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METHOD AND CONSTRUCT FOR SYNTHETIC BIDIRECTIONAL
SCBY PLANT PROMOTER

PRIORITY CLAIM
This application claims the benefit of the filing date of U.S. Provisional Patent
Application Serial No. 61/582,148 filed December 30, 2011. This application also
claims benefit of the filing date of U.S. Provisional Patent Application Serial No.
61/641,956 filed May 3, 2012.

TECHNICAL FIELD
This invention is generally related to the field of plant molecular biology, and

more specifically the field of stable expression of multiple genes in transgenic plants.

BACKGROUND

Many plant species are capable of being transformed with transgenes from
other species to introduce agronomically desirable traits or characteristics, for example,
improving nutritional value quality, increasing yield, conferring pest or disease
resistance, increasing drought and stress tolerance, improving horticultural qualities
(such as pigmentation and growth), imparting herbicide resistance, enabling the
production of industrially useful compounds and/or materials (rom the plant, and/or
enabling the production of pharmaceuticals. The introduction of transgenes into plant
cells and the subsequent recovery of fertile transgenic plants that contain a stably
integrated copy of the transgene can be used to producé transgenic plants that possess
the desirable traits.

Control and regulation of gene expression can occur through numerous
mechanisms. Transcription initiation of a gene is a predominant controlling
mechanism of gene expression. Initiation of transcription is generally controlled by
polynucleotide sequences located in the 5'- flanking or upstream region of the
transcribed gene. These sequences are collectively referred to as promoters. Promoters
generally contain signals for RNA polymerase to begin transcription so that messenger
RNA (mRNA) can be produced. Mature mRNA is translated by ribosome, thereby
synthesizing protcins. DNA-binding proteins interact specifically with promoter DNA
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sequences to promote the formation of a transcriptional complex and initiate the gene
expression process. There are a variety ot eukaryotic promoters 1solated and
characterized from plants that are functional for driving the expression of a transgene in
plants. Promoters that affect gene expression in response to environmental stimuli,
nutrient availability, or adverse conditions including heat shock, anaerobiosis, or the
presence of heavy metals have been isolated and characterized. There are also
promoters that control gene expression during development or in a tissue, or organ
specific fashion. In addition, prokaryotic promoters isolated from bacteria and virus
have been isolated and characterized that are functional for driving the expression of a
transgene in plants.

A typical eukaryotic promoter consists of a minimal promoter and other
cis-elements. The minimal promoter is essentially a TATA box region where RNA
polymerase II (polll), TATA-binding protein (TBP), and TBP-associated factors
(TAFs) may bind to initiate transcription. However in most instances, sequence
elements other than the TATA motif are required for accurate transcription. Such
sequence elements (e.g., enhancers) have been found to elevate the overall level of
expression of the nearby genes, often in a position- and/or orientation-independent
manner. Other sequences near the transcription start site (e.g., INR sequences) of some
polll genes may provide an alternate binding site for factors that also contribute to
transcriptional activation, even alternatively providing the core promoter binding sites
for transcription in promoters that lack functional TATA elements. See e.g.,
Zenzie-Gregory et al. (1992) J. Biol. Chem. 267: 2823-30.

Other gene regulatory elements include sequences that interact with specific
DNA-binding factors. These sequence motifs are sometimes referred to as
cis-elements, and are usually position- and orientation-dependent, though they may be
found 5’ or 3’ to a gene’s coding sequence, or in an intron. Such cis-elements, to which
tissue-specific or development-specific transcription factors bind, individually or in
combination, may determine the spatiotemporal expression pattern of a promoter at the
transcriptional level. The arrangement of upstream cis-elements, followed by a
minimal promoter, typically establishes the polarity of a particular promoter.
Promoters in plants that have been cloned and widely used for both basic rescarch and

biotechnological application are generally unidirectional, directing only one gene that
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has been fused at its 3’ end (i.e., downstream). See, for example, Xie et al. (2001) Nar.
Biotechnol. 19(7):677-9; U.S. Patent No. 6,388,170.

Many cis-elements (or “upstream regulatory sequences”) have been identified
in plant promoters. These cis-elements vary widely in the type of control they exert on
operably linked genes. Some elements act to increase the transcription of operably
linked genes in response to environmental responses (e.g., temperature, moisture, and
wounding). Other cis-elements may respond to developmental cues (e.g., germination,
seed maturation, and flowering) or to spatial information (e.g., tissue specificity). See,
for example, Langridge et al. (1989) Proc. Natl. Acad. Sci. US4 86:3219-23. The type
of control of specific promoter elements is typically an intrinsic quality of the
promoter; i.e., a heterologous gene under the control of such a promoter is likely to be
expressed according to the control of the native gene from which the promoter element
was isolated. These elements also typically may be cxchanged with other elements and
maintain their characteristic intrinsic control over gene expression.

It is often necessary to introduce multiple genes into plants for metabolic
engineering and trait stacking, which genes are frequently controlled by identical or
homologous promoters. However, homology-based gene silencing (HBGS) 1s likely to
arise when multiple introduced transgenes have homologous promoters driving them.
See, e.g., Mol et al. (1989) Plant Mol. Biol. 13:287-94. HBGS has been reported to
occur extensively in transgenic plants. See, e.g., Vaucheret and Fagard (2001) Trends
Genet. 17:29-35. Several mechanisms have been suggested to cxplain the phenomena
of HBGS, all of which include the feature that sequence homology in the promoter
triggers cellular recognition mechanisms that result in silencing of the repeated genes.
See, e.g., Matzke and Matzke (1995) Plant Physiol. 107:679-85; Meyer and Saedler
(1996) Ann. Rev. Plant Physiol. Plant Mol. Biol. 47:23-48; Fire (1999) Trends Genet.
15:358-63; Hamilton and Baulcombe (1999) Science 286:950-2; and Steimer et al.
(2000) Plant Cell 12:1165-78.

Strategies to avoid HBGS in transgenic plants frequently involve the
development of synthetic promoters that are functionally cquivalent but have minimal
sequence homology. When such synthetic promoters are used for expressing
transgenes in crop plants, they may aid in avoiding or reducing HBGS. See, e.g.,

Mourrain et al. (2007) Planta 225(2):365-79; Bhullar et al. (2003) Plant Physiol.
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132:988-98. Such promoters can be generated by introducing known cis-elements in a novel or synthetic
stretch of DNA, or alternatively by “domain swapping,” wherein domains of one promoter are replaced
with functionally equivalent domains from other heterologous promoters.

Thus, there remains a need for constructs and methods for stable expression of multiple
transgenes effectively with minimum risk for recombination or loss of transgenes through breeding or

multiple generations in transgenic plants.

DISCLOSURE

Described herein are particular synthetic promoters comprising a Ubil minimal promoter. In
embodiments, a synthetic promoter comprising a Ubil minimal promoter further comprises at least one
sequence element of a SCBV promoter or functional equivalent thereof. In some examples, such a
synthetic promoter (a “synthetic SCBV promoter”) can be a promoter that is able to control transcription
of an operably linked nucleotide sequence in a plant cell. In other examples, a synthetic SCBV promoter
may be a synthetic bidirectional SCBV promoter, for example, a nucleic acid comprising a minimal Ubil
promoter element nucleotide sequences oriented in the opposite direction with respect to the SCBV
promoter ¢lements that is able to control transcription in a plant cell of two operably linked nucleotide
sequences that flank the promoter. Additional elements that may be engineered to be included in a
synthetic SCBYV bidirectional promoter include introns (e.g., an alcohol dehydrogenase (ADH) intron),
exons, and/or all or part of an upstream promoter region. In certain examples, a synthetic bidirectional
promoter may comprise more than one of any of the foregoing.

A particular embodiment relates to a synthetic polynucleotide comprising (a) a minimal core
promoter element from an Ubiquitin-1 gene of Zea mays wherein the minimal core promoter element
comprises SEQ ID NO: 1 or its complement; (b) a functional promoter nucleotide sequence from a Sugar
Cane Bacilliform Virus promoter; and (c) an intron from an alcohol dehydrogenase gene; wherein the
functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus promoter and the intron
from the alcohol dehydrogenase gene comprise SEQ ID NO: 6 or its complement.

Particular embodiments of the invention include cells (e.g., plant cells) comprising a synthetic
SCBYV promoter or functional equivalent thercof. For example, specific embodiments may include a cell
comprising a synthetic bidirectional SCBV promoter or functional equivalent thereof. Plant cells
according to particular embodiments may be present in a cell culture, a tissue, a plant part, and/or a whole
plant. Thus, a plant (e.g., a monocot or dicot) comprising a cell having a synthetic SCBV promoter or

functional equivalent thercof are included in some embodiments.

Date Regue/Date Received 2020-06-15
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Other embodiments of the invention include a means for initiating transcription

of two operably linked nucleotide sequences of interest. Means for initiating

“transcription of two operably linked nucleotide sequences of interest include the

synthetic bidirectional SCBV promoter of SEQ ID NO: 5.

Also provided are constructs and methods for expressing multiple genes in
plant cells and/or plant tissues. The constructs provided comprise at least one
bi-directional promoter linked to multiple gene expression cassettes, wherein the
bi-directional promoter comprises a functional promoter nucleotide sequence from
Sugar Cane Bacilliform Virus (SCBV) promoter. In some embodiments, the
constructs and methods provided employs a bi-directional promoter based on a
minimal core promoter element from a Zea mays Ubiquitin-1 gene, or a functional
equivalent thereof, and nucleotide sequence clements from a Sugar Cane Bacilliform
Virus promoter. In some embodiments, the constructs and mcthods provided allow
expression of genes between three and twenty.

In one aspect, provided is a synthetic polynucleotide comprising a minimal core
promoter element from an Ubiquitin-1 gene of Zea mays or Zea luxurians and a
functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus
promoter. In one embodiment, the minimal core promoter element comprises a
polynucleotide sequence that is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or
100% identical to SEQ ID NO: 1 or its complement. In a further or alternative
embodiment, the minimal core promoter element comprises a polynuclcotide
sequence selected from the group consisting of SEQ ID NOs: 1 and 16-40. Ina
further embodiment, the minimal core promoter element comprises SEQ ID NO: 1 or
its complement. In a further embodiment, the minimal core promoter element consists
essentially of SEQ ID NO: 1 or its complement. In another embodiment, the synthetic
polynucleotide provided further comprises an exon from an Ubiquitin-1 gene and an
intron from an Ubiquitin-1 genc. In a further embodiment, the exon is from an
Ubiquitin-1 gene of Zea mays or Zea luxurians. In another embodiment, the synthetic
polynucleotide provided further comprises an intron from an alcohol dehydrogenase
gene. In another embodiment, the synthetic polynucleotide provided furthcr comprises
an upstream regulatory sequence from the Sugar Cane Bacilliform Virus promoter. In

another embodiment, the functional promoter nucleotide sequence from a Sugar Cane
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Bacilliform Virus promoter and the alcohol dehydrogenase gene a polynucleotide sequence that
is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to SEQ ID NO: 6 or its
complement. In a further or alternative embodiment, the functional promoter nucleotide
sequence from a Sugar Cane Bacilliform Virus promoter and the intron from the alcohol
dehydrogenase gene comprise SEQ ID NO: 6 or its complement. In a further embodiment, the
functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus promoter and the
intron from the alcohol dehydrogenase gene consist essentially of SEQ ID NO: 6 or its
complement.

In one embodiment, the synthetic polynucleotide provided further comprises at least one
element selected from a list comprising an upstream regulatory sequence (URS), an enhancer
element, an exon, an intron, a transcription start site, a TATA box, a heat shock consensus
element, and a translation START and/or STOP nucleotide sequence. In another embodiment,
the synthetic polynucleotide provided further comprises an element selected from the group
consisting of an upstream regulatory sequence (URS), an enhancer element, an exon, an intron, a
transcription start site, a TATA box, a heat shock consensus element, a translation START
and/or STOP nucleotide sequence, and combinations thereof. In another embodiment, the
synthetic polynucleotide provided further comprises a nucleotide sequence of interest operably
linked to the minimal core promoter element. In another embodiment, the minimal core
promoter element from a Zea mays Ubiquitin-1 gene and the functional promoter nucleotide
sequence from a Sugar Cane Bacilliform Virus promoter are in reverse complementary
orientation with respect to each other in the polynucleotide.

In another embodiment, the synthetic polynucleotide provided comprises an exon from
an Ubiquitin-1 gene, an intron from an Ubiquitin-1 gene, and an intron from an alcohol
dehydrogenase gene. In a further or alternative embodiment, the synthetic polynucleotide
provided comprises a second coding nucleotide sequence of interest operably linked to the
functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus promoter. In a
further embodiment, the synthetic polynucleotide provided comprises a polynucleotide sequence
that is at least 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to SEQ ID NO: 5 or
its complement. In a further embodiment, the synthetic polynucleotide provided comprises
SEQ ID NO: 5 or its complement. In a further embodiment, the synthetic polynucleotide

provided consists

Date Regue/Date Received 2020-06-15
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essentially of SEQ ID NO: 5 or its complement. In a [urther embodiment, the exon or
intron is from an Ubiquitin-1 gene of Zea mays or Zea luxurians.

In a further embodiment, the synthetic polynucleotide provided comprises a
first coding nucleotide sequence of interest operably linked to the minimal core
promoter element from a Zea mays Ubiquitin-1 gene. In another further embodiment,
the synthetic polynucleotide provided comprises a second coding nucleotide sequence
of interest operably linked to the functional promoter nucleotide sequence from a Sugar
Cane Bacilliform Virus promotcr.

In another aspect, provided is a method for producing a transgenic cell, the
method comprising transforming the cell with the polynucleotide provided herein. In
one embodiment, the cell is a plant cell. In another aspect, provided is a plant cell
comprising the polynucleotide provided herein. In another aspect, provided is a plant
comprising the plant cell provided herein. 7

In another aspect, provided is a method for expressing a nucleotide sequence of
interest in a plant cell, the method comprising introducing into the plant cell the
nucleotide sequence of interest operably linked to a means for initiating transcription of
two operably linked nucleotide sequences of interest. In one embodiment, the method
provided comprises introducing into the plant cell a nucleic acid comprising (a) the
nucleotide sequence of interest operably linked to the means for initiating transcription
of two operably linked nucleotide sequences of interest; and (b) a second nucleotide
sequence of interest operably linked to the means for initiating transcription of two
operably linked nucleotide sequences of interest.

In one embodiment, the means for initiating transcription of two operably
linked nucleotide sequences of interest comprises SEQ ID NO: 5 or its complement. In
another embodiment, the means for initiating transcription of two operably linked
nucleotide sequences of interest comprises SEQ ID NO: 5. In another embodiment, the
means for initiating transcription of two operably linked nucleotide sequences of
interest comprises the reverse complement of SEQ 1D NO: 5. In another embodiment,
the nucleic acid is introduced into the plant cell so as to target to a predetermined site in
the DNA of the plant cell the nucleotide sequence of interest operably linked to the
means for initiating transcription of two operably linked nucleotide sequences of

interest. In a further or alternative embodiment, the nucleotide sequence of interest
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operably linked to the means for initiating transcription of two operably linked
nucleotide sequences of interest is targeted to the predetermined site utilizing Zinc
finger nuclease-mediated recombination.

In some embodiments, the exon is from an Ubiquitin-1 gene of a Zea spp. In
some embodiments, the intron is from an Ubiquitin-1 gene of a Zea spp. In some
embodiments, the Zea spp. 1s Zea mays or Zea luxurians.

In another aspcct, provided is a nucleic acid construct for expressing multiple
genes in plant cells and/or tissues. The nucleic acid construct comprises (a) a
bi-directional promoter, wherein the bi-directional promoter comprises a functional
promoter nucleotide sequence from Sugar Cane Bacilliform Virus (SCBV)
promoter; and (b) two gene expression cassettes on opposite ends of the
bi-directional promoter; wherein at least one of the gene expression cassettes
comprises two or more genes linked via a translation switch.

In one embodiment, the bi-directional promoter comprises at least one
enhancer. In another embodiment, the bi-directional promoter does not comprise an
enhancer. In another embodiment, the nucleic acid construct comprises a binary
vector for Agrobacterium-mediated transformation. In one embodiment, the
bi-directional promoter comprises an element selected from the group consisting of
an upstream regulatory sequence (URS), an enhancer element, an exon, an intron, a
transcription start site, a TATA box, a heat shock consensus element, and
combinations thereof. In another embodiment, the bi-directional promoter
comprises a minimal core promoter element from an Ubiquitin-1 gene of Zea mays
or Zea luxurians. In another embodiment, the core promoter element from an
Ubiquitin-1 gene and the promoter nucleotide sequence from Sugar Cane
Bacilliform Virus (SCBV) promoter are in reverse complimentary orientation with
respect to each other. In a further or alternative embodiment, the minimal core
promoter element comprises a polynucleotide sequence at least 65%, 70%, 75%,
80%, 85%, 90%, 95%. or 100% identical to SEQ ID NO: 1 or its complement. Ina
further or alternative embodiment, the minimal core promoter element comprises a
polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1 and
16-40. In a further embodiment, the minimal core promoter element comprises a

polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1 and
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16-35. In a further embodiment, the minimal core promoter element comprises a
polynucleotide sequence sclected from the group consisting of SEQ ID NOs: 1 and
16-30. In a further embodiment, the minimal core promoter element comprises a
polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1 and
16-25. In a further embodiment, the minimal core promoter element comprises a
polynucleotide sequence selected from the group consisting of SEQ ID NOs: 1 and
16-20. In a furthcr embodiment, the minimal core promoter element comprises a
polynucleotide sequence of SEQ ID NO: 1.

In a further or alternative embodiment, the bi-directional promoter comprises
an exon from an Ubiquitin-1 gene and/or an intron from an Ubiquitin gene. In
another embodiment, the bi-directional promoter comprises an intron from an alcohol
dehydrogenase gene. In one embodiment, the nucleic acid construct is stably
transformed into transgenic plants. In one embodiment, the plants are
monocotyledons plants. In another embodiment, the plants are dicotyledons plants.
In another embodiment, the plants are not monocotyledons plants. In another
embodiment, the plants are not dicotyledons plants.

In a further or alternative embodiment, the bi-directional promoter comprises
an upstream regulatory sequence from an Ubiquitin gene or the Sugar Cane
Bacilliform Virus (SCBV) promoter. In a further embodiment, the bi-directional
promoter comprises an upstream regulatory sequence from an Ubiquitin gene. In
another embodiment, the bi-directional promoter comprises an upstream regulatory
sequence from an Ubiquitin gene or the Sugar Cane Bacilliform Virus (SCBV)
promoter.

In a further embodiment, the bi-directional promoter comprises a
polynucleotide of at least 75%, 80%, 85%, 90%, 95% or 100% identical to SEQ ID
NO: 5 or its complement. In a further embodiment, the bi-directional promoter
comprises a polynucleotide of SEQ 1D NO: 5 or its complement. In a further
embodiment, the bi-directional promoter comprises a polynucleotide of at least 75%,
80%, 85%., 90%, 95% or 100% identical to SEQ ID NO: 6 or its complement. In a
further embodiment, the bi-directional promoter comprises a polynucleotide of SEQ

ID NO: 6 or its complement.
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In one embodiment, both the gene expression cassettes comprise two or more
genes linked via a translation switch. In a further or alternative embodiment, the
translation switch 1s selected from the group consisting of an internal ribosome entry
site (JRES), an alternative splicing site, a ribozyme cleavage site, a polynucleotide
sequence coding a 2A peptide, a polynucleotide sequence coding a 2A-like peptide,
a polynucleotide sequence coding an intein, a polynucleotide sequence coding a
protease cleavage site, and combinations thercof. In a further or alternative
embodiment, the translation switch comprises a cis-acting hydrolase element
(CHYSEL). In a further embodiment, the CHYSEL is a 2A or 2A-likc peptide
sequence. In another embodiment, a gene upstream of the translational switch docs
not comprise a translation stop codon. In another embodiment, the nucleic acid
construct enables or allows expression of at least four genes. In a further
embodiment, all four genes are transgenes. In another embodiment, the nucleic acid
construct enables expression ol genes between three and twenty. In another
embodiment, the nucleic acid construct enables expression of genes between four
and eight. In a further or alternative embodiment, the genes are transgenes. In
another embodiment, at least one gene expression cassette comprises a
polynucleotide sequence encoding a fusion protein. In a further embodiment, the
fusion protein comprises three to five genes.

In some embodiments, expression of genes from the bi-directional promoter
is at least four-fold higher as compared to a uni-directional promoter. In some
embodiments, expression of genes from the bi-directional promoter is from three to
ten folds highcr as compared to a uni-directional promoter. In some embodiments,
expression of genes from the bi-directional promoter is from four to eight folds
higher as compared to a uni-directional promoter. In some embodiments, a selection
marker gene is placed at far end from the promoter (i.e., at the 3’ end of a gene
expression cassette downstream of another gene).

In another aspect, provided is a method for generating a transgenic plant
comprising transforming a plant cell with the nucleic acid construct provided herein.
In another aspect, provided is a method for generating a transgenic cell comprising
transforming the cell with the nucleic acid construct provided herein. In another

aspect, provided is a plant cell comprising the nucleic acid construct provided
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herein. In a further or alternative embodiment, the nucleic acid construct is stably
transformed into the plant cell. In another aspect, provided is a transgenic plant
comprising the nucleic acid construct provided herein. In a further or alternative
embodiment, the nucleic acid construct is stably transformed into cells of the
transgenic plant. In another aspect, provide is a method for expressing multiple
genes in plant cells and/or tissues, comprising introducing into the plant cells and/or
tissucs the nucleic acid construct provided herein. In a further or alternative
embodiment, the plant cells and/or tissues are stably transformed with the nucleic
acid construct provided herein. In another aspect, provided is a binary vector for
Agrobacterium-mediated transformation. In one embodiment, the binary vector
comprises the nucleic acid construct provided herein. In another embodiment, the
binary vector comprises the synthetic polynucleotide provided herein. In another
aspect, provided is the use of the bi-directional promoter provided herein for

multiple-transgenes expression in plants.

BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCES

FIG. 1 shows an exemplary (not to scale) maize Ubil (ZmUbil) promoter,
which comprises an approximately 900 bp Upstream Element located 5’ of the
transcription start site (TSS). The upstream element contains a TATA box (located
approximately -30 bp of the TSS), and two overlapping heat shock consensus elements
(located approximately -200 bp of the TSS). This promoter also comprises about 1100
bp 3’ of the TSS region. This 3’ region contains an adjacent leader sequence (ZmUbil
exon), and an intron.

FIG. 2 shows an exemplary embodiment of the synthetic Ubil bidirectional
promoter provided, which includes a minUbi1P minimal core element cloned upstream
of a ZmUbil promoter.

FIG. 3 shows an exemplary schematic drawing of YFP and GUS gene
expression cassettes, which are each operably linked to the synthetic Ubil bidirectional
promoter.

FIG. 4 shows a representative plasmid map of pDAB105801.



CA 02855125 2014-05-08

WO 2013/101344 PCT/US2012/064699

10

15

20

25

30

-12 -

FIG. 5 shows a schematic drawing of an exemplary Sugar Cane Bacilliform
Virus (SCBV) bidirectional promoter, which includes a Min-Ubi1Pminimal core
element cloned upstream of a SCBV promoter.

FIG. 6 shows a representative plasmid map of pDAB105806.

FIG. 7 shows an exemplary schematic drawing of YFP and GUS gene
expression cassettes, which are each operably linked to a synthetic SCBV bidirectional
promoter.

FIG. 8 shows exemplary schematic presentations of multi-gene constructs
provided herein. Translation switches are shown using a special (vertical dumbbell)
symbol.

FIG. 9 shows representative plasmid maps of pDAB108708 and pDAB101556.

FIG. 10A shows SEQ ID NO: 1, which compriscs a 215 bp region of a Zea
mays Ubiquitin 1 minimal core promoter (minUbi1P). FIG. 10B shows SEQ ID NO: 2,
which comprises the reverse complement of a polynucleotide comprising a Z. mays
minUbi1P minimal core promoter (underlined); a Z mays Ubil leader (ZmUbil exon;
bold font); and a Z. mays Ubil intron (lower case).

FIG. 11 shows SEQ ID NO: 3, which comprises an exemplary synthetic Ubil
bidirectional promoter, wherein the reverse complement of a first minUbilP, and a
second minUbi1P, are underlined.

FIG. 12 shows SEQ ID NO: 4, which comprises an exemplary nucleic acid
comprising YFP and GUS gene expression cassettes driven by a synthetic Ubil
bidirectional promoter.

FIG. 13 shows SEQ ID NO: 5, which comprises an exemplary SCBV
bidirectional promoter comprising a minUbi1P minimal core promoter, wherein the
reverse complement of the minUbi1P is underlined.

FIG. 14 shows SEQ ID NO: 6, which comprises a SCBV promoter containing
ADH!1 exon 6 (underlined), intron 6 (lower case font), and exon 7 (bold font).

TIG. 15 shows SEQ 1D NO: 7, which comprises a nucleic acid comprising YFP
and GUS gene expression cassettes driven by an exemplary SCBV bidircctional
promoter.

SEQ ID NO: 8 shows the YFP Forward Primer: 5'-GATGCCTCAG
TGGGAAAGG-3'. SEQ ID NO: 9 comprises a YFP Reverse Primer:
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5'-CCATAGGTGA GAGTGGTGAC AA-3'. SEQ ID NO: 10 comprises an
Invertase Forward Primer: 5-TGGCGGACGA CGACTTGT-3". SEQID NO: 11
comprises an Invertase Reverse Primer: 5'-AAAGTTTGGA GGCTGCCGT-3".

SEQ ID NO: 12 comprises an Invertase Probe: 5'-CGAGCAGACC GCCGTGTACT
TCTACC-3'. SEQ ID NO: 13 comprises an AAD1 Forward Primer:
5-TGTTCGGTTC CCTCTACCAA-3". SEQ ID NO: 14 comprises an AADI
Reverse Primer: 5'-CAACATCCAT CACCTTGACT GA-3'. SEQ ID NO: 15
comprises an AADI1 Probe: 5'-CACAGAACCG TCGCTTCAGC AACA-3’ (see
also Table 7).

FIG. 16 shows a Western blot analysis for stable YFP expression driven by a
bidirectional SCBV Promoter construct (pDAB108708) in maize T, plants.
Representative plants showed stable YFP expression in leaf driven by the
Min-Ubi 1P minimal core promoter element. The amount of protein which 1s
produced is indicated as parts per million (ppm).

FIG. 17 shows a Western blot analysis for stable YFP expression from the
control construct containing a ZmUbil promoter that only drives expression of YFP
(pDAB101556); a GUS coding sequence is not contained in this construct. The
amount of protein which is produced is indicated as parts per million (ppm).

FIG. 18 shows exemplary constructs of four-gene cassette stacks
pDAB105849 (AAD1-2A-YFP plus Cry34-2A-Cry35) and pDAB105865
(YFP-2A-AADI plus Cry34-2A-Cry35). Shaded arrows indicate dircction of
transcription from the bi-directional promoter. Ubil-mimP comprises 200nt
sequence upstream of transcriptional start site of maize Ubil promoter. SCBV-URS
comprises upstream regulatory sequence of SCBV promoter excluding the core
promoter (shown as arrow). Ubil-Int comprises an intron of maize Ubil promoter.
FIG. 19 shows two additional exemplary constructs of four-gene cassette stacks.

FIG. 20 shows representative maps for plasmids pDAB105818 and
pDAB105748.

FIGS. 21A-21E shows additional minimal corc promoters (min-UbilP or
Ubil-minP) of SEQ 1D NOs: 16-40.

FIG. 22 shows representative maps for plasmids pDAB105841 and
pDAB105847.
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FIG. 23 shows representative maps for plasmids pDAB105840 and
pDAB105849.

FIG. 24 shows representative maps for plasmids pDAB101917 and
pDAB108719.

FIG. 25 shows representative maps for plasmids pDAB105844 and
pDAB105848.

FIG. 26 shows representative maps for plasmids pDAB105865 and
pDAB108720.

FIG. 27A-J shows nucleic acid sequence for gene expression cassettes of
pDAB108719, where each gene and element is illustrated.

FIG. 28 shows exemplary protein expression data among various constructs
tested for Cry34 (FIG. 28A), AAD-1 (FIG. 28B), and Cry35 (FIG. 28C).

FIG. 29 shows two exemplary sequences for yellow fluorescent proteins from
Phialidium sp. SL-2003 (PhiYFP, SEQ ID NO: 51; and PhiYFPv3, SEQ ID NO:
52).

FIG. 30 shows exemplary embodiments of the synthetic Ubi] bidirectional
promoter and constructs provided, including pDAB108706 (ZMUbi bidirectional
(-200)), pDAB108707 (ZMUbi bidirectional (-90)), pDAB108708 (SCBV
bidirectional (-200)), and pDAB108709 (SCBV bidirectional (-90)). pDAB101556
(ZmUbil-YFP control), pDAB108715 (SCBV without minimal promoter), and
pDAB108716 (ZMUbil without minimal promoter) serve as control constructs with
uni-directional promoters.

FIG. 31 A shows exemplary expression results (V6) from the seven constructs
shown in FIG. 30 for YFP protein (LCMS) in ng/cmz. FIG. 31B shows exemplary
relative expression results (V6) from the seven constructs shown in FIG. 30 for YFP
RNA.

FIG. 32A shows exemplary expression results (V6) from the seven constructs
shown in FIG. 30 for GUS protein (LCMS) in ng/em?. FIG. 32B shows exemplary
relative expression results (V6) from the seven constructs shown in FIG. 30 for GUS
RNA.

FIG. 33A shows exemplary expression results (V6) from the seven constructs
shown in FIG. 30 for AAD1 protein (LCMS) in ng/cm’. FIG. 33B shows exemplary

CA 2855125 2019-03-22
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relative expression results (V6) from the seven constructs shown in FIG. 30 for AAD1
RNA.

FIG. 34A shows a statistical analysis of expression results (V6) from the
seven constructs shown in FIG. 30 for YFP protein (LCMS) in ng/em’. FIG. 34B
shows a statistical analysis of relative expression results (V6) from the seven
constructs shown in FIG. 30 for YFP RNA. The mean values and statistical results are
listed.

FIG. 35A shows a statistical analysis of expression results (V6) from the
seven constructs shown in FIG. 30 for GUS protein (LCMS) in ng/em’. FIG. 35B
shows a statistical analysis of relative expression results (V6) from the seven
constructs shown in FIG. 30 for GUS RNA. The mean values and statistical results are
listed.

FIG. 36A shows a statistical analysis of expression results (V6) from the
seven constructs shown in FIG. 30 for AAD1 protein (LCMS) in ng/em’. FIG. 36B
shows a statistical analysis of relative expression results (V6) [rom the seven
constructs shown in FIG. 30 for AAD1 RNA. The mean values and statistical results
are listed.

FIGS. 37A, 37B, and 37C show exemplary expression results (V10) from the
seven constructs shown in FIG. 30 for YFP, AADI1, and GUS protein (LCMS) in
ng/cmz respectively.

FIGS. 38A, 38B, and 38C show statistical analysis of expression results
(V10) from the seven constructs shown in FIG. 30 for YFP. GUS, and AADI protein
(LCMS) in ng/crn2 respectivcly. The mean values and statistical results are listed.

FIGS. 39A, 39B, and 39C show cxcmplary expression results (R3) from the
seven constructs shown in FIG. 30 for YFP, GUS, and AADI1 protein (LCMS) in
ng/em?, respectively.

FIGS. 40A, 40B, and 40C show statistical analysis of expression results (R3)
from the seven constructs shown in FIG. 30 for YFP, GUS, and AAD1 protein
(LCMS) in ng/cmz, respectively. The mean values and statistical results are listed.

FIG. 41 shows additional multi-transgene constructs using Ubil promoter,

including pDAB108717 and pDAB108718.
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FIG. 42A shows exemplary relative expression results (V6) of Cry34 RNA
from six constructs pPDAB105748 (ZMUbil-YFP), pDAB105818
(ZMUbi1-Cry34/ZMUbil -Cry35/ZMUbi1-AADI), pPDAB108717
(YFP/AAD-1-ZMUbil bidirectional-Cry34-Cry35), pDAB108718
(AAD1/YFP-ZMUbil bidirectinal-Cry34-Cry35), pDAB108719 (YFP/AAD1-SCBV
bidirectional-Cry34-Cry35), and pDAB108720 (AADI/YFP — SCBV
bidirectional-Cry34-Cry35). FIG. 42B shows exemplary relative expression results
(V6) of Cry34 protein (LCMS) from the same six constructs pPDAB105748,
pDAB105818, pDAB108717, pDAB108718, pDAB108719, and pDAB108720.

