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SELECTIVELY USING MULTIPLE ENTROPY MODELS
IN ADAPTIVE CODING AND DECODING
BACKGROUND

Engineers use a variety of techniques to process digital audio efficiently while still
maintaining the quality of the digital audio. To understand these techniques, it helps to
understand how audio information is represented and processed in a computer.

L Representing Audio Information in a Computer.

A computer processes audio information as a series of numbers representing the
audio information. For example, a single number can represent an audio sample, which is
an amplitude value at a particular time. Several factors affect the quality of the audio
information, including sample depth, sampling rate, and channel mode.

Sample depth (or precision) indicates the range of numbers used to represent a
sample. The more values possible for the sample, the higher the quality because the
number can capture more subtle variations in amplitude. For example, an 8-bit sample has
256 possible values, while a 16-bit sample has 65,536 possible values.

The sampling rate (usually measured as the number of samplesq per second) also
affects quality. The higher the sampling rate, the higher the quality because more
frequencies of sound can be represented. Some common sampling rates are 8,000, 11,025,
22,050, 32,000, 44,100, 48,000, and 96,000 samples/second.

Mono and stereo are two common channel modes for audio. In mono mode, audio
information is present in one channel. In stereo mode, audio information is present in two
channels usually labeled the left and right channels. Other modes with more channels
such as 5.1 channel, 7.1 channel, or 9.1 channel surround sound (the "1" indicates a sub-
woofer or low-frequency effects channel) are also possible. Table 1 shows several formats

of audio with different quality levels, along with corresponding raw bit rate costs.

Sample Depth Sampling Rate | Channel | Raw Bit Rate
(bits/sample) | (samples/second) | Mode (bits/second)

Internet telephony | 8 8,000 mono 64,000
Telephone 8 11,025 mono 88,200
CD audio 16 44,100 stereo 1,411,200

Table 1. Bit rates for different quality audio information.

Surround sound audio typically has even higher raw bit rate. As Table 1 shows, a
cost of high quality audio information is high bit rate. High quality audio information
consumes large amounts of computer storage and transmission capacity. Companies and
consumers increasingly depend on computers, however, to create, distribute, and play back

high quality audio content.
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IL Processing Audio Information in a Computer.

Many computers and computer networks lack the resources to process raw digital
audio. Compression (also called encoding or coding) decreases the cost of storing and
transmitting audio information by converting the information into a lower bit rate form.
Compression can be lossless (in which quality does not suffer) or lossy (in which quality
suffers but bit rate reduction from subsequent lossless compression is more dramatic). For
example, lossy compression is used to approximate original audio information, and the
approximation is then losslessly compressed. Decompression (also called decoding)
extracts a reconstructed version of the original information from the compressed form.

One goal of audio compression is to digitally represent audio signals to provide
maximum perceived signal quality with the least possible amounts of bits. With this goal
as a target, various contemporary audio encoding systems make use of human perceptual
models. Encoder and decoder systems include certain versions of Microsoft Corporation's
Windows Media Audio ("WMA") encoder and decoder and WMA Pro encoder and
decoder. Other systems are specified by certain versions of the Motion Picture Experts
Group, Audio Layer 3 ("MP3") standard, the Motion Picture Experts Group 2, Advanced
Audio Coding ("AAC") standard, and Dolby AC3. Such systems typically use a
combination lossy and lossless compression and decompression.

A, Lossy Compression and Corresponding Decompression.

Conventionally, an audio encoder uses a variety of different lossy compression
techniques. These lossy compression techniques typically involve perceptual
modeling/weighting and quantization after a frequency transform. The corresponding
decompression involves inverse quantization, inverse weighting, and inverse frequency
transforms.

Frequency transform techniques convert data into a form that makes it easier to
separate perceptually important information from perceptually unimportant information.
The less important information can then be subjected to more lossy compression, while the
more important information is preserved, so as to provide the best perceived quality for a
given bit rate. A frequency transform typically receives audio samples and converts them
into data in the frequency domain, sometimes called frequency coefficients or spectral
coefficients.

Perceptual modeling involves processing audio data according to a model of the
human auditory system to improve the perceived quality of the reconstructed audio signal

for a given bit rate. Using the results of the perceptual modeling, an encoder shapes noise
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(e.g., quantization noise) in the audio data with the goal of minimizing the audibility of the
noise for a given bit rate.

Quantization maps ranges of input values to single values, introducing irreversible
loss of information but also allowing an encoder to regulate the quality and bit rate of the
output. Sometimes, the encoder performs quantization in conjunction with a rate
controller that adjusts the quantization to regulate bit rate and/or quality. There are
various kinds of quantization, including adaptive and non-adaptive, scalar and vector,
uniform and non-uniform. Perceptual weighting can be considered a form of non-uniform
quantization.

Inverse quantization and inverse weighting reconstruct the weighted, quantized
frequency coefficient data to an approximation of the original frequency coefficient data.
An inverse frequency transform then converts the reconstructed frequency coefficient data
into reconstructed time domain audio samples.

B. = Lossless Compression and Decompression.

Conventionally, an audio encoder uses one or more of a variety of different
lossless compression techniques, which are also called entropy coding techniques. In
general, lossless compression techniques include run-length encoding, variable length
encoding, and arithmetic coding. The corresponding decompression techniques (also
called entropy decoding techniques) include run-length decoding, variable length
decoding, and arithmetic decoding.

Run-length encoding is a simple, well-known compression technique. In general,
run-length encoding replaces a sequence (i.e., run) of consecutive symbols having the
same value with the value and the length of the sequence. In run-length decoding, the
sequence of consecutive symbols is reconstructed from the run value and run length.
Numerous variations of run-length encoding/decoding have been developed.

Run-level encoding is similar to run-length encoding in that runs of consecutive
symbols having the same value are replaced with run lengths. The value for the runs is the
predominant value (e.g., 0) in the data, and runs are separated by one or more levels
having a different value (e.g., a non-zero value).

The results of run-length encoding (e.g., the run values and run lengths) or run-
level encoding can be variable length coded to further reduce bit rate. If so, the variable
length coded data is variable length decoded before run-length decoding.

Variable length coding is another well-known compression technique. In general,
a variable length code [“VLC”] table associates VLCs with unique symbol values (or

unique combinations of values). Huffman codes are a common type of VLC. Shorter
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codes are assigned to more probable symbol values, and longer codes are assigned to less
probable symbol values. The probabilities are computed for typical examples of some
kind of content. Or, the probabilities are computed for data just encoded or data to be
encoded, in which case the VLCs adapt to changing probabilities for the unique symbol
values. Compared to static variable length coding, adaptive variable length coding usually
reduces the bit rate of compressed data by incorporating more accurate probabilities for
the data, but extra information specifying the VLCs may also need to be transmitted.

To encode symbols, a variable length encoder replaces symbol values with the
VLCs associated with the symbol values in the VLC table. To decode, a variable length
decoder replaces the VLCs with the symbol values associated with the VLCs.

In scalar variable length coding, a VLC table associates a single VLC with one
value, for example, a direct level of a quantized data value. In vector variable length
coding, a VLC table associates a single VLC with a combination of values, for example, a
group of direct levels of quantized data values in a particular order. Vector variable length
encoding can lead to better bit rate reduction than scalar variable length encoding (e.g., by
allowing the encoder to exploit probabilities fractionally in binary VLCs). On the other
hand, the VLC table for vector variable length encoding can be extremely large when
single codes represent large groups of symbols or symbols have large ranges of potential
values (due to the large number of potential combinations), which consumes memory and
processing resources in computing the VLC table and finding VLCs. Numerous variations
of variable length encoding/decoding have been developed.

Arithmetic coding is another well-known compression technique. Arithmetic
coding is sometimes used in applications where the optimal number of bits to encode a
given input symbol is a fractional number of bits, and in cases where a statistical
correlation among certain individual input symbols exists. Arithmetic coding generally
involves representing an input sequence as a single number within a given range.
Typically, the number is a fractional number between 0 and 1. Symbols in the input
sequence are associated with ranges occupying portions of the space between 0 and 1.

The ranges are calculated based on the probability of the particular symbol occurring in

- the input sequence. The fractional number used to represent the input sequence is

constructed with reference to the ranges. Therefore, probability distributions for input
symbols are important in arithmetic coding schemes.

In context-based arithmetic coding, different probability distributions for the input
symbols are associated with different contexts. The probability distribution used to

encode the input sequence changes when the context changes. The context can be

4



10

15

20

25

30

WO 2007/011653 PCT/US2006/027231

calculated by measuring different factors that are expected to affect the probability of a
particular input symbol appearing in an input sequence.

Given the importance of compression and decompression to media processing, it is
not surprising that compression and decompression are richly developed fields. Whatever
the advantages of prior techniques and systems for lossless compression and
decompression, however, they do not have various advantages of the techniques and
systems described herein.

SUMMARY

Techniques and tools for selectively using multiple entropy models in adaptive
coding and decoding are described herein. For example, selectively using multiple
entropy models can significantly reduce resource usage for multiple distributions/VLC
tables. At the same time, much of the encoding gain associated with using the multiple
distributions/VLC tables can be attained.

According to a first set of techniques and tools, a tool such as an encoder or
decoder, for symbols, selects an entropy model from a first model set that includes
multiple entropy models. Each of the multiple entropy models of the first model set
includes a model switch point for switching to a second model set that includes one or
more entropy models. The tool processes the symbols using the selected entropy model
and outputs results of the processing.

Each of the one or more entropy models of the second model set can itself include
a model switch point for switching to another model set. Moreover, each of the multiple
entropy models of the first model set can further include a second model switch point for
switching to another model set. More generally, each of the multiple entropy models of
the first model set can include zero or more model switch points for switching to other
model set(s) (each set of the other model set(s) itself including zero or more entropy
models). In a recursive fashion, for a given model set of the other model set(s), the
entropy model(s) for that model set can include zero or more model switch points for
switching to still other model set(s), and so on.

According to a second set of techniques and tools, a system generates entropy
models. The system clusters probability distributions according to a first cost metric (such
as mean squared error), resulting in preliminary clusters. The system refines the
preliminary clusters according to a second cost metric (such as relative entropy) that is
different than the first cost metric, resulting in final clusters. The system then sets the

entropy models based at least in part upon the final clusters.
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According to a third set of techniques and tools, a system obtains probability
distributions for symbol values. The system generates entropy models. In doing so, the
system constrains multiple less probable symbol values to have a common conditional
distribution across the probability distributions, without so constraining multiple more
probable symbol values.

The foregoing and other objects, features, and advantages of the invention will
become more apparent from the following detailed description, which proceeds with
reference to the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a generalized operating environment in conjunction
with which various described embodiments may be implemented.

Figures 2, 3,4, 5, 6, and 7 are block diagrams of generalized encoders and/or
decoders in conjunction with which various described embodiments may be implemented.

Figures 8a and 8b are charts showing a multi-channel audio signal and
corresponding window configuration, respectively.

Figures 9 and 10 are block diagrams showing an encoder and decoder,
respectively, with temporal noise shaping.

Figures 11 and 12 are block diagrams showing an encoder and a decoder,
respectively, with coefficient prediction for bit rate reduction.

Figures 13 and 14 are flowcharts showing techniques for coefficient prediction in
coding and decoding, respectively, of quantized spectral coefficients.

Figures 15a and 15b are charts showing a periodic audio signal in the time domain
and corresponding spectral coefficients, respectively.

Figures 16 and 17 are block diagrams showing an encoder and a decoder,
respectively, with coefficient reordering,.

Figures 18a through 18c are flowcharts showing techniques for reordering spectral
coefficients before entropy encoding.

Figures 19a through 19¢ are flowcharts showing techniques for reordering spectral
coefficients after entropy decoding.

Figure 20 is a chart showing the spectral coefficients of Figure 15b after
reordering.

Figure 21 is a chart showing coding gain due to coefficient reordering per sub-
frame of an example audio file.

Figure 22 is a diagram showing hierarchically organized entropy models.
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Figure 23 is a chart showing Huffman codes for approximate distributions of
symbol values.

Figures 24 and 25 are flowcharts showing techniques for clustering training vectors
for probability distributions.

Figure 26 is a flowchart showing a technique for encoding with selective use of
multiple entropy models.

Figure 27 is a flowchart showing a technique for decoding with selective use of
multiple entropy models.

DETAILED DESCRIPTION

Various techniques and tools for entropy coding/decoding and associated
processing are described. These techniques and tools facilitate the creation, distribution,
and playback of high quality audio content, even at very low bit rates.

The various techniques and tools described herein may be used independently.
Some of the techniques and tools may be used in combination (e.g., in different phases of
a combined encoding and/or decoding process).

Various techniques are described below with reference to flowcharts of processing
acts. The various processing acts shown in the flowcharts may be consolidated into fewer
acts or separated into more acts. For the sake of simplicity, the relation of acts shown in a
particular flowchart to acts described elsewhere is often not shown. In many cases, the
acts in a flowchart can be reordered.

I. Example Operating Environments for Encoders and/or Decoders.

Figure 1 illustrates a generalized example of a suitable computing environment
(100) in which several of the described embodiments may be implemented. The
computing environment (100) is not intended to suggest any limitation as to scope of use
or functionality, as the described techniques and tools may be implemented in diverse
general-purpose or special-purpose computing environments.

With reference to Figure 1, the computing environment (100) includes at least one
processing unit (110) and memory (120). In Figure 1, this most basic configuration (130)
is included within a dashed line. The processing unit (110) executes computer-executable
instructions and may be a real or a virtual processor. In a multi-processing system,
multiple processing units execute computer-executable instructions to increase processing
power. The memory (120) may be volatile memory (e.g., registers, cache, RAM), non-
volatile memory (e.g., ROM, EEPROM, flash memory, etc.), or some combination of the
two. The memory (120) stores software (180) implementing an encoder and/or decoder

that uses one or more of the techniques described herein.
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A computing environment may have additional features. For example, the
computing environment (100) includes storage (140), one or more input devices (150), one
or more output devices (160), and one or more communication connections (170). An
interconnection mechanism (not shown) such as a bus, controller, or network interconnects
the components of the computing environment (100). Typically, operating system
software (not shown) provides an operating environment for other software executing in
the computing environment (100), and coordinates activities of the components of the
computing environment (100).

The storage (140) may be removable or non-removable, and includes magnetic
disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other medium which can be
used to store information and which can be accessed within the computing environment
(100). The storage (140) stores instructions for the software (180).

The input device(s) (150) may be a touch input device such as a keyboard, mouse,
pen, or trackball, a voice input device, a scanning device, or another device that provides
input to the computing environment (100). For audio or video encoding, the input
device(s) (150) may be a microphone, sound card, video card, TV tuner card, or similar
device that accepts audio or video input in analog or digital form, or a CD-ROM or CD-
RW that reads audio or video samples into the computing environment (100). The output
device(s) (160) may be a display, printer, speaker, CD-writer, or another device that
provides output from the computing environment (100).

The communication connection(s) (170) enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, audio or video input or
output, or other data in a modulated data signal. A modulated data signal is a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication media
include wired or wireless techniques implemented with an electrical, optical, RF, infrared,
acoustic, or other carrier.

