PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/38377
Al

GOGF 17/30, 19/00 (43) International Publication Date: 16 October 1997 (16.10.97)

(21) International Application Number: PCT/US97/05355 | (81) Designated States: CA, JP, KP, KR, US, European patent (AT,

(22) International Filing Date: 9 April 1997 (09.04.97)

(30) Priority Data:

60/015,231 10 April 1996 (10.04.96) us

(71) Applicant (for all designated States except US): AT & T CORP.
[US/US]; 131 Morristown Road, Basking Ridge, NJ 07920
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COHEN, William, W.
{US/US]; 178 Belmont Avenue, North Plainfield, NJ 07060
(US). SINGER, Yoram [IL/US); 36 Columbus Avenue, New
Providence, NJ 07974 (US).

(74) Agents: REDMOND, Joseph et al.; Morgan & Finnegan,
L.L.P., 1299 Pennsylvania Avenue, N.W., Washington, DC
20004 (US).

BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: A SYSTEM AND METHOD FOR FINDING INFORMATION IN A DISTRIBUTED INFORMATION SYSTEM USING

QUERY LEARNING AND META SEARCH

(57) Abstract

An information retrieval system
finds information in a (DIS) Distributed
Information System, {the Internet} using
query leamning and meta search (figure
2) for adding documents to resource
directories contained in the DIS. A
selection means (figure 4; yes/no link)
generates training data characterized
as positive and negative examples of
a particular class of data residing in the
DIS. A learning means (figure 4; learn
link) generates from the training data at
least one query that can be submitted to
any one of a plurality of search engines
for searching the DIS to find "new" items
of the particular class. An evaluation
means (figure 4; review previous link)
determines and verifies that the new
item(s) is a new subset of the particular
class and adds or updates the particular
class in the resource directory.

Program Batch-Query-Learner (positive-URLs.SearchEngine)
PosSample := {(d, +): URL(d) ¢ positive-URLs}
NegSample := {d , -): d was "recently accessed"
and d € positive-URLs}

Sample := PosSample U NegSample
repeat
RuleSet := Call Learn(Sample)

for each r ¢ RuleSet do
g := Call Corresponding Query(r.Search
Engine)
Response := Call Top-k-
Documents (q.Search Engine)
for each document d ¢ (Response -
positive-URLs) do Sample := Sample
ud. -)

endfor

if no new documents
parameters of Learn

else reset parameters of Learn to default

collected then adjust

values

until some resource limit exceeded (see text);

end

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Sencgal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico uz Uzbekistan
Central African Republic Jp Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Coee d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany L1 Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

WO 97/38377 PCT/US97/05355

COHEN 6-1

A SYSTEM AND METHOD FOR FINDING INFORMATION
IN A DISTRIBUTED INFORMATION SYSTEM USING QUERY
LEARNING AND META SEARCH

Notice

This document discloses source code for
implementing the invention. No license is granted
directly, indirectly or by implication to the source
code for any purpose by disclosure in this document .

except copying for informational purposes only or as

authorized in writing by the assignee under suitable

terms and conditions.
Related Application

Provisional Application, Serial Number
60/015,231, filed April 10, 1996 and assigned to the

same assignee as that of the present invention.

Background of the Invention

(1) Field of the Invention

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

This invention relates to information
retrieval systems. More particularly, the invention
relates information retrieval in distributed

information system, e.g Internet using guery learning

and meta search.

(2) Description of the Prior Art

The World Wide Web (WWW) 1is currently filled
with documents that collect together links to all known
documents on a topic; henceforth, we will refer to
documents of this sort as resource directories. While
resource directories are often valuable, they can be
difficult to create and maintain. Maintenance is
especially problematic because the rapid growth in

on-line documents makes it difficult to keep a resource

directory up-to-date.

This invention proposes to describe machine
learning methods to address the resource directory
maintenance problem. In particular, we propose to
treat a resource directory as an extensional definition
of an unknown concept--i.e. documents pointed to by the

resource list will be considered positive examples of

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

the unknown concept, and all other documents will be
considered negative examples of the concept. Machine
learning methods can then be used to construct from
these examples an intensional definition of the
concept. If an appropriate learning method is used,
this definition can be translated into a query for a
WWW search engine, such as Altavista, Infoseek or
Lycos. If the query is accurate, then re-submitting the
query at a later date will detect any new instances of
the concept that héve been added. We will present
experimental results on this problem with two
implemented systems. One is an interactive system---an
augmented WWW browser that allows the user label any
document, and to learn a search query from previously
labeled examples. This system is useful in locating
documents similar to those in a resource directory,
thus making it more comprehensive. The other is a
batch system which repeatedly learns queries from
examples, and then collects and labels pages using
these queries. In labeling examples, this system
assumes that the original resource directory is
complete, and hence can only be used with a nearly
exhaustive initial resource directory; however, it can

operate without human intervention.

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

Prior art related to machine learning

methods includes the following:

USP 5278980 issued January 11, 1994
discloses an information retrieval system and method
in which an operator inputs one or more dquery words
which are used to determine a search key for searching
through a corpus of a document, and which returns any
matches between the search key and the corpus of a
documents as a phrase containing the word data matching
the query word(s), a non-stop (content) word next
adjacent to the matching work data, and all intervening
stop-words between the matching word data and the next
adjacent non-stop word. The operator, after reviewing
one or more of the returned phrases can then use one oOr
more of the next adjacent non-stop words as new gquery
words to reformulate the search key and perform a
subsequent search through the document corpus. This
process can be conducted iteratively, until the
appropriate documents of interest are located. The
additional non-stop words for each phrase are
preferably aligned with each other (e.g., columination)

to ease viewing of the "new" content words.

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

Other prior art related to machine learning
methods is disclosed in the references attached to

the specification as Appendix 1.

None of the prior art discloses a system
and method of adding documents to a resource directory
in a distributed information system by using a
learning means to generate from training data a
plurality of items as positive and/or negatives
examples of a particular class and using a learning
means to generate at least one query that can be
submitted to any of a plurality of methods for
searching the system for a new item, after which the
new item is evaluated by learning means with the aim

of verifying that the new item is a new subset of the

class.

Summary of the Invention

An information retrieval system finds information
in a Distributed Information System (DIS), e.g. the
Internet using gquery learning and meta search for
adding documents to resource directories contained in

the DIS. A selection means generates training data

10

15

WO 97/38377

PCT/US97/05355

COHEN 6-1

characterized as positive and negative examples of a
particular class of data residing in the DIS. A
learning means generates from the training data at
least one guery that can be submitted to any one of a
plurality of search engines for searching the DIS to
find "new" items of the particular class. An evaluation
means determines and verifies that the new item(s) is a
new subset of the particular class and adds or updates

the particular class in the resource directory.

Description of the Drawind

Fig. 1 is a representation of a prior art
distributed information system which implements the

principles of the present invention.

Fig. 2 is a listing of pseudo code for a
batch-query =-learner incorporating the principles of

the present invention in the system of Fig. 1.

Fig. 3 is a representation of an interactive
query-learning system incorporating the principles of

the present invention.

WO 97/38377 PCT/US97/05355

COHEN 6-1

Fig. 4. is a user interface to the query

learning system of the present invention.

Fig. 5 1is a listing of pseudo code for an on
line prediction algorithm incorporating the principles

of the present invention.

Fig. 6 is a Table summarizing experiments

with the learning system of Fig. 3.

Fig. 7 is a Table summarizing experiments

with the learning system of Fig. 2.

Fig. 8 1is a graph of data showing the
results of precision-recall tradeoff for the three

problems studied the batch query learning system of

Fig. 2.

Fig. 9 is a Table of results of a
generalization error study for the learning systems of

Fig. 2 and Fig. 5.

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

Description of Preferred Embodiments

The problem addressed by the present
invention is a variant of the problem of relevance
feedback, which is well-studied in information
retrieval. One novel aspect of the present invention
(other than the WWW-based setting) is that we will
focus, as much as is practical, on learning methods
that are independent of the search engine used to
answer a guery. This emphasis seems natural in a WWW
setting, as there are currently a number of
general-purpose WWW search engines, all under constant
development, none clearly superior to the others, and
none directly supporting relevance feedback (at the
time of this application); hence it seems
inappropriate to rely too heavily on a single search
engine. The current implementation can use any of
several search engines. A second motivation for
investigating search engine independent learning
methods is that there are many search engines
accessible from the WWW that index databases partially
or entirely separate from the WWW. As WWW browsers and
the Common Gateway Interface (CGI) now provide a nearly

uniform interface to many search engines, it seems

10

15

20

WO 97/38377

COHEN 6-1

PCT/US97/05355

reasonable to consider the problem of designing

general-purpose relevance feedback mechanisms that

require few assumptions to be made about the search

engine.

A distributed information system 10, e.g.,

the Internet to which the invention is applicable is

shown in Fig. 1 The Internet is further described in

the text "How The Internet Works" by Joshua Eddings,

published by Ziff Davis, 1994. The

system includes a

plurality of processors 12 and related databases 14

coupled together through routers

(not shown) for

directing messages among the processors in accordance

with network protocols. Each processor and related

database is coupled to a plurality
servers (not shown). The users may
for purposes of communication with
search the system for information

engines.

of users through
originate messages
other users and/ or

using search

The initial research goal was to implement a

WWW-based query-learning system in

the system of Fig. 1

and support meaningful experimentation to provide a

qualitative evaluation of the difficulty of the task.

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1
To conduct this initial evaluation two different
systems were implemented: one designed for batch use,

and the other designed for interactive use, as will be

described hereinafter.

A Batch System

The first implementation is a Perl script
that runs as a “b;tch" system-- it requires no user
intervention. The input of the batch system is a list
of Uniform Resource Locators (URL’s) that correspond
to the positive examples of an unknown concept. The
batch system has two outputs: an intensional
representation of the unknown concept, and a set of

example documents that include all of the positive

examples plus a sample of negative examples.

The procedure used to accomplish this is
shown in Fig 2. Three subroutines are used. The first,
Learn comprehends a concept from a sample. The only
assumption made by the query-learning system about the
learning system is that the hypothesis of the learning

system is in disjunctive normal form (DNF), where the

10

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

primitive conditions test for the presence of words.
For example, a DNF hypothesis learned from a resource

list on college basketball might be:

(college A basketball) V (college A hoops) V (NCAA A
basketball)

Henceforth we will call each term

(conjunction) in this DNF a ‘‘rule’’.

A set of K rules can be easily converted to k
search queries, each of which consists of a conjunction
of words---a query format that is supported by
practically every search engine. The restriction,

therefore, makes the system largely independent of the

search engine used.

The second subroutine used by the
query-learning system, Corresponding Query, converts a
single rule to a query for the search engine being
used. Some knowledge about the search engine is
clearly needed to appropriately encode the query;
however, because most search engines use similar

formats for queries, adding the knowledge needed to

11

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

support a new search engine is usually straightforward.
Some search engines can handle more expressive
queries—--queries that require terms to appear near
each other, or queries that contain word stems like
‘Vcomput$*$’’/. Most advanced gueries are not currently
supported by the existing Corresponding Query routine.
One exception are queries containing conditions that
check for the absence (rather than the presence) of
words, such as (basketball A -college A -NCAA). These
can be used if both the learning system and the query
system allow it, but were not used in any of the

experiments of this invention.

The final subroutine, Top-k-Documents},

submits a query to a search engine and collects the top
k documents returned. Again, some knowledge about the

search engine is needed to perform this task.

The basic procedure followed by the batch
query-learner is to repeatedly learn a set of rules,
convert these rules to queries, and then use incorrect
responses to these queries as negative examples. The
premise behind this approach is that the responses to

learned queries will be more useful than randomly

12

10

15

20

WO 97/38377

PCT/US97/05355

CCHEN 6-1

selected documents in determining the boundary of the
concept. Although this simple method works reasonably
well, and can be easily implemented with existing
search engines, we suspect that other strategies for
collecting examples may be competitive or superior; for
instance, promising results have been obtained with
‘‘uncertainty sampling. See Lewis and Gale (16) and
query-learning by committee. See Seung et al (25). Also

see Dagan and Engelson (10).

A few final details require some discussion.

Constraining the initial query: To construct
the first query, a large set of documents were used as
default negative examples. A ‘‘default negative
example’’ is treated as a ordinary negative example
unless it has already been labeled as positive example,
in which case the example is ignored. We used 363
documents collected from a cache used by our labs’ HTTP

proxy server as default negative examples.

Termination: In the current implementation,

the process of learning rules and then collecting

13

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

negative examples is repeated until some resource limit
set by the user is exceeded. Currently the user can
1imit the number of negative examples collected, and

the number of times the learning system is called.

Avoiding looping: It may be that on a
particular iteration, no new documents are collected.
If this occurs, then the training data on the next
iteration will be the same as the training data on the
previous iteration, and the system will loop. To avoid
this problem, if no new documents are collected on a
cycle, heuristics are used to vary the parameters of
the learning system for the next cycle. 1In the current
implementation, two heuristics are followed: if the
hypothesis of the learning system is an empty rule set,
fhen the cost of a false negative is raised; otherwise,
the cost of a false positive is raised. The proper
application of these heuristics, of course, depends on

the learning system being used.

An Interactive System

The batch system assumes that every document

not on the resource list is a negative example. This

14

i0

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

means that it cannot be successfully used unless one is
confident that the initial set of documents is
reasonably complete. Our experience so far is that
this is seldom the case. For this reason, we also
implemented an interactive query-learning system, which
does not assume completeness of an initial set of
positive examples; instead, it relies on the user to

provide appropriate labels.

The interactive system does not force any
particular fixed sequence for collecting documents and
labeling; instead it is simply an augmented WWwW
browser, which allows the user to label the document
being browsed, to invoke the learning system, or to

conduct a search using previously learned rules.

The architecture of the interactive system is
shown in Fig. 3. The user’s interface to the
query-learning system is implemented as a separate
module that is interposed between a WWW browser and an
HITP proxy server. This module performs two main jobs.
First, every HTML document that is transmitted from the
proxy server to the browser is augmented, before being

sent to the browser, by adding a small amount of text,

15

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

and a small number of special links at the beginning of
the document. Second, while most HTTP requests
generated by the browser are passed along unmodified to
the proxy server, the HTTP requests that are generated
by clicking on the special inserted links are trapped

out and treated specially.

This implementation has the advantage of
being browser-independent. Following current practice,
an acronym Surfing While Inducing Methods to Search
for URLs or SWIMSUIT has been assigned to the systen.
The user’s view of the query-learning system is a set
of special links that appear at the top of each HTML
page. Clicking on these links allows the user to
perform operations such as classifying a document or

invoking the learning system.

Functionally, the special links inserted by
the gquery-learning interface act as additional
‘vcontrol buttons’’ for the browser---similar to the

buttons labeled ‘‘Back’’ and ‘‘Net Search’’ on the

Netscape browser. BY clicking on special links, the

user can classify pages, invoke the learning system,

16

WO 97/38377 PCT/US97/05355

COHEN 6-1

and so on. The user’s view of the interactive system is

shown in Fig. 4.

