(12) STANDARD PATENT
(11) Application No. AU 2005237576 B2
(19) AUSTRALIAN PATENT OFFICE
(54) Title

Muscarinic Acetylcholine Receptor Antagonists
(51) International Patent Classification(s)

C07D 453/02 (2006.01) A61K 31/44 (2006.01)
(21) Application No: 2005237576
(22) Date of Filing: $\quad 2005.04 .27$
(87) WIPO No: WO05/104745
(30) Priority Data
(31) Number
(32) Date
2004.04.27
(33) Country US
(43) Publication Date: 2005.11 .10
(44) Accepted Journal Date: 2012.01 .12
(71) Applicant(s)

Glaxo Group Limited
(72) Inventor(s)

Neipp, Christopher E.;Laine, Dramane I.;Thomas, Sonia M.;McCleland, Brent W.;Palovich, Michael R.
(74) Agent / Attorney

Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000
(19) World Intellectual Property Organization International Bureau
(43) International Publication Date 10 November 2005 (10.11.2005)

PCT
(10) International Publication Number WO 2005/104745 A3
(51) International Patent Classification: A61K 31/44 (2006.01) C07D 453/02 (2006.01)
(21) International Application Number:

PCT/US2005/014386
(22) International Filing Date: 27 April 2005 (27.04.2005)
(25) Filing Language:
(26) Publication Language:

English
(30) Priority Data:

60/565,623
27 April 2004 (27.04.2004)
US
(71) Applicant (for all designated States except US): GLAXO GROUP LIMITED [GB/GB]; Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesex UB6 0NN (GB).
(72) Inventors; and
(75) Inventors/Applicants (for US only): LAINE, Dramane, I. [FR/US]; 709 Swedeland Road, King of Prussia, PA 19406 (US). PALOVICH, Michael, R. [US/US]; 709 Swedeland Road, King of Prussia, PA 19406 (US). MCCLELAND, Brent, W. [US/US]; 709 Swedeland Road, King of Prussia, PA 19406 (US). NEIPP, Christopher, E. [US/US]; 709 Swedeland, Road, King of Prussia, PA 19406 (US). THOMAS, Sonia, M. [US/US]; 709 Swedeland Road, King of Prussia, PA 19406 (US).
(74) Agents: SIMON, Soma, G. et al.; Glaxosmithkline, Corporate Intellectual Property, UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): $\mathrm{AE}, \mathrm{AG}, \mathrm{AL}, \mathrm{AM}$, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))
of inventorship (Rule 4.17(iv))

Published:

- with international search report
(88) Date of publication of the international search report:

3 August 2006
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
(54) Title: MUSCARINIC ACETYLCHOLINE RECEPTOR ANTAGONISTS
(57) Abstract: Muscarinic Acetylcholine Receptor Antagonists and methods of using them are provided.

MUSCARINIC ACETYLCHOLINE RECEPTOR ANTAGONISTS FIELD OF THE INVENTION

This invention relates to novel quinuclidines derivatives, pharmaceutical compositions, and use thereof in treating muscarinic acetylcholine receptor mediated diseases of the respiratory tract.

BACKGROUND OF THE INVENTION

Acetylcholine released from cholinergic neurons in the peripheral and central nervous systems affects many different biological processes through interaction with two major classes of acetylcholine receptors - the nicotinic and the muscarinic acetylcholine receptors. Muscarinic acetylcholine receptors (mAChRs) belong to the superfamily of G-protein coupled receptors that have seven transmembrane domains. There are five subtypes of mAChRs, termed $\mathrm{M}_{1}-\mathrm{M}_{5}$, and each is the product of a distinct gene. Each of these five subtypes displays unique pharmacological properties. Muscarinic acetylcholine receptors are widely distributed in vertebrate organs where they mediate many of the vital functions. Muscarinic receptors can mediate both inhibitory and excitatory actions. For example, in smooth muscle found in the airways, $\mathrm{M}_{3} \mathrm{mAChRs}$ mediate contractile responses. For review, please see Caulfield (1993

Pharmac. Ther. 58:319-79).
In the lungs, mAChRs have been localized to smooth muscle in the trachea and bronchi, the submucosal glands, and the parasympathetic ganglia. Muscarinic receptor density is greatest in parasympathetic ganglia and then decreases in density from the submucosal glands to tracheal and then bronchial smooth muscle. Muscarinic receptors are nearly absent from the alveoli. For review of mAChR expression and function in the lungs, please see Fryer and Jacoby (1998 Am J Respir Crit Care Med 158(5, pt 3) S 154-60).

Three subtypes of $m A C h R s$ have been identified as important in the lungs, M_{1}, M_{2} and $\mathrm{M}_{3} \mathrm{mAChRs}$. The $\mathrm{M}_{3} \mathrm{mAChRs}$, located on airway smooth muscle, mediate muscle contraction. Stimulation of $\mathrm{M}_{3} \mathrm{mAChRs}$ activates the enzyme phospholipase C via binding of the stimulatory G protein $\mathrm{Gq} / 11$ (Gs), leading to liberation of
phosphatidyl inositol-4,5-bisphosphate, resulting in phosphorylation of contractile proteins. $\mathrm{M}_{3} \mathrm{mAChRs}$ are also found on pulmonary submucosal glands. Stimulation of this population of $\mathrm{M}_{3} \mathrm{mAChRs}$ results in mucus secretion.
$\mathrm{M}_{2} \mathrm{mAChRs}$ make up approximately $50-80 \%$ of the cholinergic receptor population on airway smooth muscles. Although the precise function is still unknown, they inhibit catecholaminergic relaxation of airway smooth muscle via inhibition of cAMP generation. Neuronal $\mathrm{M}_{2} \mathrm{mAChRs}$ are located on postganglionic parasympathetic nerves. Under normal physiologic conditions, neuronal $\mathrm{M}_{2} \mathrm{mAChRs}$ provide tight control of acetylcholine release from parasympathetic nerves. Inhibitory M_{2} mAChRs have also been demonstrated on sympathetic nerves in the lungs of some species. These receptors inhibit release of noradrenaline, thus decreasing sympathetic input to the lungs.
$\mathrm{M}_{1} \mathrm{mAChRs}$ are found in the pulmonary parasympathetic ganglia where they function to enhance neurotransmission. These receptors have also been localized to the peripheral lung parenchyma, however their function in the parenchyma is unknown.

Muscarinic acetylcholine receptor dysfunction in the lungs has been noted in a variety of different pathophysiological states. In particular, in asthma and chronic obstructive pulmonary disease (COPD), inflammatory conditions lead to loss of inhibitory M_{2} muscarinic acetylcholine autoreceptor function on parasympathetic nerves supplying the pulmonary smooth muscle, causing increased acetylcholine release following vagal nerve stimulation (Fryer et al. 1999 Life Sci 64 (6-7) 449-55). This mAChR dysfunction results in airway hyperreactivity and hyperresponsiveness mediated by increased stimulation of $\mathrm{M}_{3} \mathrm{mAChRs}$. Thus the identification of potent mAChR antagonists would be useful as therapeutics in these mAChR-mediated disease states.

COPD is an imprecise term that encompasses a variety of progressive health problems including chronic bronchitis, chronic bronchiolitis and emphysema, and it is a major cause of mortality and morbidity in the world. Smoking is the major risk factor for the development of COPD; nearly 50 million people in the U.S. alone smoke cigarettes, and an estimated 3,000 people take up the habit daily. As a result, COPD is expected to rank among the top five as a world-wide health burden by the year 2020.

Inhaled anti-cholinergic therapy is currently considered the "gold standard" as first line therapy for COPD (Pauwels et al. 2001 Am. J. Respir. Crit. Care Med. 163:1256-1276).

Despite the large body of evidence supporting the use of anti-cholinergic therapy for the treatment of airway hyperreactive diseases, relatively few anti- cholinergic compounds are available for use in the clinic for pulmonary indications. More specifically, in United States, Ipratropium Bromide (Atrovent ${ }^{(\text {O }}$; and Combivent ${ }^{(}$, in combination with albuterol) is currently the only inhaled anticholinergic marketed for the treatment of airway hyperreactive diseases. While this compound is a potent anti-muscarinic agent, it is short acting, and thus must be administered as many as four times daily in order to provide relief for the COPD patient. In Europe and Asia, the long-acting anti-cholinergic Tiotropium Bromide (Spiriva ${ }^{\circledR}$) was recently approved, however this product is currently not available in the United States. Thus, there remains a need for novel compounds that are capable of causing blockade at mAChRs which are long acting and can be administered once-daily for the treatment of airway hyperreactive diseases such as asthma and COPD.

Since mAChRs are widely distributed throughout the body, the ability to apply anti-cholinergics locally and/or topically to the respiratory tract is particularly advantageous, as it would allow for lower doses of the drug to be utilized. Furthermore, the ability to design topically active drugs that have long duration of action, and in particular, are retained either at the receptor or by the lung, would allow the avoidance of unwanted side effects that may be seen with systemic anti-cholinergic use.

SUMMARY OF THE INVENTION

In one aspect, this invention provides for a method of treating a muscarinic acetylcholine receptor (mAChR .) mediated disease, wherein acetylcholine binds to an mAChR and which method comprises administering an effective amount of a compound of Formula (I) or a pharmaceutically acceptable salt thereof.

In another aspect, this invention also relates to a method of inhibiting the binding of acetylcholine to its receptors in a mammal in need thereof which comprises administering to aforementioned mammal an effective amount of a compound of Formula (I).

The present invention also provides for the novel compounds of Formula (I), and pharmaceutical compositions comprising a compound of Formula (I), and a pharmaceutical carrier or diluent.

Compounds of Formula (I) useful in the present invention are represented by the structure:

(I)
wherein:

R1 is selected from the group consisting of C1-15 alkyl, halosubstituted C1-15 alkyl, C1-15 alkyl cycloalkyl, cycloalkyl, C2-15 alkenyl, hydroxy substituted C1-15 alkyl, C1-15 alkyl aryl, C1-15 alkyl heteroaryl, (CR7R7)qNRaRa, (CR7R7)qNC(O)Ra, (CR7R7)qC(O)NRaRa, (CR7R7)qC(O)Ra, (CR7R7)qOC (O)Ra, (CR7R7)qNRaC(O)NRaRa, (CR7R7)qORc and (CR7R7)qNS(O) $)_{2} \mathrm{Ra}$

R1 is selected from the group consisting of:

and

R1 is selected from the group consisting of:

R2 and R3 are independently selected from the group consisting of aryl, C1-4 alkyl aryl, heteroaryl, C1-4 alkyl heteroaryl, heterocyclic and a C1-4 alkyl heterocyclic moiety, all of which moieties may be optionally substituted;

Ra is selected from the group consisting of hydrogen, C1-15 alkyl, C1-15 alkoxy, aryl, C1-15 alkyl aryl, heteroaryl, C1-15 alkyl heteroaryl, heterocyclic and a C1-15 alkyl heterocyclic moiety, all of which moieties may be optionally substituted;

Rc is selected from the group consisting of hydrogen, C1-15 alkyl, C1-15 alkoxy, heterocyclic and a C1-15 alkyl heterocyclic moiety, all of which moieties may be optionally substituted;

R4 and R5 are independently selected from the group consisting of hydrogen, halogen, C1-4 alkyl, aryl, C1-4 alkyl aryl, cyano, nitro, (CR7R7)pORb, (CR7R7)pNRbRb, or R4 and R5 together may form a 5 to 6 membered saturated or unsaturated ring; and wherein the alkyl, aryl, arylalkyl, heteroaryl, heteroalkyl, heterocyclic, heterocyclicalkyl groups may be optionally substituted;

R6 is selected from the group consisting of hydrogen, C1-4 alkyl;
q is 0 or an integer having a value of 1 to 15 ;
n is an integer having a value of 1 to 14 ;
m is an integer having a value of 1 to 15 ;
l is an integer having a value of 1 to 4 ;
t is 0 or an integer having a value of 1 to 5 ;
p is 0 or an integer having a value of 1 to 4 ;
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W are independently selected from the group consisting of hydrogen, $\mathrm{C} 1-4$ alkyl;

V is selected from the group consisting of $\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}$, and NRb ;
M is O or CH_{2};
Rb is selected from the group consisting of hydrogen, $\mathrm{C} 1-4$ alkyl, aryl and C1-4 alkyl aryl;

R7 is selected from the group consisting of hydrogen, C1-4 alkyl, halosubstituted Cl-4 alkyl, and hydroxysubstituted C1-4 alkyl;

X - is a physiologically acceptable anion, such as chloride, bromide, iodide, hydroxide, sulfate, nitrate, phosphate, acetate, trifluoroacetate, fumarate, citrate, tartrate, oxalate, succinate, mandelate, methanesulfonate and p -toluenesulfonate.

This invention related to novel bi-aryl 8 -azoniabicyclo[3.2.1]octane compounds, pharmaceutical compositions, processes for their preparation, and use thereof in treating mAChR mediated diseases.

In a preferred embodiment of the present invention the compound is of formula (I) herein below:

(I)
wherein:

R1 is selected from the group consisting of C1-10 alkyl, halosubstituted C1-10 alkyl, C1-10 alkyl aryl, C1-10 alkyl cycloalkyl, cycloalkyl, hydroxy substituted C1-10 alkyl, C2-10 alkenyl, (CR7R7)qORc; (CR7R7)qOC (O)Ra and (CR7R7)qNS(O) 2 Ra;
or R1 is selected from the group consisting of:

R2 and R3 are, independently, selected from the group consisting of:

F, G, H, K and L are independently selected from the group consisting of hydrogen, halogen, C1-4 alkyl, halosubstituted C1-4 alkyl, hydoxysubstituted C1-4 alkyl, and C14 alkoxy;

Ra is selected from the group consisting of hydrogen, C1-10 alkyl, C1-10 alkoxy, aryl and heteroaryl, all of which moieties may be optionally substituted;

Rc is selected from the group consisting of hydrogen, C1-5 alkyl, C1-5 alkoxy, all of which moieties may be optionally substituted;

R4 and R5 are independently selected from the group consisting of hydrogen, halogen, C1-4 alkyl, aryl, C1-4 alkyl aryl, cyano, nitro, (CR7R7)pORb, (CR7R7)pNRbRb, or R4 and R5 together may form a 5 to 6 membered saturated or unsaturated ring;
q is 0 or an integer having a value of 1 to 5 ;
n is an integer having a value of 1 to 4 ;
m is an integer having a value of 1 to 5 ;
1 is 1 or 2 ;
t is 0,1 or 2 ;
p is 0,1 or 2 ;

V is O , or CH_{2};
R6 is selected from the group consisting of hydrogen, C1-4 alkyl;

M is O or CH_{2};

Rb is selected from the group consisting of hydrogen, C1-4 alkyl, and aryl C1-4 alkyl R7 is selected from the group consisting of hydrogen, and C1-4 alkyl;

X - is a physiologically acceptable anion, such as chloride, bromide, iodide, hydroxide, sulfate, nitrate, phosphate, acetate, trifluoroacetate, fumarate, citrate, tartrate, oxalate, succinate, mandelate, methanesulfonate and p-toluenesulfonate.

All of the aryl, heteroaryl, and heterocyclic containing moieties may be optionally substituted as defined herein below.

