASE

HTML RESPONSES SENT TO
BROWSER REFLECTING

MODIFICATIONS

FIG. I6 END

US 6,883,020 B1
1

APPARATUS AND METHOD FOR
FILTERING DOWNLOADED NETWORK

SITES

FIELD OF THE INVENTION

This invention relates generally to data transmission net
WorkS and, more particularly, to accessing remote network
Sites acroSS data transmission networks.

BACKGROUND OF THE INVENTION

FIG. 1 shows a commonly used network arrangement in
which a plurality of local computer Systems in a local area
network (LAN) may access a plurality of remote servers
through the Internet. Each remote server may include World
Wide Web sites (web sites) that each include a plurality of
World Wide Web pages (web pages). Each local computer
System may access the remote web sites with web browser
Software, such as Netscape Navigator'TM, available from
Netscape Communications Corporation of Mountain View,
Calif.

Web Sites typically are arranged in a hierarchical branch
ing tree Structure having a plurality of nodes that contain one
or more of the web pages in the Site. Each of the nodes in
the site are considered to be on various levels of each branch
in the tree Structure. For example, a first node is considered
to be on a lower level than a Second node in the same branch
if a web page in the first node includes the Second node in
its Uniform Resource Locator (URL). Conversely, a third
web node in the same branch is considered to be on a higher
level than the second node if the URL of a web page in the
Second node includes the third node.

Web pages accessed over the Internet, via a browser,
commonly are downloaded onto the volatile cache 200a of
the local computer System. In the computer System shown in
FIG. 1, for example, the volatile cache 200a is a high speed,
first-in, first-out buffer that temporarily Stores web pages
from accessed remote web sites. The Volatile cache thus
enables a user to quickly review web pages that were already
downloaded, thereby eliminating the need to repeat the
relatively slow process of traversing the Internet to acceSS
previously viewed web pages. If the local computer System
had not been turned off Since the download, Such web pages
may be retrieved from the cache and displayed on the local
computer System when the local computer System is discon
nected from the network (i.e. during disconnect).
When the local computer System is turned off (i.e. erasing

the contents of the volatile cache), a user often must again
re-execute the web browser and traverse the Internet to
access a previously accessed web page. This is inconvenient
and time consuming. The art has responded to this problem
by enabling users to Save entire remote web sites, and other
remote web sites linked to those Saved remote web sites, in
the non-volatile memory of the local computer System.
These Saved remote Sites may be quickly and easily accessed
at a later time without having to inconveniently traverse the
Internet. Due to the increasing size of both the World Wide
Web and sites on the web, however, Such a download into
the non-volatile memory of the local computer System often
can be time consuming and use an extremely large amount
of non-volatile memory Space in the local computer System.

Accordingly, it would be desirable to have an apparatus
and method that efficiently enables a local computer System
to Store preselected remote network documents from remote
network Sites for review when the local computer System is
disconnected from the network.

15

25

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

In accordance with one aspect of the invention, a local
computer System includes means for Storing in the non
Volatile memory a Selected remote web page, all web pages
in the same node as the Selected web page, and all web pages
in a preselected number of nodes below the node of the
Selected web page. This reduces the time spent Storing the
remote web pages and does not load the non-volatile
memory with unnecessary web pages from higher level
nodes in a remote web site. In addition, filtering parameters
may be included to prevent the local computer System from
Storing certain types of web pages. For example, only web
pages of a preselected type may be Stored. Similarly, only
web pages on the same remote network device as the
Selected web page may be Stored.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects and advantages of the
invention will be appreciated more fully from the following
further description thereof with reference to the accompa
nying drawings wherein:

FIG. 1 is a block diagram of a generic network configu
ration that may be used with the disclosed System;

FIG. 2 is a block diagram of a client computer System
suitable for use with the disclosed system;

FIG. 3A is a block diagram of a prior art client computer;
FIG. 3B is a block diagram of the client computer shown

in FIG. 3A with the disclosed system;
FIG. 4 is an illustration showing the graphical user

interface used to initiate the disclosed system;
FIG. 5 is a flow chart illustrating a process for download

ing Selected web pages onto the client computer;
FIG. 6 is a flow chart illustrating a process of filtering web

pages in the disclosed CFHD system;
FIGS. 7A and 7B are flow charts illustrating a tree

retrieval process that may be utilized with the cache from
here down (CFHD) system;

FIGS. 7C, 7D, and 7E are flow charts that collectively
illustrate a process of creating a local directory Structure;

FIG. 8 is a flow chart illustrating a process for creating a
local image map mapping table;

FIG. 9 is an exemplary network configuration that may be
used with the autoupdate System;

FIG. 10 is a flow chart illustrating a process for initiating
the autoupdate process prior to disconnect;

FIG. 11 is a flow chart illustrating a process for updating
an update copy during disconnect;

FIG. 12 is a flow chart illustrating a process for updating
a client copy after reconnect;

FIG. 13 is a block diagram of a network configuration that
may utilize a local interface Specification at a client com
puter,

FIG. 14 is a block diagram of the local interface specifi
cation on the client computer;

FIG. 15 is a flow chart illustrating a process for down
loading a database from an origin Server; and

FIG. 16 is a flow chart illustrating a proceSS for accessing
and modifying a downloaded database.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

FIG. 2 illustrates the System architecture for an exemplary
client computer 200, such as an IBM THINKPAD 701(R)

US 6,883,020 B1
3

computer or Digital Equipment Corporation HiNote TM
computer, on which the disclosed network acceSS System
(System) can be implemented. The exemplary computer
System of FIG. 2 is discussed only for descriptive purposes,
however, and should not be considered a limitation of the
invention. Although the description below may refer to
terms commonly used in describing particular computer
Systems, the described concepts apply equally to other
computer Systems, including Systems having architectures
that are dissimilar to that shown in FIG. 2.

The client computer 200 includes a central processing unit
(CPU) 205, which may include a conventional
microprocessor, random access memory (RAM) 210 for
temporary Storage of information, and read only memory
(ROM) 215 for permanent storage of information. A
memory controller 200 is provided for controlling system
RAM 210. A bus controller 225 is provided for controlling
bus 230, and an interrupt controller 235 is used for receiving
and processing various interrupt Signals from the other
System components.
Mass storage may be provided by diskette 242, CD-ROM

247, or hard disk 252. Data and software may be exchanged
with client computer 200 via removable media, such as
diskette 242 and CD-ROM 247. Diskette 242 is insertable
into diskette drive 241, which is connected to bus 230 by
controller 240. Similarly, CD-ROM 247 is insertable into
CD-ROM drive 246, which is connected to bus 230 by
controller 245. Finally, the hard disk 252 is part of a fixed
disk drive 251, which is connected to bus 230 by controller
250.