The special links are:

Document labeling: The yes link and no link
5 allow the user to classify the current page as a

positive (respectively negative) example of the current

class.

Invoking the learner: The learn link returns

a form that allows the user to set options for the

10 actual learning system and/or invoke the learner on the
current class. The behavior of this 1link can be easily
changed, so that different learning systems can be used
in experiments. As in the batch system, learning is
normally constrained by using default negative

15 examples. This means that reasonable rules can often

be found even if only a few positive examples are

marked.

Searching: The search link returns a list of

previously learned rules. Clicking on any rule will

17

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

submit the corresponding query to the currently

selected search engine, and return the result.

Configuration and help: The set options link
returns a form that allows the user to change the
current class (or to name anew class), Or to change the
current search engine; the review previous link returns
an HTML page that lists all previously marked examples
of the current class; and the help link returns a help

page.
Learning Svstems

Two learning systems have been integrated
with the system: RIPPER, a propositional rule learner
that is related to FOIL, see Quinlan (21), and a
rule-learning version of ‘‘Sleeping experts;’. Sleeping
experts is a new prediction algorithm that combines
ideas from used for online prediction, see Freund (11)

with the infinite attribute model of Blum (3).

These algorithms have different strengths and
weaknesses. RIPPER implicitly assumes that examples

are i.i.d---which is not the case for samples collected

18

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

via browsing or by the batch query-learning systenm.
However, formal results suggest that sleeping experts
will perform well even on data sets that are selected
in a non-random manner. The sleeping experts algorithm
is also largely incremental, which is potentially an
advantage is this setting. On the other hand, sleeping

experts uses a more restricted hypothesis space, and

cannot learn large rules, whereas RIPPER can (at least

in principle).

RIPPER

Briefly, RIPPER builds a set of rules by
repeatedly adding rules to an empty ruleset until all
positive examples are covered. Rules are formed by
greedily adding conditions to the antecedent of a rule
with an empty antecedent until no negative examples are
covered. After a ruleset is constructed, a
optimization postpass massages the ruleset so as to
reduce its size and improve its fit to the training
data. A combination of cross-validation and
minimum-description length techniques are used to

prevent overfitting. 1In previous experiments, RIPPER

19

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

was shown to be comparable to C4.5rules, Quinlan (22)
in terms of generalization accuracy, but much faster

for large noisy datasets. For more detail, see Cohen

(8) .

The version of RIPPER used here was extended
to handle ‘‘set-valued features’’, as described in
Cohen (9). 1In this implementation of RIPPER, the value
of a feature can be a set of symbols, rather than
(say) a number or a single symbol. The primitive
conditions that are allowed for a set-valued feature F
are of the form ¢ € F, where C is any constant value
that appears as a value of F in the dataset. This
leads to a natural way of representing documents: a
document is represented by a single feature, the value
of which is the set of all tokens appearing in the
document.. In the experiments, documents were tokenized
by deleting e-mail addresses, HTML special characters,
and HTML markup commands; converting punctuation to
spaces; converting upper to lower case; removing words
from a standard stoplist, Lewis (17) and finally
treating every remaining sequence of alphanumeric
characters as a token. To keep performance from being

degraded by very large documents, we only used tokens

20

10

is

20

WO 97/38377

PCT/US97/05355

COHEN 6-1
from the first 100 lines of a file. This also
approximates the behavior of some search engines, which

typically index only the initial section of

a document.

A second extension to RIPPER allows the user
to specify a loss ratio, see Lewis and Catlett (14).
A loss ratio indicates the ratio of the cost of a false
negative error to the cost of a false positive error;
the goal of learning is to minimize total
misclassification cost, rather than simply the number
of errors, on unseen data. Loss ratios in RIPPER are
implemented by changing the weights given to false
positive errors and false negative errors in the

pruning and optimization stages of the learning

algorithm.

One additional modification to RIPPER was
also made specifically to improve performance on the
query-learning task. The basic RIPPER algorithm is
heavily biased toward producing simple, and hence
general, conjunctions; for example, for RIPPER, when a
conjunction of conditions is specific enough to cover

no negative examples, no further conditions will be

21

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

added. This bias appears to be inappropriate in
learning queries, where the concepts to be learned are
typically extremely specific. Thus, we added a
postpass to RIPPER that adds to each of rule al 1l
conditions that are true for every positive covered by
the rule. Actually, the number of conditions added was
l1imited to a constant k---in the experiments below, to
k=20. Without this restriction, a rule that covers a
group of documents that are nearly identical could be
nearly as long as the documents themselves; many search
engines do not gracefully handle very long queries. We
note that a similar scheme has been investigated in the
context of the ‘‘small disjunct problem’’, see Holte
(14) . The postpass implements a bias towards specific

rules rather than general rules.

Sleeping Experts

In the past years there has been a growing
interest in online prediction algorithms. The vast
majority of the prediction algorithms are given a pool
of fixed ‘‘experts’’---each of which is a simple,
fixed, classifier---and build a master algorithm, which

combines the classifications of the experts in some

22

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

manner. Typically, the master algorithm classifies an
example by using a weighted combination of the
predictions of the experts. Building a good master
algorithms thus a matter of finding an appropriate
weight for each of the experts. Formal results show
that by using a multiplicative weight update, see
Littlestone (18), the master algorithm is able to
maintain a set of weights such that the predictions of
the master algorithm are almost as good as the best
expert in the pool, even for a sequence of prediction

problems that is chosen by an adversary.

The sleeping experts algorithm is a procedure
of this type. It is based on two recent advances in
multiplicative update algorithms. The first is a weight
allocation algorithm called Hedge, due to Freund and
Schapire, see Freund (11), which is applicable to a
broad class of learning problems and loss functions.
The second is thenfinite attribute model of Blum (3)

In this setting, there may be any number of experts,
but only a few actually post predictions on any given
example; the remainder are said to be ‘‘sleeping’’ on
that example. A multiplicative update algorithm for

the infinite attribute nodel (based on Winnow,

23

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

Littlestone(19) has also been implemented, see Blum

(4) -

Below we summarize the sleeping experts
procedure, which combines the Hedge algorithm with the
infinite attribute model to efficiently maintain an

arbitrarily large pool of experts with an arbitrary

loss function.

The Master Algorithm

Pseudo-code for the algorithm is shown in
Fig. 5. The master algorithm maintains a pool, which
is a set recording which experts have been active on
any previous example, and a set of weights, denoted by
p, for every expert in the pool. At all times, all
weights in p will be non-negative. However, the weights
need not sum to one. At each time step t, the learner
is given a new instance x, to classify;the master
algorithm is then given a set W, of integer indices,
which represent the experts that are active (i.e., not
"sieeping”) on X,- The prediction of expert i on x, is

denoted

24

10

15

WO 97/38377

PCT/US97/05355

COHEN 6-1

by

Based on the experts in W,, the master algorithm
must make a prediction for the class of yx,, and then

update the pool and the weight set p.

To make a prediction, the master algorithm decides

on a distribution p over the active experts, which is

determined by restricting 1'? sety of weights p to the
P; =Pi2 wP;
set of active experts W, and n]or'mélizing the weights.

We denote the vector of normalized weights by p,

where F 3(Ei¢W, 5 :yf)

. The prediction of the master algorithm

is

25

. We use Fy(r) =1n(l - r + r@)/(ln(l - r + rf) +
ln¢((1 - r)B"+ r)), the function used by Vovk [1990] for

nredictina hinarv sSeaquences.

10

WO 97/38377 PCT/US97/05355

COHEN 6-1

~

In the implementation described here, this loss is 0O
if the expert’s prediction is correct and 1 otherwise.

Next, the master algorithm updates the
weights of the active experts based on the losses.
(The weight of the experts who are asleep remains the

same, hence we implicitly

set
VieW :p"

). When an expert is first encountered its weight is
initialized to 1. At each time step t, the master
algorithm updates the weights of the active experts as
follows,

VieW, :p = -lipi Us@ .

26

10

15

WO 97/38377 PCT/US97/05355

COHEN 6-1

where Z is chosen such that

! t+1
zn W, p1=EuW‘P1

The "update function" U; is any function satisfying
(Cesa-Binachi et al., 1993) " < U;(r)<i1-{(1-8)r. 1In our
implementation, we used the linear update. U;(r)=i-(1-
B)r, which is simple to implement and it avoids

expensive exponentiations.

Briefly, if one defines the loss of the
master algorithm to be the average loss with respect to

the distribution

{p; liew},

, the cumulative loss of the master algorithm over all
t can be bounded relative to the loss suffered by the
best possible fixed weight vector. These bounds hold
for any sequence of examples (x,,y,),....(X,Y)., in
particular, the bounds hold for sequences whose

instances are not statistically independent.

10

15

20

25

WO 97/38377

PCT/US97/05355

COHEN 6-1

The Pool of Experts

It remains to describe the experts used
for WWW page classification. 1In our experiments each
expert is corresponds to a space that appears in a
document. That is, if w is the ith token appearing in
the document, each expert is of the form wywp. - - Wi
where 1 < i, < i, <...i,; < i, and i, = i, < n. This is a
generalization of the ngram)\footnote model. Note that
our goal is to classify WWW documents; hence each
ngram expert is used to predict the classification of
the document in which it appears, rather than the next
token (word). For each ngram we construct <two
mini-experts, one which always predicts 0 (not in the
class), and one that always predicts 1. The loss of
each mini-expert is either % 0 or 1 depending on the

actual classification of the document.

Extracting Rules From Experts

Finally, heuristics are used to
construct rules based on the weights constructed by the
sleeping experts algorithm. We constructed a rule for
each expert predicts that 1 and that has a large
weight. This is done by scanning the weights of the
combined experts (each combined expert containing two
mini-experts) and selecting those which have large

weight. More formally, an expert i is used to
construct a rule if

pz.‘lzlE Pool P? 2W s

28

10

15

20

25

30

WO 97/38377

PCT/US97/05355

COHEN 6-1

where T is the number of training examples, and w,, is
a weight threshold for extracting experts. In practice,
we have found that most of the weight is often
concentrated on few experts, and hence the number of
experts extracted is not too sensitive to particular
choices of wg,,. We used w,, = 0.0625 and set the

learning rate 8 to be 0.5 in the experiments described
below.

Typically, the ‘‘heavy’’ experts
correspond to phrases that frequently appear in
documents labeled as positive examples; however, they
may also appear in many of the negative labeled
documents. We therefore examined the mini-experts of
each extracted expert and selected those experts which
are statistically correlated only with the positive
examples. We define the average prediction p, of
expert i, based on its two mini-experts (i,0) and
(1,1), to be p, = F3(p,o/ (PiotP;;)) - An expert is finally
chosen to be used as a rule if its average prediction
is larger than p,,. In the experiments we used p,, =
0.95 as the default value, and increased or decreased
this threshold to encourage proportionally more or
fewer positive predictions.

Finally, as was done with RIPPER, we add to
each rule the list of all tokens that appear in all
positive documents covered by a rule. We also remove
all rules that have strictly fewer conditions than
another rule in the set. The result is a rule set
where each rule is of the form w; A w, A...A w,.

29

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

Although the sleeping experts algorithm treats this as
an ngram, we currently treat it simply as a conjunction
of features: clearly, this is suboptimal for search

engines which support proximity queries.

Experimental Results

We have evaluated the system with three
resource directories.

ML courses is part of an excellent
machine learning resource maintained by David Aha'.
This list contained (at the time the experiments were

conducted) pointers to 15 on-line descriptions of
courses.

AT societies is a WWW page jointly maintained
by SIGART, IJCAI, and CSCSI. It contains pointers to
nine AI societies.

Jogaging strollers. This is a list of

pointers to discussions of, evaluations of, and

advertisements for jogging and racing strollers.

our initial goal was to find resource

directories that were exhaustive (or nearly so)
containing virtually all positive examples of some
narrow category. Our hope was that systematic

experiments could then pe carried out easily with the

http:// www.aic.nrl.navy.mil/ ~ aha/ research/machine-learning.html

30

10

i5

20

25

WO 97/38377

PCT/US97/05355

COHEN 6-1

batch system. However, finding such a resource turned
out to be much harder than we expected.

We began with the MLcourse problem,
which as a narrow section of a frequently-used resource
we expected to be comprehensive; however, preliminary
experiments showed that it was not. (The first query
constructed by the batch system using RIPPER etrieved
(from Altavista) 17 machine learning course
descriptions in the first 20 documents; however, only 5
of these were from the original list.). For those
interested in details, this query was

(course \wedge machine \wedge instructor
\wedge learning)

Our next try at finding a comprehmachine
learning course descriptions in the first 20 documents;
ensive resource directory was the AI societies problem;
this directory had the advantage (not shared by the ML
course directory) that it explicitly stated a goal of
being complete. However, similar experiments showed it
to be quite incomplete. We then made an effort to
construct a comprehensive list with the jogging
strollers problem. This effort was again unsuccessful,
in spite of spending about two hours with existing
browsers and search engines on a topic deliberately
chosen to be rather narrow.

We thus adopted the following strategy.
With each problem we began by using the interactive
system to expand an initial resource list. After the

31

10

15

20

25

WO 97/38377

PCT/US97/05355

COHEN 6-1

list was expanded, we invoked the batch system to
collect

additional negative examples and thus improve the
learned rules.

Experiments Wwith The Interactive System

We used the interactive system primarily
to emulate the batch system; the difference, of course,
being that positive and negative labels were assigned
to new documents by hand, rather than assuming all
documents not in the original directory are negative.
In particular, we did not attempt to uncover any more
documents by browsing, or hand-constructed searches.
However, we occasionally departed from the script by
varying the parameters of +the learning system (in
particular, the loss ratio), changing search engines,
or examining varying numbers of documents returned by
the search engines. We repeated the cycle of learning,
searching, and labeling the results, until we were
fairly sure that no new positive examples would be
discovered by this procedure.

Fig. 6 summarizes our usage of the
interactive system. We show the number of entries in
each initial directory, the term Recal is the fraction
of the time that an actual positive example is
predicted to be positive by the classifier, and the
term precision is the fraction of the time that an
example predicted to be positive is actually positive.
For convenience, we will define the precision of a

classifier that always prefers the class negative as

32

10

15

20

25

30

WO 97/38377

PCT/US97/05355

COHEN 6-1

1.00 of the initial directory relative to the final
list that was generated, as well as the number of times
a learner was invoked, the number of searches
conducted, and the total number of pages labeled. We
count submitting a query for each rule as a single
search, and do not count the time required to label the
initial positive examples. Also, we typically did not

attempt to label every negative example encountered in
the search.

To summarize, the interactive system
appears to be very useful in the task of locating
additional relevant documents from a specific class; in
each case the number of known relevant documents was at
least quadrupled. The effort involved was modest: our
use of the interactive system generally involved
labeling a few dozen pages, waiting for the results a
handful of searches, and invoking the learner a handful
of times. In these experiments the time required by the

learner is typically well under 30 seconds on a Sun
20/60.