For use herein the term "the aryl, heteroaryl, and heterocyclic containing moieties" refers to both the ring and the alkyl, or if included, the alkenyl rings, such as aryl, arylalkyl, and aryl alkenyl rings. The term "moieties" and "rings" may be interchangeably used throughout.

As used herein, "optionally substituted" unless specifically defined shall mean such groups as halogen, such as fluorine, chlorine, bromine or iodine; hydroxy; hydroxy substituted C_{1-10} alkyl; $\mathrm{C}_{1}-10$ alkoxy, such as methoxy or ethoxy; $\mathrm{S}(\mathrm{O}) \mathrm{m}^{\prime} \mathrm{C}_{1}$ 10 alkyl, wherein m^{\prime} is 0,1 or 2 , such as methyl thio, methyl sulfinyl or methyl sulfonyl; amino, mono \& di-substituted amino, such as in the NR 10 R 11 group; $\mathrm{NHC}(\mathrm{O}) \mathrm{R} 9 ; \mathrm{C}(\mathrm{O}) \mathrm{NR}_{10} \mathrm{R}_{11} ; \mathrm{C}(\mathrm{O}) \mathrm{OH} ; \mathrm{S}(\mathrm{O})_{2} \mathrm{NR}_{10} \mathrm{R}_{11} ; \mathrm{NHS}(\mathrm{O})_{2} \mathrm{R} 9, \mathrm{C}_{1-10}$ alkyl, such as methyl, ethyl, propyl, isopropyl, or t-butyl; halosubstituted C1-10 alkyl, such CF_{3}; an optionally substituted aryl, such as phenyl, or an optionally substituted arylalkyl, such as benzyl or phenethyl, optionally substituted heterocylic, optionally substituted heterocyclicalkyl, optionally substituted heteroaryl, optionally substituted heteroaryl alkyl, wherein these aryl, heteroaryl, or heterocyclic moieties may be substituted one to two times by halogen; hydroxy; hydroxy substituted alkyl; C_{1-10} alkoxy; $\mathrm{S}(\mathrm{O})_{\mathrm{m}}{ }^{\prime} \mathrm{C}_{1-10}$ alkyl; amino, mono \& di-substituted alkyl amino, such as in the $\mathrm{NR}_{10} \mathrm{R}_{11}$ group; C_{1-10} alkyl, or halosubstituted C_{1-10} alkyl, such as CF3. The following terms, as used herein, refer to:

- "halo" - all halogens, that is chloro, fluoro, bromo and iodo.
- "C C_{1-10} alkyl" or "alkyl" - both straight and branched chain moieties of 1 to 10 carbon atoms, unless the chain length is otherwise limited, including, but not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl and the like.
- "cycloalkyl" is used herein to mean cyclic moiety, preferably of 3 to 8 carbons, including but not limited to cyclopropyl, cyclopentyl, cyclohexyl, and the like.
- "alkenyl" is used herein at all occurrences to mean straight or branched chain moiety of 2-10 carbon atoms, unless the chain length is limited thereto, including, but not limited to ethenyl, 1-propenyl, 2-propenyl, 2-methyl-1-propenyl, 1-butenyl, 2butenyl and the like.
- "aryl" - phenyl and naphthyl;
- "heteroaryl" (on its own or in any combination, such as "heteroaryloxy", or "heteroaryl alkyl") - a 5-10 membered aromatic ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O or S , such as, but not limited, to pyrrole, pyrazole, furan, thiophene, quinoline, isoquinoline, quinazolinyl, pyridine, pyrimidine, oxazole, tetrazole, thiazole, thiadiazole, triazole, imidazole, indole or benzimidazole.
- "heterocyclic" (on its own or in any combination, such as "heterocyclicalkyl") - a saturated or partially unsaturated 4-10 membered ring system in which one or more rings contain one or more heteroatoms selected from the group consisting of N, O, or S ; such as, but not limited to, pyrrolidine, piperidine, piperazine, morpholine, tetrahydropyran, thiomorpholine, or imidazolidine. Furthermore, sulfur may be optionally oxidized to the sulfone or the sulfoxide.
- "arylalkyl" or "heteroarylalkyl" or "heterocyclicalkyl" is used herein to mean C1-10 alkyl, as defined above, attached to an aryl, heteroaryl or heterocyclic moiety, as also defined herein, unless otherwise indicated.
- "sulfinyl" - the oxide $\mathrm{S}(\mathrm{O})$ of the corresponding sulfide, the term "thio" refers to the sulfide, and the term "sulfonyl" refers to the fully oxidized $\mathrm{S}(\mathrm{O})_{2}$ moiety.
- "wherein two R_{1} moieties (or two Y moieties) may together form a 5 or 6 membered saturated or unsaturated ring" is used herein to mean the formation of an aromatic ring system, such as naphthalene, or is a phenyl moiety having attached a 6 membered partially saturated or unsaturated ring such as a C_{6} cycloalkenyl, i.e. hexene, or a C5 cycloalkenyl moiety, such as cyclopentene.

Illustrative compounds of Formula (I) include:

1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl \}-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-bromophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2] octane bromide

1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylcarbonyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(methylsulfonyl)amino]propyl\}-1-
azoniabicyclo[2.2.2]octane bromide
4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-chlorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(di-2-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-cyanophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-bromophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(1-methyl-1-phenylethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(2-naphthalenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-3-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(3-\{[4-(methyloxy)phenyl]oxy\}propyl)-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[3-(2-naphthalenyloxy)propyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[2-(\{[3-(methyloxy)phenyl]methyl\}oxy)ethyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-(2-naphthalenylmethyl)-1-azoniabicyclo[2.2.2]octane bromide

4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-2-thienyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(4-nitrophenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(2-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(3-nitrophenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(\{3-[(trifluoromethyl)oxy]phenyl\}methyl)-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[(5-nitro-2-furanyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[2-(1 H -indol-3-yl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

1-[3-(4-biphenylyloxy)propyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-\{3-[(2-methylphenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(phenylmethyl)-1-azoniabicyclo[2.2.2]octane bromide 4-[hydroxy(diphenyl)methyl]-1-(2-\{[2-(methyloxy)ethyl]oxy\}ethyl)-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(phenylmethyl)oxy]propyl $\}$-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[4-(phenyloxy)butyl]-1-azoniabicyclo[2.2.2]octane bromide

1-(1,3-dioxolan-2-ylmethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-\{3-[(2-hydroxyphenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide
1-hexyl-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide 4-[hydroxy(di-3-thienyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(\{4-[(phenylmethyl)oxy]phenyl\}oxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-[(3-bromophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-2-naphthalenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl $\}$-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(methyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-(hydroxy\{bis[4-(methyloxy)phenyl]\}methyl)-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-cyanophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide 1-[2-(1-benzofuran-2-yl)-2-oxoethyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-[2-(\{[4-(1,1-dimethylethyl)phenyl]methyl\}oxy)ethyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{[3-(methyloxy)phenyl]methyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(\{4-[(trifluoromethyl)oxy]phenyl\}methyl)-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-nonyl-1-azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(di-2-naphthalenyl)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-[(4-fluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

1-[(4-bromophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{[3-(trifluoromethyl)phenyl]methyl\}-1azoniabicyclo[2.2.2]octane bromide
1-[(2-fluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{[4-(trifluoromethyl)phenyl]methyl\}-1azoniabicyclo[2.2.2]octane bromide
1-(5-hexen-1-yl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

1-(3-cyclohexylpropyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(tetrahydro-2H-pyran-2-yloxy)ethyl]-1azoniabicyclo[2.2.2]octane bromide

1-[2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(2-phenylethyl)-1-azoniabicyclo[2.2.2]octane bromide 1-ethyl-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[(4-methylphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
1-butyl-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide 4-[hydroxy(diphenyl)methyl]-1-[2-(3-methyl-1 H-pyrazol-1-yl)ethyl]-1azoniabicyclo[2.2.2]octane bromide

4-(hydroxy\{bis[4-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide 1-[3-(3-biphenylyloxy)propyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[(1S)-1-methyl-2-oxo-2-(phenylamino)ethyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-propyl-1-azoniabicyclo[2.2.2]octane bromide
1-\{3-[(2-bromophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
1-[(3-fluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

1-[(3,4-dichlorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
1-[(2-fluoro-3-methylphenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-\{4-[(phenylmethyl)oxy]butyl\}-1azoniabicyclo[2.2.2]octane bromide

1-[(4-cyanophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-(3-\{[3-(diethylamino)phenyl]oxy\}propyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(2-propen-1-yl)-1-azoniabicyclo[2.2.2]octane bromide 1-\{[4-(1,1-dimethylethyl)phenyl]methyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide

1-[(2,6-difluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(\{[2-(phenyloxy)-3-
pyridinyl]carbonyl\}amino)ethyl]-1-azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(di-2-thienyl)methyl]-1-(2-phenylethyl)-1-azoniabicyclo[2.2.2]octane bromide

1-(3-bromopropyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(2-hydroxyethyl)-1-azoniabicyclo[2.2.2]octane bromide

1-[(3-cyanophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

1-[2-(\{[(2,4-dichlorophenyl)amino]carbonyl\}amino)ethyl]-4-
[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-(4-penten-1-yl)-1-azoniabicyclo[2.2.2]octane bromide
1-\{2-[(2,4-dibromophenyl)oxy]ethyl\}-4-[hydroxy(diphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
1-[(2,4-difluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[3-(methyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(\{2-[(phenylmethyl)oxy]phenyl\}oxy)propyl]-1azoniabicyclo[2.2.2]octane bromide
[1-(2-aminoethyl)-1-azoniabicyclo[2.2.2]oct-4-yl](diphenyl)methanolate trifluoroacetate

4-[hydroxy(di-2-thienyl)methyl]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-methyl-1-azoniabicyclo[2.2.2]octane bromide 4-[hydroxy(diphenyl)methyl]-1-(tetrahydro-2H-pyran-2-ylmethyl)-1azoniabicyclo[2.2.2]octane bromide 1-[(2,3-difluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
1-[2-(4-biphenylyl)-2-oxoethyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-oxo-2-(4-pentylphenyl)ethyl]-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(2,4-dichlorophenyl)carbonyl]amino\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-(3-\{[2-(methyloxy)phenyl]oxy\}propyl)-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[(1-\{[(phenylmethyl)oxy]carbonyl\}-4-piperidinyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(2-naphthalenyl)-2-oxoethyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-[(4-nitrophenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-(2-oxo-2-phenylethyl)-1-azoniabicyclo[2.2.2]octane bromide

1-[(3,4-difluorophenyl)methyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
1-(cyclopropylmethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

The preferred compounds useful in the present invention include:

1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1- azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-bromophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylcarbonyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(methylsulfonyl)amino]propyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-chlorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-2-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-cyanophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-bromophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(1-methyl-1-phenylethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(2-naphthalenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-3-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1-
azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-(3-\{[4-(methyloxy)phenyl]oxy\}propyl)-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(2-naphthalenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(\{[3-(methyloxy)phenyl]methyl\}oxy)ethyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-(2-naphthalenylmethyl)-1-azoniabicyclo[2.2.2]octane bromide

4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-2-thienyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-(hydroxy \{bis[3-(methyloxy)phenyl]\}methyl)-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(4-nitrophenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(2-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

The more preferred compounds useful in the present invention include:

1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2] octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-bromophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylcarbonyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{3-[(methylsulfonyl)amino]propyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(3-chlorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-2-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-cyanophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-bromophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

1-\{3-[(4-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(1-methyl-1-phenylethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(2-naphthalenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(di-3-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide

4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

The most preferred compounds useful in the present invention include:

1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide
1-(2-\{[(4-bromophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide
4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide
1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylcarbonyl)oxy]ethyl\}-1-
azoniabicyclo[2.2.2]octane bromide
In one embodiment, the compound of formula (I) is 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide of formula:

In another aspect, this invention relates to a pharmaceutical composition comprising a)
4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide, and b) a pharmaceutically acceptable carrier.

In a further aspect, this invention relates to a method of treating a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor, comprising administering a safe and effective amount of 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

In another aspect, this invention relates to a use of 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide in the preparation of a medicament for the treatment of a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor.

METHODS OF PREPARATION.

The compounds of Formula (1) may be obtained by applying synthetic procedures, some of which are illustrated in the Schemes below. The synthesis provided in this Scheme is applicable for producing compounds of Formula (I) having a variety of different R1, R2 and R3 groups which are reacted, employing substituents which are suitably protected, to achieve compatibility with the reactions outlined herein. Subsequent deprotection, in those cases, then affords compounds of the nature generally disclosed. While the Schemes are shown with compounds only of Formula (I), this is merely for illustration purpose only.

As shown in Scheme 1, the desired compounds of Formula (1) can be prepared in four synthetic steps from the commercially available ethyl 4-piperidinecarboxylate precursor 1. Compound 1 is reacted with 1 -bromo-2-chloroethane following standard alkylation procedures well known in the art such as potassium carbonate in acetone followed by reaction of the intermediate with lithium diisopropylamide in an aprotic solvent such as tetrahydrofurann to give the quinuclidine intermediate 2. Condensation of compound 2
with organometallic reagents such as a Grignard reagent or an organolithium derivative in an aprotic solvent such as tetrahydrofuran, results in the formation of the tertiary alcohol $\underline{\mathbf{3}}$ of Formula (I) ($\mathrm{R} 1=$ nothing). Further N -alkylation of compound $\mathbf{3}$ with a suitable alkyl halide in a organic solvent such as chloroform or acetontirile gives compound 4 of Formula (I) (R1 not nothing).

Scheme 1

Reagents and conditions: a) 1-bromo-2-chloroethane, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone; b) LDA, THF; c) $\mathrm{R}_{2} \mathrm{M}$ then $\mathrm{R}_{3} \mathrm{M}, \mathrm{THF}$; d) R1X, $\mathrm{ACN}, \mathrm{CHCl}_{3}$.

SYNTHETIC EXAMPLES

The invention will now be described by reference to the following Examples which are merely illustrative and are not to be construed as a limitation of the scope of the present invention. All temperatures are given in ${ }^{\circ} \mathrm{C}$. Thin layer chromatography (t.l.c.) was carried out on silica and column chromatography on silica (Flash column chromatography using Merck, 9385 unless stated otherwise).
The following are the experimental conditions for the LC-MS.

LC-MS Experimental Conditions:

Liquid Chromatograph:
System: \quad Shimadzu LC system with SCL-10A Controller and dual UV detector
Autosampler: Leap CTC with a Valco six port injector
Column: \quad Aquasil/Aquasil (C18 40x1 mm)
Inj. Volume ($\mu \mathrm{L}$): $\quad 2.0$
Solvent A: $\quad \mathrm{H}_{2} \mathrm{O}, 0.02 \%$ TFA

Solvent B:	MeCN, 0.018\% TFA
Gradient:	linear
Channel A:	UV 214 nm
Channel B:	ELS

Step	Time (min)	Dura.(min)	Flow $(\mu \mathrm{L} / \mathrm{min})$	Sol.A	Sol.B
0	0.00	0.00	300.00	95.00	5.00
1	0.00	0.01	300.00	95.00	5.00
2	0.01	3.20	300.00	10.00	90.00
3	3.21	1.00	300.00	10.00	90.00
4	4.21	0.10	300.00	95.00	5.00
5	4.31	0.40	300.00	95.00	5.00

Mass Spectrometer: PE Sciex Single Quadrupole LC/MS API-150

Acquisition mode: Profile

The preparatory HPLC was conducted using a Gilson HPLC system under the following conditions:

- Column: $75 \times 33 \mathrm{~mm}$ I. D. , S-5um, 12 nm
- Flow rate: $30 \mathrm{~mL} / \mathrm{min}$
- Injection Volume: 0.800 mL
- Room temperature
- Solvent A: water
- Solvent B: acetonitrile

All solvents used herein are of the highest available purity and all reactions are run under anhydrous conditions under an air atmosphere unless otherwise indicated.