User input to the client computer 200 may be provided by
a number of devices. For example, a keyboard 256 and a
mouse 257 may be connected to bus 330 by keyboard and
mouse controller 255. An audio transducer 296, which may
act as both a microphone and a speaker, is connected to bus
230 by audio controller 297. It should be obvious to those
reasonably skilled in the art that other input devices, Such as
a pen and/or tablet and a microphone for Voice input, may
be connected to client computer 200 through bus 230 and an
appropriate controller. DMA controller 260 is provided for
performing direct memory access to system RAM 210. A
visual display is generated by a video controller 265, which
controls video display 270.

Client computer 200 also includes a network adapter 290
that allows the client computer 200 to be interconnected to
a network 295 via a bus 291. The network 295, which may
be a local area network (LAN), a wide area network (WAN),
or the Internet, may utilize general purpose communication
lines that interconnect a plurality of network devices. FIG.
1 shows one network arrangement for use with the System in
which a plurality of local computer Systems (client comput
ers 200) in a LAN are connected to the a plurality of remote
network sites 100 via the Internet. The remote sites 100 may
be World Wide Web sites (web sites), stored on one or more
remote network devices, that each include a plurality of web
pages. Each accessible web site may be accessed with web
browser software 399 (FIG. 3B), such as Netscape
Navigator'TM, available from Netscape Communications
Corporation of Mountain View, Calif.

Client computer system 200 generally is controlled and
coordinated by operating System Software, Such as the
WINDOWS 95(R) operating system (available from
Microsoft Corp., Redmond, Wash.). Among other computer
System control functions, the operating System controls
allocation of System resources and performs taskS Such as
process Scheduling, memory management, networking and
I/O services.

15

25

35

40

45

50

55

60

65

4
FIG. 3A shows in more detail a prior art configuration of

the client computer 200 connected to a network.
Specifically, the client computer 200 includes the network
adapter 290, the operating system 292, a network protocol
stack 393 (e.g., Microsoft TCP/IP(R), from Microsoft Corp.),
and the browser 399. The browser 399 transmits requests to
the network stack 393, which processes the requests and
transmits them to the network 295 via the network adapter
290 and operating system 292. Similarly, responses from the
network 295 are received by the network stack 393, via the
network adapter 290 and operating system 292, and then
provided to the browser 399. When downloading a remote
web page from a remote Server, for example, the browser
399 first transmits a request for the web page, with the web
page Uniform Resource Locator (“URL'), to the network
stack 393. The network stack 393 responsively locates the
remote Server and then transmits the request to the remote
Server via the operating System 292 and network adapter
290. The web page then is transmitted to the network adapter
290, via the network 295, and received by the network stack
393. The retrieved web page then is provided to the browser
399 for display on the client computer 200.

Improving on the configuration shown above in FIG. 3A,
FIG. 3B shows a preferred embodiment of the system.
Specifically, an interceptor 394 is added to the client com
puter 200 to intercept transmissions between the browser
399 and the network stack 393. Such transmissions may be
a request by the browser 399 to access a web page on a
remote Server. Upon receipt of Such transmissions, the
interceptor 394 provides improved functionality for the
client computer 200. Among the improvements is the capa
bility of accessing locally stored web pages through the
browser 399 without requiring that the user either precon
figure the browser 399, or notify the browser 399 that the
client computer 200 is disconnected from the network 295.
The system thus includes the interceptor 394 and a

mechanism for ascertaining if the client computer 200 is
connected to the network 295. If the client computer 200 is
connected to the network 295, the address (i.e., URL) of the
web page is determined from the request. A fetch command
then is transmitted to the remote Server having the web page,
thereby causing the client computer 200 to download the
web page from the remote Server. Conversely, if the client
computer 200 is not connected to the network 295, the
System includes a mechanism for locating the web page in
the memory of the client computer 200 if such web page
already had already been downloaded. The downloaded web
page preferably is Stored in a local directory Structure
constructed as discussed below with reference to FIGS. 7C,
7D, and 7E.

Use of the interceptor 394 thus enables the user to access
a web page via the browser 399, during disconnect, in a
manner similar to that when the client computer 200 is
connected to the network 295. The user thus may access the
downloaded web page without knowing if the client com
puter 200 is connected to or disconnected from the network
295.

In accordance with another aspect of the System, referred
to as “cache from here down” (CFHD), a set of preselected
web pages from a single remote web site may be down
loaded into the non-volatile memory of the client computer
200 for subsequent review when the client computer 200 is
disconnected from the network 295. More particularly, when
the CFHD process is initiated, a web page displayed by the
client computer 200, Specified web pages in the same node
(i.e., containers that contain web pages) as the displayed web
page, and Specified web pages in the same branch on nodes

US 6,883,020 B1
S

below the displayed web page, are automatically down
loaded into the non-volatile memory of the client computer
200. The entire web site thus is not downloaded, thereby
Saving download time and memory on the client computer
200. To that end, indicia may be included on the displayed
web page that enables a user to select the CFHD function.
FIG. 4, for example, ShowS Such indicia as being a button
400 a having the text string, “cache from here down.”
Selection of this button 400 causes the client computer 200
to execute the CFHD process in the background. Since it is
a background process, the entire CFHD process is com
pleted without interrupting the normal execution of the web
browser 399. A user therefore may continue browsing any
remote site while the Selected web pages are being down
loaded.

FIG. 5 is a flow chart illustrating a process that may be
used for downloading the web pages into the non-volatile
memory of the client computer 200 from a remote web site.
At step 500, a user accesses and downloads a remote web
page. In the preferred embodiment, Such a remote web page
is automatically Stored in the non-volatile memory of the
client computer 200. The CFHD button 400 then is selected
at step 502 to initiate the CFHD background process. This
causes the browser 399 to transmit a request to the inter
ceptor 394, which performs the remaining steps of the
process (see FIGS. 6-7E). Copies of the selected web page
(i.e., the root web page), certain web pages in the same node
as the Selected web page, and certain web pages in the same
branch on nodes within a preselected number of levels
below the Selected web page node, then are downloaded into
the non-volatile memory of the client computer 200 at step
504. The inventive process creates a local directory structure
(discussed below) in the client computer 200 for efficiently
filing the downloaded web pages. At step 506, the down
loaded web pages may be tagged as a bookmark in the web
browser 399 for future access. The downloaded web pages
thus may be accessible for display, or other use by Selecting
either a bookmark or an “open' button in the browser.

In addition to downloading certain web pages between the
root node and a preselected number of levels below the root
node, the System also may be configured to download, in
preSelected instances, web pages on Servers that are remote
from the server having the root web page. The details of
downloading Such web pages are discussed in greater detail
below with reference to FIGS. 6 through 7E.