The techniques and tools can be described in the general context of computer-
readable media. Computer-readable media are any available media that can be accessed
within a computing environment. By way of example, and not limitation, with the
computing environment (100), computer-readable media include memory (120), storage
(140), communication media, and combinations of any of the above.

The techniques and tools can be described in the general context of computer-

executable instructions, such as those included in program modules, being executed in a
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computing environment on a target real or virtual processor. Generally, program modules
include routines, programs, libraries, objects, classes, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. The functionality of
the program modules may be combined or split between program modules as desired in
various embodiments. Computer-executable instructions for program modules may be
executed within a local or distributed computing environment.

For the sake of presentation, the detailed description uses terms like "signal,"
"determine," and "apply" to describe computer operations in a computing environment.
These terms are high-level abstractions for operations performed by a computer, and
should not be confused with acts performed by a human being. The actual computer
operations corresponding to these terms vary depending on implementation.

IL. Example Encoders and Decoders.

Figure 2 shows a first audio encoder (200) in which one or more described
embodiments may be implemented. The encoder (200) is a transform-based, perceptual
audio encoder (200). Figure 3 shows a corresponding audio decoder (300).

Figure 4 shows a second audio encoder (400) in which one or more described
embodiments may be implemented. The encoder (400) is again a transform-based,
perceptual audio encoder, but the encoder (400) includes additional modules for
processing multi-channel audio. Figure 5 shows a corresponding audio decoder (500).

Figure 6 shows a more generalized media encoder (600) in which one or more
described embodiments may be implemented. Figure 7 shows a corresponding media
decoder (700).

Though the systems shown in Figures 2 through 7 are generalized, each has
characteristics found in real world systems. In any case, the relationships shown between
modules within the encoders and decoders indicate flows of information in the encoders
and decoders; other relationships are not shown for the sake of simplicity. Depending on
implementation and the type of compression desired, modules of an encoder or decoder
can be added, omitted, split into multiple modules, combined with other modules, and/or
replaced with like modules. In alternative embodiments, encoders or decoders with
different modules and/or other configurations process audio data or some other type of
data according to one or more described embodiments. For example, modules in Figure 2
through 7 that process spectral coefficients can be used to process only coefficients in a
base band or base frequency sub-range(s) (such as lower frequencies), with different
modules (not shown) processing spectral coefficients in other frequency sub-ranges (such

as higher frequencies).
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A. First Audio Encoder.

Overall, the encoder (200) receives a time series of input audio samples (205) at
some sampling depth and rate. The input audio samples (205) are for multi-channel audio
(e.g., stereo) or mono audio. The encoder (200) compresses the audio samples (205) and
multiplexes information produced by the various modules of the encoder (200) to output a
bitstream (295) in a format such as a WMA format, Advanced Streaming Format (“ASF”),
or other format.

The frequency transformer (210) receives the audio samples (205) and converts
them into data in the spectral domain. For example, the frequency transformer (210) splits
the audio samples (205) into blocks, which can have variable size to allow variable
temporal resolution. Blocks can overlap to reduce perceptible discontinuities between
blocks that could otherwise be introduced by later quantization. The frequency
transformer (210) applies to blocks a time-varying Modulated Lapped Transform
(“MLT”), modulated DCT (“MDCT”), some other variety of MLT or DCT, or some other
type of modulated or non-modulated, overlapped or non-overlapped frequency transform,
or use subband or wavelet coding. The frequency transformer (210) outputs blocks of
spectral coefficient data and outputs side information such as block sizes to the
multiplexer (“MUX") (280).

For multi-channel audio data, the multi-channel transformer (220) can convert the
multiple original, independently coded channels into jointly coded channels. Or, the
multi-channel transformer (220) can pass the left and right channels through as
independently coded channels. The multi-channel transformer (220) produces side
information to the MUX (280) indicating the channel mode used. The encoder (200) can
apply multi-channel rematrixing to a block of audio data after a multi-channel transform.

The perception modeler (230) models properties of the human auditory system to
improve the perceived quality of the reconstructed audio signal for a given bit rate. The
perception modeler (230) uses any of various auditory models.

The perception modeler (230) outputs information that the weighter (240) uses to
shape noise in the audio data to reduce the audibility of the noise. For example, using any
of various techniques, the weighter (240) generates weighting factors (sometimes called
scale factors) for quantization matﬁces (sometimes called masks) based upon the received
information. The weighter (240) then applies the weighting factors to the data received
from the multi-channel transformer (220). A set of weighting factors can be compressed

for more efficient representation.
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The quantizer (250) quantizes the output of the weighter (240), producing
quantized coefficient data to the entropy encoder (260) and side information including
quantization step size to the MUX (280). In Figure 2, the quantizer (250) is an adaptive,
uniform, scalar quantizer. The quantizer (250) applies the same quantization step size to
each spectral coefficient, but the quantization step size itself can change from one iteration
of a quantization loop to the next to affect the bit rate of the entropy encoder (260) output.
Other kinds of quantization are non-uniform, vector quantization, and/or non-adaptive
quantization.

The entropy encoder (260) losslessly compresses quantized coefficient data
received from the quantizer (250), for example, performing run-level coding and vector
variable length coding. Various mechanisms for entropy encoding (potentially including
preprocessing) in some embodiments are described in detail in sections III through V.
Alternatively, the entropy encoder (260) uses some other form or combination of entropy
coding mechanisms. The entropy encoder (260) can compute the number of bits spent
encoding audio information and pass this information to the rate/quality controller (270).

The controller (270) works with the quantizer (250) to regulate the bit rate and/or
quality of the output of the encoder (200). The controller (270) outputs the quantization
step size to the quantizer (250) with the goal of satisfying bit rate and quality constraints.

In addition, the encoder (200) can apply noise substitution and/or band truncation
to a block of audio data.

The MUX (280) multiplexes the side information received from the other modules
of the audio encoder (200) along with the entropy encoded data received from the entropy
encoder (260). The MUX (280) can include a virtual buffer that stores the bitstream (295)
to be output by the encoder (200).

B. First Audio Decoder.

Overall, the decoder (300) receives a bitstream (305) of compressed audio
information including entropy encoded data as well as side information, from which the
decoder (300) reconstructs audio samples (395).

The demultiplexer (“DEMUX”) (310) parses information in the bitstream (305)
and sends information to the modules of the decoder (300). The DEMUX (310) includes
one or more buffers to compensate for short-term variations in bit rate due to fluctuations
in complexity of the audio, network jitter, and/or other factors.

The entropy decoder (320) losslessly decompresses entropy codes received from
the DEMUZX (310), producing quantized spectral coefficient data. The entropy decoder
(320) typically applies the inverse of the entropy encoding technique used in the encoder.

11



10

15

20

25

30

WO 2007/011653 PCT/US2006/027231

Various mechanisms for entropy decoding in some embodiments are described in detail in
sections III through V.

The inverse quantizer (330) receives a quantization step size from the DEMUX
(310) and receives quantized spectral coefficient data from the entropy decoder (320).

The inverse quantizer (330) applies the quantization step size to the quantized frequency
coefficient data to partially reconstruct the frequency coefficient data, or otherwise
performs inverse quantization.

From the DEMUZX (310), the noise generator (340) receives information indicating
which bands in a block of data are noise substituted as well as any parameters for the form
of the noise. The noise generator (340) generates the patterns for the indicated bands, and
passes the information to the inverse weighter (350).

The inverse weighter (350) receives the weighting factors from the DEMUX (310),
patterns for any noise-substituted bands from the noise generator (340), and the partially
reconstructed frequency coefficient data from the inverse quantizer (330). As necessary,
the inverse weighter (350) decompresses the weighting factors. The inverse weighter
(350) applies the weighting factors to the partially reconstructed frequency coefficient data
for bands that have not been noise substituted. The inverse weighter (350) then adds in the
noise patterns received from the noise generator (340) for the noise-substituted bands.

The inverse multi-channel transformer (360) receives the reconstructed spectral
coefficient data from the inverse weighter (350) and channel mode information from the
DEMUX (310). If multi-channel audio is in independently coded channels, the inverse
multi-channel transformer (360) passes the channels through. If multi-channel data is in
jointly coded channels, the inverse multi-channel transformer (360) converts the data into
independently coded channels.

The inverse frequency transformer (370) receives the spectral coefficient data
output by the multi-channel transformer (360) as well as side information such as block
sizes from the DEMUX (310). The inverse frequency transformer (370) applies the
inverse of the frequenéy transform used in the encoder and outputs blocks of reconstructed
audio samples (395).

C. Second Audio Encoder.

With reference to Figure 4, the encoder (400) receives a time series of input audio
samples (405) at some sampling depth and rate. The input audio samples (405) are for
multi-channel audio (e.g., stereo, surround) or mono audio. The encoder (400) compresses

the audio samples (405) and multiplexes information produced by the various modules of
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the encoder (400) to output a bitstream (495) in a format such as a WMA. Pro format or
other format.

The encoder (400) selects between multiple encoding modes for the audio samples
(405). In Figure 4, the encoder (400) switches between a mixed/pure lossless coding
mode and a lossy coding mode. The lossless coding mode includes the mixed/pure
lossless coder (472) and is typically used for high quality (and high bit rate) compression.
The lossy coding mode includes components such as the weighter (442) and quantizer
(460) and is typically used for adjustable quality (and controlled bit rate) compression.
The selection decision depends upon user input or other criteria.

For lossy coding of multi-channel audio data, the multi-channel pre-processor
(410) optionally re-matrixes the time-domain audio samples (405). In some embodiments,
the multi-channel pre-processor (410) selectively re-matrixes the audio samples (405) to
drop one or more coded channels or increase inter-channel correlation in the encoder
(400), yet allow reconstruction (in some form) in the decoder (500). The multi-channel
pre-processor (410) may send side information such as instructions for multi-channel post-
processing to the MUX (490). '

The windowing module (420) partitions a frame of audio input samples (405) into
sub-frame blocks (windows). The windows may have time-varying size and window
shaping functions. When the encoder (400) uses lossy coding, variable-size windows
allow variable temporal resolution. The windowing module (420) outputs blocks of
partitioned data and outputs side information such as block sizes to the MUX (490).

In Figure 4, the tile configurer (422) partitions frames of multi-channel audio on a
per-channel basis. The tile configurer (422) independently partitions each channel in the
frame, if quality/bit rate allows. For example, the tile configurer (422) groups windows of
the same size that are co-located in time as a tile.

The frequency transformer (430) receives audio samples and converts them into
data in the frequency domain, applying a transform such as described above for the
frequency transformer (210) of Figure 2. The frequency transformer (430) outputs blocks
of spectral coefficient data to the weighter (442) and outputs side information such as
block sizes to the MUX (490). The frequency transformer (430) outputs both the
frequency coefficients and the side information to the perception modeler (440).

The perception modeler (440) models properties of the human auditory system,
processing audio data according to an auditory model.

The weighter (442) generates weighting factors for quantization matrices based

upon the information received from the perception modeler (440). The weighter (442)
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applies the weightiné factors to the data received from the frequency transformer (430).
Tﬁe weighter (442) outputs side information such as quantization matrices and channel
weight factors to the MUX (490), and the quantization matrices can be compressed.

For multi-channel audio data, the multi-channel transformer (450) may apply a
multi-channel transform. For example, the multi-channel transformer (450) selectively
and flexibly applies the multi-channel transform to some but not all of the channels and/or
quantization bands in the tile. The multi-channel transformer (450) selectively uses pre-
defined matrices or custom matrices, and applies efficient compression to the custom
matrices. The multi-channel transformer (450) produces side information to the MUX
(490) indicating, for example, the multi-channel transforms used and multi-channel
transformed parts of tiles.

The quantizer (460) quantizes the output of the multi-channel transformer (450),
producing quantized coefficient data to the entropy encoder (470) and side information
including quantization step sizes to the MUX (490). In Figure 4, the quantizer (460) is an
adaptive, uniform, scalar quantizer that computes a quantization factor per tile, but the
quantizer (460) may instead perform some other kind of quantization.

The entropy encoder (470) losslessly compresses quantized coefficient data
received from the quantizer (460), generally as described above with reference to the
entropy encoder (260) of Figure 2 Various mechanisms for entropy encoding (potentially
including preprocessing) in some embodiments are described in detail in sections III
through V.

The controller (480) works with the quantizer (460) to regulate the bit rate and/or
quality of the output of the encoder (400). The controller (480) outputs the quantization
factors to the quantizer (460) with the goal of satisfying quality and/or bit rate constraints.

The mixed/pure lossless encoder (472) and associated entropy encoder (474)
compress audio data for the mixed/pure lossless coding mode. The encoder (400) uses the
mixed/pure lossless coding mode for an entire sequence or switches between coding
modes on a frame-by-frame, block-by-block, tile-by-tile, or other basis.

The MUX (490) multiplexes the side information received from the other modules
of the audio encoder (400) along with the entropy encoded data received from the entropy
encoders (470, 474). The MUX (490) includes one or more buffers for rate control or
other purposes.

D. Second Audio Decoder.

With reference to Figure 5, the second audio decoder (500) receives a bitstream

(505) of compressed audio information. The bitstream (505) includes entropy encoded
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data as well as side information from which the decoder (500) reconstructs audio samples
(595).

The DEMUX (510) parses information in the bitstream (505) and sends
information to the modules of the decoder (500). The DEMUX (510) includes one or
more buffers to compensate for short-term variations in bit rate due to fluctuations in
complexity of the audio, network jitter, and/or other factors.

The entropy decoder (520) losslessly decompresses entropy codes received from
the DEMUX (510), typically applying the inverse of the entropy encoding techniques used
in the encoder (400). When decoding data compressed in lossy coding mode, the entropy
decoder (520) produces quantized spectral coefficient data. Various mechanisms for
entropy decoding in some embodiments are described in detail in sections III through V.

The mixed/pure lossless decoder (522) and associated entropy decoder(s) (520)
decompress losslessly encoded audio data for the mixed/pure lossless coding mode.

The tile configuration decoder (530) receives and, if necessary, decodes
information indicating the patterns of tiles for frames from the DEMUX (590). The tile
pattern information may Vbe entropy encoded or othérwise parameterized. The tile
configuration decoder (530) then passes tile pattern information to various other modules
of the decoder (500).

The inverse multi-channel transformer (540) receives the quantized spectral
coefficient data from the entropy decoder (520) as well as tile pattern information from the
tile configuration decoder (530) and side information from the DEMUX (510) indicating,
for example, the multi-channel transform used and transformed parts of tiles. Using this
information, the inverse multi-channel transformer (540) decompresses the transform
matrix as necessary, and selectively and flexibly applies one or more inverse multi-
channel transforms to the audio data.

The inverse quantizer/weighter (550) receives tile and channel quantization factors
as well as quantization matrices from the DEMUX (510) and receives quantized spectral
coefficient data from the inverse multi-channel transformer (540). The inverse
quantizer/weighter (550) decompresses the received quantization factor/matrix
information as necessary, then performs the inverse quantization and weighting.