Example 1: Preparation of 1-azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol.

Ethyl 1-(2-chloroethyl)-4-piperidinecarboxylate

To a solution of ethyl nipecotate ($20.0 \mathrm{~mL}, 130 \mathrm{mmol}$) in acetone (180 mL) was added 1-bromo-2-chloroethane ($21.6 \mathrm{~mL}, 260 \mathrm{mmol}$) followed by anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(27.12 \mathrm{~g}$, $196 \mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum. Purification of the crude residue by flash chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O} / 50 \%$ hexane) on silica gel gave the title compound ($10.99 \mathrm{~g}, 38.6 \%$). EI-MS m/z 220(M+ H^{+}) $\operatorname{Rt}(1.20 \mathrm{~min})$.

Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate

A solution of ethyl 1-(2-chloroethyl)-4-piperidinecarboxylate ($20.42 \mathrm{~g}, 92.9 \mathrm{mmol}$) in THF (600 mL) was cooled to $-50^{\circ} \mathrm{C}$ under Ar. LDA (2.0 M in heptane/THF/ethyl benzene, $70 \mathrm{~mL}, 140 \mathrm{mmol}$) was slowly added to the solution at $-50^{\circ} \mathrm{C}$ over 25 min . The reaction was allowed to warm up to room temperature over 16 h . The reaction was quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (saturated aqueous) (500 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 500 mL). The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under vacuum. The resulting orange oil was co-evaporated three times with DCM to remove excess ethyl benzene, resulting in the title compound $(16.29 \mathrm{~g}$, 95.7\%). EI-MS m/z 184(M+H $\left.\mathrm{H}^{+}\right) \mathrm{Rt}(1.08 \mathrm{~min})$.

1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol

A solution of phenyllithium ($1.5-1.7 \mathrm{M}$ in 70 cyclohexane / 30 ether, $20.0 \mathrm{~mL}, 32$ mmol) was chilled down to $-30^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4carboxylate ($1.51 \mathrm{~g}, 8.23 \mathrm{mmol}$) in THF $(20 \mathrm{~mL})$ was slowly added to the reaction mixture at $-30^{\circ} \mathrm{C}$ over 25 min . The reaction was allowed to warm up to room temperature over 16 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ and then evaporated to dryness under vacuum. $\mathrm{H}_{2} \mathrm{O}$ and EtOAc were added, causing a white solid to crash out. This solid was filtered off, to give the title compound $(0.79 \mathrm{~g})$. The aqueous phase was further extracted with EtOAc, the combined organic layers were dried over MgSO_{4},
filtered, and concentrated under vacuum. The crude product was treated with EtOAc and hexane and filtered to yield more of the title compound $(0.67 \mathrm{~g})$. Total yield (1.46 g, 60.7\%). EI-MS m/z 294(M+H $\left.\mathrm{H}^{+}\right) \mathrm{Rt}(1.37 \mathrm{~min})$.

Example 2: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(2-phenylethyl)-1azoniabicyclo[2.2.2]octane bromide.

To a solution of 1-azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($0.0775 \mathrm{~g}, 0.264 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{DCM} / \mathrm{MeOH}(2 \mathrm{~mL} / 2 \mathrm{~mL} / 1 \mathrm{~mL})$ was added (2-bromoethyl)benzene ($0.38 \mathrm{~mL}, 2.78 \mathrm{mmol}$). The solution was allowed to stir at room temperature for 4 days and then concentrated under vacuum to give a white solid. This residue was dissolved in DMSO and purified by preparatory HPLC to give the title compound $(0.0612 \mathrm{~g}$, 48.6\%). EI-MS m/z 398(M ${ }^{+}$) Rt (2.06 min).

Example 3: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.

General procedure for salt formation without HPLC purification.

To a solution of 1-azabicyclo[2.2.2] oct-4-yl(diphenyl)methanol ($0.0550 \mathrm{~g}, 0.187 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ was added 2-bromoethyl phenyl ether ($0.060 \mathrm{~g}, 0.29$ mmol). The solution was stirred at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled down to room temperature and then diluted with ethyl acetate and hexane causing a solid to crash out of solution. This solid was filtered off, and washed with hexane to give the title compound ($0.063 \mathrm{~g}, 67.6 \%$). EI-MS m/z 414(M^{+}) Rt (1.94 min).

Example 4: Preparation of 1-(cyclopropylmethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

General procedure for salt formation with HPLC purification.

To a solution of 1-azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($0.0552 \mathrm{~g}, 0.188 \mathrm{mmol}$)
in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}$ (2.5 mL) was added (bromomethyl)
cyclopropane ($0.025 \mathrm{~mL}, 0.257 \mathrm{mmol}$). The solution was heated at $60^{\circ} \mathrm{C}$ for 16 h , cooled down to room temperature and the solvents evaporated under vacuum. The residue was taken up in 2.5 mL of DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0319 \mathrm{~g}, 39.9 \%$). EI-MS m/z 348(M ${ }^{+}$) Rt (1.69 \min).

Example 5: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(2-oxo-2-phenylethyl)-

 1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0567 \mathrm{~g}, 0.193 \mathrm{mmol}$) and 2-bromo-1-phenylethanone (0.0487 g, 0.245 mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(2.5 \mathrm{~mL})$ were reacted to give the desired product ($0.0410 \mathrm{~g}, 43.0 \%$). EI-MS m/z 412(M^{+}) Rt (1.90 min).

Example 6: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[3-(phenyloxy)propyl]-

 1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.045 \mathrm{~g}, 0.153 \mathrm{mmol}$) and 3-bromopropyl phenyl ether (0.035 $\mathrm{mL}, 0.222 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0662 \mathrm{~g}, 86.0 \%$). EI-MS m/z 428(M+) Rt (1.97 min).

Example 7: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[4-(phenyloxy)butyl]-

 1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0604 \mathrm{~g}, 0.206 \mathrm{mmol}$) and 4-bromobutyl phenyl ether $(0.106 \mathrm{~g}$, $0.463 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0649 \mathrm{~g}, 64.9 \%$). EI-MS m/z 442(M ${ }^{+}$) Rt (2.13 min).

Example 8: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[2-(tetrahydro-2H-pyran-2-yloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.
 Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0696 \mathrm{~g}, 0.237 \mathrm{mmol}$) and 2-[(2-bromoethyl)oxy]tetrahydro$2 H$-pyran ($0.080 \mathrm{~mL}, 0.529 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0348 \mathrm{~g}, 31.6 \%$). EI-MS m/z 422(M^{+}) Rt (1.85 min).

Example 9: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{4-

 [(phenylmethyl)oxy]butyl\}-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0646 \mathrm{~g}, 0.220 \mathrm{mmol})$ and 4-bromobutyl phenylmethyl ether ($0.090 \mathrm{~mL}, 0.472 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0531 \mathrm{~g}, 48.3 \%$). EI-MS m/z 456(M+) Rt (2.09 min).

Example 10: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{3-

 [(phenylmethyl)oxy]propyl\}-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0677 \mathrm{~g}, 0.231 \mathrm{mmol})$ and 3-bromopropyl phenylmethyl ether ($0.070 \mathrm{~mL}, 0.396 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0663 \mathrm{~g}, 55.2 \%$). EI-MS m/z 442(M+) Rt (2.23 min).

Example 11: Preparation of 1-\{2-[(2,4-dibromophenyl)oxy]ethyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0557 \mathrm{~g}, 0.190 \mathrm{mmol}$) and 2-bromoethyl 2,4-dibromophenyl ether $(0.110 \mathrm{~g}, 0.306 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0525 \mathrm{~g}, 43.8 \%$). EI-MS m/z 572(M+) Rt (2.26 min).

Example 12: Preparation of 1-(3-bromopropyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4- yl(diphenyl)methanol ($0.0979 \mathrm{~g}, 0.334 \mathrm{mmol}$) and 1,3-dibromopropane $(0.35 \mathrm{~mL}$, $3.448 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(15.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0712 \mathrm{~g}, 43.1 \%$). EI-MS m/z 415(M+) Rt (1.79 min).

Example 13: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(tetrahydro-2H-pyran-2-ylmethyl)-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol $(0.0677 \mathrm{~g}, 0.231 \mathrm{mmol})$ and 3-(bromomethyl)tetrahydro- 2 H pyran $(0.050 \mathrm{~mL}, 0.390 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0508 \mathrm{~g}, 50.8 \%$). EI-MS m/z 392(M+) Rt (1.84 min).

Example 14: Preparation of 1-(1,3-dioxolan-2-ylmethyl)-4-

[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0574 \mathrm{~g}, 0.196 \mathrm{mmol})$ and 2-(bromomethyl)-1,3-dioxolane ($0.040 \mathrm{~mL}, 0.386 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0112 \mathrm{~g}, 12.4 \%$). EI-MS m/z 380(M^{+}) Rt (1.64 min).

Example 15: Preparation of 1-ethyl-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0581 \mathrm{~g}, 0.198 \mathrm{mmol}$) and bromoethane ($0.030 \mathrm{~mL}, 0.402$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0434 \mathrm{~g}, 54.9 \%$). EI-MS m/z 322(M ${ }^{+}$) Rt (1.56 min).

Example 16: Preparation of 4-[hydroxy(diphenyl)methyl]-1-nonyl-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4- $\mathrm{yl}($ diphenyl $)$ methanol $(0.0561 \mathrm{~g}, 0.191 \mathrm{mmol})$ and 1-bromononane $(0.055 \mathrm{~mL}, 0.288$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product $(0.0435 \mathrm{~g}, 45.8 \%)$. EI-MS m/z $420\left(\mathrm{M}^{+}\right) \operatorname{Rt}(2.34 \mathrm{~min})$.

Example 17: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(4-penten-1-yl)-1azoniabicyclo [2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol $(0.0608 \mathrm{~g}, 0.207 \mathrm{mmol})$ and 5-bromo-1-pentene (0.045 mL , $0.380 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0806 \mathrm{~g}, 88.6 \%)$. EI-MS m/z 362(M+ M^{+}Rt (1.88 min).

Example 18: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(2-hydroxyethyl)-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol ($0.0638 \mathrm{~g}, 0.217 \mathrm{mmol}$) and 2-bromoethanol ($0.035 \mathrm{~mL}, 0.494$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0541 \mathrm{~g}, 60.1 \%$) EI-MS m/z 338(M^{+}) Rt (1.42 min).

Example 19: Preparation of 1-(5-hexen-1-yl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0637 \mathrm{~g}, 0.217 \mathrm{mmol}$) and 6-bromo-1-hexene ($0.050 \mathrm{~mL}, 0.373$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0664 \mathrm{~g}, 67.1 \%$). EI-MS m/z 376(M^{+}) Rt (1.90 min).

Example 20: Preparation of 4-[hydroxy(diphenyl)methyl]-1-methyl-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4- yl(diphenyl)methanol $(0.0638 \mathrm{~g}, 0.217 \mathrm{mmol})$ and bromomethane (2.0 M in tButylmethyl ether, $0.250 \mathrm{~mL}, 0.500 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0739 \mathrm{~g}, 88.0 \%$). EI-MS m/z 308(M^{+}) Rt (1.58 min).

Example 21: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[2-(methyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0597 \mathrm{~g}, 0.203 \mathrm{mmol})$ and 2-bromoethyl methyl ether $(0.030$ $\mathrm{mL}, 0.319 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0372 \mathrm{~g}, 42.8 \%$). EI-MS m/z 352(M+) Rt (1.69 min).

Example 22: Preparation of 1-[2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]-4-

 [hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol $(0.0916 \mathrm{~g}, 0.312 \mathrm{mmol})$ and 2 -(2 -bromoethyl)- $1 H$-isoindole$1,3(2 H)$-dione ($0.130 \mathrm{~g}, 0.512 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0881 \mathrm{~g}, 51.8 \%$). EI-MS m/z 467(M ${ }^{+}$) Rt (1.91 min).

Example 23: Preparation of 1-[3-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl]-

 4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0861 \mathrm{~g}, 0.293 \mathrm{mmol}$) and 2-(3-bromopropyl)-1 H -isoindole$1,3(2 H)$-dione ($0.118 \mathrm{~g}, 0.440 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.1319 \mathrm{~g}, 82.4 \%$). EI-MS m/z 481 (M^{+}) Rt (1.90 min).

Example 24: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(3-phenylpropyl)-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0625 \mathrm{~g}, 0.213 \mathrm{mmol}$) and (3-bromopropyl)benzene (0.050 mL , 0.329 mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0722 \mathrm{~g}, 72.2 \%$). EI-MS m/z 412(M ${ }^{+}$) Rt (2.01 min).

Example 25: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(2-\{[2-(methyloxy)ethyl]oxy\}ethyl)-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0665 \mathrm{~g}, 0.227 \mathrm{mmol}$) and 1-bromo-2-\{[2(methyloxy)ethyl]oxy\}ethane ($0.055 \mathrm{~mL}, 0.405 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0843 \mathrm{~g}, 78.8 \%$). EI-MS m/z 396(M ${ }^{+}$) Rt (1.64 min).

Example 26: Preparation of 1-[4-(ethyloxy)-4-oxobutyl]-4-

 [hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0679 \mathrm{~g}, 0.231 \mathrm{mmol}$) and ethyl 4-bromobutanoate (0.055 mL , $0.524 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0637 \mathrm{~g}, 57.9 \%$). EI-MS m/z 408(M ${ }^{+}$) Rt (1.80 min).

Example 27: Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-2-thienyl)methanol.

A solution of 2-thienyllithium (1.0 M in THF, $9.10 \mathrm{~mL}, 9.10 \mathrm{mmol}$) was chilled down to $-30^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.4196 \mathrm{~g}, 2.289$ mmol) in THF (8 mL) was slowly added to the reaction mixture over 20 min . The reaction was allowed to warm up to room temperature over 16 h . The reaction was
quenched with water and then evaporated to dryness. $\mathrm{H}_{2} \mathrm{O}$ and DCM were added, causing a light brown solid to crash out. This solid was filtered off to give the title compound ($0.4161 \mathrm{~g}, 59.5 \%)$. EI-MS m/z 306($\mathrm{M}+\mathrm{H}^{+}$) Rt (1.35 min).