Although the System preferably is implemented with
default values for all of the parameters necessary for prac
ticing the System, the preselected maximum number of
levels below the selected web page may be chosen before the
CFHD button 400 is selected. Accordingly, a configure
button 402 may be included that enables a user to preselect
the maximum number of levels to download onto the client
computer 200 from the web site. In addition, the configure
button 402 also may include a number of other “filtering”
parameters that prevent the computer from downloading and
Storing certain web pages from the web site (i.e., “filtering”
the web pages). One Such filtering parameter, for example,
may enable the client computer 200 to store only web pages
that are less than a preselected size. Web pages that are
greater than the preselected size thus are not Stored. Another
filtering parameter may prevent the client computer 200
from Storing web pages resident on network devices that are
remote from the network device on which the selected web
page is located. Such filtering parameter thus ensures that
each of the Stored web pages originates from the same
remote network device. Yet another filtering parameter may
prevent the client computer 200 from storing web pages that

15

25

35

40

45

50

55

60

65

6
are not a preselected type of file. A type of file is identified
by an extension at the end of a URL. For example, no
graphic image files (having the extension "...gif) will be
stored if such files are selected to be filtered. Similarly, the
filtering parameters may be Selected to filter out portions of
web pages that are in a preselected format. For example,
only the text in HTML (Hypertext Markup Language) web
pages having both text and references to graphic image files
(GIF files having the suffix "...gif) may be downloaded onto
the local computer. It should be noted, however, that any
combination of the above noted filtering parameters may be
Selected.

FIG. 6 is a flow chart illustrating a process that may be
used by to filter the web pages. This process utilizes the URL
of the web page being filtered to ascertain the necessary
information for processing the web page. Specifically, at
step 600, it is determined if the web page corresponding to
the URL under examination is the appropriate type of file.
For example, all files except "...gif files may be an appro
priate type. The filter ascertains this by searching the URL
of the examined web page for the Suffix ".gif, for example,
to determine if Such web page is Such a file. If not the
appropriate type, the web page does not pass through. If it
is the appropriate type, it then is determined at Step 602
whether the web page is on the same Server as the root web
page. The filter ascertains this from the URL of the exam
ined web page by comparing its web site designation to that
of the root web page. If the URL indicates that the web page
under examination is not on the same Server, then it is
determined at step 604 whether the filtering parameters were
configured to permit a download from a different remote
Server device than the server device of the root page. If not,
then the web page does not pass through the filter. If web
pages from remote Servers are allowed, then the web page
Successfully passes through the filter.

Returning to Step 602, if the web page under examination
is on the same Server device as the root web page, it then is
determined at step 606 if the examined web page is on the
same level or within a preselected number of levels below
that of the first page. This is ascertained by counting the
number of forward slashes (i.e., “f”) in the URL. If not on
the same level or within a preselected number of levels, the
web page does not pass through the filter. Otherwise, the
web page Successfully passes through the filter.

By way of example, a root web page having the URL,
"www.altaVista.com/creative/index.htm', for example, has
all of the necessary information for the above noted filter.
The type of file is a “.htm' file, the remote server is
“www.altaVista.com', and the levels from the root web page
may be ascertained by counting the "/" between the node
“creative” and the node of the current web page. Continuing
with the previous example, Since there is no "...gif Suffix in
the URL, this web page will pass through the filter.
Any known proceSS for downloading the remote web

pages in the client computer 200 may be used. In the
preferred embodiment, a tree retrieval process is used. This
tree retrieval process Stores the web pages in a local direc
tory Structure that is similar to the hierarchical tree Structure
on the remote network device. FIGS. 7A and 7B show one
Such tree retrieval process that may be used to Store remote
web pages in the client computer 200. Specifically, at Step
700, the CFHD button 400 is selected. At step 701, a list
database is created for Storing the URL of each web page to
download. A “first page' variable then is Set to the web page
displayed on the client computer 200 when the CFHD button
400 is selected (step 702). At step 704, a “current page”
variable also is Set to the web page displayed when the

US 6,883,020 B1
7

CFHD button 400 is selected. The current page then is
scanned for hyperlinks at step 706. This may be done by
Scanning the Stored HTML code for hyperlink tags. At Step
708, the URL (i.e., web page) of each hyperlink is filtered
according to Several preselected filtering parameters
(discussed above with reference to FIG. 6). The URL of web
pages that pass through the filter then are added to the list
database at step 710. At step 712, it then is determined if the
URL of the current page is the last URL in the list database.
If yes, the tree retrieval process ends.

If Such URL is not the last URL in the list database, the
process continues with off page connector “B” to step 714 in
which the current page variable is set to the next URL in the
list database. The current page then is downloaded onto the
memory of the client computer 200 at step 716. It then is
determined at Step 718 if the current page is greater than a
preSelected size. If it is greater than the preselected size, the
proceSS continues with off page connector “C” and loops
back to step 712 (i.e., checking for last URL in list database).
This loop prevents the URLs from hyperlinks in the over
sized current page from being Stored in the list database, and
also prevents the current page from being downloaded into
the client computer System.

If the web page is not greater than the preselected size, the
current page then is Stored in non-volatile memory of the
client computer (step 722). At step 724, it then is determined
if the non-volatile memory designated for the CFHD process
is full. If it is full, the process ends. If it is not full, it then
is ascertained at Step 726 if the current web page is in the
Same remote Server as the first page. If it is not, then the
proceSS continues to off page connector “C” and loops back
to step 712 (i.e., checking for last URL in list database).
Similar to step 720, this prevents the URLs from hyperlinks
in Such current page from being Stored in the list database.
If it is in the same remote server as the first page (i.e., by
comparing the current page against the first page), the
proceSS continues to off page connector "D" and loops back
to step 706 (i.e., Scanning for hyperlinks).

The list database may be any database that can Store one
or more URL Strings. One Such database may be a relational
database having a single “URL field identifying a URL
address. Such a list database is formed and accessed by the
interceptor 394 only and thus, is inaccessible to a user.
AS noted above, a directory Structure is created on the

client computer 200 that is substantially identical to the
hierarchical tree Structure on the remote network device
from which the Stored web pages were retrieved. Any known
proceSS for creating the local directory may be used. In the
preferred embodiment, a directory procedure may be used
that creates a main directory and a plurality of
Subdirectories, identical to the remote tree Structure, for the
Stored web pages. The directory procedure executes during
the CFHD process by first reviewing the URLs of the
downloaded web pages as received by the client computer
200, and then dynamically creating an appropriate local
directory structure. FIGS. 7C-7E show one directory cre
ation process that may be used to create Such local directory
Structure.

Specifically, at step 740, a variable “filename” is set to a
base directory in the memory of the client computer 200. At
step 742, a “\" and then a protocol name (e.g., HTTP) is
appended to filename. Similarly, at step 744, a “\' and then
the host name is appended to filename. A “A” then is
appended to filename at step 746. A variable “nextchar” then
is set to the first character in the “document path name” (Step
748). The document path name is the part of the URL that

15

25

35

40

45

50

55

60

65

8
is located after the host name. At step 750, it then is
determined whether any characters remain in the path name.
If none remain, the process ends. If characters do remain,
then it is ascertained at step 752 if nextchar is a "/.” If yes,
a “\' is appended to filename at step 754. It then is deter
mined if any characters remain at step 755. If none remain,
the process ends. If characters do remain, then the variable
nextchar is set to the next character in the path name (Step
756). The process then loops back to step 750 to ascertain if
any characters remain in the path name.