Experiments With The Batch System

In the next round of experiments, we
invoked the batch system for each of these problems.
Fig. 7 shows the resource limit set for each of these
problems (the column ‘‘\#Iterations Allowed’’ indicates
how many times the learning system could be called),
the number of documents k that were collected for each
query, and the total number of documents collected by
the batch system (not including the initial set of 363

33

10

15

20

25

WO 97/38377

PCT/US97/05355

COHEN 6-1

default negative examples). The resource limits used
do not reflect any systematic attempt to find optimal
limits. However, for the last two problems, the learner
seemed to ‘‘converge’’ after a few iterations, and
output a single hypothesis (or in one case alternate
between two variants of a hypothesis) on all subsequent
iterations.} In each case, RIPPER was used as the
learning system.

We then carried out a number of other
experiments using the datasets collected by the batch
system. One goal was simply to measure how successful
the learning systems are in constructing an accurate
intensional definition of the resource directories. To
do this we re-ran the learning systems on the datasets
constructed by the batch systen, executed the
corresponding queries, and recorded the recall and
precision of these queries relative to the resource
directory used in training. To obtain an idea of the
tradeoffs that are possible, we varied the number of
documents k retrieved from a query and parameters of
the learning systems (for RIPPER, the loss ratio, and
for sleeping experts, the threshold p,,.) Altavista
was used as the search engine.

The results of this experiment are shown
in the graphs of Figure 8. The first three graphs show
the results for the jndividual classes and the second
graph shows the results for all three classes together.
Generally, sleeping experts generates the best

high-precision classifiers. However, its rulesets are

34

10

15

20

25

WO 97/38377

PCT/US97/05355

COHEN 6-1

almost always larger than those produced by RIPPER;
occasionally they are much larger. This makes them more
expensive to use in searching and is the primary reason
that RIPPER was used in the experiments with the batch
and interactive systems.

The constructed rulesets are far from
perfect, but this is to be expected. One difficulty is
that the neither of the learners perfectly fit the
training data; another is that the search engine itself
is incomplete. However, it seems quite likely that even
this level of performance is enough to be useful. It
is instructive to compare these hypotheses to the
original resource directories that were used as input
for the interactive system. The original directories
all have perfect precision, but relatively poor recall.
For the jogging strollers problem, both the learners
are able to obtain nearly twice the recall (48% vs 25%)
at 91% precision. For the AI societes problem, both
learners obtain more than three times the recall at 94%
precision or better. (RIPPER obtains 57% vs 15% recall
with 94% precision.

We also conducted a generalization error
experiment on the datasets. In each trial, a random

80\% of the dataset was used for training and the
remainder for testing. A total of 50 trials were run
for each dataset, and the average error rate, precision
and recall on the test set (using the default

parameters of the learners) were recorded.

35

10

15

20

25

30

WO 97/38377

PCT/US97/05355

COHEN 6-1

The results are shown in Fig. 9.
However, since the original sample is non-random, these
numbers should be interpreted with great caution.
Although the results suggest that significant
generalization is taking place, they do not demonstrate
that the learned gueries can fulfill their true goal of
facilitating maintenance by alerting the maintainer to
new examples of a concept. This would require a study
spanning a reasonable period of time.

Summary

The World Wide Web (WWW) is currently
filled with resource directories---documents that
collect together links to all known documents on a
specific topic. Keeping resource directories
up-to-date is difficult because of the rapid growth in
on-line documents. This invention describes the use of
machine learning methods as an aid in maintaining
resource directories. A resource directory is treated
as an exhaustive list of all positive examples of an
unknown concept, thus yielding an extensional
definition of the concept. Machine learning methods can
then be used to construct from these examples an
intensional definition of the concept. The learned
definition is in DNF form, where the primitive
conditions test the presence (or even the absence) of
particular words. This representation can be easily
converted to a series of queries that can
pe used to search for the original documents---as well

as new, similar documents that have been added recently
to the WWW.

36

10

15

20

25

WO 97/38377 PCT/US97/05355

COHEN 6-1

Two systems were implemented to test
these ideas, both of which make minimal assumptions
about the search engine. One is a batch system which
repeatedly learns a concept, generates an appropriate
set search queries, and uses the queries to collect
more negative examples. An advantage of this procedure
is that it can collect hundreds of examples with no
human intervention; however, it can only be used if the
initial resource list is complete (or nearly so). The
second is an interactive system. This systems augments
an arbitrary WWW browser with the ability to label WWW
documents and then learn search-engine queries from the
labeled documents. It can be used to perform the same
sorts of sequences of actions as the batch system, but
is far more flexible. In particular, keeping a human
user ‘‘in the loop’’ means that positive examples not
on the original resource list can be detected. These
examples can be added to the resource list both
extending the list and improving the quality of the
dataset used for learning. In experiments, these
systems produce usefully accurate intensional
descriptions of concepts. In two of three test
problems, the concepts produced had substantially
higher recall than manually-constructed lists, while
attaining precision of greater than 90%

In support of the invention, and in
particular the description of Preferred Embodiment,

the following Appendices are included in the
application:

37

10

WO 97/38377 PCT/US97/05355

COHEN 6-1

Appendix 1. A list of references cited in the

application by reference numeral.

Appendix 2. A copy of a README file which describes the
source code implementing the presently-preferred
embodiment of the invention.

Appendix 3. Commented source code written in perl for

the presently-preferred embodiment of the invention.
Appendix 4. A copy of the documentation for the OreO

shell tool which was used in the implementation of the
presently-preferred embodiment.

38

10

15

20

25

30

35

40

WO 97/38377

PCT/US97/05355
COHEN 6-1
References
1. (Apté, et al., 1994) Chidanand Apté, Fred

Damerau, and Sholom M. Weiss. Automated learning of
decision rules for text categorization. ACM

Transactions on Information Systems. 12(3):233-251,
1994.

2. (Armstrong et al., 1995) R. Armstrong, D.
Frietag, T. Joachims, and T.M. Mitchell. WebWatcher:
a learning apprentice for the world wide web. 1In
Proceedings of the 1995 AAAI Spring Symposium on

Information Gathering from Heterogeneous,
Distributed Environments. Stanford, CA, 1995. AAAI
Press.

3. (Blum, 1990) Avrim Blum. Learning boolean

functions in a infinite attribute space. 1In 22nd

Annual Symposium on the Theory of Computing. ACM
Press, 1990.

4. (Blum, 1990) Avrim Blum. Empirical support
for WINNOW and weighted majority algorithms:
results on a calendar scheduling domain. In Machine
Learning: Proceedings of the Twelfth International

Conference, Lake Taho, california, 1995. Morgan
Kaufmann.
5. (Cesa-Bianchi et al., 1993) Nicold Cesa-

Bianchi, Yoav Freund David P. Helmbold,
David Haussler, Robert E. Schapire, and
Manfred K. Warmuth. How to use expert
advice. 1In Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of
Computing, pages 382-391, May 1993.
submitted to the Journal of the ACM.

6. (Cohen, 1995a) William W. Cohen. Fast
effective rule induction. In Machine
Learning: Proceedings of the Twelfth
International Conference, Lake Taho,
california, 1995. Morgan Kaufmann.

7 (Cohn, 1995b) William W. Cohen. Learning to
classify English text with ILP methods. 1In
Luc De Raedt, editor, Advances in ILP. IOS
Press, 1995.

39

10

20

25

30

35

40

WO 97/38377

COHEN 6-1

8‘

10.

11.

12.

13.

14.

PCT/US97/05355

(Cohen, 1995c) William W. Cohen. Text
categorization and relational learning. In
Machine Learning: Proceedings of the Twelfth
International Conference, Lake Taho,
california, 1995. Morgan Kaufmann.

(Cohen, 1996) William W. Cohen. Learning
with set-valued features. In Proceedings of
the Thirteenth National Conference on

Artificial Intelligence, Portland, Oregon,
1996.

(Dagan and Engelson, 1995) Ido Dagan and
Shaun Engelson. Committee-based sampling for
training probabilistic classifiers. 1In
Machine Learning: Proceedings of the Twelfth
International Conference, Lake Taho,
california, 1995. Morgan Kaufmann.

(Freund and Schapire, 1995) Yoav Freund and
Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an
application to boosting. In Proceedings of
the Second European Conference on
Computational Learning Theory, pages 23-27.

Springer-verlag, 1995. A long version will
appear in JCSS.

(Freund et al., 1992) Y. Freund, H.S. Seung,
E. Shamir, and N. Tishby. Information,
prediction, and query by committee. 1In
Advances in Neurl Informations Processing

Systems 5, pages 483-490, San Mateo, CA,
1992. Morgan Kaufmann.

(Harman, 1995) Donna Harman. Overview of the
second text retrieval conference (TREC-2).
Information Processing and Management, 3:271-
289, 1995.

(Holte, 1989) Robert Holte, Liane Acker, and
Bruce Porter. Concept learning and the
problem of small disjuncts. In Proceedings
of the Eleventh International Joint
Cconference on Artificial Intelligence,
Detroit, Michigan, 1989. Morgan Kaufmann.

40

10

15

20

25

30

35

WO 97/38377

COHEN 6-1

15.

l6.

17.

18.

19.

20.

21.

22.

23.

PCT/US97/05355

(Lewis and Catlett, 1994) David Lewis and
Jason Catlett. Heterogeneous uncertainty
sampling for supervised learning. In Machine
Learning: Proceedings of the Eleventh Annual
Conference, New Brunswick, New Jersey, 1994.
Morgan Kaufmann.

(Lewis and Gale, 1994) David Lewis and
William Gale. Training text classifiers by
uncertainty sampling. In Seventeenth Annual
International ACM SIGIR Conference on
Research and Development in Information
Retrieval, 1994.

(Lewis, 1992) David Lewis. Representation
and learning in information retrieval.
Technical Report 91-93, Computer Science
Dept., University of Massachusetts at
Amherst, 1992. PhD Thesis.

(Littlestone and Warmuth, 1994) Nick
Littlestone and Manfred Warmuth. The
weighted majority algorithm. Information and
Computation, 108(2):212-261, 1994.

(Littlestone, 1988) Nick Littlestone.
Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm.
Machine Learning, 2(4), 1988.

(Pazzani, et al., 1995) M. Pazzani, L.
Nguyen, and S. Mantik. Learning from
hotlists and coldlists: towards a WwWw
information filtering and seeking agent.
In Proceedings of AI Tools Conference.
Washington, DC, 1995.

(Quinlan, 1990) J. Ross Quinlan. Learning
logical definitions from relations. Machine
Learning, 5(3), 1990.

(Quinlan, 1990) J. Ross Quinlan. ¢4,5:
programs for machine learning. Morgan
Kaufmann, 1994.

(Ssalton, et al., 1983) G. Salton, C. Buckley,
and E.A. Fox. Automatic query formulations

41

WO 97/38377 PCT/US97/05355

COHEN 6-1

in information retrieval. Journal of the
Americal Society for Information Science,
34(4):262-280, 1983.

24. (salton, et al., 1985) G. Salton, E.A., Fox,
and E. Voorhees. Advances feedback methods
in information retrieval. Journal of the
Americal Society for Information Science,
36(3):200-210, 1985.

25. (Seung, et al., 1992) H.S. Seung, M. Opper.
and H. Sompolinsky. Query by committee. 1In
Proceedings of the Fifth Workshop on
computational Learning Theory, pages 287-294,
san Mateo, CA, 1992. Morgan Kaufmann.

26. (Vovk, 1990) V. Vovk. Aggregating
strategies. In Proceedings of the Third
Annual Workshop on Computational Learning
Theory, pages 371-383. Morgan Kaufmann,
1990.

42

10

15

20

25

30

WO 97/38377

COHEN 6-1

PCT/US97/05355

Appendix 2. A copy of a README file which describes the
source code implementing the presently-preferred
embodiment of the invention.

APPENDIX 2

README Page 1

utilities

oreo.pl

- some utilities for handling http requests with oreosh

general routines for use with oreosh

my hope is that these can be used for
other purposes as well....

connect.pl

- simple two-way connection using oreosh.

mostly there as an exampl

trap-request.pl

e.

- traps http requests that match a given regexp
and handles the specially--specifically a given
program is invoked and its output (which should
be html) is returned to the client.

markup.pl

- allows you to insert arbitrary stuff at the top
of html documents, before the client gets a hold of

then.

cache.pl, cache-util.pl

- implements a simple local cache for .html pages

track.pl

- buggy routine to track state of the browser

the form-labeling program

43

WO 97/38377 PCT/US97/05355

COHEN 6-1

launch.csh

- invokes this cascade of oreosh creatures

client | trap-request | markup | cache | proxy
The client should connect to port 8111 of radish.

autosurf.pl

- loads in cache and cycles through it randomly,
filtering by the current class definition.

ss-marker.pl

- invoked by the markup.pl daemon, this inserts
an appropriate header into html documents

ss-main.pl

- this traps the requests included in ss-marker.pl
and handles them specially. The request handling

is done in the files below. All local data is stored
in —-user/.ss/cache or -user/.ss/data.

44

WO 97/38377 PCT/US97/05355

COHEN 6-1

Appendix 3. Commented source code written in perl for
the presently-preferred embodiment of the invention.

45

10

15

20

25

30

35

WO 97/38377

PCT/US97/05355

COHEN 6-1

Appendix 4. A copy of the documentation for the OreO
shell tool which was used in the implementation of the
presently-preferred embodiment.

APPENDIX 4

Developing an OreO Agent

Table of Contents

. Types of OreO Agents
° Library Routines

o OreO Shell API

. Future Directions

OreO Agents

By some measurements, OreO agents appear to
function as servers in that they support connections
from multiple clients and provide services to these
clients. In this respect, the design of an OreO Agent
(agent) uses the same techniques as designing any other
network-based server.

We define a connection as consisting of two
socket; one to the ypstream" client and one to the
"jdownstream”" server. The OreoO shell (oreosh) is
responsible for setting up these connections and making
them available to the actual processing code. An OreO
agent is thus a combination of the OreO shell and some
processing code: in the simplest case, a plain OreO
shell acts as a simple pass-thru mechanism. The agent
receives HTTP request data on the client socket, and
HTTP response data on the server socket.

oreO Agents expect to see HTTP proxy
requests. The HTTP proxy protocol simply specifies
that URLs presented in the various HTTP methods will be
absolute; normally, an HTTP server don’t see the scheme
and host address/port number portion of the URL. These
proxy requests are then forwarded to the host specified
by the OREO_PROXY environment variable (specified as a
<hostaddress>":"<port number>tuple) .

Since the agent "speaks" the HTTP proxy
protocol on both its upstream and downstream side, OreO
agents may be nested in a manner similar to Unix
pipelines.

46

10

15

20

25

30

35

40

45

WO 97/38377

PCT/US97/05355

COHEN 6-1

When designing an agent, we can utilize
several different designs. These are

. whether connection should be processes
serially or in parallel
] whether an new process is generated for

each connection.