Example 28: Preparation of 4-[hydroxy(di-2-thienyl)methyl]-1-[2-(phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ di-2-thienyl $)$ methanol $(0.0693 \mathrm{~g}, 0.227 \mathrm{mmol})$ and 2-bromoethyl phenyl ether $(0.056$ $\mathrm{g}, 0.279 \mathrm{mmol})$ in $1 \mathrm{MeOH} / 1 \mathrm{CHCl}_{3}(3.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0822 \mathrm{~g}, 74.7 \%$). EI-MS m/z 426(M ${ }^{+}$) Rt (2.00 min).

Example 29: Preparation of 4-[hydroxy(di-2-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ di-2-thienyl)methanol $(0.0578 \mathrm{~g}, 0.189 \mathrm{mmol})$ and 3-bromopropyl phenyl ether ($0.033 \mathrm{~mL}, 0.209 \mathrm{mmol}$) in $1 \mathrm{MeOH} / 1 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0448 \mathrm{~g}, 45.4 \%$). EI-MS m/z 440(M ${ }^{+}$) Rt (1.94 min).

Example 30: Preparation of 4-[hydroxy(di-2-thienyl)methyl]-1-(2-phenylethyl)-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4-yl(di-2-thienyl)methanol ($0.0658 \mathrm{~g}, 0.215 \mathrm{mmol}$) and (2-bromoethyl)benzene (0.050 $\mathrm{mL}, 0.366 \mathrm{mmol})$ in $1 \mathrm{MeOH} / 1 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0514 \mathrm{~g}, 48.9 \%$). EI-MS m/z 410(M+) Rt (1.83 min).

Example 31: Preparation of 4-[hydroxy(di-2-thienyl)methyl]-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4- $\mathrm{yl}($ di-2-thienyl $)$ methanol ($0.0688 \mathrm{~g}, 0.225 \mathrm{mmol}$) and (3-bromopropyl)benzene (0.070 $\mathrm{mL}, 0.460 \mathrm{mmol})$ in $1 \mathrm{MeOH} / 1 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0685 \mathrm{~g}, 62.3 \%$). EI-MS m/z 424(M^{+}) Rt (1.97 min).

Example 32: Preparation of 1-butyl-4-[hydroxy(di-3-thienyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

A solution of n-Butyl lithium (2.5 M in hexanes, $5.0 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was chilled to -78 ${ }^{\circ} \mathrm{C}$ under Ar. 3-Bromothiophene ($1.15 \mathrm{~mL}, 12.3 \mathrm{mmol}$) dissolved in ethyl ether (4.0 mL) was slowly added to the reaction mixture. The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.7640 \mathrm{~g}, 4.16 \mathrm{mmol}$) in THF/ $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL} / 4 \mathrm{~mL})$ was added. The reaction was allowed to warm up from $-78^{\circ} \mathrm{C}$ to room temperature over 16 h then slowly quenched with water. The reaction was concentrated and the resulting brown solid was taken up in water and DCM. The organic phase was separated, dried over MgSO_{4}, filtered and concentrated under vacuum to give a brown solid. The solid was dissolved in DMSO and purified by preparatory HPLC to give the title compound ($0.1736 \mathrm{~g}, 9.4 \%$). EI-MS m/z 362(M+) $\operatorname{Rt}(1.73 \mathrm{~min})$.

Example 33: Preparation of 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol.

A solution of t-Butyl lithium (1.7M in pentanes, $5.8 \mathrm{~mL}, 9.86 \mathrm{mmol}$) was chilled to -78 ${ }^{\circ} \mathrm{C}$ under Ar. 3-Bromothiophene ($0.46 \mathrm{~mL}, 4.90 \mathrm{mmol}$) dissolved in THF (4.0 mL) was slowly added to the reaction mixture over 6 min . The reaction was stirred for 30 min and then ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.3132 \mathrm{~g}, 1.71 \mathrm{mmol}$) in THF (4 mL) was added. The reaction was allowed to warm up from $-78^{\circ} \mathrm{C}$ to room temperature over 16 h . After 14 hours, the reaction was slowly quenched with water.

EtOAc was added, causing a grey solid to crash out. The solid was filtered off to give the title compound ($0.3375 \mathrm{~g}, 64.6 \%)$. EI-MS m/z 306(M+H) ${ }^{+} \mathrm{Rt}(1.27 \mathrm{~min})$.

Example 34: Preparation of 4-[hydroxy(di-3-thienyl)methyl]-1-[2-

 (phenyloxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol ($0.0787 \mathrm{~g}, 0.258 \mathrm{mmol}$) and 2-bromoethyl phenyl ether ($0.0839 \mathrm{~g}, 0.417 \mathrm{mmol}$) in $2 \mathrm{MeOH} / 3 \mathrm{CHCl}_{3} / 2 \mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0709 \mathrm{~g}, 54.5 \%$). EI-MS m/z 426(M+) Rt (1.85 min).

Example 35: Preparation of 4-[hydroxy(di-3-thienyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4-yl(di-3-thienyl)methanol ($0.0808 \mathrm{~g}, 0.264 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.070 \mathrm{~mL}, 0.444 \mathrm{mmol}$) in $2 \mathrm{MeOH} / 3 \mathrm{CHCl}_{3} / 2 \mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0613 \mathrm{~g}, 44.7 \%$). EI-MS m/z 440(M^{+}) Rt (2.05 min).

Example 36: Preparation of 1-butyl-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0496 \mathrm{~g}, 0.169 \mathrm{mmol}$) and 1-bromobutane ($0.030 \mathrm{~mL}, 0.279$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0509 \mathrm{~g}, 70.7 \%$). EI-MS m/z 350(M ${ }^{+}$) Rt (1.83 min).

Example 37: Preparation of 1-hexyl-4-[hydroxy(diphenyl)methyl]-1-

 azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol $(0.0498 \mathrm{~g}, 0.170 \mathrm{mmol})$ and 1-bromohexane $(0.040 \mathrm{~mL}, 0.285$
mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0562 \mathrm{~g}, 73.0 \%$). EI-MS m/z 378(M ${ }^{+}$) Rt (2.09 min).

Example 38: Preparation of 4-[hydroxy(diphenyl)methyl]-1-propyl-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0518 \mathrm{~g}, 0.176 \mathrm{mmol}$) and 1-bromopropane ($0.030 \mathrm{~mL}, 0.330$ $\mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0548 \mathrm{~g}, 75.1 \%$). EI-MS m/z 336(M+) Rt (1.97 min).

Example 39: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(3-\{[2-

 (methyloxy)phenyl]oxy\}propyl)-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0467 \mathrm{~g}, 0.159 \mathrm{mmol}$) and 1-[(3-bromopropyl)oxy]-2(methyloxy)benzene ($0.0541 \mathrm{~g}, 0.221 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0625 \mathrm{~g}, 73.5 \%$). EI-MS m/z 458(M ${ }^{+}$) Rt (1.96 \min).

Example 40: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{3-[(2-

 hydroxyphenyl)oxy]propyl\}-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0505 \mathrm{~g}, 0.172 \mathrm{mmol}$) and 2-[(3-bromopropyl)oxy]phenol ($0.0547 \mathrm{~g}, 0.236 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0675 \mathrm{~g}, 75.0 \%$). EI-MS m/z 444(M^{+}) Rt (1.91 min).

Example 41: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[3-(2-naphthalenyloxy)propyl]-1-azoniabicyclo [2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4- yl(diphenyl)methanol ($0.0472 \mathrm{~g}, 0.160 \mathrm{mmol}$) and 3-bromopropyl 2-naphthalenyl ether ($0.0618 \mathrm{~g}, 0.233 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0567 \mathrm{~g}, 63.7 \%$). EI-MS m/z 478(M+) Rt (2.22 min).

Example 42: Preparation of 1-\{3-[(3-chlorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0479 \mathrm{~g}, 0.163 \mathrm{mmol})$ and 3-bromopropyl 3-chlorophenyl ether ($0.0552 \mathrm{~g}, 0.221 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0655 \mathrm{~g}, 74.4 \%$). EI-MS m/z 462(M+) Rt (2.17 min).

Example 43: Preparation of 1-\{3-[(4-bromophenyl)oxylpropyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol $(0.0486 \mathrm{~g}, 0.165 \mathrm{mmol})$ and 4-bromophenyl 3-bromopropyl ether ($0.0630 \mathrm{~g}, 0.214 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0731 \mathrm{~g}, 75.4 \%$). EI-MS m/z 506(M+) Rt (2.18 min).

Example 44: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{3-[(4-nitrophenyl)oxy]propyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0468 \mathrm{~g}, 0.159 \mathrm{mmol}$) and 3-bromopropyl 4-nitrophenyl ether ($0.0550 \mathrm{~g}, 0.211 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0590 \mathrm{~g}, 67.0 \%$). EI-MS m/z 473(M^{+}) Rt (2.06 min).

Example 45: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[3-(\{2-[(phenylmethyl)oxy]phenyl\}oxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4- yl (diphenyl)methanol ($0.0492 \mathrm{~g}, 0.168 \mathrm{mmol}$) and 1-[(3-bromopropyl)oxy]-2[(phenylmethyl)oxy]benzene ($0.0706 \mathrm{~g}, 0.220 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0735 \mathrm{~g}, 71.4 \%$). EI-MS m/z 533(M ${ }^{+}$) Rt (2.25 min).

Example 46: Preparation of 1-\{3-[(2-bromophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0472 \mathrm{~g}, 0.161 \mathrm{mmol})$ and 2-bromophenyl 3-bromopropyl ether ($0.0648 \mathrm{~g}, 0.220 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0703 \mathrm{~g}, 74.8 \%$). EI-MS m/z 507(M ${ }^{+}$) Rt (2.18 min).

Example 47: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[3-(\{4-

 [(phenylmethyl)oxy]phenyl\}oxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0479 \mathrm{~g}, 0.163 \mathrm{mmol}$) and 1-[(3-bromopropyl)oxy]-4[(phenylmethyl)oxy]benzene ($0.0730 \mathrm{~g}, 0.227 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0833 \mathrm{~g}, 83.3 \%$). EI-MS m/z 534(M+) Rt (2.31 min).

Example 48: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[3-(methyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0632 \mathrm{~g}, 0.215 \mathrm{mmol}$) and 3-bromopropyl methyl ether (0.0461
g, 0.301 mmol$)$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product $(0.0826 \mathrm{~g}, 86.0 \%)$. EI-MS m/z 366(M M^{+}) Rt (1.55 min).

Example 49: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(2-propen-1-yl)-1azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol $(0.0577 \mathrm{~g}, 0.197 \mathrm{mmol})$ and 3-bromo-1-propene $(0.025 \mathrm{~mL}$, $0.289 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0646 \mathrm{~g}, 79.8 \%$). EI-MS m/z 334(${ }^{+}$) Rt (1.54 min).

Example 50: Preparation of 4-[hydroxy(diphenyl)methyl]-1-(3-\{[4-

 (methyloxy)phenyl]oxy\}propyl)-1-azoniabicyclo[2.2.2]octane bromide.Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0483 \mathrm{~g}, 0.164 \mathrm{mmol}$) and 1-[(3-bromopropyl)oxy]-4(methyloxy)benzene ($0.052 \mathrm{~g}, 0.21 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0687 \mathrm{~g}, 77.5 \%$). EI-MS m/z 458(M M^{+}) Rt (2.03 \min).

Example 51: Preparation of [1-(2-aminoethyl)-1-azoniabicyclo[2.2.2]oct-4yl](diphenyl)methanolate trifluoroacetate.

To a solution of 1-[2-(1,3-dioxo-1,3-dihydro- 2 H -isoindol-2-yl)ethyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide ($0.078 \mathrm{~g}, 0.142$ mmol) in $\mathrm{EtOH}(4.0 \mathrm{~mL})$ was added hydrazine ($0.25 \mathrm{~mL}, 7.96 \mathrm{mmol}$). The solution was stirred at room temperature for 16 h and then filtered. The filtrate was concentrated and taken up in 2.5 mL of DMSO and purified by preparatory HPLC (with TFA) to give the title compound ($0.0200 \mathrm{~g}, 31.2 \%$). EI-MS m/z 338(M ${ }^{+}$) Rt (1.28 \min).

Example 52: Preparation of 4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl[bis(4-fluorophenyl)]methanol

A solution of 4-fluorophenylmagnesiumbromide (1.0 M in THF, $4.4 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.1973 \mathrm{~g}, 1.08 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product $(0.3152 \mathrm{~g}$, 88.9\%). EI-MS m/z 330(M+H ${ }^{+}$) Rt (1.65 min).

4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl[bis(4-fluorophenyl)]methanol ($0.0538 \mathrm{~g}, 0.163 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0386 \mathrm{~mL}, 0.245 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.058 \mathrm{~g}, 65.2 \%$). EI-MS m/z 464(M^{+}) Rt (2.16 min).

Example 53: Preparation of 4-[bis(4-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl[bis(4-fluorophenyl)]methanol ($0.0489 \mathrm{~g}, 0.148 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0352 \mathrm{~mL}, 0.222 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0534 \mathrm{~g}, 66.1 \%$). EI-MS m/z 464(M ${ }^{+}$) Rt (1.99 min).

Example 54: Preparation of 4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl\{bis[3-(methyloxy)phenyl]\}methanol

A solution of 3-(methyloxy)phenylmagnesiumbromide (1.0 M in THF, $3.3 \mathrm{~mL}, 3.3$ mmol) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4carboxylate ($0.1608 \mathrm{~g}, 0.877 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product ($0.2881 \mathrm{~g}, 92.9 \%$). EI-MS m/z 354(M+H+) Rt (1.46 min).

4-(hydroxy\{bis [3-(methyloxy)phenyl]\{methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl \{bis[3-(methyloxy)phenyl]\}methanol ($0.0506 \mathrm{~g}, 0.143 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0338 \mathrm{~mL}, 0.214 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.027 \mathrm{~g}, 33.2 \%$). EI-MS $\mathrm{m} / \mathrm{z} 488\left(\mathrm{M}^{+}\right) \mathrm{Rt}(2.02 \mathrm{~min})$.

Example 55: Preparation of 4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}\{$ bis[3-(methyloxy)phenyl]\}methanol ($0.0538 \mathrm{~g}, 0.152 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0361 \mathrm{~mL}, 0.228 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0292 \mathrm{~g}, 33.8 \%$). EI-MS m/z 488($\left.\mathrm{M}^{+}\right) \mathrm{Rt}(2.03$ $\min)$.

Example 56: Preparation of 4-(hydroxy \{bis[4-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl\{bis[4-(methyloxy)phenyl]\}methanol

A solution of 4-(methyloxy)phenylmagnesiumbromide (0.5 M in THF, $6.5 \mathrm{~mL}, 3.25$ mmol) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4carboxylate ($0.1587 \mathrm{~g}, 0.866 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at $0^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product ($0.273 \mathrm{~g}, 89.0 \%$). EI-MS m/z 354(M+H+) Rt (1.74 min).

4-(hydroxy\{bis[3-(methyloxy)phenyl];methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl\{bis[4-(methyloxy)phenyl]\}methanol ($0.0525 \mathrm{~g}, 0.148 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0351 \mathrm{~mL}, 0.222 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0515 \mathrm{~g}, 61.0 \%$). EI-MS m/z 488(M ${ }^{+}$) Rt (2.04 min).

