

US 20170174753A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2017/0174753 A1**
TREMBLAY et al. (43) **Pub. Date:** **Jun. 22, 2017**

(54) **METHOD FOR TREATING BREAST CANCER**

(71) Applicant: **ALETHIA BIOTHERAPEUTICS INC., MONTREAL (CA)**

(72) Inventors: **Gilles Bernard TREMBLAY, La Prairie (CA); Anna N. MORAITIS, Laval (CA); Mario FILION, Longueuil (CA)**

(73) Assignee: **Alethia Biotherapeutics Inc., Montreal (CA)**

(21) Appl. No.: **14/364,937**

(22) PCT Filed: **Jan. 9, 2013**

(86) PCT No.: **PCT/CA2013/000011**

§ 371 (c)(1),
(2) Date: **Jun. 12, 2014**

Related U.S. Application Data

(60) Provisional application No. 61/584,629, filed on Jan. 9, 2012.

Publication Classification

(51) **Int. Cl.**

C07K 16/18 (2006.01)
A61K 39/395 (2006.01)
A61K 45/06 (2006.01)
C07K 16/30 (2006.01)

(52) **U.S. Cl.**

CPC *C07K 16/18* (2013.01); *C07K 16/3015* (2013.01); *A61K 47/48584* (2013.01); *A61K 39/39558* (2013.01); *A61K 45/06* (2013.01); *C07K 2317/24* (2013.01); *C07K 2317/21* (2013.01); *C07K 2317/565* (2013.01); *C07K 2317/56* (2013.01); *C07K 2317/92* (2013.01); *C07K 2317/55* (2013.01); *C07K 2317/77* (2013.01)

ABSTRACT

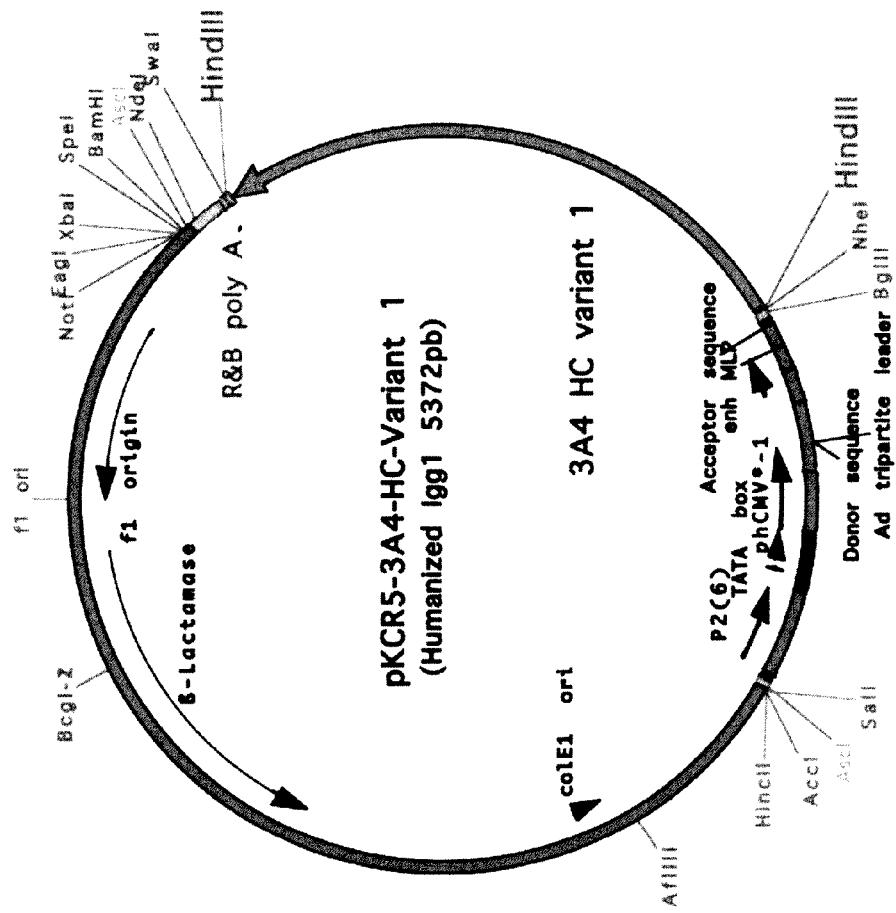
Breast cancer cells lacking ER protein expression, PgR protein expression and/or showing absence of HER2 protein over-expression (i.e., triple-negative breast cancer cells, basal-like) can be efficiently targeted with an anti-KAAG1 antibody and killed upon delivery of a therapeutic moiety. Antibodies and antigen binding fragments that specifically binds to KAAG1 may thus be used for the, detection and therapeutic treatment of breast cancer cells that are negative for at least one of these markers. The use of antibody conjugates in the treatment of triple-negative breast cancer and/or basal-like breast cancer is disclosed herein.

Figure 1a

murine	DVYMTQTPSLAVSLGDOASISCRSSSSSLHSNGNTYLEYLQKPGQSPKLLIHTVSNRPFSCGVDRFSGSGSTDFIKISRVEAEDLGVYCFQGSHPVPLTFGACTRLERK	11/80 (86.3%)
Humanized1	DIVWTOPLSLPLTPGDPASISCRSSSSSLHSNGNTYLEYLQKPGQSPKLLIHTVSNRPFSCGVDRFSGSGSTDFIKISRVEAEDLGVYCFQGSHPVPLTFGACTRLERK	0/80 (100%)
Humanized2	DVYMTQTPSLSLPVTPGEPASISCRSSSSSLHSNGNTYLEYLQKPGQSPKLLIHTVSNRPFSCGVDRFSGSGSTDFIKISRVEAEDLGVYCFQGSHPVPLTFGACTRLERK	2/80 (97.5%)
		CDR-L3
		CDR-L2
		CDR-L1
mouse	QIQLVQSGPENVKPGASVVKMSCKASGIFTDDYMSVVKQSHCKSLEWIGDINPYNGDTNINQKFKGKALLTVDKSSSTAYWQNLNSLTSEDAVYCARDPGMDYNGQCTSVTYSS	21/82 (74.4%)
Humanized1	QVOLVQGAEVVKPGASVVKMSCKASGIFTDDYMSVVKQSHCKSLEWIGDINPYNGDTNINQKFKGKALLTVDKSSSTAYWQNLNSLTSEDAVYCARDPGMDYNGQCTSVTYSS	0/82 (100%)
Humanized2	QIOLVQSGAEVVKPGASVVKMSCKASGIFTDDYMSVVKQSHCKSLEWIGDINPYNGDTNINQKFKGKALLTVDKSSSTAYWQNLNSLTSEDAVYCARDPGMDYNGQCTSVTYSS	2/82 (97.5%)
Humanized3	QIOLVQSGAEVVKPGASVVKMSCKASGIFTDDYMSVVKQSHCKSLEWIGDINPYNGDTNINQKFKGKALLTVDKSSSTAYWQNLNSLTSEDAVYCARDPGMDYNGQCTSVTYSS	6/82 (92.7%)
Humanized4	QIOLVQSGAEVVKPGASVVKMSCKASGIFTDDYMSVVKQSHCKSLEWIGDINPYNGDTNINQKFKGKALLTVDKSSSTAYWQNLNSLTSEDAVYCARDPGMDYNGQCTSVTYSS	8/82 (90.2%)
		CDR-H3
		CDR-H2
		CDR-H1

Figure 1b

3A4-VH


Figure 2a

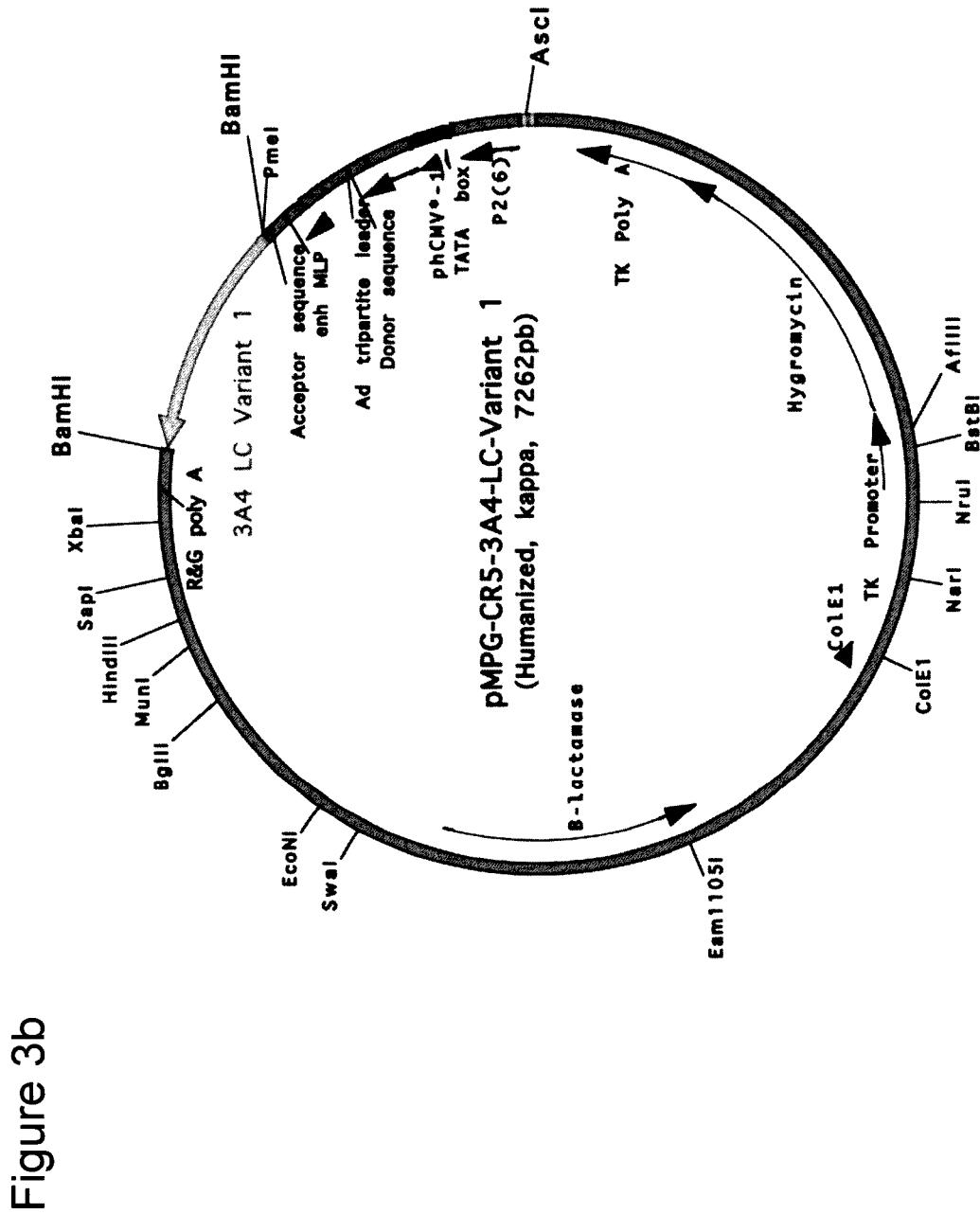

Variable light chain alignment

Figure 2b

Variable heavy chain alignment

Figure 3a

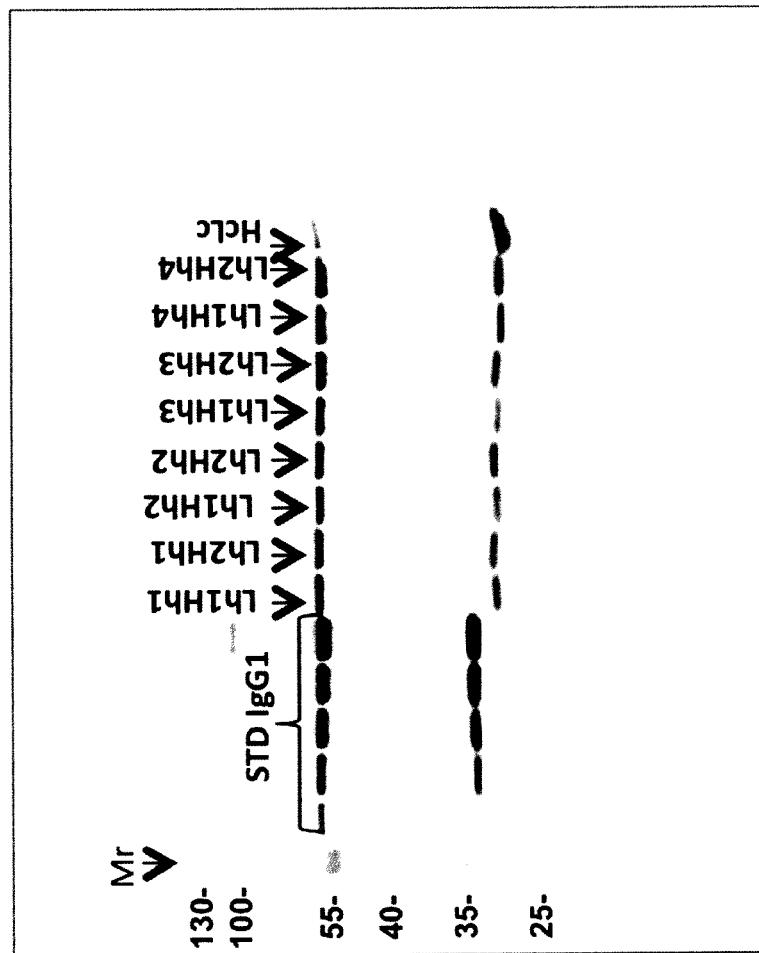


Figure 4

Figure 5

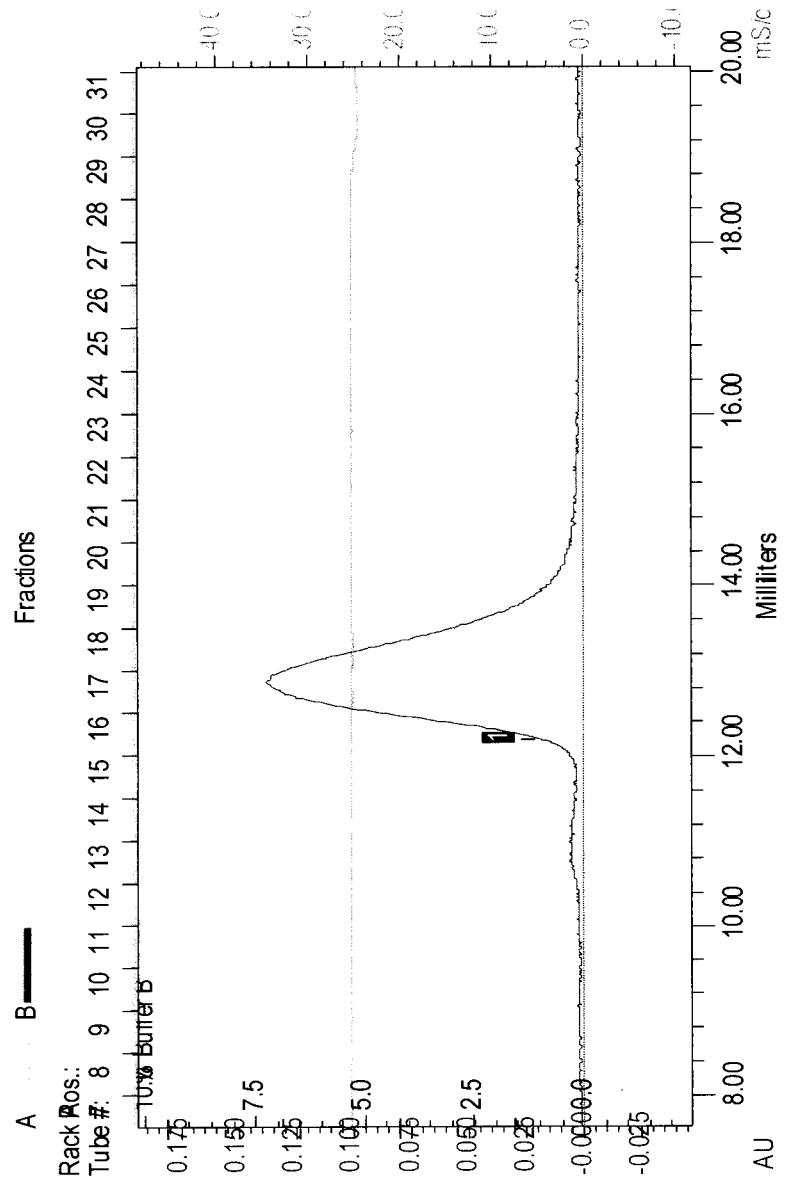


Figure 6

Antibody	k_a (1/s)	k_d (1/s)	K_D (nM)	Fold diff.
LcHc	7.72×10^6	1.21×10^{-4}	0.016	-
Lh1Hh1	6.93×10^6	3.28×10^{-3}	0.474	29.6
Lh2Hh1	6.97×10^6	2.37×10^{-3}	0.341	21.3
Lh1Hh2	5.65×10^6	1.19×10^{-3}	0.211	13.2
Lh2Hh2	7.40×10^6	1.81×10^{-3}	0.245	15.3
Lh1Hh3	6.46×10^6	9.60×10^{-4}	0.149	9.3
Lh2Hh3	4.46×10^6	1.02×10^{-3}	0.228	14.3
Lh1Hh4	5.14×10^6	7.64×10^{-4}	0.149	9.3
Lh2Hh4	4.57×10^6	4.70×10^{-4}	0.103	6.4

Figure 7a

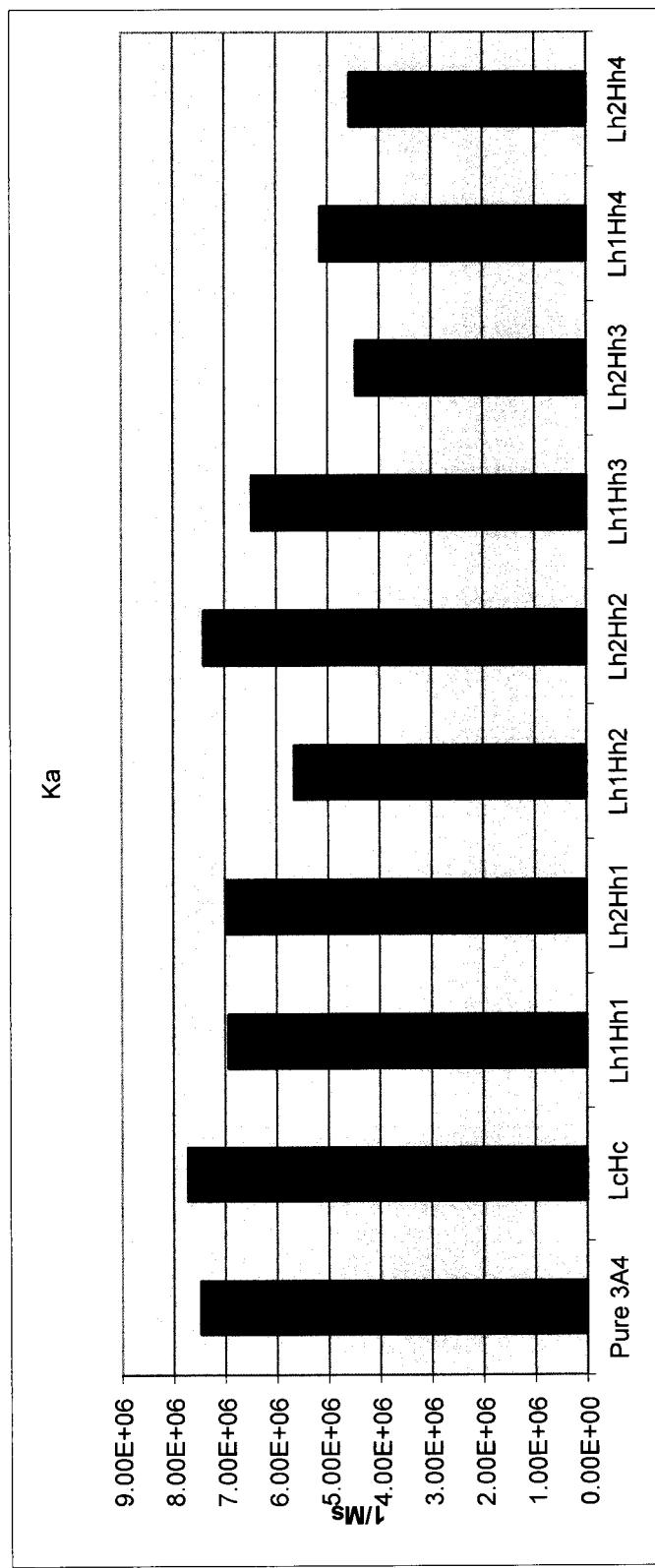


Figure 7b

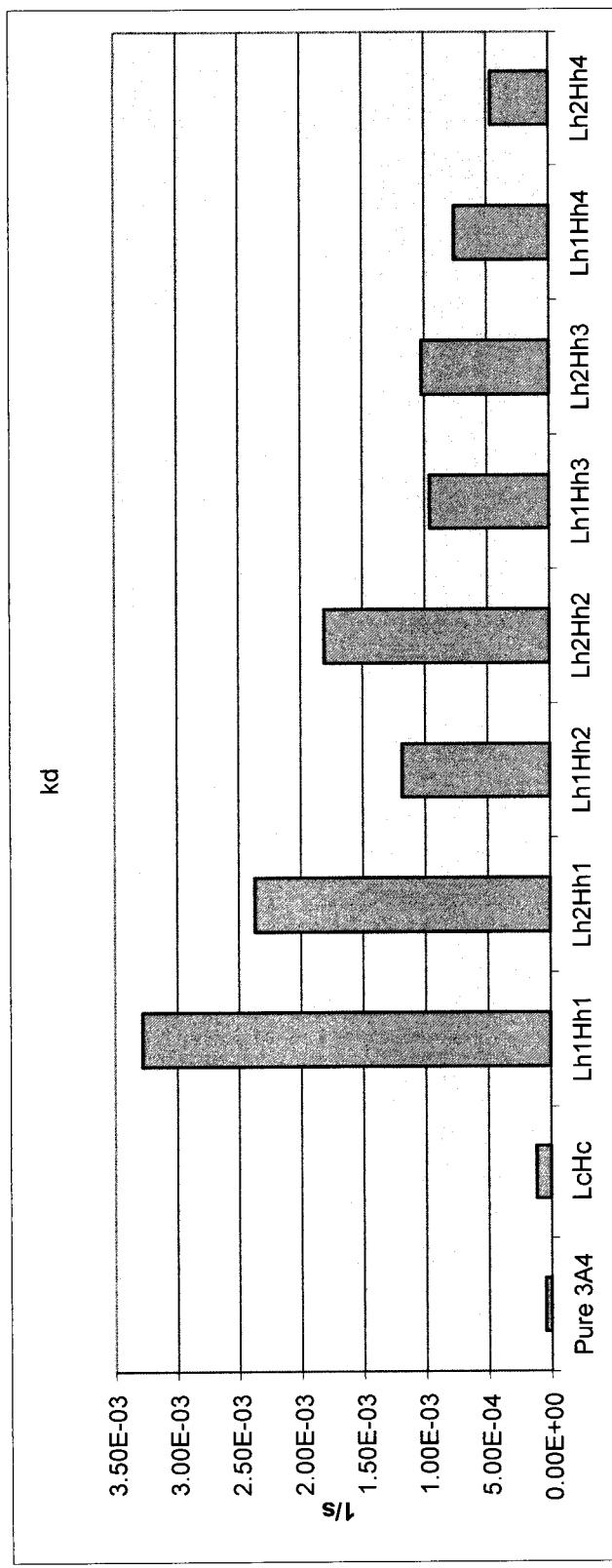


Figure 7C

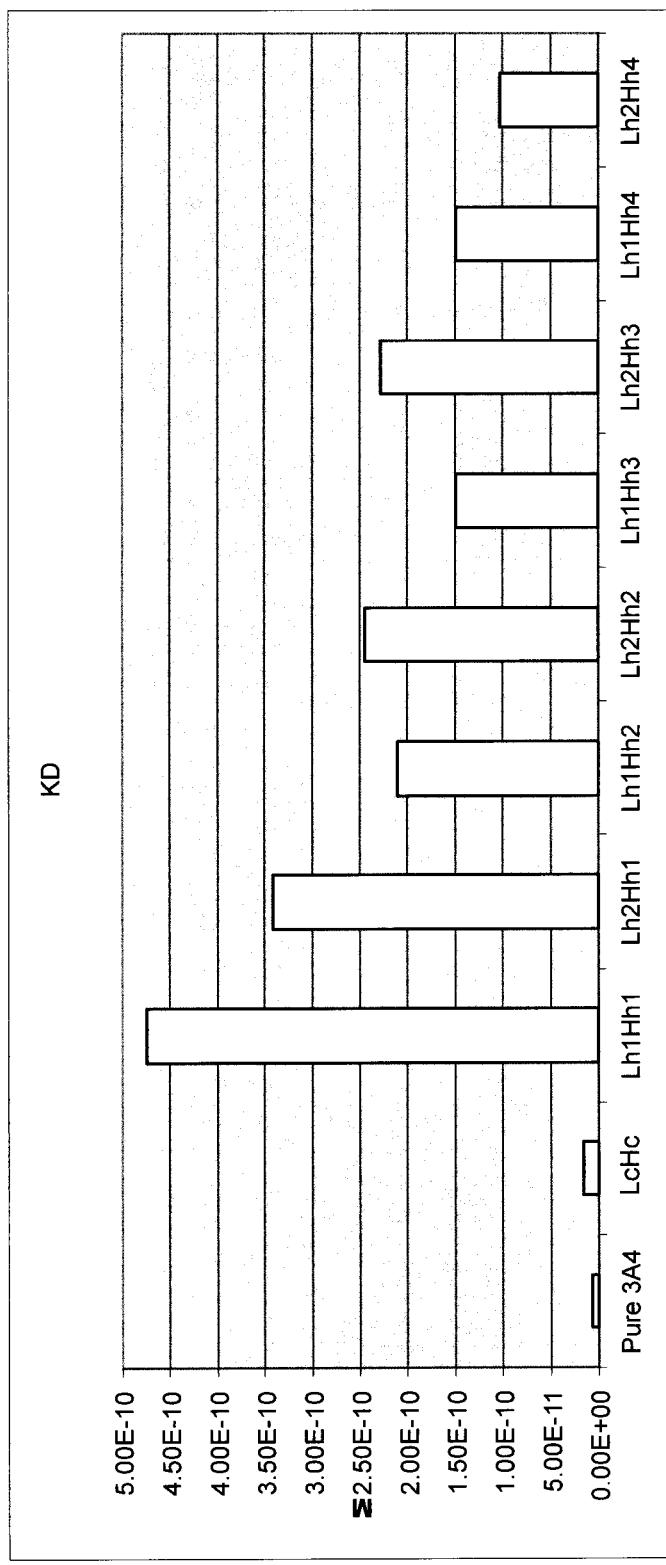


Figure 8a

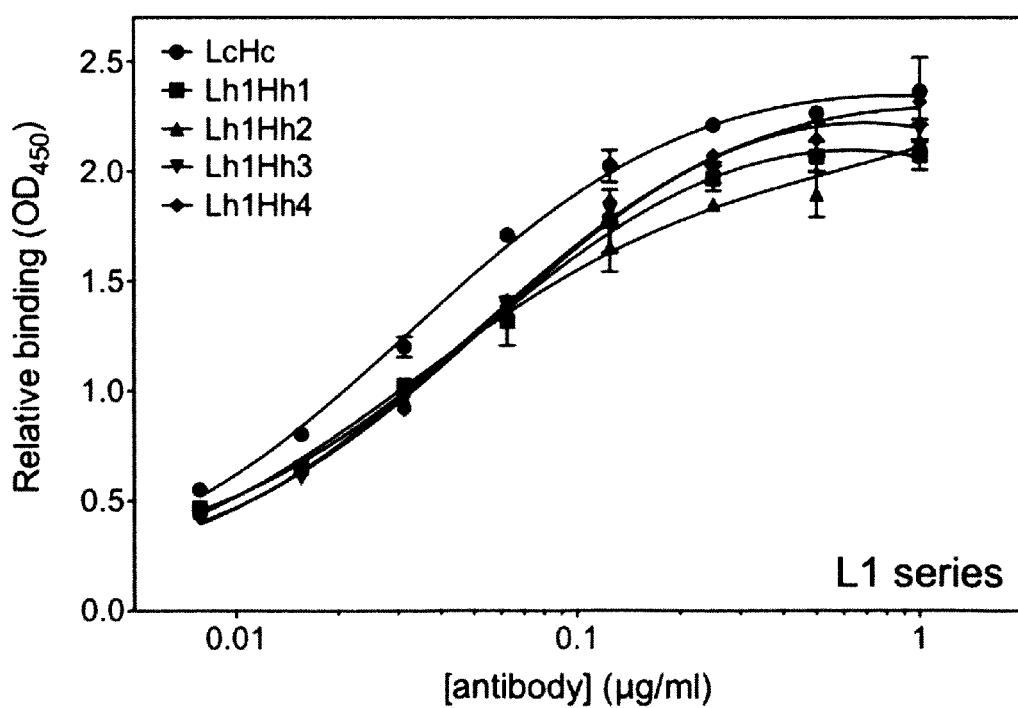


Figure 8b

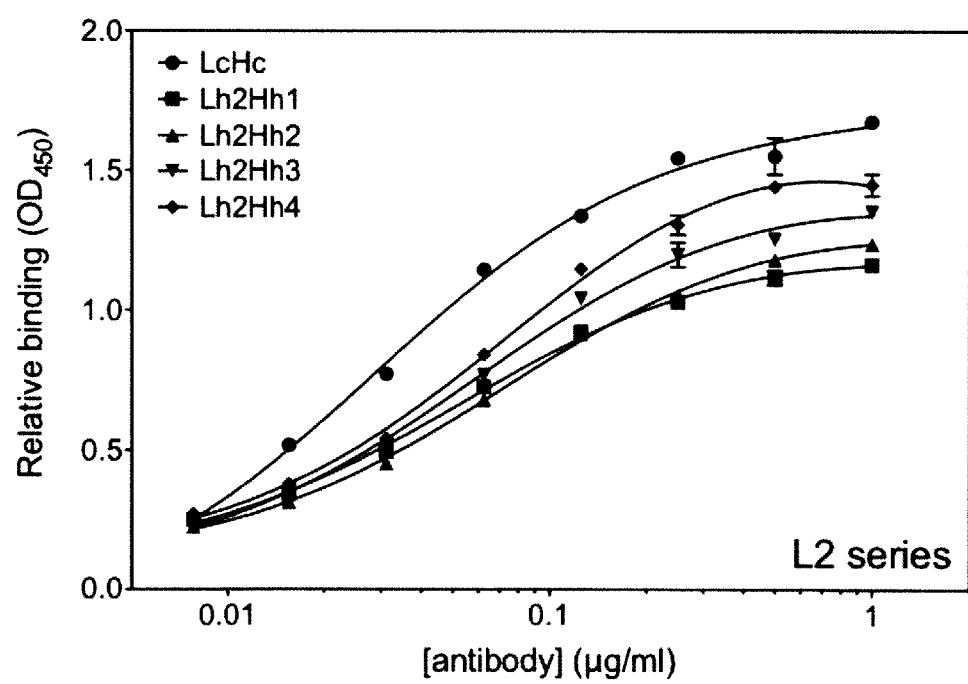


Figure 9

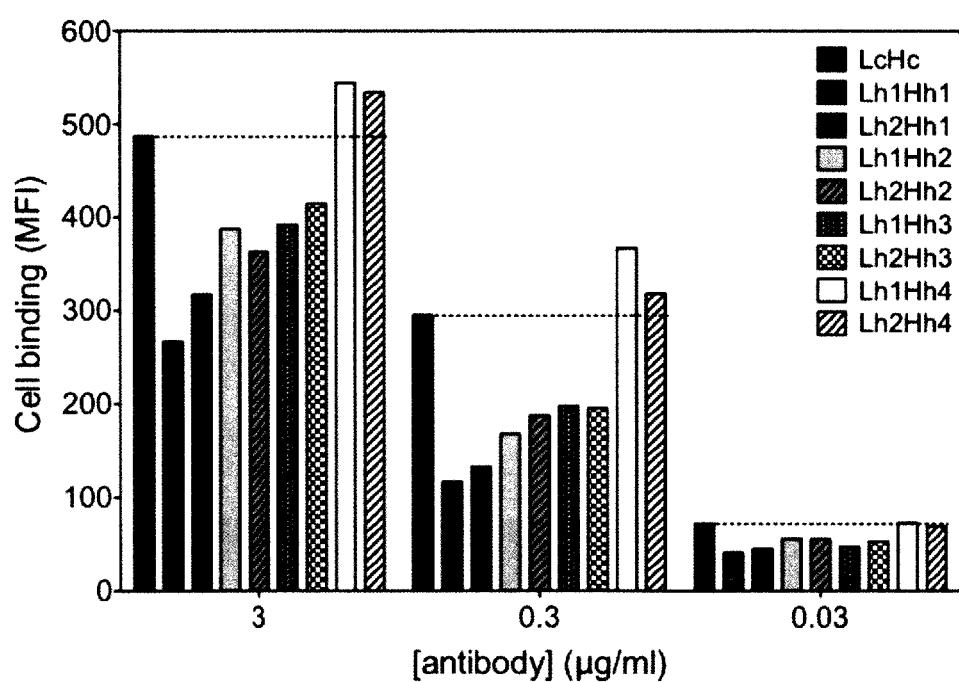


Figure 10

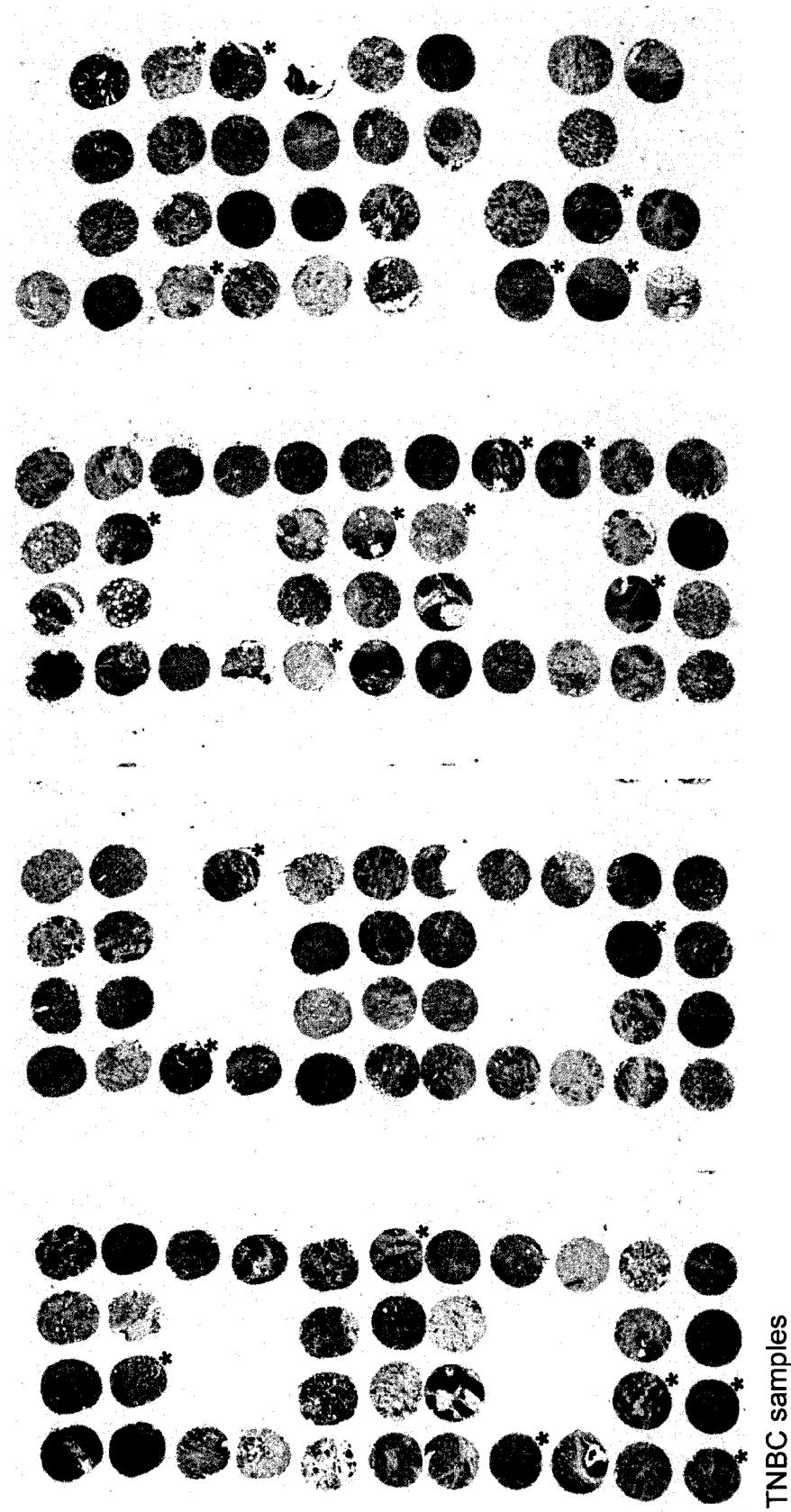


Figure 11

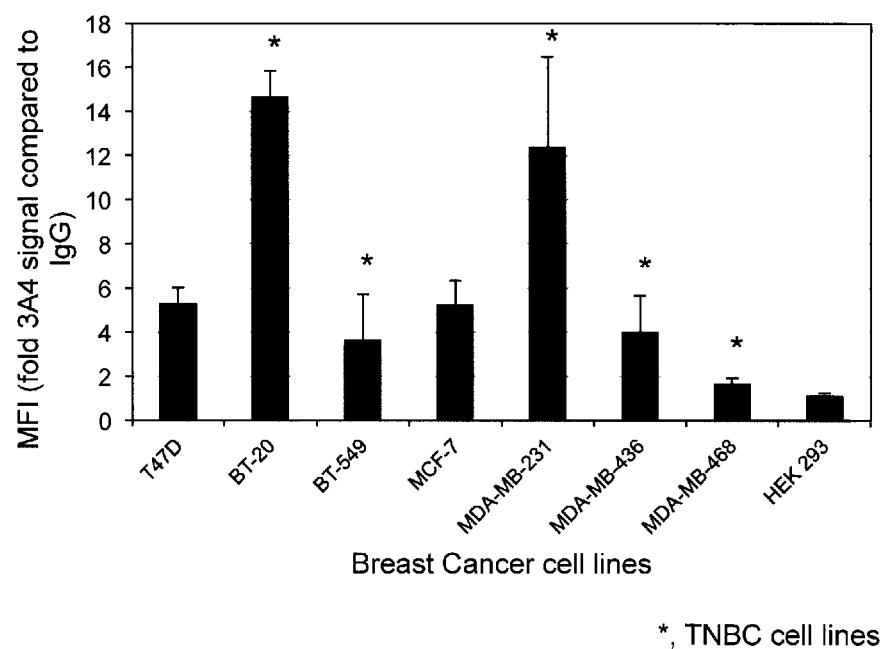


Figure 12

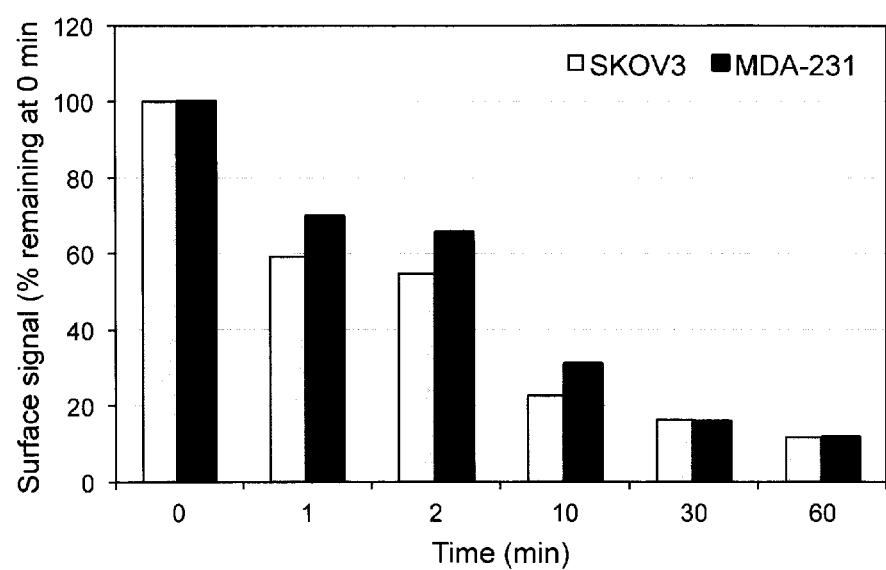


Figure 13

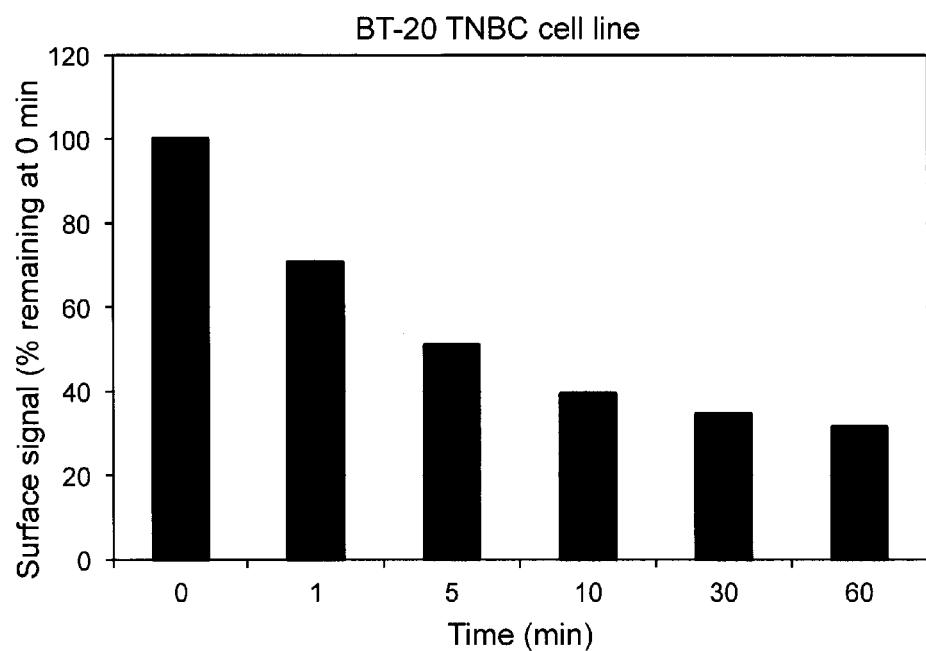


Figure 14

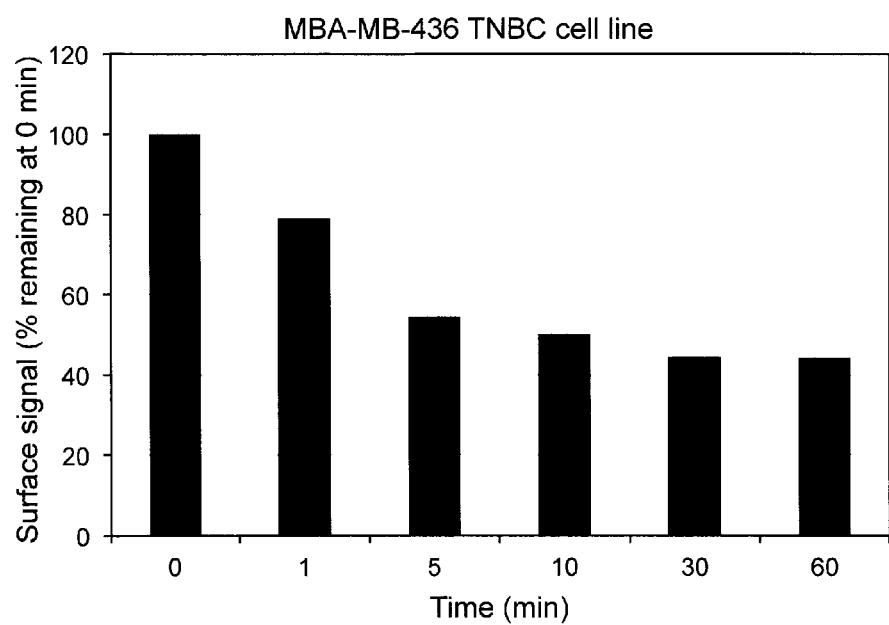


Figure 15

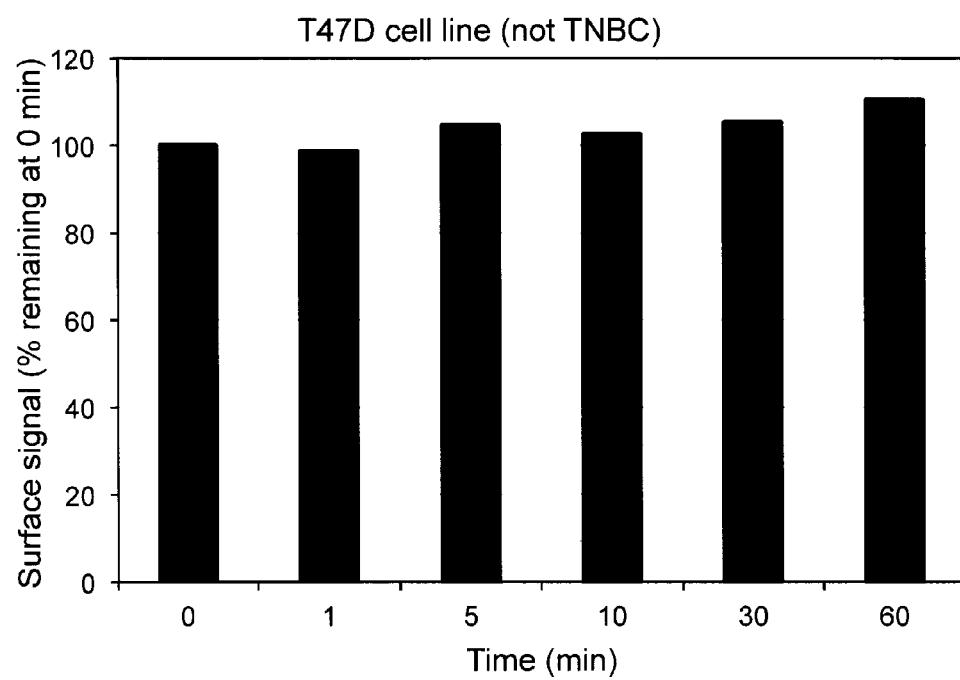


Figure 16

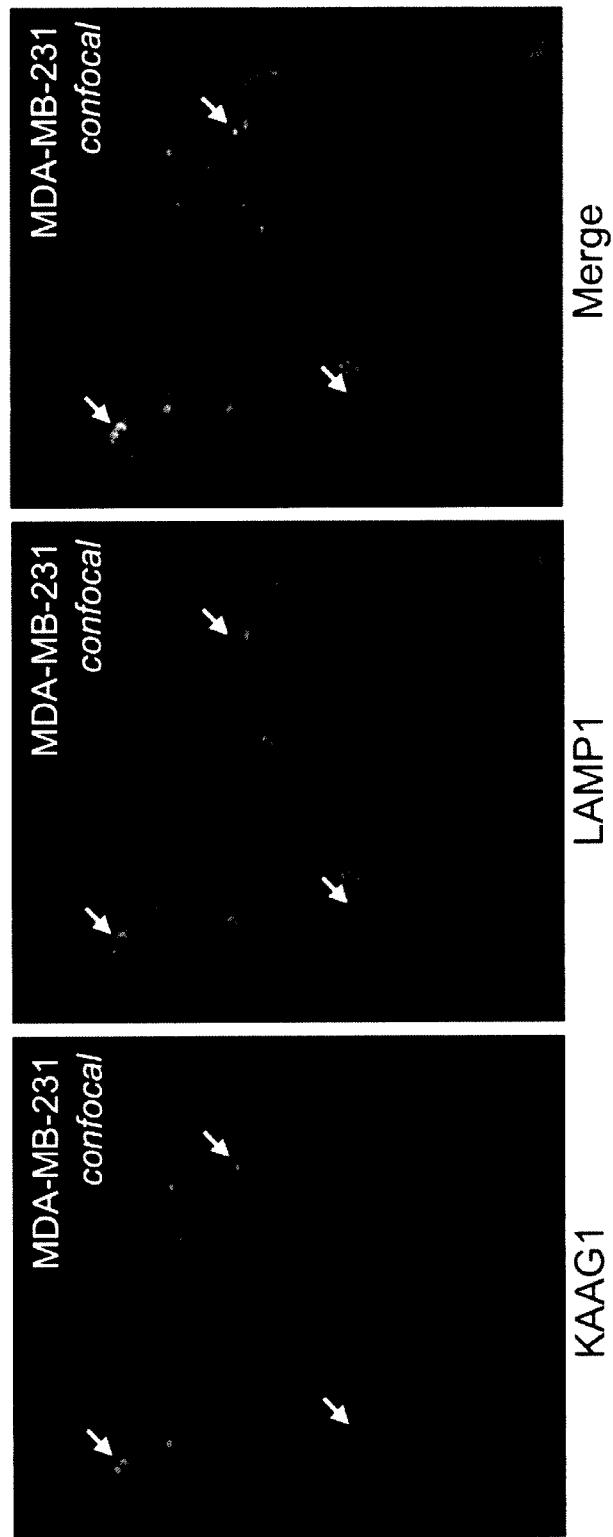
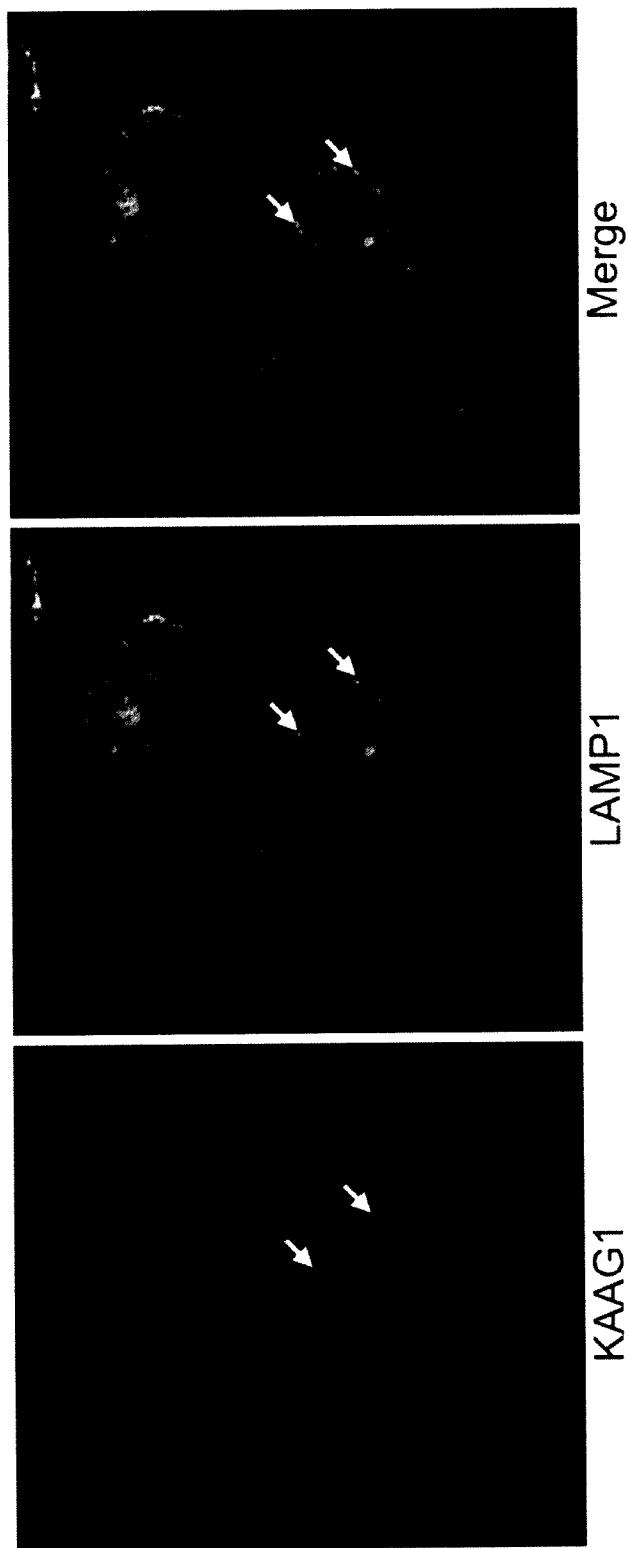



Figure 17

METHOD FOR TREATING BREAST CANCER

BACKGROUND

[0001] World wide, greater than 1 million women are diagnosed with breast cancer each year. Breast cancer is a very heterogeneous disease made up of dozens of different types that are distinguished using a histological classification system. A large subtype and a majority of cases are histologically identified as luminal A or luminal B which can be grossly characterized as exhibiting estrogen receptor (ER) expression with low grade or higher grade histology, respectively (Santana-Davila and Perez, 2010). Immunohistochemical methods are used to measure the expression of progesterone receptor (PgR) which, when coupled with ER-positive status allows the classification of a tumor as being hormone responsive. Furthermore, the over-expression or amplification of human epidermal growth factor receptor 2 (HER2) can be monitored either with immunohistochemistry or fluorescence in situ hybridization (FISH). Generally, the expression of these three markers in breast tumors is associated with a better clinical outcome because there are several treatment options available for patients that target these proteins (de Ruijter et al., 2011), including tamoxifen, Arimidex™ (anastrozole), Aromasin™ (exemestane), Femara™ (letrozole), Faslodex™ (fulvestrant), Herceptin™ (trastuzumab) or Tykerb™ (lapatinib).