The inverse frequency transformer (560) receives the spectral coefficient data
output by the inverse quantizer/weighter (550) as well as side information from the
DEMUX (510) and tile pattern information from the tile configuration decoder (530). The
inverse frequency transformer (570) applies the inverse of the frequency transform used in

the encoder and outputs blocks to the overlapper/adder (570).
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In addition to receiving tile pattern information from the tile configuration decoder
(530), the overlapper/adder (570) receives decoded information from the inverse
frequency transformer (560) and/or mixed/pure lossless decoder (522). The
overlapper/adder (570) overlaps and adds audio data as necessary and interleaves frames
or other sequences of audio data encoded with different modes.

The multi-channel post-processor (580) optionally re-matrixes the time-domain
audio samples output by the overlapper/adder (570). For bitstream-controlled post-
processing, the post-processing transform matrices vary over time and are signaled or
included in the bitstream (505).

E. Generalized Media Encoder.

Figure 6 shows parts of a generalized media encoder (600) that encodes audio,
video, or other media content. For the sake of simplicity, numerous modules of the
encoder (600) and types of side information, which may depend on the type of media
content, are not shown.

Like the encoders (200, 400) shown in Figures 2 and 4, respectively, the encoder
(600) is transform-based, inasmuch as the input shown in Fi(gure 6 is unquantized spectral
coefficients (605). In some embodiments, however, one of more of the entropy encoding
mechanisms described herein (e.g., a mechanism described in section V) is performed for
some other kind of input.

The quantizer (620) quantizes the coefficients (605), producing quantized
coefficient data. For example, the quantizer (620) is an adaptive, uniform, scalar quantizer
or some other kind of quantizer.

The entropy coding preprocessor (640) selectively performs preprocessing prior to
the entropy encoding. For example, the preprocessor (640) performs coefficient prediction
on quantized spectral coefficients, as described in section III. Or, the preprocessor (640)
reorders quantized spectral coefficients, as described in section IV, Alternatively, the
preprocessor (640) performs some other type of preprocessing,.

Aside from preprocessed coefficients, the preprocessor (640) outputs side
information to the output bitstream (695) describing the preprocessing. For example, the
side information includes prediction factors used in coefficient prediction, as described in
section . Or, the side information includes information used in reordering quantized
spectral coefficients, as described in section IV.

The entropy encoder (660) losslessly compresses quantized coefficient data, for

example, performing run-level coding and vector variable length coding. Section V
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describes mechanisms for adaptive entropy encoding. Alternatively, the entropy encoder
(660) uses some other form or combination of entropy coding mechanisms.

While Figure 6 simply shows the preprocessor (640) providing input to the entropy
encoder (660) and performing preprocessing without feedback from the entropy encoder
(660), alternatively, the entropy encoder (660) provides feedback to the preprocessor
(640), which the preprocessor (640) uses to adjust the preprocessing. For example, the
preprocessor (640) adjusts coefficient reordering based on feedback from the entropy
encoder (660), so that the input to the entropy encoder (660) better fits an entropy
encoding model.

F. Generalized Media Decoder.

Figure 7 shows parts of a generalized media decoder (700) that decodes audio,
video, or other media content. For the sake of simplicity, numerous modules of the
decoder (700) and types of side information, which may depend on the type of media
content, are not shown,

Like the decoders (300, 500) shown in Figures 3 and 5, respectively, the decoder
(700) is transform-based, inasmuch as the output shown in Figure 7 is reconstructed
spectral coefficients (705). In some embodiments, however, one of more of the entropy
decoding mechanisms described herein (e.g., a mechanism described in section V) is
performed for some other kind of output.

The entropy decoder (760) losslessly decompresses quantized coefficient data, for
example, performing run-level decoding and vector variable length decoding. Section V
describes mechanisms for adaptive entropy decoding. Alternatively, the entropy decoder
(760) uses some other form or combination of entropy decoding mechanisms.

The entropy decoding postprocessor (740) selectively performs postprocessing
after the entropy decoding. For example, the postprocessor (740) performs coefficient
prediction on quantized spectral coefficients, as described in section III. Or, the
postprocessor (740) reorders quantized spectral coefficients, as described in section IV.
Alternatively, the postprocessor (740) performs some other type of postprocessing,.

Aside from entropy decoded coefficients, the postprocessor (740) receives side
information from the bitstream (795) describing the postprocessing. For example, the side
information includes prediction factors used in the coefficient prediction, as described in
section III. Or, the side information includes information used in reordering quantized

spectral coefficients, as described in section IV.
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The inverse quantizer (720) performs inverse quantization, producing
reconstructed coefficient (705) data. For example, the inverse quantizer (720) is an
adaptive, uniform, scalar inverse quantizer or some other kind of quantizer.

III.  Prediction of Coefficients in the Spectral Domain for Coding and Decoding.

An audio encoder often uses transform coding followed by quantization and
entropy coding to achieve compression. When a fixed transform is used, for some patterns
of audio signals, there remains a correlation between adjacent coefficients after the
transform. Various techniques and tools are described below which exploit such
correlation to improve coding efficiency. In particular, in some embodiments, an encoder
such as one shown in Figure 2, 4, or 6 performs coefficient prediction on quantized
spectral coefficients during encoding. A corresponding decoder (such as one shown in
Figure 3, 5, or 7) performs coefficient prediction on quantized spectral coefficients during
decoding.

A. Example Problem Domain.

In a typical audio encoder that compresses audio as a waveform, an input audio
signal is transformed using a variable window size MDCT or other transform with a
variable-size window. For example, suppose windowing analysis of the stereo audio
shown in Figure 8a results in the window configuration shown in Figure 8b. In general,
such a window configuration reduces pre-echo and post-echo in the decoded signal (by
using shorter windows for transient segments) while facilitating overall coding efficiency
(by using longer windows for other segments). One aim of the windowing analysis is to

identify window boundaries such that the signal within any given window is mostly

 stationary.

The spectral coefficients, before or after a channel transform, are quantized.
Conventionally, the spectral coefficients of a sub-frame or other window are assumed to
not have any linear correlation among them. Rather, it is assumed that the spectral
coefficients usually have some higher order statistical relation, which encoders try to
exploit during entropy coding.

In practice, several assumptions that are implicit in such encoding do not hold in
various circumstances. For instance, for certain types and patterns of audio signal,
spectral coefficients for a sub-frame or other window are not necessarily uncorrelated. For
many of the same reasons that a signal in a window can be non-stationary (see below), the
spectral coefficients can show linear correlation. Contemporary waveform-based encoders

fail to take advantage of such correlation in entropy coding.
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As another example, when windowing analysis is applied to some audio signals,
the signal within a particular window is not necessarily stationary. If input audio changes
heavily over time (e.g., for a speech signal), even short windows may be insufficient to
isolate transient segments. Or, if the buffer in a rate controller is full, the controller may
force the encoder to use larger windows to reduce bit rate, even if smaller windows would
otherwise be used. Or, if a transition is slow, windowing analysis may fail to detect the
transient, such that shorter windows are not introduced. Or, the windowing analysis may
protect against pre-echo introduced by only one transient per frame, and not other
transients in the frame. Or, the signal within a window can be non-stationary for some
other reason.

Scale factors can help control the spectral distribution of distortion. As for
temporal distribution of distortion, however, simple quantization over a spectrum
introduces distortion that is constant over a complete transform block, which can cause
audible distortion in time segments of a frame.

Temporal Noise Shaping (“TNS”) is a technology in certain variants of MPEG that
uses a predictive approach in the frequency domain to shape quantization noise over time.
With TNS, an encoder applies a prediction filter to spectral coefficients and quantizes the
filtered signal, so as to limit the smearing of quantization noise across a whole temporal
window. Figures 9 and 10 show TNS in an encoder and decoder, respectively.

With reference to Figure 9, the encoder computes the difference between an
unquantized spectral coefficient (905) and a predictor, which is a combination of two prior
reconstructed coefficients. For the combination, two reconstructed, time-delayed
coefficients (in delays 910 and 912) are each multiplied by a prediction factor (911, 913)
and added together. The prediction factors (911, 913) are quantized and included in the
bitstream (995). The quantizer (970) quantizes the difference value, and the entropy
encoder (990) entropy encodes the quantized difference value for output in the bitstream
(995). The inverse quantizer (980) reconstructs the difference value and adds it to the
predictor for the coefficient (905). This results in a reconstruction of the coefficient,
which is buffered in the first delay (910), then second delay (912), for contribution to the
predictor for a subsequent coefficient (905).

In the corresponding decoder, the entropy decoder (1090) entropy decodes a
difference value from the bitstream (1095), and the inverse quantizer (1080) inverse
quantizes the difference value. The decoder combines the difference value with a
predictor to produce a reconstructed spectral coefficient (1005), where the predictor is a

combination of two prior reconstructed coefficients. The computation of the combination
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involves two delays (1010, 1012) and two prediction factors (1011, 1013), which are
recovered from the bitstream (1095). The reconstructed spectral coefficient (1005) is
buffered in the first delay (1010), then second delay (1012), for contribution to the
predictor for a subsequent coefficient (1005).

TNS in MPEG AAC allows for up to three distinct infinite-impulse-response filters
(or predictors) to be applied to different spectral regions of an input signal. The filter
coefficients are quantized and included in the bitstream.

Even when MPEG AAC permits the use of short windows, TNS is not used in
short windows, since the total information required for predictor description information is
relatively large, resulting in reduced bits for spectral values. As such, TNS is allowed
only for long windows in MPEG AAC, which limits the utility of TNS.

Also, as shown in Figures 9 and 10, prediction in TNS occurs in the
unquantized/reconstructed domain. As a result, a decoder has to interleave operations of
inverse quantization and prediction (and possibly even entropy decoding), resulting in
increased complexity. Additionally, for prediction in the unquantized/reconstructed
domain, the TNS operation is specified in MPEG AAC as a floating point operation,
which causes difficulties in fixed point implementations.

The TNS predictor is a second-order predictor, requiring two multiplications for
the prediction operation at each spectral coefficient. On the encoder side, design of -
effective predictors can be difficult, and unstable predictors can be a problem.

An architecture similar to that shown in Figures 9 and 10 can be used for
differential pulse code modulation, where an encoder computes the difference between a
time sample and a predictor, and the predictor is based on prediction factors and buffered,
inverse quantized time samples. The prediction typically uses a detailed predictor, which
is difficult to design and often unstable, and which requires extensive signaling and
reconstruction logic. Moreover, the compression efficiency of such schemes is not good.

In summary, several problems have been described which can be addressed by
coefficient prediction techniques and tools. Such coefficient prediction techniques and
tools need not be applied so as to address any or all of these problems, however.

B. Example Architectures for Coefficient Prediction.

In some embodiments, an encoder performs coefficient prediction on quantized
spectral coefficients during encoding, and a corresponding decoder performs coefficient
prediction on quantized spectral coefficients during decoding. For certain patterns and
types of content, the coefficient prediction reduces redundancy in the spectral coefficients

s0 as to improve the efficiency of subsequent entropy encoding. The prediction is
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reversible — during decoding, the coefficient prediction (following entropy decoding)
mirrors the coefficient prediction in the encoder. A

Figure 11 shows an encoder with prediction of quantized spectral coefficients. For
example, the encoder is a modified version of the encoder shown in Figure 2 or 4, with
stages added to compute a predictor and difference value. Or, the encoder is a modified
version of the encoder shown in Figure 6, with coefficient prediction as the preprocessing
béfore entropy coding.

With reference to Figure 11, the encoder computes the difference (also called the
prediction residual) between a quantized spectral coefficient (1105) and a predictor. For
the predictor, a time-delayed quantized spectral coefficient (in delay 1110) is multiplied by
a prediction factor (1111). The prediction factor (1111) is signaled as side information in
the bitstream (1195). The entropy encoder (1190) entropy encodes the difference value
for output in the bitstream (1195). The quantized spectral coefficient (1105) is also
buffered in the first delay (1110) for computation of the predictor for a subsequent
quantized spectral coefficient (1105).

Figure 12 shows a corresponding decoder with prediction of quantized spectral
coefficients. For example, the decoder is a modified version of the decoder shown in
Figure 3 or 5, with stages added to compute a predictor and combine the predictor with a
difference value. Or, the decoder is a modified version of the decoder shown in Figure 7,
with coefficient prediction as the postprocessing after entropy decoding.

With reference to Figure 12, an entropy decoder (1290) decodes a difference value
from the bitstream (1295). The decoder computes a predictor and combines the difference
value with the predictor, producing a quantized spectral coefficient (1205). For the
predictor, a time-delayed quantized spectral coefficient (in delay 1210) is multiplied by a
prediction factor (1211). The prediction factor (1211) is parsed from the bitstream (1295).
The quantized spectral coefficient (1205) is also buffered in the first delay (1210) for
computation of the predictor for a subsequent quantized spectral coefficient (1205).

In Figures 11 and 12, the prediction and difference operations in the encoder and
the prediction and sum operations in the decoder occur in the quantized domain. This
simplifies encoder and decoder design and complexity inasmuch as the operations occur in
the same domain.

In some implementations, the prediction, sum, and difference operations occur on
integer values. This typically simplifies implementation since the operations can be‘
performed with integer operations as opposed to floating point operations. To simplify the

prediction further, a prediction factor in a range of -1 to 1 can be quantized using a
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uniform step size of 0.25. The multiplication operations for the predictor can then be
implemented using binary shift/add operations.

In Figures 11 and 12, the predictor is a first-order predictor, which again reduces
the complexity of the encoder/decoder (“codec”) system. With an adaptive first-order
predictor, the prediction factor changes, so the same prediction factor need not be used for
the long term. For a first-order predictor, a test for stability is trivial. For example, the
encoder simply constrains the prediction factor to be within the range of -1 to -+1,
inclusive. Alternatively, the predictor is a higher order predictor. For example, the
predictor has up to 16 prediction factors for a 16™ order predictor.

For adaptive coefficient prediction, the encoder changes the prediction factor from
sub-frame to sub-frame or on some other basis. For example, the encoder splits a sub-
frame into multiple uniformly sized segments and computes a prediction factor per
segment. As for signaling, the encoder signals the number of segments for the sub-frame
as well as the prediction factors. Thus, if a sub-frame of 2048 spectral coefficients is split
into 16 segments, the encoder signals the number of segments and a prediction factor per
128-coefficient segment. The number of segments per sub-frame is signaled once for a
sequence, once per sub-frame, or on some other basis. Alternatively, segments have
variable lengths and/or the encoder uses a different mechanism to signal prediction factors
(e.g., signaling only changes in prediction factors, or signaling a prediction factor and
number of segments for which the prediction factor is used).

For some inputs, coefficient prediction does not improve performance. Aside from
disabling coefficient prediction on a segment-by-segment basis (described below), an
encoder and decoder can disable coefficient prediction for an entire sequence (for
example, with a sequence layer on/off flag) or at some other level.

When coefficient prediction is used for multi-channel audio, the coefficient
prediction occurs per coded channel when the quantization, etc. is downstream from the
multi-channel transform during encoding. During decoding, the coefficient prediction also
occurs per coded channel. Thus, for such multi-channel audio, prediction information that
is signaled per segment or per sub-frame is typically signaled per segment or per sub-
frame of a particular coded channel. Coefficient prediction can be selectively disabled per
coded channel at the sequence level or some other level. When coefficient prediction is
used for multi-channel audio, the number of segments per sub-frame can be signaled per
coded channel, per sub-frame of a coded channel, or at some other level.