Example 57: Preparation of 4-(hydroxy\{bis[4-(methyloxy)phenyl]\}methyl)-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}\{$ bis[4-(methyloxy)phenyl]\}methanol ($0.0498 \mathrm{~g}, 0.141 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0334 \mathrm{~mL}, 0.211 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0374 \mathrm{~g}, 46.7 \%$). EI-MS m/z 488(M ${ }^{+}$) Rt (1.94 $\min)$.

Example 58: Preparation of 4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol

A solution of 3-fluorophenylmagnesiumbromide (1.0 M in THF, $3.3 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.1756 \mathrm{~g}, 0.958 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product $(0.242 \mathrm{~g}$, $76.7 \%)$. EI-MS m/z 330(M+H ${ }^{+}$) Rt (1.45 min).

4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl[bis(3-fluorophenyl)]methanol ($0.0515 \mathrm{~g}, 0.156 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0370 \mathrm{~mL}, 0.234 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0381 \mathrm{~g}, 44.8 \%$). EI-MS m/z 464(M ${ }^{+}$) Rt (2.01 min).

Example 59: Preparation of 4-[bis(3-fluorophenyl)(hydroxy)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-$\mathrm{yl}[\mathrm{bis}(3-\mathrm{fluorophenyl})]$ methanol $(0.0507 \mathrm{~g}, 0.154 \mathrm{mmol})$ and 2-bromoethyl phenylmethyl ether ($0.0365 \mathrm{~mL}, 0.230 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0362 \mathrm{~g}, 43.2 \%$). EI-MS m/z 464(M ${ }^{+}$) Rt (2.02 min).

Example 60: Preparation of 4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl[bis(3-methylphenyl)]methanol

 A solution of 3-methylphenylmagnesiumbromide (1.0 M in THF, $3.3 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.1484 \mathrm{~g}, 0.810 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product $(0.1806 \mathrm{~g}$, 69.4\%). EI-MS m/z 322(M+H $\left.{ }^{+}\right) \mathrm{Rt}(1.54 \mathrm{~min})$.
4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-$\mathrm{yl}[\mathrm{bis}(3-m e t h y l p h e n y)]$ methanol $(0.0487 \mathrm{~g}, 0.151 \mathrm{mmol})$ and 3-bromopropyl phenyl ether ($0.0358 \mathrm{~mL}, 0.227 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0284 \mathrm{~g}, 34.9 \%$). EI-MS m/z 456(M ${ }^{+}$) $\operatorname{Rt}(2.14 \mathrm{~min})$.

Example 61: Preparation of 4-\{hydroxy[bis(3-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 4, 1-azabicyclo[2.2.2]oct-4-yl[bis(3-methylphenyl)]methanol ($0.0496 \mathrm{~g}, 0.154 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0364 \mathrm{~mL}, 0.230 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0091 \mathrm{~g}, 11.0 \%$). EI-MS m/z 456(M ${ }^{+}$) Rt (2.20 min).

Example 62: Preparation of 4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol

A solution of 4-methylphenylmagnesiumbromide (1.0 M in $\mathrm{THF}, 3.3 \mathrm{~mL}, 3.3 \mathrm{mmol}$) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.1509 \mathrm{~g}, 0.823 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product (0.2291 g , 86.6\%). EI-MS m/z 322(M+H H^{+}) Rt (1.57 min).

4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol ($0.0618 \mathrm{~g}, 0.192 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0454 \mathrm{~mL}, 0.288 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL}$) were reacted to give the desired product ($0.0427 \mathrm{~g}, 41.5 \%$). EI-MS m/z 456(M ${ }^{+}$) Rt (1.99 min).

Example 63: Preparation of 4-\{hydroxy[bis(4-methylphenyl)]methyl\}-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4-yl[bis(4-methylphenyl)]methanol ($0.0525 \mathrm{~g}, 0.163 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0387 \mathrm{~mL}, 0.245 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0465 \mathrm{~g}, 53.1 \%$). EI-MS m/z 456(M ${ }^{+}$) Rt (2.09 min).

Example 64: Preparation of 4-[hydroxy(di-2-naphthalenyl)methyl]-1-[3-(phenyloxy)propyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl(di-2-naphthalenyl)methanol

 A solution of (2-naphthalenyl)magnesiumbromide (0.5 M in THF, $6.5 \mathrm{~mL}, 3.25 \mathrm{mmol}$) was chilled down to $0^{\circ} \mathrm{C}$ under Ar. Ethyl 1-azabicyclo[2.2.2]octane-4-carboxylate ($0.1597 \mathrm{~g}, 0.871 \mathrm{mmol}$) in THF (4 mL) was slowly added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$ over 20 min . The reaction was allowed to warm up to room temperature and then heated at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was chilled in an ice bath, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated under vacuum to yield the desired product (0.265 g , $77.3 \%)$. EI-MS m/z 394(M+H $\left.{ }^{+}\right) \mathrm{Rt}(1.90 \mathrm{~min})$.
4-(hydroxy\{bis[3-(methyloxy)phenyl]\}methyl)-1-[3-(phenyloxy)propyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (di-2-naphthalenyl)methanol ($0.0547 \mathrm{~g}, 0.139 \mathrm{mmol}$) and 3-bromopropyl phenyl ether ($0.0329 \mathrm{~mL}, 0.209 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0268 \mathrm{~g}, 31.7 \%$). EI-MS m/z 528(M^{+}) Rt (2.88 min).

Example 65: Preparation of 4-[hydroxy(di-2-naphthalenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4 yl(di-2-naphthalenyl)methanol ($0.063 .7 \mathrm{~g}, 0.162 \mathrm{mmol}$) and 2-bromoethyl phenylmethyl ether ($0.0384 \mathrm{~mL}, 0.243 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0246 \mathrm{~g}, 25.0 \%$). EI-MS m/z 528(M ${ }^{+}$) Rt (2.36 \min).

Example 66: Preparation of 1-\{3-[(2-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

3-bromopropyl 2-fluorophenyl ether

To a solution of 2-fluorophenol ($0.040 \mathrm{~mL}, 0.448 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3-dibromopropane ($0.450 \mathrm{~mL}, 4.43 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.232 \mathrm{~g}, 0.713$ $\mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0274 \mathrm{~g}, 26.2 \%$). EI-MS Rt (2.24 min).

1-\{3-[(2-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0282 \mathrm{~g}, 0.0960 \mathrm{mmol}$) and 3-bromopropyl 2-fluorophenyl ether $(0.0274 \mathrm{~g}, 0.118 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0345 \mathrm{~g}, 68.3 \%$). EI-MS $\mathrm{m} / \mathrm{z} 446\left(\mathrm{M}^{+}\right) \mathrm{Rt}(1.96 \mathrm{~min})$.

Example 67: Preparation of 1-\{3-[(3-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

3-bromopropyl 3-fluorophenyl ether

To a solution of 3-fluorophenol ($0.040 \mathrm{~mL}, 0.448 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3-dibromopropane ($0.450 \mathrm{~mL}, 4.43 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.246 \mathrm{~g}, 0.756$ mmol). The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with DCM (8 mL). The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0137 \mathrm{~g}, 13.2 \%$). EI-MS Rt (2.28 min).

1-\{3-[(3-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0137 \mathrm{~g}, 0.0467 \mathrm{mmol}$) and 3-bromopropyl 3-fluorophenyl ether $(0.0137 \mathrm{~g}, 0.0588 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product $(0.0130 \mathrm{~g}, 53.1 \%)$. El-MS m/z 446(M ${ }^{+}$) Rt (2.03 min).

Example 68: Preparation of 1-\{3-[(4-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

3-bromopropyl 4-fluorophenyl ether

To a solution of 4-fluorophenol ($0.0567 \mathrm{~g}, 0.506 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3-dibromopropane ($0.520 \mathrm{~mL}, 5.12 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.252 \mathrm{~g}, 0.774$ $\mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0173 \mathrm{~g}, 14.7 \%$). EI-MS Rt (2.25 min).

1-\{3-[(4-fluorophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1-

 azoniabicyclo[2.2.2]octane bromideFollowing the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol ($0.0182 \mathrm{~g}, 0.0621 \mathrm{mmol}$) and 3-bromopropyl 4-fluorophenyl ether $(0.0173 \mathrm{~g}, 0.0742 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0143 \mathrm{~g}, 43.7 \%$). EI-MS m/z 446(M+) Rt (1.96 min).

Example 69: Preparation of 1-[3-(3-biphenylyloxy)propyl]-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

3-biphenylyl 3-bromopropyl ether

To a solution of 3-biphenylol ($0.0574 \mathrm{~g}, 0.337 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3-dibromopropane ($0.340 \mathrm{~mL}, 3.35 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.172 \mathrm{~g}, 0.529$
mmol). The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0568 \mathrm{~g}, 57.8 \%$). EI-MS Rt (2.59 min).

1-[3-(3-biphenylyloxy)propyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl $)$ methanol $(0.0433 \mathrm{~g}, 0.148 \mathrm{mmol})$ and 3-biphenylyl 3-bromopropyl ether ($0.0568 \mathrm{~g}, 0.196 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0610 \mathrm{~g}, 70.6 \%$). EI-MS m/z 504(M+) Rt (2.37 min).

Example 70: Preparation of 1-[3-(4-biphenylyloxy)propyl]-4-

 [hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.
4-biphenylyl 3-bromopropyl ether

To a solution of 4-biphenylol $(0.0514 \mathrm{~g}, 0.302 \mathrm{mmol})$ in acetonitrile $(4 \mathrm{~mL})$ was added 1,3-dibromopropane ($0.310 \mathrm{~mL}, 3.05 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.154 \mathrm{~g}, 0.472$ $\mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0562 \mathrm{~g}, 64.0 \%$). EI-MS Rt (2.62 min).

1-[3-(4-biphenylyloxy)propyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4$\mathrm{yl}($ diphenyl)methanol $(0.0437 \mathrm{~g}, 0.144 \mathrm{mmol})$ and 4-biphenylyl 3-bromopropyl ether ($0.0562 \mathrm{~g}, 0.194 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0655 \mathrm{~g}, 75.2 \%$). EI-MS m/z 504(M^{+}) Rt (2.24 min).

Example 71: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{3-[(3-nitrophenyl)oxylpropyl\}-1-azoniabicyclo[2.2.2]octane bromide.

3-bromopropyl 3-nitrophenyl ether

To a solution of 3-nitrophenol $(0.0689 \mathrm{~g}, 0.495 \mathrm{mmol})$ in acetonitrile $(4 \mathrm{~mL})$ was added 1,3-dibromopropane ($0.500 \mathrm{~mL}, 3.05 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.244 \mathrm{~g}, 0.748$ mmol). The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0730 \mathrm{~g}, 56.6 \%$). EI-MS Rt (2.20 min).

4-[hydroxy(diphenyl)methyl]-1-\{3-[(3-nitrophenyl)oxy]propyl\}-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0608 \mathrm{~g}, 0.207 \mathrm{mmol}$) and 3-bromopropyl 3-nitrophenyl ether ($0.0730 \mathrm{~g}, 0.281 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0942 \mathrm{~g}, 82.2 \%$). EI-MS m/z 474(M^{+}) Rt (2.04 min).

Example 72: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{3-[(2-methylphenyl)oxy]propyl\}-1-azoniabicyclo[2.2.2]octane bromide.

3-bromopropyl 2-methylphenyl ether

To a solution of 2-methylphenol $(0.0954 \mathrm{~g}, 0.924 \mathrm{mmol})$ in acetonitrile $(4 \mathrm{~mL})$ was added 1,3-dibromopropane ($1.00 \mathrm{~mL}, 9.85 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.469 \mathrm{~g}, 1.44$ $\mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound $(0.0934 \mathrm{~g}, 44.1 \%)$. EI-MS Rt (2.45 min).

4-[hydroxy(diphenyl)methyl]-1-\{3-[(2-methylphenyl)oxy]propyl $\}-1-$ azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0447 \mathrm{~g}, 0.152 \mathrm{mmol}$) and 3-bromopropyl 2-methylphenyl ether $(0.0934 \mathrm{~g}, 0.407 \mathrm{mmol})$ in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0586 \mathrm{~g}, 76.5 \%$). EI-MS m/z 442(M^{+}) Rt (2.17 min).

Example 73: Preparation of 1-(3-\{[3-(diethylamino)phenyl]oxy\}propyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

3-[(3-bromopropyl)oxy]-N,N-diethylaniline

To a solution of 3-(diethylamino) phenol ($0.0104 \mathrm{~g}, 0.631 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3 -dibromopropane ($0.640 \mathrm{~mL}, 6.30 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.313 \mathrm{~g}$, $0.961 \mathrm{mmol})$. The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with DCM $(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.0314 \mathrm{~g}, 17.4 \%$). EI-MS m/z $286\left(\mathrm{M}+\mathrm{H}^{+}\right)$ $\operatorname{Rt}(1.59 \mathrm{~min})$.

1-(3-\{[3-(diethylamino)phenyl]oxy\}propyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl (diphenyl)methanol ($0.0257 \mathrm{~g}, 0.0876 \mathrm{mmol}$) and 3-[(3-bromopropyl)oxy]- N, N diethylaniline ($0.0314 \mathrm{~g}, 0.110 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.032 .0 \mathrm{~g}, 63.0 \%$). EI-MS $\mathrm{m} / \mathrm{z} 500\left(\mathrm{M}^{+}\right) \operatorname{Rt}(1.58 \mathrm{~min})$.

Example 74: Preparation of 1-\{3-[(4-cyanophenyl)oxylpropyl\}-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

4-[(3-bromopropyl)oxy]benzonitrile

To a solution of 4-hydroxybenzonitrile ($0.109 \mathrm{~g}, 0.913 \mathrm{mmol}$) in acetonitrile (4 mL) was added 1,3-dibromopropane ($0.930 \mathrm{~mL}, 9.16 \mathrm{mmol}$) followed by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.439 \mathrm{~g}$, 1.35 mmol). The reaction mixture was stirred for 24 h and then concentrated under vacuum. The resulting residue was treated with $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and extracted with DCM $(8 \mathrm{~mL})$. The organic layer was dried through a phase separator and concentrated under vacuum. The residue was taken up in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.156 \mathrm{~g}, 71.4 \%$). EI-MS Rt (2.10 min).

1-\{3-[(4-cyanophenyl)oxy]propyl\}-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

Following the general procedure outlined in Example 3, 1-azabicyclo[2.2.2]oct-4yl(diphenyl)methanol ($0.0520 \mathrm{~g}, 0.177 \mathrm{mmol}$) and 4-[(3-bromopropyl)oxy]benzonitrile ($0.156 \mathrm{~g}, 0.652 \mathrm{mmol}$) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(4.0 \mathrm{~mL})$ were reacted to give the desired product ($0.0726 \mathrm{~g}, 76.8 \%$). EI-MS m/z 453(M^{+}) $\operatorname{Rt}(1.86 \mathrm{~min})$.

Example 75: Preparation of 4-[hydroxy(diphenyl)methyl]-1-[2-(\{[3-(methyloxy)phenyl]methyl\}oxy)ethyl]-1-azoniabicyclo[2.2.2]octane bromide.