[0002] Another histological subtype of breast cancer consists of the basal-like cancers which are associated with, among others, a higher histological grade, increase mitotic index and high Ki67 expression (Santana-Davila and Perez, 2010). The vast majority of basal-like cancers are comprised of triple-negative breast cancer (TNBC) cases, which make up a between 15-20% of all diagnosed breast cancer cases (Ismail-Khan and Bui, 2010). TNBC is defined by the lack of protein expression of ER, PgR and the absence of HER2 protein over-expression. The relationship between basal-like cancer and TNBC is not easily delineated since not all TNBC are basal-like and not all basal-like cancers are TNBC, but approximately 75% of cases in these categories share characteristics of both. TNBC is associated with poor prognosis consisting of low five-year survival rates and high recurrence.

[0003] Patients with TNBC develop their disease earlier in life compared with other breast cancer subtypes and are often diagnoses at the pre-menopausal stage (Carey et al., 2006). Triple-negative breast cancer shows an increased propensity of recurrence after treatment and seem to be more aggressive than other breast carcinoma subtypes (Nofech-Mozes et al., 2009), similar to those of the basal-like breast cancer subtype. Consequently, the overall five-year survival of TNBC patients is significantly lower than those diagnosed with other subtypes of breast cancer. There is currently no acceptable specific molecular marker for TNBC. Despite this lack, these tumors do respond to chemotherapy (Krieger et al., 2009). Patients have shown better response to cytotoxic agents in the adjuvant setting as well as in the neoadjuvant setting when administered agents such as 5-fluorouracil, doxorubicin and cyclophosphamide (Rouzier et al. 2005). Other agents that have shown some efficacy include platinum based compounds such as cisplatin and anti-tubulin compounds such as taxanes (Santana-Davila and Perez, 2010).

[0004] As mentioned above, there are no specific targets for TNBC but this has not impeded the trial of target agents such as the inhibition of Poly [ADP-ribose] polymerase 1 (PARP1). PARP1 is an enzyme that participates in the repair of DNA single-strand breaks by associating with corrupted DNA strands and mediating the recruitment of enzymes needed to repair single-strand breaks (de Ruijter et al., 2011). Thus the strategy has been to inhibit PARP1 activity as a means of allowing cancer cells to accumulate more DNA single-strand breaks, which ultimately leads to genetic instability, mitotic arrest and apoptosis. Promising clinical results were achieved in patients that showed mutations in BRCA1 and/or BRCA2, important mediators of genetic maintenance and homologous recombination required for proper cell division. Indeed, patients with BRCA1 mutations, which are presumably deficient in these genetic stability pathways, showed greater response to PARP1 inhibitors compared with those who were wild type for BRCA1 (Fong et al., 2009). It is clear that targeting PARP1 in TNBC patients who are carriers of BRCA mutation represents a promising strategy. The combination of ER/PgR/HER2 status with that of the genetic profile of the BRCA1/2 genes might offer the best characterization for deciding the proper treatment options for TNBC patients.

[0005] Other strategies also examined the use of EGFR inhibitors, either as monoclonal antibodies or small molecule inhibitors or anti-angiogenic compounds to target VEGF. Several clinical trials have evaluated the efficacy of these compounds but none of them have shown significant response when administered alone. However, mild efficacy was observed in patients treated with these inhibitors in combination with other cytotoxic agents (Santana-Davila and Perez, 2010).

[0006] Notwithstanding the recent advances in the understanding and the treatment for breast cancer, the use of chemotherapy is invariably associated with severe adverse reactions, which limit their use. Consequently, the need for more specific strategies such as combining antigen tissue specificity with the selectivity of monoclonal antibodies should permit a significant reduction in off-target-associated side effects. There are no TNBC specific antigens that are currently under investigation as therapeutic targets for monoclonal antibodies. Thus, TNBC patients have little options because of the inability to target a specific marker of protein that is expressed in these tumors. There are urgent needs to identify new proteins expressed in TNBC for applications as new diagnostic markers and novel targeted therapies.

[0007] Kidney associated antigen 1 (KAAG1), the protein sequence which is identified herein as SEQ ID NO.:2, was originally cloned from a cDNA library derived from a histocompatibility leukocyte antigen-B7 renal carcinoma cell line as an antigenic peptide presented to cytotoxic T lymphocytes (Van den Eynde et al., 1999; Genebank accession no. Q9UBP8, the cDNA sequence is represented by nucleotides 738-992 of SEQ ID NO.:1). The locus containing KAAG1 was found to encode two genes transcribed in both directions on opposite strands. The sense strand was found to encode a transcript that encodes a protein termed DCDC2. Expression studies by these authors found that the KAAG1 antisense transcript was tumor specific and exhibited very little expression in normal tissues whereas the DCDC2 sense transcript was ubiquitously expressed (Van den Eynde et al., 1999). The expression of the KAAG1

transcript in cancer, and in particular ovarian cancer, renal cancer, lung cancer, colon cancer, breast cancer and melanoma was disclosed in international application No. PCT/CA2007/001134 published on Dec. 27, 2007 under No. WO 2007/147265. Van den Eynde et al., also observed RNA expression in renal carcinomas, colorectal carcinomas, melanomas, sarcomas, leukemias, brain tumors, thyroid tumors, mammary carcinomas, prostatic carcinomas, oesophageal carcinomas, bladder tumor, lung carcinomas and head and neck tumors. Recently, strong genetic evidence obtained through linkage disequilibrium studies found that the VMP/DCDC2/KAAG1 locus was associated with dyslexia (Schumacher et al., 2006; Cope et al., 2005). One of these reports pointed to the DCDC2 marker as the culprit in dyslexic patients since the function of this protein in cortical neuron migration was in accordance with symptoms of these patients who often display abnormal neuronal migration and maturation (Schumacher et al., 2006).

[0008] The Applicant has obtained a panel of antibodies and antigen binding fragment that bind to the KAAG1 protein. These antibodies or antigen binding fragments were shown to target three regions of the protein; amino acids 1 to 35, amino acids 36 to 60 amino acids 61 to 84. The Applicant found that antibodies targeting a region between amino acids 30 to 84 were the most advantageous for therapeutic purposes as they recognized KAAG1 located at the surface of tumor cells. The Applicant has shown that some of these antibodies and antigen binding fragments can mediate antibody-dependent cell cytotoxicity and/or are internalized by tumor cells, which makes them good candidates to deliver a payload to tumor cells. The Applicant has also generated chimeric and humanized antibodies based on selected antibody candidates and has shown that these antibodies can inhibit tumor cell formation and invasion (see PCT/CA2009/001586 published on Jun. 3, 2010 under No. WO2010/060186 and PCT/CA2010/001785 published on May 12, 2011 under No. WO2011/054112). Finally, the Applicant found that these antibodies could be used for the treatment and diagnosis of ovarian cancer, skin cancer, renal cancer, colorectal cancer, sarcoma, leukemia, brain tumor, thyroid tumor, breast cancer, prostate cancer, oesophageal tumor, bladder tumor, lung tumor and head and neck tumor and metastatic form of these cancers.

[0009] The Applicant has now come to the unexpected discovery that breast cancer cells lacking ER protein expression, PgR protein expression and/or showing absence of HER2 protein over-expression (i.e., triple-negative breast cancer cells, basal-like) can be efficiently targeted with an antibody or antigen binding fragment that specifically binds to KAAG1. Anti-KAAG1 antibodies may thus be used for the, detection and therapeutic treatment of breast cancer cells that are negative for at least one of these markers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1a is an amino acid sequence alignment of the 3A4 variable domains of the murine and humanized light chains. The light chain has two humanized variants (Lh1 and Lh2). The CDRs are shown in bold and indicated by CDRL1, CDRL2 and CDRL3. Back mutations in the human framework regions that are murine amino acids are underlined in the humanized sequences.

[0011] FIG. 1b is an amino acid sequence alignment of the 3A4 variable domains of the murine and humanized heavy chains. The heavy chain has four humanized variants (Hh1

to Hh4). The CDRs are shown in bold and indicated by CDRH1, CDRH2 and CDRH3. Back mutations in the human framework regions that are murine amino acids are underlined in the humanized sequences.

[0012] FIG. 2a is an alignment of murine 3A4 light chain variable region (SEQ ID NO.:4) with a light chain variable region variant (SEQ ID NO.:33) using the ClustalW2 program (Larkin M. A., et al., (2007) ClustalW and ClustalX version 2. *Bioinformatics* 2007 23(21): 2947-2948) where an “*” (asterisk) indicates positions which have a single, fully conserved residue, wherein “:” (colon) indicates conservation between groups of strongly similar properties—scoring>0.5 in the Gonnet PAM 250 matrix and where “.” (period) indicates conservation between groups of weakly similar properties—scoring=<0.5 in the Gonnet PAM 250 matrix.

[0013] FIG. 2b is an alignment of murine 3A4 heavy chain variable region (SEQ ID NO.:2) with a light chain variable region variant (SEQ ID NO.:38) using the ClustalW2 program (Larkin M. A., et al., (2007) ClustalW and ClustalX version 2. *Bioinformatics* 2007 23(21): 2947-2948) where an “*” (asterisk) indicates positions which have a single, fully conserved residue, wherein “:” (colon) indicates conservation between groups of strongly similar properties—scoring>0.5 in the Gonnet PAM 250 matrix and where “.” (period) indicates conservation between groups of weakly similar properties—scoring=<0.5 in the Gonnet PAM 250 matrix.

[0014] FIG. 3a represents plasmid map of pKCR5-3A4-HC-Variant 1. The heavy chains of the humanized 3A4 variants were cloned in the same manner into the HindIII site of pK-CR5. Consequently the resulting plasmids are identical to pKCR5-3A4-HC variant 1 except for the sequence of the heavy chain immunoglobulin variable domain.

[0015] FIG. 3b represents plasmid map of pMPG-CR5-3A4-LC-Variant 1. The light chains of the humanized variants 1 and 2 of 3A4 antibody were cloned in the same manner into the BamHI site of pMPG-CR5. Consequently, the resulting plasmid is identical to pMPG-CR5-3A4-LC-Variant 1, except for the sequence of the light chain immunoglobulin variable domain.

[0016] FIG. 4 represents an analysis of antibody production after transient transfection in CHO cells. Supernatant (13 days post-transfection) of CHOC TA cells transfected with the different combinations of light and heavy chains of humanized 3A4 antibody were analyzed by western blot. Quantification of antibody produced in the supernatants was determined after scanning the bands of the western blot against dilution of a known standard (human purified IgG antibody). Mr molecular weight marker (kDa).

[0017] FIG. 5 is a graph of a Superdex G75 gel filtration of recombinant KAAG1 sample. KAAG1 was injected over the gel filtration and separated at 0.4 ml/min. The largest peak between fractions 15-19.

[0018] FIG. 6 is a Table listing the rate and affinity constants for the murine and humanized variants of the 3A4 antibody.

[0019] FIG. 7a is an histogram illustrating the association rates (K_a) of the humanized antibodies.

[0020] FIG. 7b is an histogram illustrating the dissociation rates (K_d) of the humanized antibodies.

[0021] FIG. 7c is an histogram illustrating the affinity constants (K_D) of the humanized antibodies.

[0022] FIG. 8a illustrates humanized 3A4 variants binding to KAAG1 in an ELISA. This figure shows the comparative binding of 3A4 humanized antibody variants and the murine 3A4. Concentration-dependent binding profiles of the humanized heavy chains (Hh1, Hh2, Hh3 and Hh4) assembled with the Lh1 light chain variant.

[0023] FIG. 8b illustrates humanized 3A4 variants binding to KAAG1 in an ELISA. This figure shows the comparative binding of 3A4 humanized antibody variants and the murine 3A4. Concentration-dependent binding profiles of the humanized heavy chains (Hh1, Hh2, Hh3 and Hh4) assembled with the Lh2 light chain variant.

[0024] FIG. 9 illustrates humanized 3A4 variants binding to KAAG1 on the surface of cancer cells. This illustration shows the comparative binding activity of the humanized and the murine 3A4 antibodies on the unpermeabilized SKOV-3 ovarian cancer cells.

[0025] FIG. 10 shows a scan of a tissue microarray containing 139 biopsy samples obtained from breast cancer patients. The samples were blotted with the 3A4 anti-KAAG1 antibody and showed that the vast majority of the breast tumors expressed very high level of KAAG1 antigen. The confirmed TNBC samples are marked with an asterisk.

[0026] FIG. 11 shows the results of flow cytometry performed using MDA-MB-231, MDA-MB-436, MDA-MB-468, BT-20, BT-549, T47D, MCF-7 and 293-6E cell lines incubated with the 3A4 anti-KAAG1 antibody (blue bars of the histogram) compared with a control IgG (red bars). This is a representative results from an experiment that was performed in triplicate. The TNBC cell lines are marked with an asterisk.

[0027] FIG. 12 represents the detection of the KAAG1 antigen on the surface of MDA-MB-231 cells by flow cytometry with the 3A4 anti-KAAG1 antibody. The fluorescence signal decreases with time when the cells were incubated at 37° C., which suggests that the KAAG1/antibody complex was internalized during the incubation when the cells were incubated with 3A4.

[0028] FIG. 13 represents the detection of the KAAG1 antigen on the surface of MDA-MB-436 cells by flow cytometry with the 3A4 anti-KAAG1 antibody. The fluorescence signal decreases with time when the cells were incubated at 37° C., which suggests that the KAAG1/antibody complex was internalized during the incubation when the cells were incubated with 3A4.

[0029] FIG. 14 represents the detection of the KAAG1 antigen on the surface of BT-20 cells by flow cytometry with the 3A4 anti-KAAG1 antibody. The fluorescence signal decreases with time when the cells were incubated at 37° C., which suggests that the KAAG1/antibody complex was internalized during the incubation when the cells were incubated with 3A4.

[0030] FIG. 15 represents the detection of the KAAG1 antigen on the surface of T47D cells by flow cytometry with the 3A4 anti-KAAG1 antibody. The fluorescence signal decreases with time when the cells were incubated at 37° C., which suggests that the KAAG1/antibody complex was internalized during the incubation when the cells were incubated with 3A4.

[0031] FIG. 16 represents immunofluorescence data performed on live MDA-MB-231 cells with the 3A4 anti-KAAG1 antibody and the anti-LAMP1 antibody. The immunofluorescence signal associated with the anti-KAAG1 antibody is shown in the left panel, the immunofluorescence

signal associated LAMP1 is shown in the middle panel and the merging of both images is shown in the right panel. These data illustrates the co-localization of KAAG1 and LAMP1 near the peri-nuclear area.

[0032] FIG. 17 represents immunofluorescence data performed on live MDA-MB-231 cells with the 3A4 anti-KAAG1 antibody and the anti-LAMP1 antibody. The immunofluorescence signal associated with the anti-KAAG1 antibody is shown in the left panel, the immunofluorescence signal associated LAMP1 is shown in the middle panel and the merging of both images is shown in the right panel. These data illustrates the localization of KAAG1 with LAMP1 a marker of late endosomes/lysosomes.

SUMMARY OF THE INVENTION

[0033] The present invention provides a method of treating or detecting cancer or cancer cells (in vitro or in vivo) in an individual in need.

[0034] In accordance with the present invention, methods of treatment or detection may be carried out with an antibody capable of binding to KAAG1 or an antigen binding fragment thereof.

[0035] The individual in need may comprise, for example, an individual having or suspected of having cancer. Such individual may have a cancer or cancer cells originating from a breast carcinoma.

[0036] The cancer or cancer cells may more particularly originate from a breast carcinoma characterized as being triple-negative or basal-like.

[0037] Therefore, the individuals who may benefit from methods of treatment or detection described herein may include those suffering from breast carcinoma.

[0038] The breast carcinoma may comprise tumors cells showing a decrease or a lost in the expression of the estrogen receptor.

[0039] The breast carcinoma may comprise tumor cells showing a decrease or a lost in the expression of the progesterone receptor.

[0040] The breast carcinoma may comprise tumor cells showing a decrease or a lost in the expression of Her2.

[0041] The breast carcinoma may comprise tumor cells showing a decrease or a lost in Her2 overexpression.

[0042] More particularly, the breast carcinoma may comprise tumor cells showing either 1) a decrease or a loss in expression of the estrogen receptor and the progesterone receptor, 2) a decrease or a loss in expression of the estrogen receptor and a decrease or a loss of Her2 overexpression, 3) a decrease or a loss in expression of the progesterone receptor and a decrease or a loss of Her2 overexpression or 4) a decrease or a loss in expression of the estrogen receptor, a decrease or a loss in expression of the progesterone receptor and a decrease or a loss of Her2 overexpression.

[0043] Even more particularly, the breast carcinoma may comprise tumor cells showing either 1) a loss in expression of the estrogen receptor and the progesterone receptor, 2) a loss in expression of the estrogen receptor and a loss of Her2 expression, 3) a loss in expression of the progesterone receptor and a loss of Her2 expression or 4) a loss in expression of the estrogen receptor, a loss in expression of the progesterone receptor and a loss of Her2 expression.

[0044] In accordance with the present invention, the individual may carry breast cancer cells that are characterized as being triple-negative or may have a tumor categorized as being a triple-negative breast cancer.

[0045] In accordance with the present invention, the individual may carry breast cancer cells that are characterized as basal-like, or may have a tumor categorized as being a basal-like breast cancer.

[0046] Other individuals who would benefit from treatment with an anti-KAAG1 include those having carcinoma comprising tumor cells exhibiting an epithelial-to-mesenchymal transition (EMT) phenotype.

[0047] Commonly used molecular markers of EMT include, for example, a reduced expression of E-cadherin, cytokeratin and β -catenin (in the membrane) and/or an increased expression of Snail, Slug, Twist, ZEB1, ZEB2, N-cadherin, vimentin, α -smooth muscle actin, matrix metalloproteinases etc. (see for example, Kalluri and Weinberg, The Journal of Clinical Investigation, 119(6), p 1420-1428; 2009; Fassina et al., Modern Pathology, 25; p 86-99; 2012; Lee et al., JCB; 172; p 973-981; 2006). An EMT phenotype may also be distinguished by an increased capacity for migration, invasion or by resistance to anoikis/apoptosis. Cells that are undergoing epithelial-to-mesenchymal transition may thus be detected by a reduction of epithelial markers and apparition of mesenchymal markers or EMT phenotypes.

[0048] In accordance with the present invention, the method may thus comprise, for example, administering an antibody or antigen binding fragment which is capable of specific binding to KAAG1 to an individual in need. The individual in need is preferentially selected on the basis of their tumor lacking ER expression, PgR expression and/or by the absence of HER2 protein over-expression. Clinical testing for these markers is usually performed using histopathologic methods (immunohistochemistry, FISH, etc.) and/or by gene expression studies (see for example Dent et al, 2007, Bernstein and Lacey, 2011). The individual in need may thus be an individual who has received a diagnosis of triple-negative breast cancer or basal-like breast cancer. The individual in need may be an individual which is unresponsive to hormonal therapy and/or to trastuzumab therapy (or other anti-Her2 antibodies). Alternatively, the individual in need may be an individual carrying tumor cells that have the ability of undergoing epithelial-to-mesenchymal transition or that have acquired a mesenchymal phenotype.

[0049] The present invention thus provides a method of treating triple-negative breast cancer or basal-like breast cancer by administering an inhibitor of KAAG1 activity or expression to an individual in need.

[0050] In accordance with the present invention, the KAAG1 inhibitor may thus comprise an antibody described herein or an antigen binding fragment thereof.

[0051] Also in accordance with the present invention, the KAAG1 inhibitor may comprise a nucleotide sequence complementary to SEQ ID NO.:1 or to a fragment thereof. More particularly, the KAAG1 inhibitor may comprise a nucleotide sequence complementary to nucleotides 738 to 992 (inclusively) of SEQ ID NO.:1 or to a fragment thereof. For example, the inhibitor may include at least 10 consecutive nucleotides (at least 15, at least 20) which are complementary to SEQ ID NO.:1 or to nucleotides 738 to 992 (inclusively) of SEQ ID NO.:1. More particular type of KAAG1 inhibitor includes a siRNA which inhibit expression of SEQ ID NO.:1.

[0052] Suitable antibodies or antigen binding fragments include those that are capable of binding to KAAG1 at the surface of tumor cells. Such antibodies or antigen binding

fragments thereof may preferentially bind an epitope included within amino acids 30 to 84 of KAAG1 inclusively.

[0053] Alternatively such antibodies or antigen binding fragments thereof may bind an epitope located within amino acids 36 to 60 (inclusively) or within amino acids 61 to 84 (inclusively) of KAAG1.

[0054] The epitope may particularly be located or comprised within amino acids 50 to 70, 50 to 65, 51 to 65, 52 to 65, 53 to 65, 54 to 65, 54 to 64, 54 to 63, 54 to 62, 54 to 61, 54 to 60, 50 to 62; 50 to 61, or 50 to 60 (inclusively or exclusively).

[0055] In accordance with an embodiment of the invention, the antibody or antigen binding fragment may bind an epitope comprised within amino acids 50 to 70 of KAAG1.

[0056] In a further embodiment of the invention, the antibody or antigen binding fragment may bind an epitope comprised within amino acids 50 to 62 of KAAG1.

[0057] In yet a further embodiment, the antibody or antigen binding fragment may bind an epitope comprised within amino acids 54 to 65 of KAAG1.

[0058] Suitable antibodies for therapeutic treatment include for example, those which mediate antibody-dependent cell cytotoxicity.

[0059] Other even more suitable antibodies for therapeutic treatment include those that are conjugated with a therapeutic moiety.

[0060] In accordance with the present invention, the antibody may be, for example, a monoclonal antibody, a chimeric antibody, a humanized antibody a human antibody or an antigen binding fragment thereof.

DETAILED DESCRIPTION OF THE INVENTION

Method of Treatment

[0061] As indicated herein, the present invention encompass administering an antibody or antigen binding fragment to an individual having a breast cancer characterized as being “triple negative breast cancer” or “basal-like breast cancer”.

[0062] Classification of breast cancer subtypes as being “triple negative breast cancer” or “basal-like breast cancer” is known in the art (see for example, Foulkes et al., N. Engl. J. Med., 2010; 363:1938-1948) and includes, for example, the following definitions:

[0063] “Basal-like breast cancer”, may include for example, a subtype of breast cancer comprising a heterogeneous group of tumors characterized by the absence of or low levels of expression of estrogen receptors, very low prevalence of Her2 overexpression and expression of genes usually found in the basal or myoepithelial cells of the human breast. Such expression may be determined by microarray analysis.

[0064] “Triple-negative breast cancer”, may include for example, a tumor characterized by lack of estrogen receptor (ER), progesterone receptor (PR) and Her2 expression. Some investigators accept tumors as being negative for expression of ER or PR only if less than 1% of the cells are positive for ER or PR expression; others consider tumors to be negative for ER or PR expression when up to 10% of cells are positive for expression. Different definitions of HER2-negativity have been used. The two most frequently adopted include tumors with immunohistochemical scores of 0/1+ or 2+ that are lacking HER2 gene amplification after in situ

hybridization. Such expression may be especially determined by immunohistochemical staining.

[0065] In accordance with the present invention, the method of treatment includes administering a KAAG1 inhibitor to an individual in need. Such KAAG1 inhibitor includes, for example, an antibody or antigen binding fragment thereof which specifically binds to KAAG1.

[0066] It is likely that the most potent antibodies or antigen binding fragments may be those having a high affinity for KAAG1. It is also likely that the most potent antibodies or antigen binding fragments may be those that are internalized within a cells compartment such as, for example, a lysosome or an endosome.

[0067] As such, the present invention especially encompasses antibodies or antigen binding fragments having a high affinity for KAAG1.

[0068] Suitable antibodies or antigen binding fragments include those that are capable of binding to KAAG1 at the surface of tumor cells with a high affinity. Such high affinity antibodies or antigen binding fragments thereof may preferentially bind an epitope included within amino acids 30 to 84 of KAAG1 inclusively.

[0069] Alternatively such high affinity antibodies or antigen binding fragments thereof may bind an epitope located within amino acids 36 to 60 (inclusively) or within amino acids 61 to 84 (inclusively) of KAAG1.

[0070] The high affinity antibodies or antigen binding fragments may bind, for example, an epitope may particularly be located or comprised within amino acids 50 to 70, 50 to 65, 51 to 65, 52 to 65, 53 to 65, 54 to 65, 54 to 64, 54 to 63, 54 to 62, 54 to 61, 54 to 60, 50 to 62; 50 to 61, or 50 to 60 (inclusively or exclusively).

[0071] In accordance with an embodiment of the invention, the high affinity antibody or antigen binding fragment may bind an epitope comprised within amino acids 50 to 70 of KAAG1.

[0072] In a further embodiment of the invention, the high affinity antibody or antigen binding fragment may bind an epitope comprised within amino acids 50 to 62 of KAAG1.

[0073] In yet a further embodiment, the high affinity antibody or antigen binding fragment may bind an epitope comprised within amino acids 54 to 65 of KAAG1.

[0074] Preferred antibodies including high affinity antibodies are those than may be internalized in a cell or cell compartment (e.g., lysosomes or endosomes). The ability of antibodies to be internalized may be determined by method known in the art such as for example and without limitation, by immunofluorescence studies similar to those performed herein.

[0075] Antibodies having CDRs identical to those of the 3A4 antibodies are particularly encompassed by the present invention. As such, antibodies having a light chain variable region and/or heavy chain variable region consensus sequences set forth in any of SEQ ID NOs.:186 to 188 and 191 to 193 and specific sequences set forth in SEQ ID No.:46, 48, 189, 190, or 194 to 198 are encompassed by the present invention. Among those, antibodies having a light chain variable region and/or heavy chain variable region consensus sequences set forth in any of SEQ ID NO.: 188 and 196 or specific sequences set forth in SEQ ID NO.:46, 48, 189, 190, or 194 to 198 are particularly contemplated.

[0076] The antibodies or antigen binding fragments thereof may preferably be conjugated with a therapeutic moiety.

[0077] The antibodies or antigen binding fragments thereof, may have a human constant region. Preferably the antibodies or antigen binding fragments thereof may have a human IgG1 constant region. Alternatively, the antibodies or antigen binding fragments thereof may have an IgG2 constant region.

[0078] The method of the present invention may also include administering a KAAG1 inhibitor such as an antibody (e.g., conjugated with a therapeutic moiety) or antigen binding fragment in combination with an anticancer agent such as for example, a small molecule drug, an antibody or antigen binding fragment binding to a target other than KAAG1, a chemotherapeutic or a cytotoxic agent. Example of anticancer agent that could be administered with the KAAG1 inhibitor may include for example, doxorubicin, taxanes, anti-angiogenic agents, platinum salts, PARP inhibitors.

[0079] Other methods of treatment encompassed by the present invention include administering other types of KAAG1 inhibitors such as antisense-based therapeutics (siRNA, antisenses, ribozymes, etc.).

Antibodies and Antigen Binding Fragments that Binds to KAAG1

[0080] The term “antibody or antigen binding fragment” or similar terms such as “antibodies and antigen binding fragments” encompasses, for example “variant antibody or antigen binding fragment” such as, for example, “humanized antibody or antigen binding fragment”.

[0081] The term “antibody” refers to intact antibody, monoclonal or polyclonal antibodies. The term “antibody” also encompasses multispecific antibodies such as bispecific antibodies. Human antibodies are usually made of two light chains and two heavy chains each comprising variable regions and constant regions. The light chain variable region comprises 3 CDRs, identified herein as CDRL1, CDRL2 and CDRL3 flanked by framework regions. The heavy chain variable region comprises 3 CDRs, identified herein as CDRH1, CDRH2 and CDRH3 flanked by framework regions.

[0082] The term “antigen-binding fragment”, as used herein, refers to one or more fragments of an antibody that retain the ability to bind to an antigen (e.g., KAAG1, secreted form of KAAG1 or variants thereof). It has been shown that the antigen-binding function of an antibody can be performed by fragments of an intact antibody. Examples of binding fragments encompassed within the term “antigen-binding fragment” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the V_L , V_H , C_L and C_{H1} domains; (ii) a $F(ab')_2$ fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the V_H and C_{H1} domains; (iv) a Fv fragment consisting of the V_L and V_H domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) *Nature* 341:544-546), which consists of a V_H domain; and (vi) an isolated complementarity determining region (CDR), e.g., V_H CDR3. Furthermore, although the two domains of the Fv fragment, V_L and V_H , are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single polypeptide chain in which the V_L and V_H regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) *Science* 242:423-426; and Huston et al. (1988) *Proc. Natl. Acad. Sci. USA* 85:5879-5883). Such single chain antibod-

ies are also intended to be encompassed within the term “antigen-binding fragment” of an antibody. Furthermore, the antigen-binding fragments include binding-domain immunoglobulin fusion proteins comprising (i) a binding domain polypeptide (such as a heavy chain variable region, a light chain variable region, or a heavy chain variable region fused to a light chain variable region via a linker peptide) that is fused to an immunoglobulin hinge region polypeptide, (ii) an immunoglobulin heavy chain CH2 constant region fused to the hinge region, and (iii) an immunoglobulin heavy chain CH3 constant region fused to the CH2 constant region. The hinge region may be modified by replacing one or more cysteine residues with serine residues so as to prevent dimerization. Such binding-domain immunoglobulin fusion proteins are further disclosed in US 2003/0118592 and US 2003/0133939. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.

[0083] A typical antigen binding site is comprised of the variable regions formed by the pairing of a light chain immunoglobulin and a heavy chain immunoglobulin. The structure of the antibody variable regions is very consistent and exhibits very similar structures. These variable regions are typically comprised of relatively homologous framework regions (FR) interspersed with three hypervariable regions termed Complementarity Determining Regions (CDRs). The overall binding activity of the antigen binding fragment is often dictated by the sequence of the CDRs. The FRs often play a role in the proper positioning and alignment in three dimensions of the CDRs for optimal antigen binding.

[0084] As used herein the term “high affinity” refers to an affinity of 10 nM or less. The term “high affinity” especially includes antibodies having an affinity of 5 nM or less. The term “high affinity” even more particularly includes antibodies having an affinity of 1 nM or less, or 0.1 nM or less.

[0085] Antibodies and/or antigen binding fragments of the present invention may originate, for example, from a mouse, a rat or any other mammal or from other sources such as through recombinant DNA technologies.

[0086] An-KAAG1 antibodies were initially isolated from Fab libraries for their specificity towards the antigen of interest. Exemplary methods on how to convert Fab into full immunoglobulins are provided herein.

[0087] The variable regions described herein may be fused with constant regions of a desired species thereby allowing recognition of the antibody by effector cells of the desired species. The constant region may originate, for example, from an IgG1, IgG2, IgG3, or IgG4 subtype. Cloning or synthesizing a constant region in frame with a variable region is well within the scope of a person of skill in the art and may be performed, for example, by recombinant DNA technology.

[0088] In certain embodiments of the present invention, antibodies that bind to KAAG1 may be of the IgG1, IgG2, IgG3, or IgG4 subtype. More specific embodiments of the invention relates to an antibody of the IgG1 subtype or especially human IgG1 subtype. Other specific embodiments of the invention relates to an antibody of the IgG2 subtype or especially of the human IgG2 subtype.

[0089] The antibody may be a humanized antibody of the IgG1 subtype or especially human IgG1 subtype.

Alternatively, the antibody may be a humanized antibody of the IgG2 subtype or especially of the human IgG2 subtype.

[0090] The antibody may be, for example, biologically active in mediating antibody-dependent cellular cytotoxicity (ADCC), complement-mediated cytotoxicity (CMC), or associated with immune complexes. The typical ADCC involves activation of natural killer (NK) cells and is reliant on the recognition of antibody-coated cells by Fc receptors on the surface of the NK cells. The Fc receptors recognize the Fc domain of antibodies such as is present on IgG1, which bind to the surface of a target cell, in particular a cancerous cell that expresses an antigen, such as KAAG1. Once bound to the Fc receptor of IgG the NK cell releases cytokines and cytotoxic granules that enter the target cell and promote cell death by triggering apoptosis.

[0091] The present invention described a collection of antibodies that bind to KAAG1 or to a KAAG1 variant. In certain embodiments, the antibodies may be selected from the group consisting of polyclonal antibodies, monoclonal antibodies such as chimeric or humanized antibodies, antibody fragments such as antigen binding fragments, single chain antibodies, domain antibodies, and polypeptides with an antigen binding region.

[0092] In an aspect of the invention, the isolated antibody or antigen binding fragment of the present invention may be capable of inducing killing (elimination, destruction, lysis) of KAAG1-expressing tumor cells or KAAG1 variant-expressing tumor cells (e.g., in an ADCC-dependent manner).

[0093] In a further aspect of the invention, the isolated antibody or antigen binding fragment of the present invention may especially be characterized by its capacity of reducing spreading of tumor cells expressing KAAG1 or a KAAG1 variant.

[0094] In an additional aspect of the invention, the isolated antibody or antigen binding fragment of the present invention may be characterized by its capacity of decreasing or impairing formation of tumors expressing KAAG1 or a KAAG1 variant.

[0095] In an exemplary embodiment of the invention, the isolated antibody or antigen binding fragment may comprise amino acids of a constant region, which may originate, for example, from a human antibody.

[0096] In another exemplary embodiment of the invention, the isolated antibody or antigen binding fragment may comprise framework amino acids of a human antibody.

[0097] Without being limited to the exemplary embodiments presented herein, the Applicant as generated specific antibodies and antigen binding fragments that may be useful for the purposes described herein.

[0098] The following is a list of antibodies that were generated and shown to bind in a specific manner to KAAG1; 3D3, 3A4, 3C4, 3G10, 3A2, 3F6, 3E8, 3E10, 3A9, 3B1, 3G5, 3B2, 3B8, 3G8, 3F7, 3E9, 3G12, 3C3, 3E12, 4A2, 3F10, 3F4, 3G11, 3D1, 3C2, 3E6 and 3H3. Sequences of the antibody light chain or heavy chain, variable regions or complementary determining regions (CDRs) are available in international application No. PCT/CA2009/001586 published on Jun. 3, 2010 under No. WO2010/060186A8, in international application No. PCT/CA2010/001795 published on May 12, 2011 under No. WO2011/054112A1 or in international application No. PCT/CA2012/000296 published on Oct. 4, 2012 under No. WO2012/129668A1.

[0099] In most instances, the sequence of the CDRs has been provided separately or is shown in bold herein.

[0100] Amongst, these antibodies, the 3D3, 3A4, 3G10 and 3C4 were selected for in vitro and/or in vivo biological testing. The 3A4 antibody appeared to have the best characteristics. Based on our experiments, the 3A4 antibody when conjugated with a therapeutic moiety (e.g. a cytotoxic agent) is more effective in killing cancer cells than its non-conjugated version.

[0101] In an exemplary embodiment, the antibody or antigen binding fragment may comprise any individual CDR or a combination of CDR1, CDR2 and/or CDR3 of the light chain variable region. The CDR3 may more particularly be selected. Combination may include for example, CDRL1 and CDRL3; CDRL1 and CDRL2; CDRL2 and CDRL3 and; CDRL1, CDRL2 and CDRL3.

[0102] In another exemplary embodiment, the antibody or antigen binding fragment may comprise any individual CDR or a combination of CDR1, CDR2 and/or CDR3 of the heavy chain variable region. The CDR3 may more particularly be selected. Combination may include for example, CDRH1 and CDRH3; CDRH1 and CDRH2; CDRH2 and CDRH3 and; CDRH1, CDRH2 and CDRH3.

[0103] In accordance with the present invention, the antibody or antigen binding fragment may comprise at least two CDRs of a CDRL1, a CDRL2 or a CDRL3.

[0104] Also in accordance with the present invention, the antibody or antigen binding fragment may comprise one CDRL1, one CDRL2 and one CDRL3.

[0105] Further in accordance with the present invention, the antibody or antigen binding fragment may comprise:

[0106] a. At least two CDRs of a CDRL1, CDRL2 or CDRL3 and;

[0107] b. At least two CDRs of a CDRH1, one CDRH2 or one CDRH3.

[0108] The antibody or antigen binding fragment may more preferably comprise one CDRL1, one CDRL2 and one CDRL3.

[0109] The antibody or antigen binding fragment may also more preferably comprise one CDRH1, one CDRH2 and one CDRH3.

[0110] When only one of the light chain variable region or the heavy chain variable region is available, an antibody or antigen-binding fragment may be reconstituted by screening a library of complementary variable regions using methods known in the art (Portolano et al. *The Journal of Immunology* (1993) 150:880-887, Clarkson et al., *Nature* (1991) 352:624-628).

[0111] Exemplary embodiments of the present invention encompass antibodies or antigen binding fragments having the CDRs of the light chain and/or heavy chains of the 3D3, 3A4, 3C4, 3G10, 3A2, 3F6, 3E8, 3E10, 3A9, 3B1, 3G5, 3B2, 368, 3G8, 3F7, 3E9, 3G12, 3C3, 3E12, 4A2, 3F10, 3F4, 3611, 3D1, 3C2, 3E6 or 3H3 antibodies. More particular embodiments of the invention include antibodies or antigen binding fragments having the CDRs of the light chain and/or heavy chains of the 3D3, 3A4, 3C4 or 3G10 antibodies. Even more particular embodiments of the invention include antibodies or antigen binding fragments having the CDRs of the light chain and/or heavy chains of the 3A4 antibody. The invention thus encompassed any monoclonal, chimeric, human, or humanized antibody comprising one or more CDRs of the 3A4 antibody.

[0112] Antibodies or antigen binding fragments that may be used in methods of the present invention, include those having CDRs of the 3A4 antibody and may comprise, for

example, a CDRH1 as set forth in SEQ ID NO.:49, a CDRH2 as set forth in SEQ ID NO.:50 or in SEQ ID NO.:212, a CDRH3 as set forth in SEQ ID NO.:51, a CDRL1 as set forth in SEQ ID NO.: 52, a CDRL2 as set forth in SEQ ID NO.:53 and a CDRL3 as set forth in SEQ ID NO.: 54.

[0113] The present invention therefore encompass, antibodies and antigen binding fragment which are capable of specific binding to KAAG1 and which may comprise sequences selected from the group consisting of:

[0114] a. the 3CDRs of a light chain variable region defined in SEQ ID NO.:16 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.:18,

[0115] b. the 3CDRs of a light chain variable region defined in SEQ ID NO.:20 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.:22;

[0116] c. the 3CDRs of a light chain variable region defined in SEQ ID NO.:24 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.:26;

[0117] d. the 3CDRs of a light chain variable region defined in SEQ ID NO.:48 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.:46;

[0118] e. the 3CDRs of a light chain variable region defined in SEQ ID NO.:103 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 126,

[0119] f. the 3CDRs of a light chain variable region defined in SEQ ID NO.:104 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 127,

[0120] g. the 3CDRs of a light chain variable region defined in SEQ ID NO.:105 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 128,

[0121] h. the 3CDRs of a light chain variable region defined in SEQ ID NO.:106 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 145,

[0122] i. the 3CDRs of a light chain variable region defined in SEQ ID NO.:107 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 129,

[0123] j. the 3CDRs of a light chain variable region defined in SEQ ID NO.:108 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 130,

[0124] k. the 3CDRs of a light chain variable region defined in SEQ ID NO.:109 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 141,

[0125] l. the 3CDRs of a light chain variable region defined in SEQ ID NO.:110 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 131,

[0126] m. the 3CDRs of a light chain variable region defined in SEQ ID NO.:111 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 134,

[0127] n. the 3CDRs of a light chain variable region defined in SEQ ID NO.:112 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 135,

- [0128] o. the 3CDRs of a light chain variable region defined in SEQ ID NO.:113 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 136,
- [0129] p. the 3CDRs of a light chain variable region defined in SEQ ID NO.:114 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 133,
- [0130] q. the 3CDRs of a light chain variable region defined in SEQ ID NO.:115 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 140,
- [0131] r. the 3CDRs of a light chain variable region defined in SEQ ID NO.:116 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 137,
- [0132] s. the 3CDRs of a light chain variable region defined in SEQ ID NO.:117 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 144,
- [0133] t. the 3CDRs of a light chain variable region defined in SEQ ID NO.:118 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 139,
- [0134] u. the 3CDRs of a light chain variable region defined in SEQ ID NO.:119 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 132,
- [0135] v. the 3CDRs of a light chain variable region defined in SEQ ID NO.:120 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 142,
- [0136] w. the 3CDRs of a light chain variable region defined in SEQ ID NO.:121 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 138,
- [0137] x. the 3CDRs of a light chain variable region defined in SEQ ID NO.:122 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 146,
- [0138] y. the 3CDRs of a light chain variable region defined in SEQ ID NO.:123 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 153,
- [0139] z. the 3CDRs of a light chain variable region defined in SEQ ID NO.:124 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 143,
- [0140] aa. the 3CDRs of a light chain variable region defined in SEQ ID NO.:189 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 194,
- [0141] bb. the 3CDRs of a light chain variable region defined in SEQ ID NO.:189 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 195,
- [0142] cc. the 3CDRs of a light chain variable region defined in SEQ ID NO.:189 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 196,
- [0143] dd. the 3CDRs of a light chain variable region defined in SEQ ID NO.:189 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 197,
- [0144] ee. the 3CDRs of a light chain variable region defined in SEQ ID NO.:190 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 194,
- [0145] ff. the 3CDRs of a light chain variable region defined in SEQ ID NO.:190 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 195,
- [0146] gg. the 3CDRs of a light chain variable region defined in SEQ ID NO.:190 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 196, or
- [0147] hh. the 3CDRs of a light chain variable region defined in SEQ ID NO.:190 and/or the 3CDRs of a heavy chain variable region defined in SEQ ID NO.: 197.
- [0148] Other exemplary embodiments of the invention encompass antibodies or antigen binding fragments having the light chain and/or heavy chains of the 3D3, 3A4, 3C4, 3G10, 3A2, 3F6, 3E8, 3E10, 3A9, 3E1, 3G5, 3B2, 3E8, 3G8, 3F7, 3E9, 3G12, 3C3, 3E12, 4A2, 3F10, 3F4, 3E6, 3D1, 3C2, 3E6 or 3H3 antibodies. More particular embodiments of the invention include antibodies or antigen binding fragments having the light chain and/or heavy chains of the 3D3, 3A4, 3C4 or 3G10 antibodies. Even more particular embodiments of the invention include antibodies or antigen binding fragments having the light chain and/or heavy chains of the 3A4 antibody (humanized and non-humanized).
- [0149] The present invention therefore encompass, antibodies and antigen binding fragment which are capable of specific binding to KAAG1 and which may comprise sequences selected from the group consisting of:
- [0150] a. the light chain variable region defined in SEQ ID NO.:16 (encoded by SEQ ID NO.:15) and/or the heavy chain variable region defined in SEQ ID NO.:18 (encoded by SEQ ID NO.:17),
- [0151] b. the light chain variable region defined in SEQ ID NO.:20 (encoded by SEQ ID NO.:19) and/or the heavy chain variable region defined in SEQ ID NO.:22 (encoded by SEQ ID NO.:21);
- [0152] c. the light chain variable region defined in SEQ ID NO.:24 (encoded by SEQ ID NO.:23) and/or the heavy chain variable region defined in SEQ ID NO.:26 (encoded by SEQ ID NO.:25);
- [0153] d. the light chain variable region defined in SEQ ID NO.:48 and/or the heavy chain variable region defined in SEQ ID NO.:46,
- [0154] e. the light chain variable region defined in SEQ ID NO.:103 and/or the heavy chain variable region defined in SEQ ID NO.:126,
- [0155] f. the light chain variable region defined in SEQ ID NO.:104 and/or the heavy chain variable region defined in SEQ ID NO.:127,
- [0156] g. the light chain variable region defined in SEQ ID NO.:105 and/or the heavy chain variable region defined in SEQ ID NO.:128,
- [0157] h. the light chain variable region defined in SEQ ID NO.:106 and/or the heavy chain variable region defined in SEQ ID NO.:145,
- [0158] i. the light chain variable region defined in SEQ ID NO.:107 and/or the heavy chain variable region defined in SEQ ID NO.:129,

- [0159] j. the light chain variable region defined in SEQ ID NO.:108 and/or the heavy chain variable region defined in SEQ ID NO.:130,
- [0160] k. the light chain variable region defined in SEQ ID NO.:109 and/or the heavy chain variable region defined in SEQ ID NO.:141,
- [0161] l. the light chain variable region defined in SEQ ID NO.:110 and/or the heavy chain variable region defined in SEQ ID NO.:131,
- [0162] m. the light chain variable region defined in SEQ ID NO.:111 and/or the heavy chain variable region defined in SEQ ID NO.:134,
- [0163] n. the light chain variable region defined in SEQ ID NO.:112 and/or the heavy chain variable region defined in SEQ ID NO.:135,
- [0164] o. the light chain variable region defined in SEQ ID NO.:113 and/or the heavy chain variable region defined in SEQ ID NO.:140,
- [0165] p. the light chain variable region defined in SEQ ID NO.:114 and/or the heavy chain variable region defined in SEQ ID NO.:133,
- [0166] q. the light chain variable region defined in SEQ ID NO.:115 and/or the heavy chain variable region defined in SEQ ID NO.:140,
- [0167] r. the light chain variable region defined in SEQ ID NO.:116 and/or the heavy chain variable region defined in SEQ ID NO.:137,
- [0168] s. the light chain variable region defined in SEQ ID NO.:117 and/or the heavy chain variable region defined in SEQ ID NO.:144,
- [0169] t. the light chain variable region defined in SEQ ID NO.:118 and/or the heavy chain variable region defined in SEQ ID NO.:139,
- [0170] u. the light chain variable region defined in SEQ ID NO.:119 and/or the heavy chain variable region defined in SEQ ID NO.:132,
- [0171] v. the light chain variable region defined in SEQ ID NO.:120 and/or the heavy chain variable region defined in SEQ ID NO.:142,
- [0172] w. the light chain variable region defined in SEQ ID NO.:121 and/or the heavy chain variable region defined in SEQ ID NO.:138,
- [0173] x. the light chain variable region defined in SEQ ID NO.:122 and/or the heavy chain variable region defined in SEQ ID NO.:146,
- [0174] y. the light chain variable region defined in SEQ ID NO.:123 and/or the heavy chain variable region defined in SEQ ID NO.:147;
- [0175] z. the light chain variable region defined in SEQ ID NO.:124 and/or the heavy chain variable region defined in SEQ ID NO.:144;
- [0176] aa. the light chain variable region defined in SEQ ID NO.:189 and/or the heavy chain variable region defined in SEQ ID NO.:194,
- [0177] bb. the light chain variable region defined in SEQ ID NO.:189 and/or the heavy chain variable region defined in SEQ ID NO.:195,
- [0178] cc. the light chain variable region defined in SEQ ID NO.:190 and/or the heavy chain variable region defined in SEQ ID NO.:194,
- [0179] dd. the light chain variable region defined in SEQ ID NO.:190 and/or the heavy chain variable region defined in SEQ ID NO.:195,

[0180] ee. the light chain variable region defined in SEQ ID NO.:190 and/or the heavy chain variable region defined in SEQ ID NO.:196, or

[0181] ff. the light chain variable region defined in SEQ ID NO.:190 and/or the heavy chain variable region defined in SEQ ID NO.:197.

[0182] The framework region of the heavy and/or light chains described herein may be derived from one or more of the framework regions illustrated in the antibodies described herein. The antibody or antigen binding fragments may thus comprise one or more of the CDRs described herein (e.g., selected from the specific CDRs or consensus CDRs of SEQ ID NO.:72 to 88 or CDR variants of SEQ ID NO.:89-102) and framework regions originating from those described herein. In SEQ ID Nos. 103-154, the expected CDRs are shown in bold, while the framework regions are not.

[0183] Table 1 refers to the complete sequences of light and heavy chain of some of the anti-KAAG1 antibodies which were selected for biological testing.

TABLE 1

Antibody designation	Chain type	Nucleotide sequence (SEQ ID NO.)	Amino acid sequence (SEQ ID NO.)
3D3	Light (L)	3	4
3D3	Heavy (H)	5	6
3G10	Light	7	8
3G10	Heavy	9	10
3C4	Light	11	12
3C4	Heavy	13	14
Humanized 3D3	Light		166
Humanized 3D3	Heavy		167
Humanized 3C4	Light		170
Humanized 3C4	Heavy		171
Humanized 3A4	Light (Lh1)		199
Humanized 3A4	Light (Lh2)		200
Humanized 3A4	Heavy (Hh1)		202
Humanized 3A4	Heavy (Hh2)		203
Humanized 3A4	Heavy (Hh3)		204
Humanized 3A4	Heavy (Hh4)		205

[0184] Epitope mapping studies revealed that the 3D3 antibody interacts with a KAAG1 epitope spanned by amino acids 36-60, inclusively. The 3G10 and 3A4 antibodies interact with a KAAG1 epitope spanned by amino acids 61-84, inclusively and the 3C4 antibody interacts with a KAAG1 epitope spanned by amino acids 1-35. Although, the 3G10 and 3A4 binds a similar region, the 3G10 antibody does not bind to KAAG1 as efficiently as the 3A4 antibody.

[0185] It is to be understood herein, that the light chain variable region of the specific combination provided above may be changed for any other light chain variable region. Similarly, the heavy chain variable region of the specific combination provided above may be changed for any other heavy chain variable region.

[0186] Sequences of light and heavy chain variable regions of selected antibodies that bind to KAAG1 are disclosed in Table 2.

TABLE 2

Ab. designation	Variable region type	Nucleotide (SEQ ID NO.)	Amino acid (SEQ ID NO.)
3D3	Light (VL)	15	16
3D3	Heavy (VH)	17	18

TABLE 2-continued

Ab. designation	Variable region type	Nucleotide (SEQ ID NO.:)	Amino acid (SEQ ID NO.:)
3G10	Light	19	20
3G10	Heavy	21	22
3C4	Light	23	24
3C4	Heavy	25	26
3A2	Light		103
3A2	Heavy		126
3E10	Light		106
3E10	Heavy		145
3G12	Light		121
3G12	Heavy		138
3A4	Light	47	48
3A4	Heavy	45	46
Humanized 3D3	Light		168
Humanized 3D3	Heavy		169
Humanized 3C4	Light		172
Humanized 3C4	Heavy		173
Humanized 3A4	Light (Lvh1)		189
Humanized 3A4	Light (Lvh2)		190
Humanized 3A4	Heavy (Hvh1)		194
Humanized 3A4	Heavy (Hvh2)		195
Humanized 3A4	Heavy (Hvh3)		197
Humanized 3A4	Heavy (Hvh4)		198

[0187] SEQ ID NOs. 103-154 correspond to the light chain and heavy chain variable regions of other antibodies which were shown to bind KAAG1.

[0188] CDR sequence of the light and heavy chain variable regions of selected antibodies that bind to KAAG1 are disclosed in Table 3.