Alternatively, if at step 752 nextchar is not a "/", the
process continues at off-page connector "E.' From off page
connector “E”, it then is ascertained at step 758 if nextchar
is the character “%.” This is important to determine because
a character may be represented in ASCII form by a “%”
character and two Successive hexadecimal numbers.
Therefore, if nextchar is not a “%”, the process continues
with off page connector “F” If nextchar is a “%', it then is
ascertained if there is a nextchar +1 and a nextchar +2 (Step
759). If such characters do not exist, the process continues
to off page connector "F.' If Such characters do exist, it then
is ascertained at step 760 if nextchar +1 and nextchar +2 are
both within the hexadecimal set 0-9, lower case a-f, and
A-F). If not, the process continues to step 772 via off page
connector “I.”. If yes, it then is ascertained at step 764 if,
when treating nextchar +1 followed by nextchar +2 as a
two-digit hexadecimal number, the character whose ASCII
value equals Such number is a valid file name character. If
not a valid file name character, the process continues to Step
772 via off page connector “I.” If a valid file name character,
the character from step 764 above is appended to filename
(step 766). It then is determined if any characters remain in
the path name (step 767) after nextchar +2. If none remain,
the process ends. If characters do remain, then nextcharis Set
to nextchar +3 (step 769). The process then loops back to
step 752, via off page connector “G”, to ascertain if nextchar
is a “\.

If, in step 758, a determination is made that nextchar is not
a “%' character, it then is ascertained at step 768 if nextchar
is a valid file name character. If not, then using the ASCII
value of nextchar, a “%” followed by the two digit hexa
decimal value is appended to filename at step 770. The
process then loops back to step 756 to set nextchar to the
next character in the path name. If at step 768 the result is
positive, the process continues to Step 772 where nextcharis
appended to filename. The process then loops to step 756 via
off page connector “H.”.

Using the above directory creating process, an exemplary
URL"http://etpc.hq.altav.com/root/look at this.html is con
verted to a directory structure with a root directory of
“cachebase' as follows:
“cachebase\http\etpc.hq.altav.com\root\look%20at%20this.
html.
Locally Stored web pages may be accessed through a

browser by conventional means, Such as by Selecting an
“open' button, or by Selecting a bookmark. Selection of a
bookmark causes the computer to display the first web page
(i.e., the root web page in the tree) on the display 270. A user
may traverse through a stored directory Structure in the same
manner that Such user would traverse through the analogous
tree structure on the remote network device from which the
Stored web pages originated. In the event that a web page is
Selected that was not stored on the local computer (Such as
a web page at a higher level than the first web page), the
client computer 200 will display indicia indicating that the
Selected web page is not stored locally. For example, the
client computer 200 may display the text “the selected web
page is not Stored in local memory' when a web page that

US 6,883,020 B1

was not stored on the client computer 200 is selected. When
Viewing a Stored web page, additional indicia may be
displayed indicating that the viewed web pages were
retrieved from the memory in the client computer 200 and
not from the remote network site. Since the interceptor 394
intercepts browser requests to display web pages and auto
matically Selects an appropriate Source for the pages, the
retrieved web pages may be viewed either when the client
computer 200 is disconnected from or connected to the
network 295.
AS a Supplement to the CFHD function, a mechanism may

be included to download into non-volatile memory each web
page from the remote web site that was accessed by the
browser 399 en route to the root web page. For example, a
user may have traversed two web pages to get to a Selected
root web page. Accordingly, the two accessed, higher level
web pages are downloaded into the client computer memory,
in addition to the web pages saved by selecting the CFHD
button 400.

The function of pointers (i.e., hyperlinks) that are a part
of web pages downloaded in the client computer 200 from
the remote web site can also be maintained. More
particularly, when the computer system 200 is disconnected
from the network 395, a user may move between down
loaded web pages by Selecting hyperlinks on image map
files that are a part of displayed web pages. To that end, a
local graphical image mapping table preferably is created in
the client computer 200. The mapping table associates (i.e.,
maps) one or more Sections of a graphical image produced
by an image map file (on a downloaded web page) with one
or more locally Stored web pages. The local image mapping
table may be a relational database having the fields, “coor
dinates on image map' and “local URL.” During disconnect,
a Selection of any part of the graphical image causes the
client computer 200 to access the local image mapping table.
This enables the client computer 200 to locate and display
the web page associated with the Selected part of the
graphical image.
A process for creating the local image mapping table is

shown in FIG. 8. This process may be initiated by the
interceptor 394 either while browsing remote network sites,
or when the CFHD button 400 is selected. Similar to the
CFHD process, the preferred process of creating the local
image mapping table is a background process and thus, does
not interrupt the normal execution of the browser 399 or
other applications on the System.

The preferred proceSS for creating the local image map
ping table begins at step 800 by ascertaining whether the
HTML code of a downloaded web page includes an image
map file. This may be done by scanning for an ISMAP tag
in the HTML code. The process ends if the web page does
not include Such a file. If the web page does include an
image map file, the graphical image displayed by the image
map file then is divided into a predetermined number of
Sections at Step 802. The Sections preferably are Square in
shape and should collectively encompass the entire graphi
cal image of the image map file. Although there may be a
default number of Sections, the user may preset either the
number of Sections or the size of the Sections by means of
the configure button 402. The variable “current section” then
is Set at Step 804 to the first Section of the graphical image.
The center point of the current Section then is examined (by
the background process) at step 806. Although the center
point preferably is Selected, any other point in the Sections
could be examined to create the local image mapping table.

The client computer 200 then sends a query request, to the
remote network device, that includes the Selected coordi

15

25

35

40

45

50

55

60

65

10
nates of the graphical image (step 808). In response to this
query request, the remote network device uploads, to the
client computer 200, the web page (i.e., a response) asso
ciated with the selected point. The client computer 200 then
stores the URL of the downloaded web page and the
coordinates of the current Section of the graphical image in
the local image mapping table (step 808). It then is ascer
tained at step 810 if the last section has been reached. If it
has been reached, the process ends and the local mapping
table is fully formed. If the last section has not been reached,
then the current Section variable is Set to the next Section in
step 812. The process then loops back to step 806 to select
the center point of the current Section.