In some cases, coefficient prediction provides encoding gain chiefly for spectral

coefficients in low and medium frequencies. Therefore, coefficient prediction can
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automatically be disabled for spectral coefficients at higher frequencies. Or, if the
encoding gain from coefficient prediction is chiefly for spectral coefficients in particular
frequency sub-ranges, coefficient prediction can be selectively enabled in those frequency
sub-ranges and disabled elsewhere.

C. Example Techniques for Coefficient Prediction During Encoding.

Figure 13 shows a technique (1300) for prediction of quantized spectral
coefficients during encoding. For example, an encoder such as the one shown in Figure 11
performs the technique (1300). Alternatively, another encoder performs the technique
(1300).

To start, the encoder computes (1310) a prediction factor for a segment of audio.
In general, the encoder computes tﬁe prediction factor using any of several techniques.
For example, for a first-order predictor, the encoder performs an exhaustive search of
possible prediction factors to find the final prediction factor (e.g., the prediction factor that
results in fewest entropy coded bits). Or, the encoder computes a correlation constant for
the quantized spectral coefficients of the segment (namely, E {x[i-1]x[i]}/E{x[i]x[i]}) to
derive the prediction factor. Or, for a higher order predictor, the encoder uses a linear
prediction coefficient algorithm (e.g., involving computation of autocorrelation and
autocovariance) and stability is not required. Or, if the order and precision of the filter are
flexible, the encoder computes the predictor order (first, second, third, etc.) and prediction
factor values and precision for the segment. Alternatively, the encoder uses some other
mechanism to compute the prediction factor.

In many cases, quantized spectral coefficients do not exhibit uniform correlation
across the whole spectrum of a sub-frame. To improve prediction in such situations, the
encoder can change the prediction factor on a spectral segment-by-segment basis. For
example, the encoder splits the complete spectrum for a sub-frame (or other block of
spectral coefficients) into multiple uniformly sized segﬁents and computes a prediction
factor per segment. Alternatively, the encoder computes a prediction factor for a segment
that is the entire spectrum of a sub-frame or other block of spectral coefficients, or splits
the spectrum in some other way.

The encoder signals (1320) the prediction factor information for the segment. For
example, the encoder quantizes the prediction factor and signals it in a bitstream. The
prediction factor can be entropy coded. The encoder can signal an on/off bit as part of the
prediction factor information, so as to selectively disable the coefficient prediction in

decoding on a segment-by-segment basis. Table 2 shows bit representations for a
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prediction factor in an implementation in which prediction factors in a range of -1 to 1 are

quantized using a uniform step size of 0.25.

Prediction factor | Binary representation
-1.00 1000

-0.75 1001

-0.50 1010

-0.25 1011

0.00 0

0.25 1100

0.50 1101

0.75 1110

1.00 1111

Table 2. Representation of prediction factor (side information).

Alternatively, prediction factor information is signaled using some other
representation.

As noted above, it may be that not all segments benefit from spectral coefficient
prediction. The prediction factor of 0 effectively disables prediction for a segment; the
predictor is given no weight and need not be computed. With the codes shown in Table 2,
the single bit symbol used to signal the prediction factor of 0 acts as an on/off bit for the
segment affected. Signaling the zero predictor with a single bit saves on bits when the
zero predictor is the most common prediction factor.

As noted above, higher order predictors are permitted. For signaling of prediction
factor information for a higher order predictor, for example, the encoder first sends the
predictor’s order and precision, then sends the prediction factors one by one.

The encoder then determines (1330) whether or not spectral coefficient prediction
is used for the segment. If so, the encoder predicts (1340) the one or more quantized
spectral coefficients in the segment then entropy codes (1350) the predictively coded
coefficient(s). For example, the encoder uses delay buffers and arithmetic as shown in
Figure 11 for the coefficient prediction. Alternatively, the encoder uses some other
prediction mechanism. (The prediction (1340) and subsequent entropy coding (1350) may
proceed iteratively for some types of entropy coding (1350), but more typically are
batched for vector variable length coding, run-level coding, or some other type of entropy
coding.)

If the encoder skips the coefficient prediction (1340), the encoder simply entropy
codes (1350) the one or more quantized spectral coefficients. Alternatively, the encoder
follows the predictive coding path when the prediction factor is 0.

The encoder then determines (1360) whether to continue with the next segment or

end the technique (1300). If the encoder continues, the encoder computes (1310) the
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prediction factor for the next segment, signals (1320) the prediction factor information,
and so on.

Figure 13 shows computation and signaling of a prediction factor on a segment-by-
segment basis, where the number of segments is predetermined and not signaled.
Alternatively, the number of segments for which prediction factors are computed and
signaled is flexible. This typically improves prediction accuracy at the cost of increased
bit overhead in specifying segment information. For a sub-frame or other block, the
encoder finds a uniform or non-uniform segmentation (e.g., that results in the least number
of bits), and the total number of segments and/or other segmentation information is
signaled in the bit stream.

D. Example Techniques for Coefficient Prediction During Decoding.

Figure 14 shows a technique (1400) for prediction of quantized speciral
coefficients during decoding. For example, a decoder such as the one shown in Figure 12
performs the technique (1400). Alternatively, another decoder performs the technique
(1400).

To start, the decoder gets (1410) prediction factor information for a segment of
audio. For example, the decoder parses the prediction factor information from a bitstream
and reconstructs a prediction factor. If the prediction factor is entropy coded, the decoder
entropy decodes the prediction factor. If the encoder signals an on/off bit as part of the
prediction factor information, so as to selectively enable/disable coefficient prediction
during decoding, the decoder gets the on/off bit. Thus, the decoder can change the
prediction factor on a spectral segment-by-segment basis, where the segment is all or part
of the whole spectrum of a sub-frame or other block depending on implementation, and
where the prediction factor information is signaled using any of the mechanisms described
above with reference to Figure 13.

The decoder entropy decodes (1420) information for one or more quantized
spectral coefficients of the segment. When coefficient prediction has been used during
encoding, the information is prediction residual(s) (difference value(s)) for the quantized
spectral coefficient(s). When coefficient prediction has not been used during encoding
(zero predictor), the information is the quantized spectral coefficients themselves.

The decoder then determines (1430) whether or not spectral coefficient prediction
has been used for the segment. If so, the decoder predicts (1440) the quantized spectral
coefficient(s) in the segment. For example, the decoder uses delay buffers and arithmetic
as shown in Figure 12 for the coefficient prediction. Alternatively, the decoder uses some

other prediction mechanism. (The entropy decoding (1420) and prediction (1440) may
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proceed iteratively for some types of entropy decoding (1420), but more typically are
batched for vector variable length decoding, run-level decoding, or some other type of
entropy decoding.)

In some cases, the decoder skips the coefficient prediction during decoding, simply
entropy decoding (1420) the quantized spectral coefficient(s). Alternatively, the decoder
follows the predictive decoding path when the prediction factor is 0.

The decoder then determines (1450) whether to continue with the next segment or
end the technique (1400). If the decoder continues, the decoder gets (1410) the prediction
factor information for the next segment, and so on.

In Figure 14 the number of segments is predetermined and not signaled.
Alternatively, the number of segments and prediction factors is flexible, and the decoder
parses segmentation information signaled by the encoder.

E. Results.

In general, prediction of quantized spectral coefficients improves the efficiency of
subsequent entropy encoding for certain types and patterns of content. For example, the
prediction reduces redundancy between adjacent coefficients, making subsequent vector
variable length coding and/or run-level coding more efficient. In contrast, the purpose of
MPEG TNS is to control temporal distribution of distortion.

To measure the improvement in coding efficiency due to prediction of quantized
spectral coefficients, a large test suite of songs was encoded using coefficient prediction.
For a typical input song, most sub-frames in the song did not get any benefit using
coefficient prediction in the quantized domain, however, some sub-frames benefited very
substantially. For example, bits produced for some sub-frames dropped by as much as
30% with prediction of quantized spectral coefficients. For some songs, the overall bit
rate reduction with coefficient prediction was 3% while operating at a nominal bit rate of
32 Kb/s, and the overall bit rate reduction was 3.75% at 128 Kb/s. On the entire suite of
songs, the overall bit rate reduction was around 0.5%.

Whereas many types of prediction use a higher order predictor or higher precision
to achieve coding gain, a first-order predictor with relatively low precision (e.g., 3 bits per
quantized prediction factor value) performs fairly well on quantized spectral coefficients
in most scenarios. The quantized spectral coefficients are usually very small integers, so
increasing the prediction factor precision does not necessarily change the predicted value
or make it better — the residual value is an integer for entropy coding, and computing the

predicted value as an integer is acceptable. Moreover, even when there is higher order
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correlation in spectral coefficients, the higher order correlation is typically distorted by
quantization such that higher order predictors are not needed.

In some encoding scenarios, however, when quantization step sizes are small and
quantized spectral coefficients have large amplitudes, higher order predictors and/or
higher precision prediction factors can result in greater improvements in encoding
efficiency. The coefficient prediction techniques and tools described above support high
order predictors and high precision prediction factors in a general form.

IV. Interleaving or Reordering of Spectral Coefficients.

As noted previously, an audio encoder often uses transform coding followed by
quantization and entropy coding to achieve compression. For some patterns of audio
signals, there remains a periodic pattern in spectral coefficients after the frequency
transform. Various techniques and tools are described to exploit such redundancy to
improve coding efficiency. In particular, in some embodiments, an encoder such as one
shown in Figure 2, 4, or 6 performs interleaving or reordering of quantized spectral
coefficients. A corresponding decoder (such as one shown in Figure 3, 5, or 7) reverses
the interleaving or reordering of quantized spectral coefficients.

A. Example Problem Domain.

Conventionally, spectral coefficients of a sub-frame or other window are assumed
to not have any linear correlation among them. Rather, it is assumed that the spectral
coefficients usually have some higher order statistical relation, which encoders try to
exploit during entropy coding.

These assumptions do not hold in some circumstances. For certain types and
patterns of audio signals, the spectral coefficients for a sub-frame or other window are not
necessarily uncorrelated. This occurs, for example, when an audio signal is periodic in the
time domain, and the periodic signal’s spectral coefficients also show periodicity. In
practice, sinusoidal signals often show this behavior, as do certain non-stationary signals.

To illustrate, Figure 15a shows a periodic audio signal in the time domain, charting
amplitudes for a time series of samples. Figure 15b shows corresponding quantized
spectral coefficients from a DCT operation. In Figure 15b, there are strong, peak non-zero
spectral coefficients around every 57 spectral coefficients, and the spectral coefficients at
other place mostly have a zero or small value. Directly entropy coding spectral
coefficients with this kind of periodic pattern using techniques such as run-level coding or
vector variable length coding is not efficient. In particular, encoding a peak coefficient

with zero-value or small-value coefficients around it typically uses a lot of bits in both
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run-level coding and vector variable length coding. This type of peak pattern is common
for periodic signals, however.

In summary, several ioroblems have been described, which can be addressed by
coefficient reordering techniques and tools. Such coefficient reordering techniques and
tools need not be applied so as to address any or all of these problems, however.

B. Example Architectures for Reordering Spectral Coefficients.

In some embodiments, an encoder performs reordering on quantized spectral
coefficients before entropy encoding, and a corresponding decoder performs reordering on
quantized spectral coefficients after entropy decoding. For certain patterns and types of
content such as periodic signals with tones or harmonics, the reordering reduces
redundancy in the spectral coefficients so as to improve the efficiency of subsequent
entropy encoding. During decoding, the reordering (following entropy decoding)
compensates for the reordering in the encoder.

Figure 16 shows an encoder with reordering of quantized spectral coefficients. For
example, the encoder is a modified version of the encoder shown in Figure 2 or 4, with
stages added to reorder spectral coefficients. Or, the encoder is a modified version of the
encoder shown in Figure 6, with reordering as the preprocessing before entropy coding.

With reference to Figure 16, the encoder receives quantized spectral coefficients
(1605) from a quantizer. The quantized spectral coefficients are processed by the
reordering/interleaving module (1680), which optionally reorders some or all of the
spectral coefficients (1605), signaling reordering information in the bitstream (1695).

Suppose the quantized spectral coefficients (1605) exhibit a periodic pattern that
can be exploited to improve entropy coding efficiency. Before the entropy coding, the
quantized spectral coefficients are interleaved or reordered considering the periodicity in
the coefficients. For example, the reordering clusters high-value, peak coefficients
together, which improves the efficiency of subsequent vector variable length coding for
those coefficients, and the reordering clusters other coefficients (e.g., zero-value
coefficients and low-value coefficients between peaks) together, which improves the
efficiency of subsequent run-level coding for those coefficients.

To interleave spectral coefficients, the encoder interleaves the spectral coefficients
along the segment that shows the periodic pattern. As a simple example, the encoder
browses across the coefficients in the periods in a multi-pass way, first selecting the first
coefficients in the respective periods, then selecting the second coefficients in the
respective periods, then selecting the third coefficients in the respective periods, and so on.

The encoder continues the reordering until all coefficients have been selected. Suppose

28

>



10

15

20

25

30

35

WO 2007/011653 PCT/US2006/027231

that a series of spectral coefficients includes four periods A, B, C, and D, and that each
period contains four spectral coefficients. Before interleaving, the series is:

Ao A1 Ay A3 By By B, B; G C; Gy C3 Do Dy Dy D,
and after interleaving, the series is:

Ag Bo Cog Dy A; By C; Dy A; B, C; D; A3 Bs C3 D;.

Thus, the reordered series puts coefficients 0, 4, 8, and 12 first, then coefficients 1,
5,9, and 13, and so on. If, in each period, only the first coefficient has a significant value,
after interleaving only the first four coefficients in the series have significant values, and
all of the other coefficients have a small value or value of zero. Vector variable length
coding efficiently compresses the first four coefficients, and run-level coding efficiently
handles the rest.

Returning to Figure 16, after optional reordering (1680), the entropy encoder
(1690) entropy codes the (potentially reordered) spectral coefficients. The encoder signals
the entropy coded information in the bitstream (1695).

Figure 17 shows a corresponding decoder with reordering of quantized spectral
coefficients. For example, the decoder is a modified version of the decoder shown in
Figure 3 or 5, with stages added for reordering. Or, the decoder is a modified version of
the decoder shown in Figure 7, with reordering as the postprocessing after entropy
decoding.

With reference to Figure 17, the entropy decoder (1790) decodes information for
the quantized spectral coefficients from the bitstream (1795). Using reordering
information parsed from the bitstream (1795), the reordering/interleaving module (1780)
optionally reorders some or all of the decoded spectral coefficients, producing quantized
spectral coefficients (1705) in original order. Essentially, the reordering in the decoder
reverses reordering performed in the encoder.