TABLE 3

Ab. designation	Chain type	CDR	SEQ ID NO.:	a.a. sequence
3D3	Light (L)	CDR L1	27	KSSQSLNNSNFQKNFLA
3D3	Light	CDR L2	28	FASTRES
3D3	Light	CDR L3	29	QQHYSTPLT
3D3	Heavy (H)	CDR H1	30	GYIFTDYEIH
3D3	Heavy	CDR H2	31	VIDPETGNTA
3D3	Heavy	CDR H3	32	MGYSDY
3G10	Light	CDR L1	33	RSSQSLHSNGNTYLE
3G10	Light	CDR L2	34	KVSNRFS
3G10	Light	CDR L3	35	FQGSHVPLT
3G10	Heavy	CDR H1	36	GYTFTDNYMN
3G10	Heavy	CDR H2	37	DINPYYGT
3G10	Heavy	CDR H3	38	ARDDWF
3C4	Light	CDR L1	39	KASQDIHNFLN
3C4	Light	CDR L2	40	RANRLVD
3C4	Light	CDR L3	41	LQYDEIPLT
3C4	Heavy	CDR H1	42	GFSITSGYGH
3C4	Heavy	CDR H2	43	YINYDGHND
3C4	Heavy	CDR H3	44	ASSYDGLFAY

TABLE 3-continued

Ab. design- nation	Chain type	CDR	SEQ ID NO.:	a.a. sequence
3A2	Light	CDR L1	148	KSSQSLHHSDGKTYLN
3A2	Light	CDR L2	149	LVSKLDS
3A2	Light	CDR L3	150	WQGTHFPRT
3A2	Heavy	CDR H1	151	GYTFTD YNMH
3A2	Heavy	CDR H2	152	YINPYNDVTE
3A2	Heavy	CDR H3	153	AWFGL RQ
3E10	Light	CDR L1	154	RSSQSLHSNGNTLY
3E10	Light	CDR L2	155	RMSNLAS
3E10	Light	CDR L3	156	MQHLEYPYT
3E10	Heavy	CDR H1	157	GDTFTD YYMN
3E10	Heavy	CDR H2	158	DINPYGGIT
3E10	Heavy	CDR H3	159	QAYYRNS DY
3G12	Light	CDR L1	160	KASQDVGTAVA
3G12	Light	CDR L2	161	VVTSTRHT
3G12	Light	CDR L3	162	QQHYSIPLT
3G12	Heavy	CDR H1	163	GYIFTDYEIH
3G12	Heavy	CDR H2	164	VIDPETGNTA
3G12	Heavy	CDR H3	165	MGYSDY
3A4	Light	CDR L1	52	RSSQSLHSNGNTYLE
3A4	Light	CDR L2	53	TVSNRFS
3A4	Light	CDR L3	54	FQGSHVPLT
3A4	Heavy	CDR H1	49	GYTFTDDYMS
3A4	Heavy	CDR H2	50	DINPYNGDTNYNQKPKG or DINPYNGDTN 212
3A4	Heavy	CDR H3	51	DPGAMDY

Variant Antibody and Antigen Binding Fragments

[0189] The present invention also encompasses variants of the antibodies or antigen binding fragments described herein. Variant antibodies or antigen binding fragments included are those having a variation in the amino acid sequence. For example, variant antibodies or antigen binding fragments included are those having at least one variant CDR (two, three, four, five or six variant CDRs, etc. or even twelve variant CDRs), a variant light chain variable region, a variant heavy chain variable region, a variant light chain and/or a variant heavy chain. Variant antibodies or antigen binding fragments included in the present invention are those having, for example, similar or improved binding affinity in comparison with the original antibody or antigen binding fragment.

[0190] As used herein the term "variant" applies to any of the sequence described herein and includes for example, a

variant CDR (either CDRL1, CDRL2, CDRL3, CDRH1, CDRH2 and/or CDRH3), a variant light chain variable region, a variant heavy chain variable region, a variant light chain, a variant heavy chain, a variant antibody, a variant antigen binding fragment and a KAAG1 variant.

[0191] The sites of greatest interest for substitutional mutagenesis include the hypervariable regions (CDRs), but modifications in the framework region or even in the constant region are also contemplated. Exemplary embodiments of CDR variants are provided in SEQ ID NOS.: 72-102.

[0192] Conservative substitutions may be made by exchanging an amino acid (of a CDR, variable chain, antibody, etc.) from one of the groups listed below (group 1 to 6) for another amino acid of the same group.

[0193] Other exemplary embodiments of conservative substitutions are shown in Table 1A under the heading of "preferred substitutions". If such substitutions result in a undesired property, then more substantial changes, denominated "exemplary substitutions" in Table 1A, or as further described below in reference to amino acid classes, may be introduced and the products screened.

[0194] It is known in the art that variants may be generated by substitutional mutagenesis and retain the biological activity of the polypeptides of the present invention. These variants have at least one amino acid residue in the amino acid sequence removed and a different residue inserted in its place. For example, one site of interest for substitutional mutagenesis may include a site in which particular residues obtained from various species are identical. Examples of substitutions identified as "conservative substitutions" are shown in Table 1A. If such substitutions result in a change not desired, then other type of substitutions, denominated "exemplary substitutions" in Table 1A, or as further described herein in reference to amino acid classes, are introduced and the products screened.

[0195] Substantial modifications in function or immunological identity are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation. (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side chain properties:

(group 1) hydrophobic: norleucine, methionine (Met), Alanine (Ala), Valine (Val), Leucine (Leu), Isoleucine (Ile)

(group 2) neutral hydrophilic: Cysteine (Cys), Serine (Ser), Threonine (Thr)

(group 3) acidic: Aspartic acid (Asp), Glutamic acid (Glu)

(group 4) basic: Asparagine (Asn), Glutamine (Gln), Histidine (His), Lysine (Lys), Arginine (Arg)

(group 5) residues that influence chain orientation: Glycine (Gly), Proline (Pro); and

(group 6) aromatic: Tryptophan (Trp), Tyrosine (Tyr), Phenylalanine (Phe)

[0196] Non-conservative substitutions will entail exchanging a member of one of these classes for another.

TABLE 1A

Amino acid substitution		
Original residue	Exemplary substitution	Conservative substitution
Ala (A)	Val, Leu, Ile	Val
Arg (R)	Lys, Gln, Asn	Lys
Asn (N)	Gln, His, Lys, Arg, Asp	Gln
Asp (D)	Glu, Asn	Glu
Cys (C)	Ser, Ala	Ser
Gln (Q)	Asn; Glu	Asn
Glu (E)	Asp, Gln	Asp
Gly (G)	Ala	Ala
His (H)	Asn, Gln, Lys, Arg,	Arg
Ile (I)	Leu, Val, Met, Ala, Phe, norleucine	Leu
Leu (L)	Norleucine, Ile, Val, Met, Ala, Phe	Ile
Lys (K)	Arg, Gln, Asn	Arg
Met (M)	Leu, Phe, Ile	Leu
Phe (F)	Leu, Val, Ile, Ala, Tyr	Tyr
Pro (P)	Ala	Ala
Ser (S)	Thr	Thr
Thr (T)	Ser	Ser
Trp (W)	Tyr, Phe	Tyr
Tyr (Y)	Trp, Phe, Thr, Ser	Phe
Val (V)	Ile, Leu, Met, Phe, Ala, Norleucine	Leu

[0197] Variation in the amino acid sequence of the variant antibody or antigen binding fragment may include an amino acid addition, deletion, insertion, substitution etc., one or more modification in the backbone or side-chain of one or more amino acid, or an addition of a group or another molecule to one or more amino acids (side-chains or backbone).

[0198] Variant antibody or antigen binding fragment may have substantial sequence similarity and/or sequence identity in its amino acid sequence in comparison with that the original antibody or antigen binding fragment amino acid sequence. The degree of similarity between two sequences is based upon the percentage of identities (identical amino acids) and of conservative substitution.

[0199] Generally, the degree of similarity and identity between variable chains has been determined herein using the Blast2 sequence program (Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences—a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250) using default settings, i.e., blastp program, BLOSUM62 matrix (open gap 11 and extension gap penalty 1; gapx dropoff 50, expect 10.0, word size 3) and activated filters.

[0200] Percent identity will therefore be indicative of amino acids which are identical in comparison with the original peptide and which may occupy the same or similar position. Percent similarity will be indicative of amino acids that are identical and those that are replaced with conservative amino acid substitution in comparison with the original peptide at the same or similar position.

[0201] Variants of the present invention therefore comprise those which may have at least 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity with an original sequence or a portion of an original sequence.

[0202] Exemplary embodiments of variants are those having at least 81% sequence identity to a sequence described

herein and 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0203] Other exemplary embodiments of variants are those having at least 82% sequence identity to a sequence described herein and 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0204] Further exemplary embodiments of variants are those having at least 85% sequence identity to a sequence described herein and 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0205] Other exemplary embodiments of variants are those having at least 90% sequence identity to a sequence described herein and 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0206] Additional exemplary embodiments of variants are those having at least 95% sequence identity to a sequence described herein and 95%, 96%, 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0207] Yet additional exemplary embodiments of variants are those having at least 97% sequence identity to a sequence described herein and 97%, 98%, 99% or 100% sequence similarity with an original sequence or a portion of an original sequence.

[0208] For a purpose of concision the applicant provides herein a Table 1B illustrating exemplary embodiments of individual variants encompassed by the present invention and comprising the specified % sequence identity and % sequence similarity. Each "X" is to be construed as defining a given variant.

TABLE 1B

	Percent (%) sequence identity																				
	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Percent (%)	X																				
80	X																				
81	X	X																			
82	X	X	X																		
83	X	X	X	X																	
84	X	X	X	X	X																
85	X	X	X	X	X	X															
86	X	X	X	X	X	X	X														
87	X	X	X	X	X	X	X	X													
88	X	X	X	X	X	X	X	X	X												
89	X	X	X	X	X	X	X	X	X	X											
90	X	X	X	X	X	X	X	X	X	X	X										
91	X	X	X	X	X	X	X	X	X	X	X	X									
92	X	X	X	X	X	X	X	X	X	X	X	X	X								
93	X	X	X	X	X	X	X	X	X	X	X	X	X	X							
94	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X						
95	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X					
96	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
97	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
98	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		
99	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
100	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	

[0209] The present invention encompasses CDRs, light chain variable regions, heavy chain variable regions, light chains, heavy chains, antibodies and/or antigen binding fragments which comprise at least 70% identity or at least 80% identity with the sequence described herein.

[0210] The present invention therefore encompass, antibodies and antigen binding fragment which are capable of specific binding to KAAG1 and which may comprise sequences selected from the group consisting of:

[0211] a. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:16 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:18,

[0212] b. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:20 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:22;

[0213] c. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:24 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:26;

[0214] d. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:48 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:46;

[0215] e. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:103 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:126,

[0216] f. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:104 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:127,

[0217] g. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:105 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:128,

[0218] h. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:106 and a

- heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:145,
- [0219] i. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:107 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:128,
- [0220] j. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:108 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:130,
- [0221] k. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:109 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:141,
- [0222] l. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:110 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:131,
- [0223] m. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:111 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:134,
- [0224] n. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:112 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:135,
- [0225] o. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:113 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:136,
- [0226] p. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:114 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:133,
- [0227] q. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:115 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:140,
- [0228] r. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:116 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:137,
- [0229] s. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:117 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:144,
- [0230] t. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:118 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:139,
- [0231] u. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:119 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:132,
- [0232] v. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:120 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:142,
- [0233] w. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:121 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:138,
- [0234] x. the light chain variable region having at least 70% sequence identity with SEQ ID NO.:122 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:146,

[0235] y. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:123 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:147, or;

[0236] z. a light chain variable region having at least 70% sequence identity with SEQ ID NO.:124 and a heavy chain variable region having at least 70% sequence identity with SEQ ID NO.:143.

[0237] In accordance with the present invention, the variant antibodies or antigen binding fragments may comprise CDRs that are identical to those of the corresponding light chain and/or heavy chain variable region. In other instance the variant antibodies or antigen binding fragments may comprise variant CDR(s).

[0238] Therefore, exemplary embodiments of a variant antibody or antigen binding fragment of the present invention are those comprising a light chain variable region comprising a sequence which is at least 70%, 75%, 80% identical to SEQ ID NOS.:16, 20, 24, 103, 106 or 121. The CDRs of such variant may be identical to those of the corresponding non-variant (wild type sequence) antibody or antigen binding fragment or may vary by 1-3 amino acids.

[0239] Another exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:16 and having for example from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:16. A SEQ ID NO.:16 variant is provided in SEQ ID NO.:168.

[0240] An exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:20 and having for example from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:20.

[0241] An exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:24 and having for example from 1 to 21 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:24. A SEQ ID NO.:24 variant is provided in SEQ ID NO.:172.

[0242] An exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:103 and having for example from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:103.

[0243] An exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:106 and having for example from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:106.

[0244] An exemplary embodiment of a variant antibody light chain variable region encompasses a light chain variable region having CDR amino acid sequences that are

100% identical to the CDR amino acid sequence of SEQ ID NO.:121 and having for example from 1 to 21 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:121.

[0245] In some instances, the variant antibody light chain variable region may comprise amino acid deletions or additions (in combination or not with amino acid substitutions). Often 1, 2, 3, 4 or 5 amino acid deletions or additions may be tolerated.

[0246] Other exemplary embodiments of a variant antibody or antigen binding fragment of the present invention are those comprising a heavy chain variable region comprising a sequence which is at least 70%, 75%, 80% identical to 18, 22, 26, 126, 138 or 145. The CDRs of such variant may be identical to those of the corresponding non-variant (wild type sequence) antibody or antigen binding fragment or may vary by 1-3 amino acids.

[0247] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:18 and having, for example, from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:18. A SEQ ID NO.:18 variant is provided in SEQ ID NO.:169.

[0248] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:22 and having, for example, from 1 to 23 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:22.

[0249] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:26 and having, for example, from 1 to 23 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:26. A SEQ ID NO.:26 variant is provided in SEQ ID NO.:173.

[0250] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:126 and having, for example, from 1 to 23 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:126.

[0251] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:145 and having, for example, from 1 to 23 amino acid modifications (e.g., conservative or non-conservative amino acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:145.

[0252] An exemplary embodiment of a variant antibody heavy chain variable region encompasses a heavy chain variable region having CDR amino acid sequences that are 100% identical to the CDR amino acid sequence of SEQ ID NO.:138 and having, for example, from 1 to 22 amino acid modifications (e.g., conservative or non-conservative amino

acid substitutions) in its framework region in comparison with the framework region of SEQ ID NO.:138.

[0253] In some instances, the variant antibody heavy chain variable region may comprise amino acid deletions or additions (in combination or not with amino acid substitutions). Often 1, 2, 3, 4 or 5 amino acid deletions or additions may be tolerated.

Variant CDRS

[0254] Also encompassed by the present invention are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least one conservative amino acid substitution in at least one of the CDRs described herein (in comparison with the original CDR).

[0255] The present invention also encompasses are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least one conservative amino acid substitution in at least two of the CDRs (in comparison with the original CDRs).

[0256] The present invention also encompasses are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least one conservative amino acid substitution in the 3 CDRs (in comparison with the original CDRs).

[0257] The present invention also encompasses are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least two conservative amino acid substitutions in at least one of the CDRs (in comparison with the original CDRs).

[0258] The present invention also encompasses are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least two conservative amino acid substitutions in at least two of the CDRs (in comparison with the original CDRs).

[0259] The present invention also encompasses are polypeptides, antibodies or antigen binding fragments comprising variable chains having at least two conservative amino acid substitutions in the 3 CDRs (in comparison with the original CDRs).

[0260] Comparison of the amino acid sequences of the light chain variable regions or the heavy chain variable regions of antibodies showing the greatest characteristics allowed us to derive consensus sequences within the CDRs and within the variable regions. The consensus for CDRs are provided in SEQ ID Nos: 72 to 88.

[0261] The present invention therefore provides in an exemplary embodiment, an isolated antibody or antigen binding fragment comprising a light chain variable region having:

[0262] a. a CDRL1 sequence selected from the group consisting of SEQ ID NO.:72 and SEQ ID NO.:73;

[0263] b. a CDRL2 sequence selected from the group consisting of SEQ ID NO.:74, SEQ ID NO.: 75 and SEQ ID NO.:76, or;

[0264] c. a CDRL3 sequence selected from the group consisting of SEQ ID NO.:77, SEQ ID NO.:78 and SEQ ID NO.:79.

[0265] The present invention therefore provides in an exemplary embodiment, an isolated antibody or antigen binding fragment comprising a heavy chain variable region having:

[0266] a. a CDRH1 sequence comprising SEQ ID NO.: 80;

[0267] b. a CDRH2 sequence selected from the group consisting of SEQ ID NO.:81, SEQ ID NO.:82, SEQ ID NO.:83, SEQ ID NO.:84 and SEQ ID NO.:85, or;

[0268] c. a CDRH3 sequence selected from the group consisting of SEQ ID NO.:86, SEQ ID NO.:87 and SEQ ID NO.:88.

[0269] In accordance with the present invention, the antibody may comprise a CDRL1 sequence comprising or consisting of formula:

(SEQ ID NO.: 72)
 $X_{1a}SSX_{2a}SLLX_{3a}X_{4a}X_{5a}X_{6a}X_{7a}X_{8a}X_{9a}X_{10a}LX_{11a}$

- [0270] wherein X_{1a} may be a basic amino acid;
- [0271] wherein X_{2a} may be a basic amino acid;
- [0272] wherein X_{3a} may be H, Y or N;
- [0273] wherein X_{4a} may be S, T, N or R;
- [0274] wherein X_{5a} may be absent, S or N;
- [0275] wherein X_{6a} may be D, F or N;
- [0276] wherein X_{7a} may be G or Q;
- [0277] wherein X_{8a} may be K, L or N;
- [0278] wherein X_{9a} may be T or N;
- [0279] wherein X_{10a} may be an aromatic amino acid, and;
- [0280] wherein X_{11a} may be A, N, E or Y.

[0281] In an exemplary embodiment of the invention X_{1a} may be K or R.

[0282] In a further embodiment of the invention X_{2a} may be Q or K.

[0283] In yet a further embodiment of the invention X_{3a} , may be N or H.

[0284] In an additional embodiment of the invention X_{10a} may be Y or F.

[0285] More specific embodiments of the invention include CDRL1 of SEQ ID NO.:72 where: X_{1a} is K; X_{2a} is Q; X_{3a} is N; X_{3a} is H; X_{4a} is S; X_{4a} is T; X_{5a} is S; X_{5a} is absent; X_{6a} is N; X_{7a} is Q; X_{7a} is G; X_{8a} is K; X_{9a} is N; X_{9a} is T; X_{10a} is Y; or X_{11a} is A.

[0286] In accordance with the present invention, the antibody may comprise a CDRL1 sequence comprising or consisting of formula:

(SEQ ID NO.: 73)
 $KASQDX_{1b}X_{2b}X_{3b}X_{4b}X_{5b}X_{6b}$

- [0287] wherein X_{1b} may be an hydrophobic amino acid;
- [0288] wherein X_{2b} may be G or H;
- [0289] wherein X_{3b} may be T, N or R;
- [0290] wherein X_{4b} may be F, Y or A;
- [0291] wherein X_{5b} may be an hydrophobic amino acid, and;
- [0292] wherein X_{6b} may be N or A.

[0293] In an exemplary embodiment of the invention X_{1b} may be V or I.

[0294] In another exemplary embodiment of the invention X_{5b} may be V or L.

[0295] More specific embodiments of the invention include CDRL1 of SEQ ID NO.:73 where X_{1b} is I; X_{2b} is H; X_{3b} is T; X_{3b} is N; X_{4b} is Y; X_{4b} is F; X_{5b} is L or X_{6b} is N.

[0296] Other exemplary embodiments of CDRL1 are provided in SEQ ID NOs. 89 and 90.

[0297] In accordance with the present invention, the antibody may comprise a CDRL2 sequence comprising or consisting of formula:

(SEQ ID NO.: 74)
 $FX_{1c}STX_{2c}X_{3c}S$

- [0298] Wherein X_{1c} is A or G;
- [0299] Wherein X_{2c} is R or T, and;
- [0300] Wherein X_{3c} is E, K or A.

[0301] In an exemplary embodiment of the invention X_{1c} may be A and X_{2c} may be T.

[0302] In another exemplary embodiment of the invention X_{1c} may be A and X_{2c} may be R.

[0303] Other specific embodiments of the invention include CDRL2 of SEQ ID NO.:74 where X_{1c} is A; X_{2c} is R or X_{3c} is E.

[0304] In accordance with the present invention, the antibody may comprise a CDRL2 sequence comprising or consisting of formula:

(SEQ ID NO.: 75)
 $X_{1d}VSX_{2d}X_{3d}X_{4d}S$

- [0305] Wherein X_{1d} may be L or K;
- [0306] Wherein X_{2d} may be a basic amino acid;
- [0307] Wherein X_{3d} may be L or R and;
- [0308] Wherein X_{4d} may be D or F.

[0309] In an exemplary embodiment of the invention X_{2d} may be K or N.

[0310] Other specific embodiments of the invention include CDRL2 of SEQ ID NO.:75 where X_{1d} is L; X_{2d} is K; X_{3d} is L or X_{4d} is D.

[0311] In accordance with the present invention, the antibody may comprise a CDRL2 sequence comprising or consisting of formula:

(SEQ ID NO.: 76)
 $X_{1e}ANRLVX_{2e}$

- [0312] Wherein X_{1e} may be a basic amino acid, and;
- [0313] Wherein X_{2e} may be D or A.

[0314] In an exemplary embodiment of the invention X_{1e} may be R or H.

[0315] Other specific embodiments of the invention include CDRL2 of SEQ ID NO.:76 where X_{1e} is R or X_{2e} is D.

[0316] Other exemplary embodiments of CDRL2 are provided in SEQ ID NOs.: 91-93.

[0317] In accordance with the present invention, the antibody may comprise a CDRL3 sequence comprising or consisting of formula:

(SEQ ID NO.: 77)
 $X_{1f}QX_{2f}X_{3f}X_{4f}X_{5f}PLT$

- [0318] Wherein X_{1f} may be Q or L;
- [0319] Wherein X_{2f} may be an aromatic amino acid;
- [0320] Wherein X_{3f} may be D, F or Y;

[0321] Wherein X_{4f} may be E, A, N or S, and;

[0322] Wherein X_{5f} may be I, F or T.

[0323] In an exemplary embodiment of the invention X_{2f} may be Y or H.

[0324] In another exemplary embodiment of the invention X_{3f} may be Y or D.

[0325] In yet another exemplary embodiment of the invention X_{5f} may be I or T.

[0326] Other specific embodiments of the invention include CDRL3 of SEQ ID NO.:77 where X_{1f} is Q; X_{2f} is H; X_{3f} is D; X_{4f} is Y; X_{5f} is S; X_{6f} is E; X_{7f} is A; X_{8f} is T, or X_{9f} is I.

[0327] In accordance with the present invention, the antibody may comprise a CDRL3 sequence comprising or consisting of formula:

(SEQ ID NO.: 78)
QQHX_{1g}X_{2g}X_{3g}PLT

[0328] Wherein X_{1g} may be an aromatic amino acid;

[0329] Wherein X_{2g} may be N or S, and;

[0330] Wherein X_{3g} may be I or T.

[0331] In an exemplary embodiment of the invention X_{1g} may be F or Y

[0332] Other specific embodiments of the invention include CDRL3 of SEQ ID NO.:78 where X_{2g} is S or X_{3g} is T.

[0333] In accordance with the present invention, the antibody may comprise a CDRL3 sequence comprising or consisting of formula:

(SEQ ID NO.: 79)
X_{1h}QGX_{2h}HX_{3h}PX_{4h}T

[0334] Wherein X_{1h} may be an aromatic amino acid;

[0335] Wherein X_{2h} may be a neutral hydrophilic amino acid;

[0336] Wherein X_{3h} may be F or V, and;

[0337] Wherein X_{4h} may be R or L.

[0338] In an exemplary embodiment of the invention X_{1h} may be W or F.

[0339] In another exemplary embodiment of the invention X_{2h} may be S or T.

[0340] Other specific embodiments of the invention include CDRL3 of SEQ ID NO.:79 where X_{1h} is W; X_{2h} is T; X_{3h} is F, or X_{4h} is R.

[0341] Other exemplary embodiments of CDRL3 are provided in SEQ ID NOs. 94 and 95.

[0342] In accordance with the present invention, the antibody may comprise a CDRH1 sequence comprising or consisting of formula:

(SEQ ID NO.: 80)
GYX_{1i}FX_{2i}X_{3i}YX_{4i}X_{5i}H

[0343] Wherein X_{1i} may be T, I or K;

[0344] Wherein X_{2i} may be a neutral hydrophilic amino acid;

[0345] Wherein X_{3i} may be an acidic amino acid;

[0346] Wherein X_{4i} may be E, N or D, and;

[0347] Wherein X_{5i} may be hydrophobic amino acid.

[0348] In an exemplary embodiment of the invention X_{2i} may be T or S.

[0349] In another exemplary embodiment of the invention X_{3i} may be D or E.

[0350] In yet another exemplary embodiment of the invention X_{4i} may be N or E.

[0351] In a further exemplary embodiment of the invention X_{5i} may be M, I or V.

[0352] Other specific embodiments of the invention include CDRH1 of SEQ ID NO.:80 where X_{2i} is T; X_{3i} is D; X_{4i} is E; X_{5i} is I or X_{5i} is M.

[0353] Other exemplary embodiments of CDRH1 are provided in SEQ ID NOs.: 96 and 97.

[0354] In accordance with the present invention, the antibody may comprise a CDRH2 sequence comprising or consisting of formula:

(SEQ ID NO.: 81)
X_{1j}X_{2j}DPX_{3j}TGX_{4j}TX_{5j}

[0355] Wherein X_{1j} may be V or G

[0356] Wherein X_{2j} may be a hydrophobic amino acid;

[0357] Wherein X_{3j} may be A, G or E;

[0358] Wherein X_{4j} may be R, G, D, A, S, N or V, and;

[0359] Wherein X_{5j} may be a hydrophobic amino acid.

[0360] In an exemplary embodiment of the invention X_{2j} may be I or L.

[0361] In another exemplary embodiment of the invention X_{5j} may be A or V.

[0362] Other specific embodiments of the invention include CDRH2 of SEQ ID NO.:81 where X_{1j} is V; X_{2j} is I; X_{3j} is E; X_{4j} is D or X_{5j} is A.

[0363] In accordance with the present invention, the antibody may comprise a CDRH2 sequence comprising or consisting of formula:

(SEQ ID NO.: 82)
VX_{1k}DPX_{2k}TGX_{3k}TA

[0364] Wherein X_{1k} may be an hydrophobic amino acid;

[0365] Wherein X_{2k} may be A, E or G;

[0366] Wherein X_{3k} may be R, G, A, S, N V or D.

[0367] In an exemplary embodiment of the invention X_{1k} may be L or I.

[0368] Other specific embodiments of the invention include CDRH2 of SEQ ID NO.:82 where X_{1k} is I; X_{2k} is E, or X_{3k} is D.

[0369] In accordance with the present invention, the antibody may comprise a CDRH2 sequence comprising or consisting of formula:

(SEQ ID NO.: 83)
YIX_{1l}X_{2l}X_{3l}GX_{4l}X_{5l}X_{6l}

[0370] Wherein X_{1l} may be S or N;

[0371] Wherein X_{2l} may be an aromatic amino acid

[0372] Wherein X_{3l} may be D, E or N;

[0373] Wherein X_{4l} may be a D or H;

[0374] Wherein X_{5l} may be Y, S or N;

[0375] Wherein X_{6l} may be D, E or N.

[0376] In an exemplary embodiment of the invention X_{3l} may be D or N.

[0377] In another exemplary embodiment of the invention X_{6l} may be D or N.

[0378] Other specific embodiments of the invention include CDRH2 of SEQ ID NO.:83 where X_{2l} is F or Y, X_{3l} is N, X_{4l} is D or X_{6l} is N.

[0379] In accordance with the present invention, the antibody may comprise a CDRH2 sequence comprising or consisting of formula:

X_{1m}INPYNX_{2m}VTE (SEQ ID NO.:84)

[0380] wherein X_{1m} may be N or Y, and;

[0381] wherein X_{2m} may be E, D or N.

[0382] In an exemplary embodiment of the invention X_{2m} may be D or N.

[0383] Other specific embodiments of the invention include CDRH2 of SEQ ID NO.:84 where X_{1m} is N or X_{2m} is D.

[0384] In accordance with the present invention, the antibody may comprise a CDRH2 sequence comprising or consisting of formula:

(SEQ ID NO.: 85)
DINPX_{1,n}YGX_{2,n}X_{3,n}T

[0385] Wherein X_{1,n} may be N or Y;

[0386] Wherein X_{2,n} may be G or T and;

[0387] wherein X_{3,n} may be I or T.

[0388] Other exemplary embodiments of CDRH2 are provided in SEQ ID NOS. 98 and 99.

[0389] In accordance with the present invention, the antibody may comprise a CDRH3 sequence comprising or consisting of formula:

(SEQ ID NO.: 86)
MX_{1,o}X_{2,o}X_{3,o}DY

[0390] Wherein X_{1,o} may be G or S;

[0391] Wherein X_{2,o} may be Y or H, and;

[0392] wherein X_{3,o} may be A or S.

[0393] Other specific embodiments of the invention include CDRH3 of SEQ ID NO.:86 where X_{1,o} is G; X_{2,o} is Y or X_{3,o} is S.

[0394] In accordance with the present invention, the antibody may comprise a CDRH3 sequence comprising or consisting of formula:

(SEQ ID NO.: 87)
IX_{1,p}YAX_{2,p}DY

[0395] Wherein X_{1,p} may be G or S and;

[0396] Wherein X_{2,p} may be absent or M.

[0397] Other specific embodiments of the invention include CDRH3 of SEQ ID NO.:87 where X_{1,p} is S or X_{2,p} is M.

[0398] In accordance with the present invention, the antibody may comprise a CDRH3 sequence comprising or consisting of formula:

(SEQ ID NO.: 88)
AX_{1,q}X_{2,q}GLRX_{3,q}

[0399] Wherein X_{1,q} may be R or W;

[0400] Wherein X_{2,q} may be an aromatic amino acid and;

[0401] wherein X_{3,q} may be a basic amino acid.

[0402] In an exemplary embodiment of the invention X_{2,q} may be W or F.

[0403] In another exemplary embodiment of the invention X_{3,q} may be Q or N.

[0404] Other specific embodiments of the invention include CDRH3 of SEQ ID NO.:88 where X_{1,q} is R; X_{2,q} is W or X_{3,q} is N.

[0405] Variant antibodies or antigen binding fragments encompassed by the present invention include those that may comprise an insertion, a deletion or an amino acid substitution (conservative or non-conservative). These variants may have at least one amino acid residue in its amino acid sequence removed and a different residue inserted in its place.

Humanized Antibodies

[0406] Exemplary embodiments of variant antibodies and antigen binding fragments of the present invention are a

group of antibodies and antigen binding fragments capable of binding to KAAG1 and characterized herein as being humanized.

[0407] The humanized antibodies and antigen binding fragments of the present invention includes more particularly, humanized 3D3, 3A4 or 3C4 antibodies and antigen binding fragments. The humanized 3D3, 3A4 or 3C4 antibodies have at least one amino acid difference in a framework region in comparison with the monoclonal 3D3, 3A4 or 3C4 antibody.

[0408] Humanized 3A4 antibodies having CDRs identical to those of the monoclonal 3A4 antibody (VL: SEQ ID NO.:48, VH: SEQ ID NO.:46) were generated and tested. These humanized antibodies comprise up to 11 amino acid substitutions (from one to eleven) in the variable light chain framework region and up to 23 amino acid substitutions (from one to twenty-three) in the variable heavy chain framework region in comparison with the monoclonal 3A4 antibody. The applicant has shown that these humanized 3A4 antibodies bind to KAAG1 as efficiently as the monoclonal 3A4 antibody.

[0409] Exemplary embodiments of variant antibody or antigen binding fragments include those having a light chain variable region as set forth in SEQ ID NO.:186:

SEQ ID NO.: 186
DXVMTQTPLSLVXXGXXASIICRQQSLLHSNGNTYLEWYLQKPGQSPX
LLIHTVSNRFSGPDRFSGSGSGTDFTLKISRVEAEDXGVYYCFQGSHVP
LTFGXGTXLEXX,

wherein at least one of the amino acids identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48. The amino acid substitution may be, for example, an amino acid found at a corresponding position of a natural human antibody or a human antibody consensus. The amino acid substitution may be, for example conservative.

[0410] Another exemplary embodiment of a variant antibody or antigen binding fragment include those having a light chain variable region as set forth in SEQ ID NO.:187:

SEQ ID NO.: 187
DX_{e1}VMTQTPLSLX_{e2}VX_{e3}X_{e4}GX_{e5}X_{e6}ASISCRQQSLLHSNGNTYLEWY
LQKPGQSPX_{e7}LLIHTVSNRFSGPDRFSGSGSGTDFTLKISRVEAED
X_{e8}GVYYCFQGSHVPLTFGX_{e9}GTX_{e10}LEX_{e11}K,

Wherein X_{e1} may be a hydrophobic amino acid;

Wherein X_{e2} may be A or P;

[0411] Wherein X_{e3} may be neutral hydrophilic amino acid;

Wherein X_{e4} may be L or P;

[0412] Wherein X_{e5} may be an acidic amino acid;

Wherein X_{e6} may be Q or P;

[0413] Wherein X_{e7} may be a basic amino acid; Wherein X_{e8} may be a hydrophobic amino acid;

Wherein X_{e9} may be A or Q;

[0414] Wherein X_{e10} may be a basic amino acid; or Wherein X_{e11} may be a hydrophobic amino acid, wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48.

[0415] An additional exemplary embodiment of a variant antibody or antigen binding fragment include those having a light chain variable region as set forth in SEQ ID NO.:188:

SEQ ID NO.: 188
 DX_{e1}VMTQTPLSLX_{e2}VX_{e3}X_{e4}GX_{e5}X_{e6}ASISCRSSQSLHNSNGNTYLEWY
 LQKPGQSPX_{e7}LLIHTVSNRFSGPDRFSGSGSGTDFTLKISRVEAED
 X_{e8}GVYYCFQGSHVPLTFGX_{e9}GTX_{e10}LEX_{e11}K

Wherein X_{E1} may be V or I

Wherein X_{E2} may be A or P

Wherein X_{E3} may be S or T

Wherein X_{E4} may be L or P

Wherein X_{E5} may be D or E

Wherein X_{E6} may be Q or P

Wherein X_{E7} may be K or Q

Wherein X_{E8} may be L or V

Wherein X_{E9} may be A or Q

Wherein X_{E10} may be R or K or

Wherein X_{E11} may be L or I,

[0416] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48.

[0417] In accordance with an embodiment, the light chain variable domain variant may have a sequence as set forth in SEQ ID NO.:189 or 190:

SEQ ID NO.: 189
 DIVMTQTPLSLPVTPGEPASISCRSSQSLHNSNGNTYLEWYLQKPGQSPQ
 LLIYTVSNRFSGPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPLTFGQGTKEIK.

SEQ ID NO.: 190
 DVVMTQTPLSLPVTPGEPASISCRSSQSLHNSNGNTYLEWYLQKPGQSPK
 LLIYTVSNRFSGPDRFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPLTFGQGTKEIK.

[0418] Exemplary embodiments of variant antibody or antigen binding fragments include those having a heavy chain variable region as set forth in SEQ ID NO.:191.

SEQ ID NO.: 191
 QXQLVQSGXEXXKPGASVKSCKASGYTFTDDYMSWVXQXXGXXLEWXGD
 INPYNGDNTYNQKFKGXXXTXDXSXSTAYMXLXSLXSEDXAVYYCARDP
 GAMDYWGQGTXVTVSS,

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46. The amino acid substitution may be, for example, an amino acid found at a corresponding position of a natural human antibody or a human antibody consensus. The amino acid substitution may be, for example conservative.

[0419] Another exemplary embodiment of a variant antibody or antigen binding fragment include those having a heavy chain variable region as set forth in SEQ ID NO.:192:

SEQ ID NO.: 192
 QX_{j1}QLVQSGX_{j2}EX_{j3}X_{bj4}KPGASVKS_{j5}SCKASGYTFTDDYMSWVX_{j6}QX_{j7}
 X_{j8}GX_{j9}X_{j10}LEWX_{j11}GDINPYNGDNTYNQKFKGX_{j12}X_{j13}X_{b14}X_{j15}TX_{j16}
 DX_{j17}SX_{j18}STAYMX_{j19}LX_{j20}SLX_{j21}SEDX_{j22}AVYYCARDPGAMDYWGQGT
 X_{j23}VTVSS,

Wherein X_{j1} may be a hydrophobic amino acid;

Wherein X_{bj2} may be P or A;

[0420] Wherein X_{j3} may be a hydrophobic amino acid;

Wherein X_{j4} may be V or K;

[0421] Wherein X_{j5} may be a hydrophobic amino acid; Wherein X_{j6} may be a basic amino acid;

Wherein X_{j7} may be S or A;

Wherein X_{j8} may be H or P;

[0422] Wherein X_{j9} may be a basic amino acid;

Wherein X_{j10} may be S or G;

[0423] Wherein X_{j11} may be a hydrophobic amino acid; Wherein X_{j12} may be a basic amino acid; Wherein X_{j13} may be a hydrophobic amino acid;

Wherein X_{j14} may be I or T;

[0424] Wherein X_{j15} may be a hydrophobic amino acid; Wherein X_{j16} may be a hydrophobic amino acid;

Wherein X_{j17} may be K or T;

[0425] Wherein X_{j18} may be a neutral hydrophilic amino acid;

Wherein X_{j19} may be Q or E;

Wherein X_{j20} may be N or S;

Wherein X_{j21} may be T or R;

[0426] Wherein X_{F22} may be a neutral hydrophilic amino acid; or

Wherein X_{F23} may be S or L,

[0427] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46.

[0428] An additional exemplary embodiment of a variant antibody or antigen binding fragment include those having a heavy chain variable region as set forth in SEQ ID NO.:193:

SEQ ID NO.: 193
 $QX_{F1}OLVQSGX_{F2}EX_{F3}X_{F4}KPGASVKX_{F5}SCKASGYTFTDDYMSWVX_{F6}QX_{F7}$
 $X_{F8}GX_{F9}X_{F10}LEWX_{F11}GDINPYNGDTNYNQFKGKX_{F12}X_{F13}X_{F14}X_{F15}TX_{F16}$
 $DX_{F17}SX_{F18}STAYMX_{F19}LX_{F20}SLX_{F21}SEDX_{F22}AVYYCARDPGAMDYWGQG$
 $TX_{F23}VTVSS$

Wherein X_{F1} may be I or V;

Wherein X_{F2} may be P or A;

Wherein X_{F3} may be M or V;

Wherein X_{F4} may be V or K;

Wherein X_{F5} may be M or V;

Wherein X_{F6} may be K or R;

Wherein X_{F7} may be S or A;

Wherein X_{F8} may be H or P;

Wherein X_{F9} may be K or Q;

Wherein X_{F10} may be S or G;

Wherein X_{F11} may be I or M;

Wherein X_{F12} may be K or R;

Wherein X_{F13} may be A or V;

Wherein X_{F14} may be I or T;

Wherein X_{F15} may be L or I;

Wherein X_{F16} may be V or A;

Wherein X_{F17} may be K or T;

Wherein X_{F18} may be S or T;

Wherein X_{F19} may be Q or E;

Wherein X_{F20} may be N or S;

Wherein X_{F21} may be T or R;

Wherein X_{F22} may be S or T; or

Wherein X_{F23} is S or L,

[0429] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-

conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46.

[0430] In accordance with an embodiment, the heavy chain variable domain variant may have a sequence as set forth in any one of SEQ ID NO. 194 to 197:

SEQ ID NO.: 194
 $QVQLVQSGAEVKKPGASVKVSCKASGYTFTDDYMSWVQRQAPGQGLEWMD$
 $INPYNGDTNYNQFKGKRVТИТАДКСТSTAYMELSSLRSEDTAVYYCARDP$
 $GAMDYWGQGQTLTVSS.$

SEQ ID NO.: 195
 $QIQLVQSGAEVKKPGASVKVSCKASGYTFTDDYMSWVQRQAPGQGLEWMD$
 $INPYNGDTNYNQFKGKRVТИТАДКСТSTAYMELSSLRSEDTAVYYCARDP$
 $GAMDYWGQGQTLTVSS.$

SEQ ID NO.: 196
 $QIQLVQSGAEVKKPGASVKVSCKASGYTFTDDYMSWVQRQAPGQGLEWIGD$
 $INPYNGDTNYNQFKGKRVТИТАДКСТSTAYMELSSLRSEDTAVYYCARDP$
 $GAMDYWGQGQTLTVSS.$

SEQ ID NO.: 197
 $QIQLVQSGAEVKKPGASVKVSCKASGYTFTDDYMSWVQRQAPGQGLEWIGD$
 $INPYNGDTNYNQFKGKRVТИТАДКСТSTAYMELSSLRSEDTAVYYCARDP$
 $GAMDYWGQGQTLTVSS.$

[0431] In accordance with an embodiment of the invention, the humanized 3D3 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 174)
 $DIVMTQSPXSLAVSXGXXXTXNCSSQSLNSNFQKNFLAWYQQKPGQXP$
 $KLLIYFASTRESSXPDRFXGSGSGTDFTLTISSSXQAEADXAXYXCQQHYST$
 $PLTFGXGTKLEXK;$

[0432] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:16. The amino acid substitution may be, for example conservative.

[0433] In accordance with a more specific embodiment, the humanized 3D3 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 175)
 $DIVMTQSPX_{A1}SLAVSX_{A2}GX_{A3}X_{A4}X_{A5}TX_{A6}NCKSSQSLNSNFQKNFLAWY$
 $QQKPGQX_{A7}PKLLIYFASTRESSX_{A8}PDRFX_{A9}GSGSGTDFTLTISSSX_{A10}QA$
 $EDX_{A11}AX_{A12}YX_{A13}CQQHYSTPLTFGX_{A14}GTKLEX_{A15}K;$

[0434] Wherein X_{A1} may be, for example, D or S;

[0435] Wherein X_{A2} may be, for example, a hydrophobic amino acid or more particularly L or I;

[0436] Wherein X_{A3} may be, for example, E or Q;

[0437] Wherein X_{A4} may be, for example, a basic amino acid or more particularly R or K;

[0438] Wherein X_{A5} may be, for example, a hydrophobic amino acid or more particularly A or V;

[0439] Wherein X_{A6} may be, for example, a hydrophobic amino acid or more particularly I or M;

[0440] Wherein X_{A7} may be, for example, P or S;

[0441] Wherein X_{A8} may be, for example, a hydrophobic amino acid or more particularly V or I;

[0442] Wherein X_{A9} may be, for example, S or I;

[0443] Wherein X_{A10} may be, for example, a hydrophobic amino acid or more particularly L or V;

[0444] Wherein X_{A11} may be, for example, a hydrophobic amino acid or more particularly V or L;

[0445] Wherein X_{A12} may be, for example, V or D;

[0446] Wherein X_{A13} may be, for example, an aromatic amino acid or more particularly Y or F;

[0447] Wherein X_{A14} may be, for example, Q or A and;

[0448] Wherein X_{A15} may be, for example, a hydrophobic amino acid or more particularly I or L.

[0449] In accordance with an even more specific embodiment, the humanized 3D3 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 176)
 DIVMTQSPX_{a1}SLAVSX_{a2}GX_{a3}X_{a4}X_{a5}TX_{a6}NCKSSQSLLNSNPFQKNFLAWY
 QQKPGQX_{a7}PKLLIYFASTRESSX_{a8}PDRFX_{a9}GSGSGTDFTLTISSX_{a10}
 QAEDX_{a11}AX_{a12}YX_{a13}CQQHYSTPLTFGX_{a14}GTKLEX_{a15}K;

[0450] Wherein X_{a1} may be, for example, D or S;

[0451] Wherein X_{a2} may be, for example, L or I;

[0452] Wherein X_{a3} may be, for example, E or Q;

[0453] Wherein X_{a4} may be, for example, R or K;

[0454] Wherein X_{a5} may be, for example, A or V;

[0455] Wherein X_{a6} may be, for example, I or M;

[0456] Wherein X_{a7} may be, for example, P or S;

[0457] Wherein X_{a8} may be, for example, V or I;

[0458] Wherein X_{a9} may be, for example, S or I;

[0459] Wherein X_{a10} may be, for example, L or V;

[0460] Wherein X_{a11} may be, for example, V or L;

[0461] Wherein X_{a12} may be, for example, V or D;

[0462] Wherein X_{a13} may be, for example, Y or F;

[0463] Wherein X_{a14} may be, for example, Q or A and;

[0464] Wherein X_{a15} is for example, I or L.

[0465] In accordance with an embodiment of the present invention, the humanized 3D3 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 177)
 EVQLXQSXAEXXXPGASVXXSCKASGYIFTDYIEHWVXQXPXXGLEWXGV
 IDPETGNTAFNQKFKGXXXTADXSXSTAYMELSSLTSEDXAVYYCMGYS
 DYWGQGTXXTVSS;

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:18. The amino acid substitution may be, for example conservative.

[0466] In accordance with a more specific embodiment, the humanized 3D3 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 178)
 EVQLX_{B1}QSX_{B2}AEX_{B3}X_{B4}X_{B5}PGASVX_{B6}X_{B7}SCKASGYIFTDYIEHWVX_{B8}Q
 X_{B9}PX_{B10}X_{B11}GLEWX_{B12}GVIDPETGNTAFNQKFKGX_{B13}X_{B14}TX_{B15}TAD
 X_{B16}SX_{B17}STAYMELSSLTSEDX_{B18}AVYYCMGYSODYWGQGTX_{B19}X_{B20}TV
 SS,

[0467] Wherein X_{B1} may be, for example, V or Q;

[0468] Wherein X_{B2} may be, for example, G or V;

[0469] Wherein X_{B3} may be, for example, a hydrophobic amino acid or more particularly V or L;

[0470] Wherein X_{B4} may be, for example, K or V;

[0471] Wherein X_{B5} may be, for example, a basic amino acid or more particularly K or R;

[0472] Wherein X_{B6} may be, for example, K or T;

[0473] Wherein X_{B7} may be, for example, a hydrophobic amino acid or more particularly V or L;

[0474] Wherein X_{B8} may be, for example, a basic amino acid or more particularly R or K;

[0475] Wherein X_{B9} may be, for example, A or T;

[0476] Wherein X_{B10} may be, for example, G or V;

[0477] Wherein X_{B11} may be, for example, Q or H;

[0478] Wherein X_{B12} may be, for example, a hydrophobic amino acid or more particularly M or I;

[0479] Wherein X_{B13} may be, for example, a basic amino acid or more particularly R or K;

[0480] Wherein X_{B14} may be, for example, a hydrophobic amino acid or more particularly V or A;

[0481] Wherein X_{B15} may be, for example, a hydrophobic amino acid or more particularly I or L;

[0482] Wherein X_{B16} may be, for example, T or I;

[0483] Wherein X_{B17} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;

[0484] Wherein X_{B18} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;

[0485] Wherein X_{B19} may be, for example, L or T and;

[0486] Wherein X_{B20} may be, for example, a hydrophobic amino acid or more particularly V or L.

[0487] In accordance with a more specific embodiment, the humanized 3D3 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 179)
 EVQLX_{b1}QSX_{b2}AEX_{b3}X_{b4}X_{b5}PGASVX_{b6}X_{b7}SCKASGYIFTDYIEHWVX_{b8}Q
 X_{b9}PX_{b10}X_{b11}GLEWX_{b12}GVIDPETGNTAFNQKFKGX_{b13}X_{b14}TX_{b15}TADX_{b16}
 SX_{b17}STAYMELSSLTSEDX_{b18}AVYYCMGYSODYWGQGTX_{b19}X_{b20}TVSS;

[0488] Wherein X_{b1} may be, for example, V or Q;

[0489] Wherein X_{b2} may be, for example, G or V;

[0490] Wherein X_{b3} may be, for example, V or L;

[0491] Wherein X_{b4} may be, for example, K or V;

[0492] Wherein X_{b5} may be, for example, K or R;

[0493] Wherein X_{b6} may be, for example, K or T;

[0494] Wherein X_{b7} may be, for example, V or L;

[0495] Wherein X_{b8} may be, for example, R or K;

[0496] Wherein X_{b9} may be, for example, A or T;

[0497] Wherein X_{b10} may be, for example, G or V;

[0498] Wherein X_{b11} may be, for example, Q or H;

[0499] Wherein X_{b12} may be, for example, M or I;

[0500] Wherein X_{b13} may be, for example, R or K;

[0501] Wherein X_{b14} may be, for example, V or A;

[0502] Wherein X_{b15} may be, for example, I or L;

- [0503] Wherein X_{b16} may be, for example, T or I;
 [0504] Wherein X_{b17} may be, for example, T or S;
 [0505] Wherein X_{b18} may be, for example, T or S;
 [0506] Wherein X_{b19} may be, for example, L or T;
 [0507] Wherein X_{b20} may be, for example, V or L.
 [0508] In accordance with an embodiment of the present invention, the humanized 3C4 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 180)
 DIVMXQSPSSXXASXGXRVТИTCKASQDIHNFLNWFQQKPGKPKTLIFR

ANRLVVDGVPSRSGSGSGDXYLTISSLXXEDXXXSCLQYDEIPLTFGX
 GTKLEXX;

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:24. The amino acid substitution may be, for example conservative.

[0509] In accordance with a more specific embodiment, the humanized 3C4 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 181)
 DIVMX_{C1}QSPSSX_{C2}X_{C3}ASX_{C4}GX_{C5}RVTITCKASQDIHNFLNWFQQKPGK
 X_{C6}PKTLIFRANRLVVDGVPSRSGSGSGX_{C7}DYX_{C8}LTISSLX_{C9}X_{C10}ED
 X_{C11}X_{C12}X_{C13}YSCCLQYDEIPLTFGX_{C14}GTKLEX_{C15}X_{C16};

- [0510] Wherein X_{C1} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;
 [0511] Wherein X_{C2} may be, for example, a hydrophobic amino acid or more particularly L or M;
 [0512] Wherein X_{C3} may be, for example, S or Y;
 [0513] Wherein X_{C4} may be, for example, a hydrophobic amino acid or more particularly V or L;
 [0514] Wherein X_{C5} may be, for example, an acidic amino acid or more particularly D or E;
 [0515] Wherein X_{C6} may be, for example, A or S;
 [0516] Wherein X_{C7} may be, for example, T or Q;
 [0517] Wherein X_{C8} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;
 [0518] Wherein X_{C9} may be, for example, Q or E;
 [0519] Wherein X_{C10} may be, for example, P or F;
 [0520] Wherein X_{C11} may be, for example, F or L;
 [0521] Wherein X_{C12} may be, for example, A or G;
 [0522] Wherein X_{C13} may be, for example, T or I;
 [0523] Wherein X_{C14} may be, for example, Q or A;
 [0524] Wherein X_{C15} may be, for example, a hydrophobic amino acid or more particularly I or L, and; wherein X_{C16} may be, for example, a basic amino acid or more particularly K or R.

[0525] In accordance with a more specific embodiment, the humanized 3C4 antibody may have a light chain variable region of formula:

(SEQ ID NO.: 182)
 DIVMX_{C1}QSPSSX_{C2}X_{C3}ASX_{C4}GX_{C5}RVTITCKASQDIHNFLNWFQQKPGK
 X_{C6}PKTLIFRANRLVVDGVPSRSGSGSGX_{C7}DYX_{C8}LTISSLX_{C9}X_{C10}ED
 X_{C11}X_{C12}X_{C13}YSCCLQYDEIPLTFGX_{C14}GTKLEX_{C15}X_{C16};

- [0526] Wherein X_{c1} may be, for example, T or S;
 [0527] Wherein X_{c2} may be, for example, L or M;
 [0528] Wherein X_{c3} may be, for example, S or Y;
 [0529] Wherein X_{c4} may be, for example, V or L;
 [0530] Wherein X_{c5} may be, for example, D or E;
 [0531] Wherein X_{c6} may be, for example, A or S;
 [0532] Wherein X_{c7} may be, for example, T or Q;
 [0533] Wherein X_{c8} may be, for example, T or S;
 [0534] Wherein X_{c9} may be, for example, Q or E;
 [0535] Wherein X_{c10} may be, for example, P or F;
 [0536] Wherein X_{c11} may be, for example, F or L;
 [0537] Wherein X_{c12} may be, for example, A or G;
 [0538] Wherein X_{c13} may be, for example, T or I;
 [0539] Wherein X_{c14} may be, for example, Q or A;
 [0540] Wherein X_{c15} may be, for example, I or L and;
 [0541] wherein X_{c16} may be, for example, K or R.
 [0542] In accordance with an embodiment of the present invention, the humanized 3C4 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 183)
 EVQLQESGPX_{D1}LVKPSQX_{D2}LSLTCTVX_{D3}GFSITSGYGHWIRQXPGXXLEWX
 GYINYDGHNDYNPSLKSRRXXQDTSKNQFXLXLXSVTXXDTAXYYCAS

SYDGLFAYWGQGTIVTWSX;

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:26. The amino acid substitution may be, for example conservative.