Accordingly, a user's Selection of any point of a graphical
image produced by an image map file on a displayed web
page causes the interceptor 394 to ascertain if the client
computer 200 is connected to the network 295. If the client
computer 200 is not connected to the network, the intercep
tor 394 causes the client computer 200 to access the local
image mapping table to ascertain if there is a Stored web
page associated with the Section of the graphical image that
was Selected. If there is a Stored web page associated with
Such Section, its URL in the mapping table is used to fetch
Such web page from the local directory Structure for display
on the display 270.
A mechanism also may be included for automatically

updating a downloaded copy of a remote document (e.g., a
web page from an origin web site), Stored on a disconnected
client computer 200, when such client computer 200 recon
nects to the network 295. This update captures any modifi
cations made to the web page at the origin web site while the
client computer 200 was not connected to the network 295
(i.e., during disconnect). This automatic updating mecha
nism (referred to herein as “autoupdate”) updates the down
loaded web page copy with a minimum of client computer
processor usage, thereby maximizing the Speed and effi
ciency of the client computer 200 during the update process.

FIG. 9 shows an exemplary network configuration that
includes the autoupdate function. The network 295 includes
a plurality of network devices that may be interconnected by
the Internet. The network devices include an origin network
device 900 (“origin server 900") having the web site with a
web page, the client computer 200 for accessing the origin
server 900 and displaying a web page retrieved from the
origin server 900, and an update network device (“update
server 902”). The update server 902, which may service
many client computers as described below, may be a general
purpose computer having Software for implementing the
autoupdate function.
The autoupdate function, which may be a background

process, may be initiated when the downloaded web page
(client copy) is displayed on the client computer 200. When
initiated, a copy of the web page (update copy) is uploaded
into the memory of the update server 902 from the origin
server 900. When the client computer 200 subsequently
disconnects from the network 395, the update server 902
periodically accesses the origin server 900 to ascertain if the
web page is different than the update copy. AS discussed in
greater detail below, this may be done by comparing the last
update time of the update copy with the last update time of
the web page on the origin server 900. If the web page is
different, the update copy is modified to reflect the differ
ences. This may be done by directly overwriting the update
copy with a copy of the (modified) web page.
When the client computer 200 reconnects to the network

295, it automatically re-accesses the update server 902. If
the client copy is different than the update copy at Such time,

US 6,883,020 B1
11

the client copy is modified to reflect the differences. This too
may be done by directly overwriting the client copy with a
copy of the update copy. The autoupdate process may repeat
each time that the client computer 200 disconnects from and
reconnects to the network 295. The autoupdate process can
continue until the client copy of the web page is deleted from
the memory of the client computer 200. Alternatively, the
autoupdate function may be turned off by accessing a control
panel via the configure button 402. The details of one
method for implementing this proceSS are discussed below.
AS shown below, the autoupdate efficiently updates the
client copy by utilizing the processor time of the update
server 902 instead of the processor time of the client
computer 200.

Specifically, FIG. 10 is a flow chart illustrating a process
for initiating the autoupdate proceSS prior to the time that the
client computer 200 disconnects from the network 295. The
process begins at step 1000 where the autoupdate function is
initiated (by the user) while the client copy is displayed on
the client computer 200. Illustratively, the process may be
initiated by means of a graphical user interface displaying an
“autoupdate” button 404 at the bottom of the displayed
client copy. After the autoupdate button 404 is selected, the
client 200 creates and/or updates a local “autoupdate' data
base having the fields “URL and “last update” (step 1002).
The URL of the client copy is entered under the “URL field,
and the date and time of the last update of the client copy
correspondingly is entered under the “last update” field. The
client then uploads an update message to the update Server
902 specifying the URL of the selected web page and the last
update time of such URL on the client 200 (step 1004).

At step 1006, in response to the update message, the
update server 902 modifies a “client' database that is stored
on the update server 902. The client database maintains a
listing of the web pages being maintained by the update
server 902 for each client computer 200, and the last update
time of each of the client copies of Such web pages. The
client database therefore has the fields “client”, “web page
(s)" and “last update time and date of client copy of the web
page.” Accordingly, the information from the update mes
Sage is entered into the appropriate fields in the client
database. For example, if the update server 902 is maintain
ing two web pages for the client computer 200, the client
database will have two records for the client 200. Each of the
two records therefore will specify the client 200, the URL of
the web page being maintained, and the last update time of
the client copy for the maintained web page.

At step 1008, it then is ascertained if the selected web
page already is stored in the update server 902. If yes, the
autoupdate initiation process ends. If no, the update Server
902 first downloads the web page from the origin server 900
(creating the update copy), and then modifies a “master”
database stored on the update server 902 (step 1010). The
master database, which maintains a listing of the last update
time of each stored update copy on the update server 902,
includes fields “URL and “last update.” Accordingly, the
URL of the web page is entered under the “URL field, and
the date and time of the last update of the update copy is
entered under the “last update” field.

FIG. 11 is a flow chart illustrating a process for main
taining the update copy while the client computer 200 is
disconnected from the network 295. Specifically, the update
server 902 first accesses the origin server 900 (step 1100)
and then compares the “last update” field in the master list
with the last update time of the web page (step 1102) on the
origin server 900. The last update time of the web page may
be accessed by conventional means. For example, the update

15

25

35

40

45

50

55

60

65

12
server 902 may transmit a message to the origin server 900
requesting a copy of the web page. In response, the origin
server 900 may transmit such copy to the update server 902
with a header having the last update time of the web page.
At step 1104, it then is ascertained if the compared times are
different. If the times are not different, the process ends. If
different and the last update time of the web page on the
origin device is more recent than the last update time of the
update copy, the process proceeds to Step 1106 where a copy
of the web page (which has been modified since the previous
download onto the update server 902) is downloaded to the
update server 902. As noted above, this may be done by
overwriting the update copy with the updated web page.
After the updated web page is downloaded onto the update
server 902, the “last update” field of the master database
table is updated for Such web page to reflect the recent
update (step 1108). This process may repeat periodically
until the client computer 200 reconnects to the Internet.