In the example series shown above, simple reordering based on a period length is
performed. In some cases, however, such simple reordering fails to account for leading
non-periodic information in a segment, leading zeros or other offsets in specific periods,
and/or clustering of peak coefficients at the starts of periods. Additional reordering
information (described below) can address these phenomena. To give a simple numerical
example, suppose a segment has 128 spectral coefficients and includes a periodic pattern
for some of the coefficients. The period pattern has an average period length of 10
coefficients, starts at the 19" coefficient, and ends at the 102™ coefficient. In terms of
multiples of the period lengtﬁ, as a rough estimate, the first reordered period is the third
period (coefficients 20-29) of the segment, and the last reordered period is the tenth period
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(coefficients 90-99). The offset for the third period is —1 (indicating a starting position for
the period at the 19™ coefficient rather than the 20™), and the offset for the tenth period is
2. Offsets for other periods can also be signaled, as appropriate. If the periods to be
reordered typically start with multiple peak coefficients, a value can be signaled to
indicate the number of initial coefficients per period that should be kept adjacent even
after reordering,.

For adaptive coefficient reordering, the encoder changes the reordering from sub-
frame to sub-frame or on some other basis. For example, the encoder splits a sub-frame
into multiple segments and computes reordering information for one or more of the
segments, signaling segmentation information as well as the reordering information.
Alternatively, the encoder uses a different mechanism for segmentation and/or signaling.

For some inputs, coefficient reordering does not improve performance. Aside from
disabling coefficient reordering on a segment-by-segment basis (described below), an
encoder and decoder can disable coefficient reordering for an entire sequence (for
example, with a sequence layer on/off flag) or at some other level.

When coefficient reordering is used for multi-channel audio, the coefficient
reordering occurs per coded channel when the quantization, etc. is downstream from the
multi-channel fransform during encoding. During decoding, the coefficient reordering
also occurs per coded channel. Thus, for such multi-channel audio, reordering information
that is signaled per segment, per sub-frame, or per period is typically signaled per
segment, per sub-frame, or per period for a particular coded channel. When coefficient
reordering is used for multi-channel audio, segmentation information and reordering
on/off information can be signaled per coded channel, per sub-frame of a coded channel,
or at some other level.

In many cases, coefficient reordering provides encoding gains chiefly for spectral
coefficients in low and medium frequencies. Therefore, coefficient reordering can
automatically be disabled for spectral coefficients at higher frequencies. Or, if the
encoding gain from coefficient reordering is chiefly for spectral coefficients in particular
frequency sub-ranges, the coefficient reordering can be selectively enabled in those
frequency sub-ranges and disabled elsewhere.

The coefficient prediction described in section III can be used in conjunction with
coefficient reordering, but the coefficient prediction and coefficient reordering are more
commonly used separately, for different categories of inputs. When they are used

together, the coefficient prediction follows the reordering during encoding, and the
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coefficient reordering follows the prediction during decoding, and coefficient prediction is
used on at least some (e.g., peak coefficients) of the reordered coefficients.

C. Example Techniques for Reordering Coefficients During Encoding.

Figure 18a shows a technique (1800) for reordering quantized spectral coefficients
during encoding, and Figures 18b and 18c detail possible ways to perform certain acts of
the technique (1800). For example, an encoder such as the one shown in Figure 16
performs the technique (1800). Alternatively, another encoder performs the technique
(1800).

To start, the encoder computes (1810) reordering information for a segment. For
example, the encoder computes (1810) the reordering information as shown in Figure 18b.
Alternatively, the encoder computes other and/or additional reordering information.

With reference to Figure 18b, the encoder identifies (1812) a segment within which
coefficients will be reordered. For example, the encoder finds a segment of the spectral
coefficients that has a periodic pattern. To illustrate, in Figure 15b, only the first 800 or so
coefficients have a periodic pattern.

The encoder can exclude some periods of the segment from reordering. For
example, if the first one or two periods do not resemble the other periods, the first one or
two periods are excluded from the reordering process. In some cases, the first part of a
segment includes leading zeros or non-periodic coefficients. As such, the encoder tracks
the first period to be reordered in the segment. Similarly, the encoder also tracks the last
period to be reordered in the segment.

Next, the encoder identifies (1814) the length of the period for the segment. For
example, the encoder counts the number of peaks in the segment and divides the segment
length by the number of peaks. Or, the encoder performs an exhaustive search of
candidate period lengths. Or, the encoder searches candidate period lengths using a binary
refinement approach (as opposed to an exhaustive search of the parameter space). Or, the
encoder evaluates lengths of runs of zero-value/small-value coefficients. Or, the encoder
uses some other mechanism to identify the period length for the segment. The period
length can be limited to integer values, or the period length can also be a non-integer
value. Allowing sub-integer precision can improve the efficiency of the reordering
significantly, eventually improving the entropy coding gain.

The encoder also identifies (1816) other reordering information, which can include
period adjustments and preroll values. For example, in an implementation that allows

non-integer period lengths, the encoder computes other reordering information as follows.
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The initial starting position of period i is round(i * period_length), and the initial
ending position of period i is the initial starting position of the next period. The encoder
keeps a period position table that stores the starting positions and/or ending positions of
periods for tracking purposes. This also allows the encoder to simply adjust the positions
of the periods in the table when evaluating different positions.

In particular, the encoder can move the starting position and/or ending position of
the period by one or more coefficients from the initial position, so as to improve entropy
coding. For example, if there are several large, significant coefficients right before the
initial starting position of the period the encoder shifts the starting position left by a couple
of coefficients so that those large, significant coefficients show up at the beginning of the
period instead of the end of the previous period. Alternatively, the encoder uses some
other mechanism to determine adjustment amounts for the starting and/or ending positions
of periods to be reordered.

The encoder also chooses a preroll value. Preroll indicates coefficients at the
beginning of a period which are not reordered relative to each other. Commonly, the peak
at the start of a period is not just one spectral coefficient. There may be two or three
coefficients with large values at the start of the period, for example, and such coefficients
are preroll coefficients. Preroll coefficients are interleaved in a special way, effectively
being treated as a group for reordering. In other words, preroll coefficients are adjacent
even after reordering for the periods of the segment. The preroll value indicates the
number of preroll coefficients (e.g., 1, 2, 3) for the periods to be reordered. Or, instead of
computing preroll per segment, the encoder computes preroll per period to be reordered.

Alternatively, the encoder uses some other mechanism to identify (1816) the other
reordering information.

Returning to Figure 18a, the encoder signals (1830) the reordering information for
the segment in the bitstream. For example, the encoder signals (1830) the reordering
information as shown in Figure 18c, for reordering information computed as shown in
Figure 18b. Alternatively, the encoder signals other and/or additional reordering
information.

With reference to Figure 18c, the encoder signals (1832) an on/off bit for
reordering. For example, the encoder compares the bit cost when coefficient reordering is
used to the bit cost when no coefficient reordering is used. The encoder selects the mode
that provides better performance, and the encoder uses a single bit per segment to indicate
which mode is selected. Alternatively, the encoder signals on/off information using some

other mechanism and/or for some duration other than an entire segment.
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When reordering is used (the “yes” branch out of decision 1834), the encoder
signals (1836) period length. When non-integer period lengths are allowed, the period
length can be represented with an integer part and a fractional part, both signaled in the
bitstream. An integer period length (or integer part of a non-integer period length) is
signaled as a fixed length code [“FLC”] with log,(largest_period_length) bits. For
example, the largest period length is 128, and integer period length is signaled with
logy(128) = 7 bits. A fractional part can be signaled with a three-bit FLC. Alternatively,
the period length is signaled with another mechanism.

The encoder also signals (1838) the first period for which coefficients will be
reordered. In effect, this roughly indicates the starting position for the reordering. The
first reordered period can be represented in units of the period length. The first reordered
period is signaled, for example, with a three-bit FLC, in which case the first reordered
period is any period from the first period to the eighth period in the segment.
Alternatively, the first reordered period is signaled with another mechanism.

The encoder also signals (1840) the last period for which coefficients will be
reordered. The last reordered period can be represented in units of the period length. The
last reordered period is signaled, for example, as a FLC with
logy(maximum_number of periods) bits. The encoder derives the maximum number of
periods from the number of coefficients in the segment and the period length.
Alternatively, the last reordered period is signaled with another mechanism.

The encoder signais (1842) position adjustments. For the periods for which
coefficients will be reordered, the encoder signals information indicating offsets relative to
the initial starting and/or ending positions. For example, one adjustment value is signaled
per period, and the adjustment value is signaled as a number of coefficients. Such an
adjustment value can be signaled as a FLC with log;(offset _range) bits. Thus, if the offset
range is 16, the adjustment value is signaled with logy(16) = 4 bits, for an adjustment
range of -8 ... 7 coefficients. Alternatively, the adjustment value is signaled with another
mechanism (e.g., signaling adjustments relative to previous adjustment values (not in
absolute terms), or signaling one adjustment for all periods).

The encoder also signals (1844) a preroll value. A preroll value of some number
of coefficients is signaled as a FLC with logy(largest_preroll + 1) bits. For example, the
largest preroll length is 3 (for preroll of 0, 1, 2, or 3), and the preroll value is signaled with
loga(4) = 2 bits. Altematively, the preroll values are signaled with another mechanism.

Returning to Figure 18a, the encoder determines (1860) whether or not coefficient

reordering is used. If not, the encoder simply entropy encodes (1880) the quantized
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spectral coefficients of the segment using vector variable length coding, run-level coding,
or some other entropy coding. On the other hand, if coefficient reordering is used, the
encoder reorders (1870) at least some of the coefficients of the segment and entropy
encodes (1880) the coefficients as (selectively) reordered using vector variable length
coding, run-level coding, or some other entropy coding. For example, the encoder
performs the reordering (1870) as follows, for reordering information computed as shown
in Figure 18b and signaled as shown in Figure 18c.

In summary, the encoder reorders coefficients and outputs the coefficients to a new
coefficient buffer (or directly to an entropy coder so that the reordering process does not
use extra resources for buffering). The encoder browses a table (described above) that
indicates the starting positions and/or ending positions of periods for which coefficients
will be reordered. Generally, the encoder loops from the first such period to the last such
period.

For a period, the encoder finds the first coefficient not yet processed in reordering.
If the coefficient is within a preroll region, the encoder outputs the coefficient and the one
or more following preroll coefficients in their original order. Otherwise, the encoder just
outputs the first coefficient not yet processed. The encoder then marks any processed
coefficients in the period as having been processed. The encoder continues with the first
unprocessed coefficient of the next peﬁod.

If, for some period, there are no unprocessed coefficients, the encoder simply
moves on to the next period.

After the encoder checks all periods in one iteration from first to last, the encoder
repeats from the first period. Eventually, the encoder processes all of the coefficients in
the periods to be reordered. When coefficients in the segment are not reordered, the
encoder can simply copy those coefficients to the new coefficient buffer (or send them
directly to the entropy coder at the appropriate times).

Alternatively, the encoder performs the reordering (1870) using some other
mechanism. Or, the encoder performs the reordering (1870) according to other and/or
additional reordering information.

The encoder then determines (1890) whether to continue with the next segment or
end the technique (1800). If the encoder continues, the encoder computes (1810) the
reordering information for the next segment, signals (1820) the reordering information,

and so on.
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While Figures 18a through 18c show the acts of computing reordering information
as being separate and earlier than the acts of signaling reordering information,
alternatively, these acts are interleaved with each other or other acts.

D. Example Techniques for Reordering Coefficients During Decoding.

Figure 19a shows a technique (1900) for reordering quantized spectral coefficients
during decoding, and Figures 19b and 19¢ detail possible ways to perform certain acts of
the technique (1900). For example, a decoder such as the one shown in Figure 12
performs the technique (1900). Alternatively, another decoder performs the technique
(1900).

To start, the decoder gets (1910) reordering information for a segment. The
decoder typically reads side information from a bitstream for use in the
interleaving/reordering. For example, the decoder gets (1910) reordering information as
shown in Figure 19b, for reordering information signaled as shown in Figure 18c.
Alternatively, the decoder gets other and/or additional reordering information.

With reference to Figure 19b, the decoder parses (1912) an on/off bit for
reordering from the bitstream. For example, the decoder reads a single bit from the
bitstream, where the single bit indicates whether to use a mode with coefficient reordering
or a mode without coefficient reordering. Alternatively, the on/off information is signaled
and parsed using some other mechanism and/or is for some duration other than an entire
segment.

When coefficient reordering is used (the “yes” branch out of decision 1914), the
decoder parses (1916) a period length from the bitstream. When non-integer period
lengths are allowed, the period length can be represented with an integer part and a
fractional part, which are both parsed from the bitstream. An integer period length (or
integer part of a non-integer period length) is represented as a FLC with
logy(largest_period_length) bits. Alternatively, the period length is signaled with another
mechanism.

The decoder also parses (1918) the first period for which coefficients will be
reordered from the bitstream, which roughly indicates the starting position for the
reordering. The first reordered period can be represented in units of the period length.
The first reordered period is represented, for example, with a three-bit FLC. Alternatively,
the first reordered period is signaled and parsed with another mechanism.

The decoder also parses (1940) the last period for which coefficients will be
reordered from the bitstream. The last reordered period can be represented in units of the

period length. The last reordered period is signaled, for example, as a FLC with
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logy(maximum_number_of periods) bits, where the decoder derives the maximum number
of periods from the number of coefficients in the segment and the period length.
Alternatively, the last reordered period is signaled and parsed with another mechanism.

With the period length, first reordered period, and last reordered period, the
decoder has information to fill a period position table, which stores the starting positions
and/or ending positions of periods for tracking purposes. Thus, the decoder can reproduce
the period position table used by a corresponding encoder.

The decoder parses (1922) position adjustments from the bitstream. For the
periods for which coefficients will be reordered, the decoder parses information indicating
offsets relative to the initial starting and/or ending positions. For example, one adjustment
value is parsed per period, and the adjustment value is represented as a number of
coefficients. Such an adjustment value can be represented as a FLC with
logy(offset_range) bits. Alternatively, the adjustment value is signaled and parsed with
another mechanism.

With the position adjustment information, the decoder has information to adjust the
starting positions and/or ending positions of the periods in the period position table.

The decoder also parses (1924) a preroll value. A preroll value of some number of
coefficients is represented as a FLC with logy(largest_preroll + 1) bits. Alternatively, the
preroll value is signaled and parsed with another mechanism.

Returning to Figure 19a, the decoder entropy decodes (1930) coefficient
information from the bitstream using vector variable length decoding, run-level decoding,
or some other entropy decoding. When reordering was not used in encoding, the decoder
entropy decodes (1930) quantized spectral coefficients of the segment in their original
order. On the other hand, when reordering was used in encoding, the decoder entropy
decodes (1930) quantized spectral coefficients as reordered.

The decoder also determines (1960) whether or not coefficient reordering is used
during decoding. If coefficient reordering is used during decoding, the decoder reorders
(1970) at least some of the coefficients of the segment as entropy decoded. For example,
the decoder performs the reordering (1970) as follows, for reordering information
retrieved as shown in Figure 19b.