FIG. 43A shows exemplary relative expression results (V6) of AAD1 RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 43B shows exemplary relative expression
results (V6) of AAD1 protein (LCMS) from the same six constructs pDAB105748,
pDAB105818, pDAB108717, pPDAB108718, pDAB108719, and pDAB108720.

FIG. 44A shows exemplary relative expression results (V6) of YFP RNA from
the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 44B shows exemplary relative expression
results (V6) of YFP protein (LCMS) from the same six constructs pPDAB105748,
pDAB105818, pDAB108717, pDAB108718, pDAB108719, and pDAB108720.

FIG. 45A shows exemplary relative expression results (V6) of Cry35 RNA
from the six constructs pPDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 45B shows exemplary relative expression
results (V6) of Cry35 protein (ELISA) from the same six constructs pDAB105748,
pDAB105818, pPDAB108717, pDAB108718, pDAB108719, and pDAB108720.

FIG. 46 shows exemplary relative expression results (V6) of PAT RNA from
the six constructs pPDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pPDAB108720.

FIG. 47A shows a statistical analysis of expression results (V6) of Cry34 RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 47B shows a statistical analysis of expression
results (V6) of Cry34 protein from the same six constructs pDAB105748,
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pDAB105818, pDAB108717, pDAB108718, pDAB108719, and pDAB108720. The
mean values and statistical results are listed.

FIG. 48A shows a statistical analysis of expression results (V6) of AADI RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB1087138,
pDAB108719, and pDAB108720. FIG. 48B shows a statistical analysis of expression
results (V6) of AADI protein from the same six constructs pPDAB105748,
pDADB105818, pDAB108717, pDAB108718, pDAB108719, and pDAB108720. The
mean values and statistical results arc listed.

FIG. 49A shows a statistical analysis of expression results (V6) of YFP RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 49B shows a statistical analysis of expression
results (V6) of YFP protein from the same six constructs pDAB105748, pDAB105818,
pDAB108717, pDAB108718, pDAB108719, and pDAB108720. The mean values and
statistical results are listed.

FIG. 50A shows a statistical analysis of expression results (V6) of Cry35 RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. FIG. 50B shows a statistical analysis of expression
results (V6) of Cry35 protein from the same six constructs pDAB105748,
pDAB105818, pDAB108717, pDAB108718, pDAB108719, and pDAB108720. The
mean values and statistical results are listed.

FIG. 51 shows a statistical analysis of expression results (V6) of PAT RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. The mean values and statistical results are listed.

FIGS. 52A, 52B, 52C, and 52D show exemplary protein expression results
(V10) of YFP, AADI, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720.

FIGS. 53A, 53B, 53C, and 53D show statistical analysis of protein expression
results (V10) of YFP, AAD1, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and

pDAB108720. The mean values and statistical results are listed.
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FIGS. 54A, 54B, 54C, and 54D show exemplary protein expression results
(R3) of YFP, AADI, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720.

FIGS. 554, 55B, 55C, and 55D show statistical analysis of protein expression
results (R3) of YEP, AAD1, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720. The mean values and statistical results are listed.

FIG. 56 shows exemplary results of Western blot for protein expression of
Cry34, Cry35, and AAD1 from pDAB108718, pDAB108717, pDAB108719, and
pDAB108720.

MODE(S) FOR CARRYING OUT THE INVENTION

Development of transgenic products is becoming increasingly complex, which
requires pyramiding multiple transgenes into a single locus. Traditionally each
transgene usually requires a unique promoter for expression, so multiple promoters are
required to express different transgenes within one gene stack. In addition to
increasing the size of the gene stack, this frequently leads to repeated use of the same
promoter to obtain similar levels of expression patterns of different transgenes
controlling the same trait. Multi-gene constructs driven by the same promoter are
known to cause gene silencing, thus making transgenic products less efficacious in the
ficld. Excess of transcription factor (TF)-binding sites due to promoter repetition can
cause depletion of endogenous TF's leading to transcriptional inactivation. The
silencing of transgenes will likely undesirably affect the performance of a transgenic
plant produced to express the transgenes. Repetitive sequences within a transgene may
lead to gene intra-locus homologous recombination resulting in polynucleotide
rearrangements.

Provided are methods and constructs combining the bidirectional promoter
system with bicistronic organization of genes on either one or both ends of the
promoter, for example with the use of a 2A sequence [rom Thosea asigna virus. The
2A protein, which is only 16-20 amino acids long, cleaves the polyprotein at its own

carboxyl-terminus. This “self-cleavage™ or “ribosome skip™” property of the 2A or
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2A-like peptide can be used (o process artificial polyproteins produced in transgenic
plants. In one embodiment, Cry34 and Cry35 genes are fused in one gene expression
cassette, while YFP (or PhiYFP) and AAD]1 genes are fused into another gene
expression cassette (with a single open reading frame (ORF) with a copy of the 2A
protein gene placed between the two genes in each combination). For example, each of
these gene expression cassettes (or gene pairs) can be placed on the either end of the
bidirectional promoter to drive 4 transgenes using a single promoter. Thus, the
constructs and methods provided herein are useful to avoid repeated use of the same
promoter and significantly reduce the size of commercial constructs. In addition,
driving four or morc gencs with one promoter also provides ability to co-express genes
controlling a single trait.

Plant promoters used for basic research or biotechnological application are
generally unidirectional, directing only one gene that has been fused at its 3’ end
(downstream). It is often necessary to introduce multiple genes into plants for
metabolic engineering and trait stacking and therefore, multiple promoters are typically
required in future transgenic crops to drive the expression of multiple genes. It is
desirable to design strategies that can save the number of promoters deployed and
allow simultaneous co-regulated expression [or gene pyramiding. In some
embodiment, the bi-directional promoters provided can drive transcription of multiple
transcription units, including RNAA, artificial miRNA, or haipin-loop RNA sequences.

Embodiments herein utilize a process wherein a unidirectional promoter from a
maize ubiquitin-1 gene (e.g., ZmUbil) and a SCBV promoter to design a synthetic
bidirectional promoter, such that one promoter can direct the expression of two genes,
one on each end of the promoter. Synthetic bidirectional promoters may allow those in
the art to stack transgenes in plant cells and plants while lessening the repeated use of
the same promoter and reducing the size of transgenic constructs. Furthermore,
regulating the cxpression of two genes with a single synthetic bidirectional promoter
may also provide the ability to co-cxpress the two genes under the same conditions,
such as may be useful, for example, when the two genes each contribute to a single trait
in the host. The use of bidirectional function of promoters in plants has been reported
in some cases, including the CaMV 35 promoters (Barfield and Pua (1991) Plant Cell
Rep. 10(6-7):308-14; Xie et al. (2001)), and the mannopine synthase promoter (mas)
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promoters (Velten et al. (1984) EMBO J. 3(12):2723-30; Langridge et al. (1989) Proc.
Natl. Acad. Sci. US4 86:3219-23).

Transcription initiation and modulation of gene expression in plant genes is
dirccted by a variety of DNA sequence elements that are collectively arranged within
the promoter. Eukaryotic promoters consist of minimal core promoter element (minP),
and further upstream regulatory sequences (URSs). The core promoter element is a
minimal stretch of contiguous DNA sequence that is sufficient to direct accurate
initiation of transcription. Core promoters in plants also comprise canonical regions
associated with the initiation of transcription, such as CAAT and TATA boxes. The
TATA box element is usually located approximately 20 to 35 nucleotides upstream of
the initiation site of transcription.

The activation of the minP is dependent upon the URS, to which various
proteins bind and subsequently interact with the transcription initiation complex. URSs
comprise of DNA sequences, which determine the spatiotemporal expression pattern of
a promoter comprising the URS. The polarity of a promoter is often determined by the
orientation of the minP, while the URS is bipolar (i.e., it functions independent of its
orientation). For example, the CaMV 358 synthetic unidirectional polar promoter may
be converted to a bidirectional promoter by fusing a minP at the 5’ end of the promoter
in the opposite orientation. See, for example, Xie et al. (2001) Nat. Biotechnol.
19(7):677-9.

In spccific examples of some embodiments, a minimal core promoter element
(minUbi1P) of a modified maize Ubil promoter (ZmUbil) originally derived from the
Z. mays inbred line, B73, is used to engineer a synthetic bidirectional SCBV promoter
that may function in plants to provide expression control characteristics that are unique
with respect to previously available bidirectional promoters. Embodiments include a
synthetic bidirectional SCBV promoter that further includes nucleotide sequence
derived from a native SCBV promoter. Particular embodiments may further include a
synthetic bidirectional SCBV promoter comprising an intron (e.g., an ADII intron) in
close proximity to SCBV and minUbi1P sequence elements in the synthetic
bidirectional SCBV promoter.

The ZmUbil promoter originally derived from B73 comprises sequences

located in the maize genome within about 899 bases 5’ of the transcription start sile,
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and further within about 1093 bases 3’ of the transcription start site. Christensen et al.
(1992) Plant Mol. Biol. 18(4):675-89 (describing a B73 ZmUbil gene). A modified
ZmUbil promoter derived from B73 that is used in some examples is an approximately
2 kb promoter that contains a TATA box; two overlapping heat shock consensus
elements; an 82 or 83 nucleotide (depending on the reference strand) leader sequence
immediately adjacent to the transcription start site, which is referred to herein as
7ZmUbil exon; and a 1015-1016 nucleotide intron (see FIG. 1 for example). Other
maize ubiquitin promoter variants derived from Zea species and Zea mays genotypes
may exhibit high sequence conservation around the minP element consisting of the
TATA element and the upstream heat shock consensus elements. Thus, embodiments
of the invention are exemplified by the use of this short (~200 nt) highly conserved
region (e.g., SEQ ID NO: 1) of a ZmUbil promoter as a minimal core promoter
element for constructing synthetic bidirectional plant promoters.

Certain abbreviations disclosed are listed in Table 1.

Table 1. Abbreviations used in the disclosure

Phrase Abbreviation
bicinchoninic acid BCA
cauliflower mosaic virus CaMV
chloroplast transit peptide CTP
homology-based gene silencing HBGS
ZmUbil minimal core promoter minUbilP |
oligo ligation amplification OLA
phosphate buffered saline PBS
phosphate buffered saline with 0.05% Tween | PBST
20
polymerase chain reaction PCR
rolling circle amplification RCA
reverse transcriptase PCR RT-PCR
single nucleotide primer extension SNuPE
upstream regulatory sequence URS
Zea mays Ubiquitin-1 gene ZmUbil

As used herein, the articles, “a,” “an,” and “the” include plural references

unless the context clearly and unambiguously dictates otherwise.
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As used herein, the phrase “backcrossing” refers to a process in which a
breeder crosscs hybrid progeny back to one of the parents, for example, a first
generation hybrid ¢ with one of the parental genotypes of the F1 hybrid.

As used herein, the phrase “intron” refers to any nucleic acid sequence
comprised in a gene (or expressed nucleotide sequence of interest) that is transcribed
but not translated. Introns include untranslated nucleic acid sequence within an
expressed sequence of DNA, as well as the corresponding sequence in RNA molecules
transcribed therefrom.

As used herein, the phrase “isolated” refers to biological component
(including a nucleic acid or protein) has been substantially separated, produced apart
from, or purified away from other biological components in the cell of the organism
in which the component naturally occurs (i.e., other chromosomal and
extra-chromosomal DNA and RNA, and proteins), while effccting a chemical or
functional change in the component (e.g., a nucleic acid may be isolated from a
chromosome by breaking chemical bonds connecting the nucleic acid to the
remaining DNA in the chromosome). Nucleic acid molecules and proteins that have
been “isolated” include nucleic acid molecules and proteins purified by standard
purification methods. The phrase “isolated” also embraces nucleic acids and
proteins prepared by recombinant expression in a host cell, as well as chemically
synthesized nucleic acid molecules, proteins, and peptides.

As used herein, the phrase “gene expression” refers to a process by which the
coded information of a nucleic acid transcriptional unit (including, e.g., genomic DNA)
is converted into an operational, non-operational, or structural part of a cell, often
including the synthesis of a protein. Gene expression can be influenced by external
signals; for example, exposure of a cell, tissue, or organism to an agent that increases or
decreases genc expression. Expression of a gene can also be regulated anywhere in the
pathway from DNA to RNA to protein. Regulation of gene expression occurs, for
example, through controls acting on transcription, translation, RNA transport and
processing, degradation of intermediary molecules such as mRNA, or through
activation, inactivation, compartmentalization, or degradation of specific protein
molecules after they have been made, or by combinations thereof. Gene expression

can be measured at the RNA level or the protein level by any method known in the art,



CA 02855125 2014-05-08

WO 2013/101344 PCT/US2012/064699

10

15

20

25

-3

including, without limitation, Northern blot, RT-PCR, Western blot, or in vitro, in situ,
or in vivo protein activity assay(s).

As used herein, the phrase “homology-based gene silencing” (HBGS) refers to
a generic term that includes both transcriptional gene silencing and posttranscriptional
gene silencing. Silencing of a target locus by an unlinked silencing locus can result
from transcription inhibition (transcriptional gene silencing; TGS) or mRNA
degradation (post-transcriptional gene silencing; PTGS), owing to the production of
double-stranded RNA (dsRNA) corrcsponding to promoter or transcribed sequences,
respectively. The involvement of distinct cellular components in each process suggests
that dsSRNA-induced TGS and PTGS likely result from the diversification of an ancient
common mechanism. However, a strict comparison of TGS and PTGS has been
difficult to achieve because it generally relies on the analysis of distinct silencing loci.
A single transgene locus can be described to trigger both TGS and PTGS, owing to the
production of dsRNA corresponding to promoter and transcribed sequences of different
target genes. See, for example, Mourrain et al. (2007) Planta 225:365-79. It is likely
that siRNAs are the actual molecules that trigger TGS and PTGS on homologous
sequences: the siRNAs would in this model trigger silencing and methylation of
homologous sequences in cis and in frans through the spreading of methylation of
transgene sequences into the endogenous promoter.

As used herein, the phrase “nucleic acid molecule” (or “nucleic acid” or
“polynucleotide”) refers to a polymeric form of nucleotides, which may include both
sense and anti-sense strands of RNA, cDNA, genomic DNA, and synthetic forms and
mixed polymers of the above. A nucleotide may refer to a ribonucleotide,
dcoxyribonucleotide, or a modified form of either type of nucleotide. A “nucleic acid
molecule” as used herein is synonymous with “nucleic acid” and “polynucleotide.” A
nucleic acid molecule is usually at least 10 bases in length, unless otherwise specified.
The term may refer to a molecule of RNA or DNA of indcterminate length. The term
includes single- and double-stranded forms of DNA. A nucleic acid molecule may
include either or both naturally occurring and modified nucleotides linked together by
naturally occurring and/or non-naturally occurring nucleotide linkages.

Nucleic acid molecules may be modified chemically or biochemically, or may

contain non-natural or derivatized nucleotide bases, as will be readily appreciated by
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those of skill in the art. Such modifications include, for example, labels, methylation,
substitution of one or more of the naturally occurring nucleotides with an analog,
internucleotide modifications (e.g., uncharged linkages: for example, methyl
phosphonates, phosphotriesters, phosphoramidates, carbamates, etc.; charged linkages:
for example, phosphorothioates, phosphorodithioates, etc.; pendent moieties: for
example, peptides; intercalators: for example, acridine, psoralen, etc.; chelators;
alkylators; and modified linkages: for example, alpha anomeric nucleic acids, etc.).
The term “nucleic acid molecule” also includes any topological conformation,
including single-stranded, double-stranded, partially duplexed, triplexed, hairpinned,
circular, and padlocked conformations.

Transcription proceeds in a 5’ to 3' manner along a DNA strand. This means
that RNA is made by the sequential addition of ribonucleotide-5'-triphosphates to the 3’
terminus of the growing chain (with a requisite elimination of the pyrophosphate). In
either a linear or circular nucleic acid molecule, discrete elements (e.g., particular
nucleotide sequences) may be referred to as being “upstream” relative to a further
element if they are bonded or would be bonded to the same nucleic acid in the 5’
direction from that element. Similarly, discrete elements may be “downstream”
relative to a further element if they are or would be bonded to the same nucleic acid in
the 3' direction from that element.

As used herein, the phrase “base position,” refers to the location of a given base
or nucleotide residue within a designated nucleic acid. The designated nucleic acid
may be defined by alignment (see below) with a reference nucleic acid.

As used herein, the phrase “hybridization” refers to a process where
oligonucleotides and their analogs hybridize by hydrogen bonding, which includes
Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between
complementary bases. Generally, nucleic acid molecules consist of nitrogenous bases
that are either pyrimidincs (cytosine (C), uracil (U), and thymine (T)) or purines
(adenine (A) and guanine (G)). These nitrogenous bases form hydrogen bonds
between a pyrimidine and a purine, and the bonding of the pyrimidine to the purine 1s
referred to as “base pairing.” More specifically, A will hydrogen bond to T or U, and

G will bond to C. “Complementary” refers to the base pairing that occurs between two
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distinet nucleic acid sequences or two distinct regions of the same nucleic acid
sequence.

As used herein, the phrases “specifically hybridizable” and “specifically
complementary” refers to a sufficient degree of complementarity such that stable and
specific binding occurs between the oligonucleotide and the DNA or RNA target. The
oligonucleotide need not be 100% complementary to its target sequence to be
specifically hybridizable. An oligonucleotide is specifically hybridizable when binding
of the oligonucleotide to the target DNA or RNA molecule interferes with the normal
function of the target DNA or RNA, and there is sufficient degree of complementarity
to avoid non-specific binding of the oligonucleotide to non-target sequences under
conditions where specific binding is desired, for example under physiological
conditions in the casc of in vivo assays or systems. Such binding is referred to as
specific hybridization.

Hybridization conditions resulting in particular degrees of stringency will vary
depending upon the nature of the chosen hybridization method and the composition
and length of the hybridizing nucleic acid sequences. Generally, the temperature of
hybridization and the ionic strength (especially the Na+ and/or Mg2+ concentration) of
the hybridization buffer will contribute to the stringency of hybridization, though wash
times also influence stringency. Calculations regarding hybridization conditions
required for attaining particular degrees of stringency are discussed in Sambrook et al.
(ed.), Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring
Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, chs. 9 and 11.

As used herein, the phrase “stringent conditions™ encompass conditions under
which hybridization will only occur if there is less than 50% mismatch between the
hybridization molecule and the DNA target. “Stringent conditions” include further
particular levels of stringency. Thus, as used herein, “moderate stringency” conditions
are those under which molecules with more than 50% sequence mismatch will not
hybridize; conditions of “high stringency” are those under which sequences with more
than 20% mismatch will not hybridizc; and conditions of “very high stringency” are
those under which sequences with more than 10% mismatch will not hybridize.

In particular embodiments, stringent conditions can include hybridization at

65°C, followed by washes at 65°C with 0.1x SSC/0.1% SDS for 40 minutes.
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The following are representative, non-limiting hybridization conditions:

Very High Stringency: Hybridization in 5x SSC buffer at 65°C for 16

hours; wash twice in 2x SSC buffer at room temperature {or 15 minutes each;
and wash twice in 0.5x SSC buffer at 65°C for 20 minutes each.

High Stringency: Hybridization in 5x-6x SSC buffer at 65-70°C for
16-20 hours; wash twice in 2x SSC buffer at room temperature for 5-20
minutes each; and wash twice in 1x SSC buffer at 55-70°C for 30 minutes each.

Moderate Stringency: Hybridization in 6x SSC buffer at room

tcmperature to 55°C for 16-20 hours; wash at least twice in 2x-3x SSC buffer at

room tempcraturc to 55°C for 20-30 minutes each.

In particular embodiments, specifically hybridizable nucleic acid molecules can
remain bound under very high stringency hybridization conditions. In these and further
embodiments, specifically hybridizable nucleic acid moleculcs can remain bound under
high stringency hybridization conditions. In these and further embodiments,
specifically hybridizable nucleic acid molecules can remain bound under moderate
stringency hybridization conditions.

As used herein, the phrase “oligonucleotide” refers to a short nucleic acid
polymer. Oligonucleotides may be formed by cleavage of longer nucleic acid
segments, or by polymerizing individual nucleotide precursors. Automated
synthesizers allow the synthesis of oligonucleotides up to several hundred base pairs in
length. Because oligonucleotides may bind to a complementary nucleotide sequence,
they may be used as probes for detecting DNA or RNA. Oligonucleotides composed
of DNA (oligodeoxyribonucleotides) may be used in PCR, a technique for the
amplification of small DNA sequences. In PCR, the oligonucleotide is typically
referred to as a “primer,” which allows a DNA polymerase to extend the
oligonucleotide and replicate the complementary strand.

As used herein, the phrase “sequence identity” or “identity,” refers to a context
where two nucleic acid or polypeptide sequences, may refer to the residues in the two
sequences that are the same when aligned for maximum correspondence over a
specified comparison window.

As used herein, the phrase “percentage of sequence identity” refers to the value

determined by comparing two optimally aligned sequences (e.g., nucleic acid
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sequences, and amino acid sequences) over a comparison window, wherein the portion
of the sequence in the comparison window may comprise additions or deletions (i.e.,
gaps) as compared to the reference sequence (which does not comprise additions or
deletions) for optimal alignment of the two sequences. The percentage is calculated by
determining the number of positions at which the identical nucleotide or amino acid
residue occurs in both sequences to yield the number of matched positions, dividing the
number of matched positions by the total number of positions in the comparison
window, and multiplying the result by 100 to yield the percentage of sequence identity.

Mecthods for aligning sequences for comparison are well-known in the art.
Various programs and alignment algorithms are described in, for example: Smith and
Waterman (1981) Adv. Appl. Math. 2:482; Necdleman and Wunsch (1970) J. Mol.
Biol. 48:443; Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85:2444;
Higgins and Sharp (1988) Gene 73:237-44; Higgins and Sharp (1989) CABIOS
5:151-3; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992)
Comp. Appl. Biosci. 8:155-65; Pearson et al. (1994) Methods Mol. Biol. 24:307-31,
Tatiana et al. (1999) FEMS Microbiol. Lett. 174:247-50. A detailed consideration of
sequence alignment methods and homology calculations can be found in, e.g., Altschul
et al. (1990) J. Mol. Biol. 215:403-10.

The National Center for Biotechnology Information (NCBI) Basic Local
Alignment Search Tool (BLAST™; Altschul et al. (1990)) is available {rom several
sources, including the National Center for Biotechnology Information (Bcthesda, MD),
and on the internet, for use in connection with several sequence analysis programs. A
description of how to determine sequence identity using this program is available on
the internet under the “help” section for BLAST™., For comparisons of nucleic acid
sequences, the “Blast 2 sequences” function of the BLAST™ (Blastn) program may be
employed using the default parameters. Nucleic acid sequences with even greater
similarity to the reference sequences will show increasing percentage identity when
assessed by this method.

As used herein, the phrase “operably linked” refers to a context where the first
nucleic acid sequence is operably linked with a second nucleic acid scquence when the
first nucleic acid sequence is in a functional relatidnship with the second nucleic acid

sequence. For instance, a promoter is operably linked with a coding sequence when
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the promoter affects the transcription or expression of the coding sequence. When
recombinanily produced, operably linked nucleic acid sequences are generally
contiguous and, where necessary to join two protein-coding regions, in the same
reading frame. However, elements need not be contiguous to be operably linked.

As used herein, the phrase “promoter” refers to a region of DNA that generally
is located upstrcam (towards the 5' region of a gene) that is needed for transcription.
Promoters may permit the proper activation or repression of the gene which they
control. A promoter may contain specific scquences that are recognized by
transcription factors. These factors may bind to the promoter DNA sequences and
result in the recruitment of RNA polymerase, an enzyme that synthesizes RNA from
the coding region of the gene.

As used herein, the phrase “transforms” or “transduces” refers to a process
where a virus or vector transfers nucleic acid molecules into a cell. A cell is
“transformed” by a nucleic acid molecule “transduced” into the cell when the nucleic
acid molecule becomes stably replicated by the cell, either by incorporation of the
nucleic acid molecule into the cellular genome or by episomal replication. As used
herein, the term “transformation™ encompasses all techniques by which a nucleic acid
molecule can be introduced into such a cell. Examples include, but are not limited to:
transfection with viral vectors; transformation with plasmid vectors; electroporation
(Fromm et al. (1986) Nature 319:791-3); lipofection (Felgner et al. (1987) Proc. Natl.
Acad. Sci. USA 84:7413-7); microinjection (Mueller et al. (1978) Cell 15:579-85):
Agrobacterium-mediated transfer (Fraley et al. (1983) Proc. Nail. Acad. Sci. USA
80:4803-7); direct DNA uptake; whiskers-mediated transformation; and
microprojectile bombardment (Klein et al. (1987) Nature 327:70).

As used hercin, the phrase “transgene” refers to an exogenous nucleic acid
sequence. In one example, a transgene is a gene sequence (e.g, a herbicide-resistant
gene), a gene encoding an industrially or pharmaceutically useful compound, or a gene
encoding a desirable agricultural trait. In yet another example, the transgene is an
antisense nucleic acid sequence, wherein expression of the antisense nucleic acid
sequence inhibits expression of a target nucleic acid sequence. A transgene may
contain regulatory sequences operably linked to the transgene (e.g., a promoter). In

some embodiments, a nucleic acid sequence of interest is a transgene. However, in
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other embodiments, a nucleic acid sequence of interest is an endogenous nucleic acid
scquence, wherein additional genomic copies of the endogenous nucleic acid sequence
are desired, or a nucleic acid sequence that is in the antisense orientation with respect to
the sequence of a target nucleic acid molecule in the host organism.

As used herein, the phrase “vector” refers to a nucleic acid molecule as
introduced into a cell, thereby producing a transformed cell. A vector may include
nucleic acid sequences that permit it to replicate in the host cell, such as an origin of
replication. Examples include, but are not limited to, a plasmid, cosmid,
bacteriophage, or virus that carries exogenous DNA into a cell. A vector can also
include one or more genes, antisense molecules, and/or selectable marker genes and
other genetic elements known in the art. A vector may transduce, transform, or infect a
cell, thereby causing the cell to express the nucleic acid molecules and/or proteins
encoded by the vector. A vector may optionally include materials to aid in achieving
entry of the nucleic acid molecule into the cell (e.g., a liposome).

As used herein, the phrase “plant” includes plants and plant parts including
but not limited to plant cells and plant tissues such as leaves, stems, roots, flowers,
pollen, and seeds. The class of plants that can be used in the present invention is
generally as broad as the class of higher and lower plants amenable to mutagenesis
including angiosperms (monocotyledonous and dicotyledonous plants),
gymnosperms, ferns and multicellular algae. Thus, “plant” includes dicotyledons
plants and monocotyledons plants. Examples of dicotyledons plants include
tobacco, Arabidopsis, soybean, tomato, papaya, canola, sunllower, cotton, alfalfa,
potato, grapevine, pigeon pea, pea, Brassica, chickpea, sugar beet, rapeseed,
watermelon, melon, pepper, peanut, pumpkin, radish, spinach, squash, broccoli,
cabbage, carrot, cauliflower, celery, Chinese cabbage, cucumber, eggplant, and
lettuce. Examples of monocotyledons plants include corn, rice, wheat, sugarcane,
barley, rye, sorghum, orchids, bamboo, banana, cattails, lilies, oat, onion, millet, and
triticale.

As used herein, the phrase “plant material” refers to leaves, stems, roots,
flowers or flower parts, fruits, pollen, egg cells, zygotcs, seeds, cuttings, cell or
tissue cultures, or any other part or product of a plant. In some embodiment, plant

material includes cotyledon and leaf.
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As used herein, the phrase “translation switch” refers to a mechanism at end
of a gene allowing translation of an immediate downstream gene. The mechanism
of translation switch can function at nucleic acid level (for example, viral or
eukaryotic internal ribosome entry site (IRES), an alternative splicing site, or a
ribozyme cleavage site) or at peptide/protein level {for example, a 2A peptide, a
2A-like peptide, an intein peptide, or a protease cleavage site).

These mechanisms of translation switch at nucleic acid level or at
peptide/protein leve] are well known in the art. See, e.g., Z. Li, H.M. Schumacher,
etal. (2010) J. Biotechnol. 145(1): 9-16; Y. Chen, K. Perumal, et al. (2000) Gene
Expr. 9(3):133-143; T.D. Dinkova, H. Zepeda, et al. (2005) Plant J. 41(5): 722-731;
Y.L. Dorokhov, M.V. Skulachev, et al. (2002) Proc. Natl. Acad. Sci. U. S. A. 99(8):
5301-5306; O. Fernandez-Miragall and C. Hernandez (2011) PLoS One 6(7):
€22617; E. Groppelli, G.J. Belsham, et al. (2007) J. Gen. Virol. 88(Pt 5): 1583-1588;
S.H. Ha, Y.S. Liang, et al. (2010) Plant Biotechnol J. 8(8): 928-938; A. Karetnikov
and K. Lehto (2007) J. Gen. Virol. 88(Pt 1): 286-297; A. Karetnikov and K. Lehto
(2008) Virology 371(2): 292-308; M.A. Khan, H. Yumak, et al. (2009) J. Biol.
Chem. 284(51): 35461-35470; and D.C. Koh, S.M. Wong, et al. (2003) J. Biol.
Chem. 278(23): 20565-20573. Multi-gene expression constructs
containing modified inteins have been disclosed in U.S. Patent Nos. 7,026,526
and 7,741,530, as well as U.S. Patent application 2008/0115243,

As used herein, the phrase “selectable marker” or “selectable marker gene”
refers to a gene that is optionally used in plant transformation to, for example,
protect the plant cells from a selective agent or provide resistance/tolerance to a
selective agent. Only those cells or plants that receive a functional selectable marker
are capable of dividing or growing under conditions having a selective agent.
Examples of selective agents can include, for example, antibiotics, including
spectinomycin, neomycin, kanamycin, paromomycin, gentamicin, and hygromycin.
These selectable markers include gene for neomycin phosphotransferase (npt IT),
which expresses an enzyme conferring resistance to the antibiotic kanamycin, and
genes for the related antibiotics neomycin, paromomycin, gentamicin, and G418, or

the gene for hygromycin phosphotransferase (hpt), which expresses an enzyme
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conferring resistance to hygromycin. Other selectable marker genes can include
genes encoding herbicide resistance including Bar (resistance against BASTA®
(glufosinate ammonium), or phosphinothricin (PPT)), acetolactate synthase (ALS,
resistance against inhibitors such as sulfonylureas (SUs), imidazolinones (IMIs),
triazolopyrimidines (TPs), pyrimidinyl oxybenzoates (POBs), and sulfonylamino
carbonyl triazolinones that prevent the first step in the synthesis of the
branched-chain amino acids), glyphosate, 2,4-D, and metal resistance or sensitivity.
The phrase “marker-positive” refers to plants that have been transformed to include
the selectable marker gene.

Various selectable or detectable markers can be incorporated into the chosen
expression vector to allow identification and selection of transformed plants, or
transformants. Many methods are available to confirm the expression of selection
markers in transformed plants, including for example DNA sequencing and PCR
(polymerase chain reaction), Southern blotting, RNA blotting, immunological
methods for detection of a protein expressed from the vector, e g., precipitated
protein that mediates phosphinothricin resistance, or other proteins such as reporter
genes B-glucuronidase (GUS), luciferase, green fluorescent protein (GFP), DsRed,
B-galactosidase, chloramphenicol acetyltransferase (CAT), alkaline phosphatase,
and the like (see Sambrook, et al., Molecular Cloning: A Laboratory Manual, Third
Edition, Cold Spring Harbor Press, N.Y., 2001).