FIG. 12 is a flow chart illustrating a process for updating
the client copy when the client computer 200 reconnects to
the network 295 (step 1200). At step 1202, the client
computer 200 uploads a reconnect message to the update
server 902 notifying the update server 902 that the client 200
is reconnected to the network. The update server 902
accesses its internal client database and master database to
determine if any of the client copies must be modified (Step
1204). This is accomplished by comparing the times of the
client copies in the update Server client database against the
times in the master database. The update server 902 then
uploads to the client a list of each client copy that requires
modification (step 1206).
At step 1208, the client responsively uploads a time

message to the update server 902 with the last update times
of the client copies in the list. These times are retrieved from
the local autoupdate database. The update server 902 then
compares the times received in the time message against the
times in the master database (step 1210). At step 1212, the
update server 902 uploads to the client 200 a copy of all web
pages that have been modified Since the times in the time
message. These web pages are determined by comparing the
times received in the time messages to the times Stored in the
master database.
The above process therefore enables the autoupdate pro

cess to be used even when a client computer 200 manually
updates the client copy via a network that is not accessible
to the update server 902. Specifically, after the client copy is
manually updated, the "last update' field in the local autoup
date database consequently is modified to reflect the time of
Such update. In the event that Such time is more recent than
the time of the update copy during the comparison in Step
1210, the process ends, thereby maintaining the manually
updated copy of the web page as the most recent client copy
of the web page. The update server 902 may then modify the
update copy. AS previously noted, the update Server 902 may
periodically access the origin server 900 to update the
update copy of the web page. The accessing time period may
be configured prior to selection of the autoupdate button 404
by selecting the configure button 402 (FIG. 4). Such time
period may be Selected based upon the nature of the infor
mation contained in the web page. For example, if the web
page includes up to the minute Stock quotes, it would be
desirable to select the time period to be relatively short, such
as every ten minutes. Conversely, if the web page includes
information relating to Scores for weekly football games, it
would be desirable to select the time periods to be every
Seven dayS.
The autoupdate process also may be used even when a

remote web page is not initially Stored on the client com

US 6,883,020 B1
13

puter 200. Specifically, when the client computer 200
accesses the web page at the web site, the autoupdate
proceSS is initiated. Upon initiation, the process first down
loads the selected web page to the client computer 200, and
then continues the autoupdate process as if the downloaded
web page was originally Stored on the client when the
proceSS was initiated.

The client computer 200 also may be enabled to first
download a copy 1304 of a remote network document 1306
(e.g., a database) from an origin server 1310 ("origin server
1310), and then modify the (database) copy 1304 while
disconnected from the network 295. Upon reconnect to the
network 295, the client computer 200 then may update the
remote (database) document 1306 to reflect the changes
made by the client computer 200 during disconnect. This
enables the user to modify Such a database during disconnect
while automatically ensuring that Such modifications will be
made to the remote (database) document 1306 upon
re-COnnect.

To that end, as shown in FIG. 13, the client computer 200
may include a local hypertext server 1300 for formatting
data received from the interceptor 394 into a selected
interface format, a local application program 1302, which is
compatible with the database and receives formatted infor
mation from the hypertext server, and a downloader 398 for
downloading, prior to disconnect, a local copy 1304 of the
database 1306 onto the client computer 200 from the remote
network device. The local application program 1302 is a
Substantial duplicate of the application program 1312 on the
origin server 1310. In addition, program 1302 may be either
downloaded with the local copy 1304, preloaded into the
memory of the client computer 200, or otherwise accessible
by the client computer 200 during disconnect. The interface
format may be any known interface format Such as, for
example, Common Gateway Interface (CGI), Internet
Server Application Program Interface (ISAPI, co-developed
by Microsoft Corporation and Process Software Company),
or JAVA Applet (developed by Sun Microsystems). CGI is
discussed in more detail in “The WWW Common Gateway
Interface', version 1.1, in Internet draft form, dated Feb. 16,
1996, by DRT Robinson.

Accordingly, during disconnect, requests from the
browser 399 to modify the database are intercepted by the
interceptor 394. Such request may include data from a
template. The interceptor 394 responsively determines that
the client computer 200 is disconnected from the network,
and then directs the request to the local hypertext server. The
local hypertext server responsively translates the request and
transfers the data (from the template) to the local application
program to modify the locally Stored database copy. This
proceSS is done completely while disconnected from the
network 295 and thus, does not require access to the
hypertext server on the origin server 1310. Moreover, this
proceSS is a background proceSS and thus, does not interrupt
the execution of the browser. The modifications to the
database copy 1304 then may be made to the database 1306
on the origin server 1310 upon reconnect.
More particularly, FIG. 14 is a block diagram of the local

hypertext server 1300 stored on the client computer 200 in
relation to the interceptor 394. The local hypertext server
1300 may include the following elements:

an engine 1404 for performing the interfacing functions of
an interface;

a directory mapping table 1406 for storing the location of
the database copy 1304 within the directory structure of
the client local computer;

a data pump 1408 for downloading the database 1306
from the origin server 1310; and

5

15

25

35

40

45

50

55

60

65

14
a cache control 1410 for causing the data pump to

download the database from the origin server 1310 to
the client computer 200.

The interceptor 394 may include the following elements:
a redirector 1400 for receiving browser requests and

directing Specified requests to the local hypertext
Server; and

a connection manager 1402 for determining if the client
computer 200 is connected to the network 295.

The function of each of these elements are more fully
understood with reference to FIGS. 15 and 16. FIG. 15 is a
flow chart illustrating a proceSS for downloading the data
base 1306 from the remote network device, and FIG. 16 is
a flow chart illustrating a process for accessing and modi
fying the downloaded database copy 1304 of the database.
With reference to FIG. 15, the process begins at step 1500

in which the browser 399 on the client computer 200
requests that the database 1306 be downloaded from the
origin server 1310. This request is intercepted by the inter
ceptor 394, which determines if the client computer 200 is
connected to the network. The function of the interceptor
394 is effected here by the redirector 1400 and the connec
tion manager 1402. At step 1502, the connection manager
1402 determines if the client computer 200 is connected to
the network 295. If disconnected, the process ends because
the database 1306 cannot be downloaded. If connected to the
network 295, the interceptor 394 transmits the request to the
origin server 1310. The origin server 1310 responds at step
1506 by transmitting a list, having a “mime' header, to the
client computer 200. The list then is transmitted to the cache
control 1410 (step 1508) that first determines from the list
which databases will be downloaded, and then causes the
data pump 1408 to begin downloading a copy of each of the
databases in the list. After the database copy 1304 is
downloaded, the cache control 1410 creates a directory
mapping table (if not already created) having fields “URL'
and “location in local directory structure” (step 1510). The
cache control 1410 then adds data to the directory mapping
table, thereby providing the information for creating a client
directory Structure, if necessary, in the client computer 200
that is Similar to the hierarchical tree Structure on the origin
server 1310. The client directory structure may be created by
conventional means.
Once the database copy is downloaded into the client

directory Structure and its location is Stored in the directory
mapping table, the client may access and modify the data
base copy with the client browser 399 while disconnected
from the network 295. FIG. 16 thus shows a process of
accessing and modifying the downloaded database copy in
the client computer 200 when disconnected. Specifically,
after data is entered into the templates, the browser 399 first
requests access to the database 1306 via the interceptor 394
and the redirector 1400 (step 1600). The redirector then
queries the connection manager 1402 at step 1602 to deter
mine if the client computer 200 is connected to the network
295. If connected to the network 295, the database 1306 on
the origin server 1310 is accessed and modified, by conven
tional means, over the network 295 (step 1604).