[0543] In accordance with a more specific embodiment, the humanized 3C4 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 184)
 EVQLQESGPX_{D1}LVKPSQX_{D2}LSLTCTVX_{D3}GFSITSGYGHWIRQX_{D4}P
 GX_{D5}X_{D6}LEWX_{D7}GYINYDGHNDYNPSLKSRX_{D8}X_{D9}IX_{D10}QDTTSKNQF
 X_{D11}LX_{D12}LX_{D13}SVTX_{D14}X_{D15}DTAX_{D16}YYCASSYDGLFAYWGQGT
 LTVWSX_{D17};

- [0544] Wherein X_{D1} may be, for example, G or D;
 [0545] Wherein X_{D2} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;
 [0546] Wherein X_{D3} may be, for example, a neutral hydrophilic amino acid or more particularly S or T;
 [0547] Wherein X_{D4} may be, for example, H or F;
 [0548] Wherein X_{D5} may be, for example, K or N;
 [0549] Wherein X_{D6} may be, for example, G or K;
 [0550] Wherein X_{D7} may be, for example, a hydrophobic amino acid or more particularly I or M;
 [0551] Wherein X_{D8} may be, for example, a hydrophobic amino acid or more particularly V or I;
 [0552] Wherein X_{D9} may be, for example, a neutral hydrophilic amino acid or more particularly T or S;
 [0553] Wherein X_{D10} may be, for example, a neutral hydrophilic amino acid or more particularly S or T;
 [0554] Wherein X_{D11} may be, for example, a neutral hydrophilic amino acid or more particularly S or F;
 [0555] Wherein X_{D12} may be, for example, a basic amino acid or more particularly K or Q;
 [0556] Wherein X_{D13} may be, for example, S or N;

- [0557] Wherein X_{D14} may be, for example, A or T;
- [0558] Wherein X_{D15} may be, for example, A or E;
- [0559] Wherein X_{D16} may be, for example, V or T and;
- [0560] Wherein X_{D17} may be any amino acid, A or absent.

[0561] In accordance with a more specific embodiment, the humanized 3C4 antibody may have a heavy chain variable region of formula:

(SEQ ID NO.: 185)
 EVQLQESGPX_{d1}LVKPSQX_{d2}LSLTCTVX_{d3}**GFSITSGYGHWIRQX**_{d4}P
 GX_{d5}X_{d6}LEWX_{d7}**GYINYDGHNDYNP**SLKSRX_{d8}X_{d9}IX_{d10}QDTSKNQF
 X_{d11}LX_{d12}LX_{d13}SVTX_{d14}X_{d15}DTAX_{d16}**YYCASSYDGLFAYWGQGTT**
 LVTVSX_{d17};

- [0562] Wherein X_{d1} may be, for example, G or D;
- [0563] Wherein X_{d2} may be, for example, T or S;
- [0564] Wherein X_{d3} may be, for example, S or T;
- [0565] Wherein X_{d4} may be, for example, H or F;
- [0566] Wherein X_{d5} may be, for example, K or N;
- [0567] Wherein X_{d6} may be, for example, G or K;
- [0568] Wherein X_{d7} may be, for example, I or M;
- [0569] Wherein X_{d8} may be, for example, V or I;
- [0570] Wherein X_{d9} may be, for example, T or S;
- [0571] Wherein X_{d10} may be, for example, S or T;
- [0572] Wherein X_{d11} may be, for example, S or F;
- [0573] Wherein X_{d12} may be, for example, K or Q;
- [0574] Wherein X_{d13} may be, for example, S or N;
- [0575] Wherein X_{d14} may be, for example, A or T;
- [0576] Wherein X_{d15} may be, for example, A or E;
- [0577] Wherein X_{d16} may be, for example, V or T and;
- [0578] Wherein X_{d17} , A or absent.

[0579] Accordingly, the present invention provides in one aspect, an antibody or antigen binding fragment thereof capable of specific binding to Kidney associated antigen 1 (KAAG1) which may have a light chain variable region at least 70% identical to SEQ ID NO.:16 and/or a heavy chain variable region at least 70% identical to SEQ ID NO.:18. The antibody or antigen binding fragment thereof may also comprise at least one amino acid substitution in comparison with SEQ ID NO.:16 or SEQ ID NO.:18.

[0580] The present invention also provides in another aspect, an antibody or antigen binding fragment thereof which may have a light chain variable region at least 70% identical to SEQ ID NO.:24 and/or a heavy chain variable region at least 70% identical to SEQ ID NO.:26. The antibody or antigen binding fragment thereof may also comprise at least one amino acid substitution in comparison with SEQ ID NO.:24 or SEQ ID NO.:26.

[0581] The present invention also provides in another aspect, an antibody or antigen binding fragment thereof which may have a light chain variable region at least 70% identical to SEQ ID NO.:48 and/or a heavy chain variable region at least 70% identical to SEQ ID NO.:46. The antibody or antigen binding fragment thereof may also comprise at least one amino acid substitution in comparison with SEQ ID NO.:48 or SEQ ID NO.:46.

[0582] In accordance with an embodiment of the invention, the amino acid substitution may be outside of a complementarity determining region (CDR). An antibody or

antigen binding fragment having such an amino acid sequence encompasses, for example, a humanized antibody or antigen binding fragment.

[0583] As used herein the term "from one to twenty-five" includes every individual values and ranges such as for example, 1, 2, 3, and up to 25; 1 to 25; 1 to 24, 1 to 23, 1 to 22, 1 to 21, 1 to 20, 1 to 19; 1 to 18; 1 to 17; 1 to 16; 1 to 15 and so on; 2 to 25, 2 to 24, 2 to 23, 2 to 22, 2 to 21, 2 to 20; 2 to 19; 2 to 18; 2 to 17 and so on; 3 to 25, 3 to 24, 3 to 23, 3 to 22, 3 to 21, 3 to 20; 3 to 19; 3 to 18 and so on; 4 to 25, 4 to 24, 4 to 23, 4 to 22, 4 to 21, 4 to 20; 4 to 19; 4 to 18; 4 to 17; 4 to 16 and so on; 5 to 25, 5 to 24, 5 to 23, 5 to 22, 5 to 21, 5 to 20; 5 to 19; 5 to 18; 5 to 17 and so on, etc.

[0584] As used herein the term "from one to twenty-three" includes every individual values and ranges such as for example, 1, 2, 3, and up to 23; 1 to 23, 1 to 22, 1 to 21, 1 to 20, 1 to 19; 1 to 18; 1 to 17; 1 to 16; 1 to 15 and so on; 2 to 23, 2 to 22, 2 to 21, 2 to 20; 2 to 19; 2 to 18; 2 to 17 and so on; 3 to 23, 3 to 22, 3 to 21, 3 to 20; 3 to 19; 3 to 18 and so on; 4 to 23, 4 to 22, 4 to 21, 4 to 20; 4 to 19; 4 to 18; 4 to 17; 4 to 16 and so on; 5 to 25, 5 to 24, 5 to 23, 5 to 22, 5 to 21, 5 to 20; 5 to 19; 5 to 18; 5 to 17 and so on, etc.

[0585] As used herein the term "from one to twenty" includes every individual values and ranges such as for example, 1, 2, 3, and up to 20; 1 to 20; 1 to 19; 1 to 18; 1 to 17; 1 to 16; 1 to 15 and so on; 2 to 20; 2 to 19; 2 to 18; 2 to 17 and so on; 3 to 20; 3 to 19; 3 to 18 and so on; 4 to 20; 4 to 19; 4 to 18; 4 to 17; 4 to 16 and so on; 5 to 20; 5 to 19; 5 to 18; 5 to 17 and so on, etc.

[0586] Likewise, the term "from one to fifteen" includes every individual values and ranges such as for example, 1, 2, 3, and up to 15; 1 to 15; 1 to 14; 1 to 13; 1 to 12; 1 to 11; 1 to 10 and so on; 2 to 15; 2 to 14; 2 to 13; 2 to 12 and so on; 3 to 15; 3 to 14; 3 to 13 and so on; 4 to 15; 4 to 14; 4 to 13; 4 to 12; 4 to 11 and so on; 5 to 15; 5 to 14; 5 to 13; 5 to 12 and so on, etc.

[0587] Likewise, the term "from one to eleven" includes every individual values and ranges such as for example, 1, 2, 3, and up to 11; 1 to 11; 1 to 10, 1 to 9, 1 to 8, 1 to 7, and so on; 2 to 11; 2 to 10; 2 to 9; 2 to 8 and so on; 3 to 11; 3 to 10; 3 to 9 and so on; 4 to 11; 4 to 10; 4 to 9; 4 to 8; 4 to 7 and so on; 5 to 11; 5 to 10; 5 to 9; 5 to 8 and so on, etc.

[0588] In a more specific embodiment of the invention, the number of amino acid substitutions that may be accommodated in a humanized light chain variable region derived from SEQ ID NO.:16 may be for example, from 1 to 15 amino acid substitutions.

[0589] In yet a more specific embodiment of the invention, the number of amino acid substitutions that may be accommodated in a humanized heavy chain variable region derived from SEQ ID NO.:18 may be for example, from 1 to 20 amino acid substitutions. In some instances, when considering a humanized version of SEQ ID NO.:18, it may be useful to have at least three amino acid substitutions.

[0590] In a further more specific embodiment of the invention, the number of amino acid substitutions that may be accommodated in a humanized light chain variable region derived from SEQ ID NO.:24 may be for example, from 1 to 16 amino acid substitutions.

[0591] In yet a further more specific embodiment of the invention, the number of amino acid substitutions that may

be accommodated in a humanized heavy chain variable region of SEQ ID NO.:26 may be for example, from 1 to 17 amino acid substitutions.

[0592] In a further more specific embodiment of the invention, the number of amino acid substitutions that may be accommodated in a humanized light chain variable region derived from SEQ ID NO.:48 may be for example, from 1 to 11 amino acid substitutions.

[0593] In yet a further more specific embodiment of the invention, the number of amino acid substitutions that may be accommodated in a humanized heavy chain variable region of SEQ ID NO.:46 may be for example, from 1 to 23 amino acid substitutions.

[0594] In accordance with an embodiment of the invention, the one to twenty amino acid substitutions may be for example, in the light chain variable region.

[0595] In accordance with an embodiment of the invention, the one to twenty amino acid substitutions may be for example, in the heavy chain variable region.

[0596] A humanized antibody or antigen binding fragment may therefore have a light chain variable region having up to twenty amino acid substitutions in comparison with SEQ ID NO.:16 or SEQ ID NO.:24 and may have a heavy chain variable region having up to twenty amino acid substitutions in comparison with SEQ ID NO.:18 or SEQ ID NO.:26. A humanized antibody or antigen binding fragment may therefore have a light chain variable region having up to twenty-five amino acid substitutions in comparison with SEQ ID NO.:48 and may have a heavy chain variable region having up to twenty-five amino acid substitutions in comparison with SEQ ID NO.:46.

[0597] It is to be understood herein that when the humanized antibody or antigen binding fragment has two light chain variable regions and two heavy chain variable regions, each one of the light chain variable regions may independently have up to twenty-five, twenty-four, twenty-three, twenty-two, twenty-one, twenty, nineteen, eighteen, seventeen, sixteen, fifteen, fourteen, thirteen, twelve, eleven, ten, nine, eight, seven, six, five, four, three, two, one amino acid substitutions and each one of the heavy chain variable regions may have up to twenty-five, twenty-four, twenty-three, twenty-two, twenty-one, twenty, nineteen, eighteen, seventeen, sixteen, fifteen, fourteen, thirteen, twelve, eleven, ten, nine, eight, seven, six, five, four, three, two, one amino acid substitutions.

[0598] As discussed herein the amino acid substitutions may be conservative or non-conservative. In an exemplary embodiment the amino acid substitutions may be conservative.

[0599] It is to be understood herein that the humanized antibody or antigen binding fragment of the invention may also have a light chain variable region and/or heavy chain variable region showing a deletion in comparison with SEQ ID NO.:16, SEQ ID NO.:18, SEQ ID NO.:189, SEQ ID NO.:190, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196, SEQ ID NO.:197, SEQ ID NO.:24 and/or SEQ ID NO.:26. Such deletion may be found, for example, at an amino- or carboxy-terminus of the light chain variable region and/or heavy chain variable region.

[0600] Another exemplary embodiment of the humanized antibody or antigen binding fragment of the present invention includes for example, an antibody or antigen binding fragment having a light chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ

ID NO.:186, SEQ ID NO.:187, SEQ ID NO.:188, SEQ ID NO.:189 or SEQ ID NO.:190.

[0601] As used herein the term “at least 90 consecutive amino acids of SEQ ID NO.:186” also includes the terms “at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or at least 112 consecutive amino acids”. The term “at least 90 consecutive amino acids of SEQ ID NO.:186” encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:186 and especially those sequences which include the 3 CDRs of SEQ ID NO.:186, such as, for example a sequence comprising amino acids 6 to 108, 5 to 109, 13 to 103, 14 to 111 of SEQ ID NO.:186 and so on.

[0602] As used herein the term “at least 90 consecutive amino acids of SEQ ID NO.:187” also includes the terms “at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, or at least 112 consecutive amino acids”. The term “at least 90 consecutive amino acids of SEQ ID NO.:187” encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:187 and especially those sequences which include the 3 CDRs of SEQ ID NO.:187, such as, for example a sequence comprising amino acids 7 to 109, 12 to 104, 22 to 113, 18 to 112 of SEQ ID NO.:187 and so on.

[0603] The terms “at least 90 consecutive amino acids of SEQ ID NO.:188”, “at least 90 consecutive amino acids of SEQ ID NO.:189” or “at least 90 consecutive amino acids of SEQ ID NO.:190” has a similar meaning.

[0604] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a light chain variable region as set forth in SEQ ID NO.:189 or 190.

[0605] The humanized antibody or antigen binding fragment of the invention includes (or further includes) for example, a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NOs.:191, 192, 193, 194, 195, 196 or 197.

[0606] As used herein the term “at least 90 consecutive amino acids of SEQ ID NO.:191” also includes the terms “at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 or at least 116 consecutive amino acids”. The term “at least 90 consecutive amino acids of SEQ ID NO.:191” encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:191 and especially those sequences which include the 3 CDRs of SEQ ID NO.:191, such as, for example a sequence comprising amino acids 1 to 106, 2 to 112, 11 to 113, 7 to 102 of SEQ ID NO.:191 and so on.

[0607] As used herein the term “at least 90 consecutive amino acids of SEQ ID NO.:192” also includes the terms “at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 or at least 116 consecutive amino acids”. The term “at least 90 consecutive amino acids of SEQ ID NO.:192” encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:192 and especially those sequences which include the 3 CDRs of SEQ ID NO.:192, for example a sequence comprising amino acids 6 to 109, 8 to 113, 1 to 102, 2 to 105 of SEQ ID NO.:192 and so on.

[0608] The terms “at least 90 consecutive amino acids of SEQ ID NO.:193”, “at least 90 consecutive amino acids of SEQ ID NO.:194”, “at least 90 consecutive amino acids of SEQ ID NO.:195”, “at least 90 consecutive amino acids of

SEQ ID NO.:196" or "at least 90 consecutive amino acids of SEQ ID NO.:197" has a similar meaning.

[0609] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a heavy chain variable region as set forth in SEQ ID NO.:194, 195, 196 or 197.

[0610] In accordance with the present invention the antibody or antigen binding fragment may comprise, for example,

[0611] a) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:186 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:191, SEQ ID NO.:192, SEQ ID NO.:193, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;

[0612] b) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:187 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:191, SEQ ID NO.:192, SEQ ID NO.:193, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;

[0613] c) a light chain variable region which may comprise amino acids at least 90 consecutive amino acids of SEQ ID NO.:188 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:191, SEQ ID NO.:192, SEQ ID NO.:193, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;

[0614] d) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:189 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:191, SEQ ID NO.:192, SEQ ID NO.:193, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197 or

[0615] e) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:190 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:191, SEQ ID NO.:192, SEQ ID NO.:193, SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197.

[0616] In accordance with a more specific embodiment of the invention, the light chain variable region may comprise at least 90 consecutive amino acids of SEQ ID NO.:189 or 190 and the heavy chain variable region may comprise at least 90 consecutive amino acids of SEQ ID NO.:194, 195, 196 or 197.

[0617] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:189 and the heavy chain variable region may be as set forth in SEQ ID NO.:194.

[0618] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:189 and the heavy chain variable region may be as set forth in SEQ ID NO.:195.

[0619] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:189 and the heavy chain variable region may be as set forth in SEQ ID NO.:196.

[0620] In accordance with an even more specific embodiment of the invention, the light chain variable region may be

as set forth in SEQ ID NO.:189 and the heavy chain variable region may be as set forth in SEQ ID NO.:197.

[0621] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:190 and the heavy chain variable region may be as set forth in SEQ ID NO.:194.

[0622] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:190 and the heavy chain variable region may be as set forth in SEQ ID NO.:195.

[0623] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:190 and the heavy chain variable region may be as set forth in SEQ ID NO.:196.

[0624] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:190 and the heavy chain variable region may be as set forth in SEQ ID NO.:197.

[0625] Another exemplary embodiment of the humanized antibody or antigen binding fragment of the present invention includes for example, an antibody or antigen binding fragment having a light chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:174, SEQ ID NO.:175, SEQ ID NO.:176 or SEQ ID NO.:168.

[0626] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:174" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 or at least 113 consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:174" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:174 and especially those sequences which include the 3 CDRs of SEQ ID NO.:174, such as, for example a sequence comprising amino acids 6 to 108, 5 to 109, 13 to 103, 14 to 111 of SEQ ID NO.:174 and so on.

[0627] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:175" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 or at least 113 consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:175" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:175 and especially those sequences which include the 3 CDRs of SEQ ID NO.:175, such as, for example a sequence comprising amino acids 7 to 109, 12 to 104, 22 to 113, 18 to 112 of SEQ ID NO.:175 and so on.

[0628] The terms "at least 90 consecutive amino acids of SEQ ID NO.:176" or "at least 90 consecutive amino acids of SEQ ID NO.:168" has a similar meaning.

[0629] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a light chain variable region as set forth in SEQ ID NO.:168.

[0630] The humanized antibody or antigen binding fragment of the invention includes (or further includes) for example, a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NOs.:177, 178, 179 or 169.

[0631] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:177" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 or at least 113 consecutive amino acids". The term "at least 90 consecutive

amino acids of SEQ ID NO.:177" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:177 and especially those sequences which include the 3 CDRs of SEQ ID NO.:177, such as, for example a sequence comprising amino acids 1 to 106, 2 to 112, 11 to 113, 7 to 102 of SEQ ID NO.:177 and so on.

[0632] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:178" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 or at least 113 consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:178" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:178 and especially those sequences which include the 3 CDRs of SEQ ID NO.:178, for example a sequence comprising amino acids 6 to 109, 8 to 113, 1 to 102, 2 to 105 of SEQ ID NO.:178 and so on.

[0633] The terms "at least 90 consecutive amino acids of SEQ ID NO.:179" or "at least 90 consecutive amino acids of SEQ ID NO.:169" has a similar meaning.

[0634] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a heavy chain variable region as set forth in SEQ ID NO.:169.

[0635] In accordance with the present invention the antibody or antigen binding fragment may comprise, for example,

[0636] f) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:174 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:177, SEQ ID NO.:178, SEQ ID NO.:179 or SEQ ID NO.:169;

[0637] g) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:175 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:177, SEQ ID NO.:178, SEQ ID NO.:179 or SEQ ID NO.:169;

[0638] h) a light chain variable region which may comprise amino acids at least 90 consecutive amino acids of SEQ ID NO.:176 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:177, SEQ ID NO.:178, SEQ ID NO.:179 or SEQ ID NO.:169 or;

[0639] i) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:168 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:177, SEQ ID NO.:178, SEQ ID NO.:179 or SEQ ID NO.:169.

[0640] In accordance with a more specific embodiment of the invention, the light chain variable region may comprise at least 90 consecutive amino acids of SEQ ID NO.:168 and the heavy chain variable region may comprise at least 90 consecutive amino acids of SEQ ID NO.:169.

[0641] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:168 and the heavy chain variable region may be as set forth in SEQ ID NO.:169.

[0642] Other exemplary embodiments of the humanized antibodies or antigen binding fragments of the invention are those which may comprise a light chain variable region

which may comprise at least 90 consecutive amino acids of any of SEQ ID Nos. 180, 181, 182 or 172.

[0643] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:180" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or at least 107, consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:180" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:180 and especially those sequences which include the 3 CDRs of SEQ ID NO.:180, for example a sequence comprising amino acids 6 to 102, 11 to 106, 1 to 106, 3 to 95, 5 to 95 of SEQ ID NO.:180 and so on.

[0644] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:181" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106 or at least 107, consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:181" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:181 and especially those sequences which include the 3 CDRs of SEQ ID NO.:181, for example a sequence comprising amino acids 9 to 106, 10 to 101, 1 to 98, 3 to 99, 7 to 107 of SEQ ID NO.:181 and so on.

[0645] The terms "at least 90 consecutive amino acids of SEQ ID NO.:182" or "at least 90 consecutive amino acids of SEQ ID NO.:172" has a similar meaning.

[0646] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a light chain variable region as set forth in SEQ ID NO.:172.

[0647] The humanized antibody or antigen binding fragment of the invention includes (or further includes) for example, a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID Nos.:183, 184, 185 or 173.

[0648] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:183" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 or at least 116 consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:183" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:183 and especially those sequences which include the 3 CDRs of SEQ ID NO.:183, such as, for example a sequence comprising amino acids 6 to 111, 1 to 106, 2 to 104, 5 to 106, 10 to 107 of SEQ ID NO.:183 and so on.

[0649] As used herein the term "at least 90 consecutive amino acids of SEQ ID NO.:185" also includes the terms "at least 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115 or at least 116 consecutive amino acids". The term "at least 90 consecutive amino acids of SEQ ID NO.:185" encompasses any possible sequence of at least 90 consecutive amino acids found in SEQ ID NO.:185 and especially those sequences which include the 3 CDRs of SEQ ID NO.:185, such as, for example a sequence comprising amino acids 3 to 107, 1 to 115, 1 to 110, 22 to 116, 20 to 115 of SEQ ID NO.:185 and so on.

[0650] The terms "at least 90 consecutive amino acids of SEQ ID NO.:184" or "at least 90 consecutive amino acids of SEQ ID NO.:173" has a similar meaning.

[0651] In accordance with the present invention, the antibody or antigen binding fragment of the present invention may have, for example, a heavy chain variable region as set forth in SEQ ID NO.:173.

[0652] In accordance with the present invention the antibody or antigen binding fragment may comprise, for example,

[0653] a) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:180 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:183, SEQ ID NO.:184, SEQ ID NO.:185 or SEQ ID NO.:173;

[0654] b) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:181 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:183, SEQ ID NO.:184, SEQ ID NO.:185 or SEQ ID NO.:173;

[0655] c) a light chain variable region which may comprise amino acids at least 90 consecutive amino acids of SEQ ID NO.:182 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:183, SEQ ID NO.:184, SEQ ID NO.:185 or SEQ ID NO.:173 or;

[0656] d) a light chain variable region which may comprise at least 90 consecutive amino acids of SEQ ID NO.:172 and a heavy chain variable region which may comprise at least 90 consecutive amino acids of any of SEQ ID NO.:183, SEQ ID NO.:184, SEQ ID NO.:185 or SEQ ID NO.:173.

[0657] In accordance with a more specific embodiment of the invention, the light chain variable region may have at least 90 consecutive amino acids of SEQ ID NO.:172 and the heavy chain variable region may have at least 90 consecutive amino acids of SEQ ID NO.:173.

[0658] In accordance with an even more specific embodiment of the invention, the light chain variable region may be as set forth in SEQ ID NO.:172 and the heavy chain variable region may be as set forth in SEQ ID NO.:173.

[0659] The antibody or antigen binding fragment of the present invention may have a light chain variable region and/or heavy chain variable region as described above and may further comprise amino acids of a constant region, such as, for example, amino acids of a constant region of a human antibody.

[0660] In an exemplary embodiment, the antibody or antigen binding fragment of the present invention may comprise, for example, a human IgG1 constant region.

[0661] In accordance with another exemplary embodiment of the invention, the antigen binding fragment may be, for example, a scFv, a Fab, a Fab' or a (Fab)₂.

Production of the Antibodies in Cells

[0662] The anti-KAAG1 antibodies that are disclosed herein can be made by a variety of methods familiar to those skilled in the art, such as hybridoma methodology or by recombinant DNA methods.

[0663] In an exemplary embodiment of the invention, the anti-KAAG1 antibodies may be produced by the conventional hybridoma technology, where a mouse is immunized with an antigen, spleen cells isolated and fused with

myeloma cells lacking HGPRT expression and hybrid cells selected by hypoxanthine, aminopterin and thymine (HAT) containing media.

[0664] In an additional exemplary embodiment of the invention, the anti-KAAG1 antibodies may be produced by recombinant DNA methods.

[0665] In order to express the anti-KAAG1 antibodies, nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein or any other may be inserted into an expression vector, i.e., a vector that contains the elements for transcriptional and translational control of the inserted coding sequence in a particular host. These elements may include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' un-translated regions. Methods that are well known to those skilled in the art may be used to construct such expression vectors. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.

[0666] A variety of expression vector/host cell systems known to those of skill in the art may be utilized to express a polypeptide or RNA derived from nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with baculovirus vectors; plant cell systems transformed with viral or bacterial expression vectors; or animal cell systems. For long-term production of recombinant proteins in mammalian systems, stable expression in cell lines may be effected. For example, nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein may be transformed into cell lines using expression vectors that may contain viral origins of replication and/or endogenous expression elements and a selectable or visible marker gene on the same or on a separate vector. The invention is not to be limited by the vector or host cell employed. In certain embodiments of the present invention, the nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein may each be ligated into a separate expression vector and each chain expressed separately. In another embodiment, both the light and heavy chains able to encode any one of a light and heavy immunoglobulin chains described herein may be ligated into a single expression vector and expressed simultaneously.

[0667] Alternatively, RNA and/or polypeptide may be expressed from a vector comprising nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein using an in vitro transcription system or a coupled in vitro transcription/translation system respectively.

[0668] In general, host cells that contain nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein and/or that express a polypeptide encoded by the nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein, or a portion thereof, may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA/DNA or DNA/RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques that include membrane, solution, or chip based technologies for the detection

and/or quantification of nucleic acid or amino acid sequences. Immunological methods for detecting and measuring the expression of polypeptides using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). Those of skill in the art may readily adapt these methodologies to the present invention.

[0669] Host cells comprising nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein may thus be cultured under conditions for the transcription of the corresponding RNA (mRNA, siRNA, shRNA etc.) and/or the expression of the polypeptide from cell culture. The polypeptide produced by a cell may be secreted or may be retained intracellularly depending on the sequence and/or the vector used. In an exemplary embodiment, expression vectors containing nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein may be designed to contain signal sequences that direct secretion of the polypeptide through a prokaryotic or eukaryotic cell membrane.

[0670] Due to the inherent degeneracy of the genetic code, other DNA sequences that encode the same, substantially the same or a functionally equivalent amino acid sequence may be produced and used, for example, to express a polypeptide encoded by nucleotide sequences able to encode any one of a light and heavy immunoglobulin chains described herein. The nucleotide sequences of the present invention may be engineered using methods generally known in the art in order to alter the nucleotide sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

[0671] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed polypeptide in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. In an exemplary embodiment, anti-KAAG1 antibodies that contain particular glycosylation structures or patterns may be desired. Post-translational processing, which cleaves a “prepro” form of the polypeptide, may also be used to specify protein targeting, folding, and/or activity. Different host cells that have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and W138) are available commercially and from the American Type Culture Collection (ATCC) and may be chosen to ensure the correct modification and processing of the expressed polypeptide.

[0672] Those of skill in the art will readily appreciate that natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence resulting in translation of a fusion polypeptide containing heterologous polypeptide moieties in any of the aforementioned host systems. Such heterologous polypeptide moieties may facilitate purification of fusion polypeptides using commercially

available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein, thioredoxin, calmodulin binding peptide, 6-His (His), FLAG, c-myc, hemagglutinin (HA), and antibody epitopes such as monoclonal antibody epitopes.

[0673] In yet a further aspect, the present invention relates to a polynucleotide which may comprise a nucleotide sequence encoding a fusion protein. The fusion protein may comprise a fusion partner (e.g., HA, Fc, etc.) fused to the polypeptide (e.g., complete light chain, complete heavy chain, variable regions, CDRs etc.) described herein.

[0674] Those of skill in the art will also readily recognize that the nucleic acid and polypeptide sequences may be synthesized, in whole or in part, using chemical or enzymatic methods well known in the art. For example, peptide synthesis may be performed using various solid-phase techniques and machines such as the ABI 431A Peptide synthesizer (PE Biosystems) may be used to automate synthesis. If desired, the amino acid sequence may be altered during synthesis and/or combined with sequences from other proteins to produce a variant protein.

Antibody Conjugates

[0675] The antibody or antigen binding fragment of the present invention may be conjugated with a detectable moiety (i.e., for detection or diagnostic purposes) or with a therapeutic moiety (for therapeutic purposes)

[0676] A “detectable moiety” is a moiety detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical and/or other physical means. A detectable moiety may be coupled either directly and/or indirectly (for example via a linkage, such as, without limitation, a DOTA or NHS linkage) to antibodies and antigen binding fragments thereof of the present invention using methods well known in the art. A wide variety of detectable moieties may be used, with the choice depending on the sensitivity required, ease of conjugation, stability requirements and available instrumentation. A suitable detectable moiety include, but is not limited to, a fluorescent label, a radioactive label (for example, without limitation, ¹²⁵I, In¹¹¹, Tc⁹⁹, I¹³¹ and including positron emitting isotopes for PET scanner etc), a nuclear magnetic resonance active label, a luminescent label, a chemiluminescent label, a chromophore label, an enzyme label (for example and without limitation horseradish peroxidase, alkaline phosphatase, etc.), quantum dots and/or a nanoparticle. Detectable moiety may cause and/or produce a detectable signal thereby allowing for a signal from the detectable moiety to be detected.

[0677] In another exemplary embodiment of the invention, the antibody or antigen binding fragment thereof may be coupled (modified) with a therapeutic moiety (e.g., drug, cytotoxic moiety).

[0678] In an exemplary embodiment, the anti-KAAG1 antibodies and antigen binding fragments may comprise an inhibitor, a chemotherapeutic or cytotoxic agent. For example, the antibody and antigen binding fragments may be conjugated to the chemotherapeutic or cytotoxic agent. Such chemotherapeutic or cytotoxic agents include, but are not limited to, Yttrium-90, Scandium-47, Rhenium-186, Iodine-131, Iodine-125, and many others recognized by those skilled in the art (e.g., lutetium (e.g., Lu¹⁷⁷), bismuth (e.g., Bi²¹³), copper (e.g., Cu⁶⁷)). In other instances, the chemotherapeutic or cytotoxic agent may comprise, without limitation, 5-fluorouracil, adriamycin, irinotecan, platinum-

based compounds such as cisplatin and anti-tubulin or anti-mitotic compounds such as, taxanes, doxorubicin and cyclophosphamide, *pseudomonas* endotoxin, ricin and other toxins. Suitable antibody drug conjugates are selected amongst those having an IC_{50} in the range of 0.001 nM to 150 nM, 0.001 nM to 100 nM, 0.001 nM to 50 nM, 0.001 nM to 20 nM or 0.001 nM to 10 nM (inclusively). The cytotoxic drug used for conjugation is thus selected on the basis of these criteria.

[0679] Alternatively, in order to carry out the methods of the present invention and as known in the art, the antibody or antigen binding fragment of the present invention (conjugated or not) may be used in combination with a second molecule (e.g., a secondary antibody, etc.) which is able to specifically bind to the antibody or antigen binding fragment of the present invention and which may carry a desirable detectable, diagnostic or therapeutic moiety.

Pharmaceutical Compositions of the Antibodies and their Use

[0680] Pharmaceutical compositions of the anti-KAAG1 antibodies or antigen binding fragments (conjugated or not) are also encompassed by the present invention. The pharmaceutical composition may comprise an anti-KAAG1 antibody or an antigen binding fragment and may also contain a pharmaceutically acceptable carrier.

[0681] Other aspects of the invention relate to a composition which may comprise the antibody or antigen binding fragment described herein and a carrier.

[0682] The present invention also relates to a pharmaceutical composition which may comprise the antibody or antigen binding fragment described herein and a pharmaceutically acceptable carrier.

[0683] In addition to the active ingredients, a pharmaceutical composition may contain pharmaceutically acceptable carriers comprising water, PBS, salt solutions, gelatins, oils, alcohols, and other excipients and auxiliaries that facilitate processing of the active compounds into preparations that may be used pharmaceutically. In other instances, such preparations may be sterilized.

[0684] As used herein, "pharmaceutical composition" means therapeutically effective amounts of the agent together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvant and/or carriers. A "therapeutically effective amount" as used herein refers to that amount which provides a therapeutic effect for a given condition and administration regimen. Such compositions are liquids or lyophilized or otherwise dried formulations and include diluents of various buffer content (e.g., Tris-HCl., acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts). Solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), covalent attachment of polymers such as polyethylene glycol to the protein, complexation with metal ions, or incorporation of the material into or onto particulate preparations of polymeric compounds such as polylactic acid, polyglycolic acid, hydrogels, etc, or onto liposomes, microemulsions, micelles, unilamellar or multilamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance.

Controlled or sustained release compositions include formulation in lipophilic depots (e.g., fatty acids, waxes, oils). Also comprehended by the invention are particulate compositions coated with polymers (e.g., poloxamers or poloxamines). Other embodiments of the compositions of the invention incorporate particulate forms protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including parenteral, pulmonary, nasal, oral, vaginal, rectal routes. In one embodiment the pharmaceutical composition is administered parenterally, paracancerally, transmucosally, transdermally, intramuscularly, intravenously, intradermally, subcutaneously, intraperitoneally, intraventricularly, intracranially and intratumorally.

[0685] Further, as used herein "pharmaceutically acceptable carrier" or "pharmaceutical carrier" are known in the art and include, but are not limited to, 0.01-0.1 M or 0.05 M phosphate buffer or 0.8% saline. Additionally, such pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, collating agents, inert gases and the like.

[0686] For any compound, the therapeutically effective dose may be estimated initially either in cell culture assays or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the concentration range and route of administration. Such information may then be used to determine useful doses and routes for administration in humans. These techniques are well known to one skilled in the art and a therapeutically effective dose refers to that amount of active ingredient that ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating and contrasting the ED_{50} (the dose therapeutically effective in 50% of the population) and LD_{50} (the dose lethal to 50% of the population) statistics. Any of the therapeutic compositions described above may be applied to any subject in need of such therapy, including, but not limited to, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and humans.

[0687] The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Methods of Use

[0688] The term "treatment" for purposes of this disclosure refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or

disorder. Those in need of treatment include those already having the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented. [0689] The present invention provides in one aspect thereof, a method of treating an individual having or suspected of having breast cancer with an antibody or antigen binding fragment which is capable of specific binding to KAAG1.

[0690] In accordance with the present invention, the individual may have a breast cancer that is negative for the estrogen receptor expression, the progesterone receptor expression and/or Her2 expression (or overexpression).

[0691] Also in accordance with the present invention, the individual may have a breast cancer that has low expression for at least one of estrogen receptor, progesterone receptor and/or Her2.

[0692] For example, the tumor may be negative for (or have low expression of) both estrogen receptor expression and progesterone receptor expression.

[0693] In accordance with the present invention, the individual may have a breast cancer that is characterized as being triple-negative or basal-like.

[0694] Yet other aspects of the invention relate to the use of the isolated antibody or antigen binding fragment described herein in the treatment or diagnosis of breast cancer characterized by a lack of estrogen receptor expression, progesterone receptor expression and/or Her2 overexpression or by low expression of at least one of these three markers.

[0695] In accordance with the present invention, the method may comprise, for example, administering an antibody or antigen binding fragment which is capable of specific binding to KAAG1 to an individual in need. The individual in need is preferentially selected on the basis of a lack of ER expression, PgR expression and/or by the absence of HER2 protein over-expression. Clinical testing for these markers is usually performed using histopathologic methods (immunohistochemistry, FISH, etc.) and/or by gene expression studies (see for example Dent et al, 2007, Bernstein and Lacey, 2011). The individual in need may thus be an individual who has received a diagnosis of triple-negative breast cancer or basal-like breast cancer.

[0696] The present invention thus particularly relates to the therapeutic treatment of individual having triple-negative breast cancer or basal-like cancer with an anti-KAAG1 antibody.

[0697] Suitable antibodies or antigen binding fragments include those that are capable of specific binding to KAAG1 at the surface of tumor cells. Such antibodies may preferentially bind an epitope included within amino acids 30 to 84 of KAAG1 inclusively (e.g., within amino acids 36 to 60 (inclusively) or within amino acids 61 to 84 (inclusively) of KAAG1).

[0698] Suitable antibodies may be those which mediate antibody-dependent cell cytotoxicity and those that are conjugated with a therapeutic moiety.

[0699] In accordance with the present invention, the antibody may be, for example, a monoclonal antibody, a chimeric antibody or a humanized antibody or an antigen binding fragment thereof.

[0700] The method of the present invention may include administering the antibody or antigen binding fragment in combination with an inhibitor, a chemotherapeutic or a cytotoxic agent.

[0701] Other methods of treatment encompassed by the present invention include administering other types of KAAG1 inhibitors such as antisense-based therapeutics (siRNA, antisenses, ribozymes, etc.).

[0702] The present invention thus provides a method of treating triple-negative breast cancer or basal-like breast cancer by administering an inhibitor of KAAG1 activity or expression to an individual in need.

[0703] The inhibitor may comprise a nucleotide sequence complementary to SEQ ID NO.:1 or to a fragment thereof. More particularly, the inhibitor may comprise a nucleotide sequence complementary to nucleotides 738 to 992 (inclusively) of SEQ ID NO.:1 or to a fragment thereof. For example, the inhibitor may include at least 10 consecutive nucleotides (at least 15, at least 20) which are complementary to SEQ ID NO.:1 or to nucleotides 738 to 992 (inclusively) of SEQ ID NO.:1.

[0704] In certain instances, the anti-KAAG1 antibodies and fragments may interact with cancer cells that express KAAG1 and induce an immunological reaction by mediating ADCC. In other instances, the anti-KAAG1 antibodies and fragments may block the interaction of KAAG1 with its protein partners.

[0705] In certain instances, the anti-KAAG1 antibodies and antigen binding fragments thereof may be administered concurrently with other treatments given for the same condition (inhibitors, chemotherapeutics or cytotoxic agents). As such, the antibodies may be administered with a PARP1 inhibitor, a EGFR inhibitor, anti-mitotics (eg., taxanes), platinum-based agents (eg., cisplatin), DNA damaging agents (eg. Doxorubicin) and other anti-cancer therapies that are known to those skilled in the art. In other instances, the anti-KAAG1 antibodies and antigen binding fragments thereof may be administered with other therapeutic antibodies. These include, but are not limited to, antibodies that target EGFR, CD-20, and Her2.

[0706] The present invention relates in a further aspect thereof to a method for inhibiting the growth of KAAG1-expressing cell that are estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-), the method may comprise contacting the cell with an effective amount of the antibody or antigen binding fragment described herein.

[0707] The present invention also encompasses method of treating cancer or inhibiting the growth of a KAAG1 expressing cells that are estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-), in a mammal, the method may comprise administering the antibody or antigen binding fragment described herein to a mammal in need.

[0708] In further aspects, the present invention provides method of treatment, diagnostic methods and method of detection using the antibody or antigen binding fragment of the present invention and the use of these antibodies or antigen binding fragment in the manufacture of a pharmaceutical composition or drug for such purposes.

[0709] Method of treatment encompassed by the present invention includes administering an antibody or antigen binding fragment described herein to a mammal in need, and especially to a patient having or susceptible of having a cancer characterized as being estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-),

[0710] The invention also provides in further aspects, methods for reducing tumor spread, tumor invasion, tumor formation or for inducing tumor lysis, which may comprise administering an isolated antibody or antigen binding fragment to a mammal in need.

[0711] The invention therefore relates to the use of the isolated antibody or antigen binding fragment described herein in the (manufacture of a pharmaceutical composition for) treatment of cancer, reduction of tumor spread, tumor invasion, tumor formation or for inducing tumor lysis of KAAG1-expressing tumor cells that are estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-).

[0712] The antibody or antigen binding fragment may more particularly be applicable for malignant tumor including, for example, a malignant tumor having the ability to metastasize and/or tumor cells characterized by anchorage-independent growth. The antibody or antigen binding fragment of the present invention may also be used in the diagnosis of cancer. The diagnosis of cancer may be performed *in vivo* by administering the antibody or antigen binding fragment of the present invention to a mammal having or suspected of having a cancer. The diagnosis may also be performed *ex vivo* by contacting a sample obtained from the mammal with the antibody or antigen binding fragment and determining the presence or absence of cells (tumor cells) expressing KAAG1 or a KAAG1 variant.

[0713] The present invention also encompasses method of detecting cancer or detecting a KAAG1 expressing cells that are estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-), in a mammal, the method may comprise administering the antibody or antigen binding fragment described herein to a mammal in need.

[0714] The present invention relates in another aspect thereof to a method for detecting a cell expressing KAAG1 or a KAAG1 variant, the method may comprise contacting the cell with an antibody or antigen binding fragment described herein and detecting a complex formed by the antibody and the KAAG1- or KAAG1 variant-expressing cell. Exemplary embodiments of antibodies or antigen binding fragments used in detection methods are those which are capable of binding to the extracellular region of KAAG1.

[0715] Other exemplary embodiments of antibodies or antigen binding fragments used in detection methods are those which bind to KAAG1 or KAAG1 variant expressed at the surface of tumor cells that are estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-).

[0716] Another aspect of the invention relates a method for detecting KAAG1 (SEQ ID NO.:2), a KAAG1 variant having at least 80% sequence identity with SEQ ID NO.:2 or a secreted form of circulating form of KAAG1 or KAAG1 variant, the method may comprise contacting a cell expressing KAAG1 or the KAAG1 variant or a sample (biopsy, serum, plasma, urine etc.) comprising or suspected of comprising KAAG1 or the KAAG1 variant with the antibody or antigen binding fragments described herein and measuring binding. The sample may originate from a mammal (e.g., a human) which may have cancer (e.g., breast cancer that is characterized as being estrogen receptor-negative (ER-), progesterone receptor negative (PgR-) and/or that lacks Her2 overexpression (Her2-), such as basal-like breast cancer or triple-negative breast cancer) or may be suspected

of having cancer. The sample may be a tissue sample obtained from the mammal or a cell culture supernatant.

[0717] In accordance with the invention the sample may be a serum sample, a plasma sample, a blood sample or ascitic fluid obtained from the mammal. The antibody or antigen binding fragment described herein may advantageously detect a secreted or circulating form (circulating in blood) of KAAG1.

[0718] The method may comprise quantifying the complex formed by the antibody or antigen binding fragment bound to KAAG1 or to the KAAG1 variant.

[0719] The binding of an antibody to an antigen will cause an increase in the expected molecular weight of the antigen. A physical change therefore occurs upon specific binding of the antibody or antigen binding fragment and the antigen.

[0720] Such changes may be detected using, for example, electrophoresis followed by Western blot and coloration of the gel or blot, mass spectrometry, HPLC coupled with a computer or else. Apparatus capable of computing a shift in molecular weight are known in the art and include for example, Phosphorimager™.

[0721] When the antibody comprises for example a detectable label, the antigen-antibody complex may be detected by the fluorescence emitted by the label, radiation emission of the label, enzymatic activity of a label provided with its substrate or else.

[0722] Detection and/or measurement of binding between an antibody or antigen binding fragment and an antigen may be performed by various methods known in the art. Binding between an antibody or antigen binding fragment and an antigen may be monitored with an apparatus capable of detecting the signal emitted by the detectable label (radiation emission, fluorescence, color change etc.). Such apparatus provides data which indicates that binding as occurred and may also provide indication as to the amount of antibody bound to the antigen. The apparatus (usually coupled with a computer) may also be capable of calculating the difference between a background signal (e.g., signal obtained in the absence of antigen-antibody binding) or background noise and the signal obtained upon specific antibody-antigen binding. Such apparatuses may thus provide the user with indications and conclusions as to whether the antigen has been detected or not.

[0723] Additional aspects of the invention relate to kits which may include one or more container containing one or more antibodies or antigen binding fragments described herein.

Nucleic Acids, Vectors and Cells

[0724] Antibodies are usually made in cells allowing expression of the light chain and heavy chain expressed from a vector(s) comprising a nucleic acid sequence encoding the light chain and/or heavy chain.

[0725] The present therefore encompasses nucleic acids capable of encoding any of the CDRs, light chain variable regions, heavy chain variable regions, light chains, heavy chains described herein.

[0726] The present invention therefore relates in a further aspect to a nucleic acid encoding a light chain variable region and/or a heavy chain variable region of an antibody which is capable of specific binding to KAAG1.

[0727] Exemplary embodiments of nucleic acids encompassed by the present invention includes a nucleic acid selected from the group consisting of a nucleic acid having

at least 70% sequence identity (i.e., at least 75%, at least 80% sequence identity) with any one of SEQ ID NOs.:3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 45 and 47, fragments (e.g., of at least 10, at least 15, at least 20 consecutive nucleotides) and complement thereof.

[0728] In accordance with an embodiment of the invention, the nucleic acid may especially encode a light chain variable region and/or heavy chain variable region of an antibody which may be capable of inducing killing (elimination, destruction, lysis) of KAAG1- or KAAG1 variant-expressing tumor cells.

[0729] In accordance with another embodiment of the invention, the nucleic acid may especially encode a light chain variable region and/or heavy chain variable region of an antibody which may be capable of reducing spreading of KAAG1- or KAAG1 variant-expressing tumor cells.

[0730] In accordance with yet another embodiment of the invention, the nucleic acid may particularly encode a light chain variable region and/or heavy chain variable region of an antibody which may be capable of decreasing or impairing formation of KAAG1- or KAAG1 variant-expressing tumors.

[0731] Exemplary embodiments of nucleic acids of the present invention include nucleic acids encoding a light chain variable region comprising:

[0732] a. a CDRL1 sequence selected from the group consisting of SEQ ID NO.:72 and SEQ ID NO.:73;

[0733] b. a CDRL2 sequence selected from the group consisting of SEQ ID NO.:74, SEQ ID NO.: 75 and SEQ ID NO.:76, or;

[0734] c. a CDRL3 sequence selected from the group consisting of SEQ ID NO.:77, SEQ ID NO.:78 and SEQ ID NO.:79.

[0735] In accordance with the present invention, the nucleic acid may encode a light chain variable region which may comprise at least two CDRs of a CDRL1, a CDRL2 or a CDRL3.

[0736] Also in accordance with the present invention, the nucleic acid may encode a light chain variable region which may comprise one CDRL1, one CDRL2 and one CDRL3.

[0737] The present invention also relates to a nucleic acid encoding a heavy chain variable region comprising:

[0738] a. a CDRH1 sequence comprising SEQ ID NO.: 80;

[0739] b. a CDRH2 sequence selected from the group consisting of SEQ ID NO.:81, SEQ ID NO.:82, SEQ ID NO.:83, SEQ ID NO.:84 and SEQ ID NO.:85, or;

[0740] c. a CDRH3 sequence selected from the group consisting of SEQ ID NO.:86, SEQ ID NO.:87 and SEQ ID NO.:88.

[0741] In accordance with the present invention, the nucleic acid may encode a heavy chain variable region which may comprise at least two CDRs of a CDRH1, a CDRH2 or a CDRH3.

[0742] In accordance with the present invention, the nucleic acid may encode a heavy chain variable region which may comprise one CDRH1, one CDRH2 and one CDRH3.

[0743] Also encompassed by the present invention are nucleic acids encoding antibody variants having at least one conservative amino acid substitution.

[0744] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least one conservative amino acid substitution.

[0745] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least one conservative amino acid substitution in at least two of the CDRs.

[0746] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least one conservative amino acid substitution in the 3 CDRs.

[0747] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least two conservative amino acid substitutions in at least one of the CDRs.

[0748] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least two conservative amino acid substitutions in at least two of the CDRs.

[0749] In accordance with the present invention, the nucleic acid may encode a CDR comprising at least two conservative amino acid substitutions in the 3 CDRs.

[0750] Other aspects of the invention relate to a nucleic acid encoding a light chain variable region having at least 70%, 75%, 80% sequence identity with a sequence selected from the group consisting of SEQ ID NO.:16, SEQ ID NO.:20, SEQ ID NO.:24, SEQ ID NO.:103, SEQ ID NO.: 104, SEQ ID NO.:105, SEQ ID NO.:106, SEQ ID NO.:107, SEQ ID NO.:108, SEQ ID NO.:109, SEQ ID NO.:110, SEQ ID NO.:111, SEQ ID NO.:112, SEQ ID NO.:113, SEQ ID NO.:114, SEQ ID NO.:115, SEQ ID NO.:116, SEQ ID NO.:117, SEQ ID NO.:118, SEQ ID NO.:119, SEQ ID NO.:120, SEQ ID NO.:121, SEQ ID NO.:122, SEQ ID NO.:123, SEQ ID NO.:124 and SEQ ID NO.:125.

[0751] Yet other aspects of the invention relate to a nucleic acid encoding a heavy chain variable region having at least 70%, 75%, 80% sequence identity to a sequence selected from the group consisting of SEQ ID NO.:18, SEQ ID NO.:22, SEQ ID NO.:26, SEQ ID NO.:126, SEQ ID NO.:127, SEQ ID NO.:128, SEQ ID NO.:129, SEQ ID NO.:130, SEQ ID NO.:131, SEQ ID NO.:132, SEQ ID NO.:133, SEQ ID NO.:134, SEQ ID NO.:135, SEQ ID NO.:136, SEQ ID NO.:137, SEQ ID NO.:138, SEQ ID NO.:139, SEQ ID NO.:140, SEQ ID NO.:141, SEQ ID NO.:142, SEQ ID NO.:143, SEQ ID NO.:144, SEQ ID NO.:145, SEQ ID NO.:146 and SEQ ID NO.:147.

[0752] In yet another aspect, the present invention relates to a vector comprising the nucleic acids described herein.

[0753] In accordance with the present invention, the vector may be an expression vector.

[0754] Vector that contains the elements for transcriptional and translational control of the inserted coding sequence in a particular host are known in the art. These elements may include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' un-translated regions. Methods that are well known to those skilled in the art may be used to construct such expression vectors. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination.

[0755] In another aspect the present invention relates to an isolated cell that may comprise the nucleic acid described herein.

[0756] The isolated cell may comprise a nucleic acid encoding a light chain variable region and a nucleic acid encoding a heavy chain variable region either on separate vectors or on the same vector. The isolated cell may also

comprise a nucleic acid encoding a light chain and a nucleic acid encoding a heavy chain either on separate vectors or on the same vector.

[0757] In accordance with the present invention, the cell may be capable of expressing, assembling and/or secreting an antibody or antigen binding fragment thereof.

[0758] In another aspect, the present invention provides a cell which may comprise and/or may express the antibody described herein.

[0759] In accordance with the invention, the cell may comprise a nucleic acid encoding a light chain variable region and a nucleic acid encoding a heavy chain variable region.

[0760] The cell may be capable of expressing, assembling and/or secreting an antibody or antigen binding fragment thereof.

[0761] The examples below are presented to further outline details of the present invention.

EXAMPLES

Example 1

[0762] This example discloses the methods used to convert the Fabs into full IgG1 chimeric monoclonal antibodies.

[0763] Aside from the possibility of conducting interaction studies between the Fab monoclonals and the KAAG1 protein, the use of Fabs may be limited with respect to conducting meaningful in vitro and in vivo studies to validate the biological function of the antigen. Thus, it was necessary to transfer the light and heavy chain variable regions contained in the Fabs to full antibody scaffolds, to generate mouse-human chimeric IgG1s. The expression vectors for both the light and heavy immunoglobulin chains were constructed such that i) the original bacterial signal peptide sequences upstream of the Fab expression vectors were replaced by mammalian signal peptides and ii) the light and heavy chain constant regions in the mouse antibodies were replaced with human constant regions. The methods to accomplish this transfer utilized standard molecular biology techniques that are familiar to those skilled in the art.