Selectable marker genes are utilized for the selection of transformed cells or
tissues. Selectable marker genes include genes encoding antibiotic resistance, such
as those encoding neomycin phosphotransferase II (NEO) and hygromycin
phosphotransferase (HPT) as well as genes conferring resistance to herbicidal
compounds. Herbicide resistance genes generally code for a modified target protein
insensitive to the herbicide or for an cnzyme that degrades or detoxifies the
herbicide in the plant before it can act. For example, resistance to glyphosate or has
been obtained by using genes coding for the mutant target enzymes,
5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Genes and mutants for
EPSPS have been disclosed in U.S. Patent Nos. 4,940,835, 5,188,642, 5,310,667,
5,633,435, 5,633,448, and 6,566,587. Resistance to glufosinate ammonium,

bromoxynil, and 2,4-dichlorophenoxyacetate (2,4-D) have been obtained by using
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bacterial genes encoding phosphinothricin acetyltransferase, a nitrilase, or a
2,4-dichlorophenoxyacetate monooxygenase, which detoxify the respective
herbicides. Enzymes/genes for glufosinate resistance/tolerance have been disclosed
in U.S. Patent Nos. 5,273,894, 5,276,268, 5,550,318, and 5,561,236.
Enzymes/genes for 2,4-D resistance have been previously disclosed in U.S. Patent
Nos. 6,100,446 and 6,153,401, as well as patent applications US 2009/0093366 and
WO 2007/053482. Enzymes/genes for nitrilase has been previously disclosed in
U.S. Patent Nos. 4,810,648.

Other herbicidcs can inhibit the growing point or meristem, including
imidazolinone or sulfonylurea, and genes for resistance/tolerance of
acetohydroxyacid synthase (AHAS) and acetolactate synthase (ALS) for these
herbicides have been described. Genes and mutants for AHAS and mutants have
been disclosed in U.S. Patent Nos. 4,761,373, 5,304,732, 5,331,107, 5,853,973, and
5,928,937. Genes and mutants for ALS have been disclosed in U.S. Patent Nos.
5,013,659 and 5,141,870.

Glyphosate resistance genes include mutant 5-enolpyruvylshikimate-3
-phosphate synthase (EPSPs) genes (via the introduction of recombinant nucleic
acids and/or various forms of in vivo mutagenesis of native EPSPs genes), aroA
genes and glyphosate acetyl transferase (GAT) genes, respectively). Resistance
genes for other phosphono compounds include glufosinate (phosphinothricin acetyl
transferase (PAT) genes from Streptomyces species, including Streptomyces
hygroscopicus and Streptomyces viridichromogenes), and pyridinoxy or phenoxy
proprionic acids and cyclohexones (ACCase inhibitor-encoding genes). Herbicide
resistance/tolerance genes of acetyl coemzyme A carboxylase (ACCase) have been
described in U.S. Patents 5,162,602 and 5,498,544.

A DNA molecule encoding a mutant aroA gene can be obtained under
ATCC accession number 39256, and the nucleotide sequence of the mutant gene is
disclosed in U.S. Pat. No. 4,769,061 to Comai, European patent application No. 0
333 033 to Kumada et al., and U.S. Pat. No. 4,975,374 to Goodman ct al., disclosing
nucleotide sequences of glutamine synthetase genes which confer resistance to
herbicides such as L-phosphinothricin. The nucleotide sequence of a PAT gene is

provided in European application No. 0 242 246 to Leemans et al. Also DeGreef et
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al., Bio/Technology 7:61 (1989), describes the production of transgenic plants that
express chimeric bar genes coding for PAT activity. Exemplary of genes conferring
resistance to phenoxy proprionic acids and cyclohexones, including sethoxydim and
haloxyfop, are the Acc1-S1, Accl-S2 and Accl-S3 genes described by Marshall et
al., Theon. Appl. Genet. 83:435 (1992). GAT genes capable of conferring
glyphosate resistance are described in WO 2005012515 to Castle et al. Genes
conferring resistance to 2,4-D, fop and pyridyloxy auxin herbicides are described in
WO 2005107437 and U.S. patent application Ser. No. 11/587,893.

Other herbicides can inhibit photosynthesis, including triazine (psbA and 1s+
genes) or benzonitrile (nitrilase gene). Przibila et al., Plant Cell 3:169 (1991),
describes the transformation of Chlamydomonas with plasmids encoding mutant
psbA genes. Nucleotide sequences for nitrilase genes are disclosed in U.S. Pat. No.
4,810,648 to Stalker, and DNA molecules containing these genes are available under
ATCC Accession Nos. 53435, 67441, and 67442. Cloning and expression of DNA
coding for a glutathione S-transferase is described by Hayes et al., Biochem. J.
285:173 (1992).

For purposes of the present invention, selectable marker genes include, but
are not limited to genes encoding: neomycin phosphotransterase II (Fraley et al.
(1986) CRC Critical Reviews in Plant Science 4:1-25); cyanamide hydratase
(Maier-Greiner et al. (1991) Proc. Natl. Acad. Sci. USA 88:4250-4264); aspartate
kinase; dihydrodipicolinate synthase (Perl et al. (1993) Bio/Technology 11:715-718);
tryptophan decarboxylase (Goddijn et al. (1993) Plant Mol. Bio. 22:907-912);
dihydrodipicolinate synthase and desensitized aspartade kinase (Perl et al. (1993)
Bio/Technology 11:715-718); bar gene (Toki et al. (1992) Plant Physiol.
100:1503-1507; and Meagher et al. (1996), Crop Sci. 36:1367); tryptophan
decarboxylase (Goddijn ct al. (1993) Plant Mol. Biol. 22:907-912); neomycin
phosphotransterase (NEQ) (Southern et al. (1982) J. Mol. Appl. Gen. 1:327;
hygromycin phosphotransterase (I11PT or HYG) (Shimizu et al. (1986) Mol. Cell
Biol. 6:1074); dihydrofolate reductase (DHFR) (Kwok et al. (1986) PNAS USA
4552); phosphinothricin acetyltransferase (DeBlock et al. (1987) FMBO .J. 6:2513);
2,2-dichloropropionic acid dehalogenase (Buchanan-Wollatron et al. (1989) J. Cell.
Biochem. 13D:330); acetohydroxyacid synthase (Anderson et al., U.S. Pat. No.
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4,761,373; Haughn et al. (1988) Mol. Gen. Genet. 221:266);
5-enolpyruvyl-shikimate-phosphate synthase (aroA) (Comai et al. (1985) Nature
317:741); haloarylnitrilase (Stalker et al., published PCT application WO87/04181);
acetyl-coenzyme A carboxylase (Parker et al. (1990) Plant Physiol. 92:1220);
dihydropteroate synthase (sul I) (Guerineau et al. (1990) Plant Mol. Biol. 15:127);
and 32 kD photosystem II polypeptide (psbA) (Hirschberg et al. (1983) Science
222:1346).

Also included are genes encoding resistance to: chloramphenicol
(Herrera-Estrella et al. (1983) EMBO J. 2:987-992); methotrexate (Herrera-Estrella
et al. (1983) Nature 303:209-213; Meijer et al. (1991) Plant Mol Bio. 16:807-820
(1991); hygromycin (Waldron et al. (1985) Plant Mol. Biol. 5:103-108; Zhijian et al.

’ (1995) Plant Science 108:219-227; and Meijer et al. (1991) Plant Mol. Bio.

16:807-820); streptomycin (Jones et al. (1987) Mol. Gen. Genet. 210:86-91);
spectinomycin (Bretagne-Sagnard ct al. (1996) Transgenic Res. 5:131-137);
bleomycin (Hille et al. (1986) Plant Mol. Biol. 7:171-176); sulfonamide (Guerineau
et al. (1990) Plant Mol. Bio. 15:127-136); bromoxynil (Stalker et al. (1988) Science
242:419-423); 2.4-D (Streber et al. (1989) Bio/Technology 7:811-816); glyphosatc
(Shaw et al. (1986) Science 233:478-481); and phosphinothricin (DeBlock et al.
(1987) EMBO J. 6:2513-2518).

The above list of selectable marker and reporter genes are not meant to be
limiting. Any reporter or sclectable marker gene are encompassed by the present
invention. If necessary, such genes can be sequenced by methods known in the art.

The reporter and selectable marker genes are synthesized for optimal
expression in the plant. That is, the coding sequence of the gene has been modified
to enhance expression in plants. The synthetic marker gene is designed to be
expressed in plants at a higher level resulting in higher transformation efficiency.
Methods for synthetic optimization of genes are available in the art. In fact, several
genes have been optimized to increase expression of the gene product in plants.

The marker gene sequence can be optimized for expression in a particular
plant species or alternatively can be modified for optimal expression in plant
families. The plant preferred codons may be determined from the codons of highest

frequency in the proteins expressed in the largest amount in the particular plant
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species of interest. See, for example, EPA 0359472; EPA 0385962; WO 91/16432;
Perlak et al. (1991) Proc. Natl. Acad. Sci. US4 88:3324-3328; and Murray et al.
(1989) Nucleic Acids Research 17: 477-498; U.S. Pat. No. 5,380,831; and U.S. Pat.
No. 5,436,391. In this manner, the nucleotide sequences can be optimized for

5 expression in any plant. It is recognized that all or any part of the gene sequence
may be optimized or synthetic. That is, fully optimized or partially optimized

sequences may also be used.

Genes that Confer Resistance to an Herbicide:

10 A. Resistance/tolerance of acetohydroxyacid synthase (AHAS) and
acetolactate synthase (ALS) against herbicides imidazolinone or sulfonylurea.
Genes and mutants for AHAS and mutants have been disclosed in U.S. Patent Nos.
4,761,373, 5,304,732, 5,331,107, 5,853,973, and 5,928,937. Genes and mutants for
ALS have been disclosed in U.S. Patent Nos. 5,013,659 and 5,141, 870.

15 B. Resistance/tolerance genes of acetyl coemzyme A carboxylase
(ACCase) against herbicides cyclohexanediones and/or aryloxyphenoxypropanoic
acid (including Haloxyfop, Diclofop, Fenoxyprop, Fluazifop, Quizalofop) have been
described in U.S. Patents 5,162,602 and 5,498,544.

C. Genes for glyphosate resistance/tolerance. Gene of 5-enolpyruvyl

20  -3-phosphoshikimate synthase (ES3P synthase) has been described in U.S. Patent
No. 4,769,601. Genes of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)
and mutants have been described in U.S. Patent Nos. 4,940,835, 5,188,642,
5,310,667, 5,633,435, 5,633,448, and 6,566,587.

D. Genes for glufosinate (bialaphos, phosphinothricin (PPT))

25  resistance/tolerance. Gene for phosphinothricin acetyltransferase (Pat) has been
described in U.S. Patent Nos. 5,273,894, 5,276,268, and 5,550,318; and gene for
bialaphos resistance gene (Bar) has been described in U.S. Patent Nos. 5,561,236
and 5,646,024, 5,648,477, and 7,112,665. Gene for glutamine synthetase (GS) has
been described in U.S. Patent No. 4,975,372 and European patent application EP

30 0333033 Al.

E. Resistance/tolerance genes of hydroxy phenyl pyruvate dioxygcenase

(HPPD) against herbicides isoxazole, diketonitriles, and/or triketones including
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sulcotrione and mesotrione have been described in U.S. Patent Nos. 6,268,549 and
6,069.115.

F. Genes for 2,4-D resistance/tolerance. Gene of 2,4-D-monooxygenase
has been described in U.S. Patent No. 6,100,446 and 6,153,401. Additional genes
for 2,4-D resistance/tolerance are disclosed in US 2009/0093366 and WO
2007/053482.

G. Genc of imidazoleglycerol phosphate dehydratase (IGPD) against
herbicides imidazole and/or triazole has been described in U.S. Patent No.
5,541,310. Genes of Dicamba degrading enzymes (oxygenase, ferredoxin, and
reductase) against herbicide Dicamba have been disclosed in U.S. Patent Nos.
7,022,896 and 7,105,724.

H. Genes for herbicides that inhibit photosynthesis, including triazine
(psbA and 1s+ genes) or a benzonitrile (nitrilase gene). See, e.g., Przibila et al,,
Plant Cell 3:169 (1991) disclosing transformation of Chlamydomonas with plasmids
encoding mutant psbA genes. Nucleotide sequences for nitrilase genes are disclosed
in U.S. Patent No. 4,810,648 and DNA molecules containing these genes are
available under ATCC Accession Nos. 53435, 67441, and 67442. Cloning and
expression of DNA coding for a glutathione S-transferase is described by Hayes et
al., Biochem. J. 285:173 (1992).

Unless otherwise specifically explained, all technical and scientific terms used
herein have the same meaning as commonly understood by those of ordinary skill in
the art to which this disclosure belongs. Definitions of common terms in molecular
biology can be found in, for example: Lewin, Genes V, Oxford University Press, 1994
(ISBN 0-19-854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology,
Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Meyers (ed.), Molecular
Biology and Biotechnology: A Comprehensive Desk Reference, VCH Publishers, Inc.,
1995 (ISBN 1-56081-569-8).

This disclosure provides nucleic acid molecules comprising a synthetic
nucleotide sequence that may function as a bidirectional promoter. In some
embodiments, a synthetic bidirectional promoter may be operably linked to one or two
nucleotide sequence(s) of interest. For example, a synthetic bidirectional promoter

may be operably linked to one or two nucleotide sequence(s) of interest (e.g., two
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genes, one on each end of the promoter), so as to regulate transcription of at least one
(e.g., one or both) of the nucleotide sequence(s) of interest. By incorporating a URS
from a SCBV promoter in the synthetic bidirectional promoter, particular expression
and regulatory patterns (e.g., such as are exhibited by genes under the control of the
SCBV promoter) may be achieved with regard to a nucleotide sequence of interest that
is operably linked to the synthetic bidirectional promoter.

Some embodiments of the invention are exemplified herein by incorporating a
minimal core promoter element from a unidirectional maize ubiquitin-1 gene
(ZmUbil) promoter into a molecular context different from that of the native promoter
to engineer a synthetic bidirectional promoter. This minimal core promoter element is
referred to herein as “minUbilP,” and is approximately 200 nt in length. Sequencing
and analysis of minUbi1P elements from multiplc Zea species and Z. mays genotypes
has revealed that functional minUbil1P elements are highly conserved, such that a
minUbi1P element may element may preserve its function as an initiator of
transcription if it shares, for example, at least about 75%; at least about 80%; at least
about 85%; at least about 90%; at least about 91%; at least about 92%; at least about
93%; at least about 94%; at least about 95%; at least about 96%; at least about 97%; at
least about 98%; at least about 99%; and/or at least about 100% sequence identity to
the minUbi 1P element of SEQ ID NO:1. Characteristics of minUbilP elements that
may be useful in some embodiments of the invention may include, for example and
without limitation, the aforementioned high conservation of nucleotide sequence; the
presence of at least one TATA box; and/or the presence of at least one (e.g., two) heat
shock consensus element(s). In particular minUbi1P elements, more than one heat
shock consensus elements may be overlapping within the minUbilP sequence.

In some embodiments, the process of incorporating a minUbi1P element into a
molecular context different from that of a native promoter to engineer a synthetic
bidirectional promoter may comprise incorporating the minUbi1P element into a
SCBV promoter nucleic acid, while reversing the orientation of the minUbilP element
with respect to the remaining sequence of the SCBV promoter. Thus, a synthctic
SCBYV bidirectional promoter may comprise a minUbi1P minimal core promoter
element located 3’ of, and in reverse orientation with respect to, a SCBV promoter

nucleotide sequence, such that it may be operably linked to a nucleotide sequence of
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interest located 3’ of the SCBV promoter nucleotide sequence. For example, the
minUbi1P element may be incorporated at the 3' end of a SCBV promotcr in reverse
orientation.

A synthetic bidirectional SCBV promoter may also comprise one or more
additional sequence elements in addition to a minUbi P element and elements of a
native SCBV promoter. In some embodiments, a synthetic bidirectional SCBV
promoter may comprise a promoter URS; an exon (e.g., a leader or signal peptide); an
intron; a spacer sequence; and or combinations of one or more of any of the forcgoing.
For example and without limitation, a synthetic bidirectional SCBV promoter may
comprise a URS sequence from a SCBV promoter; an intron from a ADH gene; an
exon encoding a leader peptide from a Ubil gene; an intron from a Ubil gene; and
combinations of these.

In some of those examples comprising a synthetic bidirectional SCBV
promoter comprising a promoter URS, the URS may be selected to confer particular
regulatory properties on the synthetic promoter. Known promoters vary widely in the
type of control they exert on operably linked genes (e.g., environmental responses,
developmental cues, and spatial information), and a URS incorporated into a
heterologous promoter typically maintains the type of control the URS exhibits with
regard to its native promoter and operably linked gene(s). Langridge et al. (1989),
supra. Examples of eukaryotic promoters that have been characterized and may
contain a URS comprised within a synthetic bidirectional Ubil promoter according to
some cmbodiments include, for example and without limitation: those promoters
described in U.S. Patent Nos. 6,437,217 (maize RS81 promoter); 5,641,876 (rice actin
promoter); 6,426,446 (maize RS324 promoter); 6,429,362 (maize PR-1 promoter);
6,232,526 (maize A3 promoter); 6,177,611 (constitutive maize promoters); 6,433,252
(maize [.3 oleosin promoter); 6,429,357 (rice actin 2 promoter, and rice actin 2 intron);
5.837,848 (root-specific promoter); 6,294,714 (light-inducible promoters); 6,140,078
(sall-inducible promoters); 6,252,138 (pathogen-inducible promoters); 6,175,060
(phosphorous deficiency-inducible promoters); 6,388,170 (bidirectional promoters);
6,635,806 (gamma-coixin promoter); and U.S. Patent Application Serial No.

09/757,089 (maize chloroplast aldolase promoter).
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Additional exemplary prokaryotic promoters include the nopaline synthase
(NOS) promoter (Ebert et al. (1987) Proc. Natl. Acad. Sci. USA 84(16):5745-9); the
octopine synthasc (OCS) promoter (which is carried on tumor-inducing plasmids of
Agrobacterium tumefaciens); the caulimovirus promoters such as the cauliflower
mosaic virus (CaMV) 19S5 promoter (Lawton et al. (1987) Plant Mol. Biol. 9:315-24);
the CaMYV 35S promoter (Odell et al. (1985) Nature 313:810-2; the figwort mosaic
virus 35S-promoter (Walker et al. (1987) Proc. Natl. Acad. Sci. USA 84(19):6624-8);
the sucrose synthase promoter (Yang and Russell (1990) Proc. Natl. Acad. Sci. USA
87:4144-8); the R gene complex promoter (Chandler et al. (1989) Plant Cell
1:1175-83); CaM V35S (U.S. Patent Nos. 5,322,938, 5,352,605, 5,359,142, and
5,530,196); FMV35S (U.S. Patent Nos. 6,051,753, and 5,378,619); a PC1SV promoter
(U.S. Patent No. 5,850,019); the SCP1 promoter (U.S. Patent No. 6,677,503); and
AGRtu.nos promoters (GenBank Accession No. VO0087; Depicker et al. (1982) J.
Mol Appl. Genet. 1:561-73; Bevan et al. (1983) Narure 304:184-7), and the like.

In some embodiments, a synthetic bidirectional SCBV promoter may further
comprise an exon. For example, in examples it may be desirable to target or traffic a
polypeptide encoded by a nucleotide sequence of interest operably linked to the
promoter to a particular subcellular location and/or compartment. In these and other
embodiments, a coding sequence (exon) may be incorporated into a nucleic acid
molccule between the remaining synthetic bidirectional SCBV promoter sequence and
a nucleotide sequence encoding a polypeptide. These elements may be arranged
according to the discretion of the skilled practitioner such that the synthetic
bidirectional SCBV promoter promotes the expression of a polypeptide (or one or both
of two polypeptide-encoding sequences that are operably linked to the promoter)
comprising the peptide encoded by the incorporated coding sequence in a functional
relationship with the remainder of the polypeptide. In particular examples, an exon
encoding a leader, transit, or signal peptide (e.g., a Ubil leader peptide) may be
incorporated.

Peptides that may be encoded by an exon incorporated into a synthetic
bidirectional Ubil promoter include, for example and without limitation: a Ubiquitin
(e.g., Ubil) leader peptide; a chloroplast transit peptide (CTP) (e.g., the A. thaliana
EPSPS CTP (Klee et al. (1987) Mol. Gen. Genet. 210:437-42), and the Petunia hybrida
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EPSPS CTP (della-Cioppa et al. (1986) Proc. Nutl. Acad. Sci. USA 83:6873-7)), as
cxemplified for the chloroplast targeting of dicamba monooxygenase (DMO) in
International PCT Publication No. WO 2008/105890.

Introns may also be incorporated in a synthetic bidirectional SCBV promoter in
some embodiments of the invention, for example, between the remaining synthetic
bidirectional SCBV promoter sequence and a nucleotide sequence of interest that is
operably linked to the promoter. In some examples, an intron incorporated into a
synthetic bidirectional SCBV promoter may be, without limitation, a 5" UTR that
functions as a translation lcader sequence that 1s present in a fully processed mRNA
upstream of the translation start sequence (such a translation leader sequence may
affect processing of a primary transcript to mRNA, mRNA stability, and/or translation
efficiency). Examples of translation leader sequences include maize and petunia heat
shock protein leaders (U.S. Patent No. 5,362,865), plant virus coat protein leadcrs,
plant rubisco leaders, and others. See, e.g., Turner and I'oster (1995) Molecular
Biotech. 3(3):225-36. Non-limiting examples of 5' UTRs include GmHsp (U.S. Patent
No. 5,659,122); PhDnaK (U.S. Patent No. 5,362,865); AtAntl; TEV (Carrington and
Freed (1990) J. Virol. 64:1590-7); and AGRtunos (GenBank Accession No. V00087,
and Bevan et al. (1983) Nature 304:184-7). In particular examples, a Ubil and/or
ADH intron(s) may be incorporated in a synthetic bidirectional SCBV promoter.

Additional sequences that may optionally be incorporated into a synthetic
bidirectional SCBV promoter include, for example and without limitation: 3’
non-translated sequences; 3’ transcription termination regions; and polyadenylation
regions. These are genetic elements located downstream of a nucleotide sequence of
interest (e.g., a sequence of interest that is operably linked to a synthetic bidirectional
SCBV promoter), and include polynucleotides that provide polyadenylation signal,
and/or other regulatory signals capable of affecting transcription, mRNA processing, or
gene expression. A polyadenylation signal may function in plants to cause the addition
of polyadenylate nucleotides to the 3’ end of a mRNA precursor. The polyadenylation
sequence may be derived trom the natural gene, from a variety of plant genes, or from
T-DNA genes. A non-limiting example of a 3’ transcription termination region is the
nopaline synthase 3’ region (nos 3'; Fraley et al. (1983) Proc. Natl. Acad. Sci. UUSA
80:4803-7). An example of the use of different 3' nontranslated regions is provided in
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Ingelbrecht et al. (1989), Plant Cell 1:671-80. Non-limiting examples of
polyadenylation signals include one from a Pisum sativim RbceS2 gene (Ps.RbeS2-E9;
Coruzzi et al. (1984) EMBO J. 3:1671-9) and AGRwu.nos (GenBank Accession No.
E01312).

In some embodiments, a synthetic bidirectional SCBV promoter comprises one
or more nucleotide sequence(s) that facilitate targeting of a nucleic acid comprising the
promoter to a particular locus in the genome of a target organism. For example, one or
more sequences may be included that are homologous to segments of genomic DNA
sequence in the host (e.g., rare or unique gecnomic DNA sequences). In some
examples, these homologous sequences may guide recombination and integration of a
nucleic acid comprising a synthetic bidirectional SCBV promoter at the siic of the
homologous DNA in the host genome. In particular examples, a synthctic bidirectional
SCBYV promoter comprises one or more nucleotide sequences that facilitate targeting of
a nucleic acid comprising the promoter to a rare or unique location in a host genome
utilizing engineered nuclease enzymes that recognize sequence at the rare or unique
location and facilitate integration at that rare or unique location. Such a targeted
integration system employing zinc-finger endonucleases as the nuclease enzyme is
described in U.S. Patent Application No. 13/011,735.

Nucleic acids comprising a synthetic bidirectional SCBV promoter may be
produced using any technique known in the art, including for example and without
limitation: RCA; PCR amplification; RT-PCR amplification; OLA; and SNuPE.
These and other equivalent techniques are well known to those of skill in the art, and
are further described in detail in, for example and without limitation: Sambrook et al.,
Molecular Cloning: A Laboratory Manual, 3" Ed., Cold Spring Harbor Laboratory,
2001; and Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons,
1998.

Delivery and/or transformation: The present disclosure also provides methods
for transforming a cell with a nucleic acid molecule comprising a synthetic
bidirectional SCBV promoter. Any of the large number of techniques known in the art
for introduction of nucleic acid molecules into plants may be used to transform a plant
with a nucleic acid molecule comprising a synthetic bidirectional SCBV promoter

according to some embodiments, for example, to introduce one or more synthetic



CA 02855125 2014-05-08

WO 2013/101344 PCT/US2012/064699

10

15

20

25

30

40 -

bidirectional SCBV promoters into the host plant genome, and/or to further introduce
one or morc nucleic acid molecule(s) of interest operably linked o the promoter.

Suitable methods for transformation of plants include any method by which
DNA can be introduced into a cell, for example and without limitation: electroporation
(see, e.g., U.S. Patent 5,384,253); microprojectile bombardment (see, e.g., U.S. Patents
5,015,580, 5,550,318, 5,538,880, 6,160,208, 6,399,861, and 6,403,865);
Agrobacterium-mediated transformation (see, e.g., U.S. Patents 5,635,055, 5,824,877,
5,591,616; 5,981,840, and 6,384,301); and protoplast transformation (see, e.g., U.S.
Patent 5,508,184). Through the application of techniques such as the foregoing, the
cells of virtually any plant species may be stably transformed, and these cells may be
developed into transgenic plants by techniques known to those of skill in the art. For
example, techniques that may be particularly useful in the context of cotton
transformation are described in U.S. Patents 5,846,797, 5,159,135, 5,004,863, and
6,624,344; techniques for transforming Brassica plants in particular are described, for
example, in U.S. Patent 5,750,871; techniques for transforming soya are described, for
example, in U.S. Patent 6,384,301; and techniques for transforming maize are
described, for example, in U.S. Patents 7,060,876 and 5,591,616, and International
PCT Publication WO 95/06722.

After effecting delivery of an exogenous nucleic acid to a recipient cell, the
transformed cell is generally identified for further culturing and plant regeneration. In
order to improve the ability to identify transformants, one may desire to employ a
selectable or screenable marker gene with the transformation vector used to generate
the transformant. In this case, the potentially transformed cell population can be
assayed by exposing the cells to a selective agent or agents, or the cells can be screened
for the desired marker gene trait.

Cclls that survive the exposure to the selective agent, or cells that have been
scored positive in a screening assay, may be cultured in media that supports
regeneration of plants. In some embodiments, any suitable plant tissue culture media
(e.g., MS and N6 media) may be modified by including further substances, such as
growth regulators. Tissue may be maintained on a basic media with growth regulators
until sufficient tissue is available to begin plant regeneration efforts, or following

repeated rounds of manual selection, until the morphology of the tissue is suitable for
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regeneration (e.g., at least 2 weeks), then transferred to media conducive to shoot
formation. Cultures are transferred periodically until sufficient shoot formation has
occurred. Once shoots are formed, they are transterred to media conducive Lo root
formation. Once sufficient roots are formed, plants can be transferred to soil for further
growth and maturity.

To confirm the presence of the desired nucleic acid molecule comprising a
synthetic bidirectional SCBV promoter in the regenerating plants, a variety of assays
may be performed. Such assays include, for example: molecular biological assays,
such as Southern and Northern blotting and PCR; biochemical assays, such as detecting
the presence of a protein product, e. g., by immunological means (ELISA and/or
Western blots) or by enzymatic function; plant part assays, such as leaf or root assays;
and analysis of the phenotypc of the whole regenerated plant.

Targeted integration events may be screened, for examplc, by PCR
amplification using, e.g., oligonucleotide primers specitic for nucleic acid moleculces of
interest. PCR genotyping is understood to include, but not be limited to,
polymerase-chain reaction (PCR) amplification of genomic DNA derived from isolated
host plant callus tissue predicted to contain a nucleic acid molecule of interest
integrated into the genome, followed by standard cloning and sequence analysis of
PCR amplification products. Methods of PCR genotyping have been well described
(see, e.g., Rios et al. (2002), Plant J. 32:243-53), and may be applied to genomic DNA
derived from any plant species or tissue type, including cell cultures. Combinations of
oligonucleotide primers that bind to both target sequence and introduced sequence may
be used sequentially or multiplexed in PCR amplification reactions. Oligonucleotide
primers designed to anneal to the target site, introduced nucleic acid sequences, and/or
combinations of the two may be produced. Thus, PCR genotyping strategies may
include, for example and without limitation: amplification of specific sequences in the
plant genome; amplification of multiple specific sequences in the plant genome;
amplification of non-specific sequences in the plant genome; and combinations of any
of the foregoing. One skilled in the art may devise additional combinations of primers
and amplification reactions to interrogate the genome. For example, a set of forward

and reverse oligonucleotide primers may be designed to anneal to nucleic acid
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sequence(s) specific for the target outside the boundaries of the introduced nucleic acid
sequence.

Forward and reverse oligonucleotide primers may be designed to anneal
specifically to an introduced nucleic acid molecule, for example, at a sequence
corresponding to a coding region within a nucleotide sequence of interest comprised
therein, or other parts of the nucleic acid molecule. These primers may be used in
conjunction with the primers described above. Oligonucleotide primers may be
synthesized according to a desired sequence, and are commercially available (e.g.,
from Integrated DNA Technologies, Inc., Coralville, JA). Amplification may be
followed by cloning and sequencing, or by direct sequence analysis of amplification
products. One skilled in the art might envision alternative methods for analysis of
amplification products generated during PCR genotyping. In one embodiment,
oligonucleotide primers specific for the gene target are employed in PCR
amplifications.

Some embodiments of the present invention also provide cclls comprising a
synthetic bidirectional SCBV promoter, for example, as may be present in a nucleic
acid construct. In particular examples, a synthetic bidirectional SCBV promoter
according to some embodiments may be utilized as a regulatory sequence to regulate
the expression of transgenes in plant cells and plants. In some such examples, the use
of a synthetic bidirectional SCBV promoter operably linked to a nucleotide sequence
of interest (e.g., a transgene) may reduce the number ol homologous promoters needed
to regulate expression of a given number of nucleotide sequences of interest, and/or
reduce the size of the nucleic acid construct(s) required to introduce a given number of
nucleotide sequences of interest. Furthermore, use of a synthetic bidirectional SCBV
promoter may allow co-expression of two operably linked nucleotide sequence of
interest under the same conditions (i.e., the conditions under which the SCBV promoter
is active). Such examples may be particularly useful, e.g., when the two operably
linked nucleotide sequences of interest each contribute to a single trait in a transgenic
host comprising the nucleotide sequences of interest, and co-expression of the
nucleotide sequences of interest advantageously impacts expression of the trait in the

transgenic host.
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In some embodiments, a transgenic plant comprising one or more synthetic
bidirectional SCBV promoter(s) and/or nucleotide sequence(s) of interest may have
one or more desirable traits conferred (e.g., introduced, enhanced, or contributed to) by
expression of the nucleotide sequence(s) of interest in the plant. Such trails may
include, for example and without limitation: resistance to insects, other pests, and
disease-causing agents; tolerances to herbicides; enhanced stability, yield, or shelf-life;
environmental tolerances; pharmaceutical production; industrial product production;
and nutritional enhancements. In some examples, a desirable trait may be conferred by
transformation of a plant with a nucleic acid molecule comprising a synthetic
bidirectional SCBV promoter operably linked to a nucleotide sequence of interest. In
some examples, a desirable trait may be conferred to a plant produced as a progeny
plant via breeding, which trait may be conferred by one or more nucleotide sequences
of interest operably linked to a synthetic bidirectional SCBV promoter that is/are
passed to the plant from a parent plant comprising a nuclcotide sequence of interest
operably linked to a synthetic bidirectional SCBV promoter.

A transgenic plant according to some embodiments may be any plant capable
of being transformed with a nucleic acid molecule of the invention, or of being bred
with a plant transformed with a nucleic acid molecule of the invention. Accordingly,
the plant may be a dicot or monocot. Non-limiting examples of dicotyledonous plants
for use in some examples include: alfalfa; beans; broccoli; cabbage; canola, carrot;
cauliflower; celery; Chinese cabbage; cotton; cucumber; cggplant; lettuce; melon; pea;
pepper; peanut; potato; pumpkin; radish; rapeseed; spinach; soybean; squash;
sugarbeet; sunflower; tobacco; tomato; and watermelon. Non-limiting examples of
monocotyledonous plants for use in some examples include: corn; onion; rice;
sorghum; wheat; rye; millet; sugarcane; oat; triticale; switchgrass; and turfgrass.