The decoder generates (1972) a period position table from reordering information
for the segment (for example, period length, first reordered period, last reordered period)
and applies (1974) period adjustments to the table. The table stores the starting positions
and/or ending positions of periods for use in the reordering. Alternatively, the decoder

skips the table generation process or uses some other table structure.
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The decoder then reorders (1976) coefficients using the period position table and
the preroll value. In summary, the decoder reorders coefficients and outputs the
coefficients to a new coefficient buffer, reversing the reordering performed during
encoding. (Alternatively, the decoder can reorder the output of the entropy decoder
directly so no additional resources for coefficient buffering are used.) The decoder uses
the period position table (described above), which indicates the starting positions and/or
ending positibns of periods for which coefficients should be reordered. Generally, the
decoder processes the entropy decoded spectral coefficients in the order resulting from
entropy decoding. For example, into positions for the first reordered period, the decoder
puts the first unprocessed coefficient as well as any unprocessed coefficients in the preroll
region for the first reordered period. Next, into positions for the second reordered period,
the decoder puts the next unprocessed coefficient as well as any unprocessed coefficients
in the preroll region for the second reordered period. The decoder repeats this preroll
processing for each of the periods through the last reordered period. Then, the decoder
iteratively puts successive unprocessed coefficients into positions for the first, second,
third, etc. reordered periods, skipping a reordered period when that reordered period has
been filled. Eventually, the decoder processes all of the coefficients in the periods to be
reordered. When coefficients in the segment are not reordered, the decoder can simply
copy those coefficients to corresponding positions in the new coefficient buffer.

Alternatively, the decoder performs the reordering (1970) using some other
mechanism. For example, using the period position table and preroll value, the decoder
browses through the entropy decoded coefficients, selecting and outputting spectral
coefficients for the first reordered period. Then, the encoder browses through the entropy
decoded coefficients, selecting and outputting spectral coefficients for the second
reordered period, and so on, through the last reordered period. Or, the decoder performs
the reordering (1970) according to other and/or additional reordering information.

The decoder then determines (1990) whether to continue with the next segment or
end the technique (1900). If the decoder continues, the decoder gets (1910) the reordering
information for the next segment, and so on. ‘

While Figures 19a through 19¢ show the acts of getting reordering information as
being separate and earlier than other acts of reordering, alternatively, these acts are
interleaved with each other or other acts.

E. Results.

In general, reordering of quantized spectral coefficients improves the efficiency of

subsequent entropy encoding for periodic signals. For example, the reordering locally
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groups coefficients having like values, making subsequent vector variable length coding
and/or run-level coding more efficient.

The reordering described above is relatively simple to implement and has low
computational complexity. As for memory usage, in some implementations, the only extra
memory required by reordering operations is a period position table, which is very small.

Figure 20 shows the spectral coefficients of Figure 15b after coefficient reordering.
The period length is 56.7. The reordering starts at position 114 (starting the third period in
the segment), and the reordering ends around position 1021 (ending the 18" period in the
segment). The preroll is three for periods in the segment. After the reordering, the
coefficients up to about position 250 are set up well for vector variable length coding, and
the coefficients after than are set up well for run-level coding,.

The coding gain attributable to reordering depends on the periodicity of the signal.
If a signal is periodic in the time domain, there is often significant gain from reordering of
spectral coefficients. Otherwise, coding gains are typically less significant or non-
existent. Figure 21 shows the coding gain due to reordering per sub-frame of one example
audio file with a periodic signal. The largest gain for a sub-frame is over 40%, and the
average gain for the file is about 11%.

V. Selectively Using Multiple Entropy Models in Adaptive Coding/Decoding.

In some embodiments, an encoder such as one shown in Figure 2, 4, or 6 performs
adaptive entropy coding in which the encoder selectively uses multiple entropy models. A
corresponding decoder (such as one shown in Figure 3, 5, or 7) performs adaptive entropy
decoding in which the decoder selectively uses multiple entropy models. The techniques
and tools for selective use of multiple entropy models are applicable in various scenarios
in which symbol values have multiple probability distributions, including lossless and
lossy compression and decompression of audio, video, images, or any other data.

A. Example Problem Domain.

Adaptive coding of symbols is often used to improve the efficiency of entropy
coding when the probability distribution for symbol values varies. Adaptive arithmetic
coding can directly use different or changing probability distributions. For adaptive
variable length coding (such as adaptive Huffman coding), different entropy models for
symbol values are embodied in different or changing VLC tables.

With backward adaptation, coding/decoding adapts based upon symbols already
processed. With forward adaptation, information describing the adaptation is explicitly
signaled. For example, a table switch code is signaled to indicate a VLC table to be used

for a series of symbols.

38



10

15

20

25

30

WO 2007/011653 PCT/US2006/027231

Adaptation can be accomplished by dynamically varying a probability distribution
(or the corresponding VLCs used for variable length coding/decoding). Or, adaptation can
be accomplished by choosing from a fixed set of different, pre-trained probability
distributions (or corresponding VLC tables).

One drawback of using multiple different distributions/VLC tables is the memory
needed for the encoder and decoder, since the memory used grows linearly with the
number of distributions/VLC tables. For example, if 16 VLC tables are used, then
approximately 16 times the memory is used for VLC tables in the encoder and decoder,
compared to the case of a single VLC table.

In summary, a problem has been described which techniques and tools for selective
use of multiple entropy models can address. Such techniques and tools need not be
applied so as to address this problem, however.

B. Selectively Using Multiple Entropy Models.

Selectively using multiple entropy models can significantly reduce resource usage
for multiple distributions/VLC tables. At the same time, much of the encoding gain
associated with using multiple entropy models can still be achieved. In various common
scenarios, selectively using multiple entropy models involves choosing between different
distributions/VLC tables for some but not all symbol values. More generally, it involves
choosing between different distributions/VLC tables that are organized hierarchically to
enable more adaptivity for some symbol values and less adaptivity for other symbol
values.

Suppose a set of symbol values includes certain more probable symbol values and
certain less probable symbol values, according to some test. To reduce the memory used
for distributions/tables, an encoder and decoder use multiple distributions/tables for the
more probable symbol values, but the less probable symbol values are not represented in
multiple distributions/tables. This reduces the memory used for the multiple
distributions/tables with a negligible penalty on coding gain. (In many situations, a
relatively small fraction of symbol values accounts for a large percentage of a probability
distribution.) In particular, if the entropy model is viewed as being conditional for a given
state of adaptation, there is a different distribution for the more probable symbol values in
the respective different states. The relative distribution for the less probable symbol
values is identical in the different states, however.

For a set of 256 symbol values, if 32 of the symbol values are used most of the
time, an encoder and decoder can switch between 6 VLC tables for the 32 symbol values,
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where each of the 6 VLC tables also includes an escape code for switching to a single
VLC table for the other 224 symbol values.

Or, suppose that for the set of 256 symbol values, 7 of the symbol values are used
most of the time, with 21 of the symbol values used occasionally and the rest of the
symbols used only rarely. The encoder and decoder can switch between 11 VLC tables
for the 7 most common symbol values, where each of the 11 VLC tables includes an
escape code for switching to 2 VLC tables for the 21 next most common symbol values.
(The escape code can be followed by table selection information for forward adaptation.)
Each of the 2 VLC tables for the 21 symbol values includes an escape code for switching
to a VLC table for the rest of the symbol values.

Figure 22 shows an example that is more complex in terms of hierarchical
organization of the entropy models/states (e.g., distributions, VLC tables). An encoder
and decoder use 8 entropy models for the symbol values B, F, H, and I, where each of the
8 entropy models also incorporates two switch points. For example, if the encoder and
decoder use probability distributions for the entropy models, a switch point is a special
switch probability value in a distribution. If the encoder and decoder use VLC tables for
the entropy models, a switch point is an escape code or other special VLC. In the 8
entropy models, the first switch point is for switching to entropy models for the symbol
values 4 and C, and the second switch point is for switching to entropy models for the
symbol values D, E, G, J, and K.

The encoder and decoder use 3 entropy models for the symbol values 4 and C.
The encoder and decoder use 4 entropy models for the symbol value E, J, and K, where
each of the 4 entropy models also incorporates a switch point. This switch point is for
switching to an entropy model for the symbol values D and G.

In Figure 22, a subset of symbol values has fewer associated entropy models than
its superset. This is consistent with many common scenarios in which more adaptivity is
enabled for more probable symbol values and less adaptivity is enabled for less probably
symbol values. Alternatively, however, a subset can have more associated entropy models
than its superset. .

Selection between multiple entropy models can be through a backward adaptive
mechanism or a forward adaptive mechanism. The multiple entropy models themselves
can be fixed and pre-trained, or they can dynamically change. The entropy models can be
applied in various entropy coding and decoding schemes. Arithmetic coding and decoding

can selectively use multiple probability distributions for some but not all symbol values.
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Or, variable length coding and decoding can use multiple VLC tables for some but not all
symbol values.
1. Adjusting Distributions for States.

For an encoder or decoder to selectively uses multiple entropy models for some
symbol values (but not all symbol values), the multiple entropy models are adjusted
accordingly. The following analysis illustrates adjustments to actual probability
distributions for a set of states, with reference to a simple example.

Suppose there are N states labeled S(j)=S(0), S(1), ... , S(N-1) for adapting a
distribution of M symbol values, labeled X (i) =X(0), X(1), ... , X(M-1).

Py indicates the probability distributions for the states, with P ;) being the
probability that the state is S(j). Fg(;), x indicates the probability distribution for the
symbol values when in state S(j), with Fg(j) x(;) being the probability that a symbol has

value X () when in state S(;). Out of the M symbol values, L symbol values are
designated as being more probable, and M - L symbol values are designated as being less
probable. The set of the L more probable symbol values is set O, and the set of the M - L
less probable symbol values is set R.

The designation of more probable versus less probable symbol values is
implementation dependent and flexible, although proper designation leads to more
efficient coding. It is not required that Fg( ;) x(4)> Fs(),x () for all states S(j), where
X(q) indicates a symbol value in O and X(r) indicates a symbol value in R. In other words,
it is not required that a given “more probable” symbol value have a higher probability than
a given “less probable” symbol in every state.

A revised distribution P’ S(NX for the state S(j) approximates the actual symbol
value distribution Py ) y for the state S(j). P's(j), x approximates Fg(;) x such that:
(1) the conditional distribution P'g( ) x(;),g for symbol values X (i) in set R is the same
for all S(j), but (2) the distribution for symbol values in set Q does not change for any
given S(f) (P's(j),xq) = Fs(j),x ) for symbol values X (7) in set 0).

Suppose N =3 and M =5. The set of states is N = {§(0),5(1),S(2) }, and the set of
symbol values is M = { X (0), X (1), X (2),X(3), X (4) }.

Also suppose state probabilities are Pg) = 0.5, Pg(y = 0.2, Pg(z) = 0.3, as shown

in Table 3. Thus, the probability of being in state 0 is 50%, the probability of being in
state 1 is 20%, and the probability of being in state 2 is 30%.
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Table 3. State probabilities,

Table 4 shows the actual probability distributions Fg( ), x(;) for the symbol values

in each of the states.

X(0) X(1) X(2) X(3) X4
Pscoy,xq) | 0.09 0.4 0.04 0.4 0.07
Psay,x(@y | 0.055 0.7 0.03 0.2 0.015
Ps),xay | 0.165 0.1 | 0.09 0.6 0.045

Table 4. Actual probability distributions for symbol values in the states.
As an arbitrary threshold, suppose a symbol value X(7) belongs to the more

probable set Q if, for any of the states, the probability of the symbol value in the state
times the probability of being in that state is larger than 0.1. That is if Pg(;y ¥y * Fs(})

> 0.1 for any S(j) fora given X (), then the symbol value X (i) is in set Q. Otherwise,
the symbol value X (i) is in set R. For the distributions in Table 4, L =2, Q =
{X(1),X(3)} and R= { X(0), X(2),X(4)}. (Note that even though FPg(y), Xx©) >

Psy, x(1)» the symbol value X(1) is designated as a more probable symbol value while

the symbol value X(0) is designated as a less probable symbol value. In state S(1), X (1)
has a very high probability.) Alternatively, the threshold value and/or the test is different.
For example, the threshold is set in terms of ﬁercentage of symbol values, or the test
requires a high probability in multiple different states. In general, for a given constraint on
the size of sets Q and R, an optimal partition can be found by looking at the relative
entropy between the actual and approximate distributions. (In general, as used herein, the
term “optimal” describes a solution that satisfies some set of criteria better than other
solutions according to some parameterization or modeling, which may or may not be
optimal in absolute terms depending on circumstances, and the term “optimize” is used to
indicate the process of finding such a solution.)

In the approximation, P's(j) x(;) = Fs(j),x() for symbol values X' (7} in set Q.
The distribution for a state S(j) is unmodified for symbol values in set Q. For symbol
values X (7) in set R, however, the approximate distribution is different. To start, the

actual conditional distributions Py x(;),z for the symbol values in set R are computed.

For the symbol values in set R the actual conditional distributions (removing the
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contributions of the symbol values X (1), X (3) in set 0, and weighting with just the

contributions from X (0), X (2), X (4)) are given in Table 5. Fg(qy x(0),z is 0.09/(0.09 +

0.04 +0.07) = 0.45, and Py x1)z i50.04/ (0.09 +0.04+0.07) = 0.2,

X(0) X(2) X(4)
Pso),x(@)r | 0.45 0.2 0.35
Fsay,x@,R | 0.55 0.3 0.15
Psoy,x@,R | 0.55 0.3 0.15
Table 5. Actual conditional distributions for symbol values in set R.
5 The approximate conditional distribution P'g( ;) x(;),z 1s then cbmputed as:
S(N-1)
Pspnxar= 2 By *Bspxonr .
S(/)=5(0)

That is, the approximate conditional distribution when in set R is the weighted

average (by Ps(;)) of the actual conditional distribution Py ;) x(),r over the N states.
For the values in Tables 4 and 5, the approximate conditional distribution P'g(;y x(i),r

10 when in set R is shown in Table 6. For X(0), P'g( ) x(0),» is (0.5 * 0.45) + (0.2 * 0.55)
.+ (0.3 *0.55)=0.5.

X(0) X2) X(4)
P's(j), X (i),R 0.5 0.25 0.25

Table 6. Approximate conditional distribution for symbol values in set R.

The final approximate distribution for each state S(j) is:

P'sgpxar* 2 Bspxe HXE) e R
P's(i),x()= X(@)eR _ ).
Fs(j).x () if X@) e O

15 Thus, for symbol values in set 0, the actual probability value in state S(;) is used
in the approximate distribution for state S(7). For a symbol value in set R, the
approximate conditional distribution probability P'g(;y x(;),z for the symbol value is
multiplied by the sum of the actual probabilities for the symbol values in set R for the state
S(j). For symbol value X'(0) and state S(0), P'g(0), x(0)is 0.5 * (0.09 +0.04 +0.07) =

20  0.1. For the other values in Tables 4 and 6, the final approximate probability distributions
for the states S(j) are given in Table 7.
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X(0) X1 X(2) X(3) X(4)
Fso,x@) | 0.1 0.4 0.05 04 | 0.05
Psa),x@ | 0.05 0.7 0.025 0.2 0.025
Psey,x@) | 0.15 0.1 0.075 0.6 0.075

Table 7. Final approximate distributions for symbol values in the states.
Basically, comparing Table 7 to Table 4, the distributions are unchanged for the
more probable symbol values X (1), X(3) , and the distributions have been changed for the

less probable symbol values X(0), X'(2), X (4) to enforce the condition that the relative

probability for symbol values within set R is the same from state to state. Namely, in each
state in Table 7, X(0) is twice as likely as X(2), and X (0) is twice as likely as X (4).