[0764] Light chain expression vector—an existing mammalian expression plasmid, called pTTVH8G (Durocher et al., 2002), designed to be used in the 293E transient transfection system was modified to accommodate the mouse light chain variable region. The resulting mouse-human chimeric light chain contained a mouse variable region followed by the human kappa constant domain. The cDNA sequence encoding the human kappa constant domain was amplified by PCR with primers OGS1773 and OGS1774 (SEQ ID NOS:55 and 56, respectively). The nucleotide sequence and the corresponding amino acid sequence for the human kappa constant region are shown in SEQ ID NOS: 57 and 58, respectively. The resulting 321 base pair PCR product was ligated into pTTVH8G immediately downstream of the signal peptide sequence of human VEGF A (NM_003376). This cloning step also positioned unique restriction endonuclease sites that permitted the precise positioning of the cDNAs encoding the mouse light chain variable regions. The sequence of the final expression plasmid, called pTTVK1, is shown in SEQ ID NO.:59. Based on the sequences disclosed in Table 2, PCR primers specific for the light chain variable regions of antibodies 3D3, 3G10, 3C4 and 3A4 (SEQ ID NOS:15, 19, 23 and 47, respectively) were designed that incorporated, at their 5'-end, a sequence

identical to the last 20 base pairs of the VEGF A signal peptide. The sequences of these primers are shown in SEQ ID NOS:60, 61, 62 and 213. The same reverse primer was used to amplify all three light chain variable regions of 3D3, 3G10 and 3C4 since the extreme 3'-ends were identical. This primer (SEQ ID NO.:63) incorporated, at its 3'-end, a sequence identical to the first 20 base pairs of the human kappa constant domain. Primer SE ID NO.:214 was used to amplify the 3A4 light chain variable region. Both the PCR fragments and the digested pTTVK1 were treated with the 3'-5' exonuclease activity of T4 DNA polymerase resulting in complimentary ends that were joined by annealing. The annealing reactions were transformed into competent *E. coli* and the expression plasmids were verified by sequencing to ensure that the mouse light chain variable regions were properly inserted into the pTTVK1 expression vector. Those skilled in the art will readily recognize that the method used for construction of the light chain expression plasmids applies to all anti-KAAG1 antibodies contained in the original Fab library.

[0765] Heavy chain expression vector—the expression vector that produced the heavy chain immunoglobulins was designed in a similar manner to the pTTVK1 described above for production of the light chain immunoglobulins. Plasmid pYD11 (Durocher et al., 2002), which contains the human IgGK signal peptide sequence as well as the CH2 and CH3 regions of the human Fc domain of IgG1, was modified by ligating the cDNA sequence encoding the human constant CH1 region. PCR primers OGS1769 and OGS1770 (SEQ ID NOS:64 and 65), designed to contain unique restriction endonuclease sites, were used to amplify the human IgG1 CH1 region containing the nucleotide sequence and corresponding amino acid sequence shown in SEQ ID NOS:66 and 67. Following ligation of the 309 base pair fragment of human CH1 immediately downstream of the IgGK signal peptide sequence, the modified plasmid (SEQ ID NO.:68) was designated pYD15. When a selected heavy chain variable region is ligated into this vector, the resulting plasmid encodes a full IgG1 heavy chain immunoglobulin with human constant regions. Based on the sequences disclosed in Table 2, PCR primers specific for the heavy chain variable regions of antibodies 3D3, 3G10, 3C4 and 3A4 (SEQ ID NOS:17, 21, 25 and 45, respectively) were designed that incorporated, at their 5'-end, a sequence identical to the last 20 base pairs of the IgGK signal peptide. The sequences of these primers are shown in SEQ ID NOS:69 (3D3 and 3G10 have the same 5'-end sequence), SEQ ID NO.: 70 or SEQ ID NO.:215 for 3A4. The same reverse primer was used to amplify all three heavy chain variable regions of 3D3, 3C4 and 3G10 since the extreme 3'-ends were identical. This primer (SEQ ID NO.:71) incorporated, at its 3'-end, a sequence identical to the first 20 base pairs of the human CH1 constant domain. For the 3A4 heavy chain variable region, SEQ ID NO.:216 was used. Both the PCR fragments and the digested pYD15 were treated with the 3'-5' exonuclease activity of T4 DNA polymerase resulting in complimentary ends that were joined by annealing. The annealing reactions were transformed into competent *E. coli* and the expression plasmids were verified by sequencing to ensure that the mouse heavy chain variable regions were properly inserted into the pYD15 expression vector. Those skilled in the art will readily recognize that the method used

for construction of the heavy chain expression plasmids applies to all anti-KAAG1 antibodies contained in the original Fab library.

[0766] Expression of human IgG1s in 293E cells—The expression vectors prepared above that encoded the light and heavy chain immunoglobulins were expressed in 293E cells using the transient transfection system (Durocher et al., 2002). Other methods of transient or stable expression may be used. The ratio of light to heavy chain was optimized in order to achieve the most yield of antibody in the tissue culture medium and it was found to be 9:1 (L:H). The ability of the anti-KAAG1 antibodies (monoclonal, chimeric or humanized) to bind to recombinant Fc-KAAG1 was measured by ELISA and compared with the original mouse Fabs. [0767] The scheme used to convert other Fabs into a complete IgG (including the 3A4) and for expression of the antibodies is described in more details in international application No. PCT/CA2012/000296, the entire content of which is incorporated herein by reference.

Example 2

Humanization of the 3A4 Mouse Monoclonal Antibody

[0768] International patents No. PCT/CA2009/001586, PCT/CA2010/001795 and No. PCT/CA2012/000296, described exemplary methodology used to generate the humanized light chain and heavy chain variable regions.

[0769] Humanization of the 3A4 antibody light chain variable region involved 11 mutations to its proposed humanized framework for 100% framework humanization. Humanization of the 3A4 antibody heavy chain variable region involved 23 mutations to its proposed humanized framework for 100% framework humanization. These 100% humanized variable region sequences are labelled Lvh1 and Hvh1, respectively (SEQ ID NOs:189 and 194). Additional humanized sequences were also designed in which several residues from the 3A4 mouse sequences were retained based on careful structural and comparative sequence analyses that indicate a high probability of altering antigen-binding affinity if mutations are to be introduced at these positions. These sequences of the variable regions are labelled Lvh2, Hvh2, Hvh3 and Hvh4 (SEQ ID NOs: 190, 195, 196 and 197).

[0770] The two humanized light chain variants (including the constant region) are identified herein as Lh1 (SEQ ID NO.: 199) and Lh2 (SEQ ID NO.:200). The four humanized heavy chain variants (including the constant region) are identified herein as Hh1 (SEQ ID NO.:202), Hh2 (SEQ ID NO.:203), Hh3 (SEQ ID NO.:204) and Hh4 (SEQ ID NO.:205). The two humanized light chain and 4 humanized heavy chain can be assembled into 8 humanized antibodies (Lh1Hh1, Lh1Hh2, Lh1Hh3, Lh1Hh4, Lh2Hh1, Lh2Hh2, Lh2Hh3, and Lh2Hh4).

[0771] In the case of 3A4 light-chain humanized sequence Lvh2 (SEQ ID NO:190), framework residues Val-L2 and Lys-L45 were retained from the mouse sequence since residue L2 is semi-buried, contacts both CDR-L1 and CDR-L3, and has antigen-contacting propensity, while residue L45 approaches the heavy-chain. We note that both these murine residues may occur in human frameworks. In the case of 3A4 heavy-chain humanized sequence Hvh2 (SEQ ID NO:195), framework residues Ile-H2 and Lys-L73 were retained from the mouse sequence since residue H2 is semi-buried, contacts both CDR-H1 and CDR-H3, and has antigen-contacting propensity, while residue H73 belongs to

the Vernier zone supporting CDR-H2, and both these murine residues may occur in human frameworks. In the case of 3A4 heavy-chain humanized sequence Hvh3 (SEQ ID NO:196), Ile-H2 and Lys-L73 back-mutations were retained and in addition to these, framework residues Ile-H48, Ala-H67, Leu-H69 and Val-H71 were retained from the mouse sequence since all these additional murine residues are buried residues and belong to the Vernier zone supporting CDR-H2, and also murine residue H71 may occur in human frameworks. In the case of 3A4 heavy-chain humanized sequence Hvh4 (SEQ ID NO:197), all 6 back-mutations of the Hvh3 humanized variant were included plus additional two mouse framework residues Lys-H38 and Lys-H66 since they represent semi-buried residues close to CDR-H2. The resulting amino acid sequences of the murine and humanized chains are listed in Table 1. The alignment of the murine and humanized light chain variable regions is shown in FIG. 1a and the alignment of the murine and humanized heavy chain variable regions is shown in FIG. 1b.

[0772] FIGS. 2a and 2b is an alignment of the murine light chain variable region with the 100% humanized light chain variable region and the murine heavy chain variable region with the 100% humanized heavy chain variable region respectively. This figure illustrates the amino acids that are preserved and those that have been chosen for substitution.

Example 3

Assembly and Expression of 3A4 Humanized Variant Antibodies

[0773] The purpose of these investigations is to determine the kinetics parameters of anti-clusterin antibodies. In particular, to determine whether the humanization of the 3A4 anti-KAAG1 monoclonal antibody affects the kinetics parameters of its binding to human KAAG1. To this end, a kinetic analysis method was developed using the ProteOn XPR36 instrument from BioRad. Human KAAG1 was immobilized on a sensor chip. Full length antibodies or Fab fragments were injected and allowed to interact with the immobilized KAAG1.

Construction of Plasmid Encoding the Chimeric (Murine) Heavy and Light Chains of 3A4

[0774] The heavy and light chains of the chimeric antibody were amplified by PCR from the original murine immunoglobulin chains using the following oligonucleotide primer pairs: heavy chain, 5'-oligo encoded by SEQ ID NO: 206 and 3'-oligo encoded by SEQ ID NO:207; light chain, 5'-oligo encoded by SEQ ID NO: 208 and 3'-oligo encoded by SEQ ID NO:209. The resulting PCR products were digested by Hind III and cloned into pK-CR5 (SEQ ID NO:210) previously digested with Hind III.

Construction of Plasmids Encoding the Humanized Heavy Chain 3A4 Variants 1, 2, 3 and 4

[0775] The fragments coding for the humanized heavy chain region of the antibody 3A4 (Hh1, Hh2, Hh3 and Hh4) were ordered from GenScript (Piscataway, USA). The DNA fragments including the kozak and stop codon sequences were digested with HindIII and cloned into the HindIII site of plasmid pK-CR5 previously dephosphorylated with calf intestinal phosphatase (NEB) to prevent recircularization. FIG. 3a shows the map of the plasmid pK-CR5-3A4-HC-

variant1. All heavy chain variants of the humanized 3A4 were constructed in a similar manner.

Construction of Plasmids Encoding the Humanized Light Chain 3A4 Variants 1 and 2

[0776] The fragments coding for the human light chain regions of the antibody 3A4 (Lh1 and Lh2) were ordered from GenScript. The DNA fragments including the kozak and stop codon sequences was digested with BamHI and cloned into the BamHI site of plasmid pMPG-CR5 (SEQ ID NO:211) previously dephosphorylated with calf intestinal phosphatase (NEB) to prevent recircularization. FIG. 3b shows the map of the plasmid pMPG-CR5-3A4-LC-variant1. All light chain variants of the humanized 3A4 were constructed in a similar manner.

Transient Transfection Study

[0777] Plasmid DNA was isolated from small cultures of *E. coli* using the Mini-Prep kit (Qiagen Inc, Mississauga, ON) according to the manufacturer's recommendation. Briefly, 2 ml of LB medium containing 100 μ g/ml of ampicillin were inoculated with a single colony picked after ligation and transformation. The cultures were incubated at 37° C. overnight with vigorous shaking (250 RPM). The plasmid was then isolated from 1.5 ml of culture using the protocols, buffers, and columns provided by the kit. The DNA was eluted using 50 μ l of sterile water. Plasmid DNA was isolated from large culture of *E. coli* using the Plasmid Plus Maxi kit (Qiagen Inc, Mississauga, ON) according to the manufacturer's recommendation. 200 mL of LB medium containing 100 μ g/mL ampicillin were inoculated with a single fresh colony of *E. coli* and incubated overnight at 37° C. with vigorous shaking (250 RPM). The bacteria (130 mL of culture for the heavy chain and 180 mL of culture for the light chain) were pelleted by centrifugation at 6000 \times g, for 15 min, at 4° C. and the plasmid was isolated using the protocols, buffers and columns provided by the kit. The pure plasmids was resuspended in sterile 50 mM Tris, pH8 and quantified by measuring the optical density at 260 nm. Before transfection the purified plasmid were sterilized by extraction with phenol/chloroform followed by ethanol precipitation. The plasmid were resuspended in sterile 50 mM Tris, pH 8 and quantified by optical density at 260 nm.

[0778] Before transfection, the cells (CHO-cTA) were washed with PBS and resuspended at a concentration of 4.0×10^6 cell/ml in growth medium (CD-CHO, Invitrogen) without dextran sulfate for 3 h in suspension culture. For each plasmid combination, 45 ml of cells were transfected by adding slowly 5 ml of CDCHO medium supplemented with 10 μ g/ml of each plasmid and 50 μ g/ml of polyethyl-enimine (PEI Max; Polysciences). The final concentration was 1 μ g/ml of each plasmid and 5 μ g/ml of PEI. After 2 h, the cells were transferred at 30° C. The next days, 50 μ g/ml of dextran sulfate and 3.75 ml of each supplement (Efficient Feed A and B Invitrogen) were added to the cells and they were incubated at 30° C. for 13 days. 2.5 ml of Feed A and 2.5 ml of Feed B were added at day 4, 6, 8 and 11. On day 13, the supernatant was clarified by centrifugation and filtered through a 0.22 μ M filter.

[0779] CHO cells (CHOcTA) were transfected with plasmids encoding the different variants of humanized heavy and light chains of the 3A4 antibody regulated by the CR5 promoter. Transfection with different combinations of light

and heavy chains was performed. As control, cells were also transfected with plasmids encoding the chimeric/murine antibody.

Purification of Antibody

[0780] 15 ml of supernatant from the CHO cell transfections were concentrated by centrifugation using the Amicon Ultra (Ultacell-50k) cassette at 1500 rpm. The concentrated antibody (550 μ l) was purified using the Nab spin kit Protein A Plus (Thermo Scientific) according to the manufacturer's recommendations. The purified antibodies were then desalted using PBS and the concentrating Amicon Ultra (Ultracel-10K) cassette at 2500 rpm to a final volume of 250 μ l. The purified antibody was quantified by reading the OD₂₈₀ using the Nanodrop spectrophotometer and kept frozen at -20° C. An aliquote of the purified antibody was resuspended into an equal volume of Laemml 2x and heated at 95° C. for 5 min and chilled on ice. A standard curve was made using known amount of purified human IgG1 kappa from Human Myeloma plasma (Athens Research). The samples were separated on a polyacrylamide Novex 10% Tris-Glycine gel (Invitrogen Canada Inc., Burlington, ON) and transferred onto a Hybond-N nitrocellulose membrane (Amersham Bioscience Corp., Baie d'Urfee, QC) for 1 h at 275 mA. The membrane was blocked for 1 h in 0.15% Tween 20, 5% skimmed milk in PBS and incubated for 1 hr with an Goat anti-Human IgG (H+L) conjugated to Cy5 (Jackson, Cat#109-176-099). The signal was revealed and quantified by scanning with the Typhoon Trio+ scanner (GE Healthcare). As shown in FIG. 4, all combinations of the 3A4 humanized antibody variants were expressed in CHO cells.

Example 4

Kinetic Analysis of Murine and Humanized 3A4 Antibody

Supplies

[0781] GLM sensorchips, the Biorad ProteOn amine coupling kit (EDC, sNHS and ethanolamine), and 10 mM sodium acetate buffers were purchased from Bio-Rad Laboratories (Mississauga, ON). HEPES buffer, EDTA, and NaCl were purchased from Sigma-Aldrich (Oakville, ON). Ten percent Tween 20 solution was purchased from Teknova (Hollister, Calif.). The goat anti-human IgG Fc fragment specific antibody was purchased from Jackson ImmunoResearch. The gel filtration column Superdex 75 10/300 GL was purchased from GE Healthcare.

Gel Filtration

[0782] The KAAG1 protein at a concentration of 3.114 mg/ml and a volume of 220 μ L was injected onto the Superdex G75 column. The separation was done at 0.4 ml/min in HBST running buffer (see below) without Tween 20. The volume of the fractions collected was 500 μ L. Concentration of KAAG1 in each fraction was determined by OD₂₈₀ using an extension coefficient of 5500 and a MW of 8969. FIG. 5 represents the profile of the gel filtration of KAAG1. A small peak of potential aggregate is eluting at around 11 ml. The protein eluting at 13 ml was used as analyte for the SPR assay (fractions 15-19).

SPR Biosensor Assays

[0783] All surface plasmon resonance assays were carried out using a BioRad ProteOn XPR36 instrument (Bio-Rad Laboratories Ltd. (Mississauga, ON) with HBST running buffer (10 mM HEPES, 150 mM NaCl, 3.4 mM EDTA, and 0.05% Tween 20 pH 7.4) at a temperature of 25° C. The anti-mouse Fc capture surface was generated using a GLM sensorchip activated by a 1:5 dilution of the standard Bio-Rad sNHS/EDC solutions injected for 300 s at 30 μ L/min in the analyte (horizontal) direction. Immediately after the activation, a 13 μ g/mL solution of anti-human IgG Fc fragment specific in 10 mM NaOAc pH 4.5 was injected in the analyte direction at a flow rate of 25 μ L/min until approximately 8000 resonance units (RUs) were immobilized. Remaining active groups were quenched by a 300 s injection of 1M ethanolamine at 30 μ L/min in the analyte direction, and this also ensures mock-activated interspots are created for blank referencing. The screening of the 3A4 variants for binding to KAAG1 occurred in two steps: an indirect capture of 3A4 variants from cell supernatant onto the anti-human IgG Fc fragment specific surface in the ligand direction (vertical) followed by a KAAG1 injection in the analyte direction. Firstly, one buffer injection for 30 s at 100 μ L/min in the ligand direction was used to stabilize the baseline. For each 3A4 capture, unpurified 3A4 variants in cell-culture media were diluted to 4% in HBST, or approximately 1.25 μ g/mL of purified 3A4 in HBST was used. Four to five 3A4 variants along with wild-type 3A4 were simultaneously injected in individual ligand channels for 240 s at flow 25 μ L/min. This resulted in a saturating 3A4 capture of approximately 400-700 RUs onto the anti-human IgG Fc fragment specific surface. The first ligand channel was left empty to use as a blank control if required. This 3A4 capture step was immediately followed by two buffer injections in the analyte direction to stabilize the baseline, and then the gel filtration purified KAAG1 was injected. For a typical screen, five KAAG1 concentrations (8, 2.66, 0.89, 0.29, and 0.098 nM) and buffer control were simultaneously injected in individual analyte channels at 50 μ L/min for 120 s with a 600s dissociation phase, resulting in a set of binding sensorgrams with a buffer reference for each of the captured 3A4 variants. The anti-human IgG Fc fragment specific-3A4 complexes were regenerated by a 18 s pulse of 0.85% phosphoric acid for 18 s at 100 μ L/min to prepare the anti-human IgG Fc fragment specific surface for the next injection cycle. Sensorgrams were aligned and double-referenced using the buffer blank injection and interspots, and the resulting sensorgrams were analyzed using ProteOn Manager software v3.0. The kinetic and affinity values were determined by fitting the referenced sensorgrams to the 1:1 Langmuir binding model using local R_{max} , and affinity constants (K_D , M) were derived from the resulting rate constants (k_d s^{-1} / k_a M $^{-1}$ s $^{-1}$).

Determination of Rate and Affinity Constants

[0784] FIG. 6 summarizes the association (k_a , 1/Ms) and dissociation (k_d , 1/s) rate constants as well as affinity (K_D , M) constants for the interaction of KAAG1 with purified murine 3A4, murine 3A4 transiently expressed as a chimeric and transiently expressed humanized variants. These constants are graphically represented in FIG. 7a-c. The association rate constant is very similar for the pure parental, chimeric and humanized 3A4 variants (FIG. 7a). The dis-

sociation rate constants is similar for the transiently expressed chimeric as compared to the pure parental 3A4 with suggest that the transfection procedure did not alter the parameters of the interaction of KAAG1 with the antibody (FIG. 7b). However, all humanized variants seem to have a slightly altered off rate, i.e. quicker dissociation rate (FIG. 7b). This is reflected in the affinity constants (FIG. 7c). In summary, there is a linear correlation between the binding affinity (log K_D) of the humanized variant and the number of back-mutations made in the parent antibody (LcHc) with a decrease in the binding affinity as the number of mutations is increasing. However, the difference in binding affinity is only 4 fold different between the worse variant (H1L1, 0.47 nM) which has no mouse residue retained and the best variant which has 10 mouse residues retained (H4L2, 0.1 nM). Finally, the binding affinity of all variants for KAAG1 was found to be sub-nanomolar and the best variant (H4L2, 0.1 nM) exhibited an affinity about 6-fold weaker than the murine (LcHc, 0.057 nM). Overall, these results indicate that humanization was successful as all of the variants displayed high affinity for KAAG1.

Example 5

Binding of 3A4 Humanized Variants to KAAG1 in an ELISA

[0785] ELISA methods were also used to compare the binding activity of the humanized 3A4 variants to the murine 3A4 antibody. Recombinant human KAAG1 was coated in 96-well plates O/N, washed and incubated for 1 h at RT with increasing quantities of murine or humanized 3A4 variants. Following another round of washing steps, an anti-human antibody conjugated to HRP was added to the wells and the bound 3A4 antibody was measured calorimetrically at Abs_{450} . As shown in FIG. 8a, the humanized variants (Lh1Hh1, Lh1Hh2, Lh1Hh3 and Lh1Hh4) displayed very similar binding to KAAG1 when compared to the murine 3A4 (LcHc), which has a high affinity of 0.016 nM. This result indicated that all four humanized heavy chain variants were comparable to the original h3A4 heavy chain when assembled with the L1 variant of the humanized light chain. FIG. 8a shows the results when the heavy chain variants were assembled with Lh2 variant of the 3A4 humanized light chain. In this instance, there was a difference in the binding of the variants. For example, Lh2hh4 was the variant with the closest profile compared to the murine 3A4. This was in agreement with the SPR data, which showed that the variant 4 of the heavy chain had the highest affinity for KAAG1. Taken together, these binding results show that the humanized variants all interact with human KAAG1 in this assay. Although there were some subtle differences, the binding in ELISA was in concordance with the SPR results.

Example 6

Binding of 3A4 Humanized Variants on the Surface of Cancer Cells

[0786] Flow cytometry was used to evaluate the capacity of the humanized 3A4 variants to interact with KAAG1 expressed on the surface of cancer cells. To this end, SKOV-3 ovarian cancer cells, which we had previously showed were efficiently bound by 3A4 by flow cytometry, were incubated with the eight humanized variants and the

original murine antibody. Briefly, SKOV-3 cells were detached from the plate with EDTA and incubated on ice with either 3.0 mg/ml, 0.3 mg/ml or 0.3 mg/ml of the antibodies for 1 h. After three washing steps, the cells were incubated with the secondary antibody, anti-human IgG-conjugated to FITC for 1 h on ice. Cell surface fluorescence was measured in a flow cytometer and the values are shown in the histogram of FIG. 9. As depicted, all variants could detect KAAG1 on the surface on unpermeabilized and the strongest signals were obtained at the highest concentration of 3A4 antibodies (3 mg/ml) and decreased as the concentration of the antibody was decreased. Among the different variants, the ones with the most murine back-mutations (FIG. 9, see Lh1Hh4 and Lh2Hh4) interacted with KAAG1 on the surface of cells with the highest activity. In fact, Lh1Hh4 and Lh2Hh4 appeared to be slight improved cell surface binding to KAAG1 compared to the murine 3A4 antibody (LcHc).

Example 7

[0787] This example describes the use of anti-KAAG1 antibodies for detecting the expression of KAAG1 in TNBC. [0788] As a means of determining if the KAAG1 antigen was present in TNBC samples, immunohistochemistry was conducted. Tissue microarrays were obtained that contained 139 breast tumor samples generated from patient biopsies. Paraffin-embedded epithelial breast tumor samples were placed on glass slides and fixed for 15 min at 50° C. Deparaffinization was conducted by treating 2× with xylene followed by dehydration in successive 5 min washes in 100%, 80%, and 70% ethanol. The slides were washed 3× in PBS for 5 min and treated with antigen retrieval solution (1 mM EDTA, pH 8.0) to unmask the antigen. Endogenous peroxide reactive species were removed by incubating slides with H₂O₂ in methanol and blocking was performed by incubating the slides with serum-free blocking solution (Santa Cruz Biotech) for 5 min at room temperature. The primary antibody (anti-KAAG1 3A4) was added for 1 h at room temperature. KAAG1-reactive antigen was detected by incubating with biotin-conjugated mouse anti-kappa followed by streptavidin-HRP tertiary antibody. Positive staining was revealed by treating the slides with DAB-hydrogen peroxide substrate for less than 5 min and subsequently counterstained with hematoxylin. The KAAG1 protein was found to be expressed at very high levels in the vast majority of breast tumor samples. A representative array containing 139 tumors is depicted in FIG. 10. In particular, 15/20 biopsy samples confirmed to be TNBC (FIG. 10, samples identified by an asterisk) were stained strongly for KAAG1 expression with the 3A4 antibody. Taken together, these immunohistochemical studies illustrate the utility of detecting KAAG1 in breast cancer, in particular TNBC, with the monoclonal antibodies.

Example 8

[0789] This example describes the use of anti-KAAG1 antibodies for detecting the expression of KAAG1 in TNBC cell lines.

[0790] Combined results from the bioinformatics analysis of the primary structure of the cDNA encoding KAAG1, biochemical studies, and immunohistochemical detection of the protein in epithelial cells suggested that the KAAG1 antigen was located at the cell surface. However, more direct

evidence was required to demonstrate that KAAG1 is indeed expressed on the surface of TNBC cells. To conduct this analysis, breast cancer cell lines were obtained from a commercial vendor (ATCC, Manassas, Va.) and used in flow cytometry experiments. RT-PCR expression analyses using KAAG1 mRNA specific primers previously showed that certain breast cancer cell lines expressed KAAG1 mRNA (see PCT/CA2007/001134). Therefore some of these cell lines were selected to determine the presence of the KAAG1 antigen at their surface. To verify this, the triple-negative MDA-MB-231, MDA-MB-436, MDA-MB-468, BT-20 and BT-549 cell lines were tested for surface expression of KAAG1 using the 3A4 anti-KAAG1 antibody. In addition, breast cancer cell lines, which are not triple-negative, namely T47D and MCF-7, were also included in the analysis. Finally, a control cell line, 293-6E, that exhibits undetectable level of KAAG1 antigen expression was included as a negative control for the flow cytometry experiment (FCM). For the purpose of FCM analysis, the cells were harvested using 5 mM EDTA, counted with a hemocytometer, and resuspended in FCM buffer (0.5% BSA, 0.01% goat serum in 1×PBS) at a cell density of 2×10⁶ cells/ml. Chimeric 3A4 anti-KAAG1 antibody or a control IgG were added to 100 µl of cells at a final concentration of 0.5 µg/ml and incubated on ice for 1 h. The cells were washed in cold FCM buffer to remove unbound antibodies, resuspended in 100 µl FCM buffer containing anti-human IgG conjugated to FITC secondary antibody (diluted 1:200) and incubated on ice for 45 min. Following another washing step in cold FCM buffer, the cells were resuspended in 300 µl FCM buffer and analyzed with a flow cytometer. 10 µg/ml propidium iodide was added to each sample to allow for gating of dead cells. The results from three independent experiments are shown in FIG. 11, where the mean fluorescence intensity (MFI) fold Induction represents the geometric mean value of the signal obtained when the cells were incubated with 3A4 antibody over that of the negative human IgG control, which was arbitrarily set to 1. Incubation of the antibodies with the control 293-6EHEK-293 cells resulted in fluorescence signals that were similar to the signal obtained when the cells were incubated in the absence of the primary antibody. Furthermore, there was no significant difference between the signal obtained with 3A4 compared to the control IgG. Moreover, when the control IgG was incubated with the breast cancer cell lines, the signals were very similar to those obtained with the control 293-6E cells. By contrast, detectable fluorescence signal was observed when the 3A4 antibody was incubated with all breast cancer cell lines. Although variable amount of fluorescence was observed, the highest amount of KAAG1 was detected on the surface of MDA-MB-231 and BT-20 cell lines, two TNBC cell lines (see FIG. 11, TNBC cell lines are indicated with an asterisk). In fact all five TNBC cell lines were positive for KAAG1 expression under these conditions. T47 D and MCF-7 cells also expressed KAAG1. Taken together, this flow cytometry analysis shows that TNBC cell line express high level of KAAG1 on their cell surface.

Example 9

[0791] Methods for Use of the 3A4 Anti-KAAG1 Antibody as an Antibody Conjugate

[0792] As demonstrated above, the KAAG1 antigen was detected by 3A4 on the surface of cancer cells using flow cytometry. There are several different molecular events that

can occur upon binding of an antibody to its target on the surface of cells. These include i) blocking accessibility to another cell-surface antigen/receptor or a ligand, ii) formation of a relatively stable antibody-antigen complex to allow cells to be targeted via ADCC or CDC, iii) signalling events can occur as exemplified by agonistic antibodies, iv) the complex can be internalized, or v) the complex can be shed from the cell surface. To address this question we examined the behavior of the 3A4 antibody-KAAG1 complex on the surface of the cells. The ovarian cancer cell line, SKOV3, was used as a positive control in this experiment since it was successfully used in previous internalization experiments (see PCT/CA2009/001586). MDA-MB-231 TNBC cells were plated, washed, and incubated with 0.5 µg/ml chimeric 3A4 antibody as described in Example 3. After washing, complete medium was added and the cells placed at 37° C. for up to 60 minutes. The cells were removed at the indicated times (see FIG. 12), rapidly cooled, prepared for flow cytometry with FITC-conjugated anti-human IgG and the results were expressed as the percentage of mean fluorescence intensity remaining on the cell surface compared with the signal at time 0 minutes (see FIG. 12, Surface signal (% remaining at 0 min)). As illustrated in FIG. 12, the fluorescence signal decreased rapidly when 3A4 was incubated with MDA-MB-231 cells (FIG. 12, black bars, indicated by MDA-231 in the figure) and seemed to achieve a maximum loss of signal by 30-45 minutes. The loss of signal was comparable to that observed when 3A4 was incubated with the SKOV3 cells (FIG. 12, grey bars). This result indicates that the 3A4/KAAG1 complex disappeared from the cells which indicated that an internalization of the complex likely occurred. Preliminary studies to elucidate the mechanism responsible for this decrease in cell-surface fluorescence have revealed that the complex appears to be internalized. Similar results are expected with humanized 3A4 antibodies.

[0793] Similar results were observed in two additional TNBC cell lines, namely MDA-MB-436 (FIG. 13) and BT-20 (FIG. 14) confirming that the internalization of the 3A4/KAAG1 complex on the surface of multiple TNBC cell lines. By contrast, despite similar MFI levels of 3A4 binding on the surface of MDA-MB-436 and T47D (FIG. 11), the loss of signal at the cell surface was not observed when 3A4 was incubated with the T47D cell line. This finding suggests the possibility that internalization of the 3A4/KAAG1 complex might occur to a higher degree in TNBC cells (FIG. 15) compared with cells that are not triple-negative.

[0794] These findings were further confirmed by conducting immunofluorescence on live cells to see if this internalization could be microscopically observed. MDA-MB-231 cells were seeded on cover slips and once the cells were properly adhered, fresh medium was added containing the 3A4 anti-KAAG1 chimeric antibody at 10 µg/ml and incubating at 37° C for 4 h. The cells were washed in PBS then fixed in 4% paraformaldehyde (in PBS) for 20 min. After washing, the cells were permeabilized with 0.1% Triton X-100 in PBS for 5 min. Blocking was performed with 1.5% dry milk in PBS for 1 h. Lysosomal-associated membrane protein 1 (LAMP1, Chang et al., 2002) was detected by incubating with anti-LAMP1 (Santa Cruz, sc-18821, diluted 1:100) in 1.5% milk in PBS for 2 h. After washing in PBS, the secondary antibodies were added together in 1.5% milk and incubated for 1 h. For the anti-KAAG1 chimeric antibody the secondary antibody was a Rhodamine Red-X conjugated donkey anti-human IgG (H+L) diluted 1:300.

For the anti-LAMP1 antibody the secondary antibody was a DyLight488-conjugated goat anti-mouse IgG (H+L) diluted 1:300. Both secondary antibodies were from Jackson ImmunoResearch. The coverslips were washed in PBS and mounted in ProLong Gold antifade reagent with DAPI. As seen in FIG. 7, after 4 hours of incubation at 37° C in the presence of MDA-MB-231 cancer cells, the 3A4 antibody was able to be detected in complexes predominantly near the peri-nuclear area (arrows, see red staining in the left panel in FIG. 16), which is typical of endosomal-lysosomal-based internalization pathways. This observation was further confirmed when a lysosomal marker, LAMP1 was visualized and was found to be also expressed in these areas (arrows, see green staining in the middle panel in FIG. 16). Importantly, the merging of the two images resulted in the appearance of yellow-orange structures indicating that the 3A4 and the anti-LAMP1 antibodies were present in the same structures (arrows, see yellow staining in the right panel in FIG. 16). The co-localization of 3A4, which binds to KAAG1 on the surface of cancer cells, with LAMP1, a marker of late endosomes/lysosomes, shows that the antibody/antigen complex was internalized and that it follows a pathway that is amenable for the release of a payload that would be conjugated to the 3A4 antibody. Identical results were observed in another TNBC cell line, BT-20 (see FIG. 17). [0795] Taken together, these studies demonstrated that antibodies specific for KAAG1 such as 3A4 might have uses as an antibody conjugate, in particular, as an antibody-drug conjugate (ADC). Thus, the high level of TNBC specificity of KAAG1 coupled with the capacity of this target to be internalized in cells support the development of applications as an ADC.

Example 10

[0796] In order to demonstrate that anti-KAAG1 antibodies can efficiently target and kill cells lacking ER protein expression, PgR protein expression and/or showing absence of HER2 protein over-expression, we generated two antibody drug conjugates (ADCs); 3A4-ADC1 and 3A4-ADC2.

[0797] To that effect, we used the chimeric 3A4 antibody and conjugated a cytotoxic drug via a highly stable peptide linker that is selectively cleaved by lysosomal enzymes after internalization (3A4-ADC1), or conjugated with another anti-mitotic drug via a non-cleavable linker (3A4-ADC2). The cytotoxic drug may become active once internalized in the cells.

[0798] The ability of the 3A4 ADCs to detect KAAG1 on the surface of TNBC cells was determined using flow cytometry using the methods described herein. Briefly, unconjugated 3A4, 3A4-ADC1, 3A4-ADC2 and a control IgG were incubated in the presence of MDA-231 TNBC cells, which are KAAG1 positive. Results indicated that the conjugation of 3A4 with either drug did not affect its binding to triple negative breast cancer cells such as MDA-231 (data not shown).

[0799] Having confirmed that the 3A4 ADCs could bind to KAAG1 expressed on the surface of TNBC cells, their cytotoxicity against these cells was evaluated in cell proliferation assays. MDA-231 or TOV-112D cells were cultured as described above in previous examples. The cells were seeded at 3000 cells/well in 96-well plates in 200 µl of media per well overnight at 37° C., in 5% CO₂. The next day, media was replaced with fresh media containing antibodies, at concentrations ranging from 0.122 nM to 500 nM, and

incubated at 37° C. for 72 h. All conditions were performed in triplicate wells. The number of surviving cells was determined by performing a cellular proliferation assay, using CellTiter 96 Aqueous One Solution (Promega, Madison, Wis.), following manufacturer's protocol. Following the collection of the raw data, the results were expressed as the percentage survival compared to the number of cells in the wells treated with PBS, which was set to 100%. Results indicated that the unconjugated 3A4 did not affect the proliferation of MDA-231 cells at all concentrations tested. In contrast, the 3A4 ADCs tested showed significant cytotoxicity.

[0800] These results indicate that 3A4 antibody conjugates may be used as an alternative treatment for patients having triple negative breast cancer or basal-like breast cancer. Similar results are expected for conjugates based on humanized 3A4 antibodies.

[0801] The present description refers to a number of documents, the content of which is incorporated herein by reference in their entirety.

Sequences Referred to in the Description

[0802]

```

SEQ ID NO.: 1
GAGGGGCATCAATCACACCGAGAAGTCACAGCCCCCTAACCACTGAGGTGTGGGGGGTAGGGAT
CTGCATTTCTTCATATCAACCCCACACTATAGGGCACCTAAATGGGTGGCGGTGGGGAGACCG
ACTCACTTGAGTTCTTGAAGGCTTCCTGGCCTCCAGCCACGTAATTGCCCGCTCTGGATCTG
GTCTAGCTTCGGATTCGGTGGCCAGTCAGCGGGGTGATAGTTCCTGACGGCCCAAAGGGTG
CCTGAACGCGCCGGTCACCTCCTTCAGGAAGACTTCGAAGCTGGACACCTCTTCATGGATG
ACGACGCGCGCCCGTAGAAGGGTCCCGTTGCGGTACACAAGCACGCTTCAACGACGG
CTGAGACAGGTGGCTGGACCTGGCGCTGCTGCCCTCATCTTCCCCGTGGCCGCCCTCAGCT
CGCTGCTTCGCGTCGGGAGGCACCTCCGCTGTCAGCGCCCTACCGCACCCAGGGCGGGGAT
CGCCTCTGAACACGAGAAAATGACGAATCCACAGGTGAAAGAGAAGTAAAGGGGTGCGCC
TAGGCGTCCACCCAGGGAGACACTAGGAGCTTGCGAGACTGGCTAAGGCTCAAGTTTTCA
CCGTGGCGTGCACAGCCAATCAGGACCCGAGTGCAGCACCCAGGTTACCTGCTACGGG
CAGAATCAAGGTGGACAGCTCTGAGCAGGAGCCGGAAACGCGCGGGCTTAAACAGGCACG
CTAGTGAGGGCAGGGAGAGAGGAGCGCACACACACACACACAAATATGGTAAACCCAAAT
TTCTTACATCATATCTGTGCTACCCCTTCAAACAGCCTA

SEQ ID NO.: 2
MDDDAAPRVEGPVAVHKHALDGLRQVAGPAAAHLPRWPPPQLAASRREAPPLSQRPHRTQG
AGSPPETNEKLTNPQVKEK

SEQ ID NO.: 3
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTCAATAGGACAGAAGGTCACTATGAA
CTGCAAGTCCAGTCAGAGCCTTTAAATAGTAACCTTCAAAAGAACCTTTGGCTGGTACAGC
AGAAACCCAGGCCAGTCTCCTAAACTCTGATATACTTGCATCCACTCGGGAACTAGTATCCCT
GATCGCTTCATAGGCAGTGGAATCTGGGACAGATTCACTTACCATCAGCAGTGTGCAGGCTGA
AGACCTGGCAGATTACTTCTGTCAGAACATTATAGCACTCCGCTCACGTTGGTGTGGACCA
AGCTGGAGCTGAAAGCTGTGGCTGACCCTGTCTCATCTTCCGCCATCTGATGAGCAGTTG
AAATCTGGAACTGCCCTGTTGTGCTGTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTACA
GTGGAAGGTGGATAACGCCCTCAATCGGTAACTCCCAGGAGAGTGTACAGAGCAGGACAGCA
AGGACAGCACCTACAGCCTCAGCAGCACCCGCTGACGCTGAGCAAAGCAGACTACGAGAAACAAA
GTCTACGCCCTGCGAAGTCACCCATCAGGGCCTGAGCTGCCGTACAAAGAGCTTCAACAGGGG
AGAGTGT

SEQ ID NO.: 4
DIVMTQSPSSLAVS1QKVTMNCSSQSLNSNFQKNFLAWYQQKPGQSPKLLIYFASTRESSIP
DRFIGSGSGTDFLTLSVQAEDLADYFCQQHYSTPLTFGAGTKLELKAVAAPSVIDFPPSDEQL

```

- continued

KSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSYLSSTLTLKADYEKHK
VYACEVTHQGLSPVTKSFNRGEC

SEQ ID NO. : 5
GAGGTTCAAGCTGCAGCAGTCTGTAGCTGAGCTGGTGAGGCTGGGCTTCAGTGACGCTGCTCG
CAAGGCTCGGCTACATATTACTGACTATGAGATACTGGGTGAAGCAGACTCCTGTGCATG
GCCTGGAATGGATTGGGTTATTGATCCTGAAACTGGTAATACTGCCTCAATCAGAAGTTCAAG
GCGAAGGCCACACTGACTGCAGACATATCCTCCAGCACAGCCTACATGGAACCTCAGCAGTTGAC
ATCTGAGGACTCTGCCGTCTATTACTGTATGGGTATTCTGATTATTGGGCCAAGGCACCACTC
TCACAGTCTCCTCAGCCTCAACGAAGGGCCATCTGTCTTCCCCTGGCCCCCTCTCCAAGAGC
ACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGTCAAGGACTACTTCCCCTGAACCGGTGACGGT
GTCGTGGAACCTAGCGCCCTGACCAGCGCGTGCACACCTCCCGCTGTCTCACAGTCTCAG
GACTCTACTCCCTCAGCAGCGTGGTACCGTGCCTCCAGCAGCTGGCACCCAGACCTACATC
TGCAACGTGAATCACAAGGCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCAAATCTGTGA
ATTCACTCACACATGCCACCGTGCCAGCACCTGAACCTCTGGGGGACCGTCAGTCTCCTCT
TCCCCCAAAACCCAAGGACACCCCTATGATCTCCCGACCCCTGAGGTACATGCGTGGTGGT
GACGTGAGCCACGAAGACCCCTGAGGTCAAGTTCAACTGGTACGTGGACGGGTGGAGGTGATAA
TGCCAAGACAAAGCCGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCG
TCCCTGCACCAGGACTGGTGAATGGCAAGGAGTACAAGTGCAGGCTCCTAACAAAGCCCTCCA
GCCCCCATCGAGAAAACATCTCAAAGCCAAGGGCAGCCCGAGAACACCAGGTGTACACCC
GCCCCCATCCGGGATGAGCTGACCAAGAACCCAGGTGACGCTGACCTGCCTGGTCAAAGGTTCT
ATCCCAGCGACATCGCCGTGGAGTGGAGAGCAATGGCAGCCGGAGAACAAACTACAAGACCA
CCTCCCGTGTGGACTCCGACGGCTCTTCTCTACAGCAAGCTCACCGTGGACAAGAGCAG
GTGGCAGCAGGGAACGTCTTCTATGCTCCGTGATGCATGAGGCTCTGCACAACCAACTACACG
AGAAGAGGCCTCTCCCTGTCTCCGGAAA

SEQ ID NO. : 6
EVOLQOSVAELVRPGASVTLCKASGYIFTDYEIHVKQTPVHGLEWIGVIDPETGNTAFNQKFK
GKATLTADISSSTAYMELSSLTSEDAVYYCMGSDYWGQGTTLVSSASTKGPSVFPLAPSSKS
TSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVTVPSLGLTQTYI
CNVNHKPSNTVKDKKVEPKSCFTHCPPCPAPELLGGPSVFLFPKPKDLMISRTPEVTCVV
DVSHEDEPVKPNWYVDGVEVHNAKTKPREEQYNSTYRVSVLTVLHQDWLNGKEYKCKVSNKALP
APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAWESENQGPENNYKTT
PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHYTQKSLSLSPGK

SEQ ID NO. : 7
GATGTTTGATGACCCAACTCCACGCTCCCTGTCTGTCAAGTCTGGAGATCAAGCCTCCATCTC
TTGTAGATCGAGTCAGGCCTTTACATAGTAATGGAAACACCTATTAGAATGGTATTTGCAGA
AACCAGGCCAGCCTCAAAGGTCTGATCTACAAAGTTCAACCGATTCTGGGGTCCAGAC
AGGTTCACTGGCAGTGGATCAGGGACAGATTCACACTCAAGATCAGCGGAGTGGAGGCTGAGGA
TCTGGGAGTTTAACTGCTTCAAGGTTACATGTTCTCTCACGTTGGTGTGGACCAAGC
TGGAGCTGAAAGCTGGCTGCACCATCTGCTTCACTTCCCGCATCTGATGAGCAGTTGAAA
TCTGGAACTGCCCTGTTGTGCGCTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTACAGTG
GAAGGTGGATAACGCCCTCCAATCGGGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCAAGG

- continued

ACAGCACCTACAGCCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAAAGTC

TACGCCTGCGAAGTCACCCATCAGGCCTGAGCTGCCGTACAAAGAGCTCAACAGGGAGA

GTGT

SEQ ID NO. : 8

DVLMTQTPRSLSVSLGDQASI SCRSSLHSNGNTYLEWYLQKPGQPPKVLIYKVSNRFSGVPD

RFSGSGSGTDFTLKISGV EAEDLGYYCFQGS HVPLTFGAGTKLELKAVAAPS VIFPPSDEQLK

SGTASVVCNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYLSSTTLSKADYEHKV

YACEVTHQGLSSPVTKSFNRGEC

SEQ ID NO. : 9

GAGATCCAGCTCAGCAGTCTGGACCTGAGTTGGTGAAGCCTGGGCTTCAGTGAAGATATCCTG

TAAGGCTTCTGGATAACCTTCACTGACA ACTACATGA ACTGGGTGAAGCAGAGCCATGGAAAGA

GCCTTGAGTGGATTGGAGATATTAATCCTTACTATGGTACTACTACCTACAACCAGAAGTTCAAG

GGCAAGGCCACATTGACTGTAGACAAGTCCTCCGCACAGCTACATGGAGCTCCGGGCTGAC

ATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGATGACTGGTTGATTATTGGGCAAGGGA

CTCTGGTCACTGTCTGCAGCCTCACGAAGGGCCATCTGCTTTCCCTGGCCCCCTCTCC

AAGAGCACCTCTGGGGCACAGCGGCCCTGGCTGCCTGGTCAAGGACTACTTCCCAGCGGT

GACGGTGTCTGGAACTCAGGCCCTGACCAGCGCGTGCACACCTCCGGCTGTCCTACAGT

CTTCAGGACTCTACTCCCTCAGCAGCTGGTGAACCGTGCCTGGCACCCAGACC

TACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCAAATC

TTGTGAATTCACTCACACATGCCAACCGTGGCCAGCACCTGA ACTCCTGGGGGACCGTCAGTCT

TCCTCTCCCCAAAACCAAGGAACCCCTCATGATCTCCGGACCCCTGAGGTACATCGTG

GTGGTGGACGTGAGCACGAAGACCTGAGGTCAAGTCAACTGGTACGTGGACGGCGTGGAGGT

GCATAATGCCAAGACAAGCCGGGAGGACCGAGTACAACACGACCGTACCGTGTGGTACCGTCC

TCACCGTCTGACCCAGGACTGGCTGAATGGCAAGGAGTACAAGTGAAGGTCTCCAACAAAGCC

CTCCCAGCCCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCCCGAGAACACAGGTGA

CACCTGCCCCATCCGGATGAGCTGACCAAGAACAGGTACGGCTGACCTGGTCAAAG

GCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGCAGCCGGAGAACAACTACAAG

ACACAGCCTCCGTCTGGACTCCGACGGCTCTTCTACAGCAAGCTACCGTGGACAA

GAGCAGGTGGCAGCAGGGAACGTCTTCTCATGCTCCGTATGCGATGAGGCTCTGCACAAACACT

ACACGCAGAAGAGCCTCCGTCTCCGGAAA

SEQ ID NO. : 10

EIQLQQSGPELVPKGASVKISCKASGYTFTDNYMNVVKQSHGKSLEWIGDINPYGTTYNQKFK

JKATLTVDKSSRTAYMELRGLTSEDAVYYCARDWFDYWGQGTLVTVAASSTKGPSVFPLAPSS

KSTSGGTAALGCLVKDYFPEPVTWSWNSGALTSGVHTFPAVLQSSGLYLSVVTVPSSSLGTQT

YICNVNHPKPSNTKVDKKVEPKSCEFTHTCPCCPAPELLGGPSVFLPPPDKTLMSRTPEVTCV

VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA

LPAPIEKTIISKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK

TPPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

SEQ ID NO. : 11

GACATCGTTATGCTCAGTCTCCATCTTCCATGTATGCATCTCTAGGAGAGAGACTACTACAC

TTGCAAGGCGAGTCAGGACATTATACTTTAACTGGTCCAGCAGAAACCAGGAAAATCTC

- continued

CAAAGACCCTGATCTTCGTGAAACAGATTGGTAGATGGGTCCCCATCAAGGTTAGTGGCAGTGGATCTGGCAAGATTCTCTCACCATCAGCAGCCTGGAGTTGAAGATTGGAAATTATTC TTGTCTACAGTATGAGATTCCGTCACGTTGGTGGACCAAGCTGGAGCTGAGAGCTG TGGCTGCACCATCTGCTTCATCTTCCCGCATCTGATGAGCAGTTGAAATCTGAAACTGCCTCT GTTGTGTGCCTGCTGAATAACTCTATCCCAGAGAGGCCAAGTACAGTGGAGGTGGATAACGC CCTCCAATCGGTAACTCCCAGGAGAGTGTACAGAGCAGGACAGCAAGGACAGCACCTACAGCC TCAGCAGCACCCGTACGCTGAGCAAAGCAGACTACGAGAACACAAAGTCTACGCCTGCGAAGTC ACCCATCAGGGCCTGAGCTGCCCGTCACAAAGAGCTTCAACAGGGAGAGTGT

SEQ ID NO.: 12
 DIVMSQSPSSMYASLGERVTITCKASQDIHNFLNWFQOKPGKSPKTLIFRANRLVDGVPSRSGS
 GSGQDYSLTISLEFEDLGIYSLQYDEIPLTFGAGTKLELRAVAAPSVIDFPPSDEQLKSGTAS
 VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYLSSTLTLKADYEHKHYACEV
 THQGLSSPVTKSFNRGEC

SEQ ID NO.: 13
 GAGGTGAGCTTCAGGAGTCAGGACCTGACCTGGTAAACCTTCTCAGTCACTTCACTCACCTG CACTGTCACTGGCTTCTCCATACCAGTGGTTATGGCTGGCACTGGATCCGCAGTTCCAGGAA ACAAACTGGAGTGGATGGCTACATAAAACTACGATGGTCACAATGACTACAACCCATCTCTCAA AGTCGAATCTCTATCACTCAAGACACATCCAAGAACCGAGTTCTCCTGCAGTTGAATTCTGTGAC TACTGAGGACACAGCCACATATTACTGTGCAAGCAGTTACGACGGTTATTTGCTTACTGGGCC AAGGGACTCTGGTCACTGTCTGCAGCCTCAACGAAGGGCCATCTGTTCTGGCCCTGGCCCC TCCTCCAAGAGCACCTGGGGCACAGCGGCCCTGGCTGCCCTGGTCAAGGACTACTCCCCGA ACCGGTACGGTCTGGAACTCAGCGCCCTGACCAGCGCGTGCACACCTCCCGCTGTCC TACAGTCCTCAGGACTCTACTCCTCAGCAGCGTGGTACCGTGCCTCCAGCAGCTGGCACC CAGACCTACATGCAACGTGAATCACAAGCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCC CAAATCTTGTGAATTCACTCACACATGCCACCGTGCCCAGCACCTGAACCTGGGGGACCGT CAGTCTTCTCTCCCCAAAACCAAGGACACCCCTCATGATCTCCGGACCCCTGAGGTACA TGGTGGTGGTGGACGTGAGCCACGAAGACCCCTGAGGTCAAGTCAACTGGTACGTGGACGGGT GGAGGTGATAATGCAAGAACAGCCGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCA GCGTCCTCACCGTCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAGGTCTCCAAC AAAGCCCTCCAGCCCCCATCGAGAAAACATCTCAAAGCCAAGGGCAGCCCCGAGAACACACA GGTGTACACCCCTGCCCCATCCCGGGATGAGCTGACCAAGAACCCAGGTCAAGCTGACCTGCTGG TCAAAGCTTCTATCCAGCGACATGCCGTGGAGTGGGAGAGCAATGGCAGCCGGAGAACACAC TACAAGACCACGCCCTCCGTGGACTCCGACGGCTCTTCTTCTACAGCAAGCTCACCGT GGACAAGAGCAGGTGGCAGGGAAAGTCTCTCATGCTCCGTGATGCATGAGGTCTGCACA ACCACTACACGCAGAACAGCCTCTCCCTGTCTCCGGAAA