In some embodiments, a transgenic plant may be used or cultivated in any
manner, wherein presence a synthetic bidirectional SCBV promoter and/or operably
linked nucleotide sequence of interest is desirable. Accordingly, such transgenic plants
may be engineercd to, inter alia, have one or more desired traits, by being transformed
with nucleic acid molecules according to the invention, and may be cropped and/or

cultivated by any method known to those of skill in the art.



CA 02855125 2014-05-08

WO 2013/101344 PCT/US2012/064699

10

15

20

25

30

_ 46 -

While the invention has been described with reference to specific methods
and embodiments, it will be appreciated that various modifications and changes may
be made without departing from the invention.

The following examples are provided to illustrate certain particular features
and/or embodiments. The examples should not be construed to limit the disclosure to

the particular features or embodiments exemplified.

EXAMPLES
EXAMPLE 1: Transformation and Expression

Transformation of Agrobacterium tumefaciens: The pDAB108706 binary
vector is transformed into 4grobacterium tumefaciens strain DAt13192 ternary (U.S.
Prov. Pat. No. 61/368965). Bacterial colonies are isolated and binary plasmid DNA is
isolated and confirmed via restriction enzyme digestion.

Corn Transformation: Ear Sterilization and Embryo Isolation. To obtain maize
immature embryos, plants of Zea mays (c.v. B104) are grown in the greenhouse and
self or sib-pollinated to produce cars. The cars are harvested approximately 9-12 days
post-pollination. On the day of the experiment, cars arc surface-sterilized by
immersion in a 20% solution of household bleach, which contains 5% sodium
hypochlorite, and shaken for 20-30 minutes, followed by three rinses in sterile water.
After sterilization, immature zygotic embryos (1.5-2.2 mm) are aseptically dissected
from each ear and randomly distributed into micro-centrifuge tubes containing liquid
infection media (LS Basal Medium, 4.43 gny/L; N6 Vitamin Solution [1000X], 1.00
mL/L; L-proline, 700.0 mg/L; sucrose, 68.5 gm/L; glucose, 36.0 gm/L; 2,4-D, 1.50
mg/L. For a given set of experiments, pooled embryos from 2-3 ears are used for each
treatment.

Agrobacterium Culture Initiation: Glycerol stocks of Agrobacterium containing
the binary vectors described above are streaked on AB minimal medium plates
containing appropriate antibiotics and are grown at 20°C for 3-4 days. A single colony
is picked and streaked onto YEP plates containing the same antibiotics and was
incubated at 28°C for 1-2 days.

Agrobacterium Culture and Co-cultivation: On the day of the experiment,

Agrobacterium colonies arc taken from the YEP plate, suspended in 10 mL of infection
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medium in a 50 mL disposable tube, and the cell density 1s adjusted to OD600 =
0.2-0.4 nm using a spectrophotometer. The Agrobacterium cultures are placed on a
rotary shaker at 100 rpm, room temperature, while embryo dissection is performed.
Immature zygotic embryos between 1.5-2.2 mm in size are isolated from the sterilized
maize kernels and placed in 1 mL of the infection medium and washed once in the
same medium. The Agrobacterium suspension (2 mL) is added to each tube and the
tubes are inverted for about 20 times then shaken for 10-15 minutes. The embryos are
transferred onto co-cultivation media (MS Salts, 4.33 gm/L; L-proline, 700.0 mg/L;
myo-inositol, 100.0 mg/L; casein enzymatic hydrolysate 100.0 mg/L; Dicamba- 3.30
mg/L; sucrose, 30.0 gm/L; Gelzan™, 3.00 gm/L; modified MS-Vitamin [1000X],
1.00 ml/L, AgNos. 15.0 mg/L; Acetosyringone, 100 pM), oriented with the scutellum
facing up, and incubated for 3-4 days in the light at 25°C.

GUS and YFP/PhiYFP Transient expression: Transient YFP/PhiYFP and GUS
expression can be observed in transformed embryos and after 3 days of co-cultivation
with Agrobacterium. The embryos are observed under a stereomicroscope (Leica
Microsystems, Buffalo Grove, IL) using YFP filter and 500 nm light source. Embryos
showing YFP/PhiYFP expression are selected for GUS histochemical assay. GUS
staining solution is prepared as described in Maniatis et al. (1989) and embryos are
incubated in 1 mL solution for 24 hours at 37°C. The embryos are observed for GUS
transient expression under the microscope.

Callus Selection and Regeneration of Putative Events: Following the
co-cultivation period, embryos are transferred to resting media (MS salts, 4.33 gm/L;
L-proline, 700.0 mg/L; myo-inositol, 100.0 mg/L; MES
[(2-(n-morpholino)-ethanesulfonic acid), free acid] 500.0 mg/L; casein enzymatic
hydrolysate 100.0 mg/L; Dicamba, 3.30 mg/L; sucrose, 30.0 gm/L; Gelzan 2.30
gm/L; modified MS-Vitamin [1000X], 1.00 ml/L; AgNos, 15.0 mg/L; Carbenicillin,
250.0 mg/L) without selective agent and incubated in the light for 7 days at 28°C.
Embryos are transferred onto Selection 1 media (MS salts, 4.33 gm/L; L-proline,
700.0 mg/L; myo-inositol , 100.0 mg/L; MES [(2-(n-morpholino)-ethanesulfonic
acid), free acid] 500.0 mg/L; casein enzymatic hydrolysate 100.0 mg/L; Dicamba,
3.30 mg/L.; sucrose, 30.0 gm/L; Gelzan™ 2.30 gm/L; modified MS-Vitamin
[1000X], 1.00 ml/L; AgNos, 15.0 mg/L; Carbenicillin, 250.0 mg/L) containing 100
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nM haloxyfop and incubated in 24 hours light with light intensity of 50 pmol m?s! for
7 days at 28°C.

Embryos with proliferating embryogenic calli are transferred onto Selection 2
media (MS salts, 4.33 gm/L; myo-inositol, 100.0 mg/L; L-proline, 700.0 mg/L; MES
[(2-(n-morpholino)-ethanesulfonic acid), free acid] 500.0 mg/1.; casein enzymatic
hydrolysate 100.0 mg/L; Dicamba, 3.30 mg/L; sucrose, 30.0 gm/L; Gelzan™ 2.30
gm/L; modified MS-Vitamin [1000X], 1.00 ml/L; AgNos, 15.0 mg/L; Carbenicillin,
250.0 mg/L) containing 500 nM haloxyfop and are incubated in 24 hours light with
light intensity of 50 pumol m?s™! for another 14 days at 28°C. This sclection step allows
transgenic callus to further proliferate and ditferentiate. The callus selection period
lasts for three weeks. Proliferating, embryogenic calli are transterred onto
Regeneration 1 media (MS salts, 4.33 gm/L; myo-inositol, 100.0 mg/L; L-proline,
350.0 mg/L; MES [(2-(n-morpholino)-ethanesulfonic acid), free acid] 250.0 mg/L;
casein enzymatic hydrolysate 50.0 mg/L; NAA 0.500 mg/L; ABA 2.50 mg/L.; BA
1.00 mg/L; sucrose, 45.0 gm/L; Gelzan™ 2.50 gm/L; modified MS-Vitamin
[1000X], 1.00 ml/L; AgNos, 1.00 mg/L; Carbenicillin, 250.0 mg/L) containing 500
nM haloxyfop and cultured in 24 hours light with light intensity of 50 pmol m™s™ for 7
days at 28°C. Embryogenic calli with shoot-like buds are transferred onto
Regeneration 2 media (MS salts, 4.33 gm/L; modified MS-Vitamin [1000X], 1.00
ml/L; myo-inositol, 100.0 mg/L; sucrose, 60.0 gm/L; Gellan Gum G434™ 3.00
gm/L; Carbenicillin, 250.0 mg/L) containing 500 nM haloxyfop. The cultures are
incubated under 24 hours light with light intensity of 50 umol m7s™ for 7-10 days at
28°C. Small shoots with primary roots are transferred to shoot elongation and rooting
media (MS salts, 4.33 gm/L; modified MS-Vitamin [1000X], 1.00 ml/L;
myo-inositol, 100.0 mg/L; sucrose, 60.0 gm/L; Gellan Gum G434™ 3.00 gm/L;
Carbenicillin, 250.0 mg/L) in MAGENTA™ boxes (Sigma-Aldrich, St. Louis, MO),
and are incubated under 16/8 hours light/dark for 7 days at 28°C. Putative transgenic

plantlets are analyzed for transgene copy number and transferred to the greenhouse.
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EXAMPLE 2: Construction of a Synthetic Bidirectional SCBV Promoter and
pDAB108708 Vector

An exemplary schematic drawing of the maize Ubiquitin-1 promoter (Ubil) is
shown in FIG. 1. An Ubil promoter is cloned from maize. A plasmid which contained
the promoter is PCR amplified using a high-fidelity PCR amplification system. An
approximately 200 nt region of the maize Ubil promoter is identified as a Zea mays
Ubil mintmal core promoter (minUbiiP) (SEQ ID NO: 1). The minUbi1P of SEQ ID
NO: 1 is then added to a polynucleotide comprising a Zea mays Ubiquitin-1 exon
(ZmUbil exon) and a Zea mays Ubiquitin-1 intron (ZmUbi] intron) using cloning
methods commonly known in the art to produce the polynucleotide of SEQ ID NO: 2.
The resulting polynucleotide was then cloned upstream in reverse orientation of a
nucleic acid comprising the maize Ubil promoter (including the Ubil URS) to produce
the synthetic bidirectional Ubil promoter of SEQ ID NO: 3.

Reporter gene coding sequences are cloned downstream of each end of the
synthetic bidirectional Ubil promoter. A yellow fluorescence protein (YFP) coding
sequence is inserted downstream of the polynucleotide fragment which contained the
minUbilP, ZmUbil exon, and ZmUbil intron promoter elements. In addition, a
downstream leader sequence containing a 3-frame stop polynucleotide sequence and
the maize consensus polynucleotide sequence is added to the minUbilP, ZmUbil, exon
and ZmUbil intron promoter elements fragment. A uid4 (GUS) coding sequence was
also inserted downstream of the synthetic bidirectional Ubil promoter in reverse
orientation with respect to the YFP sequence to produce the nucleic acid of SEQ 1D
NO: 4. The resulting polynucleotide comprising the synthetic bidirectional Ubil
promoter operably linked to the YFP and GUS genes was cloned into pleférnid
pDAB105801. FIG. 4 shows the orientation of the YFP and GUS expression cassette
in relation to the synthetic bidirectional Ubil promoter in plasmid pDAB105801.

The native Ubil promoter scquence 1s removed from the bidirectional Ubil
promoter of plasmid pDAB105801 and replaced with a PCR amplified fragment
containing the SCBV promoter and ADH intron (SEQ 1D NO: 6). The resulting
exemplary synthetic bidirectional SCBV promoter is set forth as SEQ ID NO: 5 (also
see FIG. 5). The addition of this SCBV promoter resulted in the completion of vector
pDAB105806 (FIG. 6). This vector contained the YFP and GUS gene expression
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cassettes which were driven by the SCBV bi-directional promoter (SEQ ID NO: 7; also
see FIG. 7).

A binary vector which contained the GUS and YFP gene expression cassettes
from plasmid pDAB105806 is completed via a GATEWAY L-R CLONASE reaction
(Invitrogen, Carlsbad, CA). The resulting vector, pPDAB108708, contained the GUS,
YFP, and AAD-1 gene expression cassettes within the T-strand region (see FIG. 9).

EXAMPLE 3: Expression of Genes Operably linked to a Synthetic Bidircctional
SCBYV Promoter

Representative examples of YFP and GUS transient expression in Zea mays
embryos transformed with pDAB108708 can be imaged. Both sides of the
bidirectional SCBV promoter can drive robust expression of the operably linked Y£P
and GUS coding sequences. The YFP expression levels are comparable to the GUS
expression levels. These observations confirm that both sides of the bidirectional
SCBV promoter are biologically functional. Moreover, the minUbilP element of the
synthetic bidirectional SCBV promoter can express YFP at similar expression levels as
compared to Zea mays callus transformed with a binary plasmid (pDAB101556) that
contained only a unidirectional ZmUbil promoter driving the Y/P coding sequence.
Expression of YFP or GUS is not detected in negative control immature embryos
which are not transformed with a binary construct, and did not contain the YF#P or GUS

coding sequences.

EXAMPLE 4: Stable Expression of Genes Operably linked to a Synthetic
Bidirectional SCBV Promoter

Images of Zea mays callus cells that are stably transformed with the
pDAB108708 binary vector, which contains a YFP coding sequence, can be
observed. These cells are obtained from Z. mays embryos that have been
propagating on Selection 2 medium. The microscopy conditions and protocol that
are used to generate the images of the embryos. The bidirectional SCBV promoter
can drive robust expression of the YFP coding sequences. These results confirm that
the Min-UbilP minimal promoter element of the bidirectional SCBV promoter is

capable of expressing a reporter gene in stably transformed Z. mays callus cells. The



CA 02855125 2014-05-08

WO 2013/101344 PCT/US2012/064699

10

15

20

25

30

=51 -

levels of expression of the YFP protein are similar as compared to YFP expression
in Z. mays callus transformed with a control binary vector that containcd the
unidirectional ZmUDbil promoter driving the YFP coding sequence (pDAB101556).
Cxpression of YFP is not detected in the negative control callus that was not
transformed with a binary construct and did not contain a YFP or GUS coding

sequence.

EXAMPLE 5: Transgene Copy Number Estimation Using Real Time
TagMan™ PCR

Zea mays embryos are transformed with a binary vector containing a
bidirectional SCBV promoter, pPDAB108708, and other plants are transformed with
a control binary vector, pPDAB101556. The presence of YFP transgenes within the
genome of both set of Z mays plants is confirmed via a hydrolysis probe assay.
Stably transformed transgenic Z mays plantlets that developed from the callus are
obtained and analyzed to identify events that contain a low copy number (1-2
copies) of full-length T-strand inserts from the pDAB108708 binary vector and
pDAB101556 control binary vector. Identified plantlets are advanced to the green
house and grown.

The Roche Light Cycler480™ system is used to determine the transgene
copy number for cvents that are transformed with the pDAB108708 binary vector.
The method utilizes a biplex TAQMAN® reaction that employs oligonucleotides
specific to the Y#P genc and to the endogenous Z. mays reference gene, invertase
(Genbank Accession No: U16123.1), in a single assay. Copy number and zygosity
are determined by measuring the intensity of YFP-specific fluorescence, relative to
the invertase-specific fluorescence, as compared to known copy number standards.

In Z mays transformed with the pDAB108708 binary vector, a YFP
gene-specilic DNA fragment is amplified with one TAQMAN® primer/probe set
containing a probe labeled with FAM fluorescent dye, and invertase is amplified
with a second TAQMAN® primer/probe set containing a probe labeled with HEX
fluorescence (Table 2). The PCR reaction mixture is prepared as set forth in Table
3, and the gene-specific DNA fragments are amplified according to the conditions

set forth in Table 4. Copy number and zygosity of the samples are determined by
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measuring the relative intensity of fluorescence specific for the reporter gene, YFP,
to fluorescence specific for the reference gene, invertase, as compared to known

copy number standards.

S Table 2. Forward and reverse nucleotide primer and fluorescent probes

(synthesized by Integrated DNA Technologies, Coralville, 1A)

Primer Name SEQ ID NO: Primer Sequence

YFP Forward Primer SEQIDNO: 8 | GATGCCTCAGTGGGAAAGG

YFP Reverse Primer SEQ ID NO: 9 | CCATAGGTGAGAGTGGTGACAA

YFP Probe SEQ ID NO: 41 | ROCHE UPL Probe #125 CTTGGAGC
Cat # 04693604001 (Roche, Indianapolis,
IN)

Invertase Forward Primer | SEQ ID NO: 10 TGGCGGACGAEGACTTGT

Invertase Reverse Primer SEQIDNO: 11 | AAAGTTTGGAGGCTGCCGT

Invertase Probe SEQIDNO: 12 | 5HEX/CGAGCAGACCGCCGTGTACTT
CTACC /3BHQ _1/3'

AADI Forward Primer SEQIDNO: 13 | TGTTCGGTTCCCTCTACCAA

AADI1 Reverse Primer SEQ ID NO: 14 | CAACATCCATCACCTTGACTGA

AAD] Probe SEQIDNO: 15 | CACAGAACCGTCGCTTCAGCAACA

Standards are created by diluting the vector, pDAB108708, into Z. mays

B104 genomic DNA (gDNA) to obtain standards with a known relationship of

10  pDAB108706:gDNA. For example, samples having one; two; and four cop(ies) of
vector DNA per one copy of the Z. mays B104 gDNA are prepared. One and two
copy dilutions of the pDAB108706 mixed with the Z. mays B104 gDNA standard
are validated against a control Z. mays event that is known to be hemizygous, and a
control Z mays event that is known to be homozygous (Z. mays event 278; see PCT

15  International Patent Publication No. WO 2011/022469 A2). A TAQMAN® biplex
assay which utilizes oligonucleotides specific to the 44 D! gene and
oligonucleotides specific to the endogenous Z. mays reference gene, invertase, 1s
performed by amplifying and detecting a gene-specific DNA fragment for 44D/
with one TAQMAN® primer/probe set containing a probe labeled with FAM

20 fluorescent dye, and by amplifying and detecting a gene-specific DNA fragment for
invertase with a second TAQMAN® primer/probe set containing a probe labeled
with HEX fluorescence (Table 2). The 44D] TAQMAN® reaction mixture is
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prepared as set forth in Table 3 and the specific fragments are amplified according to

the conditions set forth in Table 4.

Table 3. TAQMAN® PCR reaction mixture.

PCT/US2012/064699

Number of Reactions pl each Final
Concentration
H,O 0.5 uL -
PVP (10%) 0.1 uL 0.1%
ROCHE 2X Master Mix 5uL 1X
YFP Forward Primer (10 pM) 0.4 uL 0.4 uM
YFP Reverse Primer (10 pM) 0.4 pL 0.4 uM
YFP Probe UPL#125 (5 pM) 0.4 uL 0.2 uM
Invertase Forward Primer (10 uM) 0.4 pL 0.4 uM
Invertase Reverse Primer (10 pM) 0.4 uL 0.4 uM
””” Invertase Probe (5uM) 0.4 uL 0.2 uM
DNA Template 2.0 uL -
Total reaction volume 10 ul, -

The level of fluorescence that was generated for each reaction was analyzed
using the Roche LightCycler 480™ Thermocycler according to the manufacturer’s

directions. The FAM fluorescent moiety was excited at an optical density of 465/510

nm. The copy number was determined by comparison of Target/Reference values

for unknown samples (output by the LightCycler 480™) to Target/Reference values

nm, and the HEX fluorescent moiety was excited at an optical density of 533/580

of four known copy number standards (Null, 1-Copy (hemi), 2-Copy (homo) and

4-Copy).

Table 4. Thermocycler conditions for PCR amplification.

PCR Steps Temp (°C) Time No. of cycles
Step-1 95 10 minutes 1
95 10 seconds 10
Step-2 59 35 seconds
72 1 second
Step-3 40 10 seconds 1
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Results from the transgene copy number analysis of transgenic plants
obtained via transformation with a bidirectional ZmUDbil promoter construct
(pDAB108706), and of transgenic plants obtained via transformation with a control
unidirectional ZmUDbil promoter YFP construct (pDAB101556) is shown in Table 5.
Only plants with 1-2 copies of the yfp transgene are transferred to the greenhouse for

further expression analyses.

Table 5. Transgene copy number estimation of the transgenic plants

obtained from bidirectional promoter and control constructs.

Number of Number of
Construct Embryos .. 1-2 Copies of YFP
Positive Events
Transformed
pDAB101566 100 31 13
pDABI108708 113 26 16

EXAMPLE 6: Whole Plant Stable Expression of Genes Operably linked to a
Synthetic Bidirectional SCBV Promoter.

Whole plants that contain a low copy number of the binary plasmid
pDAB108708, and plants that contain a low copy number of the control binary
plasmid pDAB101556, are grown in a greenhouse. These plants are analyzed using
microscopy, where images can be observed showing YFP expression in T Z. mays
plants that are stably transformed with an exemplary nucleic acid construct comprising
a YFP expression cassette operably linked to a synthetic SCBV bidirectional promoter
(pDAB108708). Representative examples of stable expression of YFP in leaf and
root tissue of transgenic Ty maize plants obtained from Z. mays cmbryos
transformed with pDAB108708 show good YF£P expression. 'The bidirectional
SCBYV promoter can drive robust expression of the YF'P coding sequences both in
leaf tissues and root tissues. The microscopy analysis also confirms that the
Min-UbiP1 minimal promoter element in the bidirectional SCBV promoter can drive
YFP expression at similar expression levels as compared to Z. mays plants
transformed with a control binary plasmid (pDAB101556) that contains a
unidirectional ZmUbil promoter driving expression of the YFP coding sequence.

The control plants show stable YFP expression in leaf tissues and root tissues.
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EXAMPLE 7: Western Blot Analysis of Genes Operably linked to a Synthetic
Bidirectional SCBV Promoter

Total Soluble Protein: Transformed Ty maize plants are sampled at the V6
developmental stage. A total of four leaf punches from the youngest unfolded leaf
are sampled into a matrix tube and placed into a matrix box. As a negative control,
four leaf punches of two untransformed B104 maize plants at the V6 developmental
stage are sampled into a matrix tube. A steel bead is placed into the matrix tubes
with the samples, and then 400 pL PBST is added to each tube. The tubes are
capped, and protein is extracted via bead beating at 1500 rpm for 5 minutes in a
Kleco™ tissue grinder. Debris is pelleted via centrifugation.

A 5 uL sample from each tube was diluted to 25 pl. with PBST in a 96-well
microtiter plate. These samples were analyzed for total soluble protein using a BCA
protein assay kit (Thermo Scientific Pierce, Rockford, IL) according to the
manutacturer’s directions. Bovine serum albumin (BSA) standards provided in the
kit were analyzed in duplicate, and the average of the values was used to generate a
standard curve that was subsequently used to calculate total soluble protein for each

sample. The total soluble protein for each sample was then normalized to mg/plL.

Table 6. Western blot protocol.

Step Condition Time
First Wash PBST 5 min.
Prima 2 pug/mL rabbit anti-PhiY FP (Axxora, San Diego, CA) in
Hybri diz:\)t/ion StartingBlock™ T20 (Thermo Fisher Scientific Inc., 60 min.
Y Waltham, MA)
Rinse PBST 3 x 5 min.
Secondary horse radish peroxidase (HRP)-conjugated goat anti-rabbit .
NS 30 min.
Hybridization | IgG
Second Wash | PBST 3 x 5 min.
Rinse PBS 3 x 2 min

YFP/PhiYFP Western Blot Analysis: In the 96-well microtiter plate, each 5
uL sample of extracted protein is diluted with 5 pL 2x Laemmli Buffer +
2-B-mercaptoethanol. Control samples of purified YFP/PhiYFP in HEPES buffer
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(50 mM HEPES, 200 mM KCl, 10% glycerol) is purchased from Axxora (San
Diego, CA). The samples are prepared in the same plate by diluting 1:1 with
Laemmli buffer to produce a standard curve of the [ollowing concentrations: 0.5
ng/ul., 0.25 ng/ul, and 0.125 ng/pul.. Samples are heated in a Thermocycler at 95°C
for 30 minutes, and then cooled to 4°C. A Bio-Rad Criterion gel™ is then
assembled using MES/SDS buffer. The samples are allowed to warm to room
temperature, and 10 pL of sample are loaded into each well of two gels. In addition,
samples of purified YFP/PhiYFP used for a standard curve, and protein ladder
marker, are loaded into wells of the gel. The gels are electrophoretically run at 150
V and 150 mA for 90 min. After the run, the gel casings are opened and the proteins
are transferrcd to a nitrocellulose membrane using the iBlot System™ (Invitrogen).
Protcin is transferred from the gel to the membrane by running a current of 20 V for
10 minutes. The nitrocellulose membranc is removed and placed in StartingBlock
T20™ blocking buffer overnight at 4°C. The blocking buffer is then discarded, and
the membrane is processed using the protocol set forth in Table 6.

Antibody binding was detected using the Amersham ECL™ plus
chemiluminescent detection system following the manufacturer’s directions. ['ilm
was exposed at 10 minutes and 30 minutes. The 10 minute exposed film was used
to quantify protein, and the 30 minute overexposure film was used to confirm the
absence of protein in B104 and other control samples. The membrane was taped to
the back of the exposed film, and protein was quantificd via pixel density analysis.
The pixel density of the purified protein standards was first used Lo generale a
standard curve that was used to quantify protein in the samples. Though membrane
showed bands for a PhiYFP monomer and dimer even in the purified standard, only
the PhiYFP monomer was used to quantify protein expression. Values for the
protein were then normalized to ng/uL. The ratio of normalized total soluble protein
(TSP) to PhiYFP was calculated to the units of ng YFP/mg TSP, or alternatively,
parts per million (ppm).

GUS Western Blot Analysis: Expression of GUS protein is quantified in a
similar manner to PhiYFP, with the following cxception: a 10 L sample of extract

is diluted 1:1 with 2x T.aemmli + 2-B-mercaptoethanol, denatured at 95°C for 30
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minutes, and then 15 pL is loaded into the gel. Processed membranes with film (1
minute exposure) are overlayed with the membrane for pixel density analysis.

Results of a Western blot analysis of 12 transgenic Ty maize plants obtained
from Z. mays embryos transformed with the binary vector, pDAB108708, are shown
in FIG. 16. The bidirectional SCBV promoter shows robust expression of the YFP
and GUS coding sequences from leaf tissue. These observations confirm that the
Min-UbiP1 minimal promoter element isolated from a Zea mays Ubiquitin]
Promoter and fused to the SCBV promoter can express YFP at similar expression
levels as compared to Z. mays callus transformed with a binary plasmid containing a
unidirectional ZmUDbil promoter driving the YFP coding sequence (pDAB101556;
see FI1G. 17).

EXAMPLE 8: Construct of a Four-gene Cassette Stack

A plasmid pDAB105806 construct is used as the starting plasmid to generate
a four-gene cassette stack (AAD1-2A-PhiYFP and Cry34(8V6)-2A-Cry35) driven
by a single SCBV bi-directional promoter. A representative map of plasmid
pDAB105806 is shown in FIG. 6, which contains a SCBV bi-directional Promoter.

The AAD1-2A-PhiYFP fragment derived from plasmid pDAB105841 (FIG.
22) is cloned into the Pstl and Sacl cut vector backbone of the plasmid
pDAB105806 using cloning methods commonly known in the art. This resulted in
the intermediate plasmid pDAB105847 (FIG. 22). A Notl/Xbal digested
Cry34(8V6)-2A-Cry35 fragment obtained [rom the plasmid pDAB105840 is cloned
between Notl/Spel sites of plasmid pDAB105847 to construct plasmid
pDAB105849 (FI1G. 23). The plasmid pDAB105849 contains
Cry34(8V6)-2A-Cry35 and AAD1-2A-PhiYFP gene cassettes on each side of the
SCBYV bidirectional promoter.

A binary vector containing the SCBV bidirectional promoter, and gene
expression cassettes Cry34(8V6)-2A-Cry35 and AAD1-2A-PhiYFP from plasmid
pDAB105849 is generated viaa GATEWAY L-R CLONASE reaction (Invitrogen,
Carlsbad, CA) into a destination plasmid pDAB101917 (FIG. 24). The resulting
vector, pPDAB108719, contains the Cry34(8V6)-2A-Cry35, AAD1-2A-PhiYFP, and
PAT gene expression cassettes within the T-DNA borders (FI1G.24).
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EXAMPLE 9: Construct of a Second Four-gene Cassette Stack

A PhiYFP-2A-AAD1 fragment derived from plasmid pDAB105844 (FIG.
25) is cloned into the Pstl and Sacl cut vector backbone of the plasmid
pDAB105806 using cloning methods commonly known in the art. This resulted in
the intermediate plasmid pDAB105848 (FIG. 25). A Notl/Xbal digested
Cry34(8V6)-2A-Cry35 fragment obtained from the plasmid pDAB105840 is cloned
between Notl/Spel sites of plasmid pDAB105848 to construct plasmid
pDAB105865 (FIG. 26). The plasmid pDAB105865 contains
Cry34(8V6)-2A-Cry35 and PhiYFP-2A-AAD! gene cassettes on each side of the
SCBYV bidircctional promoter.

A binary vector containing the SCBYV bidirectional promoter, and gene
cassettes Cry34(8V6)-2A-Cry35 and PhiYFP-2A-AAD1 from plasmid
pDAB105865 is generated viaa GATEWAY L-R CLONASE reaction (Invitrogen,
Carlsbad, CA) into a destination plasmid pDAB101917 (FIG. 24). The resulting
vector, pPDAB108720, contains the Cry34(8V6)-2A-Cry35, PhiYFP-2A-AADI, and
PAT gene expression cassettes within the T-DNA borders (FIG. 26).

EXAMPLE 10: Transformation of Agrobacterium tumefaciens Strain
DAt13192

The pDAB108719 and pDAB108720 binary vectors are transformed into
Agrobacterium tumefaciens ternary strain DAt13192 (see U.S. Prov. Pat. App. No.
61/368965). Bacterial colonies are isolated and binary plasmid DNA is extracted

and verified via restriction enzyme digestions.

EXAMPLE 11: Transformation into Maize

Ear Sterilization and Embryo Isolation: To obtain maize immature embryos,
plants of Zea mays (c.v. B104) are grown in the greenhouse and self or sib-pollinated
to producc cars. The cars arc harvested approximately 9-12 days post-pollination. On
the day of the experiment, ears are surface-sterilized by immersion in a 20% solution of
household bleach, which contains 5% sodium hypochlorite, and shaken for 20-30

minutes, followed by three rinses in sterile water. After sterilization, immature zygotic
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embryos (1.5-2.2 mm) are aseptically dissected from each ear and randomly
distributed into micro-centrifuge tubes containing liquid infection media (LS Basal
Medium, 4.43 g/L; N6 Vitamin Solution [1000X], 1.00 mL/L; L-proline, 700.0
mg/L; sucrose, 68.5 g/L; glucose, 36.0 g/L; 2.4-D, 1.50 mg/L. For a given set of
experiments, pooled embryos from 2-3 ears are used for each treatment.

Agrobacterium Culture Initiation: Glycerol stocks of Agrobacterium strains
containing the binary vectors described above are streaked on AB minimal medium
plates containing appropriate antibiotics and are grown at 20°C for 3-4 days. A single
colony is picked and streaked onto YEP plates containing the same antibiotics and is
incubated at 28°C for 1-2 days.

Agrobacterium Culture and Co-cultivation: On the day of the experiment,
Agrobacterium colonies are picked from the YEP plate, suspended in 10 mL of
infection medium in a 50 ml. disposable tube, and the cell density is adjusted to ODgyo
= (.2-0.4 nm using a spectrophotometer. The Agrobacterium cultures are placed on a
rotary shaker at 115 rpm, room temperature, while embryo dissection is performed.
Immature zygotic embryos between 1.5-2.2 mm in size are isolated from the sterilized
maize kernels and placed in 1 mL of the infection medium and washed once in the
same medium. The Agrobacterium suspension (2 mL) is added to each tube and the
tubes were inverted for about 20 times then shaken for 10-15 minutes. The embryos
are transferred onto co-cultivation media (MS Salts, 4.33 g/L; L-proline, 700.0 mg/L;
myo-inositol, 100.0 mg/L; casein enzymatic hydrolysate 100.0 mg/L; Dicamba 3.30
mg/L; sucrose, 30.0 g/L; Gelzan™, 3.00 g/L; modified MS-Vitamin [1000X], 1.00
ml/L; AgNos, 15.0 mg/L; Acetosyringone, 100.0 uM), oriented with the scutellum
facing up, and incubated for 3-4 days in the light at 25°C.