If the client computer 200 is not connected to the network
295, the redirector 1400 accesses the mapping table 1406 to
ascertain the location of the database and local application
program in the client directory structure (step 1606). The
redirector 1400 then transmits the location of the local
application program 1302, the database copy 1304, and the
data to modify the database copy 1304 to the local engine
1404 at step 1608. The local engine 1404 then locates the
database copy 1306 and local application program, trans

US 6,883,020 B1
15

lates the data, and then transmits the translated data to the
local application program 1302, (step 1610). The application
program 1302 then modifies the database at step 1612 and
responsively sends an HTML response to the browser 399
reflecting the modifications (step 1614). Upon reconnect, the
data pump 1408 may upload the modified database to the
origin server 1310 to reflect the changes made in the
database.

In the preferred embodiment, which is implemented using
CGI, the cache control 1410 may access a plurality of
functions to modify the mapping table 1406. Among those
functions are:

addCGlcacheEntry(CString cuRL, CString cDirectory);
removeOGlcacheEntry(CStringcURL);
mapCache?(CString cuRL, CString & cResult);
findCGlcacheEntry(CStringcURL);
getCGlcacheEntry(intnIndex, CString cuRL, CString &

cDirectory);
getCGlcachecount();
readCGlcachellist(); and
writeCGIcachellist();
Each function is briefly discussed below:
The function “add CGlcache Entry' creates a new direc

tory entry on the client computer 200 that represents a
remote (CGI) application, given the URL String and the root
directory. It is assumed that the full root directory path is
Specified in the cDirectory parameter passed to this routine,
and that cURL is the Standard reference to the application on
the remote Server. An example of the input parameter for
cURL could be “//www.server1.com/~alias/aca-1/
dispatch.cgi”, where www.server1.com is the remote
address of the Server, "/-alias/aca-1 is a directory Specifi
cation on the Server and “dispatch.cgi” is the CGI applica
tion to run. An example of the input parameter for cDirec
tory might be “C:\WIN32APPWGWF\", which identifies
the root directory for all mapped entries. The result of this
function is that an entry is created in the directory mapping
table, and an associated directory is created that is used to
contain files required to locally download the remote appli
cation Specified. The database mapping created for the above
example, having a URL of
“HTTP://www.server1.com/~alias/aca-1/dispatch.cgi”
maps to the directory:
“C:\WIN32APPWGWF\WWWSERVER1.COM\-ALIAS.-

\ACA-I\,'
on the local System when disconnected.

The function “removeCGlcachentry” enables the cache
control 1410 to remove a “URL to directory' mapping in the
directory mapping table given cuRL, where cuRL is the
specific URL map entry. If there is no matching URL, the
request returns an error. If a URL exists in the database
mapping table, it is removed.

The function “mapCache” is used by the redirector to
Search the directory mapping table for matching the passed
cURL to an existing entry. If a match is found, the directory
mapping is returned using cResult. This routine is used when
the client computer 200 is disconnected to determine if the
remote request can be satisfied by a stored CGI entry. If
cResult returns non-zero, an entry exists and the request is
directed to the engine with a SCRIPT NAME environment
parameter pointing to the local application as a result of this
mapping. An example of the input parameter for the URL
could be "//www.server1.com/-aliaS/aca-1/dispatch.cgi.” If a
match existed, an example of the output parameter for
c Result might be “C:\WIN32 APP \W GWF \-
WWW. SERVER1. COM \-ALIASA ACA-1\DISPAT

15

25

35

40

45

50

55

60

65

16
CH.CGI.” The URL has been mapped to a local directory,
and the executable file DISPATCH.CGI has been parsed and
appended to the directory Specification.
The functions “findCGlcache Entry,” “getCGlcachentry'

and "getCGlcachecount” are enumeration routines used by
the graphical user interface of the application to display and
manage information in the directory mapping table.
The functions “readCGlcachelist' and “writeCGlcach

eList” are low level routines used to read and write the basic
objects used in the directory mapping table.

After the database copy is modified and the client is
reconnected to the network 295, the client computer 200
may access the Server again and modify the database to
reflect the data added, removed, or modified during discon
nect (database transaction). This may be done by conven
tional methods, Such as by means of a reconciliation engine
to update the database, or by directly overwriting the data
base on the origin server 1310.
When the hypertext server 1300 is in use, a user of the

client computer 200 connects to the origin server 1310, via
the network 295, and accesses a application program asso
ciated with the database. The interface associated with that
application program may include a "download” button
which, when Selected by the client user, causes the database
and associated origin server 1310 directory structure to be
downloaded from the origin server 1310 to the client com
puter 200. A status bar may be displayed by the client
computer 200 during the download. The user then may
disconnect from the network 295 and modify the database
copy via the local application and the browser 399 in a
manner that is Substantially identical (to the user) to when
the client computer 200 is connected to the network. Access
through the browser 399 is necessary in all CGI application
programs, for example, designed for the World Wide Web
because Such applications frequently do not have a user
interface. Specifically, the CGI application “standard in” (a
part of each application program that specifies from where
data may be received; for example, a keyboard or a mouse)
often may be set to receive input from the hypertext server
only which, in this example, receives input from the browser
399. Data to update the database copy may be entered into
one or more templates displayed by the browser 399. Once
the data is entered into the templates, the user may select a
“submit” button, for example, that enters the data into the
database copy. Upon reconnect, the modifications to the
database copy are automatically made to the database on the
origin Server 1310. Accordingly, the database may be main
tained locally while disconnected from the network 295.

It should be understood, however, that use of the hyper
text server 1300 may be practiced with other types of remote
documents, Such as word processor or spread sheet docu
ments. Accordingly, maintenance of a database is discussed
here for exemplary purposes and is not intended to limit its
Scope. It also should be noted that although many embodi
ments of the System have been discussed with reference to
World Wide Web pages, the system may be practiced with
various other types of documents. Moreover, although CGI
is disclosed as the preferred embodiment, it should be
understood that the disclosed system may be utilized with
any known interface format Specification, Such as those
previously mentioned. The above discussion of CGI was
exemplary only and therefore should not be considered a
limitation of the interface System.
The System may be managed by conventional means. One

Such means is a graphical user interface listing the down
loaded web pages and the aspects of the System applied to
each of those web pages.

US 6,883,020 B1
17

In an alternative embodiment, the System may be imple
mented as a computer program product for use with a
computer System. Such implementation may include a Series
of computer instructions fixed either on a tangible medium,
Such as a computer readable media (e.g., diskette 242,
CD-ROM 247, ROM 215, or fixed disk 252 as shown in
FIG. 3) or transmittable to a computer System, via a modem
or other interface device, Such as communications adapter
290 connected to the network 295 over a medium 291.
Medium 291 may be either a tangible medium (e.g., optical
or analog communications lines) or a medium implemented
with wireless techniques (e.g., microwave, infrared or other
transmission techniques). The Series of computer instruc
tions embodies all or part of the functionality previously
described herein with respect to the system. Those skilled in
the art Should appreciate that Such computer instructions can
be written in a number of programming languages for use
with many computer architectures or operating Systems.
Furthermore, Such instructions may be Stored in any
memory device, Such as Semiconductor, magnetic, optical or
other memory devices, and may be transmitted using any
communications technology, Such as optical, infrared,
microwave, or other transmission technologies. It is
expected that Such a computer program product may be
distributed as a removable media with accompanying
printed or electronic documentation (e.g., Shrink wrapped
Software), preloaded with a computer System (e.g., on Sys
tem ROM or fixed disk), or distributed from a server or
electronic bulletin board over the network 295 (e.g., the
Internet or World Wide Web).