2-(\{[3-(methyloxy)phenyl]methyl\}oxy)ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL) (caution: exotherm). m-Methoxybenzyl chloride ($0.21 \mathrm{~mL}, 1.5$ mmol) was added to the reaction, and the residual m-methoxybenzyl chloride was transferred to the reaction tube with additional THF $(1 \mathrm{~mL}) .(\mathrm{Bu})_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15$ mmol) was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then cooled to room temperature for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \mathrm{~mL})$ were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a Biotage $12+\mathrm{M}$ cartridge (8 g silica) eluting with $30 \% \mathrm{EtOAc} /$ hexanes at $5 \mathrm{~mL} / \mathrm{min}$ to
give the title compound ($114 \mathrm{mg}, 42 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-\{[(2-bromoethyl)oxy]methyl\}-3-(methyloxy)benzene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM $(2.5 \mathrm{~mL})$ was added resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL). The reaction was stirred at room temperature for 10 min . A solution of 2-(\{[3(methyloxy)phenyl]methyl \}oxy)ethanol ($114 \mathrm{mg}, 0.626 \mathrm{mmol}$) in DCM (1.5 mL) was added to the reaction, and the residual alcohol was transferred with additional DCM $(1.5 \mathrm{~mL})$. The reaction vessel was wrapped in aluminum foil and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), $30 \% \mathrm{EtOAc} /$ hexanes (fraction 2), and 50% $\mathrm{EtOAc} /$ hexanes (fraction 3) to give the title compound (160 mg). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

4-[hydroxy(diphenyl)methyl]-1-[2-(\{[3-(methyloxy)phenyl]methyl\}oxy)ethyl]-1azoniabicyclo[2.2.2]octane bromide

1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 1-\{[(2-bromoethyl)oxy]methyl\}-3-(methyloxy)benzene ($35 \mathrm{mg}, 0.143$ mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(3 \mathrm{~mL})$. The reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$) and then $\mathrm{MeOH}(1 \times 1 \mathrm{~mL})$. The product was dried under high vacuum to give the title compound ($7.7 \mathrm{mg}, 14 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 1.97 \mathrm{~min}^{+} 458$

Example 76: Preparation of 1-[2-(\{[4-(1,1-dimethylethyl)phenyl]methyl\}oxy)ethyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide.

2-(\{[4-(1, 1-dimethylethyl)phenyl]methyl\}oxy)ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 1-(Bromomethyl)-4-(1,1-dimethylethyl)benzene ($0.28 \mathrm{~mL}, 1.5$
mmol) was added to the reaction, and the residual 1-(bromomethyl)-4-(1,1dimethylethyl)benzene was transferred to the reaction tube with additional THF (1 mL). $(\mathrm{Bu})_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \mathrm{~mL})$ were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: 10% EtOAc/hexanes (fractions 1,2), 30\% EtOAc/hexanes (fractions 3,4), and 50\% EtOAc/hexanes (fractions 5,6) to give the title compound ($312 \mathrm{mg}, 51 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-\{[(2-bromoethyl)oxy]methyl\}-4-(1,1-dimethylethyl)benzene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM $(2.5 \mathrm{~mL})$ was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution of $2-(\{[4-(1,1-$ dimethylethyl)phenyl]methyl \}oxy)ethanol ($160 \mathrm{mg}, 0.768 \mathrm{mmol}$) in DCM (1.5 mL) was added to the reaction, and the residual alcohol was transferred with additional DCM (1.5 mL). The reaction vial was capped, wrapped in aluminum foil, and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and $50 \% \mathrm{EtOAc} /$ hexanes (fraction 3) to give the title compound ($25 \mathrm{mg}, 12 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-[2-(\{[4-(1,1-dimethylethyl)phenyl]methyl\}oxy)ethyl]-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide
1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 1-\{[(2-bromoethyl)oxy]methyl $\}$-4-(1,1-dimethylethyl)benzene (25 mg , $0.143 \mathrm{mmol})$ in $2: 3 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h. The reaction was concentrated, and the crude product was washed with EtOAc (3 x 1 mL). The product was dried under high vacuum to give the title compound (9 mg , $16 \%)$. LC/MS ESI $\mathrm{R}_{\mathrm{T}} 2.28 \mathrm{~min} \mathrm{M}^{+} 484$

Example 77: Preparation of 1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide

2-\{[(4-fluorophenyl)methyl]oxy\}ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 1-(Bromomethyl)-4-fluorobenzene ($0.19 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to the reaction, and the residual 1-(bromomethyl)-4-fluorobenzene was transferred to the reaction tube with additional THF (1 mL). (Bu$)_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15$ mmol) was added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for 4 h . $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: $30 \% \mathrm{EtOAc} /$ hexanes (fractions 1,2), $50 \% \mathrm{EtOAc} /$ hexanes (fraction 3), and $75 \% \mathrm{EtOAc} /$ hexanes (fraction 4) to give the title compound ($122 \mathrm{mg}, 48 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-\{[(2-bromoethyl)oxy]methyl\}-4-fluorobenzene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM $(2.5 \mathrm{~mL})$ was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution of $2-\{[(4-$ fluorophenyl)methyl]oxy\} ethanol ($122 \mathrm{mg}, 0.717 \mathrm{mmol}$) in DCM (1.5 mL) was added to the reaction, and the residual alcohol was transferred with additional DCM $(1.5 \mathrm{~mL})$. The reaction vial was capped, wrapped in aluminum foil, and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), $30 \% \mathrm{EtOAc} /$ hexanes (fraction 2), and 50% EtOAc/hexanes (fraction 3) to give the title compound ($80 \mathrm{mg}, 48 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}.

1-(2-\{[(4-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-

 azoniabicyclo[2.2.2]octane bromide1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 1-\{[(2-bromoethyl)oxy]methyl \}-4-fluorobenzene ($33 \mathrm{mg}, 0.143 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($9 \mathrm{mg}, 16 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 1.89 \min \mathrm{M}^{+} 446$

Example 78: Preparation of 1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

2-\{[(4-chlorophenyl)methyl]oxy\}ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 1-(Bromomethyl)-4-chlorobenzene ($310 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to the reaction, and the residual l-(bromomethyl)-4-chlorobenzene was transferred to the reaction tube with additional THF $(1 \mathrm{~mL})$. $(\mathrm{Bu})_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: $30 \% \mathrm{EtOAc} /$ hexanes (fractions 1,2), 50% EtOAc/hexanes (fraction 3), and $75 \% \mathrm{EtOAc} /$ hexanes (fraction 4) to give the title compound ($129 \mathrm{mg}, 46 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-\{[(2-bromoethyl)oxy]methyl\}-4-chlorobenzene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM (2.5 mL) was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution of $2-\{[(4-$ chlorophenyl)methyl]oxy ethanol ($129 \mathrm{mg}, 0.691 \mathrm{mmol}$) in DCM $(1.5 \mathrm{~mL})$ was added to the reaction, and the residual alcohol was transferred with additional DCM (1.5 mL).

The reaction vial was capped, wrapped in aluminum foil, and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and 50\% EtOAc/hexanes (fraction 3) to give the title compound ($98 \mathrm{mg}, 57 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-(2-\{[(4-chlorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 1-\{[(2-bromoethyl)oxy]methyl $\}-4$-chlorobenzene ($36 \mathrm{mg}, 0.143 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($17.4 \mathrm{mg}, 32 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 2.09 \min \mathrm{M}^{+} 462$

Example 79: Preparation of 1-(2-\{[(4-bromophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

2-\{[(4-bromophenyl)methyl]oxy\}ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 1-Bromo-4-(bromomethyl)benzene ($370 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to the reaction, and the residual 1-bromo-4-(bromomethyl)benzene was transferred to the reaction tube with additional THF $(1 \mathrm{~mL}) .(\mathrm{Bu})_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: $30 \% \mathrm{EtOAc} /$ hexanes (fractions 1,2), 50% $\mathrm{EtOAc} /$ hexanes (fraction 3), and 75\% EtOAc/hexanes (fraction 4) to give the title compound ($139 \mathrm{mg}, 40 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-bromo-4-\{[(2-bromoethyl)oxy]methyl\}benzene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM (2.5 mL) was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution of $2-\{[(4-$ bromophenyl)methyl]oxy\}ethanol ($139 \mathrm{mg}, 0.601 \mathrm{mmol}$) in DCM (1.5 mL) was added to the reaction, and the residual alcohol was transferred with additional DCM $(1.5 \mathrm{~mL})$. The reaction vial was capped, wrapped in aluminum foil, and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and 50\% EtOAc/hexanes (fraction 3) to give the title compound ($87 \mathrm{mg}, 49 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-(2-\{[(4-bromophenvl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 1-bromo-4-\{[(2-bromoethyl)oxy]methyl\} benzene ($42 \mathrm{mg}, 0.143 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($19.4 \mathrm{mg}, 32 \%$).
LC/MS ESI $\mathrm{R}_{\mathrm{T}} 2.07 \min ^{+}{ }^{+} 506$

Example 80: Preparation of 1-(2-\{[(4-cyanophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

4-\{[(2-hydroxyethyl)oxy]methyl\}benzonitrile

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 4-(Bromomethyl)benzonitrile ($290 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to the reaction, and the residual 4-(bromomethyl)benzonitrile was transferred to the reaction tube with additional $\mathrm{THF}(1 \mathrm{~mL}) .(\mathrm{Bu})_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were
concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: 10% EtOAc/hexanes (fractions 1,2), 30% EtOAc/hexanes (fractions 3,4), 50\% EtOAc/hexanes (fractions 5-7), and 75\% EtOAc/hexanes (fraction 8) to give the title compound ($95 \mathrm{mg}, 36 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

4-\{[(2-bromoethyl)oxy]methyl\}benzonitrile

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM (2.5 mL) was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution of $4-\{[(2-$ hydroxyethyl)oxy]methyl \} benzonitrile ($95 \mathrm{mg}, 0.536 \mathrm{mmol}$) in DCM (1.5 mL) was added to the reaction, and the residual alcohol was transferred with additional DCM (1.5 mL). The reaction vial was capped, wrapped in aluminum foil, and stirred at it for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and $50 \% \mathrm{EtOAc} /$ hexanes (fraction 3) to give the title compound ($60 \mathrm{mg}, 47 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}.

1-(2-\{[(4-cyanophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-

 azoniabicyclo[2.2.2]octane bromide1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 4-\{[(2-bromoethyl)oxy]methyl\}benzonitrile ($34 \mathrm{mg}, 0.143 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($40 \mathrm{mg}, 74 \%$). LC/MS ESI R_{T} $1.82 \mathrm{~min} \mathrm{M}^{+} 453$

Example 81: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{2-[(2-naphthalenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

2-[(2-naphthalenylmethyl)oxy]ethanol

Ethylene glycol ($0.084 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to $\mathrm{NaH}(38 \mathrm{mg}, 1.52 \mathrm{mmol}, 95 \%$ in oil) in THF (3 mL). 2-(Bromomethyl)naphthalene ($330 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to
the reaction, and the residual 2-(bromomethyl)naphthalene was transferred to the reaction tube with additional THF (1 mL). (Bu$)_{4} \mathrm{NI}(55 \mathrm{mg}, 0.15 \mathrm{mmol})$ was then added, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 18 h and then rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($1 \times 1 \mathrm{~mL}$), and the combined organic layers were concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: $30 \% \mathrm{EtOAc} /$ hexanes (fractions 1,2), 50\% $\mathrm{EtOAc} /$ hexanes (fraction 3), and $75 \% \mathrm{EtOAc} /$ hexanes (fraction 4) to give the title compound ($101 \mathrm{mg}, 33 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

2-\{[(2-bromoethyl)oxy]methyl\}naphthalene

A solution of N-bromosuccinimide ($272 \mathrm{mg}, 1.53 \mathrm{mmol}$) in DCM (2.5 mL) was added to resin-bound triphenylphosphine ($510 \mathrm{mg}, 1.53 \mathrm{mEquiv}$, Fluka) in DCM (2.5 mL), and the reaction was stirred at rt for 10 min . A solution 2-[(2naphthalenylmethyl)oxy]ethanol ($101 \mathrm{mg}, 0.499 \mathrm{mmol}$) in $\mathrm{DCM}(1.5 \mathrm{~mL})$ was added to the reaction, and the residual alcohol was transferred with additional $\mathrm{DCM}(1.5 \mathrm{~mL})$. The reaction vial was capped, wrapped in aluminum foil, and stirred at rt for 20 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and 50\% $\mathrm{EtOAc} /$ hexanes (fraction 3) to give the title compound ($57 \mathrm{mg}, 43 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}.

4-[hydroxy(diphenyl)methyl]-1-\{2-[(2-naphthalenylmethyl)oxy]ethyl\}-1-

 azoniabicyclo[2.2.2]octane bromide1-Azabicyclo[2.2.2] oct-4-yl(diphenyl)methanol ($30 \mathrm{mg}, 0.102 \mathrm{mmol}$) was added to a solution of 2-\{[(2-bromoethyl)oxy]methyl\} naphthalene ($38 \mathrm{mg}, 0.143 \mathrm{mmol}$) in $2: 3$ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 96 h . The reaction was concentrated, and the crude product was washed with EtOAc ($3 \times 1 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($48.1 \mathrm{mg}, 84 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 2.04 \min \mathrm{M}^{+} 478$

Example 82: Preparation of 1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

2-\{[(3-fluorophenyl)methyl]oxy\}ethanol

Ethylene glycol ($0.1 \mathrm{~mL}, 1.79 \mathrm{mmol}$) was added to $\mathrm{NaH}(46 \mathrm{mg}, 1.81 \mathrm{mmol}, 95 \%$ in oil) in THF (5 mL). 1-(Bromomethyl)-3-fluorobenzene ($0.22 \mathrm{~mL}, 1.79 \mathrm{mmol}$) was added to the reaction, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 5 days. $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and EtOAc (2 mL) were added, and the layers were separated via pipette. The aqueous layer was extracted with EtOAc ($3 \times 1 \mathrm{~mL}$), and the combined organic layers were washed with saturated $\mathrm{NaCl}(1 \times 2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was purified on a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: 30\% EtOAc/hexanes (fractions 1,2), $50 \% \mathrm{EtOAc} /$ hexanes (fraction 3), and $75 \% \mathrm{EtOAc} /$ hexanes (fraction 4) to give the title compound ($76.2 \mathrm{mg}, 25 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}.