YFP/PhiYFP Transient expression: Transient YFP/PhiYFP expression can be
observed in transformed embryos after 3 days of co-cultivation with Agrobacterium.
The embryos are obscrved under a stereomicroscope (Leica Microsystems, Buffalo
Grove, 1L.) using YFP filter and 500 nm light source.

Callus Selection and Regeneration of Putative Events: Following the
co-cultivation period, embryos are transferred to resting media (MS salts, 4.33 g/L;
L-proline, 700.0 mg/L; myo-inositol, 100.0 mg/L; MES

[(2~(n-morpholino)-ethanesulfonic acid), free acid], 500.0 mg/L; casein enzymatic
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hydrolysate, 100.0 mg/L; Dicamba, 3.30 mg/L; sucrose, 30.0 g/L; Gelzan™, 2.30
g/L; modified MS-Vitamin [1000X], 1.00 ml/L; AgNOs, 15.0 mg/L; Carbenicillin,
250.0 mg/L) without selective agent and incubated in 24 hours light with light intensity
of 50 pmol m2s! for 7 days at 28°C. Embryos are transferred onto selection 1 media
(MS salts, 4.33 g/L; L-proline, 700.0 mg/L; myo-inositol , 100.0 mg/L; MES
[(2-(n-morpholino)-ethanesulfonic acid), free acid], 500.0 mg/L; casein enzymatic
hydrolysate, 100.0 mg/L; Dicamba, 3.30 mg/L; sucrose, 30.0 g/L; Gelzan™, 2.30
g/L; modified MS-Vitamin {1000X], 1.00 ml/L; AgNO3, 15.0 mg/L; Carbenicillin,
250.0 mg/L), containing 3 mg/L Bialaphos and incubatcd in 24 hours light with light
intensity of 50 pmol ms for 7 days at 28°C.

Embryos with proliferating embryogenic calli are transferred onto selection 2
media (MS salts, 4.33 g/L; myo-inositol, 100.0 mg/L; L-proline, 700.0 mg/L; MES
[(2-(n-morpholino)-ethanesulfonic acid), free acid], 500.0 mg/L; casein enzymatic
hydrolysate, 100.0 mg/L; Dicamba, 3.30 mg/L; sucrose, 30.0 g/I.; Gelzan™ 2.30
g/L; modified MS-Vitamin [1000X], 1.00 ml/L; AgNos, 15.0 mg/L; Carbenicillin,
250.0 mg/L), containing 5 mg/L Bialaphos and are incubated in 24 hours light with
light intensity of 50 pmol ms™ for another 14 days at 28°C. This selection step allows
transgenic callus to further proliterate and differentiate. The callus selection period
may last for three weeks. Proliferating, embryogenic calli are transferred onto
regeneration 1 media (MS salts, 4.33 g/L; myo-inositol, 100.0 mg/L; L-proline, 350.0
mg/L; MES [(2-(n-morpholino)-ethanesulfonic acid), free acid}], 250.0 mg/L; casein
enzymatic hydrolysate, 50.0 mg/L; NAA., 0.500 mg/L; ABA, 2.50 mg/L; BA, 1.00
mg/L; sucrose, 45.0 g/L; Gelzan™ 2.50 g/L; modified MS-Vitamin [1000X]}, 1.00
ml/L; AgNOs, 1.00 mg/L; Carbenicillin, 250.0 mg/L), containing 3 mg/L Bialaphos
and cultured in 24 hours light with light intensity of 50 pmol m™s™ for 7 days at 28°C.

Embryogenic calli with shoot/buds are transferred onto regeneration 2 media
(MS salts, 4.33 g/L; modified MS-Vitamin [1000X], 1.00 ml/L; myo-inositol, 100.0
mg/L; sucrose, 60.0 g/L; Gellan Gum G434™, 3.00 g/L; Carbenicillin, 250.0 mg/L),
containing 3 mg/L Bialaphos. The cultures are incubated under 24 hours light with
light intensity of 50 pmol m%s™ for 7-10 days at 28°C. Small shoots with primary
roots are transferred to shoot elongation and rooting media (MS salts, 4.33 g/L; N6

Vitamin Solution [1000X], 1.00 mL/L; myo-inositol, 100.0 mg/L; sucrose, 30.0 g/L;
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agar 5.50 g/L; in phytatray and are incubated under 16/8 hours light/dark at 90 pmol
m?s”? for 7 days at 28°C. Hcalthy putative transgenic plantlets are selected then
incubated in 16/8 hours light/dark at 200 umol m™s™ for another 2-5 days at 25°C and

are analyzed for transgene copy number and transferred to the greenhouse.

EXAMPLE 12: Transient PhiYFP Expression

Transicnt expression of PhiYFP from Zea mays embryos transformed with
pDAB108719 is performed. The bi-dircctional SCBV promoter can express PhiYFP
from the AAD1-2A-PhiYFP gene expression cassette, where non-transformed
embryo does not show any PhiYFP fluorescence. Similar level of PhiYFP
expression can be observed from Zea mays embryos transformed with a binary
plasmid pDAB105748 (FIG. 20) containing a uni-directional Zea mays (Zm) Ubil
promoter driving single PhiYFP coding sequence displayed expected level of
YFP/PhiYFP expression. Transient expression of PhiYFP can be observed from Zea
mays embryos transformed with pPDAB108720, where bi-directional Zm Ubil
promoter can express PhiYFP from the PhiYFP-2A-AADI gene expression cassette.

EXAMPLE 13: PhiYFP Expression in Stably Transformed Maize

PhiYFP Expression in Stably Transformed Zea mays Callus Driven by a
Bi-Directional Zm Ubil Promoter: Zea mays embryos transformed with the
pDAB108719 binary vector containing the AAD1-2A-PhiYFP gene expression
cassette show good PhiYTFP expression. The bi-directional SCBV promoter can
drive robust expression of PhiYFP. These results confirm that the Min-UbiP1
minimal promoter element of the bi-directional SCBV promoter is capable of
expressing a reporter gene, for example PhiYFP or YFP. The levels of expression of
the PhiYFP protein are similar as compared to Zea mays callus transformed with a
control binary vector which contained the uni-directional Zm Ubil promoter driving
the PhiYI'P coding sequence (pDAB105748). Expression of PhiYFP is not detected
in the negative control callus which is not transformed with a binary construct and
did not contain the PhiYFP coding sequences.

Zea mays embryos transformed with the pDAB108720 binary vector which
contains the PhiYFP-2A-AAD! gene expression cassette show good PhiYFP
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expression. The bi-directional SCBV promoter can drive robust expression of
PhiYFP. These results confirm that the Min-UbiP1 minimal promoter element of
the bi-directional SCBV promoter is capable of expressing a reporter gene, for

example PhiYFP or YFP.

EXAMPLE 14: Estimation of Transgene Copy Number

Transgene Copy Number Estimation Using Real Time TagMan™ PCR: Zea
mays plants were transformed with binary vectors containing a bidirectional SCBV
promoter, pPDAB108719 and pDAB108720, and other plants are transformed with a
control binary vector, pDAB105748. The presence of coding sequence (PhiYFP,
AADI, Cry34, Cry35, Pat) within the genome of Z. mays plants transgenic to
pDAB108719 and pDAB108720 is confirmed via a TagMan hydrolysis probe assay.
The plants transgenic to control vector pDAB105748 are analyzed for the presence
of PhiYFP sequence. Stably transformed transgenic Z. mays plantlets that
developed from the callus are obtained and analyzed to identify events that contain a
low copy number (1-2 copies) of full-length T-strand inserts from the pDAB 108719
and pDAB108720 binary vectors, and pDAB105748 control binary vector.
Confirmed plantlets are advanced to the green house and grown.

The Roche Light Cycler480™ system is used to determine the transgene
copy number for events that are transformed with the pPDAB108719 and
pDAB108720 binary vector. The method utilized a biplex TAQMAN® rcaction
that employs oligonucleotides specific to the coding sequence and to the endogenous
Z. mays reference gene, invertase (Genbank Accession No: U16123.1), in a single
assay. Copy number and zygosity are determined by measuring the intensity of
coding sequence-specific fluorescence, relative to the invertase-specific

fluorescence, as compared to known copy number standards.
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Table 7. Forward and reverse nucleotide primer and fluorescent probes

(synthesized by Integrated DNA Technologies, Coralville, IA).

Primer Name

Primer Sequence

YFP Forward Primer

GATGCCTCAGTGGGAAAGG (SEQ ID NO: 8)

YFP Reverse Primer

CCATAGGTGAGAGTGGTGACAA (SEQ ID NO: 9)

YFP Probe

ROCHE UPL Probe #125 CTTGGAGC (SEQ ID NO: 41)
Cat # 04693604001 (Rpchc, Indianapolis, IN)

Invertase Forward Primer

TGGCGGACGACGACTTGT (SEQ ID NO: 10)

Invertase Reverse Primer

AAAGTTTGGAGGCTGCCGT (SEQ ID NO: 11)

Invertase Probe

S'HEX/CGAGCAGACCGCCGTGTACTTCTACC/3BHQ_1/3'
(SEQ ID NO: 12)

AAD1 Forward Primer

TGTTCGGTTCCCTCTACCAA (SEQ ID NO: 13)

AADI1 Reverse Primer

CAACATCCATCACCTTGACTGA (SEQ ID NO: 14)

AAD1 Probe

CACAGAACCGTCGCTTCAGCAACA (SEQ ID NO: 15)

Cry34 Forward Primer

GCCAACGACCAGATCAAGAC (SEQ ID NO: 42)

Cry34 Reverse Primer

GCCGTTGATGGAGTAGTAGATGG (SEQ ID NO: 43)

Cry34 Probe

CCGAATCCAACGGCTTCA (SEQ ID NO: 44)

Cry35 Forward Primer

CCTCATCCGCCTCACCG (SEQID NO: 45)

Cry35 Reverse Primer

GGTAGTCCTTGAGCTTGGTGTC (SEQ ID NO: 46)

Cry35 Probe CAGCAATGGAACCTGACGT (SEQ ID NO: 47)

PAT Forward Primer ACAAGAGTGGATTGATGATCTAGAGAGGT (SEQ ID
NO: 48)

PAT Reverse Primer CTITGATGCCTATGTGACACGTAAACAGT (SEQ ID NO:
49)

PAT Probe GGTGTTGTGGCTGGTATTGCTTACGCTGG (SEQ ID NO:

50)

For Z. mays samples transformed with the pDAB108719 and pDAB108720

binary vectors, a coding sequence-specific DNA fragment is amplified with one

TAQMAN® primer/probe set containing a probe labeled with FAM fluorescent dye,

and invertase is amplified with a second TAQMAN® primer/probe set containing a

probe labeled with HEX fluorescence (Table 7). The PCR reaction mixture is

prepared as set forth in Table 8, and the gene-specific DNA fragments are amplified

according to the conditions set forth in Table 9. Copy number and zygosity of the

samples are determined by measuring the relative intensity of fluorescence specific

for the coding sequence to fluorescence specific for the reference gene, invertase, as

compared to known copy number standards.
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Standards are created by diluting the vector (pDAB108719 or pDAB108720)
into Z. mays B104 genomic DNA (gDNA) to obtain standards with a known
relationship of vector:gDNA. For example, samples having one, two, and four
cop(ies) of vector DNA per one copy of the Z. mays B104 gDNA are prepared. One
and two copy dilutions of the vector mixed with the Z. mays B104 gDNA standard
are validated against a control Z. mays event that is known to be hemizygous, and a
control Z. mays event that is known to be homozygous (Z. mays event 278; See PCT
International Patent Publication No. WO 2011/022469 A2). A TAQMAN® biplex
assay which utilizes oligonucleotides specific to the coding sequence gene and
oligonucleotides specific to the endogenous Z. mays reference gene, invertase, 1s
performed by amplifying and detecting a gene-specific DNA fragment for coding
sequence with one TAQMAN® primer/probe set containing a probe labeled with
FAM fluorescent dye, and by amplifying and detecting a gene-specific DNA
fragment for invertase with a second TAQMAN® primer/probe set containing a
probe labeled with HEX fluorescence. According to Table 7, the coding sequence
TAQMAN® reaction mixture is prepared as set forth in Table 8 and the specific

fragments are amplified according to the conditions set forth in Table 9.

Table 8. TAQMAN® PCR reaction mixture.

Number of Reactions ul each Final
Concentration

H,O 0.5 pL. -
PVP (10%) 0.1 uL 0.1%
ROCHE 2X Master Mix 5.0 uL 1X
Coding sequence Forward Primer (10 pM) 0.4 uL. 0.4 yM
Coding sequence Reverse Primer (10 pM) 0.4 puL 0.4 pM
Coding scquence Probe UPL#125 (5 uM) 0.4 ul 0.2 uM
Invertase Forward Primer (10 pM) 0.4 ul 04 uM
Invertase Reverse Primer (10 pM) 0.4 uL 0.4 uM
Invertase Probe (5uM) 04pL 0.2 uM
Template DNA 2.0 ulL -
Total reaction volume 10 ;1L -
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The level of fluorescence generated for each reaction is analyzed using the

Roche LightCycler 480™ Thermocycler according to the manufacturer’s directions.

The FAM fluorescent moiety is excited at an optical density of 465/510 nm, and the

HEX fluorescent moiety is excited at an optical density of 533/580 nm. The copy

number can be determined by comparison of Target/Reference values for unknown

samples (output by the LightCycler 480™) to Target/Reference values of four

known copy number standards (for example, Null, 1-Copy (hemi), 2-Copy (homo),

and 4-Copy).

Table 9. Thermocycler conditions for PCR amplification.

PCR Steps Terp (°C) Time No. of cycles
Step-1 95 10 minutes 1
95 10 seconds
Step-2 59 35 seconds 40
72 1 second
Step-3 40 11 seconds 1

Results from the transgene copy number analysis of transgenic plants

obtained via transformation with a bidirectional SCBV promoter constructs

(pDAB108719 and pDAB108720), and of transgenic plants obtained via

transformation with a control unidirectional ZmUbil promoter PhiYFP construct

(pDAB105748) are summarized in Table 10. Only plants with 1-2 copies of the all

transgenes are transferred to the greenhouse for further expression analyses.

Table 10. Transgene copy number estimation of the transgenic plants

obtainced from bidirectional promoter and control constructs.

Construct I\}Izurrnnt? ero(;f Number of 1-2 Copies of all
Y Positive Events genes
) Transformed
pDAB108719 250 78 13
pDAB108720 225 57 13
pDAB105748 32 8 2
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EXAMPLE 15: Stable PhiYFP Expression in Maize T0 Plants

Stable PhiYFP Expression in Zea mays T, Plants Driven by bidirectional
SCBV Promoter: Zea mays embryos transformed with the pDAB108719 binary
vector containing the AAD1-2A-PhiYFP gene expression cassette can be observed.
The bi-directional SCBV promoter can drive robust expression of the PhiYFP both
in shoot and root tissucs. The results confirm that the Min-UbiP1 minimal promoter
element of the bi-directional SCBV promoter is capable of expressing a reporter
gene, for example PhiYFP or YFP that is bicistronically fuscd with aadl using a 2ZA
sequence. The levels of expression of the PhiYFP protein is similar to Z. mays
embryos transformed with a control binary vector which contains the uni-directional
Zm Ubil promoter driving the PhiYFP coding sequence (pDAB105748).
Expression of PhiYFP is not detected in the negative control plants which are not
transformed with a binary construct and do not contain the PAiYFP coding
sequences.

PhiYFP expression in leaf and root tissues of Zea mays TO plants transgenic
to pPDAB108720 binary vector which contains the PhiYFP-2A-AAD1 gene
expression cassette can be observed. The bi-directional SCBV promoter can drive
robust expression of PhiYFP. The results confirm that the Min-UbiP1 minimal
promoter element of the bi-directional SCBV promoter is capable of expressing a
reporter gene, for example PhiYFP or YFP fused to aadl with a 2A sequence or

2A-like sequence.

EXAMPLE 16: Cry34, Cry35, and AAD1 Protein Analysis

Plants are sampled into columns 1-10 of a matrix box in 1.5mL conical tubes
to which 1 steel bead is added followed by PBST+0.5% BSA (0.6mL). The box is
then bead beated for sample grinding in a Geno Grinder for 5 minutes at 1500 rpm
then centrifuged at 3700 rpm for 7 minutes at 4°C.

Cry34/35 ELISA assay: In a separate, 96 deep well plate, a sample of the
extract is diluted 1:200 in PBST + 1% blotto. Two volumes of 25 pL of the diluted
sample are then transferred to separate 96- well plates that have been arrayed with
anti-Cry34 and anti-Cry35 (Meso Scale Discovery). In the 11 and 12 columns of
each plate standard concentrations of Cry34 and Cry35 in PBST+1% blotto are
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added (25 uL). The plates are then incubated while shaking at room temperature for
one hour. The plates are then washed with PBST (3x300 puL). Then 25 puL of a
solution of SulfoTAG conjugated anti-Cry34 and anti-Cry35 is added to each well
and incubated with shaking at room temperature for one hour. The plates are then
washed with PBST (3x300 uL). A volume of 150 pl. Read Buffer T (Meso Scale
Discovery) is then added and the plate is immediately rcad on a SECTOR® 6000
reader. Concentrations of proteins in the sample can be calculated using the
standard curve for the respective protein generated from the same plate.

AAD-1 ELISA assay: In a separate, 96 deep well plate, a sample of the
extract is diluted 1:20 in PBST + 0.5% BSA. Two volumes of 200 pl, of the diluted
sample are then transferred to separate 96 well plates that have been coated with
anti-AAD1 (provided by Acadia Bioscience LLC). Inthe 11 and 12 columns of
each plate standard concentrations of AAD1 in PBST + 0.5% BSA are added (200
nl). A volume of 50 uL of biotinylated anti-AAD]1 is then added to each well and
the plates are incubated while shaking at room temperature for one hour. The plates
are then washed with PBST (5x300 pL). Then 100 pL of a steptavidin-alkaline
phosphate conjugate solution is added to each well and incubated with shaking at
room temperature for 30 minutes. The plates are then washed with PBST (5x300
ul). A volume of 100 uL substrate (p-nitrophenylphosphate, PNPP) is then added
and incubated with shaking at room temperature for 45 minutes. The plates are then
rcad at A405 on a SpectraMax M5 plate reader (Molecular Devices).

Concentrations of proteins in the sample can be calculated using the standard curve

generated from the samc plate.

EXAMPLE 17: Protein Analysis of Maize T0 Plants
Protein analysis of maize TO plants driven by the bi-directional Zea mays

SCBYV Promoter construct (pDAB108719) is performed in this example.
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Table 11. Cry34/Cry35/AAD]1 expression in TO maize pDAB108719

transgenic plants

Plant ID Cry34 ng/em’ Cry35 ng/em® | |AADI ng/ent’|
108719[2]-102.001 56 0 2
108719[3]-058.001 20 0 3
108719[3]-061.002 25 0 3
108719[3]-057.001 37 0 1
108719[3]-064.001 20 0 5
108719[1]-009.001 31 0 3
108719[1]-013.001 15 0 8
108719[1]-014.001 31 0 4
108719[1]-016.001 27 2 2
108719[1]-020.001 20 10 5
108719[2]-096.001 20 12 7
108719[2]-101.001 21 4 3

Representative ELISA analysis of 12 transgenic T0 maize plants obtained
from Zea mays embryos transformed with pDAB108719 that contains
Cry34-2A-Cry35 gene expression cassette is summarized in Table 11.
Bi-directional SCBV promoter can drive robust expression of both Cry34 and Cry35
coding sequences in leaf. These observations show that the single SCBV
bidirectional promoter in construct pPDAB108719 can express multiple genes (e.g.,
Cry34, Cry35, and AADI1).

Protein analysis of maize TO plants driven by the bi-directional Zea mays
Ubiquitinl Promoter construct (pDAB108720): Representative ELISA analysis of 9
transgenic TO maize plants obtained from Zea mays embryos transformed with
pDAB108720 that contains the Cry34-2A-Cry35 gene expression cassette is
summarized in Table 12. Bi-directional SCBV promoter can drive robust expression

of both Cry34 and Cry35 coding sequences in leaf.
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Table 12. Cry34/Cry35/AADI expression in TO maize pDAB108720

transgenic plants

Plant ID 7Cry347 r1g7c1n2 Cry35 ng/em® [AADI ng/cnﬁ
108720[1]-017.001 19 24 10
108720[11-024.001 21 9
108720[1]-027.001 20 8

© 108720[1]-032.001 32 12 8
108720[2]-085.001 16 0 8
108720[2]-086.001 30 0 5
108720[2]-088.001 0 26 4
108720[2]-092.001 13
108720[2}-105.001 26 0 2

EXAMPLE 18: Transgene Stacking: Synthetic Bidirectional Promoters (T1
data)

Gene expression of T1 plants driven by the bi-directional promoter
constructs: ten to twelve single copy events per construct are selected for analysis
except that the control construct pDAB108716 has only one event. Five
plants/cvents for the V6 stage are tested and three plants/events [or the V10-12
and/R3 stages are tested. Protein assays are performed using LCMS or ELISA.

The constructs used in this example are shown in F1G. 30. pDAB108708
(SCBYV bidirectional (-200)) and pDAB108709 (SCBYV bidirectional (-90)) arc
constructs with representative bidirectional promoter of the present invention in
addition to constructs with maize Ubil bidirectional promoter (pDAB108706
[ZMUbi bidirectional (-200)) and pDAB108707 (ZMUbi bidirectional (-90))];
pDAB101556 (ZmUbil-YFP control), pDAB108715 (SCBV without minimal
promoter), and pDAB108716 (ZMUbil without minimal promoter) serve as control
constructs with uni-directional promoters.

Exemplary expression results (V6) from the seven constructs for YFP protein
(LCMS) in ng/em” are shown in FIG. 31A. Exemplary relative expression results (V6)
from the seven constructs for YFP RNA are shown in I'1G. 31B.
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Exemplary expression results (V6) from the seven constructs for GUS protein
(LCMS) in ng/em? are shown in FIG. 32A. Exemplary relative expression results (V6)
from the seven constructs for GUS RNA are shown in FIG. 32B.

Exemplary expression results (V6) from the seven constructs for AAD1 protein
(LCMS) in ng/em” are shown in FIG. 33A. Exemplary relative expression results (V6)
from the seven constructs for AAD1 RNA are shown in FIG. 33B.

A statistical analysis of expression results (V6) from the seven constructs for
YFP protein (LCMS) in ng/cm” is shown in FIG. 34A. A statistical analysis of
relative expression results (V6) from the seven constructs for YFP RNA is shown in
FIG. 34B. The mean values and statistical results are listed.

A statistical analysis of expression results (V6) from the seven constructs for
GUS protein (LCMS) in ng/cm"‘ is shown in FIG. 35A. A statistical analysis of
relative expression results (V6) from the seven constructs for GUS RNA is shown in
FIG. 35B. The mean values and statistical results are listed.

A statistical analysis of expression results (V6) from the seven constructs for
AADI protein (LCMS) in ng/em? is shown in FIG. 36A. A statistical analysis of
relative expression results (V6) from the seven constructs for AAD1 RNA is shown in
FIG. 36B. The mean values and statistical results are listed.

FIGS. 37A, 37B, and 37C show exemplary expression results (V10) from the
seven constructs for YFP, AADI, and GUS protein (LCMS) in ng/em’, respectively.

FIGS. 38A, 38B, and 38C show statistical analysis of cxprcssion results
(V10) from the seven constructs for YFP, GUS, and AADI protein (LCMS) in ng/em?,
respectively. The mean values and statistical results are listed.

FIGS. 39A, 39B, and 39C show exemplary expression results (R3) from the
seven constructs for YFP, GUS, and AAD1 protein (LCMS) in ng/cmz, respectively.

FIGS. 40A, 40B, and 40C show statistical analysis of expression results (R3)
from the seven constructs for YFP, GUS, and AAD1 protein (LCMS) in ng/em’,
respectively. The mean values and statistical results are listed.

The results show that both SCBV bidirectional promoters of the present
invention and maize Ubil bidirectional promoters can drive robust expression of GUS
and YFP. The YFP expression from Maize Ubil bidirectional promoter is similar to

unidirectional maize Ubil driven YFP. The YFP expression from SCBV bidirectional
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promoter is significantly higher than unidirectional maize Ubil driven YFP or Maize
Ubil bidirectional promoter. However, this difference becomes less significant at V10
stage. The results also suggest that bidirectional transcription has non-significant effect
on GUS expression (GUS expression compared to the constructs lacking minimal
promoter without YFP cxpression). SCBV bidirectional promoters also provide

significantly higher GUS expression compared to maize Ubil bidirectional promoters.

EXAMPLE 19: A Combination of Bidirectional Promoter and 2A Bicistronic
Sequence to Drive Four Transgenes from One Single Promoter (T1 data)

Gene expression of T1 plants driven by the bi-directional promoter
constructs: ten to twelve single copy events per construct are selected for analysis
except that the control constructs have four or five events per construct. Five
plants/events for the V6 stage are tested and three plants/evénts for the V10-12
and/R3 stages are tested. Protein assays are performed using LCMS or ELISA.

pDAB108719 and pDAB108720 are shown in FIG. 19. pDAB105748 and
pDAB105818 are shown in FIG. 20. Additional multi-transgene constructs using Ubil
promoter, including pPDAB108717 and pDAB108718 are shown in FIG. 41.

Exemplary relative expression results (V6) of Cry34 RNA from six constructs
pDAB105748 (ZMUbil-YFP), pDAB105818 (ZMUbi1-Cry34/ZMUbi1-Cry35/
ZMUbi1-AAD1), pDAB108717 (YFP/AAD-1-ZMUDbil bidirectional-Cry34-Cry35),
pDAB108718 (AADI/YFP-ZMUDil bidirectinal-Cry34-Cry35), pDAB108719
(YFP/AAD1-SCBYV bidirectional-Cry34-Cry35), and pDAB108720 (AAD1/YFP —
SCBYV bidircctional-Cry34-Cry35) are shown in FIG. 42A. Exemplary relative
expression results (V6) of Cry34 protein (LCMS) from the same six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720 are shown in F1G. 42B.

Exemplary relative expression results (V6) of AADI RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 are shown in FIG. 43A. Exemplary relative expression results (V6)
of AAD1 protein (LCMS) from the same six constructs pDAB105748, pDAB105818,
pDAB108717, pDAB108718, pDAB108719, and pDAB108720 are shown in
FIG. 43B.
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Exemplary relative expression results (V6) of YFP RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 are shown in FI1G. 44A. Exemplary relative expression results (V6)
of YI'P protein (LCMS) from the same six constructs pDAB105748, pDAB105818,
pDAB108717, pDAB108718, pDAB108719, and pDAB108720 are shown in
FIG. 44B.

Exemplary relative expression results (V6) of Cry35 RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 are shown in FIG. 45A. Exemplary relative expression results (V6)
of Cry35 protein (ELISA) from the same six constructs pDAB105748, pDAB105818, -
pDAB108717, pDAB108718, pDAB108719, and pDAB108720 are shown in
FIG. 45B.

FIG. 46 shows exemplary relative expression results (V6) of PAT RNA from
the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720.

A statistical analysis of expression results (V6) of Cry34 RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 is shown in FIG. 47A. A statistical analysis of expression results
(V6) of Cry34 protcin from the same six constructs pPDAB105748, pDAB105818,
pDAB108717, pDAB108718, pDAB108719. and pDAB108720 is shown in FIG. 47B.
The mean values and statistical results are listed.

A statistical analysis of expression results (V6) of AAD1 RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 is shown in FIG. 48A. A statistical analysis of expression results
(V6) of AADI protein from the same six constructs pDAB105748, pDAB1058138,
pDAB108717, pDAB108718, pDAB108719, and pDAB108720 is shown in FIG. 43D.
The mean values and statistical results are listed.

A statistical analysis of expression results (V6) of YFP RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 is shown in FIG. 49A. A statistical analysis of expression results
(V6) of YFP protein from the same six constructs pDAB105748, pDAB105818,
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pDAB108717, pDAB108718, pDAB108719, and pDAB108720 is shown in FIG. 49B.
The mean values and statistical results are listed.

A statistical analysis of expression results (V6) of Cry35 RNA from the six
constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719,
and pDAB108720 in FIG. 50A. A statistical analysis of expression results (V6) of
Cry35 protein from the same six constructs pDAB105748, pDAB105818,
pDAB108717, pDAB108718, pDAB108719, and pDAB108720 is shown in FIG. 50B.
The mean values and statistical results are listed.

FIG. 51 shows a statistical analysis of expression results (V6) of PAT RNA
from the six constructs pDAB105748, pDAB105818, pDAB108717, pDAB108718,
pDAB108719, and pDAB108720. The mean values and statistical results are listed.

FIGS. 52A, 52B, 52C, and 52D show exemplary protein expression results
(V10) of YFP, AADI1, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720.

FIGS. 53A, 53B, 53C, and 53D show statistical analysis of protein expression
results (V10) of YFP, AADI, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720. The mean values and statistical results are listed.

FIGS. 54A, 54B, 54C, and 54D show exemplary protein expression results
(R3) of YFP, AADI1, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720.

FIGS. 55A, 55B, 55C, and 55D show statistical analysis of protein expression
results (R3) of YFP, AAD1, Cry34, and Cry35 respectively from the six constructs
pDAB105748, pDAB105818, pDAB108717, pDAB108718, pDAB108719, and
pDAB108720. The mean values and statistical results are listed.

FIG. 56 shows exemplary results of Western blot for protein expression of
Cry34, Cry35, and AADI from pDAB108718, pDAB108717, pDAB108719, and
pDAB108720.

The results show that all four transgenes in the single promoter-driven

constructs are functional with good expression levels. Three genes
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(Cry34/Cry35/AAD1) in Ubil bidirectional stack show robust expression levels as
similar to expression levels provided by the single Ubil-driven gene stack (DExT).

While a number of exemplary aspects and embodiments have been discussed above,
those of skill in the art will recognize certain modifications, permutations, additions and
sub-combinations thereof. Itis therefore intended that the following appended claims and claims
hereafter introduced are interpreted to include all such modifications, permutations, additions and

sub-combinations as are within their true spirit and scope.

SEQUENCE LISTING IN ELECTRONIC FORM

In accordance with Section 111(1) of the Patent Rules, this description contains a

sequence listing in electronic form in ASCII text format (file: 55118-38 Seq 29-04-14 v1.txt).

A copy of the sequence listing in electronic form is available from the Canadian

Intellectual Property Office.

Date Regue/Date Received 2020-06-15
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CLAIMS:

1. A synthetic polynucleotide comprising

(a) a minimal core promoter element from an Ubiquitin-1 gene of Zea mays wherein the
minimal core promoter element comprises SEQ ID NO: 1 or its complement;

(b) a functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus
promoter; and

(c) an intron from an alcohol dehydrogenase gene;
wherein the functional promoter nucleotide sequence from a Sugar Cane Bacilliform Virus
promoter and the intron from the alcohol dehydrogenase gene comprise SEQ ID NO: 6 or its

complement.

2. The synthetic polynucleotide of claim 1, wherein the minimal core promoter element
from a Zea mays Ubiquitin-1 gene and the functional promoter nucleotide sequence from a Sugar
Cane Bacilliform Virus promoter are in reverse complementary orientation with respect to each

other in the polynucleotide.

3. The synthetic polynucleotide of claim 2, wherein the synthetic polynucleotide comprises
an exon from an Ubiquitin-1 gene, an intron from an Ubiquitin-1 gene, and the intron from the

alcohol dehydrogenase gene.

4. The synthetic polynucleotide of claim 1, comprising SEQ ID NO: 5 or its complement.
5. A nucleic acid construct for expressing multiple genes in plant cells and/or tissues
comprising

(a) a bi-directional promoter, wherein the bi-directional promoter comprises a
functional promoter nucleotide sequence from Sugar Cane Bacilliform Virus (SCBV)
promoter; and

(b) two gene expression cassettes on opposite ends of the bi-directional promoter;
wherein at least one of the gene expression cassettes comprises two or more genes linked via a

translation switch.

Date Regue/Date Received 2020-06-15
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6. The nucleic acid construct of claim 5, wherein the bi-directional promoter further
comprises at least one enhancer.

7. The nucleic acid construct of claim 5, wherein the nucleic acid construct further

comprises a binary vector for Agrobacterium-mediated transformation.