Each of the graphical user interfaces discussed above may
be constructed by conventional Software programming tech
niques known in the art. It is preferred that the GUIs be
constructed by visual builders.

Although various exemplary embodiments of the inven
tion have been disclosed, it will be apparent to those skill in
the art that various changes and modifications can be made
which will achieve some of the advantages of the invention
without departing from the true Scope of the invention.
These and other obvious modifications are intended to be
covered by the appended claims.

Having thus described the invention, what we desire to
claim and Secure by Letters Patent is:

1. A method of downloading into memory of a local
computer System documents from nodes on a remote net
work Site, the nodes being in a hierarchical tree Structure
with a plurality of levels, the tree Structure having a highest
node level, the method comprising:

designating one of the nodes in the tree Structure as a root
node,

designating an intermediate node level of the tree
Structure, the intermediate node level being the same as
or below the level of the root node and less than a
deepest node level; and

downloading, into the memory of the local computer
System, documents in the nodes on levels that are in and
between the root node and the intermediate node level,
comprising:
filtering documents in the nodes on levels that are

between the root node and the intermediate node
level; and

preventing preselected parts of the documents from
being downloaded.

2. The method of claim 1 wherein downloading further
comprises:

preventing preselected remote documents from being
downloaded into the memory of the local computer
System.

5

15

25

35

40

45

50

55

60

65

18
3. The method of claim 2 wherein filtering further com

prises:
ascertaining whether the filtered remote document is

larger than a preselected maximum size.
4. The method of claim 2 wherein filtering further com

prises:
ascertaining whether the filtered remote document is at

the remote network Site.
5. The method of claim 2 wherein filtering further com

prises:
ascertaining whether the filtered document is a prese

lected type.
6. The method of claim 1 wherein the remote site is a

World Wide Web Site.
7. The method of claim 1 wherein the memory of the local

computer System is free from remote network documents
that are in nodes on a higher level than the root node.

8. The method of claim 1 wherein the method is a
background process.

9. An apparatus for downloading into memory of a local
computer System documents from nodes on a remote net
work Site, the nodes being in a hierarchical tree Structure
with a plurality of levels, the tree Structure having a highest
node level, the apparatus comprising:
means for designating one of the nodes in the tree

Structure as a root node,
means for designating a deepest node level for download

ing of the tree Structure, the deepest node level for
downloading being the same as or below the level of
the root node and less than a deepest node level of the
tree structure; and

means for downloading, into the memory of the local
computer System, documents in the nodes on levels that
are in and between the root node and the deepest node
level for downloading, comprising:
means for filtering documents in the nodes on levels

that are between the root node and the deepest node
level for downloading, and

means for preventing preselected parts of the docu
ments from being downloaded.

10. The apparatus of claim 9 wherein the means for
downloading includes:
means for preventing, Subject to the filtering means,

preSelected remote documents from being downloaded
into the memory of the local computer System.

11. The apparatus of claim 10 wherein the filtering means
comprises:
means for ascertaining whether the filtered remote docu

ment is larger than a preselected maximum size.
12. The apparatus of claim 10 wherein the filtering means

comprises:
means for ascertaining whether the filtered remote docu

ment is at the remote network Site.
13. The apparatus of claim 10 wherein the filtering means

comprises:
means for ascertaining whether the filtered documents is

a preselected type.
14. The apparatus of claim 9 wherein the remote site is a

World Wide Web Site.
15. The apparatus of claim 9 wherein the memory of the

local computer System does not contain documents that are
in nodes on a higher level than the root node.

16. A computer program product comprising:
a computer usable medium having computer readable

program code thereon for downloading into memory of

US 6,883,020 B1
19

a local computer System documents from nodes on a
remote network Site, the nodes being in a hierarchical
tree Structure with a plurality of levels, the tree Struc
ture having a highest node level, the computer readable
code comprising:
program code for designating one of the nodes in the

tree Structure as a root node,
program code for designating a preselected number of

levels below the root node, the preselected number
of levels above a deepest node level of the tree
Structure, and

program code for downloading, into the memory of the
local computer System, documents of the preselected
number of levels, comprising:
program code for filtering documents in the prese

lected number of levels; and
program code for preventing preselected parts of the

documents from being downloaded.
17. The computer program product as defined by claim 16

wherein the program code for downloading comprises:
program code for preventing, Subject to the program code

for filtering, preselected remote documents from being
downloaded into the memory of the local computer
System.

18. The computer program product as defined by claim 17
wherein the program code for filtering comprises:

program code for ascertaining whether the filtered remote
document is larger than a preselected maximum size.

19. The computer program product as defined by claim 17
wherein the program code for filtering comprises:

program code for ascertaining whether the filtered remote
document is at the remote network Site.

20. The computer program product as defined by claim 17
wherein the program code for filtering comprises:

program code for ascertaining whether the filtered docu
ment is a preselected type.

21. The computer program product as defined by claim 16
wherein the remote site is a World Wide Web site.

22. The computer program product as defined by claim 16
wherein the memory of the local computer System is free

15

25

35

20
from remote network documents that are in nodes on a
higher level than the root node.

23. The computer program product as defined by claim 16
wherein the local computer System includes a browser, the
program code for downloading not interrupting execution of
the browser.

24. A method of downloading into memory of a local
computer system documents from nodes on a World Wide
Web site, the nodes being in a hierarchical tree structure with
a plurality of levels, the tree Structure having a highest node
level, the method comprising:

designating as a root node a node in the tree Structure at
which an accessed page of the World Wide Web site is
located;

designating an intermediate node level of the tree
Structure, the intermediate node level being the same as
or below the level of the root node and less than a
deepest node level; and

downloading, into the memory of the local computer
System, documents in the nodes on levels that are in and
between the root node and the intermediate node level,
comprising:
filtering documents in the nodes on levels that are

between the root node and the intermediate node
level; and

preventing preselected parts of the documents from
being downloaded.

25. The method of claim 24 wherein downloading further
comprises:

preventing preselected remote documents from being
downloaded into the memory of the local computer
System.

26. The method of claim 24 wherein downloading further
comprises:

filtering documents in the nodes on levels that are
between the root node and the intermediate node level;
and

preventing preselected parts of the documents from being
downloaded.