1-\{[(2-bromoethyl)oxy]methyl\}-3-fluorobenzene

N-bromosuccinimide ($146 \mathrm{mg}, 0.820 \mathrm{mmol}$) was added to resin-bound triphenylphosphine ($274 \mathrm{mg}, 0.822 \mathrm{mEquiv}$, Fluka) and 2-\{[(3-
fluorophenyl)methyl]oxy \}ethanol ($70 \mathrm{mg}, 0.411 \mathrm{mmol}$) in DCM (4 mL). The reaction vial was sealed with a Teflon-lined cap, wrapped in aluminum foil, and shaken at it for 17 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), 30\% EtOAc/hexanes (fraction 2), and $50 \% \mathrm{EtOAc} /$ hexanes (fraction 3) to give the title compound ($75 \mathrm{mg}, 78 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

1-(2-\{[(3-fluorophenyl)methyl]oxy\}ethyl)-4-[hydroxy(diphenyl)methyl]-1azoniabicyclo[2.2.2]octane bromide

1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($94 \mathrm{mg}, 0.321 \mathrm{mmol}$) was added to a solution of 1-\{[(2-bromoethyl)oxy]methyl \}-3-fluorobenzene ($75 \mathrm{mg}, 0.321 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(4 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 3 days. The reaction was concentrated under reduced pressure, and the crude product was washed
with EtOAc ($3 \times 2 \mathrm{~mL}$). The product was dried under high vacuum to give the title compound ($50 \mathrm{mg}, 30 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 1.95 \mathrm{~min} \mathrm{M}^{+} 446$

Example 83: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{2-[(1-methyl-1-phenylethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

2-[(1-methyl-1-phenylethyl)oxy]ethanol

A catalytic amount of either p-toluene sulfonic acid• $\mathrm{H}_{2} \mathrm{O}$ or Bio-Rad SCX resin (analytical grade, $5.1 \mathrm{meq} / \mathrm{g}$, AG $50 \mathrm{~W}-\mathrm{X} 8$) was added to \square-methylstyrene (0.5 mL , 3.85 mmol) and ethylene glycol ($0.21 \mathrm{~mL}, 3.85 \mathrm{mmol}$), and the reaction was stirred at rt for 5 days. The reaction mixture was loaded directly onto a SPE cartridge (10 g silica) and eluted with the following 10 mL fractions: 10% EtOAc/hexanes (fractions 1,2), $30 \% \mathrm{EtOAc} /$ hexanes (fractions 3,4), and 50\% EtOAc/hexanes (fractions 5,6) to give the title compound ($30.5 \mathrm{mg}, 4 \%$) for both conditions. The product was characterized by ${ }^{1} \mathrm{H}$ NMR (400 MHz) in CDCl_{3}.

\{1-[(2-bromoethyl)oxy]-1-methylethyl\}benzene

N-bromosuccinimide ($119 \mathrm{mg}, 0.666 \mathrm{mmol}$) was added to resin-bound triphenylphosphine ($222 \mathrm{mg}, 0.666 \mathrm{mEquiv}$, Fluka) and 2-[(1-methyl-1phenylethyl)oxy]ethanol ($60 \mathrm{mg}, 0.333 \mathrm{mmol}$) in $\mathrm{DCM}(4 \mathrm{~mL})$. The reaction vial was sealed with a Teflon-lined cap, wrapped in aluminum foil, and shaken at rt for 17 h . The reaction was filtered through a SPE cartridge (5 g silica) eluting with the following 10 mL fractions: DCM (fraction 1), $30 \% \mathrm{EtOAc} /$ hexanes (fraction 2), and 50% EtOAc/hexanes (fraction 3) to give the title compound ($34 \mathrm{mg}, 42 \%$). The product was characterized by ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ in CDCl_{3}.

4-[hydroxy(diphenyl)methyl]-1-\{2-[(1-methyl-1-phenylethyl)oxy]ethyl\}-1-

 azoniabicyclo[2.2.2]octane bromide1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($41 \mathrm{mg}, 0.14 \mathrm{mmol}$) was added to a solution of \{1-[(2-bromoethyl)oxy]-1-methylethyl\}benzene ($34 \mathrm{mg}, 0.14 \mathrm{mmol}$) in 2:3 $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}(3 \mathrm{~mL})$, and the reaction was heated at $60^{\circ} \mathrm{C}$ for 3 days. The reaction was concentrated under reduced pressure, and the crude product was washed with

EtOAc ($3 \times 1 \mathrm{~mL}$). The residue was taken up in 2.5 mL of DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($18 \mathrm{mg}, 24 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 2.09 \min ^{+} 456$

Example 84: Preparation of 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide.

Method A: 1-Azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($0.020 \mathrm{~g}, 0.068 \mathrm{mmol}$) was diluted in $\mathrm{CHCl}_{3}(1.8 \mathrm{~mL})$ and dispensed directly into a 1 dram vial containing 2bromoethyl phenylmethyl ether $(0.022 \mathrm{~g}, 0.102 \mathrm{mmol}) . \mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ was added; the vial was fitted with a stirring bar and capped. The reaction was stirred and heated at $60^{\circ} \mathrm{C}$ for 24 h . The contents of the vial were transferred (after removal of stirring bar) into a polypropylene tube and concentrated under Nitrogen. The crude product was collected on a polypropylene tube frit. Excess bromide was removed by washing the crude product with EtOAc ($5 \times 2 \mathrm{~mL}$) and Hexane ($5 \times 2 \mathrm{~mL}$). The product was then dried under vacuum to give the title compound ($0.008 \mathrm{~g}, 23.8 \%$).

Method B: To a solution of 1-azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol (3.30 g , 11.2 mmol) in $2 \mathrm{CH}_{3} \mathrm{CN} / 3 \mathrm{CHCl}_{3}(200 \mathrm{~mL})$ was added 2-bromoethyl phenylmethyl ether ($2.31 \mathrm{~mL}, 14.6 \mathrm{mmol}$). The solution was stirred at $60^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled down to room temperature and concentrated. EtOAc (200 mL) was added to the solid, and the mixture was allowed to stir for 1 hour then filtered. The resulting solid was taken up in $\mathrm{MeOH}(125 \mathrm{~mL})$ and heated to $60^{\circ} \mathrm{C}$. The solution was filtered hot, and then cooled back to room temperature. The reaction was concentrated to a low volume of $\mathrm{MeOH}(\sim 20 \mathrm{~mL})$ and filtered. Water $(75 \mathrm{~mL})$ was then added and the resulting mixture was heated at $55^{\circ} \mathrm{C}$ with brisk stirring for 40 min . After cooling to room temperature, the solid was filtered off, washed with water (20 mL) and dried in a vacuum oven at $45^{\circ} \mathrm{C}$ for 16 hours to give the title compound ($2.47 \mathrm{~g}, 43.3 \%$). EI-MS $\mathrm{m} / \mathrm{z} 428\left(\mathrm{M}^{+}\right) \mathrm{Rt}(1.90 \mathrm{~min})^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 7.56(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=1.2), 7.28(\mathrm{~m}, 11 \mathrm{H})$, $5.95(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.0), 3.48(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2), 3.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.0)$,
$2.01(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.2)$; Elemental analysis $\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Br}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$: calculated, 68.50, 6.74, 2.75; found, 68.28, 6.68, 2.73.

The following examples in Table 1 were prepared according to the procedure outlined in Example 84 method A.

Table 1

Example	R1	MS [M+]	$\mathbf{R}_{\mathbf{t}}(\mathbf{m i n})$
85		384	1.64
86		434	1.97
87		419	1.51
88		468	2.02
89		463	1.77

90		414	1.84
91		468	1.96
92		402	1.68
93		463	1.82
94		452	1.93
95		402	1.55
96		452	1.97
97		418	2.00
98		398	1.72
99		402	1.60

100		402	1.63
101		453	1.92
102		416	1.87
103		409	1.60
104		440	2.07
105		409	1.55
106		420	1.90
107		420	1.78
108		525	1.67

109		429	1.57
110		420	1.64
111		420	1.67

Example 112: Preparation of 1-[2-(1-benzofuran-2-yl)-2-oxoethyl]-4-

[hydroxy(diphenyl)methyl]-1-azoniabicyclo[2.2.2]octane bromide.

1-azabicyclo[2.2.2]oct-4-yl(diphenyl)methanol ($0.022 \mathrm{~g}, 0.075 \mathrm{mmol}$) was diluted in $\mathrm{CHCl}_{3}(1.8 \mathrm{~mL})$ and dispensed directly into a 1 dram vial containing 1-(1-benzofuran-2-yl)-2-bromoethanone ($0.027 \mathrm{~g}, 0.112 \mathrm{mmol}$). Added $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$, the vial was fitted with stirring bar and capped. The reaction was stirred and heated at $60^{\circ} \mathrm{C}$ for 24 h and then concentrated under vacuum to give a white solid. This residue was dissolved in DMSO and purified by preparatory HPLC (without TFA) to give the title compound ($0.022 \mathrm{~g}, 57.4 \%$). LC/MS ESI $\mathrm{R}_{\mathrm{T}} 1.98 \mathrm{~min}, \mathrm{M}^{+} 452$

The following examples in Table 2 were prepared according to the procedure outlined in Example 112.

Table 2

Example	R1	MS [M+]	$\mathrm{R}_{\mathrm{t}}(\mathrm{min})$
113		437	1.96
114		441	1.92
115		525	2.11
116		488	2.31
117		482	2.46
118		510	1.95
119		462	2.03
120		442	1.95

121		429	1.33
122		534	1.92

Abbreviations

5 Ar
Argon
DCM
Dichloromethane
DMF Dimethylformamide
DMSO Dimethylsulfoxide
EI/ESI Electrospray ionization
HPLC High pressure liquid chromatography
LC Liquid chromatography
LDA Lithium Diisopropyl Amide
MS Mass spectrometry
NMR Nuclear magnetic resonance
Retention time
rt room temperature
SPE Solid phase extraction
TEA Triethylamine
TFA Trifluoroacetic acid
20 THF Tetrahydrofuran

BIOLOGICAL EXAMPLES

The inhibitory effects of compounds at the $\mathrm{M}_{3} \mathrm{mAChR}$ of the present invention are determined by the following in vitro and in vivo functional assays:

Analysis of Inhibition of Receptor Activation by Calcium Mobilization:

Stimulation of mAChRs expressed on CHO cells were analyzed by monitoring receptor-activated calcium mobilization as previously described (H. M. Sarau et al, 1999. Mol. Pharmacol. 56, 657-663). CHO cells stably expressing M3 mAChRs were plated in 96 well black wall/clear bottom plates. After 18 to 24 hours, media was aspirated and replaced with $100 \mu \mathrm{l}$ of load media (EMEM with Earl's salts, 0.1% RIAgrade BSA (Sigma, St. Louis MO), and $4 \mu \mathrm{M}$ Fluo-3-acetoxymethyl ester fluorescent indicator dye (Fluo-3 AM, Molecular Probes, Eugene, OR) and incubated 1 hr at $37^{\circ} \mathrm{C}$. The dye-containing media was then aspirated, replaced with fresh media (without Fluo3 AM), and cells were incubated for 10 minutes at $37^{\circ} \mathrm{C}$. Cells were then washed 3 times and incubated for 10 minutes at $37^{\circ} \mathrm{C}$ in $100 \mu \mathrm{l}$ of assay buffer (0.1% gelatin (Sigma), $120 \mathrm{mM} \mathrm{NaCl}, 4.6 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}, 25 \mathrm{mM} \mathrm{NaH} \mathrm{CO} 3,1.0 \mathrm{mM}$ $\mathrm{CaCl}_{2}, 1.1 \mathrm{mM} \mathrm{MgCl} 2,11 \mathrm{mM}$ glucose, 20 mM HEPES (pH 7.4)). $50 \mu 1$ of compound ($1 \times 10^{-11}-1 \times 10^{-5} \mathrm{M}$ final in the assay) was added and the plates were incubated for 10 \min. at $37^{\circ} \mathrm{C}$. Plates were then placed into a fluorescent light intensity plate reader (FLIPR, Molecular Probes) where the dye loaded cells were exposed to excitation light $(488 \mathrm{~nm})$ from a 6 watt argon laser. Cells were activated by adding $50 \mu \mathrm{l}$ of acetylcholine ($0.1-10 \mathrm{nM}$ final), prepared in buffer containing $0.1 \% \mathrm{BSA}$, at a rate of $50 \mu 1 /$ sec. Calcium mobilization, monitored as change in cytosolic calcium concentration, was measured as change in 566 nm emission intensity. The change in emission intensity is directly related to cytosolic calcium levels. The emitted fluorescence from all 96 wells is measured simultaneously using a cooled CCD camera. Data points are collected every second. This data was then plotting and analyzed using GraphPad PRISM software.

Methacholine-induced bronchoconstriction - potency and duration of action

Airway responsiveness to methacholine was determined in awake, unrestrained Balb C mice ($n=6$ each group). Barometric plethysmography was used to measure enhanced pause (Penh), a unitless measure that has been shown to correlate with the changes in airway resistance that occur during bronchial challenge with methacholine(2). Mice were pre-treated with $50 \mu \mathrm{l}$ of compound ($0.003-10 \mu \mathrm{~g} / \mathrm{mouse}$) in $50 \mu \mathrm{l}$ of vehicle ($10 \% \mathrm{DMSO}$) intranasally (i.n.) and were then placed in the plethysmography chamber a given amount of time following drug administration (15 $\min -96 \mathrm{~h}$). For potency determination, a dose response to a given drug was performed, and all measurements were taken 15 min following i.n. drug administration. For duration of action determination, measurements were taken anywhere from 15 min to 96 hours following i.n. drug administration.

Once in the chamber, the mice were allowed to equilibrate for 10 min before taking a baseline Penh measurement for 5 minutes. Mice were then challenged with an aerosol of methacholine ($10 \mathrm{mg} / \mathrm{ml}$) for 2 minutes. Penh was recorded continuously for 7 min starting at the inception of the methacholine aerosol, and continuing for 5 minutes afterward. Data for each mouse were analyzed and plotted by using GraphPad PRISM software. This experiment allows the determination of duration of activity of the administered compound.

The present compounds are useful for treating a variety of indications, including but not limited to respiratory-tract disorders such as chronic obstructive lung disease, chronic bronchitis, asthma, chronic respiratory obstruction, pulmonary fibrosis, pulmonary emphysema, and allergic rhinitis.

Muscarinic Receptor Radioligand Binding Assays

Radioligand binding studies using $0.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-\mathrm{N}$-methyl scopolamine (NMS) in a SPA format is used to assess binding of muscarinic antagonists to $M_{1}, M_{2}, M_{3}, M_{4}$ and M_{5} muscarinic acetylcholine receptors. In a 96 -well plate, the SPA beads are preincubated with receptor-containing membrane for 30 min at $4^{\circ} \mathrm{C}$. Then 50 mM HEPES and the test compound are added and incubated at room temperature (shaking) for 2 hours. The beads are then spun down and counted using a scintillation counter.

Evaluation of potency and duration of action in isolated guinea pig trachea

Tracheae were removed from adult male Hartely guinea pigs (Charles River, Raleigh, NC; 400-600 grams) and placed into modified Krebs-Henseleit solution. Composition of the solution was (mM): $\mathrm{NaCl} 113.0, \mathrm{KCl} 4.8, \mathrm{CaCl}_{2} 2.5, \mathrm{KH}_{2} \mathrm{PO}_{4} 1.2$,
$\mathrm{MgSO}_{4} 1.2, \mathrm{NaHCO}_{3} 25.0$ and dextrose 11.0. which was gassed with $95 \% \mathrm{O}_{2}: 5 \%$ CO_{2} and maintained at $37^{\circ} \mathrm{C}$. Each trachea was cleaned of adherent tissue and opened lengthwise. Epithelium was removed by gently rubbing the luminal surface with a cotton-tipped applicator. Individual strips were cut, approximately 2 cartilage rings in width, and suspended via silk suture in $10-\mathrm{ml}$ water-jacketed organ baths containing Krebs-Henseleit solution and connected to Grass FT03C force-displacement transducers. Mechanical responses were recorded isometrically by MP100WS/Acknowledge data acquisition system (BIOPAC Systems, Goleta, CA, www.biopac.com) run on Apple G4 computers. The tissues were equilibrated under a resting tension of 1.5 g , determined to be optimal by length-tension evaluation, and washed with Krebs-Henseleit solution every 15 minutes for one hour. After the equilibration period pulmonary tissues were contracted with 10 uM carbachol until reaching plateau, which served as a reference contraction for data analysis. Tissues were then rinsed every 15 minutes over 1 hour until reaching baseline tone. The preparations were then left for at least 30 minutes before the start of the experiment.