The above results in four different agent
models, which we discuss below. Our use of them
process is influenced by the canonical Posix process
model, which supports (at present) a single thread of
control per process. The design of an agent will
change dramatically for those systems (like Windows/NT)
that provide multiple threads of control per process.

Serial connections, multiple processes

In this model, a new process is generated for
each connection and the shell waits for this process to
finish before accept()ing another connection. This
model is useful when the agent code requires sequential
access to a shared resource, and no mechanism exists to
synchronize shared access to that resource. This form

of processing is enabled by specifying the -1 switch to
the OreO shell.

Parallel connection, multiple process

In this model, the shell guarantees a new
process for each connection, but the shell immediately
returns to accept() another incoming connection. This
provides maximum parallelism, but not necessarily
optimum thruput. The application must synchronize
access to shared, writeable resources such as
databases, files, etc.

In both instances, the shell supports
different ways to process the HTTP request and
response. The agent author can choose to filter either
the HTTP request, the HTTP response, or both. If only
the request or response stream is desired, the shell
takes responsibility for forwarding the other.

The shell supports this via the following
command line arguments.

-1i process the HTTP request stream

-0 process the HTTP response stream

-b process the request and response stream

If no arguments are specified, the Ore0O shell
simply copies its input and output from the client to
the server, and vice versa.

When filtering the request stream, the shell
arranges to connect the client socket to the standard

47

10

15

20

25

30

35

40

WO 97/38377

PCT/US97/05355

COHEN 6-1

input (stdin) of the child process, and the server
socket to the standard output (stdout). This is
reversed for processing the response stream.
connecting the sockets in this way permits the use of
pre-existing Unix style filters as processing code, or
creating processing code in various script languages
that easily read and write stdin and stdout.

Processes that read from the client side
normally will never see EOF, since the client is
waiting on that channel to receive the HTTP response.
Therefore, the shell intervenes on the process’s
behalf, and sends a SIGTERM when EOF is seen on the
HTTP response stream. Processes that read the response
stream will see EOF when the server closes the
connection; at this point, the socket to the client can
be closed after the data has been written.

If only one of -i or -o are specified, the

shell takes responsibility for processing the other
side of the connection.

single process for all connections, serial processing
In this model, a single process (the co-
process) 1is generated by the shell upon startup; the
shell still generates the connections, but passes these
connections to the co-process via an IPC mechanism.
The shell does not wait for the IPC to be acknowledged,
put rather passes an identifier that uniguely
identifies the particular pair of sockets corresponding
to this connection. Once the CO-process has taken
control of these connections, the co-process
acknowledges this to the shell, and the shell closes
its copy of the sockets (this is necessary since the
client side will never see an EOF on its socket if
multiple processes have this connection open).

single process for all connections; parallel processing

This implementation works exactly as
described above under the serial processing case, but
the co-process manipulates each connection in parallel
instead of sequentially. Note that it is the
responsibility of the co-process to implement
sequential vs. parallel processing; the shell is always
asynchronous with respect to transferring connections
to the co-process.

48

10

15

20

25

30

35

40

WO 97/38377

PCT/US97/05355

COHEN 6-1

Library Routines

This version of the OreO shell packages
several functions into a library into a library
(liboreo.a). These routines are used both by the Oreo
shell and by the OreO Shell API functions. These
routines are documented here as an aid to those who
wish to program OreO agents at a low level interface.
typedef int Socket;
int makeArgv(char * string, char * av([], int
maxargs)

Takes as input a text string, and returns a
vector of pointers that no point to individuals tokens
in that string (where a token is defined to be a series
of non-white-space characters separated by a series of
white-space characters. White-space characters are
spaces and tabs. Returns the number of tokens, which
will be <= the max number of strings allowed. The
caller must allocate space for the vector of pointers.
int readn(Socket s, void * buffer, unsigned
int size)

Like read(), but guarantees that size bytes
are read before returning.
int written(Socket, void * buffer, unsigned
int size)

Like write(), but guarantees the specified
number of bytes will be written before the call
returns. This is important because of protocol
buffering and flow control, since it is very possible
that the write() call will return less than number of
bytes requested.

int RecvRights (Socket IPSock, Socket *
client, Socket * server)

This call returns a socket corresponding to
connections to the client and downstream server. This
call hides the mechanisms used to retrieve these
sockets; such mechanisms are guaranteed to be different

across operator systems, and may change from release to
release.

8ignal Eandling

Agent writers should not have to worry about
signal handling; in fact, a correct implementation
relies on the default signal handling behavior as
specified by the POSIX signal handling mechanisms.

49

10

15

20

25

30

35

40

45

WO 97/38377

PCT/US97/05355

COHEN 6-1

OreO Shell AP1

In order to facilitate the creation of OreoO
agents, we have defined a higher-level API than that
presented by the Winsock API. We call this the OreO
shell API. This API presents the notion of a
connection that can be created and deleted. Each
connection contains our two Sockets, and a variable
indicating the state of the connection; uninitialized,
processing the request, processing the response, or
terminating. This API either supports agents written
using the co-process model, or agents that receive
their sockets on stdin or stdout.

The following example is a rudimentary
example of using the Shell API to implement an agent
that could be invoked via the -b switch.

ConnectionPtr cp = newOSHConnection (
StdioConnection);

// process the reguest
while (nn = OSHConnectionRead (cp->browser,
buffer,

sizeof buffer) > 0)
(void)OSFConnectionWrite(cp->proxy,
buffer, n);

while (nn = OSHConnectionRead(Cp->proxy,
buffer,
sizeof buffer) > 0
OSFConnectionWrite(cp->client,
buffer,n);

deleteOSHConnection(&cp);

This named code would be suitable for
generating a program to be used as a CO-process; in
this case, the connection would be created by a call to
newOSHConnection IPConnection)

Future Directions

This is the first version of a UNIX (POSIX)
release. Future releases will buffer in implementation
details; however, the interfaces defined above will not
change, nor will the implementation defined by the OreO
Shell API.

one notion is to re-implement the OreO shell
as an agent analogue of the internet inetd. In this
version, the shell would initialize via a configuration
mechanism that would indicate a specific port number, a
process to run, and how that process should be started.
The shell would accept connections on all such port

50

WO 97/38377 PCT/US97/05355

COHEN 6-1

numbers, and generate the appropriate sequence of
commands to start the appropriate agents.

An alternative would be to re-implement the
shell as a "location broker" for agents, in the style
of the DEC RPC daemon. Processes would connect to the
Agent daemon, and request services; if available, the
daemon would redirect these requests to the appropriate
agent. This would probably require a change to the
HTTP proxy protocol model.

51

WO 97/38377

2! /bin/csh

ser 3="/home/wcohen/coce/ss’

xillall oreosh

secenw

seten<
oreosh

setenw
oreosn

seten-’
oreosih

SS_LEARNER

OREO_280XY
-p Blll -b

OREO_PPOXY

-p 8112

-b

OREOQ_PROXY

-o 8113

b

PCT/US97/05355

APPENDIX 3

"sd/ss-.earn-ripper.sl”

radish.-esearch.att.com:8112
"sd/trap-request.pl ~GET. *2QXYZ2QQ-SS\S* Sd/ss-main.pl”

radish.research.att.com:8113
"sd/markup.pl -2 sd/ss-marker.pl”

radish.:esearch.att.com:aooo

"Sd/cacnhea.pl”

52

WO 97/38377 PCT/US97/05355

o
o
(V1]

::/usr/local/bin/perl

2232333343433 4822233ttt IAsddssazINLN R4ttt
markup.pl -- insert some text intc the top c¢I each HIML page

syntax:
markup.pl <text-to-insert>
markup.pl -f <file-containing-text-to-inserxt>
markup.pl -e <file-containing-text-to-inserc>

-

3
]
)
3
3
L 3
2 -f inserts contents of a file

t -a executes a file and inserts result

* 1n text, WU is replaced with current document’'s URL

23R ALALAARIINNNLI AL AL NIRRT ANERRNIFII2I AR AIIALRAILANARISENIIUNISRRTI IS
Sssdir="/home/wcohen/code/ss/";

require "Sssdir/oreo.pli”:

Sdebug=0;

tss2d8833d3338ddnssigeisensitnnABa NSRS
% establish connections

print STDERR "$0: connecting...\n" if S$debug:
open(CLIENT, "+<&0");
close (STDIN);
select(CLIENT) ; S| = 1
open(PROXY, "+>&l"):
select (PROXY); §| = 1
close(STDOUT) :

print STDERR "$0: connections established...\n" if $debug;

.

v

FEERBRANERNBRRNNIRBINERIREUNNRANRTRNEINERINNE RSN NNS
% get request, forward to proxy

print STDERR "$0: getting request...\n" if $debug:
Srequest = &aget_request{CLIENT);

print STDERR "$0: sending request:\n" if $Sdebug:
print STDERR "=mw= hbegin request =====\pn" if Sdebug;
print STDERR Srequest if S$debug;

print

STDERR "w=mmm end request =ss===\n" if Sdebug;
print PROXY Srequest;

BORNRSANNNNUNRBRRENBINNNRNNNORORIORNRRIRANNRERRRNN
sfigure what type of file this is...

SURL = &requested_URL(Srequest);

Scontent = GURL_type(SURL) if $URL:

print STDERR "$0: URL=SURL\n" if $debug;
print STDERR "$0: type is Scontent\n" if Sdebug:

BRSNS NNNARENBNBIRNNERRRRNNRNUNRERNINBRINRI RS Rd Y
tconstruct insertion string

SWITCH: (

(SARGV(0) =- /~-f(.+)S$/) &b do { Sinsert = ‘cat S1'; last SWITCH: }:

53

WO 97/383717

PCT/US97/05355
sse I LlL:ili 13?3 mazxup.:Sl Fage 2
"SARGVII, eq "-E™) 4a do (Sinsert = ~cat SARSV{Ll]': last SWITCTH:
(SARGV{)) =- /~-e(.=)§/) &k do (sinser= = 'S1': lasT SWITCH: !
(SARGVI)] eq "-e") &a do { Sinsert = “SARGVI{., : last SWITCH: ;:

sinserz = SARGV({0}l:
}

sinsert =- 3/\VU/SURL/G:

=a¢seasa:z::at¢t¢t:ttssas:it:sss#ﬁs:lassczsns:s:::
tsend proxv's message tD client, with Sinsert
sinserted after the end of the title

while (<PROXY>)
if (Scontent eq "html” &é /. .ve\/title>)! sy /iy |
print CLIENT "Sl\nSinsert\nSZ\n":
Scontent = "augmented_html": #never insert tWice
} else {
print CLIENT:
}

WO 97/38377 PCT/US97/05355

(N
W
[}]
J
an

+
[}
)
"
(Y1)
o
H
™
0
L]
L}]
(1]
A
=
o
0]
g
[¥]

*t/usr/local/zin/perl

=3tS$8as*:z:s==a::::lt1ttanastanctntsttsss:snstct:stls::ats:tacat:ns:;;;g;.g;,
* trap-request.pl --- invoke a special process for certain reguests
3

* syntax: trap-request.pl <form-re> <generatsr-prograns

s traps out requests matching the regexp <form-re>.

: then invokes <generator-program>. First argument

3 of generatcr-program is stuff that matches the form-re.

* and second argument is data part of request (if anv).

3 Generator program writes html to output.

e A Ay R N R R R R L L T Y
Sssdir="/home/wcohen/code/ss/";

require "Sssdir/oreo.pl”;

Sdebug=9;

383882034033z nssuRITIT s IdeieIigNs
3 figure out what to trap and how to nandlie :t

Sspecial_re = SARGV{O]:
Sgenerator= SARGV(1l];

print STDERR "S0: handle requests matching ‘Sspecial_re’\n" :if Sdebug;

print STDERR "S0: response generator is ‘Sgenerator‘\n" if Sdebug:

SRENARERNBRA ISR RN RN R AN RN NSRS N RN N RN TUT NN NS
% set up connections

print STDERR "s50: connecting...\n" if $debug:
Oopen(CLIENT, "+<&0");
close(STDIN);
select(CLIENT) ; S| = 1
open(PROXY, "+>gl1l");
select (PROXY); S| = 1
close (STDOUT) ;

print STDERR "$0: connections established...\n" if $debug;

¢

BORUNAORURINIRONBUIRBAUBUNN IR ANENRONSENRRIENEN
get request and echo it

print STDERR "S0: getting request...\n" if $debug:
Srequest = gget_request(CLIENT);

print STDERR "$0: handling request:\n" if Sdebug:
pPrint STDERR "==s= begin request =ew==m\n" if $debug:
print STDERR Srequest if Sdebug;

print STDERR "=sama end request =sswa=\p" if Sdebug:

FERURRAREIBERUANRARNBEIREN AR NNR NI NN PERN NN NONNES
% process request

Lf (Srequest =- /(Sspecial_re)/) (
local($save);

Smatch_string = $1;

55

WO 97/38377

cec i 15:43 333 ztrap-reguest

-
- R s -

Srequest =- /\n\r?\n(.*}s/:
Sform_arguments = S1l:
asend_header(CLIENT)
Sgave = Si; §i{ = L.
open{ RESPONSE, "Sgenezator ‘Smats=h_s3tring’
| die("can’'t invoxe generator”):
while {(<RESPONSE>) {
print CLIENT;
}

close (RESPONSE) ;
Si = Ssave:
} else (
print PROXY SrequestT:
while (<PROXY>) {
print CLIENT S_;
}

56

sform_arguments;)

PCT/US97/05355

WO 97/38377 PCT/US97/05355

“ae -

3t/usr/local/bin/perl

==:t=ss:asses:sstst::snszsq::ansz::aas:ses:z====z=a===s==:::t:sl:-sca::ss=sng
cache.»l --- implement a simple cache

for now--restricted t¢o html documents. must Se Lavoked with - .