SEQ ID NO.: 14
 EVQLQESGPDLVKPSQSLSLTCTVTGFSITSGYGHWIRQFPGNKLEWMGYINYDGHNDYNPSLK SRISITQDTSKNQFFLQLNSVTTEDTATYYCASSYDGLFAYWQGTLTVSAASTKGPSVFPLAP SSKSTSGGTAALGCLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSLSVVTPSSSLGT QTYICNVNHKPSNTKVDKKVEPKSCEFTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT

- continued

CVVVDVSHEDPEVKFNWYVDGVEVHNNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN
KALPAPIEKTIKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN
YKTTPPVLDSDGSFFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

SEQ ID NO.: 15
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGTAACTAGGACAGAAGGTCACTATGAA
CTGCAAGTCCAGTCAGAGCCTTTAAATAGTAACCTTCAAAAAGAACTTTGGCCTGGTACCAGC
AGAAACCAGGCCAGTCTCCTAAACTCTGATATACTTTGCATCCACTCGGGAACTCTAGTATCCT
GATCGCTTCATAGGCAGTGGATCTGGACAGATTCACTCTTACCATCAGCAGTGTGCAGGCTGA
AGACCTGGCAGATTACTTCTGTCAAGAACATTATAGCACTCCGCTCACGTTGGTGTGGGACCA
AGCTGGAGCTGAAA

SEQ ID NO.: 16
DIVMTQSPSSLAVSIGQKVTMNCKSSQSLNSNFQKNFLAWYQQKPGQSPKLLIYFASTRESSIP
DRFIGSGSGTDFTLTISSVQAEDLADYFCQQHYSTPLTFGAGTKLELK

SEQ ID NO.: 17
GAGGTTCACTGCAGCAGTCTGTAGCTGAGCTGGTGAGGCTGGGCTTCAGTGACGCTGTCCTG
CAAGGCTTCGGCTACATATTTACTGACTATGAGATACTGGTGAAGCAGACTCCTGTGCATG
GCCTGGAATGGATTGGGTTATTGATCCTGAAACTGGTAATACTGCCTCAATCAGAAGTCAAG
GGCAAGGCCACACTGACTGCAGACATATCCTCAGCACAGCCTACATGGAACCTAGCAGTTGAC
ATCTGAGGACTCTGCCGTCTATTACTGTATGGTTATTCTGATTATTGGGCAAGGCACCACTC
TCACAGTCTCCTCA

SEQ ID NO.: 18
EVQLQQSVAELVRPGASVTLCKASGYIFTDYEIHWVKQTPVHGLEWIGVIDPETGNTAFNQKFK
GKATLTADISSTAYMELSSLTSEDAVYYCMGSDYWGQGTLTVSS

SEQ ID NO.: 19
GATGTTTGATGACCCAAACTCCACGCTCCCTGTCTGTCAGCTGGAGATCAAGCCTCCATCTC
TTGTAGATCGAGTCAGAGCCTTTACATAGTAATGGAAACACCTTTAGAATGGTATTCAGA
AACCAAGGCCAGCCTCCAAAGGTCTGATCTACAAAGTTCAACCGATTCTGGGCTCCAGAC
AGGTTCACTGGCAGTGGATCAGGGACAGATTCACACTCAAGATCAGCGGAGTGGAGGCTGAGGA
TCTGGGAGTTATTACTGCTTCAGGTTACATGTTCTCTCACGTTGGTGTGGGACCAAGC
TGGAGCTGAAA

SEQ ID NO.: 20
DVLMQTPRSLSVSLGDQASISCRSSQSLHSNGNTYLEWYLQKPGQPPKVLIIYKVSNRPSGVPD
RPSGSGSGTDFTLKISGVVEAEDLGVYYCFQGSHVPLTFGAGTKLELK

SEQ ID NO.: 21
GAGATCCAGCTGCAGCAGTCTGGACCTGAGTTGGTAAGCCTGGGCTTCAGTGAAAGATATCCTG
TAAGGCTCTGGATACACCTCACTGACAACATGAACTGGTGAAGCAGAGCCATGAAAGA
GCCTTGAGTGGATTGGAGATATTAACCTTACTATGGTACTACTACCTACAACCCAGAAGTCAAG
GGCAAGGCCACATTGACTGTAGACAAGTCCTCCGCACAGCCTACATGGAGCTCCGGCCTGAC
ATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGATGACTGGTTGATTATTGGGCAAGGGA
CTCTGGTCACTGTCCTGCA

SEQ ID NO.: 22
EIQLQQSGPELVKPGASVKISCKASGYFTDNYMNVVKQSHGKSLEWIGDINPYGTTYNQKFK
GKATLTVDKSSRTAYMELRGLTSEDAVYYCARDDWFDYWGQGTLTVSA

- continued

SEQ ID NO.: 23
GACATCGTTATGCTCAGTCATCTCCATCTTCCATGATGCATCTCTAGGAGAGAGTCACATATCA

TTGCAAGGGAGTCAGGACATTCAACTTTAACTGGTCCAGCAGAAACCAGGAAAATCTC

CAAAGACCCGTATCTTCGTCAGGAGATTGGTAGATGGGTCCTCATCAAGGTTCACTGCGAGT

GGATCTGGCAAGATTATTCTCTCACCATCAGCAGCCTGGAGTTGAAGATTGGAAATTATT

TTGTCTACAGTATGATGAGATTCCGTCACGTTGGTCTGGGACCAAGCTGGAGCTGAGA

SEQ ID NO.: 24
DIVMSQSPSMYASLGERVTITCKASQDIHNFLNWFQQKPGKSPKTLIFRANRLVDGVPSRFSGS

GSGQDYSLTISLLEFEDLGIYSCLQYDEIPLTFGAGTKLELR

SEQ ID NO.: 25
GAGGTGCAGCTTCAGGAGTCAGGACCTGACCTGGTAAACCTTCTCAGTCACTTCACACTCAGGAA

CACTGTCACTGGCTCTCCATCACCACTGGTTATGGCTGGCACTGGATCCGGAGTTCCAGGAA

ACAAACTGGAGTGGATGGGATCACATAAACTACGATGGTCACAATGACTACAACCCATCTCTCAA

AGTCGAATCTCTATCACTCAAGACACATCCAAGAACGAGTTCTCCTGCAGTTGAATTCTGTGAC

TACTGAGGACACAGGCCACATATTACTGTGCAAGCAGCTTACGACGGTTATTGCTTA

AAGGGACTCTGGTCACTGTCTCTGCA

SEQ ID NO.: 26
EVQLQESGPDLVKPSQSLSLTCTVTGFSITSGYGHWIRQFPGNKLEWMGYINYDGHNDYNPSLK

SRISITQDTSKNQFFLQLNSVTTEDTATYYCASSYDGLFAYWGQGTLTVSA

SEQ ID NO.: 27
KSSQSLLNNSNFQKNFLA

SEQ ID NO.: 28
FASTRES

SEQ ID NO.: 29
QQHYSTPLT

SEQ ID NO.: 30
GYIFTDYEIH

SEQ ID NO.: 31
VIDPETGNTA

SEQ ID NO.: 32
MGYSDY

SEQ ID NO.: 33
RSSQSLLHSNGNTYLE

SEQ ID NO.: 34
KVSNRFS

SEQ ID NO.: 35
FQGSHVPLT

SEQ ID NO.: 36
GYTFTDNYMN

SEQ ID NO.: 37
DINPYYGTTT

SEQ ID NO.: 38
ARDDWFDY

SEQ ID NO.: 39
KASQDIHNFLN

SEQ ID NO.: 40
RANRLVD

SEQ ID NO.: 41
LQYDEIPLT

- continued

SEQ ID NO.: 42
GFSITSGYGH

SEQ ID NO.: 43
YINYDGHND

SEQ ID NO.: 44
ASSYDGLFAY

SEQ ID NO.: 45 - 3A4 heavy chain variable region nucleotide sequence
CAGATCCAGTTGGTCAATCTGGACCTGAGATGGTGAAGCCTGGGCTTCAGTGAAGATGTCC
TAAGGCTCTGGATAACACATTCACTGACGACTACATGAGCTGGTGAACAGAGCCATGGAAAGA
GCCTTGAGTGGATTGGAGATATTAACTTACAACCGGTGATACTAACTACAACCCAGAAGTCAAG
GGCAAGGCCATATTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCAGCTAACAGCCTGAC
ATCGGAAGACTCAGCAGTCTATTACTGTGCAAGAGACCCGGGGTATGGACTACTGGGGTCAAG
GAACCTCAGTCACCGTCTCC

SEQ ID NO.: 46 - 3A4 heavy chain variable region polypeptide sequence
QIQLVQSGPEMVKGASVKMSCKASGYTFTDDYMSWVKQSHGKSLEWIGDINPYNGDTNYNQKFK
GKAILTVDKSSSTAYMQLNSLTSEDSAVYYCARDPGAMDYWGQGTSVTVSS

SEQ ID NO.: 47 - 3A4 light chain variable region nucleotide sequence
GATGTTGTGATGACCCAAACTCCACTCTCCCTGGCTGTCAGTCTGGAGATCAAGCCTCCATCTC
TTGCAGATCTAGTCAGAGCCTCTACATAGTAATGGAAACACCTATTAGAATGGTACCTCAGA
AACCAGGCCAGTCTCAAAGCTCTGATCCACACAGTTCCAACCGATTCTGGGGTCCAGAC
AGATTCAAGTGGCAGTGGATCAGGGACAGATTACACTCAAGATCAGCAGAGTGGAGGCTGAGGA
TCTGGGAGTTTATTACTGCTTCAAGGTCACATGTTCCGCTCACGTTGGCTGGGACCAGGC
TGGAGCTGAAA

SEQ ID NO.: 48 - 3A4 light chain variable region polypeptide sequence
DVVMTQPLSLAVSLGDQASISCRSSQSLLHSNGNTYLEWYLQKPGQSPKLLIHTVSNRPSGV
PDRSGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPLTFGAGTRLEK

SEQ ID NO.: 49 - 3A4 heavy chain CDR1 polypeptide sequence
GYTFTDDYMS

SEQ ID NO.: 50 - 3A4 heavy chain CDR2 polypeptide sequence
DINPYNGDTNYNQKFKG

SEQ ID NO.: 51 - 3A4 heavy chain CDR3 polypeptide sequence
DPGAMDY

SEQ ID NO.: 52 - 3A4 light chain CDR1 polypeptide sequence
RSSQSLLHSNGNTYLE

SEQ ID NO.: 53 - 3A4 light chain CDR2 polypeptide sequence
TVSNRFS

SEQ ID NO.: 54 - 3A4 light chain CDR3 polypeptide sequence
FQGSHVPLT

SEQ ID NO.: 55
GTAAGCAGCGCTGTGGCTGCACCATCTGTCTTC

SEQ ID NO.: 56
GTAAGCGCTAGCTAACACTCTCCCTGTTGAAGC

SEQ ID NO.: 57
GCTGTGGCTGCACCATCTGTCTTCATCTTCCGCCATCTGATGAGCAGTTGAAATCTGAACTGC
CTCTGTTGTGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAAGGTGGATA

- continued

ACGCCCTCCAATCGGGTAACCTCCAGGAGAGTGTACAGAGCAGGACAGCAAGGACAGCACCTAC
AGCCTCAGCAGCACCCCTGACGCTGAGCAAAGCAGACTACGAGAAAACAAAGTCTACGCCCTGCGA
AGTCACCCATCAGGGCCTGAGCTGCCGTACAAAGAGCTCAACAGGGAGAGTGTAG
SEQ ID NO.: 58
AVAAPSVFIFPPSDEQLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTY
SLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
SEQ ID NO.: 59
CTTGAGCCGGCGATGGTCGAGGTGAGGTGTGGCAGGCTTGAGATCCAGCTTGGGTGAGTAC
TCCCTCTCAAAGCGGGCATTACTCTCGCCTAAGATTGTCAGTTCCAAAACGAGGAGGAGTT
GATATTCACCTGCCGATCGCCATACACTTGAGTGACAATGACATCCACTTGCCTTC
CCACAGGTGTCCACTCCAGGCTCAAGTTAACGGATCTCTAGCGAATTCACTGAAC
GTCTTGGGTGCATTGGAGCCTGCCCTGCTCTACCTCACCAGCCAAGTGGTCCAGGCTT
GAGACGGAGCTACAGCGCTGGCTGCACCATCTGCTTCATCTCCGCCATCTGATGAGCAG
TTGAAATCTGGAACTGCCTCTGTTGTCGCTGCTGAATAACTTATCCCAGAGAGGCCAAGT
ACAGTGGAAAGGGATAACGCCCTCAAATCGGGTAACCTCCAGGAGAGTGTACAGAGCAGGACA
GCAAGGACAGCACCTACAGCCTCAGCAGCACCTGACGCTGAGCAAAGCAGACTACGAGAACAC
AAAGTCTACGCCTGCGAAGTCACCCATCAGGGCCTGAGCTGCCGTACAAAGAGCTAACAG
GGGAGAGTGTAGGGTACCGCGCCGCTTCGAATGAGATCCCCGACCTCGACCTCTGGCTAATA
AAGGAAATTATTTCTATTGCAATAGTGTGGAAATTGGTGTCTCTACTCGGAAGGACAT
ATGGGAGGGAAATCATTGGTCGAGATCCCTCGGAGATCTCTAGCTAGAGCCCCGCCGGAC
GAACCTAACCTGACTACGGCATCTGCCCTCTCGGGGCAGTGATGTAATCCCTCAGT
TGGTTGGTACAACCTGCAACTGGCCCTGTTCCACATGTGACACGGGGGGACAAACACAAA
GGGGTTCTCTGACTGTAGTTGACATCCTTAAATGGATGTGACACATTGCCAACACTGAGTGGC
TTCATCCTGGAGCAGACTTGCAGTGTGGACTGCAACACAACATTGCCCTATGTGTAAC
TTGGCTGAAGCTCTACACCAATGCTGGGGACATGTACCTCCAGGGGCCAGGAAGACTACGG
GAGGCTACACCAACGTCAATCAGAGGGCCTGTTAGCTACCGATAAGCGGACCCCTCAAGAGGC
ATTAGCAATAGTGTATAAGGCCCCCTGTTAACCTAAACGGTAGCATATGCTCCGGGTA
GTAGTATATACTATCCAGACTAACCTAAATCAATAGCATATGTTACCAACGGGAAGCATATGC
TATCGAATTAGGGTAGTAAAGGGCTTAAGGAACAGCGATATCTCCACCCATGAGCTGTCA
CGGTTTATTACATGGGGTCAAGGATTCCACAGGGTAGTGAACCATTTAGTCACAAGGGCAGT
GGCTGAAGATCAAGGAGCGGGCAGTGAACCTCCCTGAATCTTCGCTGCTTCTCATTCTCC
GTTTAGCTAATAACTGCTGAGTGTGAACAGTAAAGGTATGTGAGGTGCTCGAAAACAA
GGTTTCAGGTGACGCCCGAGAATAAAATTGGACGGGGGTTCAAGTGGTGGCATTGTGCTATGA
CACCAATATAACCCCTCACAAACCCCTGGCAATAAAACTAGTGTAGGAATGAAACATTCTGAA
TATCTTAACAATAGAAATCCATGGGTGGGACAAGCCGAAAGACTGGATGTCCATCTCACAC
GAATTATGGCTATGGCAACACATAATCCTAGTGAATATGATACTGGGTATTAAGATGTGT
CCCAGGCAGGGACCAAGACAGGTGAACCATGTTACACTCTATTGTAACAAGGGAAAGAGA
GTGGACGCCAGCAGCAGCGGACTCCACTGGTTGTCTCAACACCCCCGAAAATTAAACGGGCTC
CACGCCAATGGGGCCATAAACAAAGACAAGTGGCACTCTTTTTGAAATTGTGGAGTGGG
GCACCGCTCAGCCCCCACGCCGCTGCCGTTGGACTGTAAAATAAGGGTGTAAACTTG

- continued

GGTGTATTGTAACCCGCTAACCACTGCGGTAAACCACTTGCCCACAAAACCACTAATGGCACCC
CGGGGAATACCTGCATAAGTAGGTGGCGGGCCAAGATAGGGCGCGATTGCTGCGATCTGGAGG
ACAAATTACACACACTTGCGCCTGAGCGCCAAGCACAGGGTTGGTCCTCATATTACAGAGGT
CGCTGAGAGCACGGTGGGCTAATGTTGCCATGGTAGCATATACTACCCAAATATCTGGATAGCA
TATGCTATCCTAATCTATATCTGGTAGCATAGGCTATCCTAATCTATATCTGGTAGCATATGC
TATCCTAATCTATATCTGGTAGTATGCTATCCTAATTATATCTGGTAGCATAGGCTATCC
TAATCTATATCTGGTAGCATATGCTATCCTAATCTATATCTGGTAGTATGCTATCCTAATC
TGTATCCGGTAGCATATGCTATCCTAATAGAGATTAGGGTAGTATGCTATCCTAATTATAT
CTGGTAGCATACTACCCAAATATCTGGATAGCATATGCTATCCTAATCTATATCTGGTAGC
ATATGCTATCCTAATCTATATCTGGTAGCATAGGCTATCCTAATCTATATCTGGTAGCATATG
CTATCCTAATCTATATCTGGTAGTATGCTATCCTAATTATATCTGGTAGCATAGGCTATC
CTAATCTATATCTGGTAGCATATGCTATCCTAATCTATATCTGGTAGTATGCTATCCTAAT
CTGTATCCGGTAGCATATGCTATCCTCACGATGATAAGCTGCAACACATGAGAATTAACTTG
AAGACGAAAGGCCTCGTGTACGCCATTTTATAGGTTAATGTCATGATAATAATGGTTCTT
AGACGTCAGGTGGCACTTTGGGGAAATGTGCGCGAACCCCTTTGTTTCTAAATA
CATTCAAATATGTATCCGCTCATGAGACAATAACCTGATAAAATGCTCAATAATATTGAAAAAG
GAAGAGTATGAGTATTCAACATTCCGCTGCGCCATTCCCTTTGCGGCATTGCGCTTC
CTGTTTGCTACCCAGAACGCTGGTAAAGTAAAGATGCTGAAGATCAGTTGGTGCACGA
GTGGGTTACATCGAACTGGATCTAACAGCGTAAGATCCTGAGAGTTGCCCGAAGAACG
TTTCCAATGATGAGCACTTTAAAGTTCTGCTATGTCGGCGGTATTATCCGTGTTGACGCCG
GGCAAGAGCAACTCGGTCGCCCATACACTATTCTCAGAATGACTGGTTGAGTACTCACCAGTC
ACAGAAAACCATTTACCGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCAG
TGATAAACACTCGGCCAACTTACTCTGACAACGATCGGAGGACGAAGGAGCTAACCGTT
TGCACAAACATGGGGATCATGTAACTCGCCTGATCGTTGGGAACCGAGCTGAATGAAGCCATA
CCAAACGACGAGCGTGACACCCAGTGCCCTGAGCAATGGCAACACGTTGCCAAACTATTAA
TGGCGAACTACTTACTCTAGCTTCCGGCAACAAATTAAAGACTGGATGGAGGGCGATAAGTT
CAGGACCACTTCTGCGCTCGGCGCTGGCTGGTTATTGCTGATAAAATGGAGCCGGT
GAGCGTGGGTCTCGCGTACATTGCACTGGGCCAGATGGTAAGCCCTCCGTATCGTAGT
TATCTACACGACGGGAGTCAGCGAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGT
CCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTCATATATACTTTAGATTGATT
AAACTTCATTAAATTAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAAT
CCCTTAACGTGAGTTTGTCCACTGAGCGTCAGACCCGTAGAAAGATCAAAGGATCTTCTT
GAGATCCTTTCTGCGCGTAACTGCTGCTTGGCAACAAAAACCCCGTACCGCGT
GTTTGTGCGGATCAAGAGCTACCAACTTTCCGAAGGTAACTGGCTCAGCAGAGCGCA
GATACCAAATACTGTCTTCTAGTGTAGCCGTAGTTAGGCCACCTTCAGAAACTCTGTAGC
CGCCTACATACCTCGCTGCTAACCTGTTACCAAGTGGCTGCCAGTGGCGATAAGTCGT
CTTACCGGGTTGACTCAAGACGATAGTTACCGGATAAGGCCAGCGTCGGCTGAACGGGG
TTCGTGCACACAGGCCAGCTGGAGCGAACGACCTACACCGAAGTACAGCGTGAGC
ATTGAGAAAGGCCACGCTCCGAAGGGAGAAAGGCGGACAGGTATCCGTAAGCGCAGGGTC

- continued

GGAACAGGAGAGCGCAGGAGCTTCCAGGGAAACGCCGGTATCTTATAGTCCTGTCGG
 GTTCGCCACCTCTGACTTGAGCGTCGATTGTTGTGATGCTCGTCAGGGGGCGGAGCCTATGGA
 AAAACGCCAGCAACGCCCTTTACGGTCCCTGGCTTGTGGCTTGCTCACATGTT
 TTCCCTCGTTATCCCTGATTCTGTGATAACCGTATTACCGCTTGAGTGAGCTGATACCGC
 TCGCCGCAGCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCAATAC
 GCAAACGCCCTCCCCGCGCGTTGGCGATTCAATTAGCAGCTGGCACGACAGGTTCCGAC
 TGGAAAGCGGGAGTGAGCGAACGCAATTAGTGAAGTTAGCTCACTCATTAGGCACCCAGGC
 TTACACTTATGCTTCCGGCTGTATGTTGTGAAATTGTGAGCGGATAACAATTACACAG
 GAAACAGCTATGACCATGATTACGCAAGCTCTAGCTAGAGGTGACCAATTCTCATGTTGACA
 GCTTATCATCGCAGATCCGGCACGTTGTCATTGCTGCAGGGCGAGAACCTGGTAGGTATGGC
 AGATCTATACTACATTGAATCAATTGGCAATTAGCCATTAGTCATTGGTTATAGCATAAATC
 AATATTGGCTATTGGCATTGACATGTTGATCTATATCATAATTAGTACATTATATTGGCTC
 ATGTCATATTGACGCCATTGACATTGACTAGTTAGTCATTAGTAATCAATTACGG
 GTCATTAGTCATAGCCATTGGAGTTCCGCGTTACATAACTACGGTAAATGGCCGCCT
 GGCTGACGCCAACGACCCCCCCTATTGACGTCAATAATGACGTATGTTCCATAGTAACGCC
 AATAGGGACTTCCATTGACGTCAATTGGTGGAGTATTACGGTAAACTGCCACTGGCAGTAC
 ATCAAGTGTATCATGCAAGTCCGCCCCATTGACGTCAATTGGAGTTGACGGTAAATGGCCGCCTGG
 CATTATGCCAGTACATGACCTAACGGACTTCCTACTGGCAGTACATCTACGTATTAGTCAT
 CGCTATTACCATGGTATGCGGTTTGGCAGTACACCAATTGGCGTGGATAGCGGTTGACTCAC
 GGGGATTCCAAGTCTCCACCCATTGACGTCAATTGGAGTTGTTGGCACCAAAATCAACGG
 GACTTCCAAAATGTCGAATAACCCGCCCTTGACGTCAATTGGCGTGGAGTACGGTACGGTG
 GGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATCCTCACTCTTCCGATCGCTG
 TCTGCGAGGCCAGCTGTTGGCTCGCGGTTGAGGACAAACTCTCGCGGCTTCCAGTACTCT
 TGGATCGGAAACCGTCGGCTCCGAACGGTACTCCGCCACCGAGGGACCTGAGCGAGTCCGCAT
 CGACCGGATCGGAAACCTCTCGAGAAAGCGTCAACCAGTCACAGTCGAAGGTAGGCTGAGC
 ACCGTGGCGGGCGCAGGGTGGCGGTGGGGTTGTTCTGGCGGAGGTGCTGATGATGTA
 ATTAAAGTAGGCGGT

 SEQ DI NO.: 60
 ATGCCAAGTGGTCCCAGGCTGACATTGTGATGACCCAGTCTCC

 SEQ ID NO.: 61
 ATGCCAAGTGGTCCCAGGCTGATGTTGATGACCCAAACTCC

 SEQ ID NO.: 62
 ATGCCAAGTGGTCCCAGGCTGACATCGTTATGTCAGTCTCC

 SEQ ID NO.: 63
 GGGAAAGATGAAGACAGATGGTGCAGCCACAGC

 SEQ ID NO.: 64
 GTAAGCGCTAGGCCCTCAACGAAGGGCCATCTGTCTTCCCCCTGGCC

 SEQ ID NO.: 65
 GTAAGCGAATTCAAGATTGGGCTCAACTTCTTGG

 SEQ ID NO.: 66
 GCCTCCACCAAGGGCCATCGGTCTTCCCCCTGGCACCCCTCCAAAGAGCACCTCTGGGGCAC

 AGCAGCCCTGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTGCTGGAACCTCAG

- continued

GCGCCCTGACCAGCGCGTGCACACCTCCCGCTGCTCCTACAGTCCTCAGGACTCTACTCCCTC
AGCAGCGTGGTGAACCGTGCCTCCAGCAGCTGGCACCCAGACCTACATCTGCAACGTGAATCA
CAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGGCCAAATCTTGT

SEQ ID NO.: 67
ASTKGPSVFPLAPSSKSTSGGTAAALGLVKDYFPEPVTVWSNSGALTSGVHTFPAVLQSSGLYSL
SSVTVPSLGTQTYICNVNHPNSNTKVDKKVEPKSC

SEQ ID NO.: 68
CTTGAGCCGGCGATGGTCGAGGTGAGGTGTCAGGCTTGAGATCCAGCTGTTGGGTGAGTAC
TCCCTCTAAAAGCGGGCATTACTTCTGCGCTAAGATTGTCAGTTCCAAAACGAGGAGGATT
GATATTCACCTGGCCGATCTGCCATACACTGAGTGACAATGACATCCACTTGCCTTCTCT
CCACAGGTGTCCACTCCAGGTCCAAGTTGCCACCAGACAGACACACTCCTGCTATG
GGTACTGCTGCTCTGGGTTCCAGGTCCACTGGCGAGACGGAGCTACGGGCCATCTGTCTTT
CCCTGGCCCCCTCCCAAGAGCACCTCTGGGGCACAGCGCCCTGGCTGCCCTGGTCAAGGA
CTACTTCCCCGAACCGGTGACGGTGTGACTCAGGCGCCCTGACCAGGGCGTGCACACCT
TCCCGGCTGTCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGC
AGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAA
GAAAGTTGAGCCAAATCTTGTGAATTCACTCACACATGCCACCGTGCCAGCACCTGAACCTCC
TGGGGGGACCGTCACTCTCCCTTCCCCAAAACCCAAGGACACCCCTATGATCTCCGGAC
CCTGAGGTACATCGTGGTGGTGACGTGAGCCACGAAGACCCCTGAGGTCAAGTTCAACTGGTA
CGTGGACGGCGTGGAGGTGCTAAATGCCAAGACAAGCCGGAGGAGCAGTACAACAGCACGT
ACCGTGTGGTACAGCGCTCACCCTGCTGCACAGGACTGGCTGAATGGCAAGGGTACAAGTGC
AAGGTCTCCAACAAAGCCCTCCAGCCCCATCGAGAAAACCATCTCAAAGCCAAGGGCAGCC
CCGAGAACACAGGTGTACACCTGCCCTCCGTGCTGGACTCCGACGGCTCTTCTACAG
TGACCTGCTGGTCAAAGGTTCTATCCCAGCGACATCGCGTGGAGTGGAGAGCAATGGCAG
CCGGAGAACAACTACAAGACCAAGCCTCCGTGCTGGACTCCGACGGCTCTTCTACAG
CAAGCTACCGTGGACAAGAGCAGGTGGCAGCAGGGAACGTTCTCATGCTCCGTGATGCA
AGGCTCTGCACAACCAACTACACGCAGAACAGCCTCTCCGTCTCCGGAAATGATCCCCGAC
CTCGACCTCTGGCTAATAAGGAAATTATTTCTTGCAATAGTGTGTTGGAAATTTTGTGTC
TCTCACTCGAAGGACATATGGAGGGCAATCATTGGTCAAGATCCCTGGAGATCTCTAGCT
AGAGCCCCGCCGCCGACGAACATAACCTGACTACGGCATCTCGCCCTTCTCGGGGGCAGT
GCATGTAATCCCTCAGTGGTGGTACAATTGCAACTGAACCTAAACGGTAGCATATGCT
TCCCGGGTAGTAGTATATACTATCCAGACTAACCTAATTCAATAGCATATGTTACCCAAACGGGA
AGCATATGCTATGCAATTAGGGTTAGTAAAGGGCTTAAGGAACAGCGATGTAGGTGGCGGG
CAAGATAGGGCGCATTGCTCGGATCTGGAGGACAAATTACACACACTTGCCTGAGCGCAA
GCACAGGGTTGGTGGCCTCATATTACGAGGTGCTGAGAGCACGGTGGCTAATGTTGCCATG
GGTAGCATATACTACCCAAATATCTGGATAGCATATGCTATCCTAATCTATATCTGGTAGCATA
GGCTATCCTAATCTATATCTGGTAGCATAGGCTATCCTAATCTATATCTGGTAGCATA
TCCTAATTATCTGGTAGTATGCTATCCTAATCTGATTCGGTAGCATACTGCTATCCTAATAGA
ATCTATATCTGGTAGTATGCTATCCTAATCTGATTCGGTAGCATACTGCTATCCTAATAGA
GATTAGGGTAGTATATGCTATCCTAATTATCTGGTAGCATACTACCCAAATATCTGGAT

- continued

AGCATATGCTATCCTAATCTATATCTGGTAGCATATGCTATCCTAATCTATATCTGGTAGCAT
AGGCTATCCTAATCTATATCTGGTAGCATATGCTATCCTAATCTATATCTGGTAGTATATGCT
ATCCTAATTTATATCTGGTAGCATAGGCTATCCTAATCTATATCTGGTAGCATATGCTATCCT
ATCTATATCTGGTAGTATATGCTATCCTAATCTGTATCCGGTAGCATATGCTATCCTACGA
TGATAAGCTGTCAAACATGAGAATTAACTTGAAGACGAAAGGGCTCGTGTACAGCCTATTT
TATAGGTTAATGTCATGATAATAATGGTTCTAGACGTAGTGGCACTTTCGGGAAATGTG
CGCGGAACCCCTATTGTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATA
ACCTGATAAAATGCTCAATAATATTGAAAAGAGTATGAGTATTCAACATTCCGTGTCG
CCCTTATTCCCTTTTGCCTGATTTGCCTCCTGTTGCTCACCCAGAAACGCTGGTGA
GTAAAAGATGCTGAAGATCAGTTGGTGACGAGTGGTTACATGAACTGGATCTAACAGCGG
TAAGATCCTTGAGAGTTTGCCTGGAAAGAACGTTTCCAATGATGAGCATTAAAGTCTGC
TATGTCGGCGCGTATTATCCCGTGTGACGCCGGCAAGAGCAACTCGGTGCCGATACACTAT
TCTCAGAATGACTTGGTGAGTACTCACCAGTCACAGAAAGCATCTACGGATGGCATGACAGT
AAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCACTTACTCTGACAA
CGATCGGAGGACCGAAGGAGCTAACCGCTTTGCACAACATGGGGATCATGTAACTCGCC
GATCGTTGGAACCGAGCTGAATGAAGCCATACCAACGACGGCGTACACCACGATGCC
AGCAATGGCAACAAACGTTGCCCAAACATTAACTGGGAACACTACTTACTCTAGCTCCGG
AATTAAATAGACTGGATGGAGGGGATAAAGTTGCAGGACCACTCTGCCTCGGCCCTCCGG
GGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGAGCGTGGGCTCGCGTATCATTGCA
GGGCCAGATGTAAGCCCTCCGTATCGTAGTTATCTACACGACGGGAGTCAGGCAACTATGG
ATGAACGAAATAGACAGATCGTGAGATAGGTGCTCACTGATTAAGCATTGTAACGTGAC
CAAGTTACTCATATATACTTAGATTGATTAAACTTCATTAAATTAAAAGGATCTAGGT
GAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTGTTCACTGAGCG
CAGACCCCGTAGAAAAGATCAAAGGATCTTCTGAGATCCTTTCTGCGTAATCTGCTGC
TTGCAACAAAAAAACCGCTACAGCGGGTTGTTGCCGATCAAGAGCTACCAACTCT
TTTCCGAAGGTAACTGGCTCAGCAGGCGCAGATACCAAAACTGTCCTCTAGTGTAGCG
AGTTAGGCCACCACTCAAGAAACTCTGTAGCACCCTACATACCTCGCTCTGCTAATCCTGTT
CCAGTGGCTGCCAGTGGGATAAGTCGTCTTACCGGGTTGACTCAAGACGATAGTTACC
GGATAAGGCGCAGCGCTGGGCTGAAACGGGGGTTGTCGACACAGCCCAGCTGGAGCGAACGA
CCTACACCGAACTGAGATAACCTACAGCGTGAGCATTGAGAAAGGCCACGCTCCGAAGGG
AAGGCGGACAGGTATCCGGTAAGCGGCAGGGCGAGGAGCGCACAGGGAGCTTCCAGG
GGGAAACGCCCTGGTATTTATAGTCCTGCGGTTGCCACCTCTGACTTGAGCGTCGATTT
TGTGATGCTCGTCAGGGGGCGGAGCCTATGGAAAACGCCAGCAACGCCCTTTACGGTTC
CTGGCCTTTGCTGCCCTTGCTCACATGTTCTCTGCTTATCCCCTGATTCTGTTGATAA
CCGTATTACCGCCTTGAGTGAGCTGATACCGCTGCCGCAGCGAACGACCGAGCGCAGCGAGT
CAGTGAGCGAGGAAGCGTACATTATATTGCTCATGTCATGACCGCCATGTTGACATTGA
TTATTGACTAGTTAATAGTAATCAATTACGGGTCATTAGTCATAGCCATATATGGAGTT
CCGCGTTACATAACTACGGTAAATGGCCGCCCTGGCTGACGCCAACGACCCCGCCATTGA
CGTCAATAATGACGTATGTTCCATAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGGTG

- continued

GAGTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTCCGCC
 TATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTACGGACT
 TTCCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCGGTTTGGCAG
 TACACCAATGGCGTGGATAGCGGTTGACTCACGGGATTTCAAGTCTCACCCATTGACGT
 CAATGGGAGTTGTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTAATAACCCGCC
 CGTTGACGCAAATGGCGGTAGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTG
 ACCCGTCAGATCCTCACTCTCCGCATCGCTGCTGCGAGGGCAGCTGTGGCTCGCGTT
 GAGGACAAAATCTCGCGTCTTCAGTACTCTGGATCGGAAACCGTCGGCTCCGAACGGT
 ACTCCGCCACCGAGGGACCTGAGCGAGTCCGCATCGACCGATCGGAAAACCTCTCGAGAAAGGC
 GTCTAACCAAGTCACAGTCGAAGGTAGGCTGAGCACCGTGGCGGGCGCAGCGGGTGGCGGTGG
 GGTTGTTCTGGCGGAGGTGCTGCTGATGATGTAATTAAAGTAGGCGGT

SEQ ID NO.: 69

GGGTTCCAGGTTCCACTGGCGAGGTTCAGCTGCAGCAGTCAG

SEQ ID NO.: 70

GGGTTCCAGGTTCCACTGGCGAGGTGCAGCTTCAGGAGTCAGG

SEQ ID NO.: 71

GGGGCCAGGGGAAAGACAGATGGGCCCTCGTTGAGGC

SEQ ID NO.: 89: Exemplary embodiment of CDRL1
 K-S-S-Q-S-L-L-N/H-S/T-S/N/D-N/G-Q/N/K-K/L-N-Y-L-A

SEQ ID NO.: 90: Exemplary embodiment of CDRL1
 K-A-S-Q-D-I-H-N/T-Y/F-L-N

SEQ ID NO.: 91: Exemplary embodiment of CDRL2
 F-A-S-T-R-E-S

SEQ ID NO.: 92: Exemplary embodiment of CDRL2
 L-V-S-K-L-D-S

SEQ ID NO.: 93: Exemplary embodiment of CDRL2
 R-A-N-R-L-V-D

SEQ ID NO.: 94: Exemplary embodiment of CDRL3
 Q-Q-H-Y-S-T-P-L-T

SEQ ID NO.: 95: Exemplary embodiment of CDRL3
 W/L-Q-Y/G-D/T-A/E/H-F-P-R-T

SEQ ID NO.: 96: Exemplary embodiment of CDRH1 1
 G-Y-T/I-F-T-D/E-Y-E/N-M/I/V-H

SEQ ID NO.: 97: Exemplary embodiment of CDRH1
 G-F-T/S-I-T-S-G-Y-G-W-H

SEQ ID NO.: 98: Exemplary embodiment of CDRH2
 V/N/G-I/L-D-P-E/A/G-T/Y-G-X-T-A

SEQ ID NO.: 99: Exemplary embodiment of CDRH2
 Y-I-N/S-F/Y-N/D-G

SEQ ID NO.: 100: Exemplary embodiment of CDRH3
 M-G-Y-S/A-D-Y

SEQ ID NO.: 101: Exemplary embodiment of CDRH3
 A-S-S-Y-D-G-F-L-A-Y

SEQ ID NO.: 102: Exemplary embodiment of CDRH3 3
 A-R/W-W/F-G-L-R-Q/N

SEQ ID NO. 103- 3A2 light chain variable region
 DAVMTQIPLTLKISRVEAEDGLYLYC**WQGTHFPRTFAGGTNLEIK**

RFTGSGSGTDFTLKISRVEAEDGLYLYC**WQGTHFPRTFAGGTNLEIK**

-continued

SEQ ID NO. 104 3F6 light chain variable region
 SIVMTQPLTLSVTICQPASITCKSSQSLLLSDGKTYLNWLLQRPQSPKRLISLVSKLDGVPD

GFTGSGSGTDFTLKISRVEAEDLGVYYCWQGT~~HF~~ PRTFGGGTKLEIK

SEQ ID NO. 105- 3E8 light chain variable region
 DIVMTQIPLTLSVTIGQPASICKSSQSLLLHSDGKTYLNWLLQRPQSPKRLIYLVSKLDGVPD

RFTGSGSGTDFTLKISRVEAEDLGVYYCWQGT~~HF~~ PRTFGGGTKLEIK

SEQ ID NO. 106- 3E10 light chain variable region
 DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGNTYLYWFLQRPQSPQLLIYRMSNLASGVPD

RFSGSGSGTAFTLRISRVEAEDVGYYCMQHLE~~Y~~ PYT~~F~~GGGT~~K~~LEIK

SEQ ID NO. 107- 3A9 light chain variable region
 DIVMTQSPSSLAMSLGQKVTMCKSSQSLLNNSNNQNLNYLAWYQQKPGQSPKLLVY~~F~~ASTRK~~S~~GV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQH~~F~~NTPLTFGAGTKLELK

SEQ ID NO. 108- 3B1 light chain variable region
 DIVMTQSPSSLAI~~S~~VGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 109- 3G5 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 110- 3B2 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 111- 3B8 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 112- 3G8 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 113- 3F7 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLIY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 114- 3E9 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 115- 3C3 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 116- 3E12 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLVY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 117- 4A2 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNSNQKNYLAWYQQKPGQSPKLLLY~~F~~ASTRESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

SEQ ID NO. 118- 3F10 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLLNNTSNQNLNYLAWYQQKPGQSPKLLVY~~F~~ASTTESGV~~P~~

DRFIGSGSGTDFTLTISVQAEDLADYFCQQHYS~~I~~PLTFGAGTKLELK

- continued

SEQ ID NO. 119- 3F4 light chain variable region
 DIVMTQSPSSLTVTAGEKVTMCKSSQSLNNTSNQKNYLAWYQQKPGQSPKLLVYFASTRASGVP

DRFIGSGSGTDFTLTISSVQAEDLADYFCQQHYSTPLTFGAGTKLELK

SEQ ID NO. 120- 3B11 light chain variable region
 DIVMTQSPSSLAMSVGQKVTMCKSSQSLNNSNQKNYLAWYQQKPGQSPKLLVYFASTRESGVP

DRFIGSGSGTDFTLTISSVQAEDLADYFCQQHYSTPLTFGAGTKLELK

SEQ ID NO. 121- 3G12 light chain variable region
 DIVMTQSPKFMSTSVGDRVSIITCKASQDVGTAVAWYQQKPGQSPPELLIWTSTRHTGVPDFSGS

GSGTDFTLTISSEVQAEDLADYFCQQHYSIPLTFGAGTKLELK

SEQ ID NO. 122- 3D1 light chain variable region
 DIKMTQSPSSMYASLGERVTLTCKASQDIHNYLNWFQQKPGKSPKTLIHRANRLVAGVPSRFSGS

GSGQDYSLTISSEVQAEDLADYFCQQHYSIPLTFGAGTKLELK

SEQ ID NO. 123- 3C2 light chain variable region
 DIQMTQSPSSMYASLGERVTLTCKASQDIHNYLNWFQQKPGKSPKTLIHRANRLVAGVPSRFSGS

GSGQDYSLTISSEVQAEDLADYFCQQHYSIPLTFGAGTKLELK

SEQ ID NO. 124- 3E6 light chain variable region
 DIQMTQSPSSMYASLGERVTLTCKASQDIHNYLNWFQQKPGKSPKTLIHRANRLVAGVPSRFSGS

GSGQDYSLTISSEVQAEDLADYFCQQHYSIPLTFGAGTKLELK

SEQ ID NO. 125- 3H3 light chain variable region
 DIVMSQSPSSMYASLGERVTLTCKASQDIHRFLNWFQQKPGKSPKTLIFHANRLVAGVPSRFSGS

GSGLDYSLTISSEVQAEDLADYFCQQHYSIPLTFGAGTKLELK

SEQ ID NO. 126- 3A2 heavy chain variable region
 HEIQLQQSGPELVKPGASV р KMСКТSGYTFDYNMHWVKQKPGQGLEWIGYINPYNDVTEYNEKF

KGRATLTSKSSSTAYMDLSSLSDDSAVYFCAWFGLRQWQGQTLVTVST

SEQ ID NO. 127- 3F6 heavy chain variable region
 HEVQLQQSGPELVKPGASV р KMСКТSGYTFTEYNMHWVKQKPGQGLEWIGNINPYNDVTEYNEKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 128- 3E8 heavy chain variable region
 HEVQLQQSGPELVKPGASV р KMСКТSGYTFTEYNMHWVKQKPGQGLEWIGNINPYNNVTEYNEKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 129- 3A9 heavy chain variable region
 HQVQVQQPGAEVLVRPGASV р LSCKASG YTFDYEVHWVQKQTPVHGLEWIGVIDPETGDTAYNQKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 130- 3B1 heavy chain variable region
 HQVQLQQPGAEVLVRPGASV р LSCKASG YTFDYEVHWVQKQTPVHGLEWIGVIDPETGGTAYNQKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 131- 3B2 heavy chain variable region
 HEVQLQQSGAEVLVRPGASV р LSCKASG YTFDYEVHWVQKQTPVHGLEWIGVIDPETGSTA YNQKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 132- 3F4 heavy chain variable region
 HEVQLQQSGAEVLVRPGASV р LSCKASG YTFDYEVHWVQKQTPVHGLEWIGVIDPETGSTA YNQKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

SEQ ID NO. 133- 3E9 heavy chain variable region
 HEVQLQQSGAEVLVRPGASV р LSCKASG YTFDYEVHWVQKQTPVHGLEWIGVIDPETGSTA YNQKF

KGKATLTSKSSSTAYMDLSSLSEDSAVYYCARWGLRNWGQGTLVTVSA

- continued

SEQ ID NO. 134- 3B8 heavy chain variable region
HEVQLQQSGAELVRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGDTAYNQNF

TKATLTADKSSSTAYMELSSLTSEDSAVYCMGYADYWGQGTTLVSS

SEQ ID NO. 135- 3G8 heavy chain variable region
HQVQLQQSGAELVRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPATGDTAYNQKF

KGATLTADKSSSTAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 136- 3F7 heavy chain variable region
HQAYLQQSGAELVRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGDTAYNQKF

DKATLTADKASSTAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 137- 3E12 heavy chain variable region
HQVQLQQSEAEVLKPGASVLSCKASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGDTAYNQKF

KGATLTADKSSSTAYMELSSLTSEDSAVYCMGHSDYWGQGTTLVSS

SEQ ID NO. 138- 3G12 heavy chain variable region
HEVQLQQSVAELVRPGASVTVSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGNTAFNQKF

KGATLTADISSSTAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 139- 3F10 heavy chain variable region
HEVQLQQSVAELVRPGAPVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGATAYNQKF

KGATLTADKSSSAAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 140- 3C3 heavy chain variable region
HEVQLQQSVAEVVRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPETGVTAYNQRF

DKATLTTDKSSSTAYMELSSLTSEDSAVYFCMGYSDYWGQGTTLVSS

SEQ ID NO. 141- 3G5 heavy chain variable region
HQVQLQQPGAEVLRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVLDPGTGRAYNQKF

DKATLSADKSSSTAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 142- 3B11 heavy chain variable region
HEVQLQQSVAELVRPGASVTLSCASGYTFTDYEIHWVKQTPVHGLEWIGVIDPATGDTAYNQKF

KGATLTADKSSSAAFMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 143- 3E6 heavy chain variable region
HQVQLQQSGAELVRPGASVTLSCASGYTFSYEMHWWVKQTPVHGLEWIGGIDPETGDTVYNQKF

KGATLTADKSSSTAYMELSSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 144- 4A2 heavy chain variable region
HQVQLQQSGTELVRPGASVTLSCASGYKFTDYEIHWVKQTPVHGLEWIGGIDPETGGTAYNQKF

KGKAILTADKSSSTAYMELRSLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 145- 3E10 heavy chain variable region
HEVQLQQSGPELVKPGASVLSCKASGYTFTDYYMNWVKQSHGKSLWIGDINPNYGGITYNQKF

KGATLTVDTSSSTAYMELRGLTSEDSAVYCMGYSDYWGQGTTLVSS

SEQ ID NO. 146- 3D1 heavy chain variable region
HEVQLQESGPDLVKPSQSLSLTCTVTFGSITSGYGWHWIRQFPGNKLEWMGYISFNGDYNPNSL

KSRISITRDTSKNQFFLQLSSVTTEDTATYYCASSYDGLFAYWGQGTLVTVSA

SEQ ID NO. 147- 3C2 heavy chain variable region
HDVQLQESGPDLVKPSQSLSLTCTVTFGSITSGYGWHWIRQFPGNKLEWMGYISFNGDSYNPNSL

KSRISITRDTSKNQFFLQLNSVTSEDTATYYCASSYDGLFAYWGQGPLVTVSA

A

SEQ ID NO.: 148
KSSQSLHSDGKTYLN

SEQ ID NO.: 149
LVSKLDS

- continued

SEQ ID NO.: 150
WQGTHFPRT

SEQ ID NO.: 151
GYTFDTD YNMH

SEQ ID NO.: 152
YINPYNDVTE

SEQ ID NO.: 153
AWFGL RQ

SEQ ID NO.: 154
RSSKSLLHSNGN TYLY

SEQ ID NO.: 155
RMSNLAS

SEQ ID NO.: 156
MQHLEYPYT

SEQ ID NO.: 157
GDTFTD YYMN

SEQ ID NO.: 158
DINPNYGGIT

SEQ ID NO.: 159
QAYYRNS DY

SEQ ID NO.: 160
KASQDVGTAVA

SEQ ID NO.: 161
WTSTRHT

SEQ ID NO.: 162
QQHYSIPLT

SEQ ID NO.: 163
GYIFTDYEIH

SEQ ID NO.: 164
VIDPETGNTA

SEQ ID NO.: 165
MGYSDY

SEQ ID NO.: 166
MVLQTQVFISLLWISGAYGDIVMTQSPDSLAVSLGERATINCKSSQSLNSNFQKNFLAWYQQK

PGQPPKLLIYFASTRESSVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQHYSTPLTFGQGTKL

EIKRTVAAPSVFIFPPSDEQLKSGTASVVCCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK

DSTYSLSSTLTL SKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

SEQ ID NO.: 167
MDWTWRILFLVAAATGTHAEVQLVQSGAEVKPGASVKVSCKASGYIFTDYEIHWRQAPGQGLE

WMGVIDPETGNTAFNQFKGRVTITADTSTSTAYMELSSLTSED TAVYYCMGYS DYWGQGT LTV

SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVWSWNSGALTSGVHTFPAVLQSSGLY

SLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEELLGGPSVFLFPP

KPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLH

QDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPVYTLPPSRLDELTKNQVSLTCLVKGFYPS

DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFCSVVMHEALHNHYTQKS

LSLSPGK

- continued

SEQ ID N: 168
DIVMTQSPDSLAVSLGERATINCKSSQSLNSNFQKNFLAWYQQKPGQPPKLLIYFASTRESSVP

DRFSGSGSGTDFTLTISSLQAEDVAVYYCQQHYSTPLTFGQGTKLEIK

SEQ ID NO.: 169
EVQLVQSGAEVKPGASVKVSKASGYIPTDYEIHWRQAPGQGLEWMGVIDPETGNTAFNQKFK

GRVTITADTSTSTAYMELSSLTSEDTAVYYCMGYSYWGQGTLVTVSS

SEQ ID NO.: 170
MVLQQTQVFISLWWISGAYGDIVMTQSPSSLASVGDRVTTICKASQDIHNFLNWFQQKPGKAPK

TLIFRANRLVDGVPSRFSGSGSGTDTLTISSLQPEDFATYSCLQYDEIPLTFGQGTKLEIKRTV

AAPSVFIFPPSDEQLKSGTASVVCNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL

SSTLTLSKADYEKHKVYACEVTHQGLSPVTKSFNRGEC

SEQ ID NO.: 171
MDWTWRILFLVAAATGTHAEVQLQESGPGLVKPSQTLSTCTVSGFSITSGYGHWRQHPGKGL

EWIGYINYDGHNDYNPSLKSRTVISQDTSKNQFSLKSSVTAADTAVYYCASSYDGLFAYWGQGT

LTVVSSASTKGPSVFLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPALQS

SGLYSLSSVVTVPSSSLGTQTYICNVNHPNSNTKVDKVEPKSCDKTHTCPCPAELLGGPSVF

LPPPKPKDTLMISRPEVTCVVVDVSHEDPEVFKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSL

TVLHQDWLNGKEYKCKVSNKALPAPIEKTIKAKGQPREPVYTLPPSRDELTKNQVSLTCLVKG

FYPSDIAVEWESNGQOPENNYKTPPVLDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHY

TQKSLSLSPGK

SEQ ID NO.: 172
DIVMTQSPSSLASVGDRVTTICKASQDIHNFLNWFQQKPGKAPKTLIFRANRLVDGVPSRSGS

GSGTDYTLTISSLQPEDFATYSCLQYDEIPLTFGQGTKLEIK

SEQ ID NO.: 173
EVQLQESGPGLVKPSQTLSTCTVSGFSITSGYGHWRQHPGKLEWIGYINYDGHNDYNPSLK

SRVTISQDTSKNQFSLKSSVTAADTAVYYCASSYDGLFAYWGQGTLVTVS

SEQ ID NO.: 186 (3A4 variant light chain variable region
consensus 1)
DXVMTQTPLSLVXXGXXAS1SCRSSQSLLHSNGNTYLEWYLQKPGQSPXLLIHTVSNRPSGVP

DRFSGSGSGTDFTLKISRVEADXGVYYCFQGSHVPLTFGXGTXLEXK

wherein at least one of the amino acids identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48. The amino acid substitution may be, for example conservative.

(3A4 variant light chain variable region
consensus 2)
SEQ ID NO.: 187

DX_{α1}VMTQTPLSLX_{α2}VX_{α3}X_{α4}GX_{α5}X_{α6}AS1SCRSSQSLLHSNGNTY
DX_{α8}GVYYCFQGSHVPLTFGX_{α9}GTX_{α10}LEX_{α11}K

Wherein X_{α1} may be a hydrophobic amino acid;

Wherein X_{α2} may be A or P;

[0803] Wherein X_{α3} may be neutral hydrophilic amino acid;

Wherein X_{α4} may be L or P;

[0804] Wherein X_{α5} may be an acidic amino acid;

Wherein X_{α6} may be Q or P;

[0805] Wherein X_{α7} may be a basic amino acid;

Wherein X_{α8} may be a hydrophobic amino acid;

Wherein X_{α9} may be A or Q;

[0806] Wherein X_{α10} may be a basic amino acid; or

Wherein X_{α11} may be a hydrophobic amino acid,

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48.