Concentration-response curves were obtained by a cumulative addition of carbachol in half-log increments (Van Rossum, 1963, Arch. Int. Pharmacodyn., 143:299), initiated at 1 nM . Each concentration was left in contact with the preparation until the response plateaued before the addition of the subsequent carbachol concentration. Paired tissues were exposed to mAChR antagonist compounds or vehicle for 30 min before carbachol cumulative concentration-response curves were generated. All data is given as mean \pm standard error of the mean (s.e.m.) with n being the number of different animals.

For superfusion (duration of action) studies, the tissues were continuously superfused with Krebs-Henseleit solution at $2 \mathrm{ml} / \mathrm{min}$ for the duration of the experiment. Stock solutions of agonist and antagonist were infused ($0.02 \mathrm{ml} / \mathrm{min}$) via 22-guage needle inserted into the superfusion tubing. Mechanical responses were recorded isometrically using a commercially-available data acquisition system
(MP100WS/Acknowledge; BIOPAC Systems, Goleta, CA, www.biopac.com) interfaced with a Macintosh G4 computer (Apple, Cupertino, CA www.apple.com). The tissues were suspended under an optimal resting tension of 1.5 g . After a 60 min equilibration period, the tissues were contracted with carbachol (1 uM) for the duration of the experiment. Upon reaching a sustained contraction isoproterenol (10 uM) was administered to maximally relax the tissue, and this change served as a reference. Isoproterenol exposure was halted and the carbachol-induced tension allowed to recover. Muscarinic receptor antagonists infused at a single concentration per tissue until a sustained level of inhibition was attained. The compound was then removed and, once again, the carbachol-induced tension was allowed to recover.

The following parameters were determined for each concentration of antagonist, and expressed as the mean \pm S.E.M. for n individual animals. Inhibition of the carbachol-induced contraction was expressed as a percent of the reference response (isoproterenol) and the time required to reach one-half of this relaxation was measured (onset of response). The tension recovery following removal of the compound was determined as was the time required to reach one-half of the maximum tension recovery (offset of response). At 60 and 180 minutes after removal of the antagonist the remaining level of inhibition was determined and expressed as a percent of the isoproterenol reference.

Antagonist concentration-response curves were obtained by plotting the maximal relaxation data at 0,60 and $180-\mathrm{min}$ following antagonist withdrawal. Recovery, termed shift, was calculated from the ratio of the 0 -min inhibition curve IC_{50} and the concentration of compound yielding a similar tension recovery at 60 and 180 minutes.

Halftimes for onset and offset of response were plotted vs. corresponding concentration and the data were fit with non-linear regression. These values were extrapolated at the IC_{50} (determined from the inhibition concentration-response curve) and designated Ot_{50} (time required, at the IC_{50} concentration, to reach half of the onset response) and Rt50 (time required, at the IC_{50} concentration, to reach half of the recovery response).

FORMULATION-ADMINISTRATION

Accordingly, the present invention further provides a pharmaceutical formulation comprising a compound of formula (I), or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative (e.g., salts and esters) thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

Hereinafter, the term "active ingredient" means a compound of formula (I), or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

Compounds of formula (I) will be administered via inhalation via the mouth or nose.

Dry powder compositions for topical delivery to the lung by inhalation may, for example, be presented in capsules and cartridges of for example gelatine, or blisters of for example laminated aluminium foil, for use in an inhaler or insufflator. Powder blend formulations generally contain a powder mix for inhalation of the compound of the invention and a suitable powder base (carrier/diluent/excipient substance) such as mono-, di- or poly-saccharides (e.g., lactose or starch), organic or inorganic salts (e.g., calcium chloride, calcium phosphate or sodium chloride), polyalcohols (e.g., mannitol), or mixtures thereof, alternatively with one or more additional materials, such additives included in the blend formulation to improve chemical and/or physical stability or performance of the formulation, as discussed below, or mixtures thereof. Use of lactose is preferred. Each capsule or cartridge may generally contain between $20 \mu \mathrm{~g}$ 10 mg of the compound of formula (I) optionally in combination with another therapeutically active ingredient. Alternatively, the compound of the invention may be presented without excipients, or may be formed into particles comprising the compound, optionally other therapeutically active materials, and excipient materials, such as by co-precipitation or coating.

Suitably, the medicament dispenser is of a type selected from the group consisting of a reservoir dry powder inhaler (RDPI), a multi-dose dry powder inhaler (MDPI), and a metered dose inhaler (MDI).

By reservoir dry powder inhaler (RDPI) it is meant as an inhaler having a reservoir form pack suitable for comprising multiple (un-metered doses) of medicament in dry powder form and including means for metering medicament dose from the reservoir to a delivery position. The metering means may for example comprise a metering cup or perforated plate, which is movable from a first position where the cup may be filled with medicament from the reservoir to a second position where the metered medicament dose is made available to the patient for inhalation.

By multi-dose dry powder inhaler (MDPI) is meant an inhaler suitable for dispensing medicament in dry powder form, wherein the medicament is comprised within a multi-dose pack containing (or otherwise carrying) multiple, define doses (or parts thereof) of medicament. In a preferred aspect, the carrier has a blister pack form, but it could also, for example, comprise a capsule-based pack form or a carrier onto which medicament has been applied by any suitable process including printing, painting and vacuum occlusion.

The formulation can be pre-metered (eg as in Diskus, see GB 2242134 or Diskhaler, see GB 2178965, 2129691 and 2169265) or metered in use (eg as in Turbuhaler, see EP 69715). An example of a unit-dose device is Rotahaler (see GB 2064336). The Diskus inhalation device comprises an elongate strip formed from a base sheet having a plurality of recesses spaced along its length and a lid sheet hermetically but peelably sealed thereto to define a plurality of containers, each container having therein an inhalable formulation containing a compound of formula (I) preferably combined with lactose. Preferably, the strip is sufficiently flexible to be wound into a roll. The lid sheet and base sheet will preferably have leading end portions which are not sealed to one another and at least one of the said leading end portions is constructed to be attached to a winding means. Also, preferably the hermetic seal between the base and lid sheets extends over their whole width. The lid sheet may preferably be peeled from the base sheet in a longitudinal direction from a first end of the said base sheet.

In one aspect, the multi-dose pack is a blister pack comprising multiple blisters for containment of medicament in dry powder form. The blisters are typically arranged in regular fashion for ease of release of medicament therefrom.

In one aspect, the multi-dose blister pack comprises plural blisters arranged in generally circular fashion on a disk-form blister pack. In another aspect, the multi-dose blister pack is elongate in form, for example comprising a strip or a tape.

Preferably, the multi-dose blister pack is defined between two members peelably secured to one another. US Patents Nos. 5,860,419, 5,873,360 and 5,590,645 describe medicament packs of this general type. In this aspect, the device is usually provided with an opening station comprising peeling means for peeling the members apart to access each medicament dose. Suitably, the device is adapted for use where the peelable members are elongate sheets which define a plurality of medicament containers spaced along the length thereof, the device being provided with indexing means for indexing each container in turn. More preferably, the device is adapted for use where one of the sheets is a base sheet having a plurality of pockets therein, and the other of the sheets is a lid sheet, each pocket and the adjacent part of the lid sheet defining a respective one of the containers, the device comprising driving means for pulling the lid sheet and base sheet apart at the opening station.

By metered dose inhaler (MDI) it is meant a medicament dispenser suitable for dispensing medicament in aerosol form, wherein the medicament is comprised in an aerosol container suitable for containing a propellant-based aerosol medicament formulation. The aerosol container is typically provided with a metering valve, for example a slide valve, for release of the aerosol form medicament formulation to the patient. The aerosol container is generally designed to deliver a predetermined dose of medicament upon each actuation by means of the valve, which can be opened either by depressing the valve while the container is held stationary or by depressing the container while the valve is held stationary.

Spray compositions for topical delivery to the lung by inhalation may for example be formulated as aqueous solutions or suspensions or as aerosols delivered from pressurised packs, such as a metered dose inhaler, with the use of a suitable liquefied propellant. Aerosol compositions suitable for inhalation can be either a suspension or a solution and generally contain the compound of formula (I) optionally in combination with another therapeutically active ingredient and a suitable propellant such as a fluorocarbon or hydrogen-containing chlorofluorocarbon or mixtures thereof, particularly hydrofluoroalkanes, e.g. dichlorodifluoromethane, trichlorofluoromethane,
dichlorotetra-fluoroethane, especially 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoro-n-propane or a mixture thereof. Carbon dioxide or other suitable gas may also be used as propellant. The aerosol composition may be excipient free or may optionally contain additional formulation excipients well known in the art such as surfactants eg oleic acid or lecithin and cosolvents eg ethanol. Pressurised formulations will generally be retained in a canister (eg an aluminium canister) closed with a valve (eg a metering valve) and fitted into an actuator provided with a mouthpiece.

Medicaments for administration by inhalation desirably have a controlled particle size. The optimum aerodynamic particle size for inhalation into the bronchial system for localized delivery to the lung is usually $1-10 \mu \mathrm{~m}$, preferably $2-5 \mu \mathrm{~m}$. The optimum aerodynamic particle size for inhalation into the alveolar region for achieving systemic delivery to the lung is approximately $.5-3 \mu \mathrm{~m}$, preferably $1-3 \mu \mathrm{~m}$. Particles having an aerodynamic size above $20 \mu \mathrm{~m}$ are generally too large when inhaled to reach the small airways. Average aerodynamic particle size of a formulation may measured by, for example cascade impaction. Average geometric particle size may be measured, for example by laser diffraction, optical means.

To achieve a desired particle size, the particles of the active ingredient as produced may be size reduced by conventional means eg by controlled crystallization, micronisation or nanomilling .The desired fraction may be separated out by air classification. Alternatively, particles of the desired size may be directly produced, for example by spray drying, controlling the spray drying parameters to generate particles of the desired size range. Preferably, the particles will be crystalline, although amorphous material may also be employed where desirable. When an excipient such as lactose is employed, generally, the particle size of the excipient will be much greater than the inhaled medicament within the present invention, such that the "coarse" carrier is non-respirable. When the excipient is lactose it will typically be present as milled lactose, wherein not more than 85% of lactose particles will have a MMD of $60-90 \mu \mathrm{~m}$ and not less than 15% will have a MMD of less than $15 \mu \mathrm{~m}$. Additive materials in a dry powder blend in addition to the carrier may be either respirable, i.e., aerodynamically less than 10 microns, or non-respirable, i.e., aerodynamically greater than 10 microns.

Suitable additive materials which may be employed include amino acids, such as leucine; water soluble or water insoluble, natural or synthetic surfactants, such as
lecithin (e.g., soya lecithin) and solid state fatty acids (e.g., lauric, palmitic, and stearic acids) and derivatives thereof (such as salts and esters); phosphatidylcholines; sugar esters. Additive materials may also include colorants, taste masking agents (e.g., saccharine), anti-static-agents, lubricants (see, for example, Published PCT Patent Appl. No. WO 87/905213, the teachings of which are incorporated by reference herein), chemical stabilizers, buffers, preservatives, absorption enhancers, and other materials known to those of ordinary skill.

Sustained release coating materials (e.g., stearic acid or polymers, e.g. polyvinyl pyrolidone, polylactic acid) may also be employed on active material or active material containing particles (see, for example, Patent Nos. US 3,634,582, GB 1,230,087, GB $1,381,872$, the teachings of which are incorporated by reference herein).

Intranasal sprays may be formulated with aqueous or non-aqueous vehicles with the addition of agents such as thickening agents, buffer salts or acid or alkali to adjust the pH , isotonicity adjusting agents or anti-oxidants.

Solutions for inhalation by nebulation may be formulated with an aqueous vehicle with the addition of agents such as acid or alkali, buffer salts, isotonicity adjusting agents or antimicrobials. They may be sterilised by filtration or heating in an autoclave, or presented as a non-sterile product.

Preferred unit dosage formulations are those containing an effective dose, as herein before recited, or an appropriate fraction thereof, of the active ingredient.

Throughout the specification and the claims which follow, unless the context requires otherwise, the word 'comprise', and variations such as 'comprises' and 'comprising', will be understood to imply the inclusion of a stated integer or step or group of integers but not to the exclusion of any other integer or step or group of integers or steps.

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as if each individual publication were specifically and individually indicated to be incorporated by reference herein as though fully set forth.

The above description fully discloses the invention including preferred embodiments thereof. Modifications and improvements of the embodiments
specifically disclosed herein are within the scope of the following claims. Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. Therefore the Examples herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1azoniabicyclo[2.2.2]octane bromide of formula:

2. A pharmaceutical composition comprising a) 4-[hydroxy(diphenyl)methyl]-1-\{2-[(phenylmethyl)oxy]ethyl\}-1-azoniabicyclo[2.2.2]octane bromide, and b) a pharmaceutically acceptable carrier.
3. A pharmaceutical composition according to claim 2, which further comprises one or more other therapeutic ingredients.
4. The compound of claim 1 for use in the treatment of a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor.
5. The compound according to claim 4 wherein the disease is selected from the group consisting of chronic obstructive pulmonary disease, chronic bronchitis, asthma, chronic respiratory obstruction, pulmonary fibrosis, pulmonary emphysema and allergic rhinitis.
6. A method of treating a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor, comprising administering a safe and effective amount of a compound according to claim 1.
7. A method according to claim 6 wherein the disease is selected from the group consisting of chronic obstructive pulmonary disease, chronic bronchitis, asthma, chronic respiratory obstruction, pulmonary fibrosis, pulmonary emphysema and allergic rhinitis.
8. A method according to claim 6 wherein administration is via inhalation via the mouth or nose.
9. A method according to claim 6 wherein administration is via a medicament dispenser selected from the group consisting of a reservoir dry powder inhaler, a multi-dose dry powder inhaler and a metered dose inhaler.
10. Use of a compound according to claim 1 in the preparation of a medicament for the treatment of a muscarinic acetylcholine receptor mediated disease, wherein acetylcholine binds to said receptor.
11. Use according to claim 10 wherein the disease is selected from the group consisting of chronic obstructive pulmonary disease, chronic bronchitis, asthma, chronic respiratory obstruction, pulmonary fibrosis, pulmonary emphysema and allergic rhinitis.
12. Use according to claim 10 wherein the medicament is formulated for administration via inhalation via the mouth or nose.
13. Use according to claim 10 wherein the medicament is formulated for administration via a medicament dispenser selected from the group consisting of a reservoir dry powder inhaler, a multi-dose dry powder inhaler and a metered dose inhaler.
14. A compound according to claim 1, a pharmaceutical composition according to claim 2 , a method according to claim 6 or a use according to claim 10 , substantially as hereinbefore described and/or exemplified.