2
3
2
3
Y

Qti3#34'3'#"Q#Ql“il“'t'#ﬁﬂi#ﬁttlft#SSS*stl8!333#3*8‘*#"##‘3:l‘*‘iltalaall

Sssdir="/home/wcohen/code/ss/";
require "Ssgdir/oreo.pl”:
require "Sssdir/cache-util.pl":

Sdepug=Q:

S3IT223322293333243sseseesI e RePITIASIE NNz
* lhitialize cache “ar:ables. etc

(Scachedir.Smaxcachesize)=ginit_cache:
print STDERR "S): max=Smaxcachesize, cachdir=scachedir\a" if Sdebug:

FERBIAXII2AMURRLI NI TRIRRRAB LTSRN IIINSI 2223
set up connections

open(CLIENT, "+<&Q");
close(STDIN);
Select(CLIENT) ; S| = 1 ;
open(PROXY, "+>&1"):
select (PROXY): S| = 1 ;
close(STDOUT) ;

BERBGINRRNERRNERRRBNNNNERLSLAERNNNNRSERURNNRNNINERTERY
4 get request and echo it

Srequest = &get_request(CLIENT);

print STDERR "$0: handling request:\n" if $debug:
print STDERR "s==mm= begin request =====\n' if Sdebug;
print STDERR Srequest if $Sdebug;

print STDERR "==mm=mw end request ==smm==\n" if Sdebug:

ERNBNRNERRNNNRNNNNRIRNREENNNENERNRERNNNREEEN IOt
¥ process request

SURL = &requested URL(Srequest):
Stype = LURL_type(SURL) if SURL:

print STDERR "$0: type=Stype URL=SURL\n" if Sdebug:

if (SURL) ¢
tcache_listing = &load_cache_listing;
Sfilename = gurl2file(&lookup_url(SURL, icache_listing));
if ($filename && -e Sfilename && !(Srequest =- /Pragma: no-cache/)) (
Print STDERR “$0: cache has URL in Sfilename\n" if $debug:
*replay the response found in cache

open(RESPONSE, "«<Scachedir/$filename”) '! die("can’'t open cached file");

57

WO 97/38377 PCT/US97/05355

333 zacne.pl Page
w“n._2/<RESPONSE>) |
orint CLIENT:
slcse:RESPONSE):
] a.se
12 'sfilename)
print STDERR "S0: removing file sfilename...\n" if Sdebug:
srequest '~as that cache not be used
:s0 expunge the old cache entry
unlink("Scachedir/sfilename"):
sgystem "rm -f Sfilename" & acomplair:
for (Si=0: Si<=S#cache_listing: si++=) |
Scache_listing($i}) = "" if Scache_listing(§i] eg "SURL\n":
1
}
sget an answer :Irom the proxy. record in tempiile
prinz STDERR "S0: cache has no CRL SURL\n" :f Sdebug:
spen! TEMP, ">Scachedir/TEMP") | die("can < open cache temp file"
print PROXY Srequest:
“ns_e(<PROXY>) (
print CLIENT:
print TEMP:
}
clcse(TEMP)Y
}
supdate_cache(SURL.écache_listing);
} else {

print STDERR "S$0: not a cacheable response\n" if Sdebug:
snot a request--so handle it normally

print PROXY Srequest;

.while(<PRoxr>) {

print CLIENT:

}
close (TEMP)
}

sub update_cache #(Surl, ilisting)

local(Surl, listing) = 3_;
local(Sfilename):

print STDERR "$0: caching $url\n" if $debug:

tdelete url from cache and append to the end
for (Si=0: Si<=$w#listing; S$Si++) |
$listing(§i] = " if Slisting($i] =- /surls/;

$listing($#listing+l] = "Surl\n":

print STDERR "S0: cache + Surl:\n" if Sdebug:
$ ashow_cache(1listing) if Sdebug:

truncate cache to appropriate size

print STDERR "$0: new cache has s#listing, limit
if Sdebug;

if (s#listing >= Smaxcachesize) {

is Smaxcachesize\n"

58

WO 97/38377 PCT/US97/05355

Sndel = S#listing-Smaxcachesize:
for ‘3:=0: Si<Sndel: Si-=-; (

Siilename = aurl2file(Slisting{Sil):
2nlink("Scachedir/$filename");
ss7stem "tm -f Scachedir/$filename” & acomplain:
slisting{Si] = "";

}
}
save the cache
open(LISTING, ">Scachedir/LISTING") :| die("can’'< write cache listing file"):
print LISTING join("".grep(/ .-/, ilisting)):
close(LIsSTING);

* move the response file to appropriate place

if (-e "Scachedir/TEMP" i& -s "Scachedir/TEMP") (
Sfilername = surl2file(Surl):
print STDERR "SO0: url->file Sfilename\n" if Sdebug:

rename’ "Scachedir/TEMP" . “Scachedir/Sfilename'y . &scompla:in:

,)
sub complain i
; print STDEPF "S0O: command fails:\n":
sub show_cache :(cache)
[local(ilisting) = 2_;

tPrint STDERR "weessusswsssssssess=\pn";

print STDERR join("".grep(/.+/,2listing)):
} Print STDERR "=amsmasamsssssssmss=\p";

59

WO 97/38377 PCT/US97/05355

e
0
w

#1/usz,slocal/bin/perl

jtssss s usssdnaseitiensssnsnasdgsinisssnsidzisdisstnaszyssssnissddNnsNTenTndgn
3

*+ orec.pl -- Perl routines =2 be used with the cr=osn
]

itsnssssnssisstiitidansesnanaa Nttt nasidzuddnaasesnistsndNNINININNITI LN

sub requested_U?L #(requesct.
(
local(Srequest) = 1}

-

(Srequest =- /"GET http:(.*) HTTP\/L\.0/) ? S1 : "":

sub C2L_tvpe 3iurl)

local(SURL) = i_;
local(Stype);

stype="html" if (SURL =- /\/S/ '' SURL =- /ntml?s/):
Stype="htmi” if (SURL =- /cgi-bin/):
stype;

}

sub get_request #(client)

(
local(Sclient) = 1_;
local(Srequest,Scontent_length);

while(<Sclient>) {
Srequest .= $_;

Scontent_length = $1 if (/~Content-length: (.*)$/);
last if /~\r?\n$/;

}
while (Scontent_length--) (

Srequest .= (getc Sclient);
}

Srequest;

sub send_header #(client)

local(Sclient) = 2

-

print S$client "HTTP/1.0 200 OX\r\n":
print Sclient "MIME-version: 1.0\r\n";
print Sclient "Content-type: text/html\r\n":
print Sclient "\r\n";

}

return a true value

1;

60

WO 97/38377 PCT/US97/05355

o ae

*:/usr/local/bin/per:

2232232383340 4823222232323323 8434232322383 334422223 49323333232 RR%B e
cache-util.pl --- ytiliszias far cache.pl
s=

3232AARLI33 4422223332023 BA3RI3233 23T 323244843 NNREN

H uw »

sSub Lnlt_cache
(
local(sss.Sdir.smax)

Smax = 40;

S8s="SENV('HOME' ' :/.ss";

if (t(-e "S35")) (
mkdir("Sss".2777);

}

Sdir="Sss/cache":

if ('(-e "Sdir"y: {
mkdir("sdir*.3777);

}

(Sdir. Smax):

sub load_cache_listing

local(ilisting);
open(LISTING, "<Scachedir/LISTING");
ilisting = <LISTING>;
close (LISTING):
llisting:
)

sub lookup_url #(url.listing)

(
local(Surl, :listing) = 2_;
foreach Scached_url (ilisting) {
return Surl if (Scached_url eq "Surl\n"}:
]
return 0;
}
sub url2file #(url)
(
local(Surly = a_;
surl =- s(\/}(#s}g;
Surl =- s(\?}(#Qlg:
Surl =- s{\&}(»A})qg;
Surl =- s(\n}(#N}g:
Surl;
}
1;

61

WO 97/38377 PCT/US97/05355

(9}
[}]
0
1]
o
(Y1)
“w
w
o

s1/usx/Locai/s1n/perl

#:sss!:ssn::ssactsna:sgggsssgttastsitt===z=:ss::sats::::==:st##tt:ts:tts¢:s:as

t

+ §s3-nelp.pl -- help rcutines
3

t8‘8:lt'lt:lttttl‘ilttttt"ltnt;s:tt:t::ssstsstl'tsst:ca:#t#tttalttsnstn‘g-g;‘
require “Sssdiz/ss-util.pl”:
Sdebug=1:

PPTErrrere Tt Y T T R R AL A RA AL A A
4+ invoke ripper on these examples

sub nelp_command ﬂ(datadir,class,url)

{

local(Sdatadir.Sclass, Surl) = :_;
print <<END_OF_TEXT:
<html>
<title>Help screen</title>
<h2>Help</h2>
No on-line neip is available vet.
of this svystem contact
<a href-“mail:o:wcohenéresearch.att.com“>
William Cohen

END_OF_TEXT
asend_foot(5url):

If you want an explanaticn

}

1:

62

WO 97/38377 PCT/US97/05355

i
"Ww
0
J.
+
(b 2
4
(4}

2t/usr/local/sin/zers

- mead w

za:::::::=:3=:=:;::xss:assscsssass:::s====:===3====3:8====::=ss:sesatsts=38¢::

* Ss-.abel.sl -- routines to labeil an heml document
:t:ssasatzctass;:::g:--s:sataaaazzssssis:tsstt*t:tt:¥!==8tttttt:=8=l:s%::s:t::

Tequire "Sssdir/cache-ut:il . pln:
equire "Sssdir/ss-uril.pl-”;

lt‘tt:33#aas:::a:-ts::::sas:!ssacnss:::%t:st::#t:e

label a UPL. zetting the actual document from
the cache

[T}

sub label_ command s+datadir.class.url.label)

local(sdatadir,Sclass.sSurl,Slabel) = L.
local(sfilename.Stizle);

(Scached::.Smaxcaches:ze)-&Lnit_:ache:

print STDER? "SO: max=Smaxcachesizs, cachdir=Scacnedizn' if Scdebug

3try to find the url in the cache
icache_listing = aload_cache_listing:
$filename = &uzl2file(&lookup_url(Surl.écache_listinq));

if (!Sfilename) (

&send_error("can‘t find anvthing in cache for URL Surl. Try reloading, then re-la.
] else (
#set up subdirectories of labeled URL's
mkdir(“Sdatadir/classes/Sclass/Y",0777)
unless (-e "Sdatadir/classes/Sclass/Y"):
mkdir("Sdatadir/classes/Sclass/N",0777)
unless (-e "Sdatadir/classes/Sclass/N");

#copy cache file to new label file)
OPen(CACHE. "<Scachedir/S$filename”) || die("can’'t open cached filen);

open(iABEL.'>Sdatadir/claascs/sclaas/Slabel/sfilename“)

1| die("can’t open label file for write");
while(<CACHE>) {

print LABEL:
}

close(CACHE);
close(LABEL):

frecord that URL was labeled

open(EXAMPLELISTING, ">>Sdatadir/classes/$class/LISTING.Slabel")
Il die("can‘t append to listing file");

print EXAMPLELISTING Surl, "\n":

close (EXAMPLELISTING) ;

if (-e "Sdatadir/classes/Sclass/COUNTER") (
open(COUNTER. "<$datadir/classes/Sclass/COUNTER")
|| die("can‘t read counter");
Scount = <COUNTER>: chop(Scount):
close (COUNTER) ;
} else {

63

WO 97/38377 PCT/US97/05355

& - T

Scount = 0;
}
Open(COUNTER.“>Sdatadir/classes/Sclass/COGNTER“)
'] die(“can’% write countexr"}:
print COUNTER -=-5count. "\n":
close (COUNTER):

ssend acknowledgement
stitle = shtmli_title("Sdatadir,

/classes/Sclass/Slapel/Sfilename”);
print <<END_OF_TEXT:

<html>

<title>Label acknowledgemznt</title>

<body>

<h2>Label acknowledgement</h2>

<p>Received</sTtrong>: label of

squotSlabel" (class aguotSclass</sirong>")

for the document entitled aquot<stronq>stxtle</st:ong>equot
and located at http:Surl.

</p>
END_OF_TEXT
asend_foot(sSurl):
}] & else filename was found in cache

64

-

-
n

s
M
2
*
3
]
3
3
3
3
%
3
%
3
3
3
*
3
]
3
*
3
#
*

WO 97/38377

PCT/US97/05355

W

YY)

(V1]
)

_—rtaer a-

#t/usr/local/bin/perl
1223230333322 NIsNszInIIIeIzx s rzedS Nttt nnse

ss-iearn-rigper.pl -- routines =3 allow user to learn search commands

for Ss using Ripper

f£ile should define these rout:ines:

4learn_command(datadir.class.uxl)
that the ugser sees when he clicks on the

The generated page 1s printed =5 STDOUT.
contain,

-- generates the HIML page
“learn" option.
Seneralls it will

somewhers, this special anchor:

http://QQXY2QQ-55-Surl-invoke-learner
When accessed this cases sinvoke_learner /see below) to be run.
It might also contain a form with the special action
http://QQXYZQQ-SS-Surl-learner-options-Zorm
which, when submitted, causes the process_lesarner_JIorm to
be invoked on 1ts submitted arguments.

sinvoke_learner(datadir.class.uzl) --
generates an HTML page indicating status

aprocess_learner_<orm(datadir.class.url.options)

runs the learner and

the run command.

-
- -

-+ handles

the setting of run-time options for the learning system.

BREESRINFARAANLERASAERIRRRNNERANBANT R RNBRRN AR RURNBRRNIERNNERRNAT NN

require "Sssdir/ss-util.pl”;

S$debug=o0;

send an options form for the learner, and a link that invokes the learner

{

sub learn_command »(datadir,class,url)

local (Sdatadir.Sclass. Surl) = 1

St

local(Snchk.Sychk.Sropts, $nwt, Spwt, Swts) ;

print
print

print
print
print
print

"<html><title>Invoke Rule Learner</title>\n*":
“<body><h2>Invoke Rule Learner</h2>\n":

"click- here\n";
" to invoke the rule learner on class "Sclassiaquot.\n";

"This may take a minute or two.\n":
“<hr>\n";

loptions = aread_options(Sdatadir,Sclass):

soptions form

print
print
print
print

Sanchk

"<h2>Set learning options</h2>\n":
"<form action=\"http://QQXY2ZQQ-SS-Surl-learner-options-form\">\n":

“<p>The optionsg below modify RIPPER's behavior in learning\n":
"the class &squotSclassaquot.\n":

= Sychk = "";

Sachk = "checked" if (grep(/rare No/, loptions));

65

WO 97/38377

PCT/US97/05355

w
-
a
T
|53
]

‘snecked" unless Snchk:
print “<s><s<rong> Assume the class is rare: </strang>\n":
print " -Lntut name=\“rare\" tvpe=\"radio\" Svecak caiues\"Yes\">Yesg</npu

prin: ° “ingut name=\"rare\” type=\"radio\" Sncix ralues\"No\">No</.npuz>
print “~<r>aal';

wTs = grep(/~weights/. ioptions)) |
pwt.inwt) = {(SWts =~ /~weights (\S-) (\S8=)/):

pwt. Snwt) = (1,1):

}

print "-p> Weight for positive examples: \n":

print © <input name=\ "pwt\" type=\"text\” ;aluest "Sgwr\“></Llaputs\n’:
print "<=I>\n";

print

"~z> weight Ior negative ecxamples:
print ° <Lnput names=\ “‘nwt\"
print “</@>\n’;

\n":
type-\“text\" salues\ "snwt\"></input>\n";

(Sropts; = g:ep(/‘c:mmand_Line .*S$/, ioptions) :

sropts =- s/"command_line //:

Sropts = '-~1" unless Sropts:

print STIIER "ropts: sropts\n" if Sdebug:

print “~p>RIPPER command-line options: </st=sng>\n":

print " <input name=\ "ripper\"” type=\text\” size=40 -values\"Sropts\"></1
print “</p>\n";

print “<input type=\"submit\" value=\"Set options\“> </input>\n":

print "<input type=\‘“"reset\” value=\ "Reset\"> </input>\n";
print "</form>\n":
asend_£scT(sSurl):