(3A4 variant light chain variable region
consensus 3)

SEQ ID NO.: 188

DX_{A1}VMTQTPLSLX_{A2}VX_{A3}X_{A4}GX_{A5}X_{A6}ASISCRSSQSLLHSNGNTYL
EWYLQKPGQSPX_{A7}LLIHTVSNRFSGVPDFRGSGSGTDFTLKISRVEAE
DX_{A8}GVYYCFQGSHVPLIFGX_{A9}GTX_{A10}LEX_{A11}K

Wherein X_{A1} may be V or I

Wherein X_{A2} may be A or P

Wherein X_{A3} may be S or T

Wherein X_{A4} may be L or P

Wherein X_{A5} may be D or E

Wherein X_{A6} may be Q or P

Wherein X_{A7} may be K or Q

Wherein X_{A8} may be L or V

Wherein X_{A9} may be A or Q

Wherein X_{A10} may be R or K or

Wherein X_{A11} may be L or I,

[0807] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48.

(3A4 variant 1 light chain variable region:
Lvh1)

SEQ ID NO.: 189

DIVMTQTPLSLPVTGPGEPASISCRSSQSLLHSNGNTYLEWYLQKPGQSPQ
LLIYTVSNRFSGVPDFRGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVP
LTFGQGTTKLEIK

(3A4 variant 2 light chain variable region:
Lvh2)

SEQ ID NO.: 190

DVVMTQTPLSLPVTGPGEPASISCRSSQSLLHSNGNTYLEWYLQKPGQSPK
LLIYTVSNRFSGVPDFRGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVP
LTFGQGTTKLEIK

(3A4 variant heavy chain variable region
consensus 1)

SEQ ID NO.: 191

QXQLVQSGXEXXKPGASVKXSCKASGYTFTDDYMSWVXQXXGXXLEWXGD
INPYNGDTNQNQKFKGXXXXTDXSXSTAYMXXLXSLXSEDXAVYYCARDP
GAMDYWGQGTXVTVSS

wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46. The amino acid substitution may be, for example conservative.

(3A4 variant heavy chain variable region
consensus 2)

SEQ ID NO.: 192

QX_{b1}QLVQSGX_{b2}EX_{b3}X_{b4}KPGASVKX_{b5}SCKASGYTFTDDYMSWVX_{b6}
QX_{b7}X_{b8}GX_{b9}X_{b10}LEWX_{b11}GDINPYNGDTNQNQKFKGXX_{b12}X_{b13}
X_{b14}X_{b15}TX_{b16}DX_{b17}SX_{b18}STAYMX_{b19}LX_{b20}SLX_{b21}SEDX_{b22}
AVYYCARDPGAMDYWGQGTX_{b23}VTVSS

Wherein X_{b1} may be a hydrophobic amino acid;

Wherein X_{b2} may be P or A;

[0808] Wherein X_{b3} may be a hydrophobic amino acid;

Wherein X_{b4} may be V or K;

[0809] Wherein X_{b5} may be a hydrophobic amino acid;
Wherein X_{b6} may be a basic amino acid;

Wherein X_{b7} may be S or A;

Wherein X_{b8} may be H or P;

[0810] Wherein X_{b9} may be a basic amino acid;

Wherein X_{b10} may be S or G;

[0811] Wherein X_{b11} may be a hydrophobic amino acid;
Wherein X_{b12} may be a basic amino acid;
Wherein X_{b13} may be a hydrophobic amino acid;

Wherein X_{b14} may be I or T;

[0812] Wherein X_{b15} may be a hydrophobic amino acid;
Wherein X_{b16} may be a hydrophobic amino acid;

Wherein X_{b17} may be K or T;

[0813] Wherein X_{b18} may be a neutral hydrophilic amino acid;

Wherein X_{b19} may be Q or E;

Wherein X_{b20} may be N or S;

Wherein X_{b21} may be T or R;

[0814] Wherein X_{b22} may be a neutral hydrophilic amino acid; or

Wherein X_{b23} may be S or L,

[0815] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46.

(3A4 variant heavy chain variable region
consensus 3)

SEQ ID NO.: 193

QX_{b1}QLVQSGX_{b2}EX_{b3}X_{b4}KPGASVKX_{b5}SCKASGYTFTDDYMSWVX_{b6}
QX_{b7}X_{b8}GX_{b9}X_{b10}LEWX_{b11}GDINPYNGDTNQNQKFKGXX_{b12}X_{b13}
X_{b14}X_{b15}TX_{b16}DX_{b17}SX_{b18}STAYMX_{b19}LX_{b20}SLX_{b21}SEDX_{b22}
AVYYCARDPGAMDYWGQGTX_{b23}VTVSS

Wherein X_{B1} may be I or V;
 Wherein X_{B2} may be P or A;
 Wherein X_{B3} may be M or V;
 Wherein X_{B4} may be V or K;
 Wherein X_{B5} may be M or V;
 Wherein X_{B6} may be K or R;
 Wherein X_{B7} may be S or A;
 Wherein X_{B8} may be H or P;
 Wherein X_{B9} may be K or Q;
 Wherein X_{B10} may be S or G;
 Wherein X_{B11} may be I or M;
 Wherein X_{B12} may be K or R;
 Wherein X_{B13} may be A or V;
 Wherein X_{B14} may be I or T;

Wherein X_{B15} may be L or I;
 Wherein X_{B16} may be V or A;
 Wherein X_{B17} may be K or T;
 Wherein X_{B18} may be S or T;
 Wherein X_{B19} may be Q or E;
 Wherein X_{B20} may be N or S;
 Wherein X_{B21} may be T or R;
 Wherein X_{B22} may be S or T; or
 Wherein X_{B23} may be S or L,

[0816] wherein at least one of the amino acid identified by X is an amino acid substitution (conservative or non-conservative) in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46.

(3A4 variant 1 heavy chain variable region: Hvh1)
 SEQ ID NO.: 194
 QVQLVQSGAEVKKPGASVKVKSCASGYTFTDDYMSWVRQAPGQGLEWMDINPYNGDTNYN
 QKFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSS

(3A4 variant 2 heavy chain variable region: Hvh2)
 SEQ ID NO.: 195
 QIQLVQSGAEVKKPGASVKVKSCASGYTFTDDYMSWVRQAPGQGLEWMDINPYNGDTNYNQ
 FKFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSS

(3A4 variant 3 heavy chain variable region: Hvh3)
 SEQ ID NO.: 196
 QIQLVQSGAEVKKPGASVKVKSCASGYTFTDDYMSWVRQAPGQGLEWIGDINPYNGDTNYNQK
 FKGRATLTVDKSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSS

(3A4 variant 4 heavy chain variable region: Hvh4)
 SEQ ID NO.: 197
 QIQLVQSGAEVKKPGASVKVKSCASGYTFTDDYMSWVKQAPGQGLEWIGDINPYNGDTNYNQK
 FKFKATLTVDKSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSS

3A4 murine light (kappa) chain
 SEQ ID NO: 198
 DVVMTQTPLSLAVSLGDQASISCRSSQSLLHSNGNTYLEWYLQKPGQSPKLLIHTVSNRFSGVP
 DRFGSGSGTDFTLKISRVEAEDLGVYYCFQGSHVPLTFGAGTRLELKRTVAAPSVFIFPPSDEQ
 LKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSTLTLKADYEK
 HKVYACEVTHQGLSSPVTKSFNRGEC

3A4 humanized light (kappa) chain variant 1; Lh1
 SEQ ID NO: 199
 DIVMTQTPLSLPVTPGEPASISCRSSQSLLHSNGNTYLEWYLQKPGQSPQLLIYTVSNRFSGVPD
 RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPLTFGQGKTFKLEIKRTVAAPSVFIFPPSDEQL
 KSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSTLTLKADYEK
 HKVYACEVTHQGLSSPVTKSFNRGEC

-continued

3A4 humanized light (kappa) chain variant 2; Lh2
 SEQ ID NO: 200

DVVMQTPLSLPVTGPPEPASISCRSSQSLHNSNGNTYLEWYLQKPGQSPKLLIYTTSNRFSGVPD
 RFSGSGSGTDFTLKISRVEAEDVGVYYCFQGSHVPLTFGQGKTLKLEIKRTVAAPSVFIFPPSDEQL
 KSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSLTLSKADYEK
 HKVYACEVTHQGLSSPVTKSPNRGEC

3A4 murine heavy (Iggl) chain
 SEQ ID NO: 201

QIQLVQSGPEMVKGASVKMSCKASGYTFTDDYMSWVKQSHGKSLEWIGDINPYNGDTNYNQ
 KFKGKAILTVDKSSSTAYMQLNSLTSEDSAVYYCARDPGAMDYWGQGTSVTVSSASTKGPSVF
 PLAPSSKSTSGGTAALGCLVKDVFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVTVPS
 SSLGTQTYICCNVNHKPSNTKVDKKVEPKSCDKTHTCPCPAPELLGGPSVFLFPPKPKDTLMISR
 TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE
 YKCKVSNKALPAPIEKTIKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWES
 NGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHTQKSLSLSPG
 K

3A4 humanized heavy (Iggl) chain variant 1; Hh1
 SEQ ID NO: 202

QVQLVQSGAEVKKGASVKVSKASGYTFTDDYMSWVRQAPGQGLEWMGDINPYNGDTNYN
 QKFKGRVTITADTSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSSASTKGPSVF
 PLAPSSKSTSGGTAALGCLVKDVFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVTVPS
 SSLGTQTYICCNVNHKPSNTKVDKKVEPKSCDKTHTCPCPAPELLGGPSVFLFPPKPKDTLMISR
 TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKE
 YKCKVSNKALPAPIEKTIKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWES
 NGQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHTQKSLSLSPG
 K

3A4 humanized heavy (Iggl) chain variant 2; Hh2
 SEQ ID NO: 203

QIQLVQSGAEVKKGASVKVSKASGYTFTDDYMSWVRQAPGQGLEWMGDINPYNGDTNYNQ
 KFKGRVTITADKSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSSASTKGPSVF
 LAPSSKSTSGGTAALGCLVKDVFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVTVPS
 SLGTQTYICCNVNHKPSNTKVDKKVEPKSCDKTHTCPCPAPELLGGPSVFLFPPKPKDTLMISR
 PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY
 KCKVSNKALPAPIEKTIKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN
 GQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHTQKSLSLSPGK

3A4 humanized heavy (Iggl) chain variant 3; Hh3
 SEQ ID NO: 204

QIQLVQSGAEVKKGASVKVSKASGYTFTDDYMSWVRQAPGQGLEWMGDINPYNGDTNYNQ
 FKGRATLTVDKSTSTAYMELSSLRSEDTAVYYCARDPGAMDYWGQGTLTVSSASTKGPSVFP
 LAPSSKSTSGGTAALGCLVKDVFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVTVPS
 SLGTQTYICCNVNHKPSNTKVDKKVEPKSCDKTHTCPCPAPELLGGPSVFLFPPKPKDTLMISR
 PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY
 KCKVSNKALPAPIEKTIKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN
 GQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCVMHEALHNHTQKSLSLSPGK

-continued

3A4 humanized heavy (Iggl) chain variant 4: Hh4
 SEQ ID NO: 205
 QIQLVQSGAEVKPGASVKVSKASGYTFTDDYMSWVKQAPQGLEWIGIDINPYNGDTNYNQK
 FKGKATLTVDKSTSTAYMELSSLRSED TAVYYCARDPGAMDYWGQGTLTVSSASTKGPSVFP
 LAPSSKSTSGGTAAALGCLVKDYPFPEPVTVWSNSGALTSGVHTFPALQSSGLYSLSSVVTVPSS
 SLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPCPAPELGGPSVFLFPPPKDTLMISRT
 PEVTCVVVDVSHEDPEVKFNWYVGVEVHNNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEY
 KCKVSNKALPAPIEKTI SKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN
 GQPENNYKTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK
 SEQ ID NO: 206
 ATACCAAGCTTGCACCACATGGAGACAGACACAC
 SEQ ID NO: 207
 ATACCAAGCTTCATTCCCGGGAGACAGGGAG
 SEQ ID NO: 208
 ATACCAAGCTGGCCACCATGAACCTTCTGCTGTCTTGG
 SEQ ID NO: 209
 ATACCAAGCTCTAACACTCTCCCTGTTGAAG
 pK-CR5
 SEQ ID NO: 210
 CTAATTGTAAGCGTTAATATTTGTTAAATTCGCGTTAAATTTGTTAAATCAGCTCATTT
 TTAACCAATAGGCCAATCGGAAATCCCTATAAAATCAAAGAATAGACCGAGATAGGG
 TTGAGTGTGTTCCAGTTGGAACAAGAGTCACATTAAAGAACGTGGACTCCAACGTCAA
 AGGGCGAAAACCGTCTATCAGGGCGATGGCCACTACGTGAACCATCACCTAATCAAGT
 TTTTGGGTCGAGGTGCCGTAAGCACTAAATCGAACCTAAAGGGAGCCCCGATTTA
 GAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGAAGGGAGAACGCAAAGGA
 GCGGGCCCTAGGGCGCTGCCAAGTGTAGCGGTACCGCTGCCGTAAACCACACCGCC
 GCGCTTAATGCCCGCTACAGGGCGCGTCCATTGCCATTCAAGGCTGCGCAACTGTTGG
 AAGGGCGATCGGTGCCCTTCGCTATTAGCCAGCTGGCGAAAGGGGATGTGCTG
 CAAGGGCGATGGGATCCACATCGCGGCCAAATGATTGCCCTCCATATGTCCTT
 CAGTGAGCGCGCTAACGACTCACTATAGGGCAATTGGAGCTCCACCGCGGTGGCG
 CCGCTCTAGAACTAGTGGATCCACATCGCGGCCAAATGATTGCCCTCCATATGTCCTT
 CCGAGTGAGAGACACAAAAATTCAAACACACTATTGCAATGAAATAATTCCATTAG
 CCAGAGGTCGAGATTAAATAAGCTGCTAGCAGATCTTGGACCTGGGAGTGGACACCTGT
 GGAGAGAAAAGGCAAAGTGGATGTCAATTGCACTCAAGTGTATTGGCAGATGGCGAGGT
 AATATCAAATCCCTCGTTTGGAAACTGACAATCTTAGCCAGAAGTAATGCCGCTTT
 GAGAGGGAGTACTCACCCAACAGCTGGATCTCAAGCCTGCCACACCTCACCTGACCAC
 CGCCGCTCAAGACCGCTACTTAAATTACATCATCAGCGCACCTCGCCAGAAACAACCC
 CGACCGCCACCCGCTGCCGCCACGGTGCCTAGCCTACCTGCGACTGTGACTGGTT
 AGACGCCCTTCGAGGGTTCCGATCCGGTCGATGCGGACTCGCTCAGGTCCCTCGGT
 GCGGAGTACCGTTCGGAGGCCACGGGTTCCGATCCAAGAGTACTGGAAAGACCGCGA
 AGAGTTGCTCAACCGCGAGCCAAACAGCTGGCCCTCGCAGACAGCGATGCGGAAGAG
 AGTGACCGCGGAGGCTGGATCGGTCCGGTCTTCTATGGAGGTAAAACAGCGTGGATG
 GCGTCTCCAGGGATCTGACGGTTCACTAACGAGCTCTGCTTATATAGCCCTCCACCGTA

-continued

CACGCCAACCTGACCCGGTACCAATCTTATAATACAAACAGACCAAGATTGCTGTTGTTA
TAATAACAAACAGACCAAGATTGCTGTTGTTATAATACAAACAGACCAAGATTGCTGTTGTTA
TAATAACAAACAGACCAAGATTGCTGTTGTTATAATACAAACAGACCAAGATTGCTGTTGTTA
TAATAACAAACAGACCAAGATTGCTGTTGTTAAGGTTGTCGAGTGAAGACGAAAGGGTTATT
AAGGCGCGCCGTCGACCTCGAGGGGGGGCCCGTACCCAGCTTGTCCCTTAGTGAG
GGTTAATTGCGCCTGGCGTAATCATGGTCAGCTGTTCTGTGAAATTGTTATCCG
CTCACAAATTCCACACAAACATAAGGCGGAAGCATAAAGTGTAAAGCCTGGGTGCTAATG
AGTGAGCTAACTCACATTAATTGCGTTGCGCTACTGCCGCTTCCAGTCGGAAACCTGT
CGTGCAGCTGATTAATGAATCGGCCAACCGCGGGAGAGGCGTTGCGTATTGGC
GCTCTTCGCTTCCCGCTACTGACTCGCTCGTCGGTCGGCTGCGCGAGCGGT
ATCAGCTCACTCAAAGGCGTAATAAGGTTATCCACAGAATCAGGGATAACGCAGGAAAG
AACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAGGCCGCGTTGCTGGCGT
TTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTG
GCCGAAACCGACAGGACTATAAGGATACCGAGCGTTCCCGTGGAGCTCCCTGTGCGC
TCTCCGTGCGACCCCTGCCGTTACCGGATACCTGTCGCCCTTCTCCCTCGGAAGCGT
GGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTCGGTAGGTGCTCCAGC
TGGGCTGTGCGACGAAACCCCCCGTTACGGCAGCCGCTGCCCTATCCGTAACATCG
TCTTGAGTCCAACCCGGTAAGACACGACTATCGCCACTGGCAGCAGCCACTGGTAACAGG
ATTAGCAGAGCGAGGTATGTTAGGCGGTGCTACAGAGTTCTGAAGTGGTAGGCTAACTACG
GCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTCGGAAA
AGAGTTGGTAGGCTCTGATCCGCAACAAACACCACCGCTGGTAGCGGTGGTTTTGTTTG
CAAGCAGCAGATTACCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGG
GGTCTGACGCTCAGTGGAACGAAACTCACGTTAAGGATTGGCATGAGATTATCAAAA
AGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTATATATG
AGTAAACTTGGCTGACAGTACCAATGCTTAATCAGTGAGGCACCTATCAGCAGATCTGT
CTATTCGTTCCATAGTGCCTGACTCCCCGCTGTAGATAACTACGATAACGGGAGGG
CTTACCATCTGGCCCGAGTGCATGACGACCCACGCTCACCGCTCCAGT
TTATCAGCAATAAACAGCCAGCCAGGGAGGGCCAGCGCAGAAGTGGCTGCACTTAT
CCGCCTCCATCCAGTCTATTAAATTGCTGCCGGAGCTAGAGTAAGTAGTCGCCAGTTAAT
AGTTTGCAGCAGTTGCTGCTACAGGCATCGTGGTGTACGCTCGCTGGTAT
GGCTTCATTCAGCTCGGTTCCAACGATCAAGGCGAGTTACATGATCCCCATGTTGCA
AAAAAGCGGTTAGCTCCTCGGTCCGATCGTTGTCAGAAGTAAGTGGCCGAGTGT
TCACTCATGGTTATGGCAGCACTGCATAATTCTCTACTGTGATGCCATCGTAAGATGCTT
TCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGGACCGAGTTG
CTCTGGCCCGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAGTGTCA
TCATTGGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGT
TCGATGTAACCCACTCGCACCCAACGATCTTCAGCATCTTACTTTACCCAGCGTTCT
GGGTGAGCAAAACAGGAAGGCAAAATGCCGCAAAAAGGGATAAGGGCGACACGGAAAT
GTTGAATACTCATACTCTTCCTTTCAATATTGAGCATTATCAGGGTTATTGCTCAT

-continued

GAGCGGATACATATTGAATGTATTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTCC
 CCGAAAAGTGCAC
 pMPG-CR5
 SEQ ID NO: 211
 GTCGACGATACCGTGCACTTAATTAAAGCGCGCTCGACCAAATGATTGCCCTCCATATGTC
 CTTCCGAGTGAGAGACACAAAAATTCCAACACACTATTGCAATGAAAATAATTCCCTTATT
 AGCCAGAGGTGAGGGTGGGGATCGTTAAACTGGACCTGGGAGTGGAACACCTGTGG
 AGAGAAAGGCAAAGTGGATGTCATTGTCACTCAAGTGTATGCCAGATCGGCCAGGTGAA
 TATCAAATCCTCCTCGTTTGAAAATGACAATCTTAGCGCAGAAGTAATGCCGCTTTGA
 GAGGGAGTACTCACCCAACAGCTGGATCTCAAGCCTGCCACCTCACCGACCATCCG
 CGCTCTCAAGACCGCTACTTTAATTACATCATCAGCAGCACCTCGCCAGAAACAACCCG
 ACCGCCACCCGCTGCCGCCACGGTGCTCAGCTACCTGCGACTGTGACTGGTTAGA
 CGCCTTCTCGAGAGGTTTCCGATCCGGTCGATGCCAGCTCGCTCAGGTCCTCGGTGGC
 GGAGTACCGTTCGGAGGCGACGGGTTCCGATCCAAGAGTACTGAAAGACCGCGAAGA
 GTTGCTCTCAACCGCAGGCCAACAGCTGGCCTCGCAGACAGCGATGCCAGAGAG
 GACCGCGGAGGCTGGATCGGTCCGGTGTCTTCTATGGAGGTCAAACAGCGTGGATGGC
 GTCTCCAGGCGATCTGACGGITCACTAAACGAGCTCTGCTTATATAGGCCTCCCACCGTACA
 CGCCTACCTCGACCCGGTACCAATCTTATAACAAACAGACCGAGATGCTGTTGTTATA
 ATACAAACAGACCAAGATTGCTGTTGTTATAACAAACAGACCGAGATTGCTGTTGTTATA
 ATACAAACAGACCAAGATTGCTGTTGTTATAACAAACAGACCGAGATTGCTGTTGTTATA
 ATACAAACAGACCAAGATTGCTGTTGTTAAGGTTGTCAGTGAAGACGAAAGGGTTAATTAA
 GCGCGCGCGTCACTAGCTGGCACGCCAGAAATCCGCGCGTGGTTTGGGGTCGG
 GGTGTTGGCACCCACAGACGCCGGTCTCGCTCAGTCCAGTCGTGGACAGACCCACGCA
 CAGGCATCCAAAACCATGGGCTGCTCAGTCCAGTCGTGGACAGACCCACGCA
 ACGCCAAAATAAAACCCACGAACCATAACCCATTCCCATGGGGACCCGTCCCTAA
 CCCACGGGGCAGTGGTATGGCAGGGCCTGCCGCCGACGTTGGCTGCGAGCCCTGG
 GCCTCACCGAACCTGGGGGTGGGAAAGGAAGAAACGCGGGGTATTGGCC
 CCAATGGGGTCTGGTGGGTATCGACAGAGTGCAGCCGGACCGAACCCCGTCTT
 ATGAACAAACGACCAACACCCGTGCGTTTATTCTGCTTTTATTGCCGTATAGCGCG
 GTTCCCTCGGTATTGTCCTCCGTGTTCACTAGTTAGCCTCCCCATCTCCCTATTCC
 GCCTCGGACGAGTGTGCTGGGGCGTGGTTCCACTATCGGGAGTACTTCTACACAGCC
 CGGTCCAGACGCCCGCGCTCTCGGGCGATTGTGTACGCCAGCTCCGGCTCCGG
 ATCGGACGATTGCGTCGATCGACCCCTGCGCCCAAGCTGCATCATCGAAATTGCG
 CAAGCTGTAGAGTGGTCAAGACCAATGCCAGCATACGCCGGAGCCGGCG
 CCTGCAAGCTCCGGATGCCCTCGCTGAAGTAGCGCGTCTGCTGCTCCATACAAG
 ACGGCCTCCAGAAGAAGATGGGCGACCTCGTATTGGGAATCCCGAACATGCC
 CCAGTCATGACCGCTGTTATGCCGCAATTGCGTCAGGACATTGTTGGAGCG
 GCGTGCACGAGGTGCGGACTTCGGGGCAGTCCTCGGCCAACAGCATCAGCT
 GCCTGCGCGACGGACGCAGTACGCGTGTGTCATCACAGTTGCCAGTGTAC
 GATCAGCAATCGCGCATATGAAATCACGCCATGTAGTGTATTGACCGATT
 CCGTCCGGTCCG

-continued

AATGGGCCGAACCGCTCGCTGGCTAAGATCGGCCGAGCGATCGCATCCATGGCCTCC
GCGACGGGCTGCAGAACAGCGGGCAGTCGGTTCAAGGCAGGTCTGCAACGTGACACCC
TGTGCACGGCGGGAGATGCAATAGGTCAAGGCTCGCTGAATTCCCAATGTCAAGCAGT
CCGGAATCGGGAGCGCGCCGATGCAAAGTGCAGATAAACATAACGATCTTGTAGAAACC
ATCGGCGCAGCTATTACCCGCAAGGACATATCCACGCCCTCCTACATCGAAGCTGAAAGCA
CGAGATTCTCGCCCTCGAGAGCTGCATCAGGTGGAGACGCTGCAACTTTCGATCA
GAAACTCTCGACAGACGTCGCGGTGAGTTCAAGGCTTTTATCTCATTGCCGGGATCT
GCGGCACGCTGTTGACGCTGTTAAGCGGGTCGCTGCAGGGTCGCTGGTGTGAGGCCA
CACCGCTCACCTTAATATGCGAAGTGGACCTGGGACCGCGCCGACTGCATCTCGT
GTTCGAATTGCGCAATGACAAGACGCTGGCGGGGTTGTGTCATCATAGAACTAAAGACAT
GCAAATATATTCTCGGGGACACCGCCAGCAAACGCGAGCAACGGCCACGGGATGAA
GCAGGGCATGGGGCGACGCGCTGGCTACGTCTTGCTGGCGTGGGACGCGAGGCT
GGATGGCTTCCCCATTATGATTCTTCGCTTCCGGCGCATCGGATGCCGCGTTGCA
GCCCATGCTGTCAGGCAAGGTAGATGACGACCATCAGGGACAGCTCAAGGATCGCTCG
GGCTCTTACCAAGCCTAACCTCGATCACTGGACCGTGATCGTCACGGCGATTATGCCGCT
CGCGAGCACATGGAACGGTTGGCATGGATTGTAGGCGCCCTATACCTTGCTGCGCT
CCCCCGCGTGCCTCGCGTGCATGGAGCCGGCCACCTCGACCTGAATGGAAGGCCG
GCACCTCGCTAACGGATTCAACCAAGGCTTGGCAGAACATCCATCGCTCCGCCATCCAGCAGCC
TGAATGCGCAAACCAACCCCTGGCAGAACATATCCATCGCTCCGCCATCCAGCAGCC
CACCGGGCGAGCAAAGGCCAGGAACCGTAAAAGGCCGCGTTGCTGGCTTTCCATA
GGCTCCGCCCCCTGACGAGCATCACAAATCGACGCTCAAGTCAGAGGTGGCGAAACCC
GACAGGACTATAAGATAACCAAGGCTTCCCCCTGGAAGCTCCCTCGTGCCTCTCTGTT
CGACCCCTGCCGTTACCGGATACCTGTCGCCCTTCTCCCTCGGAAGCGTGGCGCTTTC
TCATAGCTCACGCTGTAGGTATCTCAGTCGGTGTAGGTGCTCGCTCAAGCTGGCTGTG
TGCACGAACCCCCGTTACGCCGACCGCTGCCCTATCGTAACATCGTCTTGAGTC
CAACCCGGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA
GCGAGGTATGTAGGCGGTGCTACAGAGTTGAAGTGGTGGCCTAACACGGCTACACTA
GAAGGACAGTATTGGTATCTCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGT
AGCTCTTGATCCGGAAACAAACCCACCGCTGGTAGCGGTGGTTTGTGCAAGCAGCA
GATTACGGCAGAAAAAAAGATCTCAAGAAGATCCTTGATCTTCTACGGGCTGACG
CTCAGTGGAACGAAACTCACGTTAAGGATTGGCATGAGATTATCAAAAGGATCTCA
CCTAGATCCTTTAAATTAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTG
GTCTGACAGTACCAATGCTTAATCAGTGAGGCACCTATCAGCAGATCTGCTATTCGTC
ATCCATAGTTGCCGACTCCCCGCTGTAGATAACTACGATAACGGAGGGCTTACCATCTG
GCCCAAGTGCAGATGATAACCGCAGACCCACGCTCACCGGCTCCAGATTTATCAGCAAT
AAACCAAGCCAGCCGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGCTCCATC
CAGTCTTAAATTGTCGGGAAGCTAGAGTAAGTAGTTGCGCAGTTAATAGTTGCGCAA
CGTTGTTGCCATTGCTGCAGGCATCGTGGTCAAGCTCGTGTGTTGGTATGGCTCATTCA
GCTCCGGTCCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGCAAAAAAGCGGTT

-continued

AGCTCCTTCGGCCTCCGATCGTTGTCAGAAGTAAGTTGGCGCAGTGTATCACTCATGGT
 TATGGCAGCACTGCATAATTCTCTTACTGTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGG
 TGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCACCGAGTTGCTCTTGCCGG
 CGTCAACACGGGATAATACCGGCCACATAGCAGAACCTTTAAAGTGTATCATTGGAAAA
 CGTTCTCGGGCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACC
 CACTCGGCACCCAACTGATCTCAGCATTTTACTTCACAGCGTTCTGGTGAGCAAA
 AACAGGAAGGCAAAATGCCGCAAAAAGGGATAAGGGCAGACCGAAATGTTGAATACTC
 ATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATACA
 TATTGAAATGTTAGAAAAAAACAAATAGGGTTCCGCGCACATTCCCCGAAAAGTGC
 CACCTGACGTCTAAGAACCTATTATCATGACATTAACCTATAAAATAGGCGTATCACGA
 GGCCTTCGCTTCAGAATTCTCATGTTGACAGCTTATCTCTAGCAGATCCGAAATTCCC
 CTCCCAATTAAATGAGGACCTAACCTGTGAAATCTACTGATGTGGAGGCTGTAACGT
 ACAAAACAGAGGTTATTGGAATAACTAGCATGCTAACCTCATGCAGGGTCACAAAAGTGC
 ATGACGATGGGAGGAAACCTATTCAAGGCAGTAATTCCACTCTTGCTGTTGG
 GACCCCTGGAAATGCAGGGAGTGCTAATGAATTACAGGACAAAGTACCCAGATGGTACTAT
 AACCCCTAAAAACCAACAGCCCAGTCCAGGTAAATGAATACTGACCATAAGGCCTATTG
 ACAAAAACAATGTTATCCAGTGAGTGCTGGGTTCTGATCCTAGTAGAAATGAAAATACTA
 GGTATTTGGACTTCACAGGAGGGAAATGTTCCCCAGTACTTCATGTGACCAACACA
 GCTACCACAGTGTGCTAGATGAAACAGGGTGTGGGCCTCTTGAAAGCTGATGCC
 TGTTTCAGCTGCTGATTTGTCGCTGTTACTAACAGCTGAAACACAACAGTGGAGAG
 GCCTTGCAAGATATTAAAGATCCGCTGAGAAAAAGATCTGAAAGAATCCTTACCTAATT
 CCTTTTGCTAAGTGACCTTATAAAACAGGAGAACCCAGAGAGTGATGGCAGC
 GGTATGGAATCCCAGGTAGAAGAGGTTAGGGTGTGATGGCACAGAAAGACTTCAGGG
 ACCCAGATATGATAAGATATTGACAAACAGGGACAATTGCAAACCAAAATGTTAACAG
 GTGCTTTATTGTCACATATACTTAAATAAATGCTGTTTGATGCC
 GTTATTTGGGGTGGTGTGTTAGGCCTTTAAACACTGAAAGCCTTACACAAATGCAACT
 CTTGACTATGGGGTCTGACCTTGGGAATGTCAGCAGGGCTGAAGTATCTGAGACTG
 GGAAGAGCATTGTGATTGGGATTCACTGCTGATCCATGTCCAGAGTCTTCAGTTCTGAAT
 CCTCTCTCTGTAATCAAGAACATTTCCCATGCATATTATATTACCTTGAAAAA
 GTATACACATTCAGAACATCCAGCCTTCCATTCAACAATTCTAGAAGTTAAACTG
 GGGTAGATGCTATTACAGAGGTAGAATGCTCCTAAACCCAGAAATGGGGATCTGC

3A4 humanized heavy chain CDR2 polypeptide sequence

SEQ ID NO.: 212

DINPYNGDTN

OGS18500

SEQ ID NO.: 213

ATGCCAAGTGGTCCAGGCTGATGTTGATGCCAAACTCC

OGS2084

SEQ ID NO.: 214

GGGAAGATGAAGACAGATGGTGCAGCCACAGTCG

-continued

OGS1879

SEQ ID NO.: 215

GGGTTCCAGGTTCCACTGGCCAGATCCAGTTGGTCAATCTGG

OGS1810

EQ ID NO.: 216

GGGGCCAGGGGAAAGACAGATGGGCCCTCGTTGAGGC

REFERENCES

- [0817] Santana-Davila R. and Perez E. A. (2010) "Treatment options for patients with triple-negative breast cancer" *J Hematol Oncol.* 27:42.
- [0818] de Ruijter T. C., Veeck J., et al. (2011) "Characteristics of triple-negative breast cancer." *J Cancer Res Clin Oncol.* 137:183.
- [0819] Ismail-Khan R. and Bui M. M. (2010) "A review of Triple-negative breast cancer" *Cancer Control* 17:173.
- [0820] Carey L. A., Perou C. M. et al. (2006) "Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study." *JAMA* 295:2492.
- [0821] Krieg M., Seynaeve C. et al. (2009) "Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers." *J Clin Oncol* 27:3764.
- [0822] Rouzier R., Perou C. M. et al. (2005) "Breast cancer molecular subtypes respond differently to preoperative chemotherapy" *Clin Cancer Res* 11:5678.
- [0823] Fong P. C., Boss D. S. et al. (2009) "Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers." *N Engl J Med* 361:123.
- [0824] Dent R., Trudeau M et al. (2007) "Triple-Negative Breast Cancer: Clinical Feature and Patterns of Recurrence" *Clin. Cancer Res.* 13: 4429.
- [0825] Bernstein L and J. V. Lacey Jr. (2011) "Receptors, Associations, and Risk Factor Differences by Breast Cancer Subtypes: Positive or Negative?" *J Natl Cancer Inst* 103(6): 451-453 (Advanced publication Feb. 23, 2011).
- [0826] Nofech-Mozes S. et al., (2009) "Patterns of recurrence in the basal and non-basal subtypes of triple-negative breast cancers" *Cancer Res. Treat.* 118: 131-137.

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 216

<210> SEQ ID NO 1
<211> LENGTH: 885
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: UniProtKB/Q9UBP8
<309> DATABASE ENTRY DATE: 1999-12-20
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(885)

<400> SEQUENCE: 1

gaggggcata aatcacaccc agaagtcaaca gcccctcaac cactgagggtg tgggggggta 60
gggatctgca ttcttcata tcaacccac actatagggc acctaaatgg gtggcggtg 120
ggggagacccg actcaacttga gtttcttcaa ggcttcctgg cctccagcca cgtaattgcc 180
cccgctctgg atctggctca gtttccggat tcgggtggcca gtccgggggg ttttagatgtt 240
cctgacggcc ccaaagggtg cctgaacgccc gccggtcacc tccttcagga agacttcgaa 300
gctggacacc ttcttctcat ggatgaacgac gggggcccccc gctgttggaaagg ggtccccgtt 360
gcggtagacaca agcacgcctt tcacgaacggg ctgagacagg tggctggacc tggcgctgt 420
gccgctcata ttccccgtgt gccggccctt cagctcgctg cttcgcgtcg ggaggcacct 480
ccgctgtccc agccgcctca ccgcacccag ggcgcgggat cgcctcttgc aacgaacgag 540
aaactgacga atccacaggta gaaagagaag taacggccgt ggcgcctaggc gtccacccag 600
aggagacact aggagcttgc aggactcgga gttagacgctc aagttttca ccgtggcggt 660
cacagccaat caggacccgc agtgcgcgca ccacaccagg ttcacactgtc acgggcagaa 720
tcaaggtgga cagttctgtc gcaggagccg gaaacgcgcg gggccttcaa acaggcacgc 780
ctagtgggg caggagagag gaggacgcac acacacacac acacacaaat atggtgaaac 840
ccaaatttctt acatcatatc tttgtcttaccc tttccaaaca gccta 885

```

-continued

```

<210> SEQ ID NO 2
<211> LENGTH: 84
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: UniProtKB/Q9UBP8
<309> DATABASE ENTRY DATE: 1999-12-20
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(84)

<400> SEQUENCE: 2

Met Asp Asp Asp Ala Ala Pro Arg Val Glu Gly Val Pro Val Ala Val
1           5           10          15

His Lys His Ala Leu His Asp Gly Leu Arg Gln Val Ala Gly Pro Gly
20          25           30

Ala Ala Ala Ala His Leu Pro Arg Trp Pro Pro Gln Leu Ala Ala
35          40           45

Ser Arg Arg Glu Ala Pro Pro Leu Ser Gln Arg Pro His Arg Thr Gln
50          55           60

Gly Ala Gly Ser Pro Pro Glu Thr Asn Glu Lys Leu Thr Asn Pro Gln
65          70           75           80

Val Lys Glu Lys

```

```

<210> SEQ ID NO 3
<211> LENGTH: 657
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 light chain

<400> SEQUENCE: 3

gacattgtga tgacccagtc tccatcctcc ctggctgtgt caataggaca gaaggtcact      60
atgaactgca agtccagtc gageccttta aatagtaact ttcaaaaagaa ctttttgcc          120
tggtaaccagg agaaaaccagg ccagtctctt aaacttctgtatactttgc atccactcg          180
gaatcttagta tccctgatcg cttcataggc agtggatctg ggacagattt cactttacc          240
atcagcagtg tgcaggctga agacctggca gattactct gtcaagcaaca ttatagcact          300
ccgctcacgt tcggtgctgg gaccaagctg gagctgaaag ctgtggctgc accatctgtc          360
ttcatcttcc cgccatctga tgagcagttt aaatctggaa ctgcctctgt tggctgcctg          420
ctgaataact tctatcccag agaggccaaa gtacagtggaa aggtggataa cggccctccaa          480
tcgggtaact cccaggagag tgcacagag caggacagca aggacagcac ctacagcctc          540
agcagcaccc tgacgctgag caaagcagac tacgagaaac acaaagtcta cgcctgcgaa          600
gtcaccatc agggcctgag ctcgcccgtc acaaagagct tcaacagggg agagtgt          657

```

```

<210> SEQ ID NO 4
<211> LENGTH: 219
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 light chain

<400> SEQUENCE: 4

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Val Ser Ile Gly
1           5           10          15

Gln Lys Val Thr Met Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser

```

-continued

20	25	30
Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln		
35	40	45
Ser Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Ile		
50	55	60
Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr		
65	70	75
Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln		
85	90	95
His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu		
100	105	110
Lys Ala Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu		
115	120	125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe		
130	135	140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln		
145	150	155
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser		
165	170	175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu		
180	185	190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser		
195	200	205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys		
210	215	

<210> SEQ ID NO 5
 <211> LENGTH: 1329
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3D3 heavy chain

<400> SEQUENCE: 5

gagggttcagc tgcagcagtc tggtagctgag ctgggtggcc ctggggcttc agtgacgctg	60
tccttgcagg cttcgggcta catatttact gactatgaga tacactgggt gaagcagact	120
cctgtgtcatg gccttggaaatg gattggggttt attgtatcctt aaacttggtaa tactgccttc	180
aatcagaagt tcaaggggcaa ggccacactg actgcagaca tatcctccag cacagcctac	240
atggaaactca gcagtttgac atctgaggac tctgcctgtc attactgtat gggttattct	300
gattatttggg gccaaggcac cactctcaca gtctccctcag cctcaacgaa gggcccatct	360
gtctttccccc tggcccccctc ctccaagagc acctctgggg gcacagcggc cctggggctgc	420
ctgggtcaagg actacttccc cgaaccggtg acgggtgtcgt ggaactcagg cggccctgacc	480
agcggcgtgc acacccccc ggctgtccta cagtcctcag gactctactc cctcagcagc	540
gtgggtgaccc tgccctccag cagcttgggc acccagaccc acatctgcaa cgtgaatcac	600
aagccccagca acaccaaggt ggacaagaaa gttgagccca aatcttgta attcactcac	660
acatgccccac cgtgccccagc acctgaactc ctggggggac cgtcagtcctt cctcttcccc	720
ccaaaaaccca aggacaccct catgatctcc cggacccctg aggtcacatg cgtgggttg	780
gacgtgagcc acgaagaccc tgaggtcaag ttcaactggt acgtggacgg cgtggaggt	840

-continued

cataatgcgc	agacaaagcc	gcgggaggag	cagtacaaca	gcacgtaccc	tgtggtcagc	900
gtcctcaccg	tcctgcacca	ggactggctg	aatggcaagg	agtacaagtg	caaggtctcc	960
aacaaagccc	tcccagcccc	catcgagaaa	accatctcca	aagccaaagg	gcagccccga	1020
gaaccacagg	tgtacaccct	gcccccatec	cgggatgagc	tgaccaagaa	ccaggtcagc	1080
ctgacacctcc	tggtaaaagg	cttctatccc	agcgacatcg	ccgtggagtg	ggagagcaat	1140
gggcagccgg	agaacaacta	caagaccacg	cctcccggtc	tggactccga	cggctccctc	1200
ttcctctaca	gcaagctcac	cgtggacaag	agcaggggtgc	agcaggggaa	cgtttctca	1260
tgctccgtga	tgcataggc	tctgcacaac	caactacacgc	agaagagcct	ctccctgtct	1320
cccgaa						1329

<210> SEQ ID NO 6

<211> LENGTH: 443

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3D3 heavy chain

<400> SEQUENCE: 6

Glu	Val	Gln	Leu	Gln	Gln	Ser	Val	Ala	Glu	Leu	Val	Arg	Pro	Gly	Ala
1									5		10				15

Ser	Val	Thr	Leu	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Ile	Phe	Thr	Asp	Tyr
									20		25				30

Glu	Ile	His	Trp	Val	Lys	Gln	Thr	Pro	Val	His	Gly	Leu	Glu	Trp	Ile
									35		40				45

Gly	Val	Ile	Asp	Pro	Glu	Thr	Gly	Asn	Thr	Ala	Phe	Asn	Gln	Lys	Phe
									50		55				60

Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Ile	Ser	Ser	Ser	Thr	Ala	Tyr
65									70		75				80

Met	Glu	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	Cys
									85		90				95

Met	Gly	Tyr	Ser	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser
									100		105				110

Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser
									115		120				125

Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp
									130		135				140

Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr
145									150		155				160

Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr
									165		170				175

Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln
									180		185				190

Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp
									195		200				205

Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Glu	Phe	Thr	His	Thr	Cys	Pro	Pro
									210		215				220

Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro
225									225		230				240

Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr
									245		250				255

-continued

Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn
260								265					270		
Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg
275								280				285			
Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val
290								295				300			
Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser
305								310			315		320		
Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys
325								330			335				
Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp
340								345					350		
Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe
355								360				365			
Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gln	Pro	Glu	
370								375				380			
Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe
385								390			395		400		
Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly
405								410				415			
Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr
420								425				430			
Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys					
435								440							

<210> SEQ ID NO 7
<211> LENGTH: 654
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 light chain

<400> SEQUENCE: 7

gatgtttga	tgacccaaac	tccacgctcc	ctgtctgtca	gtcttgaga	tcaaggctcc	60
atctcttgc	atgcgagtca	gagcccttta	catagtaatg	gaaacaccta	ttttagaatgg	120
tatttgcaga	aaccaggcca	gcctccaaag	gtcctgatct	acaaagttc	caaccgattt	180
tctgggttcc	cagacagggtt	cagttggcagt	ggatcaggga	cagattcac	actcaagatc	240
agcggagtgg	aggctgagga	tctgggagtt	tattactgct	ttcaagggttc	acatgttctt	300
ctcacgttcg	gtgctggac	caagctggag	ctgaaagctg	tggctgcacc	atctgtttc	360
atcttccgc	catctgatga	gcagttgaaa	tctggaaactg	cctctgttgt	gtgcctgtg	420
aataacttct	atcccagaga	ggccaaagta	cagtggaaagg	tggataacgc	cctccaatcg	480
ggtaactccc	aggagagtgt	cacagagcag	gacagcaagg	acagcaccta	cagcctcagc	540
agcacccctga	cgctgagcaa	agcagactac	gagaaacaca	aagtctacgc	ctgcgaagtc	600
accatcagg	gcctgagctc	gcccgtcaca	aagagcttca	acaggggaga	gtgt	654

<210> SEQ ID NO 8
<211> LENGTH: 218
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 light chain

-continued

<400> SEQUENCE: 8

Asp Val Leu Met Thr Gln Thr Pro Arg Ser Leu Ser Val Ser Leu Gly
 1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Pro
 35 40 45

Pro Lys Val Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

Ser Gly Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
 85 90 95

Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
 100 105 110

Ala Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
 115 120 125

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
 130 135 140

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
 145 150 155 160

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
 165 170 175

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
 180 185 190

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
 195 200 205

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215

<210> SEQ ID NO 9

<211> LENGTH: 1335

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3G10 heavy chain

<400> SEQUENCE: 9

gagatccagc tgcagcagtc tggacctgag ttgggtgaagc ctggggcttc agtgaagata 60
 tcctgttaagg cttctggata caccttcaact gacaactaca tgaactgggt gaagcagagc 120
 catggaaaga gccttgagtg gattggagat attaatcctt actatggtagt tactacctac 180
 aaccagaagt tcaaggggcaa ggccacattg actgttagaca agtcctcccg cacagcctac 240
 atggagctcc gccccttgac atctgaggac tctgcagtc tattactgtgc aagagatgac 300
 tggtttgatt attggggcca agggactctg gtcactgtct ctgcagcctc aacgaaggc 360
 ccatctgtct ttcccttgcc cccctctcc aagagcacct ctggggcac agcggccctg 420
 ggctgcctgg tcaaggacta cttcccccga cccgtgacgg tggcgtggaa ctcaggcgcc 480
 ctgaccagcg gcgtgcacac cttcccgct gtcctacagt cctcaggact ctactccctc 540
 agcagcgtgg tgaccgtgcc ctccagcagc ttgggcaccc agacctacat ctgcaacgtg 600
 aatcacaagg ccagcaacac caaggtggac aagaaagttg agcccaaatc ttgtgaattc 660

-continued

actcacat	gcccaccgtg	cccagcacct	gaactcctgg	ggggaccgtc	agtcttcctc	720
ttccccccaa	aaccaagga	caccctcatg	atctcccgga	cccctgaggt	cacatgcgtg	780
gtgggtggacg	tgagccacga	agacccttag	gtcaagtca	actggtagt	ggacggcggt	840
gaggtgcata	atgccaagac	aaagccgcgg	gaggagcagt	acaacagcac	gtaccgtgtg	900
gtcagegtcc	tcaccgtcct	gcaccaggac	tggctgaatg	gcaaggagta	caagtcaag	960
gtctccaaca	aagccctccc	agccccatc	gagaaaacca	tctccaaagc	caaagggcag	1020
cccccagaac	cacaggtgta	caccctgccc	ccatcccggg	atgagctgac	caagaaccag	1080
gtcagectga	cctgectggt	caaaggcttc	tatcccagcg	acatcgccgt	ggagtggag	1140
agcaatgggc	agccggagaa	caactacaag	accacgcctc	ccgtgtggaa	ctccgacggc	1200
tccttcttcc	tctacagcaa	gctcaccgtg	gacaagagca	ggtggcagca	gggaaacgtc	1260
ttctcatgct	ccgtgtatgca	tgaggctctg	cacaaccact	acacgcagaa	gagcctctcc	1320
ctgtctcccg	ggaaaa					1335

<210> SEQ ID NO 10

<211> LENGTH: 445

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3G10 heavy chain

<400> SEQUENCE: 10

Glu	Ile	Gln	Leu	Gln	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly	Ala
1									5		10			15	

Ser	Val	Lys	Ile	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp	Asn
									20		25		30		

Tyr	Met	Asn	Trp	Val	Lys	Gln	Ser	His	Gly	Lys	Ser	Leu	Glu	Trp	Ile
									35		40		45		

Gly	Asp	Ile	Asn	Pro	Tyr	Tyr	Gly	Thr	Thr	Tyr	Asn	Gln	Lys	Phe	
									50		55		60		

Lys	Gly	Lys	Ala	Thr	Leu	Thr	Val	Asp	Lys	Ser	Ser	Arg	Thr	Ala	Tyr
									65		70		75		80

Met	Glu	Leu	Arg	Gly	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	Cys
									85		90		95		

Ala	Arg	Asp	Asp	Trp	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr
									100		105		110		

Val	Ser	Ala	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala	Pro
									115		120		125		

Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu	Val
									130		135		140		

Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly	Ala
									145		150		155		160

Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly
									165		170		175		

Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Leu	Gly	
									180		185		190		

Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr	Lys
									195		200		205		

Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Glu	Phe	Thr	His	Thr	Cys
									210		215		220		

-continued

Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu
225						230			235					240	
Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu
	245					250			255						
Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys
		260				265			270						
Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys
	275					280			285						
Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu
	290					295			300						
Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Glu	Tyr	Lys	Cys	Lys	
	305					310			315			320			
Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys
		325				330			335						
Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser
		340				345			350						
Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys
	355				360			365							
Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln
	370				375			380							
Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly
	385				390			395			400				
Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln
		405				410			415						
Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn
		420				425			430						
His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys			
		435				440			445						

<210> SEQ ID NO 11
<211> LENGTH: 639
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 light chain

<400> SEQUENCE: 11

gacatcgta	tgtctcagtc	tccatcttcc	atgtatgc	ctctaggaga	gagagtca	60
atcacttgca	aggcgagtca	ggacattcat	aacttttaa	actggttcca	gcagaaaccca	120
ggaaaatctc	caaagaccct	gatcttcgt	gcaaacagat	tggtagatgg	ggtcccatca	180
aggttcagtg	gcagtggatc	tgggcaagat	tattctctca	ccatcagcag	cctggagtt	240
gaagatttgg	gaatttattc	ttgtctacag	tatgatgaga	ttccgctcac	gttcggtgct	300
gggaccaagc	tggagctgag	agctgtggct	gcaccatctg	tcttcatctt	cccgccatct	360
gatgagcagt	tgaaatctgg	aactgcctct	gttgttgcc	tgctgaataa	cttctatccc	420
agagaggcca	aagtacagtg	gaagggtggat	aacgcctcc	aatcgggtaa	ctcccgaggag	480
agtgtcacag	agcaggacacg	caaggacacg	acctacagcc	tcagcagcac	cctgacgctg	540
agcaaaggcg	actacgagaa	acacaaagtc	tacgcctgcg	aagtcaccca	tcagggcctg	600
agctcgcccg	tcacaaagag	cttcaacagg	ggagagtg			639

<210> SEQ ID NO 12

-continued

<211> LENGTH: 213
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3C4 light chain

 <400> SEQUENCE: 12

Asp	Ile	Val	Met	Ser	Gln	Ser	Pro	Ser	Ser	Met	Tyr	Ala	Ser	Leu	Gly
1				5				10				15			

Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
 20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
 35 40 45

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Phe
 65 70 75 80

Glu Asp Leu Gly Ile Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu
 85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Arg Ala Val Ala Ala Pro
 100 105 110

Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr
 115 120 125

Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys
 130 135 140

Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu
 145 150 155 160

Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser
 165 170 175

Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala
 180 185 190

Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe
 195 200 205

Asn Arg Gly Glu Cys
 210

<210> SEQ ID NO 13
 <211> LENGTH: 1341
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3C4 heavy chain

 <400> SEQUENCE: 13

gaggtgcagc	ttcaggagtc	aggacctgac	ctgggtaaac	cttctcagtc	actttcactc	60
acctgcactg	tcactggctt	ctccatcacc	agtggttatg	gctggcactg	gatccggcag	120
tttccaggaa	acaaaactgga	gtggatgggc	tacataaact	acgatggtca	caatgactac	180
aacccatctc	tcaaaaatcg	aatctctatc	actcaagaca	catccaagaa	ccagtttttc	240
ctgcagttga	attctgtgac	tactgaggac	acagccacat	attactgtgc	aagcagttac	300
gacggcttat	ttgcttactg	gggccaagggg	actctggtca	ctgtctctgc	agcctcaacg	360
aaggggccat	ctgtcttcc	cctggccccc	tcctccaaga	gcacctctgg	gggcacagcg	420
gcccctggct	gcctggtaa	ggactacttc	cccgaaaccgg	tgacggtgtc	gtgaaactca	480

-continued