8. The nucleic acid construct of claim 5, wherein the bi-directional promoter further
comprises an element selected from the group consisting of an upstream regulatory sequence
(URS), an enhancer element, an exon, an intron, a transcription start site, a TATA box, a heat

shock consensus element, and combinations thereof.

9. The nucleic acid construct of claim 5, wherein the bi-directional promoter further
comprises a minimal core promoter element from an Ubiquitin-1 gene of Zea mays or Zea

luxurians.

10.  The nucleic acid construct of claim 9, wherein the minimal core promoter element
comprises a polynucleotide sequence at least 75% identical to SEQ ID NO: 1 or its

complement.

11. The nucleic acid construct of claim 9, wherein the bi-directional promoter further

comprises an exon from an Ubiquitin-1 gene and/or an intron from an Ubiquitin gene.
12. The nucleic acid construct of claim 9, wherein the bi-directional promoter further
comprises an upstream regulatory sequence from an Ubiquitin gene or an upstream regulatory

sequence from the Sugar Cane Bacilliform Virus (SCBV) promoter.

13.  The nucleic acid construct of claim 5, wherein the bi-directional promoter comprises a

polynucleotide of SEQ ID NO: 5 or its complement.

Date Regue/Date Received 2020-06-15
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14.  The nucleic acid construct of claim 5, wherein the bi-directional promoter comprises a

polynucleotide of SEQ ID NO: 6 or its complement.

15.  The nucleic acid construct of claim 5, wherein both the gene expression cassettes

comprise two or more genes linked via the translation switch.

16. The nucleic acid construct of claim 5, wherein the translation switch is selected from
the group consisting of an internal ribosome entry site (IRES), an alternative splicing site, a
polynucleotide sequence coding a 2A peptide, a polynucleotide sequence coding a 2A-like
peptide, a polynucleotide sequence coding an intein, a polynucleotide sequence coding a

protease cleavage site, and combinations thereof.

17.  The nucleic acid construct of claim 5, wherein a gene upstream of the translational

switch does not comprise a translation stop codon.

18. The nucleic acid construct of claim 5, wherein the nucleic acid construct enables

expression of at least four genes.

19. The nucleic acid construct of claim 5 wherein the nucleic acid construct enables

expression of genes between three and twenty.

20. The nucleic acid construct of claim 19, wherein the nucleic acid construct enables

expression of genes between four and eight.

21.  The nucleic acid construct of claim 5, wherein expression of genes from the

bi-directional promoter is at least four-fold higher as compared to a uni-directional promoter.
22.  The nucleic acid construct of claim 5, wherein expression of genes from the

bi-directional promoter is from three to ten fold higher as compared to a uni-directional

promoter.

Date Regue/Date Received 2020-06-15
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23. A method for generating a transgenic plant, comprising transforming a plant cell with

the nucleic acid construct of claim 5.

24. A method for generating a transgenic cell, comprising transforming the cell with the

nucleic acid construct of claim 5.

25. A plant cell comprising the nucleic acid construct of claim 5.
26.  The plant cell of claim 25, wherein the nucleic acid construct is stably transformed
into the plant cell.

Date Regue/Date Received 2020-06-15
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SEQ ID NO: 1 shows a 215 bp region of a Zea mays Ubiquitin 1 minimal core promoter
(minUbi1P):

CTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAG
AAATTGCGTGGCGGAGCGGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCT
CTCACGGCACCGGCAGCTACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCC
TCGCCCGCCGTAATAAATAGACACCCCCTCCACACCCTCT

FIG. 10A

SEQ ID NO: 2 shows the reverse complement of a polynucleotide comprising a Z. mays minUbi1P
minimal core promoter (underlined); a Z. mays Ubil leader (ZmUbil exon; bold font); and a Z.
mays Ubil intron (lower case):

ctgcagaagtaacaccaaacaacagggtgagcatcgacaaaagaaacagtaccaagcaaataaatagegtatgaaggeagggctaaaaaaat
ccacatatagctgctgeatatgecatcatccaagtatatcaagatcgaaataattataaaacatacttgtitattataatagataggtactcaaggttag
agcatatgaatagatgctgcatatgccatcatgtatatgcatcagtaaaacccacatcaacatgtatacctatcctagatcgatatttccatceatctta
aactcgtaactatgaagatgtatgacacacacatacagttccaaaattaataaatacaccaggtagtttgaaacagtattctactccgatctagaacg
aatgaacgaccgcccaaccacaccacatcatcacaaccaagcgaacaaaaagceatctctgtatatgeatcagtaaaaccegceatcaacatgtata
cctatcctagatcgatatttccatecatcatcttcaattegtaactatgaatatgtatggcacacacatacagatccaaaattaataaatccaccaggta
gtttgaaacagaattctactccgatctagaacgaccgeccaaccagaccacatcatcacaaccaagacaaaaaaaagcatgaaaagatgacce
gacaaacaagtgcacggcatatattgaaataaaggaaaagggcaaaccaaaccetatgcaacgaaacaaaaaaaatcatgaaatcgatcecgt
ctgcggaacggcetagagecatcccaggattceccaaagagaaacactggeaagttagcaatcagaacgtgtetgacgtacaggtegeateegt
gtacgaacgctagcagcacggatctaacacaaacacggatctaacacaaacatgaacagaagtagaactaccgggecctaaccatgeatgga
ccggaacgccgatctagagaaggtagagagggggegggpesggaggacgageggcgtacCTTGAAGCGGAGGTGCC
GACGGGTGGATTTGGGGGAGATCTGGTTGTGTGTGTGTGCGCTCCGAACAACAC
GAGGTTGGGGAGGTACCAAGAGGGTGTGGAGGGGGTGTCTATTTATTACGGCGGGC
GAGGAAGGGAAAGCGAAGGAGCGGTGGGAAAGGAATCCCCCGTAGCTGCCGGTGCC
GTGAGAGGAGGAGGAGGCCGCCTGCCGTGCCGGCTCACGTCTGCCGCTCCGCCACGC
AATTTCTGGATGCCGACAGCGGAGCAAGTCCAACGGTGGAGCGGAACTCTCGAGAGG
GGTCCAG

FIG. 10B
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SEQ ID NO: 3 shows an exemplary synthetic Ubil bidirectional promoter, wherein the reverse
complement of a first minUbi1P, and a second minUbi1P, are underlined:

CTGCAGAAGTAACACCAAACAACAGGGTGAGCATCGACAAAAGAAACAGTACCAAG
CAAATAAATAGCGTATGAAGGCAGGGCTAAAAAAATCCACATATAGCTGCTGCATAT
GCCATCATCCAAGTATATCAAGATCGAAATAATTATAAAACATACTTGTTTATTATAA
TAGATAGGTACTCAAGGTTAGAGCATATGAATAGATGCTGCATATGCCATCATGTATA
TGCATCAGTAAAACCCACATCAACATGTATACCTATCCTAGATCGATATTTCCATCCAT
CTTAAACTCGTAACTATGAAGATGTATGACACACACATACAGTTCCAAAATTAATAAA
TACACCAGGTAGTTTGAAACAGTATTCTACTCCGATCTAGAACGAATGAACGACCGCC
CAACCACACCACATCATCACAACCAAGCGAACAAAAAGCATCTCTGTATATGCATCAG
TAAAACCCGCATCAACATGTATACCTATCCTAGATCGATATTTCCATCCATCATCTTCA
ATTCGTAACTATGAATATGTATGGCACACACATACAGATCCAAAATTAATAAATCCAC
CAGGTAGTTTGAAACAGAATTCTACTCCGATCTAGAACGACCGCCCAACCAGACCACA
TCATCACAACCAAGACAAAAAAAAGCATGAAAAGATGACCCGACAAACAAGTGCAC
GGCATATATTGAAATAAAGGAAAAGGGCAAACCAAACCCTATGCAACGAAACAAAAA
AAATCATGAAATCGATCCCGTCTGCGGAACGGCTAGAGCCATCCCAGGATTCCCCAAA
GAGAAACACTGGCAAGTTAGCAATCAGAACGTGTCTGACGTACAGGTCGCATCCGTGT
ACGAACGCTAGCAGCACGGATCTAACACAAACACGGATCTAACACAAACATGAACAG
AAGTAGAACTACCGGGCCCTAACCATGCATGGACCGGAACGCCGATCTAGAGAAGGT
AGAGAGGGGGGGGGGGGGGAGGACGAGCGGCGTACCTTGAAGCGGAGGTGCCGACG
GGTGGATTTGGGGGAGATCTGGTTGTGTGTGTGTGCGCTCCGAACAACACGAGGTTGG
GGAGGTACCAAGAGGGTGTGGAGGGGGTGTCTATTITATTACGGCGGGCGAGGAAGGG
AAAGCGAAGGAGCGGTGGGAAAGGAATCCCCCGTAGCTGCCGGTGCCGTGAGAGGA
GGAGGAGGCCGCCTGCCGTGCCGGCTCACGTCTGCCGCTCCGCCACGCAATTTCTGGA
TGCCGACAGCGGAGCAAGTCCAACGGTGGAGCGGAACTCTCGAGAGGGGTCCAGCCG
CGGAGTGTGCAGCGTGACCCGGTCGTGCCCCTCTCTAGAGATAATGAGCATTGCATGT
CTAAGTTATAAAAAATTACCACATATTTTTTTTGTCACACTTGTTTGAAGTGCAGTTTA
TCTATCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTATAGTACTAC
AATAATATCAGTGTTTTAGAGAATCATATAAATGAACAGTTAGACATGGTCTAAAGGA
CAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATCTTTTTAGTGTGCATGTGTTC
TCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCCATTTTATTAGTACATC
CATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATTTTAT
TCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTITAATAG
TTTAGATATAAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTTAAG
AAATTAAAAAAACTAAGGAAACATTTTTCTTGTTTCGAGTAGATAATGCCAGCCTGTT
AAACGCCGTCGACGAGTCTAACGGACACCAACCAGCGAACCAGCAGCGTCGCGTCGG
GCCAAGCGAAGCAGACGGCACGGCATCTCTGTCGCTGCCTCTGGACCCCTCTCGAGAG
TTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGGAGC
GGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACCGGCAGCT
ACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAATAAAT
AGACACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTC

FIG. 11 (page 1 of 2)
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GGAGCGCACACACACACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTT
CAAGGTACGCCGCTCGTCCTCCCCCCCCCCCCCCCTCTCTACCTTCTCTAGATCGGCGT
TCCGGTCCATGCATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTGTTAGAT
CCGTGTTTGTGTTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCA
GACACGTTCTGATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCT
AGCCGTTCCGCAGACGGGATCGATTTCATGATTTTTTTIGTTTCGTTGCATAGGGTTTG
GTTTGCCCTTTTCCTTTATTTCAATATATGCCGTGCACTTGTTTGTCGGGTCATCTTTTC
ATGCTTTTTTTTGTCTTGGTTGTGATGATGTGGTCTGGTTGGGCGGTCGTTCTAGATCG
GAGTAGAATTCTGTTTCAAACTACCTGGTGGATTTATTAATTITGGATCTGTATGTGTG
TGCCATACATATTCATAGTTACGAATTGAAGATGATGGATGGAAATATCGATCTAGGA
TAGGTATACATGTTGATGCGGGTTTTACTGATGCATATACAGAGATGCTTTTTGTTCGC
TTGGTTGTGATGATGTGGTGTGGTTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGA
ATACTGTTTCAAACTACCTGGTGTATTTATTAATTITTGGAACTGTATGTGTGTGTCATA
CATCTTCATAGTTACGAGTTTAAGATGGATGGAAATATCGATCTAGGATAGGTATACA
TGTTGATGTGGGTTTTACTGATGCATATACATGATGGCATATGCAGCATCTATTCATAT
GCTCTAACCTTGAGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTCGA
TCTTGATATACTTGGATGATGGCATATGCAGCAGCTATATGTGGATTITTTTAGCCCTG
CCTTCATACGCTATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTT
TGGTGTTACTTCTGCAG

FIG. 11 (page 2 of 2)
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SEQ ID NO: 4 shows an exemplary nucleic acid comprising YFP and GUS gene expression
cassettes driven by a synthetic Ubil bidirectional promoter.

AGCACTTAAAGATCTTTAGAAGAAAGCAAAGCATTTATTAATACATAACAATGTCCAG
GTAGCCCAGCTGAATTACAATACGCAACTGCTCATAATAATTCAACAAACCCAAGTAG
TACACAACATCCAGAAGCAAATAAAGCCCATACGTACCAAAGCCTACACAAGCAGCA
ACACTCACTGCCAGTGCCGGTGGGTCTTTAAAGCACACGGGCCTTGACCACGCGATCC
ACCTTGAAACAAACTTGGTAAAATTAAAGCAAACCAGAAGCACACACACGCCAACGC
AACGCTTCTGATCGCGCGCCCAAGGCCCGGCCGGCCAGAACGTACGACGGACACGCA
CACGCTGCGACCGAGCTCTAGGTGATTAAGCTAACTACTCAAAGGTAGGTCTTGCGAC
AGTCAACAGCTCTGACAGTTTCTTTCAAGGACATGTTGTCTCTGTGGTCTGTCACATCT
TTGGAAAGTTTCACATGGTAAGACATGTGATGATACTCTGGAACATGAACTGGACCTC
CACCAATGGGAGTGTTCATCTGGGTGTGGTCAGCCACTATGAAGTCGCCTTTGCTGCC
AGTAATCTCATGACAGATCTTGAAGGCTGACTTGAGACCGTGGTTGGCTTGGTCACCC
CAGATGTAGAGGCAGTGGGGAGTGAAGTTGAACTCCAAGTTCTTTCCCAACACATGAC
CATCTTTCTTGAAGCCTTGACCATTGAGTTTGACCCTATTGTAGACAGACCCATTCTCA
AAGGTGACTTCAGCCCTAGTCTTGAAGTTGCCATCTCCTTCAAAGGTGATTGTGCGCTC
TTGCACATAGCCATCTGGCATACAGGACTTGTAGAAGTCCTTCAACTCTGGACCATAC
TTGGCAAAGCACTGTGCTCCATAGGTGAGAGTGGTGACAAGTGTGCTCCAAGGCACA
GGAACATCACCAGTTGTGCAGATGAACTGTGCATCAACCTTTCCCACTGAGGCATCTC
CGTAGCCTTTCCCACGTATGCTAAAGGTGTGGCCATCAACATTCCCTTCCATCTCCACA
ACGTAAGGAATCTTCCCATGAAAGAGAAGTGCTCCAGATGCCATGGTGTCGTGTGGAT
CCGGTACACACGTGCCTAGGACCGGTTCAACTAACTACTGCAGAAGTAACACCAAAC
AACAGGGTGAGCATCGACAAAAGAAACAGTACCAAGCAAATAAATAGCGTATGAAG
GCAGGGCTAAAAAAATCCACATATAGCTGCTGCATATGCCATCATCCAAGTATATCAA
GATCGAAATAATTATAAAACATACTTGTTTATTATAATAGATAGGTACTCAAGGTTAG
AGCATATGAATAGATGCTGCATATGCCATCATGTATATGCATCAGTAAAACCCACATC
AACATGTATACCTATCCTAGATCGATATTTCCATCCATCTTAAACTCGTAACTATGAAG
ATGTATGACACACACATACAGTTCCAAAATTAATAAATACACCAGGTAGTTTGAAACA
GTATTCTACTCCGATCTAGAACGAATGAACGACCGCCCAACCACACCACATCATCACA
ACCAAGCGAACAAAAAGCATCTCTGTATATGCATCAGTAAAACCCGCATCAACATGTA
TACCTATCCTAGATCGATATTTCCATCCATCATCTTCAATTCGTAACTATGAATATGTA
TGGCACACACATACAGATCCAAAATTAATAAATCCACCAGGTAGTTTGAAACAGAATT
CTACTCCGATCTAGAACGACCGCCCAACCAGACCACATCATCACAACCAAGACAAAA
AAAAGCATGAAAAGATGACCCGACAAACAAGTGCACGGCATATATTGAAATAAAGGA
AAAGGGCAAACCAAACCCTATGCAACGAAACAAAAAAAATCATGAAATCGATCCCGT
CTGCGGAACGGCTAGAGCCATCCCAGGATTCCCCAAAGAGAAACACTGGCAAGTTAG
CAATCAGAACGTGTCTGACGTACAGGTCGCATCCGTGTACGAACGCTAGCAGCACGG
ATCTAACACAAACACGGATCTAACACAAACATGAACAGAAGTAGAACTACCGGGCCC
TAACCATGCATGGACCGGAACGCCGATCTAGAGAAGGTAGAGAGGGGGGGGGGGGG
GAGGACGAGCGGCGTACCTTGAAGCGGAGGTGCCGACGGGTGGATTTGGGGGAGATC
TGGTTGTGTGTGTGTGCGCTCCGAACAACACGAGGTTGGGGAGGTACCAAGAGGGTGT
GGAGGGGGTGTCTATTTATTACGGCGGGCGAGGAAGGGAAAGCGAAGGAGCGGTGGG
AAAGGAATCCCCCGTAGCTGCCGGTGCCGTGAGAGGAGGAGGAGGCCGCCTGCCGTG
CCGGCTCACGTCTGCCGCTCCGCCACGCAATTTCTGGATGCCGACAGCGGAGCAAGTC
CAACGGTGGAGCGGAACTCTCGAGAGGGGTCCAGCCGCGGAGTGTGCAGCGTGACCC
GGTCGTGCCCCTCTCTAGAGATAATGAGCATTGCATGTCTAAGTTATAAAAAATTACC
ACATATTTTTTTTGTCACACTTGTTTGAAGTGCAG
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TTTATCTATCTTTATACATATATTTAAACTTTACTCTACGAATAATATAATCTATAGTAC
TACAATAATATCAGTGTTTTAGAGAATCATATAAATGAACAGTTAGACATGGTCTAAA
GGACAATTGAGTATTTTGACAACAGGACTCTACAGTTTTATCTTTTTAGTGTGCATGTG
TTCTCCTTTTTTTTTGCAAATAGCTTCACCTATATAATACTTCATCCATTTTATTAGTAC
ATCCATTTAGGGTTTAGGGTTAATGGTTTTTATAGACTAATTTTTTTAGTACATCTATTT
TATTCTATTTTAGCCTCTAAATTAAGAAAACTAAAACTCTATTTTAGTTTTTTTATTTAA
TAGTTTAGATATAAAATAGAATAAAATAAAGTGACTAAAAATTAAACAAATACCCTTT
AAGAAATTAAAAAAACTAAGGAAACATTTTTCTTGTTTCGAGTAGATAATGCCAGCCT
GTTAAACGCCGTCGACGAGTCTAACGGACACCAACCAGCGAACCAGCAGCGTCGCGT
CGGGCCAAGCGAAGCAGACGGCACGGCATCTCTGTCGCTGCCTCTGGACCCCTCTCGA
GAGTTCCGCTCCACCGTTGGACTTGCTCCGCTGTCGGCATCCAGAAATTGCGTGGCGG
AGCGGCAGACGTGAGCCGGCACGGCAGGCGGCCTCCTCCTCCTCTCACGGCACCGGC
AGCTACGGGGGATTCCTTTCCCACCGCTCCTTCGCTTTCCCTTCCTCGCCCGCCGTAAT
AAATAGACACCCCCTCCACACCCTCTTTCCCCAACCTCGTGTTGTTCGGAGCGCACAC
ACACACAACCAGATCTCCCCCAAATCCACCCGTCGGCACCTCCGCTTCAAGGTACGCC
GCTCGTCCTCCCCCCCCCCCCCCCTCTCTACCTTCTCTAGATCGGCGTTCCGGTCCATG
CATGGTTAGGGCCCGGTAGTTCTACTTCTGTTCATGTTTGTGTTAGATCCGTGTTTGTG
TTAGATCCGTGCTGCTAGCGTTCGTACACGGATGCGACCTGTACGTCAGACACGTTCT
GATTGCTAACTTGCCAGTGTTTCTCTTTGGGGAATCCTGGGATGGCTCTAGCCGTTCCG
CAGACGGGATCGATTTCATGATTTTITTTTGTTTCGTTGCATAGGGTTTGGTTTGCCCTTT
TCCTTTATTTCAATATATGCCGTGCACTTGTTTGTCGGGTCATCTTTTCATGCTTTITTTTT
GTCTTGGTTGTGATGATGTGGTCTGGTTGGGCGGTCGTTCTAGATCGGAGTAGAATICT
GTTTCAAACTACCTGGTGGATTTATTAATTTTGGATCTGTATGTGTGTGCCATACATAT
TCATAGTTACGAATTGAAGATGATGGATGGAAATATCGATCTAGGATAGGTATACATG
TTGATGCGGGTTTTACTGATGCATATACAGAGATGCTTTTTGTTCGCTTGGTTGTGATG
ATGTGGTGTGGTTGGGCGGTCGTTCATTCGTTCTAGATCGGAGTAGAATACTGTTTCAA
ACTACCTGGTGTATTTATTAATTTTGGAACTGTATGTGTGTGTCATACATCTTCATAGT
TACGAGTTTAAGATGGATGGAAATATCGATCTAGGATAGGTATACATGTTGATGTGGG
TTTTACTGATGCATATACATGATGGCATATGCAGCATCTATTCATATGCTCTAACCTTG
AGTACCTATCTATTATAATAAACAAGTATGTTTTATAATTATTTCGATCTTGATATACT
TGGATGATGGCATATGCAGCAGCTATATGTGGATTTTTTTAGCCCTGCCTTCATACGCT
ATTTATTTGCTTGGTACTGTTTCTTTTGTCGATGCTCACCCTGTTGTTTGGTGTTACTTCT
GCAGGTACAGTAGTTAGTTGAGGTACAGCGGCCGCAGGGCACCATGGTCCGTCCTGTA
GAAACCCCAACCCGTGAAATCAAAAAACTCGACGGCCTGTGGGCATTCAGTCTGGATC
GCGAAAACTGTGGAATTGATCAGCGTTGGTGGGAAAGCGCGTTACAAGAAAGCCGGG
CAATTGCTGTGCCAGGCAGTTTTAACGATCAGTTCGCCGATGCAGATATTCGTAATTAT
GCGGGCAACGTCTGGTATCAGCGCGAAGTCTTTATACCGAAAGGTTGGGCAGGCCAG
CGTATCGTGCTGCGTTTCGATGCGGTCACTCATTACGGCAAAGTGTGGGTCAATAATC
AGGAAGTGATGGAGCATCAGGGCGGCTATACGCCATTTGAAGCCGATGTCACGCCGT
ATGTTATTGCCGGGAAAAGTGTACGTATCACCGTTTGTGTGAACAACGAACTGAACTG
GCAGACTATCCCGCCGGGAATGGTGATTACCGACGAAAACGGCAAGAAAAAGCAGTC
TTACTTCCATGATTTCTTTAACTATGCCGGAATCCATCGCAGCGTAATGCTCTACACCA
CGCCGAACACCTGGGTGGACGATATCACCGTGGTGACGCATGTCGCGCAAGACTGTA
ACCACGCGTCTGTTGACTGGCAGGTGGTGGCCAATGGTGATGTCAGCGTTGAACTGCG
TGATGCGGATCAACAGGTGGTTGCAACTGGACAAGGCACTAGCGGGACTTTGCAAGT
GGTGAAT
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CCGCACCTCTGGCAACCGGGTGAAGGTTATCTCTATGAACTGTGCGTCACAGCCAAAA
GCCAGACAGAGTGTGATATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGAA
GGGCGAACAGTTCCTGATTAACCACAAACCGTTCTACTTTACTGGCTTTGGTCGTCATG
AAGATGCGGACTTGCGTGGCAAAGGATTCGATAACGTGCTGATGGTGCACGACCACG
CATTAATGGACTGGATTGGGGCCAACTCCTACCGTACCTCGCATTACCCTTACGCTGA
AGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGATGAAACTGCTGCT
GTCGGCTTTAACCTCTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGAAC
TGTACAGCGAAGAGGCAGTCAACGGGGAAACTCAGCAAGCGCACTTACAGGCGATTA
AAGAGCTGATAGCGCGTGACAAAAACCACCCAAGCGTGGTGATGTGGAGTATTGCCA
ACGAACCGGATACCCGTCCGCAAGGTGCACGGGAATATTTCGCGCCACTGGCGGAAG
CAACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGTAATGTTCTGCGA
CGCTCACACCGATACCATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTACG
GATGGTATGTCCAAAGCGGCGATTTGGAAACGGCAGAGAAGGTACTGGAAAAAGAAC
TTCTGGCCTGGCAGGAGAAACTGCATCAGCCGATTATCATCACCGAATACGGCGTGGA
TACGTTAGCCGGGCTGCACTCAATGTACACCGACATGTGGAGTGAAGAGTATCAGTGT
GCATGGCTGGATATGTATCACCGCGTCTTTGATCGCGTCAGCGCCGTCGTCGGTGAAC
AGGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCGCGTTGGCGGTAA
CAAGAAAGGGATCTTCACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGCAA
AAACGCTGGACTGGCATGAACTTCGGTGAAAAACCGCAGCAGGGAGGCAAACAATGA
GACGTCCGGTAACCTTTAAACTGAGGGCACTGAAGTCGCTTGATGTGCTGAATTGTIT
GTGATGTTGGTGGCGTATTTTGTTTAAATAAGTAAGCATGGCTGTGATTTTATCATATG
ATCGATCTTTGGGGTTTTATTTAACACATTGTAAAATGTGTATCTATTAATAACTCAAT
GTATAAGATGTGTTCATTCTTCGGTTGCCATAGATCTGCTTATTTGACCTGTGATGTTTT
GACTCCAAAAACCAAAATCACAACTCAATAAACTCATGGAATATGTCCACCTGTTTICT
TGAAGAGTTCATCTACCATTCCAGTTGGCATTTATCAGTGTTGCAGCGGCGCTGTGCTT
TGTAACATAACAATTGTTACGGCATATATCCAA
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SEQ ID NO: 5 shows an exemplary SCBV bidirectional promoter comprising a minUbi 1P minimal
core promoter, wherein the reverse complement of the minUbi1P is underlined:

CTGCAGAAGTAACACCAAACAACAGGGTGAGCATCGACAAAAGAAACAGTACCAAG
CAAATAAATAGCGTATGAAGGCAGGGCTAAAAAAATCCACATATAGCTGCTGCATAT
GCCATCATCCAAGTATATCAAGATCGAAATAATTATAAAACATACTTGTTTATTATAA
TAGATAGGTACTCAAGGTTAGAGCATATGAATAGATGCTGCATATGCCATCATGTATA
TGCATCAGTAAAACCCACATCAACATGTATACCTATCCTAGATCGATATTTCCATCCAT
CTTAAACTCGTAACTATGAAGATGTATGACACACACATACAGTTCCAAAATTAATAAA
TACACCAGGTAGTTTGAAACAGTATTCTACTCCGATCTAGAACGAATGAACGACCGCC
CAACCACACCACATCATCACAACCAAGCGAACAAAAAGCATCTCTGTATATGCATCAG
TAAAACCCGCATCAACATGTATACCTATCCTAGATCGATATTTCCATCCATCATCTTCA
ATTCGTAACTATGAATATGTATGGCACACACATACAGATCCAAAATTAATAAATCCAC
CAGGTAGTTTGAAACAGAATTCTACTCCGATCTAGAACGACCGCCCAACCAGACCACA
TCATCACAACCAAGACAAAAAAAAGCATGAAAAGATGACCCGACAAACAAGTGCAC
GGCATATATTGAAATAAAGGAAAAGGGCAAACCAAACCCTATGCAACGAAACAAAAA
AAATCATGAAATCGATCCCGTCTGCGGAACGGCTAGAGCCATCCCAGGATTCCCCAAA
GAGAAACACTGGCAAGTTAGCAATCAGAACGTGTCTGACGTACAGGTCGCATCCGTGT
ACGAACGCTAGCAGCACGGATCTAACACAAACACGGATCTAACACAAACATGAACAG
AAGTAGAACTACCGGGCCCTAACCATGCATGGACCGGAACGCCGATCTAGAGAAGGT
AGAGAGGGGGGGGGGGGGGAGGACGAGCGGCGTACCTTGAAGCGGAGGTGCCGACG
GGTGGATTTGGGGGAGATCTGGTTGTGTGTGTGTGCGCTCCGAACAACACGAGGTTGG
GGAGGTACCAAGAGGGTGTGGAGGGGGTGTCTATTTATTACGGCGGGCGAGGAAGGG
AAAGCGAAGGAGCGGTGGGAAAGGAATCCCCCGTAGCTGCCGGTGCCGTGAGAGGA
GGAGGAGGCCGCCTGCCGTGCCGGCTCACGTCTGCCGCTCCGCCACGCAATTTCTGGA
TGCCGACAGCGGAGCAAGTCCAACGGTGGAGCGGAACTCTCGAGAGGGGTCCAGCCG
CGGAGTATCGGAAGTTGAAGACAAAGAAGGTCTTAAATCCTGGCTAGCAACACTGAA
CTATGCCAGAAACCACATCAAAGCATATCGGCAAGCTTCTTGGCCCATTATATCCAAA
GACCTCAGAGAAAGGTGAGCGAAGGCTCAATTCAGAAGATTGGAAGCTGATCAATAG
GATCAAGACAATGGTGAGAACGCTTCCAAATCTCACTATTCCACCAGAAGATGCATAC
ATTATCATTGAAACAGATGCATGTGCAACTGGATGGGGAGCAGTATGCAAGTGGAAG
AAAAACAAGGCAGACCCAAGAAATACAGAGCAAATCTGTAGGTATGCCAGTGGAAAA
TTTGATAAGCCAAAAGGAACCTGTGATGCAGAAATCTATGGGGTTATGAATGGCTTAG
AAAAGATGAGATTGTTCTACTTGGACAAAAGAGAGATCACAGTCAGAACTGACAGTA
GTGCAATCGAAAGGTTCTACAACAAGAGTGCTGAACACAAGCCTTCTGAGATCAGAT
GGATCAGGTT
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CATGGACTACATCACTGGTGCAGGACCAGAGATAGTCATTGAACACATAAAAGGGAA
GAGCAATGGTTTAGCTGACATCTTGTCCAGGCTCAAAGCCAAATTAGCTCAGAATGAA
CCAACGGAAGAGATGATCCTGCTTACACAAGCCATAAGGGAAGTAATTCCTTATCCAG
ATCATCCATACACTGAGCAACTCAGAGAATGGGGAAACAAAATTCTGGATCCATTCCC
CACATTCAAGAAGGACATGTTCGAAAGAACAGAGCAAGCTTTTATGCTAACAGAGGA
ACCAGTTCTACTCTGTGCATGCAGGAAGCCTGCAATTCAGTTAGTGTCCAGAACATCT
GCCAACCCAGGAAGGAAATTCTTCAAGTGCGCAATGAACAAATGCCATTGCTGGTACT
GGGCAGATCTCATTGAAGAACACATTCAAGACAGAATTGATGAATTTCTCAAGAATCT
TGAAGTTCTGAAGACCGGTGGCGTGCAAACAATGGAGGAGGAACTTATGAAGGAAGT
CACCAAGCTGAAGATAGAAGAGCAGGAGTTCGAGGAATACCAGGCCACACCAAGGG
CTATGTCGCCAGTAGCCGCAGAAGATGTGCTAGATCTCCAAGACGTAAGCAATGACG
ATTGAGGAGGCATTGACGTCAGGGATGACCGCAGCGGAGAGTACTGGGCCCATTCAG
TGGATGCTCCACTGAGTTGTATTATTGTGTGCTTTTCGGACAAGTGTGCTGTCCACTTT
CTTTTGGCACCTGTGCCACTTTATTCCTTGTCTGCCACGATGCCTTTGCTTAGCTTGTAA
GCAAGGATCGCAGTGCGTGTGTGACACCACCCCCCTTCCGACGCTCTGCCTATATAAG
GCACCGTCTGTAAGCTCTTACGATCATCGGTAGTTCACCAAGGCCCGGGGTCGGATCT
AGCTGAAGGCTCGACAAGGCAGTCCACGGAGGAGCTGATATTTGGTGGACAAGCTGT
GGATAGGAGCAACCCTATCCCTAATATACCAGCACCACCAAGTCAGGGCAATCCCCA
GATCACCCCAGCAGATTCGAAGAAGGTACAGTACACACACATGTATATATGTATGATG
TATCCCTTCGATCGAAGGCATGCCTTGGTATAATCACTGAGTAGTCATTTTATTACTTT
GTTTTGACAAGTCAGTAGTTCATCCATTTGTCCCATTTTTTCAGCTTGGAAGTTTGGTT
GCACTGGCCTTGGTCTAATAACTGAGTAGTCATTTTATTACGTTGTTTCGACAAGTCAG
TAGCTCATCCATCTGTCCCATTTTTTCAGCTAGGAAGTTTGGTTGCACTGGCCTTGGAC
TAATAACTGATTAGTCATTTTATTACATTGTTTCGACAAGTCAGTAGCTCATCCATCTG
TCCCATTTTTCAGCTAGGAAGTTC
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SEQ ID NO: 6 shows a SCBV promoter containing ADH1 exon 6 (underlined), intron 6 (lower case
font), and exon 7 (bold font).