» invoke ripper on these examples

sub invoke_learner s(datadir.class.url)
{
lccal(sdatadir,Sclass,Surl) = a_;

lccal(Eoptions.Sdefneg.Sripopts.$catcom.5wd.55ave.Spwt.Snwt,Sth):

sautoflush buffers
Ssave = S|; $| = L;
swd = "Sdatadir/classes/Sclass”;

print "<html>\n":

print "<title>Output of RIPPER rule learner</title>\n";
print "<bedy>\n®":

print "<h3>Output of RIPPER rule learner</h3>\n":
print "<p>Preparing data for RIPPER...\n";

sread in options
loptions = &read_options:

unless (grep(/rare No/. ioptions))

sdefrieg = "Sdatadir/defneg.data’
if (!'t-e Sdefneg) || ! (-8 sdefneg)) |

66

=>\n":

.
-~N\n

nput>\n":

1)
[]
3]

WO 97/38377 PCT/US97/05355

2m-a

cTeate a data file Ior default negativs a2xamples
izcal(sfindcom) =

‘"find /usr/local/www/cacne/http \\(-name ¢ html' -o -name ‘¢ hem
gTint "EXtracting negative examples frsm proxy cache...\n":

print STDEBR "findecom: Sfindcom\n':

2pen(DEFNEZG. ">Sdefneg”) || die("can’t cresate defneg";;
Cpen(CACHELIST. "Sfindcom -print!") . d:ea¢'can’'t list prox: cache":;
Wnlle(<CACKELIST>) (

chop:

print “<dd> <code>S_</code>\n":

&fileZexample(Sdatadir."".S,,"N".DEFXEG) i€ (- S_);
}

close(CACHELIST);
close(DEFNEG):

}

1 ({swts) = grep(/~weights,/. ioptions)) (

(SPWT. SnwWwt) = (Swts =- /~weights (\S+) (\S-.,,:;
} else {

(Spwt.3awt) = (1,1y;
)

open(DATA. ">Swd/web.data") die("can’t write =: web.data"):
&prepare_ecamples(Sdatadir.Sclass.DATA,"Y", ":Spwt");:

&prepare_sxamples(Sdatadir,Sclass.DATA,"N",":Snwt");
close(DATA);

#create names file
Open(NAMES, ">$wd/web.names ")
print NAMES "Y.N.\n";

print NAMES "WORDS: set.\n":
tClose(NAMES) ;

print "prepared.\n</p>":

't die("can't write to web.names");

pPrint “<p>Invoking RIPPER...</p>\n":
print "<pre>\n":
tinvoke ripper--read output from a pipe :
(Sripopts) = (join("", doptions) =- /command_line (.*)S/);
print STDERR "use defneg: Sdefneg\n" if $debug:
pPrint STDERR “ripper options: Sripopts\n" if Sdebug;
Scatcom = "cat $wd/web.data Sdefneg | clean-data -c Y -s Swd/web";
open(RIPOUT, "Scatcom | ripper -a given -s $ripopts $Swd/web|")
Il die("can’t execute ripper"): .
while(<RIPOUT>) (
print;
}

close (RIPOUT):
print "</pre>\n";

supdate counter

open(COUNTER, ">Sdatadir/classes/Sclass/COUNTER")
|| die("can’'t write to counter'):

print COUNTER "0\n";

close(COUNTER);

sfinish off html file
asend_foot(Surl):

67

N\ T

WO 97/38377 PCT/US97/05355

S! = Ssave:

sub prepare_examples =(Sda:adi:.5class.Sout.SLabel.Swt\

local(Sdatadir.Sclass.Scut,Slabel, swt) = H
local(Sfils); ‘

opendir(LABELED."Sdatadi:/classes/sclass/Slabel")
t1 die("can‘t list labelled files"):
while (Sfile = readdir:LABELED)) (
1€ (Sfile =- /(~.1/) |
print STDERR "S3: will label file sfile as Slabel\n" iI Sdebug:
afile2example(sScatadir,
"sdatadir/classes/Sclass/stopwords”.

"Sdatadir/classes/sclass/slabel/sfile".

Slabel,Sout.Swt)
}

}
closedir(LABELED);

}

3"'"lt"Q"ll.Ql.'ll‘t'tsit"illlﬂl.t‘!tO‘ilt.i.

sub process_learner_form s (datadir.class,url.cptions)

{

local(Sdatadir.Sclass.Surl,Soptions) = 1_;
local(Srare, Spwt. Snwt, Scommand_line): -

(Srare) = {Soptions == /IN?\&lrare=(("\&\/]*) (\&\/1/):

(Spwt) = (Soptions =- ZIN\&lpwe=(["\&\/1*) (\&\/1/):
(snwt) = (Soptions =< /NG awe=([\&\/1*) (\&\/1/):

(Scommand_line) = (Soptions =- /{\?\&lripper=(.*)8/):
scommand_line =- tr/+/ /:

scommand_line =- s/%821/!/9;
print STDERR "S0: rare=srare\n" if Sdebug:

print STDERR "S0: command_line=$command_line\n” if Sdebug:

swrite_options(Sdatadir,Sclass,
"rare Srare",
"weights Spwt Snwt".
"command_line Scommand_line”);

print "<html>\n":

print "<title>New option acknowledgement</title>\n":
print "<body>\n";

print "<h2>New option acknowledgement</h2>\n";

print "<p>Received: the following options\n";

print "have been set for class &quct$class</stronq>5quot:\n":

print "</p>\n";

print "<p> <dd> Assume the class is rare: Srare </p>\n";
print "<p> <dd> Example weights: $pwt for pos. Snwt for neg </p>\
print "<p> <dd> options to RIPPER: Scommand_line </p>\n":
print "<p> Click <a h:ef'\”http://QQXY!QQ-SS-Surl'invoke-learner\"> here\n":

print " to invoke the rule learner with these options.\n":
print "This may take a minute or two.\n":

68

WO 97/38377 PCT/US97/05355

ssend_foot(Surl::

—

sub read_options

~ocal(Sdatadir.Sclass) = i_;

open(OPTIONS. "<Sdatadir/classes/$class/RIPPER.CPTS";:
toptions = <OPTICNS>:

close (OPTIONS);

orint STDERR "options:

toptions\n" if S$debug:
ioptions:

sub write_options

(
~ocal(sdatadir.sclass, ioptions) = i_;
Spen(OPTIONS, ">Sdatadir/classes/Sclass/RIPFER.CPTS™,
die("can’'t write to options file"):
print OPTIONS jcin("\n", ioptions)."\n":
close (OPTIONS):
}
1

69

WO 97/38377

PCT/US97/05355
Zec 3 L3:43 L3:3*3 ss-main.pl Page o
#!/usr/lecal/bin/perl
ttt#stasszcsss:ststatltus't»'t##aasaelasssstsatttptsaass:lt‘sstt:u:t:tas:sss;a
t 3

: ss-main.pl -- main routines for handliag -abeling commands

2
+ invoked b7 =rap-request.pl, so arguments are <match-string>

s and <form-arguments>....only match-striig is used

)
:Qsaia:s:n::u::as#t‘cltisttiﬁ‘ﬁ0883£$ilt#lalttttlttntﬂttltt#isstit:tazs:nzsazs

Sssdir="/home/wcohen/code/ss":
require "Sssdir/ss-util.pl”:
require "Sssdir/ss-label.pl”:
require "Sssdiz/ss-review.pl”:
require "Sssdir/ss-options.pl”:
require "Sssdir/ss-search.pl”:
require "Sssdiz/ss-help.pl”:

1load the user-defined learning program
require "SENV{'SS_LEARNER'}":

Sdebug=0:

T T T TS T IR A A R A AR LA A A
figure out class

(Sdatadir.$class) = &init_ss:

T T LI T RS T R L LN R A
figure out intended command, and perform it

Smatch = SARGV(0];

print STDERR "ss-main.pl was invoked for match ‘S$match’\n" if Sdebug;

if (Smatch =- /GET.'QQXYZQQ-SS-(.')-label-([NY])S/) {
&label_command(Sdatadir.Sclass.$1.$2);

} elgif (Smatch =~ /G!T.'QQXYZQQ‘SS-(.')-reviewS/) (
irevieg_comnand(sdntadir.Sclass.Sl);

} elsif (Smatch =~ /G:T.'QQXYZQQ-SS-(.')-learnS/) {
wlearn_command(Sdatadir, Sclass,Sl):

} elsif (Smatch =- /GET"QQXYZQQ-SS-(.')-invoke-learne:S/) {
sinvoke_learner(Sdatadir, $class,$1);

} elsif (Smatch =- /G:T.'QQXYZQQ-SS-(.')-learner-options-fotm(\?.')S/) {
Gprocess_learnet_form(Sdatadir,Sclass.$1.$2):

} elsif (Smatch =~ /GET.'QQXYZQQ-SS-(.')-searchsl) (
esearch_command($datadir, $class,51);

} elsif (Smatch =~ /G:T.'QQXYZQQ-SS-(.')-ls-class-fotm(\?.-)s/) {
&proces:_ss_class_form(Sdatadir.Scla33.51.$2);

} elsif (Smatch =- /GET.'QQXYZQQ-SS-(.')-sct-ss-optionsS/) {
&set_ss_options_ccmmand(Sdatadir.Sclass.SI);

} elsif (Smatch =- /GET.'QQXYZQQ-SS-(.-)-help$/) {
&help_command(sdatadir.sclass,Sl);

} else (

usend_error("Unknown command -- match was $match"):

70

WO 97/38377

Ia!

PCT/US97/05355

WO 97/38377 PCT/US97/05355

+1/usr/local/bin/perl

ettttttﬁ¢¢83tton¢$tt'lllan:!tﬁ:tlﬂ&tt#ittt#i*5‘*"**‘1

t:tstas:nns:ztc¢a::csc:s
s

ss-marker.pl -- generates the text used to mark up html forms bY markup.pl

2
]
s in--oked by oreosh -b rarkup.pl
.)

2

zet:t:ngauoﬂaogasangtsa-sttdtsgguugcnc:atat:sct::t‘tlsastsosttctttll:stttta:

Sdebug=0:

sgsdir="/home/wcohen/code/ss";
reguylre "“sgsdir/ss-util.pl”:

print STDERR "S0: writing marker...\n" if sdebug:
(sdatadir.Sclass) = &init_ss:

print STDERR "$0: class .s sclass...\n" £ Sdebug:

print <<END_OF_INSERT:

<1i>

Swimsuit:

Is this in the class 'Sclass’?

([<a href-”http://QQXYZQQ-SS-\U-label-Y"> yes

' <a h:ef-"http://QQXYZQQ-SS-\U-1abe1-N"> no

] <bz>

{ <a href-"http://QQXYZQQ-SS-\U-review"> Review Previous
| <a href-‘http://QQXYZQQ'SS-\U-learn"> Learn

| <a href-"http://QQXYZQQ-SS-\U-sen:ch"> Ssearch '

| <a href-"http://qoxzzoo-ss-\U-set-ss-optiens“> set Options

| <a href-"http://QQXYZQQ-ss-tU-help“> Help |
</1i>

<br3
END_OF_INSERT

print STDERR "$0: marker for class Sclass written\n" if Sdebug:

72

WO 97/38377

PCT/US97/05355
Zec 2 13:43 1:%3 ss-cptizns.cl Fage L
t/usr/local/bin/perl
$33233s33333g3 5334y dgssissgsasiginzzesdzzzssssssstIseISsziiL s

ss-cptions.pl -- routines to allcw user t©O set cptions
for zhe lapeling swstem

FTORN TR TN O

233232223433 433328233 2223382333384 232323333823233 3332333333 L 4338283333338 8RN3Rz
require “"Sssdir/ss-util.pl”;

Sdebug=1i:

iszdszzaidddntNpesesstgsteNtadr gzt

-

¥ process a (Set Options) command from the
* inserted .html page

sub set_ss_options_command #(datadir.class.url;
(

local(Sdatadir.Sclass.Surly = i_;
local(Sold_class.sengine, Salt_sngine):

tsend head of control panel

print "<html><title>Control Panel</title>\n":

print "<bedy><h2>Control Panel</h2><hr>\n":

print “"<form action=\"http://QQXYZQQ-5S-Surl-ss-class-form\">\n";

sthe change classes section of the form
sprint a menu of old classes

print " Change the current class to an old class:\n";
print " <select name=\"oldclass\" size=1>\n";
‘print " <option selected> Sclass\n";

opendir(CLASSDIR, "Sdatadir/classes”) ||

while(Sold_class = readdir(CLASSDIR)) {
next if (Sold_class =- /~\.\.?/);
next if (Sold_class eq Sclass);

die(“can’'t list classes");

print " <option>$old_class\n";:
}
closedir(CLASSDIR);
print " </select>\n";
sprint an option to enter a new class
print " or a new class: <input name=\"newclass\"> </input>\n":
print "

<p>For now, please do not include punctuation or spaces\n";
print " in class names.</p>\n*;

#a change search-procedure form
$engine = &load_engine_name(S$datadir):

print "<hr>\n";

print "<form action=\"http://QQXY2QQ-SS-Surl-ss-class-form\">\n";

sprint a menu of known engines

print " Change the current search engine: \n";

print " <select name=\"engine\" size=l>\n":

print " <option selected> Sengine\n":

opendir(ENGINEDIR, "Sdatadir/engines") ||

while(Salt_engine = readdir(ENGINEDIR)) {
next 1if (Salt_engine =~ /°\ .\.?/):

die("can’t list engines");

73

WO 97/38377 PCT/US97/05355

]
[1]
0
[* 1)
1]
Q
4
o

"
“w
us

ss-=ptions.ci Page C

nez= .f (Salt_engine =- /-$/): *skip backups
nex= -i ($alt_engine eq Sengine::
pr.at <opt;on>$alt_enqxne\n":

}
closedois ZNGINEDIR)Y:

print - </selecr>\n";

4 supmi.: zuttons

print © <ar>\n":

print * <input type=\"submit\" salues\ "Change ~alues\"></input>\n":
print ° as indicated above. or\n":

print ° <input trpe=\"reset\

" walue=\'"resetr\"> </i1aput> the form.\n":
print “</fcrm>\n";

asend_3Izct(Surl):

}

ildtttt.aslllllntttitt:ntts*tl3:‘#3&!&#:::3:*:!‘#'

+ process the Iorm assoclated with the
2 (Set Opticns| page

sub process_ss_class_f::m a(datadir.class.cptions>

(

local(SdAtadir,Sclass,Surl‘SoptionS) - 3_;
local(Soldclass,Snewclass.Soldengine.Snewenqine):

print STDERR "$0: options = soptions\n" if Sdebug:

(Soldclass) = (Soptions =- /[\?\&]oldclass-([‘\&\/]')[\a\/]/);
(Snewclass) = (soptions =- /[\?\s]newclasl'([“\i\/]')[\ﬁ\/]/):
{Snewengine) = {$Soptions =- /[\?\&\engine-(.')S/):

print STDERR "$0: oldcl=Soldclass\n" if $debug;

print STDERR "SO: newcl=Snewclass\n" if sdebug:

print STDERR "S0: engine-SGngine\n" if $debug:

Snext_class = Snawclass || $oldclass;

unless ({($next_class eq Sclass))
print STDERR "S0: changing class. sclass->Snewclass\n" if Sdebug:
open(CLASS.“>$dgtadir/CLAss‘) || die("can’t write curre
print CLASS "snext_class\n";
close(CLASS)
Sclass = Snext_class:

nt class"):

}

Soldengine = sload_engine_name(sdatadir);

unless (($Snewengine eq Soldengine)) (
print STDERR "SO: changing engine to snewengine\n" if Sdebug:
open(ENGINE.">Sdatadir/ENGINE') || die("can’t write current engine”):
print ENGINE "Snewengine\n":
close (ENGINE) ;

print "chetml><title>New option ackncwledgemgnt</title>\n";

print "<body><h2>New option acknowledgement</h2>\n":

print “<p>chanqed</stronq>: the current class\n":

print "is now 5quot$class"</p>\n";

print "<p>Changed</stronq>: rhe current search engine\n":
print “is now "Snewengincsquot</p>\n":

74

(=)

WO 97/38377 PCT/US97/05355

-*%3 :zs3-cpticas.cl Fage 2

asend_fooz:Surl;:

75

WO 97/38377

PCT/US97/05355
cec 5 5:48 13%3 33-rze-iew.tl Page .
*!/usr/local/bin/perl
Stttttttissscstssstassscass:sstt:tttastt===ss:s:sss:sssxa::s:s:ez:a:st:szst:st
3

: ss-review.pl -- routines o review pre-iously labeled Zocuments
zloatatattttltttt&ttallta:sstttttttaac0lts:ts::.s.:ttsn:sc:asa::tt:tnss:ztasa:
require "S$ssdir/ss-util.pi’:

reguaire "sssdir/cache-uzil.pl":

sub review_command s (datadir, class.surl)

{

local (Sdatadir.Sclass.surl) = i
print "<html><title>Listing for class S
print "<h2>Previously marked examples ©
areview_examples("Y", "Positive"):
areview_examples("N", “llegative”):
asend_foot(surly;

class</title><body>\n":
f aquot<stronq>$class</stronq>"</h2>\n":

sub review_examples *(short.long)

{
local(Slab,Slabelname) = ?_;
local(Stztle,Surl,S!ile.sfound);
print "<hi>Slabelname Examples</h3>\n\n";
if (-e "sdntadir/classes/sCLAls/LISTING.Slab") (
$found = open(LIST, "sort Sdatadi:/classes/sclass/LISTING.Slab ¢ ounig |1 7)Y
|| die("can’t read/sort/uniq classes"):
)
if (!Sfound) {
print " <i>No examples marked</i></1li>\n";
} else (
while(Surl = <LIST>) (
chop Surl:
Sfile = surl2file(Surl):
stitle = &html_title('sdatadir/classeslsclass/Slab/Sfile");
print " Stitle </1li>\n";
}
close(LIST);
)
print "\n";
}
1

76

WO 97/38377

PCT/US97/05355
Sec I 1T:l) l?953 ss-search.pl Page .
*!/usrs/local/bin/perl
3333B22332332333333¥3323343433334832352233233 x2S 83324333 en2sye
3

* ss-search.pl --

routines o allow user o learn search commands
3

3tle338883:ﬁct*at:css::sstt:t:“ti!lsnssttttt388===It$tstt#tlt#nt::::.asg:g.gg

Sssdir="/home/wcohen/code/ss";
require "Sssdir/ss-util.pl”;

Sdebug=l;

3tz RITISILC SRRt RIndddNs RS NTINNS

s process the form assoc:ated with the
+ (Set Zptions) page

sub search_command :(datadir,class.url)

{

local(sdatadir.Sclass.Surl) = :
local(ifields, iruley;

local(Sengine) = &load_engine_damg(Sdatadi:):

print "<htmi>\n";

print "<title>Ways to search for class &guotSclassaquot</title>\n";
print “<body>\n":

print "<hi>Ways to search for the class &aquotSclassaquot</h3>\n";
if (!(-e "sdatadir/classes/Sclass/web.hyp")) {

print "<i>No rules have been learned</i>\n":
} else (

s$Access counter

open(COUNTER, "<Sdatadir/classes/Sclass/COUNTER")
|| die("can’t read counter”;:
Scount = <COUNTER>; chop(Scount):

close (COUNTER) ;
Scount = "No" if (!'Scount};
$verb = (Scount==l) ? "example has" : "“examples have";

open(RULES, "Sdatadir/classes/Sclass/web.hyp") || die("can‘'t read rules file"):
print "<p>$count $verb been labeled since these rules were learned.\n</p>":
print "<p>The current search engine is Sengine.</p>\n";
print "\n";
while (<RULES>) {(
ifields = split:
irule = ();
if (Sfields{0] eq "Y") (
fcollect terms from rule
for ($i=6; SicS#fields: Si+=3) (
if (Sfields($i-1) eq '-') (
push(irule, ("+" . $fields(5i}]));
} else {
push(rule, ("-" . S$fields(Si])):
}
}

print " ($fields{l] right/sSfields(2] wrong) ":
print STDERR "Sdatadir/engines,/Sengine irule\n" if Sdebug;
print ‘'Sdatadir/engines/Sengine irule':

77

WO 97/38377 PCT/US97/05355

-225 sg-search.pl Page 2

ae 3 LT:L0T L

print "\n";
\ eigif (Sfields(0] eq "N7)

{

print " ($fields(1l] right/Sfields (2] wrong)
print "not covered by the cules above .\a</Lli>\a":

}

}

close(BULES):

print "\n":

asend_£oot(Surly:

78

WO 97/38377

w
]

(W}

R

s2t/usr/localil,stin/pe

S33s=33388a3:

Iszz3%%s

-
b
Ta
- smsas PR
2222323233233 IIISAIIIASIIS

s3-util.pl -- misc ucz:ilities

Sdecug=0;
S5SSIroot="SENV/'HOME'}/.ss":

2sgesz2dtisndassiggizazzzasinte sty
3 1nitialize Zirectories. return directorysaclass
sub init_ss

{

local(Sss.Sdata.Scl):
$Sss = Sssroot;

iE (t(-e "S38";; [

mkdi-:"sgg".2777) || die("can : create 'Sss’
}
Sdata = "Sgs/data’;

if (1(-e Sdata)) {
mkdir{sdata.0777y ||
}

if (!(-e "Sdata/engines”)) {

stllstot=:s==:s:i:::g:sags¢3:s.sz:::ltnt:ss=$8:33==:===tn¢#ttsttttttﬂl.:stttl

PCT/US97/05355

33323332424z R8R ATy

directory"):

die("can’'t create data dir=ctory”):

print STDERR "S0: need an Sdata/engines directory\n" if S$debug:

mkdir("Sdata/engines”,0777)

{1 die("can’'t create engine directory Sdata/engines”):
}

if (! (-e "Sdata/ENGINE")) (

open(ENGINE, ">Sdata/ENGINE")

print ENGINE “wvebcrawler\n":

close (ENGINE);

}

if (open(CLASS,"<Sdata/CLASS")) (
$c¢l = <CLASS>; chop(S$Scl):
close(CLASS) ;

} else (
$cl = "cool";

}

if (!(-e "Sdata/classes")) {
mkdir("sdata/classes",0777);

}

if (!(-e "Sdata/classes/Scl")) (
mkdir("sdata/classes/Scl",0777);
}

(Sdata, Sel);
}

IHERIIBEBRINNEINAINBI2ILAANIRSISISRSXILIIRIIRNNINS
3 figure out the title of an html document

sub html_title #(filename)
{

local(Sfiley = 12

79

) die("can't create S$data/ENGINE"):

WO 97/38377 PCT/US97/05355

~ez 3 17T:11 1995 ss-uzil.pl Page 2

local(Sn,Sstart,.Stitle):

#get up to first N lines
$Sn = 50;
open(HTML, "<Sfile™) die("can’t open HTML file Sfile”}:
while ((S_ = <HTML>) &a Sn--) (
chop:
$start .= (S_ . " ")
}
close(HTML):

stitle = $1 if (Sstart =- /<title>(")<\/title>/i);
stitle = "Apparently Untitled" if (1Stitle):

print STDERR "title is stitle\n";

stitle:

:asa:aa:sca¢onnnanscnnasc-s.ucas'tatatwtusacatna:a
¢+ send an error message

sub send_error #(message)
{ -
print "<html>\n";
print "<title>Error massage</title>\n":
print “<body>\n";
print "<p>Error: $_[0]\n":
print "</body>\n":
print "</html>\n":
}

cia&tntaalc»ctacta:n:uss;ssaaacstacacuo»ocsuocat:s
¢ print a file footer

sub send_foot #(url)

local(surl) = 2_;

St

print <<END_OF_TEXT:
<hr>

<p><i>

(Resume Browsing ‘

| <a href'”http://QQXYZQQ-SS-Surl-review”> Review Previous

| <a href-“http://QQXYzQQ-Ss~$url-laarn"> Learn

| <a h:ef-"http://QQXYzQQ-Ss-Surl-search"> search .

| <a hret-"http://QQXYZQQ-SS-Su:l-set-as-cptions“> set Options

| <a href-"http://QQXYZQQ-SS-Su:l-help"> Help |
</i></p>

</body>
</html>
END_OF_TEXT
]

.00.‘#"!i"lttl.t'llﬂ'i%‘ﬂ"’ll!.""‘ﬂﬂﬂﬂl#'l"ﬂ

¢+ convert a file to an example for ripper
]

80

WO 97/38377 PCT/US97/05355

ss-util.zi Page :
“t 1s present it should be an argument ":x"

file2example =(datadir, stopwordfile,file,label.outhandle(,wt};
local(Sdatadir.Sstcpwordfile.Sfile.Siabel,Sout.Swt) = I_;
local(slines.éstopwords.éextra_stopwords.Sextra_stcpword_pattern);

unless (SStopword_pattern) {
open(STOPWORDS. "Sdatadir/stopwords") !,
istopwords = <STOPWORDS>:
close(STOPWORDS) ;

chop(istopwords) ;

SStopword_pattern = "\\b(" jein("i"

die("can't find stopwords file").

. istopworcs) . ")\\b":
}

1f (Sstopwordfile sa -e Sstopwordfile) (
sclass-specific stopwords
open(STOPWORDS, "<Sstopwordfile")
iaextra_stopwords = <STOPWORDS>:
close (STOPWORDS) ;
chop(lextra_stopwords);

Sextra_stopword_pattern = "\\b(" . join("!". lextra_stopwords) . ")\\b":
} else {

i die("zan’t Iind stopwords file Sstopwordiile

Sextra_stopword_pattern = "";

}

open(FILE.Sfile) '

die("can’t open html file Sfile");
sskip header

while (<FILE>) ¢

last if /~\r?\ns$/;
}
Slinesg=0;
while(<FILE>) (
last if Slines+-~ > 100;

tdelete e-mai)l addresses and stopwords
s/$Stopword_pattern//gio;

s/Sextra_stopword_pattern//gio if Sextra_stopword_pattern:
SAWT\W\.]1*//g;

ddelete HTML special characters
$/&.%://9;

sconvert to lowercase
tr/A-2/a-2/;

ddelete complete HTML commands of the form <...>
s/<(">)*>//9;

* now print what‘s left, again
deleting stuff between <..>'s

Lf (s/<(*>)1*s//) (

topen without close
‘remove non-alphanumerics

81

WO 97/38377 PCT/US97/05355

Jeec 8 17:1. 13¢5 ss-uz:l.pl Page ¢

w=/a-20-9\n/ /C:
srint Sout S_;
Sopen_bracket = 1;

} eis>f (Sopen_bracket && s/~ (*<i=>//) |
sclose without open
sremove non-alphanumerics
c=/a-20-9\n/ /c:
print Sout S_;
Sopen_bracket = 0;

) elsif (tSopen_bracket) |
sremove non-alphanumerics
tr/a-20-9\n/ /¢:
print Sout S_;

}

}
print Sout *,\n$labeliswt.\n":
close(FILZY;

sub load_eng:ine_name #datadir

local(Sdatadiry = !_;
local(Sengine):

opcn(ENGIxE,"<$datadir/ENGIxs“) || die("can’t local search engine”):
chop(Sengine = <ENGINE>):

close (ENGINE);

Sengine:

82

WO 97/38377 PCT/US97/05355

COHEN 6-1

While the invention has been shown and
described with respect to preferred imbodiments,
various modifications can be made therein without
departing from the spirit and scope of the invention,

as described in the specification and defined in the
claims, as follows:

I claim:

83

WO 97/38377 PCT/US97/05355

COHEN 6-1

1. A method of adding new documents to a
resource list of existing documents, comprising the

steps of:

learning selection information which selects

5 the documents on the resource list;
making a persistent association between the
selection information and the resource list;
using the selection information to select a
set of documents which the information specifies; and
10 adding new documents to the resource list,
the new documents being added belonging to a subset of
the selected set of documents which contains documents

which are not already on the resource list.

2. The method set forth in claim 1 wherein
15 the step of adding documents comprises the steps of:
interactively determining whether a document
in the subset should be added to the resource list; and
adding the document only if it has been

determined that the document should be added.

20 3. The method set forth in claim 2 further

comprising the steps of:

84

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

using a document for which it has been
determined that the document should not be added
together with documents on the resource list to learn
new selection information; and

associating the new selection information

with the resource list.

4. The method set forth in claim 1 wherein
the step of learning the selection information
comprises the steps of:

learning a rule for which the documents on
the resource list are positive examples;

translating the rule into a query; and

in the step of using the selection

information, using the query to select the set of

documents.

5. The method set forth in any of claims 1
through 4 wherein:

the system in which the method is practiced
has access to a plurality of searching means;

the step of learning the selection
information learns a plurality of queries as required

by the plurality of searching means; and

85

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

the step of using the selection information
to select a set of documents uses the plurality of

gueries in the plurality of searching means.

6. The method set forth in claim 5 wherein:
the system in which the method is practiced

has access to the world wide web; and

the searching means are searching means in

the world wide web.

7. An improved web page of a type which
contains a list of documents, the improvement
comprising:

selection information associated with the web
page which selects documents having content which is
similar to the documents on the list, whereby the list

of documents on the web page may be updated using the

selection information.

8. Apparatus for making a resource list of
documents which have contents belonging to the same

class,

the apparatus comprising:

86

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

a first list of documents, all of which have

contents belonging to the class;

a second list of documents, none of which
have contents belonging to the class;

learning means responsive to the first list
of documents and the second list of documents for
learning selection information which specifies
documents whose contents belong to the class;

means responsive to the selection information
for finding the documents whose contents belong to the
class, using the documents to make the resource list,
and making a persistent association between the

selection information and the resource list.