For the general case, starting out with N states for M symbol values, the number of
states for some of the symbol values (set R) can be reduced by clustering the N conditional
distributions for set R into P distributions where P < N. This procedure can then be
repeated for some other subset of the M symbol values. It can also be repeated recursively
on the P clustered distributions of set R, where the set R has |R| symbol values (]
representing the cardinality or number of elements in the set R) with P states. This
imposes constraints on the N states (or distributions, or clusters) for the A/ symbol values.
These constraints can be applied after the N states for M symbol values have been fixed, or
for more optimality can be applied during the training phase itself. The training will start
out with a large number of distributions for the M symbol values, and will result in N
clustered distributions such that they satisfy the extra constraints on conditional
distributions.

2. Example VLC tables.

The approximate distributions for symbol values in different states can be used in
various types of adaptive entropy coding and decoding, including Huffman coding and
decoding and other variable length coding and decoding.

A Huffman code table can be viewed as a tree, where each leaf of the tree
corresponds to a symbol value. The left branch of the tree has an association with one
binary value (e.g., 0), and the right branch of the tree has an association with the opposite
binary value (e.g., 1). The trees shown in Figure 23 correspond to the approximate
distributions shown in Table 7.

In Figure 23, the dashed portions of the respective trees are for the symbol values
in set R, and the other parts of the trees are for the symbol values in set Q. In the
approximate distributions shown in Table 7, the conditional distribution of the symbol

values in set R is the same regardless of state, so each of the trees in Figure 23 can have a
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common and identical branch for the symbol values in set R. The placement of the
common, identical branch can be in any place in a tree, generally depending on how the
aggregate of the probabilities of the symbol values represented in the common branch
compares to the probabilities of other symbol values for the tree. Thus, the common
branch could be higher or lower from tree to tree.

For any given tree/state in Figure 23, the VLCs for all symbol values in the set R
have the same prefix as indicated by the placement of the branch in the tree. In addition,
regardless of state in Figure 23, each symbol value in the set R has a common suffix as
indicated by the common, identical branch. For the trees in Figure 23, example Huffiman

codes are as follows.

Huffman code Huffman code Huffman code
for S(0) for S(1) for S(2)
X(0) 110 110 100
X(1) 0 0 11
X(2) 1110 1110 1010
X(3) 10 10 0
X(4) 1111 1111 1011

Table 8. Example Huffman codes and tables.
The same table can be used for states S(0) and S(1). Instates S(0) and S(1), the
common prefix (shown underlined) for symbol values in the set R is “11” regardless of the

symbol value in set R. In state S(2), the common prefix (shown underlined) for symbol
values in the set R is “10”. In states S(0), S(1), and S(2), the suffixes (shown boldfaced)

for the respective symbol values are the same. (The suffix for X(0) is “0,” the suffix for
X(1) is “10,” and the suffix for X(2) is “11.”)

In this case, the Huffman codes for the approximated distributions facilitate, and
can be implemented with, two-stage coding/decoding for symbol values in the set R. The
codes shown in Table 8 can be further split as shown in Tables 9 and 10.

Huffman code | Huffian code | Huffman code
for S(0) for S(0) for S(2)
X(1) 0 0 11
X(3) 10 10 0
X(0), X(2), X(4) 11 11 10

Table 9. First-stage code tables for respective states.
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Huffman code for
S(0), S(1), and S(2)
X(0) 0
X(2) 10
X&) 11

Table 10. Second-stage code table for all of the states.

For a symbol having a value in the set R, the encoder first codes an escape code
representing all of the symbol values in the set R. This signals a switch from a first code
table for symbol values in the set Q for a specific state to a second code table for symbol
values in the set R across all of the states. The encoder then codes the appropriate code
from the second code table.

In a more complex, hierarchical organization of Huffman code tables, the Huffman
code tables can include multiple common branches, each common branch corresponding
to a single conditional distribution for a different subset of symbol values. In a two-stage
implementation, the first-stage Huffman code tables can include multiple escape codes,
one for each of the multiple common branches.

More generally, the Huffman code tables can be organized in an arbitrary
hierarchy, with escape codes (and possible other selection information) used to switch to
another Huffman code table or set of Huffinan code tables.

In a particular table, an escape code can also be used to switch to a fixed length
coding/decoding scheme for certain symbol values (rather than switch to another table).

Alternatively, other types of VLC tables are constructed that do not follow the
rules of Huffman codes. For example, a single VLC table associates VLCs with symbol
values in set R for all of a group of states, and multiple VLC tables (one table per state of
the group) associate VLCs with symbol values in set Q.

Moreover, although the preceding examples illustrate fixed, pre-trained code
tables, alternatively, code tables dynamically vary their codes depending on the symbol
values that have been processed. For such dynamically varying tables, the encoder and
decoder can still selectively use multiple code tables for some symbol values and a single
code table for other symbol values.

In general, if there are N states for M symbol values, then there are N VLC tables,
or N trees if using Huffman codes. If there are L disjoint subsets of the M symbol values,
each of the L subsets with P, states, for /=0, 1, ..., L-1, and with P; <N for all /, then
each of N trees will have L branches (labeled by, by, ..., b1.1), each branch b; being chosen

from one of P; common branches available for that subset /. Furthermore, if any of the L -
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subsets is recursively partitioned again into subsets, with each subset having fewer states
than its parent set, the same can be said about branches off of the P; branches.
3. Example Distributions for Arithmetic Coding/Decoding.

In other encoders/decoders, approxifnate distributions are used in arithmetic
coding/decoding. Arithmetic coding generally involves representing a series of symbols
as a single number within a given range. Typically, the number is a fractional number
between 0 and 1. A symbol is coded by putting it in part of a range, where the range is
partitioned depending on the probability distribution of symbol values.

For use in arithmetic coding and decoding, the approximate distributions shown in
Table 7 could be split into Table 6 and Table 11. The switch value in Table 11 for X(0),
X(2), and X(4) indicates a change from one of the states/distributions shown in Table 11 to
the state/distribution shown in Table 6.

X1 X(3) | X(0), X(2), X(4)
Psoynx@ | 04 0.4 0.2
Psy,x ) 0.7 0.2 0.1
Fs2),x0) 0.1 0.6 0.3

Table 11. Approximate distributions with symbol values in Q combined.

Although the preceding example illustrate fixed, pre-trained distributions,
alternatively, distributions dynamically vary depending on the symbol values that have
been processed. For such dynamically varying distributions, the encoder and decoder can
still selectively use multiple distributions for some symbol values and a single distribution
for other symbol values.

4. Example Training to Determine Entropy Models.

When an encoder and decoder selectively use multiple entropy models for
symbols, the entropy models ultimately depend on probability distribution information for
the symbols. In some implementations, a tool such as an encoder or statistical analysis
software uses the following approach to determine states and probability distributions for
entropy models.

Figure 24 shows a two-stage technique (2400) for clustering probability
distributions into states for a multiple entropy model coding/decoding scheme. The
technique (2400) treats probability distributions of symbol values as training vectors, and
the training vectors are grouped into clusters, similar to clustering approaches used for
vector quantization schemes.

To start, the tool obtains (2410) actual probability distributions for training vectors.

The training vectors are from a training set of representative sources. For audio
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coding/decoding, for example, the probability distribution of symbol values in a sub-frame
becomes one training vector. For general audio coding/decoding, the training set includes
multiple audio sources such that probability distributions are obtained for multiple sub-
frames of the different audio sources. Training vectors can be obtained from training at
various bit rates and/or quality settings.

The tool then clusters (2420) the training vectors using a first cost metric. For
example, the first cost metric is mean squared error (“MSE”). The clustering itself can use
a variation of the generalized Lloyd algorithm (“GLA”) as explained with reference to
Figure 25 or use some other mechanism. Basically, in the GLA variation, the tool
iteratively clusters training vectors into a given number of clusters, iterating between
finding an optimal encoder for a given decoder and finding an optimal decoder for a given
encoder. After some number of iterations, the tool finds a set of clusters such that the first
cost metric is minimized.

The tool then refines (2430) the clusters using a second cost metric. For example,
the second cost metric is a relative entropy metric. Itakura-Saito distance is one way to
measure relative entropy between two probability distributions. In the refinement (2430),
parts of the clustering logic can be the same or different than parts of the clustering logic
used with the first cost metric.

Thus, according to Figure 24, the tool uses a two-stage training process. In the
first stage, the tool uses the first cost metric (e.g., MSE) to get approximate probability
mass function (“PMF”) clusters for the distributions. In the second stage, the tool uses the
second cost metric (e.g., Itakura-Saito distance) to further refine the PMF clusters. MSE is
relatively simple to compute, but does not model entropy as well as the relative entropy
metric for coding/decoding purposes. On the other hand, relative entropy is an effective
metric for refining clusters, but can result in non-optimal clustering when it is the only
metric used. In many cases, the two-stage training is not only faster in terms of
complexity (since relative entropy is more complex to compute), but also results in better
clusters for coding/decoding applications.

Alternatively, a tool uses another approach to determine states and probability
distributions. For example, the tool uses a metric other than MSE or relative entropy for
the first or second cost metric. Or, the tool uses a single cost metric in a single-stage
process.

Figure 25 shows a technique (2500) for clustering training vectors according to a
variant of GLA. As in Figure 24, the technique (2500) treats probability distributions of

symbol values as training vectors, and the training vectors are grouped into clusters.
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To start, the tool computes (2510) a single cluster from training vectors. For
general audio coding/decoding, for example, the training vectors are probability
distributions for sub-frames from different audio sources such as audio files encoded at
different bit rates and/or quality settings. The number of training vectors obtained
depends on implementation. In one implementation, the tool obtains about 100 times
more training vectors than final clusters computed. The single cluster is the centroid of
the training vectors, computed by averaging the training vectors, or some other
combination of the training vectors.

The tool then splits (2520) the single cluster into multiple clusters. For example,
the tool uses principal component analysis to split the single cluster into two clusters; one
is the original cluster, and the other is the original cluster plus an implementation-
dependent constant times the principal component (e.g., the other is a cluster that is at
some offset along the direction of the principal component). Alternatively, the tool uses
some other analysis to split the cluster into multiple clusters.

The tool classifies (2530) the training vectors between the multiple current clusters
according to some cost metric. For example, the cost metric is MSE, relative entropy, or
some other metric. MSE of a training vector versus a cluster indicates the Euclidean
distance between the probability distribution points of the training vector and
corresponding points of the cluster. The relative entropy between a training vector and

cluster can give the difference between a training vector and cluster as follows:

—Z training _vector, *log, (cluster,) 3,
k

where k indicates points in the training vector and cluster. Less formally, the relative
entropy indicates a bit rate penalty due to mismatch between the training vector and
cluster. The tool classifies a training vector with the cluster against which the training
vector has the lowest MSE, lowest relative entropy, etc.

The tool re-computes (2540) the current clusters from the training vectors as
classified. For example, for each current cluster, the tool computes the centroid of the
training vectors classified to that cluster. Alternatively, the tool re-computes each current
cluster as some other combination of the training vectors classified to that cluster.

The tool determines (2545) whether the clusters have stabilized. For example, the
tool checks whether the change in clusters from before versus after the recomputing
(2540) satisfies some criteria. One criterion is that the clusters have not shifted by more
than some threshold amount in the recomputing (2540), where the threshold amount

depends on implementation. Alternatively, the tool considers other and/or additional
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criteria. If the clusters have not stabilized, the tool classifies (2530) the training vectors
between current clusters (as recomputed (2540)) according to the cost metric.

When the current clusters have stabilized, the tool determines (2550) whether there
are enough clusters. In general, the desired‘ number of cluéters can be set to trade off
memory usage versus encoding performance. Having more clusters tends to lead to more
states and adaptivity in entropy models, at the cost of increased memory usage for storing
distributions, VLC tables, etc. When forward adaptation is used, having more clusters also
means that more side information is signaled (e.g., to indicate distributions, tables, etc.).
Having fewer clusters, in contrast, tends to increase mismatch between training vectors
and the final clusters, which usually indicates increased mismatch between the entropy
models and actual distributions of symbol values during encoding.

If the desired number of clusters has not been reached, the tool splits (2560) some
or all of the current clusters. For example, the tool uses principal component analysis or
some other analysis to split a cluster into two clusters. Suppose the tool seeks G final
clusters and currently has F current clusters, where F' < G. If splitting each of the F
current clusters would result in too many clusters, the tool can split each of the G - F top
current clusters (e.g., “top” in terms of how many training vectors are classified to the
current clusters) into two clusters. Or, the tool can simply split the top cluster in each
iteration or use some other rule for splitting. The tool then classifies (2530) the training
vectors between current clusters (as split (2560)) according to the cost metric.

When the current clusters have stabilized and the desired number of clusters has
been reached, the technique (2500) ends. The classifying (2530), recomputing (2540), and
splitting (2560) essentially constitute an iteration of the GLA variant, and during the
iterations the cost metric will decrease.

| The technique (2500) of Figure 25 can be incorporated into the technique (2400) of
Figure 24 as follows. The tool performs the technique (2500) of Figure 25 using MSE as
the cost metric until the desired number of clusters is reached. At that point, the tool
iteratively performs classifying (2530), recomputing (2540), and checking (2545) stability
using relative entropy as the cost metric until the clusters stabilize / do not shift by more
than some threshold amount.

The techniques (2400, 2500) can be used to produce final clusters with probability
distributions that approximate actual distributions but have the same conditional
distribution for certain symbol values. In terms of the analytical framework of section
V.A.1, the techniques (2400, 2500) can be used to produce approximate probability

distributions such as those shown in Table 7 by, in the classifying and clustering
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operations, adding a constraint that the conditional distribution for symbol values in a set

R be the same for all of the clusters/states (P'g( ), x(),R is the same for all states S(;)).

Essentially, those dimensions of the clusters which correspond to symbol values in set R

are constrained as shown in Equations (1) and (2). In the analysis, the probability Pg(j) of

being in a given state is indicated by the number of training vectors classified in the cluster
for that state. Another constraint is that the dimensions of each of the clusters sum to 1.

With reference to Figure 25, after the recomputing (2540) the current clusters, one
or more conditional distribution constraints can be imposed. In general, suppose there are
N states for M symbol values, and that there are L subsets of the M symbol values, each of
the L subsets with Py states, P; <N, [=0, 1, ...., L-1, and E; elements. All of the symbol
values within a given one of the L subsets can be grouped into a common (escape/switch)
symbol value. There will be L such escape/switch symbol values. Then, training proceeds
to find N clusters (or distributions) for the M - (Ey + E1 + ... + E.1) + L symbol values
(subtracting off the E; elements in the L subsets, and adding L elements for the
escape/switch symbol values). Then, for each of the L subsets of the M symbol values,
conditional distribution(s) are computed within the subset. The training is repeated on
each of the L subsets to find P, clusters, =0, 1, ..., L-1, for each of these subsets. The
training vectors for this will be the conditional distribution(s) within the L subsets,
respectively. If any of the L subsets is further sub-divided, the procedure can be
recursively repeated for that sub-divided subset /, since there are now P; states for E;
symbol values.