ATCGGAAGTTGAAGACAAAGAAGGTCTTAAATCCTGGCTAGCAACACTGAACTATGC
CAGAAACCACATCAAAGCATATCGGCAAGCTTCTTGGCCCATTATATCCAAAGACCTC
AGAGAAAGGTGAGCGAAGGCTCAATTCAGAAGATTGGAAGCTGATCAATAGGATCAA
GACAATGGTGAGAACGCTTCCAAATCTCACTATTCCACCAGAAGATGCATACATTATC
ATTGAAACAGATGCATGTGCAACTGGATGGGGAGCAGTATGCAAGTGGAAGAAAAAC
AAGGCAGACCCAAGAAATACAGAGCAAATCTGTAGGTATGCCAGTGGAAAATTTGAT
AAGCCAAAAGGAACCTGTGATGCAGAAATCTATGGGGTTATGAATGGCTTAGAAAAG
ATGAGATTGTTCTACTTGGACAAAAGAGAGATCACAGTCAGAACTGACAGTAGTGCA
ATCGAAAGGTTCTACAACAAGAGTGCTGAACACAAGCCTTCTGAGATCAGATGGATC
AGGTTCATGGACTACATCACTGGTGCAGGACCAGAGATAGTCATTGAACACATAAAA
GGGAAGAGCAATGGTTTAGCTGACATCTTGTCCAGGCTCAAAGCCAAATTAGCTCAGA
ATGAACCAACGGAAGAGATGATCCTGCTTACACAAGCCATAAGGGAAGTAATTCCTT
ATCCAGATCATCCATACACTGAGCAACTCAGAGAATGGGGAAACAAAATTCTGGATC
CATTCCCCACATTCAAGAAGGACATGTTCGAAAGAACAGAGCAAGCTTTTATGCTAAC
AGAGGAACCAGTTCTACTCTGTGCATGCAGGAAGCCTGCAATTCAGTTAGTGTCCAGA
ACATCTGCCAACCCAGGAAGGAAATTCTTCAAGTGCGCAATGAACAAATGCCATTGCT
GGTACTGGGCAGATCTCATTGAAGAACACATTCAAGACAGAATTGATGAATTTCTCAA
GAATCTTGAAGTTCTGAAGACCGGTGGCGTGCAAACAATGGAGGAGGAACTTATGAA
GGAAGTCACCAAGCTGAAGATAGAAGAGCAGGAGTTCGAGGAATACCAGGCCACACC
AAGGGCTATGTCGCCAGTAGCCGCAGAAGATGTGCTAGATCTCCAAGACGTAAGCAA
TGACGATTGAGGAGGCATTGACGTCAGGGATGACCGCAGCGGAGAGTACTGGGCCCA
TTCAGTGGATGCTCCACTGAGTTGTATTATTGTGTGCTTTTCGGACAAGTGTGCTGTCC
ACTTTCTTTTGGCACCTGTGCCACTTTATTCCTTGTCTGCCACGATGCCTTTGCTTAGCT
TGTAAGCAAGGATCGCAGTGCGTGTGTGACACCACCCCCCTTCCGACGCTCTGCCTAT
ATAAGGCACCGTCTGTAAGCTCTTACGATCATCGGTAGTTCACCAAGGCCCGGGGTCG
GATCTAGCTGAAGGCTCGACAAGGCAGTCCACGGAGGAGCTGATATTTGGTGGACAA
GCTGTGGATAGGAGCAACCCTATCCCTAATATACCAGCACCACCAAGTCAGGGCAATC
CCCAGATCACCCCAGCAGATTCGAAGAAGgtacagtacacacacatgtatatatgtatgatgtatcecttcgatcgaa
ggcatgecttggtataatcactgagtagtcattttattactttgttttgacaagtcagtagttcatccatttgteccattttttcagettggaagtitggttgce
actggccttggtctaataactgagtagtcattttattacgttgtttcgacaagtcagtageteatccatetgteccattttitcagetaggaagtttggttg
cactggccttggactaataactgattagtcattttattacattgtitcgacaagtcagtagetcatecatctgteccatttttcagCTAGGAAGT
TC ’
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SEQ ID NO: 7 shows a nucleic acid comprising YFP and GUS gene expression cassettes driven by
an exemplary SCBYV bidirectional promoter.

AGCACTTAAAGATCTTTAGAAGAAAGCAAAGCATTTATTAATACATAACAATGTCCAG
GTAGCCCAGCTGAATTACAATACGCAACTGCTCATAATAATTCAACAAACCCAAGTAG
TACACAACATCCAGAAGCAAATAAAGCCCATACGTACCAAAGCCTACACAAGCAGCA
ACACTCACTGCCAGTGCCGGTGGGTCTTTAAAGCACACGGGCCTTGACCACGCGATCC
ACCTTGAAACAAACTTGGTAAAATTAAAGCAAACCAGAAGCACACACACGCCAACGC
AACGCTTCTGATCGCGCGCCCAAGGCCCGGCCGGCCAGAACGTACGACGGACACGCA
CACGCTGCGACCGAGCTCTAGGTGATTAAGCTAACTACTCAAAGGTAGGTCTTGCGAC
AGTCAACAGCTCTGACAGTTTCTTTCAAGGACATGTTGTCTCTGTGGTCTGTCACATCT
TTGGAAAGTTTCACATGGTAAGACATGTGATGATACTCTGGAACATGAACTGGACCTC
CACCAATGGGAGTGTTCATCTGGGTGTGGTCAGCCACTATGAAGTCGCCTTTGCTGCC
AGTAATCTCATGACAGATCTTGAAGGCTGACTTGAGACCGTGGTTGGCTTGGTCACCC
CAGATGTAGAGGCAGTGGGGAGTGAAGTTGAACTCCAAGTTCTTTCCCAACACATGAC
CATCTTTCTTGAAGCCTTGACCATTGAGTTTGACCCTATTGTAGACAGACCCATTCTCA
AAGGTGACTTCAGCCCTAGTCTTGAAGTTGCCATCTCCTTCAAAGGTGATTGTGCGCTC
TTGCACATAGCCATCTGGCATACAGGACTTGTAGAAGTCCTTCAACTCTGGACCATAC
TTGGCAAAGCACTGTGCTCCATAGGTGAGAGTGGTGACAAGTGTGCTCCAAGGCACA
GGAACATCACCAGTTGTGCAGATGAACTGTGCATCAACCTTTCCCACTGAGGCATCTC
CGTAGCCTTTCCCACGTATGCTAAAGGTGTGGCCATCAACATTCCCTTCCATCTCCACA
ACGTAAGGAATCTTCCCATGAAAGAGAAGTGCTCCAGATGCCATGGTGTCGTGTGGAT
CCGGTACACACGTGCCTAGGACCGGTTCAACTAACTACTGCAGAAGTAACACCAAAC
AACAGGGTGAGCATCGACAAAAGAAACAGTACCAAGCAAATAAATAGCGTATGAAG
GCAGGGCTAAAAAAATCCACATATAGCTGCTGCATATGCCATCATCCAAGTATATCAA
GATCGAAATAATTATAAAACATACTTGTTTATTATAATAGATAGGTACTCAAGGTTAG
AGCATATGAATAGATGCTGCATATGCCATCATGTATATGCATCAGTAAAACCCACATC
AACATGTATACCTATCCTAGATCGATATTTCCATCCATCTTAAACTCGTAACTATGAAG
ATGTATGACACACACATACAGTTCCAAAATTAATAAATACACCAGGTAGTTTGAAACA
GTATTCTACTCCGATCTAGAACGAATGAACGACCGCCCAACCACACCACATCATCACA
ACCAAGCGAACAAAAAGCATCTCTGTATATGCATCAGTAAAACCCGCATCAACATGTA
TACCTATCCTAGATCGATATTTCCATCCATCATCTTCAATTCGTAACTATGAATATGTA
TGGCACACACATACAGATCCAAAATTAATAAATCCACCAGGTAGTTTGAAACAGAATT
CTACTCCGATCTAGAACGACCGCCCAACCAGACCACATCATCACAACCAAGACAAAA
AAAAGCATGAAAAGATGACCCGACAAACAAGTGCACGGCATATATTGAAATAAAGGA
AAAGGGCAAACCAAACCCTATGCAACGAAACAAAAAAAATCATGAAATCGATCCCGT
CTGCGGAACGGCTAGAGCCATCCCAGGATTCCCCAAAGAGAAACACTGGCAAGTTAG
CAATCAGAACGTGTCTGACGTACAGGTCGCATCCGTGTACGAACGCTAGCAGCACGG
ATCTAACACAAACACGGATCTAACACAAACATGAACAGAAGTAGAACTACCGGGCCC
TAACCATGCATGGACCGGAACGCCGATCTAGAGAAGGTAGAGAGGGGGGGGGGGGG
GAGGACGAGCGGCGTACCTTGAAGCGGAGGTGCCGACGGGTGGATTTGGGGGAGATC
TGGTTGTGTGTGTGTGCGCTCCGAACAACACGAGGTTGGGGAGGTACCAAGAGGGTGT
GGAGGGGGTGTCTATTTATTACGGCGGGCGAGGAAGGGAAAGCGAAGGAGCGGTGGG
AAAGGAATCCCCCGTAGCTGCCGGTGCCGTGAGAGGAGGAGGAGGCCGCCTGCCGTG
CCGGCTCACGTCTGCCGCTCCGCCACGCAATTTCTGGATGCCGACAGCGGAGCAAGTC
CAACGGTGGAGCGGAACT
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CTCGAGAGGGGTCCAGCCGCGGAGTATCGGAAGTTGAAGACAAAGAAGGTCTTAAAT
CCTGGCTAGCAACACTGAACTATGCCAGAAACCACATCAAAGCATATCGGCAAGCTTC
TTGGCCCATTATATCCAAAGACCTCAGAGAAAGGTGAGCGAAGGCTCAATTCAGAAG
ATTGGAAGCTGATCAATAGGATCAAGACAATGGTGAGAACGCTTCCAAATCTCACTAT
TCCACCAGAAGATGCATACATTATCATTGAAACAGATGCATGTGCAACTGGATGGGGA
GCAGTATGCAAGTGGAAGAAAAACAAGGCAGACCCAAGAAATACAGAGCAAATCTGT
AGGTATGCCAGTGGAAAATTTGATAAGCCAAAAGGAACCTGTGATGCAGAAATCTAT
GGGGTTATGAATGGCTTAGAAAAGATGAGATTGTTCTACTTGGACAAAAGAGAGATC
ACAGTCAGAACTGACAGTAGTGCAATCGAAAGGTTCTACAACAAGAGTGCTGAACAC
AAGCCTTCTGAGATCAGATGGATCAGGTTCATGGACTACATCACTGGTGCAGGACCAG
AGATAGTCATTGAACACATAAAAGGGAAGAGCAATGGTTTAGCTGACATCTTGTCCAG
GCTCAAAGCCAAATTAGCTCAGAATGAACCAACGGAAGAGATGATCCTGCTTACACA
AGCCATAAGGGAAGTAATTCCTTATCCAGATCATCCATACACTGAGCAACTCAGAGAA
TGGGGAAACAAAATTCTGGATCCATTCCCCACATTCAAGAAGGACATGTTCGAAAGA
ACAGAGCAAGCTTTTATGCTAACAGAGGAACCAGTTCTACTCTGTGCATGCAGGAAGC
CTGCAATTCAGTTAGTGTCCAGAACATCTGCCAACCCAGGAAGGAAATTCTTCAAGTG
CGCAATGAACAAATGCCATTGCTGGTACTGGGCAGATCTCATTGAAGAACACATTCAA
GACAGAATTGATGAATTTCTCAAGAATCTTGAAGTTCTGAAGACCGGTGGCGTGCAAA
CAATGGAGGAGGAACTTATGAAGGAAGTCACCAAGCTGAAGATAGAAGAGCAGGAG
TTCGAGGAATACCAGGCCACACCAAGGGCTATGTCGCCAGTAGCCGCAGAAGATGTG
CTAGATCTCCAAGACGTAAGCAATGACGATTGAGGAGGCATTGACGTCAGGGATGAC
CGCAGCGGAGAGTACTGGGCCCATTCAGTGGATGCTCCACTGAGTTGTATTATTGTGT
GCTTTTCGGACAAGTGTGCTGTCCACTTTCTTTTGGCACCTGTGCCACTTTATTCCTTGT
CTGCCACGATGCCTTTGCTTAGCTTGTAAGCAAGGATCGCAGTGCGTGTGTGACACCA
CCCCCCTTCCGACGCTCTGCCTATATAAGGCACCGTCTGTAAGCTCTTACGATCATCGG
TAGTTCACCAAGGCCCGGGGTCGGATCTAGCTGAAGGCTCGACAAGGCAGTCCACGG
AGGAGCTGATATTTGGTGGACAAGCTGTGGATAGGAGCAACCCTATCCCTAATATACC
AGCACCACCAAGTCAGGGCAATCCCCAGATCACCCCAGCAGATTCGAAGAAGGTACA
GTACACACACATGTATATATGTATGATGTATCCCTTCGATCGAAGGCATGCCTTGGTAT
AATCACTGAGTAGTCATTTTATTACTTTGTTTTGACAAGTCAGTAGTTCATCCATTTGT
CCCATTTTTTCAGCTTGGAAGTTTGGTTGCACTGGCCTTGGTCTAATAACTGAGTAGTC
ATTTTATTACGTTGTTTCGACAAGTCAGTAGCTCATCCATCTGTCCCATTTTTTCAGCTA
GGAAGTTTGGTTGCACTGGCCTTGGACTAATAACTGATTAGTCATTTTATTACATTGTT
TCGACAAGTCAGTAGCTCATCCATCTGTCCCATTTTTCAGCTAGGAAGTTCGCGGCCGC
AGGGCACCATGGTCCGTCCTGTAGAAACCCCAACCCGTGAAATCAAAAAACTCGACG
GCCTGTGGGCATTCAGTCTGGATCGCGAAAACTGTGGAATTGATCAGCGTTGGTGGGA
AAGCGCGTTACAAGAAAGCCGGGCAATTGCTGTGCCAGGCAGTTTTAACGATCAGTTC
GCCGATGCAGATATTCGTAATTATGCGGGCAACGTCTGGTATCAGCGCGAAGTCTTTA
TACCGAAAGGTTGGGCAGGCCAGCGTATCGTGCTGCGTTTCGATGCGGTCACTCATTA
CGGCAAAGTGTGGGTCAATAATCAGGAAGTGATGGAGCATCAGGGCGGCTATACGCC
ATTTGAAGCCGATGTCACGCCGTATGTTATTGCCGGGAAAAGTGTACGTATCACCGTT
TGTGTGAACAACGAACTGAACTGGCAGACTATCCCGCCGGGAATGGTGATTACCGAC
GAAAACGGCAAGAAAAAGCAGTCTTACTTCCATGATTTCTTTAACTATGCCGGAATCC
ATCGCAGCGTAATGCTCTACACCACGCCGAACACCTGGGTGGACGATATCACCGTGGT
GACGCATGTCGCGCAAGACTGTAACCACG
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CGTCTGTTGACTGGCAGGTGGTGGCCAATGGTGATGTCAGCGTTGAACTGCGTGATGC
GGATCAACAGGTGGTTGCAACTGGACAAGGCACTAGCGGGACTTTGCAAGTGGTGAA
TCCGCACCTCTGGCAACCGGGTGAAGGTTATCTCTATGAACTGTGCGTCACAGCCAAA
AGCCAGACAGAGTGTGATATCTACCCGCTTCGCGTCGGCATCCGGTCAGTGGCAGTGA
AGGGCGAACAGTTCCTGATTAACCACAAACCGTTCTACTTTACTGGCTTTGGTCGTCAT
GAAGATGCGGACTTGCGTGGCAAAGGATTCGATAACGTGCTGATGGTGCACGACCAC
GCATTAATGGACTGGATTGGGGCCAACTCCTACCGTACCTCGCATTACCCTTACGCTG
AAGAGATGCTCGACTGGGCAGATGAACATGGCATCGTGGTGATTGATGAAACTGCTG
CTGTCGGCTTTAACCTCTCTTTAGGCATTGGTTTCGAAGCGGGCAACAAGCCGAAAGA
ACTGTACAGCGAAGAGGCAGTCAACGGGGAAACTCAGCAAGCGCACTTACAGGCGAT
TAAAGAGCTGATAGCGCGTGACAAAAACCACCCAAGCGTGGTGATGTGGAGTATTGC
CAACGAACCGGATACCCGTCCGCAAGGTGCACGGGAATATTTCGCGCCACTGGCGGA
AGCAACGCGTAAACTCGACCCGACGCGTCCGATCACCTGCGTCAATGTAATGTTCTGC
GACGCTCACACCGATACCATCAGCGATCTCTTTGATGTGCTGTGCCTGAACCGTTATTA
CGGATGGTATGTCCAAAGCGGCGATTTGGAAACGGCAGAGAAGGTACTGGAAAAAGA
ACTTCTGGCCTGGCAGGAGAAACTGCATCAGCCGATTATCATCACCGAATACGGCGTG
GATACGTTAGCCGGGCTGCACTCAATGTACACCGACATGTGGAGTGAAGAGTATCAGT
GTGCATGGCTGGATATGTATCACCGCGTCTTTGATCGCGTCAGCGCCGTCGTCGGTGA
ACAGGTATGGAATTTCGCCGATTTTGCGACCTCGCAAGGCATATTGCGCGTTGGCGGT
AACAAGAAAGGGATCTTCACTCGCGACCGCAAACCGAAGTCGGCGGCTTTTCTGCTGC
AAAAACGCTGGACTGGCATGAACTTCGGTGAAAAACCGCAGCAGGGAGGCAAACAAT
GAGACGTCCGGTAACCTTTAAACTGAGGGCACTGAAGTCGCTTGATGTGCTGAATTGT
TTGTGATGTTGGTGGCGTATTTTGTTTAAATAAGTAAGCATGGCTGTGATTTTATCATA
TGATCGATCTTTGGGGTTTTATTTAACACATTGTAAAATGTGTATCTATTAATAACTCA
ATGTATAAGATGTGTTCATTCTTCGGTTGCCATAGATCTGCTTATTTGACCTGTGATGT
TTTGACTCCAAAAACCAAAATCACAACTCAATAAACTCATGGAATATGTCCACCTGTT
TCTTGAAGAGTTCATCTACCATTCCAGTTGGCATTTATCAGTGTTGCAGCGGCGCTGTG
CTTTGTAACATAACAATTGTTACGGCATATATCCAA
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SEQ ID NO: 16
CTGGACCCCTCTCGAGTGTTCCGCTTCACCGTTGGACTTGCTACGCTGTCAGCATCGA
GATGTTGCGTGGCGGAGCGGCAGACTTGAGCCGTCACGGCAGGCGGCCTCCTCCTCC
TCTCACGGCATCTGTAGCTACGGGGGATTCCTTTCGCACCGCTCGTTCGCTTTCCCTT
CCTCGTCTGCCGAAATAATGTTACACCCCCTCCACAGCCTCT

SEQ ID NO: 17
CTGGACCCCTCTCGAGAGTTCCGCTCCACCGTTGGACTAGCTCTGCTGTCGGCATCCA
GAAAATGCTTGGCAGTGCGGCAGACGTGAGCCGGCACGGCAGGGGGCCTCCTCCTG
CTCTCACGGCACATGAAGCTACGGGTGATAGCTTGCCCACCGCTCCAACGCTTTCCC
TTACTCTCACGCCGTAATAAATAGACACCCCTTCCACAACCTCT

SEQ ID NO: 18
CTGGACCTCTCTCGAGAGTTGCGCTCCACCGATGGACTTGCTCCGCTGTCGGCGTCC
ATAATTTGCGTGGCGGAGCGGCAGACGGGAGCCGGCACGGCAGGGAGCCTCGTCCT
CCTCTCACGGCACCTGCAACTACGGGGGATTCCTATCCCACCGCTCCTTCGCTTTCAC
TTCTTCGCCCTCCTTAATAAGTAGACACCCCATCCGAGCCCTCT

SEQ ID NO: 19
CAAGACCCCTCTCGAGAGTTCCGCACCACCGTTGGACGTGCTCCGCTATCTGCATCC
AGAAATTGCGTGGCGGAACGGTAAACGTGAGCCGTCACGGCAGGCGGCCTCCTCCT
CCTCTCACGACACCGGCAGCTACGGGGGATACCTGTCACACAGCTCCTTCGCTTTTCT
TTCCTCGCCCGCCGTAATATGTATACACTCCCTCCGCACCCTCT

SEQ ID NO: 20
CTGGACCCCTCTCGAGGGTTCCGTTCCACCGTTGGTCTTGGTCCGCTGTCGGGATCCA
GAAATAGCGTGGCGGAGCGGCAGACGTGATCCGGCACGGCATGCGGCCTCCTAGTC
CTATCACAGCACCGGCAGCTATGGGAGATTCCATTCCCACCGCTCCTGCGCTTTCACT
GGCTGGCCCGCCGTGATAGATAGACACCCCCTCCACACCCTCT

FIG. 21A
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SEQ ID NO: 21
GTTGGCTTCTCTTGTGAGTTCTGCTTCACGGATGGACTTGGTCAACGGACGGCATCCA
GAATTTGCGTGGCGTAGCGGCGGACGTGATCCGGCGCGGCAGGCGGCTTCCTCCTCC
TCTCACTTAAGCGACAGCTACAGGGGATTCCTTTCCCACCGCTCCTTCGCTTGCCGTA
CCTCGCCCGCCGTAATAAATAGACACCCCTTCCACTCCCTICT

SEQ ID NO: 22
CTGGATCCCTCTCGAGAGTGCGGCTCCGACGTTGGACTTGCTCCGAAGTCGGCATCC
AAAAATTGCGTGGTGGAGAGGCAGACTTGAGCCGGCACGGCAGGAGGCCTCGTCCT
ACTCGCACGGTATCGGCAGCAACGGGAGAATCCTTGCACTCTGCTCCTTCGCTGTAC
CTTCCTCGCCCGCTGATATTGATAGACACCCCCTGCATACCCTICT

SEQ ID NO: 23
ATGGACCCTTCTCGAGTGTTCGGCTCCACCGTTAGACTTGCTCCACGATCGACATCA
AGAAATTGCGAGACGGAGCTACAAACGTAAGAAATCTCGGTAGGGGGCCTCCTCCT
CCTCTCACGGCACCGGCAGCTACGGGGGATTCCTGTCCCACCTCTCCTTCACGTTCCC
TACCTCGCCCGCCATAATTAATAAGCACCCCCTCCGCACCCTCT

SEQ ID NO: 24
CTGGACCCCTCTAAAGAGTTCCACGCCACCGTTATAATGGCTCCGCTGTCGGCATCC
AGAAATTACTTGGCGGATCAGCAGACGTGAGCCAGCATGGCTGGCGGCCTCCTCCTC
CTCTCACGATGCCGTCAGCTACGGGGGATTCCTTTCCCAACGCTCCTTCGCTTTCCTA
TGCGCGCCTGCCGGATTAAATAGGCAGCTTCTCGTCACCCTCT

SEQ ID NO: 25
CAAGACACCTCTCGATTGTTCCGCTTCACCGTTGGACTTTCTCCTCAGTCGGCATACA
GAAATTGCTTGGCGAAGCGGCAGACATGAGCCGGCACGACATGCGTCCTCATTCTCC
TCTCATGGCACCGGCAGTTACTGGTGAATCCTATCGCACCGCTCCTTCGCTGTCCCTT
AATCGCCCGCCGAAAATAATTGACACCCCATCCACACCCTCT
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SEQ ID NO: 26
GAGGACCCCTCTCGTGTGTATCGCTCCACCTTTGGAGTTGGTCCACTATCGGCGTACA
GAAAATTCGTTGCGAAGCGGCAGACGTGAGCCTACACGGCAGTCGGCCTCTACCTCC
TGACAAGGCACGTGCAGCTACAGATGATGCCTTTCCCACCACTCCTTCGCGTTCCTTT
CCTCGCCATCAGTAATGAATGGACACGTCCTCCAGACTCTCT

SEQ ID NO: 27
CTGAACCCATCTCGAGTATGCCGCACGATCGATTGACATGCTCCACTGGCAGCATCC
AGAAATTGCATTGGGGAGCATCAGGCGTGAGCCTGCACGGCAGGCGGACTATTCCT
CCTCGCGCGGCACCGGCAACTACGGGGGATGCTTGACCGACCGCTCCATCGATTTCC
CAATCTCGCTTGCCGTATTAAATAGATAACCCCTTCACACCCTCT

SEQ ID NO: 28
CTGGACTCCTTACGGGAGATCCGCTCCACCGTTGGACTAGCTCCGTTTTCGGCTTCAA
TAAAGGGCGTGGGGGAGCGGCAGTCGGGGGCAGGCACGGCAGTGGTCCTCATCCAT
ATCTCACGGGGCCGGCAGTTGAGGGGGATTCCTGTCCCACCTCACCTACTCTTTCCCT
ACCTCGTCTGCCATATTAAATAGTCACCCCCTCCACAACCTTT

SEQ ID NO: 29
TTGGACCCCTCTCGAAAGTTAGGCTCCGCCGTTGGACTGGTTTCGCGGTCATCAATC
AGGAATTGCGGGGCGGAGGGTCAGACGTGTGCCGGCACAGCAGGTGGCCTCCTCAT
CGTCACAAGGCACTGGCAACTACGGGTGATTCATTTCCTTCAGCACCTACGCTTACC
CTGCCACGCCCTCCGTATTATAATGACACCCCCTCCACACCTTAT

SEQ ID NO: 30
CTGGACCCCACGCGGGGTTTTCGTTCCTCCGTTGGGATAGCTCCGGTGTCAGCATAC
AGAGAATATATGTCGGAGCGGAAGACGTGAGCCGACACGGCGGGCTGCCGCCTCCT
CCTGTCACGACACCGGCAGGTACGGGGGATTCCGTTCCCGCCGCACAGTCACTTTCG
CTTCCTTGCCGGTCGTATTAAATAGACACCGTGTCCACAGCCTCT

FIG. 21C
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SEQ ID NO: 31
CTTGAGCCCACTCTAGAGTTCCGTTTCACCGAATGACTAGCTCCGCTGTCGGTATCCA
TTAAGTGGGAGGCAGAACGTCATATGAGAGTCGGCACGGGAGGCGTTCGCCACGTC
CGCGCACTACAGCGGGAGCTGCGGAATATACCTGTCCCAATGCTGCTACGCTTTCCC
TTCCGCGCCCACCGTAGAAAAATGACAGTCCCTTCACACCCTCT

SEQ ID NO: 32
TAGGAGGCCTCTCGAAAGGTCCGGAACTCCGTAGGACGTGCTCCGCTGACAGCATCC
AGGAATATCATGGGGGAGCTGCAGACGAGAGCCTGGACGACAAGGGGTCACCTCGG
CCGCTGACAGCTGCGGCAGCAACGGAGTATGCTTTTCTCACCGCTCCGGCGCTTTCC
CTTCGACGCAGGCCAGAATAAGTAGACATCAGCGCCACACCCTCT

SEQ ID NO: 33
CTTGTCTCCACTCTGATGTTCCGCTCCAACATTTGATTTGCTCCTCTGTAGGCATACA
GTTATTGGGGGACTGATCGGCAGACGTGAGCCAGCACTGCAAACGGCCAACTCCTCC
TCTCTCGACTAAGGGATTAATTAAGGATACCTTACCCGCGGCTCCTTCTCTTTCCCTA
CCTAGCCCGCCTTATTAAATAGAGACCGCCTCCACAGCCGCT

SEQ ID NO: 34
CTGTACCCTTCACAAGGGTTACACGCTACCGATGGACTTGCACCACTGTGGGGTTCC
AATAATTGCGTGGCTGGGCGTCAGACATATTCCGGCATGGCAAGCGGCCTGCTCCTC
CTCTGGGAGCACCGGCAACAATGGGGGATTCCAAGCCCGCAGGTCCTTCGTTTTACC
GTCCTCGCCCGCCGTAGTATGTAGGCATCCCAGAGACTACCTCT

SEQ ID NO: 35
CAGGAACCCTAACGAGGGTTCCGCACGACCAAATGACTTGATCTTCTGTCGGCATCC
AGAAATGGGGTGTCAGAGCGGCATGCGTGAGCCGGCGGGGCGTGCGGCCTCATGCT
GCTCTCGCGGGACTAGGAGTTACGGGGGATACCTGTATTGCCGCTCCGACACTGTAC
CATCCTCTCCCGCCGGAGTATAGAGACACCCCCTCGACGCCATAT
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SEQ ID NO: 36
CTGTGCTCCTGTATGGGGTTCAACTCCACCGTGAAATTTGCGCCTCTGTCGTCATCCA
GAAATTGCGTGGTTGATCTGCTGACGTTAAAGGGCTCTGCAGGCGGCTTCCTTCGGC
TATGAAGGTACTGGCGTCTGCAAGTGATGCTTTTGCTAACTCGCCTTCGATGTCCCTT
CCTCGCGTGCTTTAATAGGTTGTCAGCCGCTCCAGACCATTT

SEQ ID NO: 37
CTGGTCCCATCGCTAGTGGTACGCTCCACCGGTGGAGTAGCTCAGATGTCTGAAGGG
TGGAATTTAGAGGTGGAGAGACAGACGTGAGCTAGAGCGGCATGGGACCTGGTCCA
CCGCTCGAGGCAATGGCAACGACTGTTGAAACCTTGCCCACCACTCCTGCAATTTTC
CATCCTCACCGGCCGGAATGAATTAAAACCCACGTCACAACCTCT

SEQ ID NO: 38
CGTGACAGGGCTCGGGTGTTCGGCTCCATCGTAGTGCATGCGCCGATGTAAGTATAC
AAGAAGTACGTGGCTTGGCGTCTGACGAGGGCCGTCAAGGCAGGCGGCCTCCTTCTA
AGCTTACGGCGCCGGCAGGTTCGTAGGTTACCTTACACTCAACTCATAGTCTATCTAT
TACTCGTACTGCGTTATAAATTGTCACCCCCTCCACACCCTCT

SEQ ID NO: 39
AGGAACGCTTCTCGATGGTTGCGCACATAGGAGGGACTTGATAGTCGGTGGAAATCT
AAGAATTGCATATCAGATCTGCAGACGTTAGCCGACATGGCTAGCAGACTACTCCGC
TTCACACGTCAGCGAAAGCGACGGAGGATTTCTTGCCAACGGCGCCTTCGCGAACCC
TTCCTCGCCCGTCGGAAGAAAGATACTCCCCTTGCACACCCTCT