9. The apparatus set forth in claim 8

further comprising:

first interactive means for indicating
whether a given document is to be added to the first

list or the second list.

10. The apparatus set forth in claim 9

further comprising:

second interactive means for activating the

learning means.

87

10

15

WO 97/38377

PCT/US97/05355

COHEN 6-1

11. The apparatus set forth in claim 10

further comprising:

third interactive means for activating the

means for finding the documents.

12. The apparatus set forth in any of claims

9 through 11 wherein:

the apparatus is used in a system which
includes a document browser; and

‘the interactive means of the claim are

implemented in the document browser.

13. In an information system which stores
related data and information as items for a plurality
of interconnected computers accessible by a plurality
of users, a method for finding items of a particular

class residing in the information system comprising the

steps of:

a) identifying as training data a plurality
of items characterized as positive and/or negative

examples of the class;

10

15

WO 97/38377

PCT/US97/05355

COHEN 6-1

b) using a learning technique to generate
from the training data at least one that can be
submitted to any of a plurality of methods for

searching the information system;

c) submitting said query to at least one
search method and collecting any new item(s) as a

response to the query;

d) evaluating the new item(s) by a learned
model with the aim of verifying that the new item(s) is

indeed a new subset of the particular class; and

e) presenting the new subset of the new

item(s) to a user of the system.

14. The method of claim 13 wherein the
information system is a distributed information system

(DIS) and the items are documents collected in resource

directories in the DIS.

15. The method of claim 14 wherein step a)
the positive examples are a set of documents in the

resource directories and the negative examples are a

89

10

15

WO 97/38377

PCT/US97/05355

COHEN 6-1

selection of documents obtained by using the process of

steps a-d.

16. The method of claim 15 wherein step b)
the query is (i) a conjunction of terms which must
appear in a document as a positive example; (ii)
contains all the terms appearing in the training data
covered by the query, and (iii) learned by the system

using a propositional rule-learning or prediction

algorithm methed.

17. The method of claim 16 wherein step d) a
learning technique generates from the training data a
learned model that computes a score for the new
item(s), such that the new item(s) which has a low

probability of being classified within the particular

class.

18. The method of claim 17 further
comprising the step of providing a user on the system
an ordered list of the new item(s) according to the

score assigned by the learned model.

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

19. The method of claim 17 further
comprising the step of providing a user by electronic
mail or facsimile an ordered list of the new item(s)

having a score exceeding a threshold probability.

20. The method of claim 17 further
comprising the step of using an batch process to

identify documents as positive or negative examples of

the search concept.

21. The method of claim 17 further
comprising the step of using an interactive process to
identify documents as positive examples of the search

concept by browsing the distributed information system.

22. The method of claim 17 further
comprising the step of resubmitting a query to the
system to detect any new item added to the system and

related to the query.

23. An information system which stores
related data and information as items for a plurality
of interconnected computers accessible by a plurality

of users for finding items of a particular class

91

WO 97/38377

COHEN 6-1

PCT/US97/05355

residing in the information system using query learning

and meta search, comprising:

a)

5
b)

10
<)

15
d)

20

means for identifying as training data
in the system a plurality of items
characterized as positive and/or

negative examples of the class;

means for using a learning technique to
generate from the training data at least
one query that can be submitted to any
of a plurality of search engines for

searching the information systen;

means for submitting said query to at
least one search engine and collecting

any new item(s) as a response to the

query;

means for evaluating the new item(s) by
the at least one search engine with the
aim of verifying that the new item(s) 1is
indeed a new subset of the particular

class; and

92

10

15

20

WO 97/38377 PCT/US97/05355

COHEN 6-1

e) means for presenting the new subset of

the new item(s) to a user of the system.

24. The system of claim 23 wherein the
information system is a distributed information system
(DIS) and the items are documents stored in resource

directories in the DIS.

25. The system of claim 24 wherein the
positive examples are a set of items in the resource
directories and the negative examples are a selection
of documents obtained by the search engine in

responding to the query.

26. The system of claim 25 the query is (1)
a conjunction of terms which must appear in a document
as a positive example; (ii) contains all the terms
appearing in the training data covered by the query,
and iii) learned by the system using a propositional

rule-learning or prediction algorithm method.

27. The system of claim 26 wherein step the
learning technique generates from the training data a

learned model that computes a score for the new

93

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1

item(s), such that the new item(s) which has a high
probability of being classified within the particular
class will be assigned a higher score than the new

item(s) which has a low probability of being classified

within the particular class.

28. The system of claim 27 further
comprising means for providing a user on the system an
ordered list of the new item(s) according to the score

assigned by the learned model.

29. The system of claim 27 further
comprising means for providing a user by electronic
mail or facsimile an ordered list of the new item(s)

having a score exceeding a threshold probability.

30. The system of claim 27 further
comprising means for using a batch process to select

documents as positive examples of the search concept.

31. The system of claim 27 further
comprising means for using an interactive process to
identify documents as positive examples of the query by

prowsing the distributed information systemn.

94

10

15

20

WO 97/38377

PCT/US97/05355

COHEN 6-1
32. The system of claim 27 further
comprising means for resubmitting a query to the system

to detect any new item added to the system and related

to the query.

33. An article of manufacture comprising:

a computer useable medium having
computer readable program code means embodied therein
for finding items of a particular class residing an
information system which stored related data and
information as items for a plurality of interconnected
computers accessible by a plurality of users, the
computer readable program code means in said article of

manufacture comprising:

a) program code means for identifying
as training data a plurality of items
characterized as positive and/or negative

examples of the class;

b) program code means for using a
learning technique to generate from the

training data at least one query that can be

95

WO 97/38377

COHEN 6-1

10

PCT/US97/05355

submitted to any of a plurality of methods

for searching the information system;

c) program code means for submitting
said query to at least one search method and

collecting any new item(s) as a response to

the query;

d) program code means for evaluating
the new item(s) by the at least one search
method with the aim of verifying that the new
item(s) 1s indeed a new subset of the

particular class; and

e) program code means for presenting
the new subset of new item(s) to a user of

the systenm.

96

PCT/US97/05355

WO 97/38377

1/7

u

\ /

\

\

LRIV AORId — .w_.l._

u

\/

mm,vm ¢l mm@m ¢l m_%vm ¢l wmx_a ¢l

3ovd [luossiooud | | G [T[posso0ud | | viva *aossiooud | | Svg [¢ T uoss300ud
ol

mm«m ¢l m%\m ol wmx_\m 4 mm,vm 4

3ovd [« uossiooud | | viva [[ROssIO0N | | Viva " uoss3ooud | | Svg [uossao0ud

u

A

u

A

u

A

u

A

WO 97/38377 PCT/US97/05355

2/7

Prcgram Batch-Query-Learner {cecsitive-URLs.SearchEngine)
PosSample := {(d, +): URL(d) ¢ positive-URLs)
NegSample := {d , -): d was "recently accessed"
and d € positive-URLs)

Sampls := PosSample U NecSample
repeat
RuleSet := Call Learn(Sample)

for each r ¢ RuleSet do

g := Call Corresponding Query(r.Search
Engine)
Response := Call Top-k-

Documents (g.Search Engine)
for each cdocument d ¢ (Response -
positive-URLs) do Sample := Sample
uid. -)

endfor

if no new documents collected then adjust
parameters of Learn

else reset parameters cf Learn to default

values
until some resource limit exceeded (see text);

end

FIGURE 2

PCT/US97/05355

WO 97/38377

3/7

AXOeld
dlH

P

W3ISAS
ONINAUVIT
AdIND

£ Ol

A

A3ISMOeid

i

A3sn

WO 97/38377 PCT/US97/05355

4/7

File Edit “iew Go Bookmarks Cptions Directory Window Help I

Back| Forwaru] Horne! Relnau| Lot sza'.sc»s:] 0pen...| Pf'int...‘ Fmd...‘

nTToi/Jwww.rTasearcsn.sTt.cem/oTTs/ 5357/

n
(0]

what's Newl What's Cncl! Hand:uok| Net Sean:tﬂ Net Direcmry‘ Soﬂwa.rel

=1

SWamswr (o orRinin e class Al-aert T jesfrg i
[Teview F-avieur earn{learch/lerCrrizns ' Help

AT&T Softrware and Systems Research

Bel| Laboratories

Welcome to the Software and Systems Research Center External
Web Server.

Under conszrecrian.,

The AT&T 22k Lanaoratenes Scftwars and Systems nesserch Canter canducis rassarch
nmavanery of areas of Computer Science =ath the geal of creanng teconsicgy and
AMARRPIE TR AP Tmmmmern Py

cocnce =15 MaTImerove the capadiity of AT AT o deveies and use softears systems,
Research Areas

o Amiginiinrellicence
s Data and I~f~rmagon Managern==r
¢ Fommai Mertnads for Softwrare Davaisamen

® e A meeamtyraw réame

e Prc pobyed anguages and Comniers
® dncape Cryerorm rrRts Ameee

- x b . . /

FIGURE 4

WO 97/38377 PCT/US97/05355

5/7

Parameters: 3 € [0, 1], number of examples T
Initialize: Pool - o
Do for t =1, 2.....7T

1. Receive a set of active experts W. and their

predictions Uélie Wy .

t

.= 1.
i

2. Initialize: Yie W, A i e Pool:p

3. Define a distribution for the set of active
experts:

t
t]

vie W, p. = pe——
i Z ‘
=W, p;

4. Predict Fy(Z. w, pgyf).

5. Compute loss values Ufe[Oj]iieW) based on y; and

true class.

6. Update weights: p

¢
Zicw]
7. Renormalize weights: p.t+1 =p?+1———-—/o—/-

! ! ’
E t+1

ew (|

8. Update: Pool - PoolUW..

Figure 4. The Sleeping Experts Prediction Algorithm

WO 97/38377 PCT/US97/05355
6/7
Inidal # Interacuons
Final # Documents
Problem Size Precision | Size | Learn Search Labeled
ML Courses 11 0.24 46 5 4 32
Al Societies 8 0.16 51 5 5 81
Jogging Strollers S 0.25 20 4 6 24
FIGURE 6 Summary of experiments with interactive system
#lterations # Documents # Documents
Problem Allowed Per Query (k) Collected
ML Courses 10 30 199
Al Societies 20 30 126
Jogging Strollers 10 30 29

FIGURE 7 Summary of experiments conducted with batch system

WO 97/38377

®L Courses

7/7

Experca o
Q’|l RIPPER o
08
g 977 e
s s
wn 0§ 4 2
gos, 1 E
& g4l © y a
) -
03 4
-
.2 * Y
0._—‘
°XD}0.\OA01°$O.7HI091
Reea}
J9991inq 3Scroliers
1
a.e 'S Cxperes ¢
. RIPPER
o.e *
)
50 = :
a 0.4} 1 -
g0l M
- ! -
& [
0s]
°
0} .
0.1 e 2
010.20)040506(1,70!091
fscall
o

Pigure 8 Precision-Recail tradeoffs for the

N w e v N v e e

G C L a9 0 0 &€ ¢ G

PCT/US97/05355

Al Soc.et.ies

°
L Laperts o
i RIPPER .
E ° 1
1
»
.‘

f))
\l103010-l0506070.l°.’1
Recall
All Three Classes

1 p
sl ° Joq(Lxperrs)o J
L . ® Jog(RIPPER}e |
8 AliCzverts)0
v OALINIPPFa)
+ * KLi{Zxpertiy,;a
. HLiAIPPER)
|
st =
4 [. x
=
x
3 x * 5 x]
2 (LS a
o9
S 2 !
0.\030!04030.i .70 80.9)

Recall

three srobiema Rudied

RIPPER Sleeping Fxperts
Problem %Error Recall Precision | %Error Recall Precusion
ML courves 9.37 0.58 0.92 .27 . N
Al societies 4.8%9 0.99 0.95 4.17 1.00 0.98
{_Jogging Strollers 1.38 1.00 0.99 1.89 1.00 0.98

Table 3: Results of the generafization error study

Feg .q

International application No.
PCT/US97/05355

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOG6F 17/30; GO6F 19/00

US CL :395/601, 610; 395/793
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation scarched (classification system followed by classification symbols)
U.S. : 395/601, 610; 395/793

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

L documment which may throw doubls oa priority claim(s) or which is
cited 10 comblish the publication date of amother citation or other

special ronson (a8 specified)
0 me-uﬂdhch-u!.muﬂﬁmorm
P document published prior 10 the international filing dete but inier than
the priority date claimed

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
YP Us, 5,572,643, A (JUDSON) 05 November 1996, col. 2,{ 1-33
lines 29-53.
YP US, 5,530,852 A (MESKE Jr. ET AL) 25 June 1996, col. 2,| 1-33
lines1-55
E US 5,623,652 A (VORA ET AL) 22 April 1997, col. 3, lines| 1-33
25-64.
Y J. KUNZE, IS&T UC Berkely, February 1995, "Functional| 7-32
Recomandations for Internet Locators”, page 9.
Y K. SOLLINS, Xerox Corporation, December 1994, 1-33
"Functional Requirements for Uniform Resource Names",
pages 1-3
@ Further documents are listed in the continuation of Box C. D See patent family annex.
T el g o ol ™ dopmmet it s e ol S o ity
"A® mmumuaumm-mm m::;myd:iyurm "
0 cariior docussent published on or after the interastionsl filing date X document of partcular relvace; e e o ot sy
when the document is taken alone

of particul

eomthnhmormoMnﬂ‘
being obvious to a person skilled in the art

document member of the same patent family

&t

Date of the actual completion of the international search

20 JUNE 1997

Date of mailing of the international search report

0 b /yﬁ 1997

Name and mailing address of the ISA/US
Commissioncr of Patoats and Trademarks

Box PCT
Washingtoa, D.C. 20231 OMAS G. BLACK
Facsimile No. (703) 305-3230 Telephone No. (703) 305-4900

Form PCT/ISA/210 (second sheet)(July 1992)»

" INTERNATIONAL SEARCH REPORT International application No.

PCT/US97/05355

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y T. BENERS-LEE, CERN, June 1994, "Universal Resource 1-33
Identifiers in WWW?", pages 2-10,
Y R. FIELDING, UC Irving, June 1995, "Relative Uniform Resorce 1-33
Locators", pages 1-3
Y M. HORTON ET AL, AT&T Bell Laboratories, December 1987, 19 & 29
»Standard for Interchange of USENET Messages", pages 1-8.
Y T. BERNERS ET AL, Xerox Corporation, December 1994, 1-33
Uniform Resource Locators (URL), pages 1-25.
Y DONALD H. JONES, IEEE Expert Magazine, December 1995, 1-33

A Model for Commerce on the World Wide Web" pages 54-59.

Form PCT/ISA/210 (continuation of sccond sheet)(July 1992)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US97/05355

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

APS, PROQUEST, IEEE, DIALOG

secarch terms: web browser, online search?, hitp, document? list?, internet?, htmi?,

Form PCT/ISA/210 (extra sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