As for designating which symbol values are in sets O and R, initially this is based
upon the probability distribution of the single starting cluster. Subsequently, the A
constituents of sets O and R depend on the probability of being in the respective states
(proportions of the training vectors in the respective clusters) and the probability
distributions for the clusters.

5. Alternatives.

Many of the preceding examples involve using multiple distributions/tables for
some symbol values and using a single distribution/table for other symbol values.
Although this configuration typically reduces memory usage without significantly hurting
entropy coding performance, the techniques and tools described in section V are more
generally applicable to hierarchically organized entropy models. An encoder or decoder

can selectively choose between different entropy models in a hierarchical organization that
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enables more adaptivity for some symbol values and less adaptivity for other symbol
values.

Hierarchically organized entropy models can reference multiple entropy models
per switch (e.g., not just switching to a single entropy model for less probable symbol
values). For example, a set of Huffman code tables at some level includes one Huffman
code table or multiple Huffman code tables. Training can occur in multiple phases. Ina
first training phase, the symbol values are designated as being in a set Q or a set R, where
the conditional distribution for symbol values in set R is the same for all states. Then, ina
subsequent training phase for the symbol values in set R, the earlier constraint on
conditional distribution for symbol values in set R is lifted, and the probability
distributions for the symbol values in set R are classified into multiple clusters/states for
different entropy models.

Each member of a set of entropy models can include multiple switch points to
different sets of entropy models at another level. For example, for forward adaptation,
each table of a first set of Huffman code tables includes two escape codes — a first escape
code to a second set of one or more Huffman code tables, and a second escape code to a
third set of one or more Huffman code tables. As for training, symbol values can be
designated as being in a set Q for a first set of entropy models, set R for a second set of
entropy models, or set S for a third set of entropy models. The conditional distribution for
symbol values in set R (ignoring symbol values in Q and S) is the same for all states, and
the conditional distribution for symbol values in set S (ignoring symbol values in O and R)
is the same for all states.

Aside from additional breadth, hierarchically organized entropy models can
include three, four, or more levels of entropy models. For example, for forward
adaptation, each table of a first set of Huffiman code tables includes an escape code to a
second set of Huffman code tables, and each table of the second set of Huffman code
tables include an escape code to a third set of Huffiman code tables. Training can occur in
multiple phases. In a first phase, symbol values are designated as being in a set Q for a
first set of entropy models or a set R for other sets of entropy models. The conditional
distribution for symbol values in set R (ignoring symbol values in Q) is the same for all
states. Then, in an additionél training phase for the symbol values in set R, this constraint
on conditional distribution is lifted, and the symbol values from the set R are designated as
being in a set S for a second set of entropy models or a set T for any other sets of entropy
models. In this phase, the conditional distribution for symbol values in set T (ignoring

symbol values in S) is the same for all states.
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Aside from variable length (e.g., Huffman) coding and decoding and arithmetic
coding and decoding, other types of entropy coding and decoding can incorporate selective
use of entropy models. For example, variable to variable encoding and decoding can
incorporate VLC tables in a hierarchical organization.

C. Example Techniques for Encoding.

Figure 26 shows a technique (2600) for encoding symbols with selective use of
multiple entropy models. An encoder such as the encoder shown in Figure 2, 4, or 6
performs the technique (2600).

In a waveform audio encoder, the symbols are typically for quantized spectral
coefficients. The quantized spectral coefficients can be pre-processed (e.g., by coefficient
prediction or coefficient reordering). Each of the symbols can represent a quantized
spectral coefficient. Or, each of the symbols can represent a group of quantized spectral
coefficients. For vector Huffman coding, a symbol represents, for example, a group of 4
quantized spectral coefficients. For run-level coding, a symbol represents, for example, a
run-level pair. )

For a series of symbols, the encoder selects (2610) an entropy model from a first
set of entropy models. For example, the encoder selects a Huffman code table from
among multiple available Huffman code tables for vector Huffman coding or run-level
coding. Alternatively, the encoder selects an entropy model as used in another entropy
encoding scheme. In some implementations, the encoder selects the entropy model
depending on contextual information. In other implementations, the encoder selects the
entropy model after evaluating the performance of encoding using the various entropy
models. One example of a selection process for Huffman code tables using a trellis
structure is described below. Alternatively, the encoder uses another mechanism to select
the entropy model.

Returning to Figure 26, the encoder optionally signals (2620) information
indicating the selected entropy model. For forward adaptation, the encoder explicitly
signals information indicating the selected entropy model. One forward adaptation
mechanism is described in detail below for Huffman code table switching. Alternatively,
the encoder uses another signaling mechanism. For backward adaptation, the selection of
the entropy model is inferred from context available at the decoder.

The encoder then entropy encodes (2630) the series of symbols using the selected
entropy model. At any switch points in the entropy model, the encoder can switch to

another set of one or more entropy models. For example, the encoder uses an escape code
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in a first Huffman code table to signal a swiich to a second Huffman code table, then
encodes a symbol using the second Huffman code table.

The encoder then signals (2640) the entropy coded symbols. When any switching
has occurred, the encoder can also signal switching information such as escape codes or
other model switching information for selection within a model set.

The encoder determines (2650) whether to continue with the next series and, if so,
selects (2610) the entropy model for the symbols of the next series. For example, when
encoding quantized spectral coefficients using Huffman code tables in one
implementation, the encoder is allowed to change code tables at bark boundaries. In other
words, the bark boundaries, which partition the frequency spectrum, act as possible change
positions for changing the Huffman code table selected from a first code table set. If the
coefficients for the current symbol being encoded extend past a bark boundary (e.g.,
because the symbol represents a vector of coefficients or run-level pair of coefficients that
crosses the boundary), then the end of the current symbol’s coefficients becomes the valid
change position. Alternatively, the encoder changes selection of the entropy model from
the first model set at other change positions, and the series of symbols encoded according
to the selected entropy model has some other duration.

As noted above, in one implementation, an encoder selects a ﬁuffman code table
using a trellis structure for evaluation of different tables. The encoder encodes all of the
symbols between two valid table change positions (which are bark boundaries) with all of
the possible tables. The encoder tracks the number of bits used per table to encode the
symbols. The encoder constructs a trellis to find the best possible encoding, taking into
account the bits to be signaled if a table is changed.

Suppose b, is the minimum number of bits used when encoding up to table change
position ¢, with table i being the last table used. The bit count r; is the bits needed to
encode the symbols between change position ¢ and change position # + 1 using table i. The
bit count s, is the bits needed to encode a table change from table i to table & at change
position £. In other words, the last table being used at change position ¢ was table , and
table % is now used to encode up to change position ¢ + 1. The table n,; is the table used at
change position # -1 in order to get the optimal encoding in which the current table at
change position ¢ is table . Then:

n

i = arg{nm(b,,k +7,+S)

(4).

b = mkm(bt,k +E S
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The encoder determines the optimal encoding for the entire sub-frame or other part
of a sequence by finding the i which minimizes byuay,;, Where tmax is the maximum value
for t. The encoder finds the optimal tables by tracing the optimal path by looking at the
value of . The bits needed to code a table change are essentially logy(number_of_ tables)
+ loga(number_of barks_left)+1. When a table is changed, the encoder signals one bit to
indicate whether this is the last table used, and if it is not the last table used, the encoder
signals log(number_of barks_left) to encode to how many bark bands the table applies.

D. Example Techniques for Decoding.

Figure 27 shows a technique (2700) for decoding symbols with selective use of
multiple entropy models. A decoder such as the decoder shown in Figure 3, 5, or 7
performs the technique (2700).

In a waveform audio decoder, the symbols are typically for quantized spectral
coefficients. If the quantized spectral coefficients have been pre-processed (e.g., by
coefficient prediction or coefficient reordering) during encoding, the coefficients are post-
processed (e.g., by coefficient prediction or coefficient reordering) following entropy
decoding. Each of the symbols can represent a quantized spectral coefficient. Or, each of
the symbols can represent a group of quantized spectral coefficients. For vector Huffman
decoding, a symbol represents, for example, a group of 4 quantized spectral coefficients.
For run-level decoding, a symbol represents, for example, a run-level pair.

For a series of symbols, the decoder optionally parses (2710) information
indicating the selected entropy model. For forward adaptation, for example, the decoder
parses information indicating the selected entropy model using 2 mechanism that mirrors
the encoder-side signaling.

The decoder selects (2720) an entropy model from a first set of entropy models.
For example, the decoder selects a Huffiman code table from among multiple available
Huffman code tables for vector Huffman decoding or run-level decoding. Alternatively,
the decoder selects an entropy model as used in another entropy decoding scheme. In
some implementations, the decoder selects the entropy model depending on contextual
information for backward adaptation, In other implementations, the decoder selects the
entropy model based upon information signaled by an encoder and parsed (2710) from the
bit stream.

The decoder then entropy decodes (2730) the series of symbols using the selected
entropy model. At any switch points in the entropy model, the decoder can switch to

another set of one or more entropy models. For example, the decoder receives an escape
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code for a first Huffman code table that indicates a switch to a second Huffman code table,
then decodes a symbol using the second Huffman code table.

The encoder then outputs (2740) information for the entropy decoded symbols, for
example, quantized spectral coefficients ready for subsequent processing. ’

The decoder determines (2750) whether to continue with the next series and, if so,
selects (2710) the entropy model for the symbols of the next series. For example, when
decoding quantized spectral coefficients using Huffman code tables in one
implementation, the decoder is allowed to change code tables at bark boundaries. If the
coefficients for the current symbol being decoded extend past a bark boundary (e.g.,
because the symbol represents a vector of coefficients or run-level pair of coefficients that
crosses the boundary), then the end of the current symbol’s coefficients becomes the valid
change position. Alternatively, the decoder changes selection of the entropy model from
the first model set at other change positions, and the series of symbols decoded according
to the selected entropy model has some other duration.

E. Results.

Coding using an approximated distribution for less probable symbol values allows
savings on memory needed for distributions or code tables in the encoder and decoder. In
terms of the analytical framework of section V.A.1, the encoder and decoder store the

distributions and/or code tables for Py ) y(4y- Thatis, the encoder and decoder store a

distribution and/or table per state S(;) for symbol values X (i) in set Q. For symbol

values X (i) in set R, the encoder and decoder store the distribution and/or table for a
single distribution P'g( ) x(;),Rr -

Suppose a table takes up B bytes of memory for each state, and that there are 16
states. Then, in the typical full tables case, the encoder and decoder would each need 16 *
B bytes of memory for the 16 tables. However, if only 10% of the symbol values are
designated as being more probable (in set (), then a simple approximation of the memory
needed is (16 * B * 1) + (B * .9) =2.5 * B. Thus, the memory needed has been reduced
by more than 6 times, with only a slight reduction in entropy coding gains, compared to
the full tables case.

In view of the many possible embodiments to which the principles of the disclosed
invention may be applied, it should be recognized that the illustrated embodiments are
only preferred examples of the invention and should not be taken as limiting the scope of
the invention. Rather, the scope of the invention is defined by the following claims. We

therefore claim as our invention all that comes within the scope and spirit of these claims.
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We claim:

1. A method comprising:

for plural symbols, selecting an entropy model from a first model set that includes
multiple entropy models, each of the multiple entropy models of the first model set
including a model switch point for switching to a second model set that includes one or
more entropy models;

processing the plural symbols using the selected entropy model; and

outputting results of the processing.

2. The method of claim 1 wherein an encoder, performs the selecting, the
processing and the outputting during encoding, wherein the processing includes entropy
encoding.

3. The method of claim 1 wherein a decoder performs the selecting, the processing
and the outputting during decoding, wherein the processing includes entropy decoding.

4. The method of claim 1 wherein the multiple entropy models of the first model
set and the one or more entropy models of the second model set are probability
distributions for arithmetic coding and/or decoding, and wherein the model switch point is
a model switch probability in the multiple probability distributions of the first model set.

5. The method of claim 1 wherein the multiple entropy models of the first model
set are embodied respectively in multiple VLC tables of a first table set, wherein the one
or more entropy models of the second model set are embodied respectively in one or more
VLC tables of a second table set, wherein the model switch point is an escape code, and
wherein each of the multiple VLC tables of the first table set includes the escape code for
switching to the second table set.

6. The method of claim 5 wherein the multiple VLC tables of the first table set and
the one or more VLC tables of the second table set are Huffman code tables, and wherein
the second table set includes a single Huffman code table, such that the single Huffman
code table represents a common branch in trees representing the respective multiple
Huffman code tables of the first table set.

7. The method of claim 5 wherein the multiple VLC tables of the first table set are
adapted for a first symbol value set that includes more probable symbol values, and
wherein the one or more VLC tables of the second table set are adapted for a second
symbol value set that includes less probable symbol values.

8. The method of claim 7 wherein the second table set includes a single VLC
table, and wherein the processing is for two-stage variable length coding or decoding of

those of the plural symbols having the less probable symbol values.
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9. The method of claim 1 further comprising generating the multiple entropy
models of the first model set and the one or more entropy models of the second model set,
wherein the generating includes:

clustering probability distributions according to a first cost metric, resulting in
plural preliminary clusters; and

refining the plural preliminary clusters according to a second cost metric different
than the first cost metric, resulting in plural final clusters.

10. The method of claim 1 wherein the second model set includes a single entropy
model, the method further comprising generating the multiple entropy models of the first
model set and the single entropy model of the second model set, wherein the generating
includes, for the single entropy model of the second model set, constraining less probable
symbol values to have a common conditional distribution across probability distributions.

11. The method of claim 1 wherein each of the one or more entropy models of the
second model set includes a second model switch point for switching to a third model set
that includes one or more entropy models.

12. The method of claim 1 wherein, for at least some of the multiple entropy
models of the first model set, the model switch point has a different value from model to
model.

13. The method of claim 1 wherein each of the multiple entropy models of the first
model set further includes a second model switch point for switching to a third model set
that includes one or more entropy models.

14. The method of claim 1 wherein the plural symbols are for quantized spectral
coefficients for audio data.

15. The method of claim 1 wherein the selecting is part of forward adaptive
switching,

16. The method of claim 1 wherein the selecting is part of backward adaptive
switching.

17. A system comprising one or more modules for generating entropy models by:

clustering probability distributions according to a first cost metric, resulting in
plural preliminary clusters;

refining the plural preliminary clusters according to a second cost metric different
than the first cost metric, resulting in plural final clusters; and .

setting the entropy models based at least in part upon the plural final clusters.

18. The system of claim 17 wherein the second cost metric is relative entropy.

19. A system comprising:
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means for obtaining probability distributions for symbol values; and

means for generating entropy models, including constraining plural less probable
symbol values to have a common conditional distribution across the probability
distributions without so constraining plural more probable symbol values.

20. The system of claim 19 wherein the entropy models are respectively embodied
in multiple VLC tables of a first table set and a single VLC table of a second table set,
wherein the multiple VLC tables are adapted for the plural more probable symbol values,
and wherein the single VLC table is adapted for the plural less probable symbol values.
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