SEQ ID NO: 40
CTTGACTTGGCTCGAGAGTTCTGCGCTTCCATTGTAGTTGCAGCGATGTCGGAGTCCG
AGGGTTGCGTGGCGGTGCGGCAGACGTGGGCAGATACGACTGTATGCCAGCACCTA
AACATACGGTACCAGAAGCTGCGGTGGATACCTTTCCCGACGCATATACGTTTTCCG
TGCCTCTCACGCCGTAGTAAATAAACTCCCCCTCCTGTTCCTTT
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1 AATTRCAACG GTATATATCC TGCCAGTCAC CATCATCACA CCRARAGCTTA GGUCUGARTA
€l CTTTGARATT AGRBAGOTCG CAATTGSAGGT CTACAGGCCA ABATTCECTCT TARLCGTACA
121 ATATTACTCA CCAGATCOTA ACCGETGTGA TCATGGGCCSE CGATTAARAR TCTCRATTAT
ig81 ATTTEGTCTA ATTTAGCTTTS GTATTGACTA AZZCARATTC GGECELLCATGC CCGGGCARAGT
241 CECCGCACRAE GTTTGTACAR ARAMICAGGC TGAGTATTCA CTACAGTAGCT GUATCGRATGG
301 BGTCATCARCG CRGACDTATCT CAGCATETEC GTAGCACGTC TAGACCTAGGE TAGCGTTAATT
381 BRGOTTECAT GCOUOGCGASGAR ATATCAATTC AGCACTTARR GATCTTTAGR AGARAGCARA
ZmLip 3' UTR vl
4321 GCATTTATTA ATACATAACA ATGTCCAGGT AGCCCAGLTE AATTACAATA CGURACTGCT
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ZmLip 3' UTR vi
TACCAARRGTC TACACRAGCA GUAACRDTCE CTSCCAGTEC CGETEGETCT TTARAGCACH
Zmiip 3% UTR vi
COoorOTTER COBCGCRBATT CACCOTTCARR CABRRCTPGGT ARRATTABRAG CRRACCAGRA
Zmiip 3' UTR wi
CORDRACACAS GUCARCELADL COUTTOTGAT COCGOGCCCA AGGICCGGLC GGUCAGRACG
Zmiip 3' UTR wi
TACCACCEAD ACGCACRDGD THEOCACTGAGS UTCTCRAARGE TAGGTCTTEC GACAGTCAAC
ZmLip 3' UTR vl PRIYFP v3 {with intron)
ACCTOTCRACE GTTTPOTPICA AGCTCATCTT STCTCTGTGS TOTGTCACAT CTTTGGAALG
2hi¥YFP w3 {with intron)}
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Phi¥FP ¥3 {with intron)
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Phi¥FP v3 (with introm)
CTECEGASTE ALAGTTERACT CCOAAGTTOTT TUCCAACACHE TGACCATCTT TCTTGRALGLC
Phi¥YFP v3 {with intron)
PPCACCATTE AGTTPPGALCC TATTCTAGAC AGACCCATPTC TUAARRGETGA CTTCAGCLCT
Phiv¥FP w3 {with intron)
ACTOTTGARG TTOOCATOTC CTTOARAGGT SATTGTGLGL TCTTGUACAT AGUCATCTGE
Phi¥YFP v3 {(with intron}
CATBRCRCGRC TTOTACRAGCT COTTCAACTC TLEGACCDATAC PTGGCARRGT ACTETGCTCC
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Phi¥FP w3 {with intron}
ATROOTEACE CTGOTCRDAR CGTETCEUTCCL AGHCACAGGA ACATCTCLOGE TAGTRCAGAT

PhiYFP v3 {with intron}
CRATTETCOA TCOAACCTGCA CATCACCATE TTTTGGTCAT ATATTAGAADR AGTTATARAT
Phi¥PP w3 {with intron)
PAARRATATAC ACACTTATAR ACTACAGAAR AGCRATAGCT ATATACTACA TTUTTTITATT
Phi¥YFP w3 {with intron)
TPCAARBALL TACTTERAAAT ACTATATTAC TACTARTTAG TGATAATTAT TATATATATA
Phi¥FP w3 {with intron}
TPOAARCOTACS AAGUAGRAAAD ATACCTTTLC CACTCGAGGUAR TUTCCIGTAGC CTTTCCCACG
Phi¥YFP v3 {(with intron)
PATCOTARAL GTEPEECCAT CRACATTCCC TTOCATCTCC ACAACGTAAS GAATCTTOCC
Phi¥FP ¥3 {with intron}
ATCARACACE ACTOOTOCRE ATCACATAGS GUUGGGEATTC TUOTCCACLGT CACCGCATET
Phi¥FP v3 {with intron}
PARCAACACTT COTCTEOCOT CGCHEGCASE COTARACTCOCA CCRACTETEE TECGAGTLRA
aaT-1 v3 {no stop}
CTETOTCALRS TTGOCAGCAT ACTCAGGAAC AGUACGGETGD ATGGTGUACR AGTTGTCCCA
ARD-1 ¥3 {no stop)
CACRRCCADT TEOTOPTTCOT TOCACOTCAC ACGGUARGTG AAGTCARATC TGETGGLATG
aa0-1 w3 (no stop}
CTCATRGRACSE AACTEARGCAE ATCGCTTTGE TPOTGCATCT GTCATGLCCT CRATTLTCTG
ZARD-1 v3 (no stop)
ACARCTACACT TLATTCACAT BAAGGCUTTT CCOTTCCAGAG CCAGGATGAS TCACARCCAR
AAD-1 w3 {(no stop}
COCATORADT CTOTOTOTET CACCAGCATS AACATCCATC ACCTTGALTE AGGTGTTIGCT
AZAD-1 v3 {no stop)
CAAGCCACEE TTOPGTHOTT GOTAGAGGGA ACCGARCACZ CETLTGLCRE AGTGUACRAC
AAD-1 ¥3 (no stop)
CTPCARDCOT TORATOGTGRE CUTTECATEGET TGGAGACARAG GTOTCCCRAL CTGTETACAT
A2T-1 v3 {(no stop}
PCARBCORAC CUAGTETCOTRS CGCCATSCTC AGGAARCATOT ATGGUUCTCA TCACARACAGC
EAD-1 v3 (no stop}
BCOTESACET GCRTCAAGGERE AAGTLLAGTC TGIGTGCCAG TCATCACCAR TCACCOTTCL
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ARD-1 v3 {no stop)

ABGRCEURCST GRATCAARCTE GTCCAAACCT TOTTGAGARAT GULRAATETGECT GUTCATTGET
aa0-1 v3 [(no stopl)

GBTTGOTTEE CCAGCARAGT AGCATGACTT: GTARGTGTGG BAGGCATCCA ATATUTCATT
AAD-1 v3 {no stop)

CUAGOTOCTS TOATCRAGTS GTTCCOTCAR GTCCARACTUCA GTGATOTCAG CACCTAAGGAL
A2D-1 v3 {no stop}

ACCRCTGAGT GOUTPEGACAS CTATTOTOTD RAAGUGRTTEE GCAGAGAGGGED TGAGEGCAGRC

e o B e P o, P P P e N P . . e P o, P P Ko o P P W P e e o e P, e P i P e P o e e e R P P o o i P PG B e e o T B o o o P M P Ty

ATGRGCCATG
GECRARDCRAD
CATRATAGCTG
TRCTTGTTTA
TECCATCATG
TATTTCCATC
BERTTALTAE
ACGARCCGCCC
GUATCAGTAR
TOTTCRRATTOC
CCACCRAGETA
CATCATCACE
CATATATTGA
ATGARBTUGE
ACTGGLARLT
AGCRAGUACGE
CEEGCOITAA
GEGGAGGALG
TEETEETGETE

AARD-1 v3

GTEPCGTGETG

BCAGTACCAR
CTGCATATEC
TTATARTAGA
TATATGCATL
CATCTTARAL
ATACRCCAGS
BACCRACACCE
AACCOECATC
GTARCTATGS
GTTTEARRCE
ACCRRGRCAR
BATARAGGAD
TLCCGTOTED
TAGCARARTCAL
ATCTRACACRA
CCATGCATGE
BSCGGCETAC
TETETEOGUT

GAPCCCTGCA

GCABATARAT
CRATCATCCAR
TRGGTACTCA
AGTRARICCC
TLGETAACTAT

TAGTPTCARAR

CAPCATCACE
BACATLTATA
ATATCTATG:
GRATTLTACT
AARARRBGCAT
BAGGECAAAC
GGARAUGHCTA
BARCERLTCTG
BACACGLGATC
ACCGGARCGT
CTTGRAGCEG
COGRATAACK

{no stop}

GCAAGTAACAC

AGCCTATGAA
CTATATCARG
AGGTTAGAGC
ACATCRACAT
CAAGATGTAT
CARGTATTCTA
ACCRAGCGRA
CCTRTCOTRG
CARCBCRACATA
CCGRTUTAGE
GRABACARTCH
CAARRCCTCTAT
GRECCATICC
ACGTACAGGT
TRACACRBRC
CCATCTAGAL
AGETECCGAC
CEAGGTTEEE

CARRCARMCAG

GGCAGGGCTA
ETCGABATRA
ATATGARATAG
GTATRCCTAT
GACACACALCE
CTCCGATCTA
CABARBGCRAT
ATCGATATTT
CRGRTCCRAAR
ACGACCGOCC
CCCGACARRAC
GUAARCGARRRAL
AGTATTCCCO
CGCATCOETG
ATGARRCAGAD
BAGGTAGAGA
GEETGEATTT
GAGGTRCCAR

GETGAGCATC

AB2ABBTCCA
TTATARBRCA
ETGCTGCATA
COTAGATCGA
TACAGTTCCA
GARCGAATEA
CPCTGTATAT
CCATCCATCA
ATTAATARAT
EACCAGRACCA
BAGTGCACGS
BARRBARRTC
BRRAGRGADBAC
TACGRACGLT
GEAGRACTAC
GEGGEGEEGEE
GGEGEAGRTC
GRGGETGETGE

e Pan P P T g o P i B g Mo,

MIn UbilP
ACGGGETGETC TATTTATTAC GRCGEGCGAG GRAGCGABRRG CGRAGGAGCG GIGGLARAGG
MIn Ubilp
RATCCOOCET AGUPEOCGET GUCOTGAGRG GAGGAGGAGE CUGCLCTGCLG TGUCGLUTCA
MIn UbilPp
CETCTEOOEE TLCGCCACES BATTTCTCGA TGUCGACAGC GGAGCARGTC CAACGLGTGGA
MIn UbilP
SUBV promoter vi2
GUESGARCTOT CGACROGGET CCAGDCGCGS AGTATCGGAR GTTGAAGACA BAGARGGTCT

o T i P T i W P U Ty g Pz T e Py g P o P P P Ak g O P

MIn UbilP
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3CBV promoter vi

TARRATCOCTGG CTAGCARCAC THAACTATGC CAGRARACCAC ATCARARGCAT ATCGGCAAGC
SCBV promoter v2

TTCTPGECCC ATTATATCCA AAGACCTCAG AGARAGGTGCEA GUGAAGGLTC ARATTUCAGAAG
SCBV promoter vZ

ATTEERAAGCT GATCRATAGCG ATCARAGACAR TGETGAGAAL GUTTCCAAAT (CTCACTATTC
SCBV promoier w2

CARCCAGRAGE TECATECATT ATCATTGAZR CAGATGCATE TECARCTGGR TGLGGAGLAL
SCBV promotsr vZ

TATGCAAGTG GAAGARRRR( ARGECAGARCC CRAGARRITAC AGAGCAAATC TLTAGGTATE
SCBV promoter vZ

S o P o i P P e e i T e Mg N Py e P o i P o P 1 Py Ny e N I Lo TN B s Py o P o e oy P e Wi i, e o Vi s T e o i Wi P ey gy s T o e R A0ty P S T |

CCAGTGGARL ATTTGATAAG CCABAAGGAR COPGTGATEC AGRARTCTAT GGHELTTATGA
SCBV promoter w2

ATGGEUTTAGA ARAGATGAGA TTGTTCTACT TCGACARARE AGAGATCACA GTCAGARACTEC
SCBYV promoter w2

BCRGTAGTEC BATCGRARGEG TTCTACRACA AGRCTCLTGR ACACRAGCUCT TUTRAGATCA
SCBV promotsr w2

GATGGATCAG GTTCATEGAC TACATCACTE GTECAGGACT AGCRGATAGTC ATTGAACACA
SCBV promcter w2

TRABAGGGCALE GAGCRATGET TTAGCTGACEA TCTTGETCLAS GUICRAAGCC AARARTTAGUTC
SCBV promoter v2

AGBATGARACT BACGLAAGAG ATGATCCTGC TTACACAAGC CATAAGGGAR GTARATTCCTT
3CBV promober vZ

ATCCRGATCR TCCATACACT GAGCRACTCR CGRGARATGGGE RAXCARAATT CTGLATCCAT
SCBV promoier w2

TCCOCACRTT CRAGRAGGAC ATGTTCGAAR GRACAGAGUE AGCTTTTATG CTARCAGAGG
SCBY promoter w2

BACCAGTTCT ACTCTGETGCA TECAGGRAGC CTGLAATTCE GTTAGTETCC AGAACATUTG
SCBV promoter v2

CCRACCCAGE RAGGREATTC TTCRAGTGECEG CAATEAARCKR ATGUCATTGEL TGEGTACTGERG
SCBYV promotsr v2

CAGATCTCAT THRAAGARBCAC ATTCAAGACA GAATTGATCR ATTTCTCAAG RATCTTGAAG
SCBV promcter v2

TTCTEAAGAD CGGTGEIGTGE CRAACRATEG AGLAGGARCT TATGAAGRAR GTUACCRAGT

FIG. 27D
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SCBV promoter v2

TGAACATAGA AGAGCAGGAS TICGAGGAZT ACCAGGCCAC ACCARGGGUT ATGICOGULAL
SCBV promoter vZ

TAGCCLOACA AGATOTGOTA GATITCOCARG ACCTAAGCAZR TGRUGATTGR GGAGECATIC
BCBYV promoter w2

ACCTCAGGGAE THACCOGCAGC GCAGAGTALT GGGLUCCATTLC AGTGGATGUT CCACTGAGTT
SCBV promoter w2

GTATTATTCT GCTGCTTTTCS GACAAGTGETG QTGTCCACTT TUTTTTGGCA CCTGTGCCAC
SCBYV promoter w2

e e e i e S P s I P e P P W P i e P e P e P Pt T P T B P P g i T Nz Ot i i W e, o e Y T e . e g . T W T i W Wy o o Ry S e e B i

TPTATTCCTT GTOPGOCACE ATGCUTTTGC TTAGCTTGTA ACCABGGATC GUAGTGUGTG
BCBV promoter w2

e P e R P Pt o P T T s g P Pk T P A Ty B P i T P Wi Ve P Py Wi R R W My i Pt i W T s P i iy . Wi i S Pl iy e TN iy W P P Sy e 4 e P e

TETFEACACCE COOCCOTTOC GACECTCTGS CTATATAAGGE CACCGTCTICT AAGUICTITAC
SCBV promotser vZ2

P e o o e P e P e P P P R P P P i e g e N e T T

GAETCATCGEET
CCARCGEAGGA
TRACCRECACCT
ACGTACACACH
ARTCARCTGERG
CCATTTTTTIC
TTTRTTAECGT
BBGTTTGETT
ACAERGTCAGT

AETTCACCAR
GCTGATATTT
ACCARGCTCRAL
CETCTATATA
TASTCATTEIT
AGCTTGEARG
TETTTOGACA
GLAECTGEHCCT
ACCTCATCCA

GEOTCEEEET
SETECACARMG
SECARTCLCC
TGTATGATGT
ATTACTTEGT
TTTEETTECA
AZPCAGTAGC
TEGAUTAATA
FTCPETOCCAT

CEGATCTAGC
CTGETCGATAL
AGRTCRCCCC
ATCCCTTOGA
TTTGACAAGCT
CEFGGCCTTGEE
TCATCCATCT
ACTEATTAGT
TETTCAGUTA

TEARGGUTCG
GAGCRACCCT
AGCAGRATTCG
TCGARGGCAT
CRGTAGTTCA
PUTALTRACT
GTCOCATTET
CATTTTATTA
CLARCTTOGC

ACARGECAGT
AEPCOCTRATH
RAGRAGGTAC
GUCTTGETAT
TCCATTTGTC
GRGTAGTCAT
TPCRGOTREC
CATTETTTCG
GECCECACAC

BVE (no stop)

CARCACTATCT COOCOCCCEA GOETECACATC GACGTGRACE ACBAGRAUCGELG CCACACCCTC
V6 {no stop)

CACOTEOASE ACRAGAOCAR GUTTGACGEC SGCAGSTGEC GULACCTICLC GACCRACETE
BvE& {no stopl

COCARCRACT AGATCAAGRES CTPCGSTGGOC SAATCCRACG GUTTCATGALC CEGTACCEAG
Bv6 {no stopl

CECBCCATOT ACOTACTOCRET CARCGGCEAG GUUGAGATCA GUOTCTACTT CGRCAARCCCE
8ve {no stop)

PTPOLCOGECT COAACARATA CEAUGECUAC TCCARCAACT CUCAGTACGRA GATCATCACC
BvE {no stop}

I o o P g g o T e e e g o S e P P s g s g Wi e T Ty T Wiy g P e i o s iy g o P e s S P g i o N P St Ty g P oy i r o o e e T N St T o P

CACGGUAGCT CCGGCRACCA GTCCCACGETG ACCTACACCA TCCAGACCAC CPCCTCCCGC

Ve fno stop)

e Tt P o s P P e Ot T P P s P Py

TZOGGOCACE AGTCCGAGGS CAGAGGARAGT CTTUTAACAT GUGETGAURT GGAGGAGRAAT
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Crvy35abl vs

COCGECCCTA TOCTOGACAD CRACARAGGTG TACGAGATCAR GCRACTACGC CAARCGLCLTC
Cry35abl vS

TACGOOECCA COTROCTOTE COTCGARLGAC TCUGSGLOGTET CCCOTCATGAR CAAGRACGAL
Cry35ab1 v5

SBOGACRTCG ACGACTACAR CUOTCARGTGG TTLCTCTTCC CGATCGACERE CGACCAGTAC
Cry35akl vl

ATCATCACOT CCTACGOCGE CAACAACTGT RAGGCTETGGA ACGTGARACHER CGACARGATC
Cry35Rb1 v5

BACGTSTCCA COTACTOCTL CACCARCTOC ATCCAGAAGT GGCAGATCAR GLUCAARCEGC
Cry35abi vh

TCOTOOTACG TGATCCAGTE CGACRACGELD AACCTGUTCAE COGUUGGUAL CGGUCAGHECT
Cry358b1 vh

CTOCECOTCA TPOOGUOTCAD CHRACGAGTOU TCCARCARCT CGRACCAGUAR GIGRARCCTS
Cry35ahI v

ACSTCOGTEC AGRCCATCCA GOTCCCGCAG BAGCCGATCA TCGACACCAR GUTCAAGGAC
Cry358L1 w5

TECOCGARST BOTCCCCGAC CGGCARCATC GACARCGGUZRA COTCOUCGLER GUTUATGLGC
Cry35abi w5

TGEACOCTCOE TGCCSTECAT CATGGTGAAC GALCCCGRACA TUGACAAGARR CACUCCRGATC
Cry35ak1 vi

ARCACCACCC COTACTARCAT CCTCAAGAAS TACCAGTACT GGUAGAGGECD CETGEEITCC
CZry35abi w5

ABCGTOGCEC TOOCOCOGCA CGAGRRGAAG TCCTACACCT ACGAGTGGGEG CACCGRGATC
Cry35abl v

CACCAGRAGE CCACCATCAT CAACACCUTC GEUTTCCAGE TCRACATCGA CAGCGEGLATG
Cry35ah1 w5

ABGTTCGACAE TUCUGGRGGT GRGLGGLGET ACCRACGAGA TCRAGALCCAE GLTCARCGAG
Lry3528bl vE

GAGCTCRAGDE TCGAGTACTC CCACGAGALS RAAGATCATCS AGRAGTACCR GGAGCAGLTCU
Cry358kL1 w5

SBRGATCRACA ACCCGACCGA CCOAGTCCATE BACTCCATCGE GCTTOCTCAC CATCACOTCC
Cry35abl vh

CTGGAGCTOT ACCGOTACAR CGGCTCCGAG ATCCGCATCAE TGCAGATCCA GACCTUCGAC

FIG. 27F
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Cry35abl w5
BACCACACTT ACAACCTGAC CTCCTACCCHE BACCACCAGC AGGUUCTGUT GTGAGTAGTT
BLPinII 3" UTR w2

ACOTTAATOA COTAGBACCT AGAROTTETLOC ATCTTCTGGA TTGECCAACT TAATTARTGET
SEPiniII 3' UTR vZ

ATLAALTARA ACCATGCACE CATAGTEACE TGUTARTCAC TATAATGTGG GCATCARAGT
S£PinII 3" UTR w2

TCTCTOTTAT GTGTAATTAC TAGTTATCTS AATARARAGALG AARAGARGATCAE TCCATATTIC
8+PinII 3° UTR v2

TPATCOTAAR TEARTSTCAD GTGTUTTTAT AATTCTTTGA TGAACCAGAT GUATTTCATT
8tPinII 37 UTR w2

BACCRAERTCC ATATACATAT AARRTRTTART CATATATAAT TAATATCBAT TGGGTTAGCA

28tpiniI 3' UTR vZ

ARBCARATOT AGTCTAGCTE TETTTTLOTC TAGTGCTAGUC CTCGAGETCG ACTUCTGATCA

TREATECOTAC CTCACCGCAG TACAGGACTR TCATCTTGAA AGTCGATTGA GUATCGARAL

CORCOTTTOT TETACARRAGT GOTTGCLGCD GUTTAATTAR ATTTAARTGT TTGGGEATCC

Zmithil promeotsr v2

POTARCACTOGC ACOTGCAGTE CAGCGTGALD CGGETCGTGCC CCTCTCTAGR GATAATGAGT
ZmUbkil promoter vi

ATTCCATOTC TABRGTTATAL ARRATTACCE CATATTTTTT TTGTCACACT TGTTTGRAGT
ZmUihil promoter w2

COACTTTATC TATOTTTATA CATATATTTA ARCTTTACTC TRACGRAATAAT ATAATCTATAE
ZmUbil promoter w2

STACTACAAT RATATCAGTS TTTTAGAGRA TCATATAARAT GAACAGTTAG ACATGGTCTA
ZmUbil promoter vZ

BACCACAATT GAGSTATTTTE ACAACAGGALD TCTACAGTTT TATCITTTTTA GTGTGCATGT
ZmUbil promotser vZ

STTCTCCTIT PTTTPTIGCAE ATAGCTTCAC CTATATAATA CTTCATOCAT TPTRTITAGTA
ZmUbil promoter vZ

CATCONTTTA GEOTTTAGSE TTAATEGTTT TTATAGACTA ATTTTTTTAG TACATUOTATT
ZmiUibil promoter w2

TTATPOTATT TTAGCCOTCOTA ALTTARGRARR ACTAAZACTC TATTTTAGTY TETTTATITA
Zmifbil promoter v

ATAGTTTAGA TATALRRATAG AATAARATAR ACTGACTARA BATTAAACAZ ATACCCTITTA

FIG. 27G
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ZmUbil promoter ve

AGARRRTTARA AAJRRACTAAGS LAACATTTIT CTTGTTTCGA GTAGATAATGE CCAGUCTGTT
Zmifbil promoter v2 ‘

RAACGOLCTY GACGRGTCOTA ACGGACACTA ACCAGCGRALC CAGCAGLGTL GLGTUGGGELC
Zmlikil promoter w2

BAGOCARCCA CACGGCACGS CATCTOPGTC GUTGCOTCTS GACCCCTCTC GRGAGTTCCG
ZmUbil promoter v2

CTOCACTOTT GLACTTGOTE CGCTGTOGET ATCCAGAZAT TGECLTGGLGE AGUGLHCAGAC
ZmUbil promoter v

CTEAGCCGED ACGGCARGCE GUOPCLTOCT COTCTCACGE CACCGEUAGT TAUGGHGGAT
ZmUbil promoter v2

POUTTRCCCE COGCTOOTTT GCTTTCCCTET COTCGOCOGT CETARATARAT AGRCACCCCC
ZmUbil promoter vZ2

PCOACACCOT CTTTOCCCAR COTCGTETTE TTOGGAGIGC ACACACACAC RACCAGATCT
Zmlbil promoter v2

COCTCARRATC CACCOSTCOSRE CACCTUCOGCT TCAAGETACS CUOGCTCGETLC TCOOCCCCCC
ZmUkil promoter vZ2

COCOOOTOTE TACCTTOTOT AGATCEGUOT TCOGGTCCAT GUATGGTTAG GGLCOGETAL
ZomUbil promoter w2

TTOTACTTOT GTTCATGTTT GTGTTAGATL CGTGTTITETE TTAGATCCGT GUTGUTAGCG
ZmUkil promoter v2

TTCETACADG GATECHGACCT GTACGTOAGE CACGTTUTGA TTGUTAALTT GCCAGTGTIT
ZmUbi!l promoier v2

CPCTTTGEEEES ABTCOTECEA TOECTOTAGE COTTCCGCALG ACGGGATCGE TITTCATGATT
Zmiibil promoter w2

o e T ot Pt o P R Pt ot N T P T Pt o T B Py R P s o ok e Pt T Ty P, P P g It s e e Ty Wi P P ot W i Py o Ty e T T e T o B e e P o i o S iy e e

TTPTPTGTPT COTTCCATAS GEPTTLETTT GUUCTTTTCC TTTATTTCAR TATATGCUGT
ZmUbil promoter w2

GCACTTGTTT GTCGEATCAT CTPTTCATGEDS TTTTTTTTGT CTIGCTTGTE ATGATGETEGST
ZmUbil promoter v2

CTCETTEEGT GETCSTTCTA GATCGGAGTA GRATTCTGTT TCARARCTACT TGGTGEGATIT
ZmUbil promoter w2

ETTAARTTTTG GATCTGTATS TETHETGCCAT ACATATTCAT AGTTACGAAT TEAAGATGAT
Zmibil promoter w2

COATGORART ATOGATCTAG GATAGSTATZ CATGTTGATE CGGGTTTTAC TGATGUATAT

FIG. 27TH
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ZmUbil promoter w2
ROAGAGSATEC TTTITESTTCG CTTLGETTGTG ATGATCGTGGET GITGETTGEGL GETUGTTCAT
Zmitbil promocter w2
TCOTTOTAGE TOSGACTRAGA ATACTGTTTC RARCTACCTG GTGTATTTAT TAATTITIGGA
Zmbil promoter v2
ACTGTATGTE TOTGCTCATAC ATCTTCATAG TTACGAGTTT ARAGATGGATE GARATATUGA
ZmUbil promoter v2
TOTAGGATAG GTATACATGT TGATGTGGEGT TTTACTCGATE CATATACATE ATGGUCATATG
ZmUkil promoter vZ2
CAGCATCOTAT TCATATGCOTC TAACCTTGAG TACCTATOTA TTATAATARL CARAGTATGIT
Zmifbil promoter v2
PTETAATTAT TTCGATOTTG ATATACTTGE ATGATGGCAT ATGLAGCAGC TATATGTGGA
ZmUbil promoter v2
TTTTPTTAGD CCTECUPTCA TACGOTATTT ATTTGCTTGS TACTCTTTUT TITGTCGATG
ZmUbil promoter w2 PAT v9
CTCRACCOTET PETTTEETET TALTTCOTGCA GGGTACAGTE GTTAGTTGAL ACGACACCAT
PAT v9
GTOTCCGGRE ADGAGACCAS TTGAGATTAG GUCAGCTACAE GUAGUTGATE TGHCCLIGET
PAT w9
TTEHTEATATC GTTAACCATT ACATTGRAGAC GTCTRCAGTE ABCUTTTAGGR CARAGAGLCACA
PAT w9
BECACCACER CAGTGEATTS ATCATOTAGA GAGGTTGCAR GATAGATACT CTTHEETIGST
PAT v5
TEOTGAGETT GAGGETCSTTE ToGUTGGTAT TGLTTACGCT GGGCLUTGGER AGGCTAGGRA
PAT wB
CECTTACGAT TECACAGTTS AGAGTACTST TTACGTGTCA CATAGGUATC ARAGGTTGES
PAT v9
DOPAGGATCC ACATTOTRLA CACATTTGCT TARGTCTATE GAGGCGUARG GFTTTARAGTC
PAT ¥5
TETECTTECT GTTATAGGDC TTCCAAACGA TCCATCTGTT AGGTTGLATS AGLECTTTGEGE
PAT w5
ATACACAGOC COPGETACAT THCGUGCRGC TGGATACALGS CATGLTGEGAT GGLATGATET
PAT v9

P s oy g g P e P T Py P P oy T T T P Ean Tho P Tt o e Py e o Tk T P T P N5 Pop T oty e Phar P s o Fge Vs Pn P> Coe T s P p o Tz s Ty s Ty ot S oy s P S Py o 5

TEETTTTTES CAAALGGATT TIGASTTGOC AGUTCCTCCA AGGUCAGTTA GGULCAGTTAC
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ZmLip 3' UTR vl

T P P Tt s o o P g P o P T

PAT w3

CORCARTOTEE CTGAGOTTGA GOTTRATGAGES TTATGAGCTT AGAGCTCGGT CGLAGCGTGT
ZmLip 3' UTR vi

COCTETODGT CETACGTTOT GGCCGHCCGE GROUTTGGGECSE CECGATLAGRE AGUGTTGLGT
ZmLip 3' UTRE vl

TEEUGTOTET GTECTTOTSE TTTCSOTTTAA TTTTACCAAG TTTGTTTCAA GLTGGATIGC
ZmLip 3' UTR vl

CTOGTCRAGE COCSTSTOCT PTARAGRCLC ACCGECACTG GUAGTGAGTS TTGLTGITTG
ZmLip 3' UTR vi

PRTREGOTTT GETACCTATE GGUTTTATTT GUTTCTGGAT GTTGTGTALT ACTIGGGETTE
ZmLip 3' UTR vi

CTTGARTTAT TATGAGCAGT TGUGTATTGET RATTCAGCTH GGLTACLTEG ACATTGTTAT

ZmLip 3" UTR vl

T e e P P et . e g P s e i o P T g P e W P T g W W P i i S, P P S P O Py g e T g o o T s P P

CTATTAATAA
RGACACACAC
TAGATGCRCT
TTAAABARCET
TATATCCREC
CCCACGUGTE
ARRTRBACGAT
TCETAATTTG
CATTTTTGRA
TRCTCATTGC
CTECCG

ATGCTITTECT
ATCATCTCAT
CEARARTCAGCT
COGCARATETEG
COCARGCCAGT
TCGAGGRATT
TTCCCRBTTA
TCGETTTTATO
TTGARRRABA
TGATCCATET

TTOTTOTARS
TEATGCTTES
CARATTTTAGAE
TTATTARGTT
CARCRGCTUG
CTGATCTEEL
CBATAARTTTG
ARARTGTACT
ATTEETAATT
AGATTTCCOG

GATCETTAM
TAATARETPTET
CRACTATCAA
GTCTRBGCLGT
ATTTRCARTT
CCOCRTPTEE
TEPTRTTECTT
TTCATTTTAT
ACTCTTECTT
GACRTGARGT

FIG. 27J
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CRTTAGATTG
BCGGATETGA
CRATTTGATT
GAARTATATCC
RLGTGRATCET
TLGCCTATAR
AATRACGUTE
TTTCTCCATA
CETTTARCAAT

GSCATGCRCAT
TTTTTATRCA
CTTCAGTACR
TACAATTGEA
TCECCGELOGE
AGRCACCETCE
ATBCOGACGEA
CECARCATCTA
TTEACCATCR
TERATATATC
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SEQ ID NO: 51: yellow fluorescent protein from Phialidium sp. SL-2003 (PhiYFP; 234 a.a.;
GenBank: AAR85349.1):

MSSGALLFHG KIPYVVEMEG NVDGHTFSIR GKGYGDASVG KVDAQFICTT
GDVPVPWSTL VITLTYGAQC FAKYGPELKD FYKSCMPEGY VQERTITFEG
DGVFKTRAEV TFENGSVYNR VKLNGQGFKK DGHVLGKNLE FNFTPHCLY]I
WGDQANHGLK SAFKIMHEIT GSKEDFIVAD HTQMNTPIGG GPVHVPEYHH
ITYHVTLSKD VIDHRDNMSL VETVRAVDCR KTYL

SEQ ID NO: 52: PhiYFPv3; 234 a.a.

MSSGALLFHG KIPYVVEMEG NVDGHTFSIR GKGYGDASVG KVDAQFICTT
GDVPVPWSTL VITLTYGAQC FAKYGPELKD FYKSCMPDGY VQERTITFEG
DGNFKTRAEV TFENGSVYNR VKLNGQGFKK DGHVLGKNLE FNFTPHCLYI
WGDQANHGLK SAFKICHEIT GSKGDFIVAD HTQMNTPIGG GPVHVPEYHH
MSYHVKLSKD VIDHRDNMSL KETVRAVDCR KTYL
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