```

ggcgccctga ccagccgcgt gcacaccccttc cccggctgtcc tacagtccctc aggactctac      540
tccctcagca gcgtggtgac cgtgcctcc agcagcttgg gcacccagac ctacatctgc      600
aacgtgaatc acaagcccaag caacaccaag gtggacaaga aagttgagcc caaatcttgt      660
gaattcactc acacatgccc accgtgccc gcacctgaac tccctgggggg accgtcagtc      720
ttccctttcc ccccaaacc caaggacacc ctcatgtatcc cccggaccctc tgaggtcaca      780
tgcgtggtgcc tggacgtgag ccacgaagac cctgaggtaa agttcaactg gtacgtggac      840
ggcgtggagg tgcataatgc caagacaaag cgcggggagg agcagttacaa cagcacgtac      900
cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag      960
tgcaaggctc ocaacaaagc cctcccaacc cccatcgaga aaaccatctc caaagccaaa      1020
gggcagccccc gagaaccaca ggtgtacacc ctgccccat cccggatga gctgaccaag      1080
aaccaggctca gcctgacccctg cctggtaaaa ggcttctatcc ccaagcgacat cgccgtggag      1140
tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctccctgt gctggactcc      1200
gacggctcttcttca cagcaagtc accgtggaca agagcgggtg gcagcagggg      1260
aacgtcttcttcatgtccgt gatgtcatgag gctctgcaca accactacac gcagaagagc      1320
ctctccctgt ctcccgaa a      1341

```

<210> SEQ ID NO 14

<211> LENGTH: 447

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C4 heavy chain

<400> SEQUENCE: 14

```

Glu Val Gln Leu Gln Glu Ser Gly Pro Asp Leu Val Lys Pro Ser Gln
1           5           10          15

```

```

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Phe Ser Ile Thr Ser Gly
20          25          30

```

```

Tyr Gly Trp His Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35          40          45

```

```

Met Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
50          55          60

```

```

Lys Ser Arg Ile Ser Ile Thr Gln Asp Thr Ser Lys Asn Gln Phe Phe
65          70          75          80

```

```

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
85          90          95

```

```

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100         105         110

```

```

Val Thr Val Ser Ala Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
115         120         125

```

```

Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys
130         135         140

```

```

Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser
145         150         155         160

```

```

Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser
165         170         175

```

```

Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser
180         185         190

```

-continued

Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn
 195 200 205
 Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Glu Phe Thr His
 210 215 220
 Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val
 225 230 235 240
 Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
 245 250 255
 Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu
 260 265 270
 Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
 275 280 285
 Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
 290 295 300
 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
 305 310 315 320
 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
 325 330 335
 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 340 345 350
 Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
 355 360 365
 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
 370 375 380
 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
 385 390 395 400
 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
 405 410 415
 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
 420 425 430
 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 15
 <211> LENGTH: 339
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3D3 light chain variable region

<400> SEQUENCE: 15

```

gacattgtga tgaccaggc tccatccctcc ctggctgtgt caataggacca gaaggctcact 60
atgaactgca agtccaggc aagccctttta aatagtaact ttcaaaagaa cttttggcc 120
tggtaccaggc agaaaccaggc ccagtccttcc aaaccttgcataacttgc atccactcg 180
gaatcttagta tccctgatcg cttcataggc agtggatctg ggacagatcc cactttacc 240
atcagcaggc tgccaggctgc agacctggca gattacttgc gtcagcaaca ttatagcact 300
ccgctcacgt tcgggtctgg gaccaaggc gagctgaaa 339
  
```

<210> SEQ ID NO 16
 <211> LENGTH: 113
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:

-continued

<223> OTHER INFORMATION: 3D3 light chain variable region

<400> SEQUENCE: 16

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Val Ser Ile Gly
1 5 10 15

Gln Lys Val Thr Met Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Ile
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 17

<211> LENGTH: 339

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3D3 heavy chain variable region

<400> SEQUENCE: 17

gagggttcagc tgcagcagtc tcttagctgag ctgggtgggc ctggggcttc agtgcacgtg 60
tcctgcaagg cttcgggctta catatttact gactatgaga tacactgggt gaagcagact 120
cctgtgcatg gcctggaatg gattggggtt attgatcctg aaactggtaa tactgccttc 180
aatcagaagt tcaaggccaa ggccacactg actgcagaca tatacctccag cacagcctac 240
atggaactca gcagtttgac atctgaggac tctgccgtct attactgtat gggttattct 300
gattattggg gccaaggcac cactctcaca gtctcctca 339

<210> SEQ ID NO 18

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3D3 heavy chain variable region

<400> SEQUENCE: 18

Glu Val Gln Leu Gln Gln Ser Val Ala Glu Leu Val Arg Pro Gly Ala
1 5 10 15

Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
20 25 30

Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp Ile
35 40 45

Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Ile Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

-continued

Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser
 100 105 110

Ser

<210> SEQ ID NO 19
 <211> LENGTH: 336
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G10 light chain variable region

<400> SEQUENCE: 19

gtgtttgt	tgacccaaac	tccacgctcc	ctgtctgtca	gtcttgaga	tcaaggctcc	60	
atctcttgt	at	gatcgagtca	gagccttta	catagtaatg	gaaacaccta	ttttagaatgg	120
tat	ttgcaga	aaccaggcca	gcctccaaag	gtcctgatct	acaaagtttc	caaccgattt	180
tctgggtcc	cagacagggtt	cagtggcagt	ggatcaggg	cagatttac	actcaagatc	240	
agcggagtg	ggctgagga	tctggagtt	tattactgt	ttcaagg	tc acatgtt	cct	300
ctcacgttc	gtgtctggac	caagctggag	ctgaaa				336

<210> SEQ ID NO 20
 <211> LENGTH: 112
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G10 light chain variable region

<400> SEQUENCE: 20

Asp Val Leu Met Thr Gln Thr Pro Arg Ser Leu Ser Val Ser Leu Gly
 1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Pro
 35 40 45

Pro Lys Val Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

Ser Gly Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
 85 90 95

Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
 100 105 110

<210> SEQ ID NO 21
 <211> LENGTH: 345
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G10 heavy chain variable region

<400> SEQUENCE: 21

gagatccagc	tgcagcagtc	tggacctgag	ttgggtgaagc	ctggggcttc	agtgaagata	60
tcctgtt	aaagg	tttctgtt	ggata	ccatcttca	cttgcata	120
catggaaaga	gccttgagt	gattggagat	attaatcctt	actatggtac	tactacctac	180
aaccagaagt	tcaaggccaa	ggccacattt	actgttagaca	agtccccc	cacagccatc	240

-continued

atggagctcc gcggcctgac atctgaggac tctgcagtct attactgtgc aagagatgac 300
 tggtttatttatttggggcca agggactctg gtcactgtct ctgca 345

<210> SEQ ID NO 22
 <211> LENGTH: 115
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G10 heavy chain variable region

<400> SEQUENCE: 22
 Glu Ile Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn
 20 25 30
 Tyr Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
 35 40 45
 Gly Asp Ile Asn Pro Tyr Tyr Gly Thr Thr Tyr Asn Gln Lys Phe
 50 55 60
 Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Arg Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Arg Gly Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Asp Asp Trp Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
 100 105 110
 Val Ser Ala
 115

<210> SEQ ID NO 23
 <211> LENGTH: 321
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3C4 light chain variable region

<400> SEQUENCE: 23
 gacatcgta tgtctcagtc tccatcttcc atgtatgcat ctctaggaga gagagtca 60
 atcacttgca aggcgagtca ggacattcat aacttttaa actggttcca gcagaaacca 120
 gaaaaatctc caaagaccct gatcttcgt gcaaacagat tggtagatgg ggtcccatca 180
 aggttcagtg gcagtggatc tggcaagat tattctctca ccatcagcag cctggagtt 240
 gaagatttgg gaatttatttc ttgtctacag tatgatgaga ttccgctcac gttcggtgct 300
 gggaccaagc tggagctgag a 321

<210> SEQ ID NO 24
 <211> LENGTH: 107
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3C4 light chain variable region

<400> SEQUENCE: 24
 Asp Ile Val Met Ser Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly
 1 5 10 15
 Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
 20 25 30

-continued

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
35 40 45

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Phe
65 70 75 80

Glu Asp Leu Gly Ile Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Arg
100 105

<210> SEQ ID NO 25

<211> LENGTH: 351

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C4 heavy chain variable region

<400> SEQUENCE: 25

gaggtgcagc ttcaaggagtc aggacctgac ctgggtgaaac cttctcagtc actttcactc 60
acctgcactg tcactggctt ctccatcacc agtggttatg gctggcactg gatccggcag 120
tttccaggaa acaaactgga gtggatgggc tacataaaact acgatggtca caatgactac 180
aaccatctc tcaaaaatcg aatctctatc actcaagaca catccaagaa ccagttttc 240
ctgcagttga attctgtgac tactgaggac acagccacat attactgtgc aagcagttac 300
gacggcttat ttgcttactg gggccaagggg actctggtca ctgtctctgc a 351

<210> SEQ ID NO 26

<211> LENGTH: 117

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C4 heavy chain variable region

<400> SEQUENCE: 26

Glu Val Gln Leu Gln Glu Ser Gly Pro Asp Leu Val Lys Pro Ser Gln
1 5 10 15

Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Phe Ser Ile Thr Ser Gly
20 25 30

Tyr Gly Trp His Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp
35 40 45

Met Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
50 55 60

Lys Ser Arg Ile Ser Ile Thr Gln Asp Thr Ser Lys Asn Gln Phe Phe
65 70 75 80

Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys
85 90 95

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100 105 110

Val Thr Val Ser Ala
115

<210> SEQ ID NO 27

<211> LENGTH: 17

<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 light chain CDR1

<400> SEQUENCE: 27

Lys Ser Ser Gln Ser Leu Leu Asn Ser Asn Phe Gln Lys Asn Phe Leu
1 5 10 15

Ala

<210> SEQ ID NO 28
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 light chain CDR2

<400> SEQUENCE: 28

Phe Ala Ser Thr Arg Glu Ser
1 5

<210> SEQ ID NO 29
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 light chain CDR3

<400> SEQUENCE: 29

Gln Gln His Tyr Ser Thr Pro Leu Thr
1 5

<210> SEQ ID NO 30
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 heavy chain CDR1

<400> SEQUENCE: 30

Gly Tyr Ile Phe Thr Asp Tyr Glu Ile His
1 5 10

<210> SEQ ID NO 31
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 heavy chain CDR2

<400> SEQUENCE: 31

Val Ile Asp Pro Glu Thr Gly Asn Thr Ala
1 5 10

<210> SEQ ID NO 32
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3D3 heavy chain CDR3

<400> SEQUENCE: 32

Met Gly Tyr Ser Asp Tyr
1 5

-continued

<210> SEQ ID NO 33
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 light chain CDR1

<400> SEQUENCE: 33

Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Glu
1 5 10 15

<210> SEQ ID NO 34
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 light chain CDR2

<400> SEQUENCE: 34

Lys Val Ser Asn Arg Phe Ser
1 5

<210> SEQ ID NO 35
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 light chain CDR3

<400> SEQUENCE: 35

Phe Gln Gly Ser His Val Pro Leu Thr
1 5

<210> SEQ ID NO 36
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 heavy chain CDR1

<400> SEQUENCE: 36

Gly Tyr Thr Phe Thr Asp Asn Tyr Met Asn
1 5 10

<210> SEQ ID NO 37
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 heavy chain CDR2

<400> SEQUENCE: 37

Asp Ile Asn Pro Tyr Tyr Gly Thr Thr Thr
1 5 10

<210> SEQ ID NO 38
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G10 heavy chain CDR3

<400> SEQUENCE: 38

Ala Arg Asp Asp Trp Phe Asp Tyr

-continued

1 5

<210> SEQ ID NO 39
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 light chain CDR1

<400> SEQUENCE: 39

Lys Ala Ser Gln Asp Ile His Asn Phe Leu Asn
1 5 10

<210> SEQ ID NO 40
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 light chain CDR2

<400> SEQUENCE: 40

Arg Ala Asn Arg Leu Val Asp
1 5

<210> SEQ ID NO 41
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 light chain CDR3

<400> SEQUENCE: 41

Leu Gln Tyr Asp Glu Ile Pro Leu Thr
1 5

<210> SEQ ID NO 42
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 heavy chain CDR1

<400> SEQUENCE: 42

Gly Phe Ser Ile Thr Ser Gly Tyr Gly Trp His
1 5 10

<210> SEQ ID NO 43
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 heavy chain CDR2

<400> SEQUENCE: 43

Tyr Ile Asn Tyr Asp Gly His Asn Asp
1 5

<210> SEQ ID NO 44
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C4 heavy chain CDR3

<400> SEQUENCE: 44

-continued

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr
 1 5 10

<210> SEQ ID NO 45
 <211> LENGTH: 348
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 heavy chain variable region

<400> SEQUENCE: 45

cagatccagt tggtaatac tggacctgag atggtaaagc ctggggatcc agtgaagatg	60
tccatgttggat cttctggata cacattcaact gacgactaca tgagctgggt gaaacagagc	120
catggaaaga gccttgatgt gattggagat attaattcattt acaacggtta tactaactac	180
aaccagaatgt tcaaggccaa ggccatattt actgttagaca aatccctccag cacagccctac	240
atgcagatca acagccctgac atcggaaagac tcagcagtctt attactgtgc aagagacccg	300
ggggctatgg actactgggg tcaaggaacc tcagtcaccg ttccttca	348

<210> SEQ ID NO 46
 <211> LENGTH: 116
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 heavy chain variable region

<400> SEQUENCE: 46

Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Met Val Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

Lys Gly Lys Ala Ile Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
 65 70 75 80

Met Gln Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val
 100 105 110

Thr Val Ser Ser
 115

<210> SEQ ID NO 47
 <211> LENGTH: 336
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 light chain variable region

<400> SEQUENCE: 47

gatgttgtga tgacccaaac tccactctcc ctggctgtca gtctggaga tcaaggctcc	60
atctcttgca gatcttagtca gagccttcta catagtaatg gaaacacctt ttttagaatgg	120
tacccatcaga aaccaggcca gtctccaaag ctcctgatcc acacagttc caaccgattt	180

-continued

tctgggttcc cagacagatt cagttggcagt ggatcaggga cagattcac actcaagatc	240
agcagagtgg aggctgagga tctgggagtt tattactgct ttcaaggttc acatgttccg	300
ctcacgttccg gtgcgtggac caggctggag ctgaaa	336

<210> SEQ ID NO 48
 <211> LENGTH: 112
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 light chain variable region

<400> SEQUENCE: 48

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Ala Val Ser Leu Gly	1	
5	10	15
Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser	20	
25	30	
Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser	35	
40	45	
Pro Lys Leu Leu Ile His Thr Val Ser Asn Arg Phe Ser Gly Val Pro	50	
55	60	
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile	65	
70	75	80
Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly	85	
90	95	
Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Arg Leu Glu Leu Lys	100	
105	110	

<210> SEQ ID NO 49
 <211> LENGTH: 10
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 heavy chain CDR1

<400> SEQUENCE: 49

Gly Tyr Thr Phe Thr Asp Asp Tyr Met Ser	1
5	10

<210> SEQ ID NO 50
 <211> LENGTH: 17
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 heavy chain CDR2

<400> SEQUENCE: 50

Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe Lys	1	
5	10	15

Gly

<210> SEQ ID NO 51
 <211> LENGTH: 7
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 heavy chain CDR3

<400> SEQUENCE: 51

Asp Pro Gly Ala Met Asp Tyr

-continued

1 5

<210> SEQ_ID NO 52
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 light chain CDR1

<400> SEQUENCE: 52

Arg Ser Ser Gln Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Glu
1 5 10 15

<210> SEQ_ID NO 53
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 light chain CDR2

<400> SEQUENCE: 53

Thr Val Ser Asn Arg Phe Ser
1 5

<210> SEQ_ID NO 54
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 light chain CDR3

<400> SEQUENCE: 54

Phe Gln Gly Ser His Val Pro Leu Thr
1 5

<210> SEQ_ID NO 55
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer OSG 1773

<400> SEQUENCE: 55

gtaaggcagcg ctgtggctgc accatctgtc ttc 33

<210> SEQ_ID NO 56
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer OSG 1774

<400> SEQUENCE: 56

gtaagcgcta gcctaacaact ctccccctgtt gaagc 35

<210> SEQ_ID NO 57
<211> LENGTH: 321
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Human kappa constant region

<400> SEQUENCE: 57

gctgtggctg caccatctgt cttcatcttc ccgccatctg atgagcagtt gaaatctgga 60

-continued

actgcctctg ttgtgtgct gctgaataac ttctatccca gagaggccaa agtacagtgg	120
aagggtggata acggcctcca atcgggtaac tcccaggaga gtgtcacaaga gcaggacgc	180
aaggacacgac cctacagcct cagcagcacc ctgacgctga gcaaagcaga ctacgagaaa	240
cacaaagtct acgcctgcga agtcacccat cagggcctga gtcgcccgt cacaaggagc	300
ttcaacaggg gagagtgtta g	321

```
<210> SEQ ID NO 58
<211> LENGTH: 106
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Human kappa constant region
```

<400> SEQUENCE: 58

Ala Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
1 5 10 15

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
20 25 30

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
35 40 45

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
50 55 60

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
65 70 75 80

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
85 90 95

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
100 105

```
<210> SEQ ID NO 59
<211> LENGTH: 6385
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid pTTVK1
```

<400> SEQUENCE: 59
cttgagccgg cggtatggtcg aggtgagggtg tggcaggctt gagatccagc tgttgggtg 60
agtactccct ctc当地agcg ggcattactt ctgcgtcaag attgtcagtt tccaaaacg 120
aggaggattt gatattcacc tggcccgatc tggccatata cttgagtgac aatgacatcc 180
actttgcctt tcttccacca ggtgtccact cccaggttca agtttacacg gatctctac 240
gaatttcatga actttctgtt gtcttgggtg cattggagcc ttgccttgtt gctctaccc 300
caccatgccaa agtggtccca ggcttggagac ggagcttaca gcgctgtggc tgccacatct 360
gtcttcatct tcccgccatc tgatgagcag ttgaaatctg gaactgcctc tgttgtgtgc 420
ctgctgaata acttctatcc cagagaggcc aaagtacagt ggaagggtgga taacgcctc 480
caatcggtt actcccgagga gagtgtcaca gagcaggaca gcaaggacag cacctacagc 540
ctcagcagca ccctgacgct gagcaagca gactacgaga aacacaaaagt ctacgcctc 600
gaagtcaccc atcaggcctt gagctcgccc gtcacaaaaga gttcaacag gggagagtgt 660
tagggtaacc cggccgcttc gaatgagatc ccccgacctc gacctgtggc taataaaggaa 720

-continued

-continued

ggcctcgta tacgcctatt tttataggta aatgtcatga taataatggt ttcttagacg	3060
tcaaggggca ctttcgaaa aatgtgcgc ggaaccccta tttgttatt tttctaaata	3120
cattcaaata tggatccgct catgagacaa taaccctgat aatgtttca ataataattga	3180
aaaaggaaaga gtatgagttat tcaacatttc cgtgtcgccc ttatccctt ttttgcggca	3240
tttgccttc ctgttttgc tcacccagaa acgctggta aagtaaaaaga tgctgaagat	3300
cagttgggtg cacgagttggg ttacatcgaa ctggatctca acagcggtaa gatccttgag	3360
agtttgcgc cccaaagaacg tttccaatg atgagcactt taaaaggttct gctatgtggc	3420
ggggatttat cccgtgttga cgcggggcaa gagcaactcg gtcggccat acactattct	3480
cagaatgact tgggttagta ctcaccagtc acagaaaacg atcttacgga tggcatgaca	3540
gtaagagaat tatgcagtgc tgccataacc atgagtgata acactgoggc caacttactt	3600
ctgacaacgca tcggaggacc gaaggagcta accgctttt tgcacaacat gggggatcat	3660
gtaactogcc ttgatcggtt ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt	3720
gacaccacgca tgcctgcage aatggcaaca acggtgcgc aactattaac tggcgaacta	3780
cttactctag ottccggca acaattaata gactggatgg aggccggataa agttgcagga	3840
ccacttgcg ctcggccct tccggctggc tgggttattt ctgataatc tggagccgg	3900
gagcgtgggt ctcgggtat cattgcagca ctggggccag atggtaagcc ctccgtatc	3960
gtagttatct acacgcacggg gagtcaggca actatggat aacgaaatag acagatcgct	4020
gagataggtg cctcactgat taagcattgg taactgtcag accaagttt ctcataatata	4080
ctttagattt attaaaact tcattttaa tttaaaaggta tctaggtgaa gatcctttt	4140
gataatctca tgacaaaaat cccttaacgt gagtttcgt tccactgagc gtcagacccc	4200
gtagaaaaga tcaaaggatc ttctttagat ctttttttc tgcgcgtaat ctgctgcttgc	4260
caaacaaaaa aaccaccgct accagcggtg gtttgtttgc cggatcaaga gctaccaact	4320
ctttttccga aggttaactgg cttcagcaga ggcagatacaaaactgt cttcttagtg	4380
tagccgtatg tagccacca cttcaagaac tctgttagcac cgcctacata ctcgcctcg	4440
ctaaatctgt taccagtggc tgctgcgttggcgttggcgttgc ggcgataagt cgtgttttac cgggttggac	4500
tcaagacat agttaccgga taaggcgcag cggtcgggctt gaaacggggggg ttctgtgcaca	4560
cagcccagct tggagcgaac gacctacacc gaaactgagat acctacagcg tgagcatgaa	4620
gaaagcgcca cgctcccgaa agggagaaag gcccggacaggatcccgtaag cggcagggtc	4680
ggaacaggag agcgcacgag ggagcttcca gggggaaacg cctggatctt ttatagtcct	4740
gtcgggttcc gcccctctg acttgagctgt cgatgtttgtt gatgtcggtc aggggggggg	4800
agcctatggaa aacaccccgaa caacgcggcc tttttacggt tccctggccctt ttctgtggcct	4860
tttgctcaca tggatccatcc tgcgttatcc cctgattctg tggataaccg tattaccgccc	4920
tttgagtgag ctgataaccgc tgcggcgcage cgaacgaccg agcgcacgca gtcagtgcagc	4980
gaggaagcgaa aagagcgccc aatacgcaaa cccgcctctcc cgcgcgttg gccgattcat	5040
taatgcacgt ggcacgacag gttccgcac tggaaagcg gcaactgagcg caacgcatt	5100
aatgttgatggt agctcactca ttaggcaccc caggcttac actttatgtt tccggctcg	5160
atgttgatggt gaaattgttagt cggataacaa ttccacacag gaaacagctt tgaccatgat	5220
tacgccaaggc tctagctaga ggtcgaccaa ttctcatgtt tgacagctt tcatcgacg	5280

-continued

tccgggcaac	gttggcat	tgctgcaggc	gcagaactgg	taggtatggc	agatctatac	5340
attgaatcaa	tattggcaat	tagccatatt	agtcatggt	tatatagcat	aaatcaatat	5400
tggctattgg	ccattgcata	cgttgtatct	atatcataat	atgtacattt	atattggctc	5460
atgtccaata	tgaccgcatt	gttgacattt	attattgact	agtttataat	agtaatcaat	5520
tacggggtca	ttagttcata	gcccatatat	ggagttccgc	gttacataac	ttacggtaaa	5580
tggcccgct	ggctgaccgc	ccaacgcacc	ccgcccatttgc	acgtcaataa	tgacgtatgt	5640
tcccatagta	acgccaatag	ggactttcca	ttgacgtcaa	tgggtggagt	atttacggta	5700
aactgccccac	ttggcagttac	atcaagtgtt	tcatatgcctt	agtccgccttcc	ctattgacgt	5760
caatgacggt	aaatggcccg	cctggcattt	tgcccaatgc	atgacccat	gggactttcc	5820
tacttggcag	tacatctacg	tattagtcat	cgctattacc	atggtgatgc	ggttttggca	5880
gtacaccaat	gggcgtggat	agcgggttgc	ctcacgggg	tttccaatgc	tccacccat	5940
tgacgtcaat	gggagttgt	tttggcacca	aaatcaacgg	gactttccaa	aatgtcgtaa	6000
taaccccgcc	ccggtgacgc	aaatggccgg	taggcgtgtt	cggtgggg	tctatataag	6060
cagagctcg	ttagtgaacc	gtcagatctt	cactcttcc	cgcatcgctg	tctgcggagg	6120
ccagctgttgc	ggctcgccgt	tgaggacaaa	ctcttcgcgg	tcttccatgt	actcttggat	6180
cgaaaaacccgc	tcggcgtccgc	aacggtaatc	cgccacccgg	ggacctgagc	gagtcggcat	6240
cgaccggatc	ggaaaaacccgc	tcgagaaagg	cgtctaaacc	gtcacatgc	caaggtaggc	6300
tgagcaccgt	ggcggggcggc	agcgggtggc	ggtcgggg	gtttctggcg	gaggtgctgc	6360
tgatgtatgtt	attaaaggtag	gcgggt				6385

<210> SEQ ID NO 60
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 60

atgccaagtgc

43

<210> SEQ ID NO 61
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 61

atgccaagtgc

43

<210> SEQ ID NO 62
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 62

atgccaagtgc

43

<210> SEQ ID NO 63

-continued

```

<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 63
gggaagatga agacagatgg tgcagccaca gc                                32

<210> SEQ ID NO 64
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 64
gtaagcgcta ggcgcctcaac gaagggccca tctgtcttc ccctggcccc                                50

<210> SEQ ID NO 65
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer

<400> SEQUENCE: 65
gttaagegaat tcacaagatt tgggctcaac tttcttg                                37

<210> SEQ ID NO 66
<211> LENGTH: 309
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Human IgG1 CH1 region

<400> SEQUENCE: 66
gcctccacca agggeccatc ggtttcccc ctggcacccct cctccaagag cacctctggg      60
ggcacacgag ccctgggctg cctggtcaag gactacttcc ccgaaccggt gacggtgtcg      120
tggaaactcag ggcgcctgac cagggcggtg cacaccttcc cggctgtcct acgtccctca      180
ggactctact ccctcagcag cgtggtgacc gtgccctcca gcagcttggg caccagacc      240
tacatctgca acgtgaatca caagcccagc aacaccaagg tggacaagaa agttgagccc      300
aaatcttgt                                309

<210> SEQ ID NO 67
<211> LENGTH: 103
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Human IgG1 CH1 region

<400> SEQUENCE: 67
Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys
1          5          10          15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr
20         25          30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser
35         40          45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser

```

-continued

50	55	60
Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser	Leu Gly Thr Gln Thr	
65 70 75 80		
Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys		
85 90 95		
Lys Val Glu Pro Lys Ser Cys		
100		
<210> SEQ_ID NO 68		
<211> LENGTH: 5379		
<212> TYPE: DNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Plasmid pYD15		
<400> SEQUENCE: 68		
cttgagccgg cggatggtcg aggtgaggtg tggcaggctt gagatccagc tgttgggtg	60	
agtactccct ctcaaaagcg ggcattactt ctgcgctaag attgtcagtt tccaaaaacg	120	
aggaggattt gatattcacc tggcccgatc tggccataca cttgagtgac aatgacatcc	180	
actttgcctt tctctccaca ggtgtccact cccaggtcca agtttgcgcg caccatggag	240	
acagacacac tcctgtatg ggtactgctg ctctgggttc caggttccac tggcggagac	300	
ggagcttacg ggcccatctg tctttccctt ggccccctcc tccaagagca cctctgggg	360	
cacagcggcc ctgggctgcc tggtcaagga ctacttcccc gaaccggtga cggtgtcgtg	420	
gaactcagggc gccctgacca gcggcgtgca caccttcccg gctgtctac agtcttcagg	480	
actctactcc tcagcagcg tggtgaccgt gcccctccagc agcttggca cccagaccta	540	
catctgcaac gtgaatcaca agcccagcaa caccaaggtt gacaagaaa ttgagccaa	600	
atcttgtgaa ttcactcaca catgcccacc gtgcccagca cctgaactcc tggggggacc	660	
gtcagtccttc ctcttccccc caaaacccaa ggacaccctc atgatctccc ggaccctga	720	
ggtcacatgc gtgggtgtgg acgtgagcca cgaagacccctt gaggtcaagt tcaactggta	780	
cgtggacggc gtggaggtgc ataatgccaa gacaaagccg cgggaggagc agtacaacag	840	
cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag gactggctga atggcaagga	900	
gtacaagtgc aaggcttcca acaaagccctt cccagcccccc atcgagaaaa ccatctccaa	960	
agccaaaggcg cagcccccgag aaccacaggt gtacacccttccccatccc gggatgagct	1020	
gaccaagaac caggtcagcc tgacactgcctt ggtcaaaggc ttctatccca gcgacatcg	1080	
cgtggaggtgg gagacaatg ggcagccgga gaacaactac aagaccacgc ctccctgtct	1140	
ggactccgac ggctcccttc tcctctacag caagcttaccgtt gttgacaaga gcatggca	1200	
gcagggaaac gtcttctcat gctccgtat gcatgaggctt ctgcacaacc actacacgc	1260	
gaagagccctc tccctgtctc ccggaaatg atccccccac ctcgacccctt ggctaaaa	1320	
ggaaattttt tttcatttgcataatgtgtttt ggaatttttt gtgtctctca ctcggaaagga	1380	
catatggggag ggcaaatcat ttggtcgaga tccctcgagatctctagct agagccccgc	1440	
cgcggacga actaaacccctg actacggcat ctctgccccctt tttcgccgg gcagtgcatt	1500	
taatcccttc agttgggtgg tacaacttgc caactgaacc ctaaacgggtt agcatatgtct	1560	
tcccggttag tagtatatac tatccagact aaccctaattt caatagcata tgttaccctt	1620	
cgggaaagcat atgctatcga attagggtta gtaaaagggtt cctaaggaac agcgatgttag	1680	

-continued

gtgggggggc	caagataggg	gcgcatgtgc	tgcgatctgg	aggacaaatt	acacacactt	1740
gcgcctgagc	gcacaagcaca	gggttgggg	tcctcatatt	cacgagggtcg	ctgagagcac	1800
ggtgggctaa	tgttgccatg	ggtagcatat	actacccaaa	tatctggata	gcatatgcta	1860
tcctaatcta	tatctgggt	gcataggcta	tcctaatcta	tatctgggt	gcatatgcta	1920
tcctaatcta	tatctgggt	gtatatgcta	tcctaattt	tatctgggt	gcataggcta	1980
tcctaatcta	tatctgggt	gcatatgcta	tcctaatcta	tatctgggt	gtatatgcta	2040
tcctaatctg	tatccgggt	gcatatgcta	tcctaataga	gattagggt	gtatatgcta	2100
tcctaatttt	tatctgggt	gcatatacta	cccaaataatc	tggatagcat	atgctatcct	2160
aatctatatac	tgggttagcat	atgctatcct	aatctatatac	tgggttagcat	aggctatcct	2220
aatctatatac	tgggttagcat	atgctatcct	aatctatatac	tgggttagtat	atgctatcct	2280
aattttatatac	tgggttagcat	aggctatcct	aatctatatac	tgggttagcat	atgctatcct	2340
aatctatatac	tgggttagtat	atgctatcct	aatctgtatc	cgggttagcat	atgctatcct	2400
cacgatgata	agctgtcaaa	catgagaatt	aattcttcaa	gacgaaagg	cctcgtgata	2460
cgcctatttt	tataggttaa	tgtcatgata	ataatggttt	cttagacgtc	aggtggcact	2520
tttcggggaa	atgtgcgcgg	aacccttatt	tgtttatttt	tctaaataca	ttcaaataatg	2580
tatccgctca	tgagacaata	accctgataa	atgcttcaat	aatattgaaa	aaggaagagt	2640
atgagtttc	aacattccg	tgtcgccctt	atccctttt	ttgcggcatt	ttgccttcct	2700
gtttttgctc	acccagaaac	gctgggtaaa	gtaaaagatg	ctgaagatca	gttgggtgca	2760
cgagtggttt	acatcgaaact	ggatctcaac	agcggtaaga	tccttgagag	ttttcgcccc	2820
gaagaacgtt	ttccaatgtat	gagcaactttt	aaagttctgc	tatgtggcgc	ggtattatcc	2880
cgtgttgcac	cggggcaaga	gcaactcggt	cgcgcatac	actattctca	gaatgacttg	2940
gtttagtact	caccagtcaac	agaaaagcat	cttacggatg	gcatgacagt	aagagaattt	3000
tgcagtgtctg	ccataaccat	gagtgataac	actgcggcca	acttacttct	gacaacgatc	3060
ggaggaccga	aggagctaacc	cgttttttg	cacaacatgg	gggatcatgt	aactcgctt	3120
gatcggttgg	aaccggagct	gaatgaagcc	ataccaaacc	acgagcgtga	caccacgtat	3180
cctgcagcaa	tggcaacaac	gttgcgcaaa	ctattaactg	gcgaactact	tactctagct	3240
tcccgcaac	aattaataga	ctggatggag	gcccataaag	ttgcaggacc	acttctgcgc	3300
tccgccttc	cggctggctg	gtttattgtct	gataaatctg	gagccggta	gcgtgggtct	3360
cgcggatca	ttgcagact	ggggccagat	ggtaagccct	cccgatctgt	agttatctac	3420
acgacgggga	gtcaggcaac	tatggatgaa	cgaaatagac	agatcgctga	gataggtgcc	3480
tcactgatta	agcattggta	actgtcagac	caagtttact	cataataact	tttagattgat	3540
ttaaaaacttc	attttaatt	taaaaggatc	taggtgaaga	tccttttga	taatctcatg	3600
accaaaaatcc	cttaacgtga	gttttcgttc	cactgagcgt	cagaccctgt	agaaaagatc	3660
aaaggatctt	cttgagatcc	ttttttctg	cgcgtaatct	gctgcttgca	aacaaaaaaa	3720
ccaccgctac	cagcggtggt	ttgtttgcgg	gatcaagagc	taccaactct	ttttccgaag	3780
gtactggct	tcaagcagage	gcagatacca	aatactgtcc	ttctagtgt	gccgttagtta	3840
ggccaccact	tcaagaactc	tgttagcaccc	cctacatacc	tcgctctgt	aatcctgtta	3900
ccagtggtct	ctgcccagtgg	cgataagtcg	tgtcttaccc	ggttggactc	aagacgatag	3960

-continued

ttacccgata	aggcgacagcg	gtcgggctga	acggggggtt	cgtcacaca	gcccgacttg	4020
gagcgaacga	cctacaccga	actgagatac	ctacagegtg	agcattgaga	aagcgccacg	4080
cttcccgaaag	ggagaaaaggc	ggcagggat	ccggtaacgcg	gcagggtcgg	aacaggagag	4140
cgcacgagg	agcttccagg	gggaaacgc	tggtatctt	atagtectgt	cgggttcgc	4200
cacctctgac	ttgagcgtcg	attttgtga	tgctcgtcag	gggggcccgg	cctatggaaa	4260
aacggccagca	acgcggcctt	tttacggttc	ctggccttt	gtggcctt	tgctcacatg	4320
ttctttctg	cgttatcccc	tgattctgtg	gataaccgt	ttaccgcctt	tgagtgagct	4380
gataaccgtc	gcccgcagcc	aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcgtac	4440
atttatattg	gctcatgtcc	aatatgaccg	ccatgttgc	attgattatt	gactagttat	4500
taatagtaat	caattacggg	gtcattagtt	catagccat	atatggagtt	ccgcgttaca	4560
taacttacgg	taaatggccc	gcctggctga	ccggcccaacg	accccccgc	attgacgtca	4620
ataatgacgt	atgttccat	agtaacgcca	atagggactt	tccattgacg	tcaatgggtg	4680
gagtttttac	ggttaactgc	ccacttggca	gtacatcaag	tgtatcatat	gccaaagtcc	4740
ccccctattg	acgtcaatga	cggtaaatgg	ccgcctggc	attatgcca	gtacatgacc	4800
ttacggact	ttcctacttg	gcagtgatc	tacgtattag	tcatcgctat	taccatggtg	4860
atgcggttt	ggcagtgacac	caatggcggt	ggatagcggt	ttgactcaca	gggatttcca	4920
agtctccacc	ccattgacgt	caatgggagt	ttgtttggc	acccaaatca	acgggacttt	4980
ccaaaatgtc	gtaataaccc	cgcggcggt	acgcaaatgg	gcggtagggc	tgtacggtgg	5040
gaggtctata	taagcagagc	tcgtttagtg	aaccgtcaga	tcctcaactt	cttccgcata	5100
gctgtctgcg	agggccagct	gttgggctcg	cgggtgagga	caaactcttc	gcggtcttc	5160
cagttacttt	ggatcggaaa	ccgtcgcc	tccgaacgg	actccgcac	cgagggacct	5220
gagcggatcc	gcatcgaccg	gatcgaaaa	cctctcgaga	aaggcgtcta	accagtacaca	5280
gtcgcaagg	aggctgagca	ccgtggcg	cggcagcg	tggcggtcg	ggttttct	5340
ggcggagg	ctgctgatga	tgtataaa	gtaggcg			5379

<210> SEQ ID NO 69
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 69

gggttccagg	ttccactggc	gaggttcagc	tgcagcagtc	tgt	43
------------	------------	------------	------------	-----	----

<210> SEQ ID NO 70
 <211> LENGTH: 43
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 70

gggttccagg	ttccactggc	gaggtgcagc	ttcaggagtc	agg	43
------------	------------	------------	------------	-----	----

<210> SEQ ID NO 71
 <211> LENGTH: 38

-continued

<212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: primer

<400> SEQUENCE: 71

ggggccaggg gaaagacaga tggcccttc gttgaggc

38

<210> SEQ ID NO 72
 <211> LENGTH: 17
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: light chain CDR1 consensus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (1)..(1)
 <223> OTHER INFORMATION: Xaa may be a basic amino acid
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (4)..(4)
 <223> OTHER INFORMATION: Xaa may be a basic amino acid
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (8)..(8)
 <223> OTHER INFORMATION: Xaa may be H, Y or N
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (9)..(9)
 <223> OTHER INFORMATION: Xaa may be S, T, N or R
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (10)..(10)
 <223> OTHER INFORMATION: Xaa may be absent, S or N
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (11)..(11)
 <223> OTHER INFORMATION: Xaa may be D, F or N
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (12)..(12)
 <223> OTHER INFORMATION: Xaa may be G or Q
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (13)..(13)
 <223> OTHER INFORMATION: Xaa may be K, L or N
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (14)..(14)
 <223> OTHER INFORMATION: Xaa may be T or N
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (15)..(15)
 <223> OTHER INFORMATION: Xaa may be an aromatic amino acid
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (17)..(17)
 <223> OTHER INFORMATION: Xaa may be A, N, E or Y

<400> SEQUENCE: 72

Xaa Ser Ser Xaa Ser Leu Leu Xaa Xaa Xaa Xaa Xaa Xaa Xaa Leu
 1 5 10 15

Xaa

<210> SEQ ID NO 73
 <211> LENGTH: 11
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: light chain CDR1 consensus
 <220> FEATURE:

-continued

```

<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (7)..(7)
<223> OTHER INFORMATION: Xaa may be G or H
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be T, N or R
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be F, Y or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be N or A

```

<400> SEQUENCE: 73

Lys Ala Ser Gln Asp Xaa Xaa Xaa Xaa Xaa Xaa
 1 5 10

```

<210> SEQ ID NO 74
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be A or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be R or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be E, K or A

```

<400> SEQUENCE: 74

Phe Xaa Ser Thr Xaa Xaa Ser
 1 5

```

<210> SEQ ID NO 75
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be L or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be L or R
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)

```

-continued

<223> OTHER INFORMATION: Xaa may be D or F

<400> SEQUENCE: 75

Xaa Val Ser Xaa Xaa Xaa Ser
1 5

<210> SEQ ID NO 76

<211> LENGTH: 7

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: light chain CDR2 consensus

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (1)..(1)

<223> OTHER INFORMATION: Xaa may be a basic amino acid

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (7)..(7)

<223> OTHER INFORMATION: Xaa may be D or A

<400> SEQUENCE: 76

Xaa Ala Asn Arg Leu Val Xaa

1 5

<210> SEQ ID NO 77

<211> LENGTH: 9

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: light chain CDR3 consensus

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (1)..(1)

<223> OTHER INFORMATION: Xaa may be Q or L

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (3)..(3)

<223> OTHER INFORMATION: Xaa may be an aromatic amino acid

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (4)..(4)

<223> OTHER INFORMATION: Xaa may be D, F or Y

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Xaa may be E, A, N or S

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (6)..(6)

<223> OTHER INFORMATION: Xaa may be I, F or T

<400> SEQUENCE: 77

Xaa Gln Xaa Xaa Xaa Xaa Pro Leu Thr

1 5

<210> SEQ ID NO 78

<211> LENGTH: 9

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: light chain CDR3 consensus

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (4)..(4)

<223> OTHER INFORMATION: Xaa may be an aromatic amino acid

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Xaa may be N or S

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be I or T

<400> SEQUENCE: 78

Gln Gln His Xaa Xaa Xaa Pro Leu Thr
1 5

<210> SEQ_ID NO 79
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: light chain CDR3 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be an aromatic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be F or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be R or L

<400> SEQUENCE: 79

Xaa Gln Gly Xaa His Xaa Pro Xaa Thr
1 5

<210> SEQ_ID NO 80
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR1 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be T, I or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be an acidic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be E, N or D
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

<400> SEQUENCE: 80

Gly Tyr Xaa Phe Xaa Xaa Tyr Xaa Xaa His
1 5 10

<210> SEQ_ID NO 81
<211> LENGTH: 10
<212> TYPE: PRT

```

-continued

```

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be V or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be A, G or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be R, G, D, A, S, N or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

<400> SEQUENCE: 81

Xaa Xaa Asp Pro Xaa Thr Gly Xaa Thr Xaa
1 5 10

```

```

<210> SEQ ID NO 82
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be A, E or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be R, G, A, S, N, V or D

<400> SEQUENCE: 82


```

```

Val Xaa Asp Pro Xaa Thr Gly Xaa Thr Ala
1 5 10

```

```

<210> SEQ ID NO 83
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be S or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be an aromatic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be D, E or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (7)..(7)

```

-continued

<223> OTHER INFORMATION: Xaa may be D or H
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be Y, S or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be D, E or N

<400> SEQUENCE: 83

Tyr Ile Xaa Xaa Xaa Gly Xaa Xaa Xaa
1 5

<210> SEQ_ID NO 84
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be N or Y
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (7)..(7)
<223> OTHER INFORMATION: Xaa may be E, D or N

<400> SEQUENCE: 84

Xaa Ile Asn Pro Tyr Asn Xaa Val Thr Glu
1 5 10

<210> SEQ_ID NO 85
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be N or Y
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be G or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be I or T

<400> SEQUENCE: 85

Asp Ile Asn Pro Xaa Tyr Gly Xaa Xaa Thr
1 5 10

<210> SEQ_ID NO 86
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR3 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be G or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be Y or H

-continued

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be A or S

<400> SEQUENCE: 86

Met Xaa Xaa Xaa Asp Tyr
1 5

<210> SEQ ID NO 87
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR3 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be G or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be absent or M

<400> SEQUENCE: 87

Ile Xaa Tyr Ala Xaa Asp Tyr
1 5

<210> SEQ ID NO 88
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: heavy chain CDR3 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be R or W
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be an aromatic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (7)..(7)
<223> OTHER INFORMATION: Xaa may be a basic amino acid

<400> SEQUENCE: 88

Ala Xaa Xaa Gly Leu Arg Xaa
1 5

<210> SEQ ID NO 89
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL1 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be N or H
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be S or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa may be S, N or D
<220> FEATURE:

-continued

```
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be N or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be Q, N or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: Xaa may be K or L
```

<400> SEQUENCE: 89

Lys Ser Ser Gln Ser Leu Leu Xaa Xaa Xaa Xaa Xaa Asn Tyr Leu
1 5 10 15

Ala

```
<210> SEQ ID NO 90
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL1 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be N or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be Y or F
```

<400> SEQUENCE: 90

Lys Ala Ser Gln Asp Ile His Xaa Xaa Leu Asn
1 5 10

```
<210> SEQ ID NO 91
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL2 consensus
```

<400> SEQUENCE: 91

Phe Ala Ser Thr Arg Glu Ser
1 5

```
<210> SEQ ID NO 92
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL2 consensus
```

<400> SEQUENCE: 92

Leu Val Ser Lys Leu Asp Ser
1 5

```
<210> SEQ ID NO 93
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL2 consensus
```

<400> SEQUENCE: 93

-continued

Arg Ala Asn Arg Leu Val Asp
1 5

<210> SEQ ID NO 94
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL3 consensus

<400> SEQUENCE: 94

Gln Gln His Tyr Ser Thr Pro Leu Thr
1 5

<210> SEQ ID NO 95
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRL3 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be W or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be Y or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be D or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be A, E or H

<400> SEQUENCE: 95

Xaa Gln Xaa Xaa Xaa Phe Pro Arg Thr
1 5

<210> SEQ ID NO 96
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRH1 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be T or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be D or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be E or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be M, I or V

<400> SEQUENCE: 96

Gly Tyr Xaa Phe Thr Xaa Tyr Xaa Xaa His
1 5 10

<210> SEQ ID NO 97

-continued

```
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRH1 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be T or S

<400> SEQUENCE: 97
```

Gly Phe Xaa Ile Thr Ser Gly Tyr Gly Trp His
1 5 10

```
<210> SEQ_ID NO 98
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRH2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(1)
<223> OTHER INFORMATION: Xaa may be V, N or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be I or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be E, A or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (6)..(6)
<223> OTHER INFORMATION: Xaa may be T or Y
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid
```

<400> SEQUENCE: 98

Xaa Xaa Asp Pro Xaa Xaa Gly Xaa Thr Ala
1 5 10

```
<210> SEQ_ID NO 99
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: CDRH2 consensus
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (3)..(3)
<223> OTHER INFORMATION: Xaa may be N or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: Xaa may be F or Y
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be N or D
```

<400> SEQUENCE: 99

Tyr Ile Xaa Xaa Xaa Gly
1 5

```
<210> SEQ_ID NO 100
<211> LENGTH: 6
```

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: CDRH3 consensus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (4)..(4)
 <223> OTHER INFORMATION: Xaa may be S or A
 <400> SEQUENCE: 100

Met Gly Tyr Xaa Asp Tyr
 1 5

<210> SEQ ID NO 101
 <211> LENGTH: 10
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: CDRH3 consensus
 <400> SEQUENCE: 101

Ala Ser Ser Tyr Asp Gly Phe Leu Ala Tyr
 1 5 10

<210> SEQ ID NO 102
 <211> LENGTH: 7
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: CDRH3 consensus
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (2)..(2)
 <223> OTHER INFORMATION: Xaa may be R or W
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (3)..(3)
 <223> OTHER INFORMATION: Xaa may be W or F
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (7)..(7)
 <223> OTHER INFORMATION: Xaa may be Q or N
 <400> SEQUENCE: 102

Ala Xaa Xaa Gly Leu Arg Xaa
 1 5

<210> SEQ ID NO 103
 <211> LENGTH: 112
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A2 light chain variable region
 <400> SEQUENCE: 103

Asp Ala Val Met Thr Gln Ile Pro Leu Thr Leu Ser Val Thr Ile Gly
 1 5 10 15

Gln Pro Ala Ser Leu Ser Cys Lys Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asp Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser
 35 40 45

Pro Lys Arg Leu Ile Ser Leu Val Ser Lys Leu Asp Ser Gly Val Pro
 50 55 60

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

-continued

Ser Arg Val Glu Ala Glu Asp Leu Gly Leu Tyr Tyr Cys Trp Gln Gly
85 90 95

Thr His Phe Pro Arg Thr Phe Ala Gly Gly Thr Asn Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 104
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3F6 light chain variable region

<400> SEQUENCE: 104

Ser Ile Val Met Thr Gln Thr Pro Leu Thr Leu Ser Val Thr Ile Gly
1 5 10 15

Gln Pro Ala Ser Ile Thr Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser
20 25 30

Asp Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser
35 40 45

Pro Lys Arg Leu Ile Ser Leu Val Ser Lys Leu Asp Ser Gly Val Pro
50 55 60

Asp Gly Phe Thr Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Trp Gln Gly
85 90 95

Thr His Phe Pro Arg Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 105
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E8 light chain variable region

<400> SEQUENCE: 105

Asp Ala Val Met Thr Gln Ile Pro Leu Thr Leu Ser Val Thr Ile Gly
1 5 10 15

Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asp Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser
35 40 45

Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro
50 55 60

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Trp Gln Gly
85 90 95

Thr His Phe Pro Arg Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 106
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 light chain variable region

-continued

<400> SEQUENCE: 106

Asp Ile Val Met Thr Gln Ala Ala Pro Ser Val Pro Val Thr Pro Gly
1 5 10 15

Glu Ser Val Ser Ile Ser Cys Arg Ser Ser Lys Ser Leu Leu His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu Tyr Trp Phe Leu Gln Arg Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu Ile Tyr Arg Met Ser Asn Leu Ala Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Ala Phe Thr Leu Arg Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln His
85 90 95

Leu Glu Tyr Pro Tyr Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 107

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A9 light chain variable region

<400> SEQUENCE: 107

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Leu Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Asn Asn Gln Leu Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Lys Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Thr Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Phe Asn Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 108

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3B1 light chain variable region

<400> SEQUENCE: 108

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Ile Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

-continued

Ser Pro Lys Leu Leu Val Phe Phe Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Ile Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 109

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3G5 light chain variable region

<400> SEQUENCE: 109

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Val Phe Phe Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Thr Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Ile Pro Leu Thr Phe Gly Ser Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 110

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3B2 light chain variable region

<400> SEQUENCE: 110

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Ile Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu

-continued

100 105 110

Lys

<210> SEQ ID NO 111
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3B8 light chain variable region

<400> SEQUENCE: 111

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ala	Met	Ser	Val	Gly
1					5			10				15			
Gln	Lys	Val	Thr	Met	Ser	Cys	Lys	Ser	Ser	Gln	Ser	Leu	Leu	Asn	Ser
	20					25				30					
Ser	Asn	Gln	Lys	Asn	Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
	35					40				45					
Ser	Pro	Lys	Leu	Leu	Val	Tyr	Phe	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
	50				55				60						
Pro	Asp	Arg	Phe	Ile	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
	65				70			75		80					
Ile	Ser	Ser	Val	Gln	Ala	Glu	Asp	Leu	Ala	Asp	Tyr	Phe	Cys	Gln	Gln
	85					90				95					
His	Tyr	Ser	Thr	Pro	Leu	Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	Glu	Leu
	100				105				110						

Lys

<210> SEQ ID NO 112
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G8 light chain variable region

<400> SEQUENCE: 112

Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ala	Met	Ser	Val	Gly
1					5			10				15			
Gln	Lys	Val	Thr	Met	Ser	Cys	Lys	Ser	Ser	Gln	Ser	Leu	Leu	Asn	Ser
	20					25				30					
Ser	Asn	Gln	Lys	Asn	Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln
	35					40				45					
Ser	Pro	Lys	Leu	Leu	Val	Tyr	Phe	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val
	50				55				60						
Pro	Asp	Arg	Phe	Ile	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr
	65				70			75		80					
Ile	Ser	Ser	Val	Gln	Ala	Glu	Asp	Leu	Ala	Asp	Tyr	Phe	Cys	Gln	Gln
	85					90				95					
His	Tyr	Ser	Thr	Pro	Leu	Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	Glu	Leu
	100				105				110						

Lys

<210> SEQ ID NO 113
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

-continued

<223> OTHER INFORMATION: 3F7 light chain variable region

<400> SEQUENCE: 113

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 114

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3E9 light chain variable region

<400> SEQUENCE: 114

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr
65 70 75 80

Ile Thr Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
100 105 110

Lys

<210> SEQ ID NO 115

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C3 light chain variable region

<400> SEQUENCE: 115

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
1 5 10 15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

-continued

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Ser Pro Lys Leu Leu Val Tyr Phe Gly Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Gly Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
 85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 100 105 110

Lys

<210> SEQ ID NO 116
 <211> LENGTH: 113
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3E12 light chain variable region

<400> SEQUENCE: 116

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
 1 5 10 15

Gln Lys Val Thr Met Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Arg
 20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
 85 90 95

His Tyr Ser Ile Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 100 105 110

Lys

<210> SEQ ID NO 117
 <211> LENGTH: 113
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 4A2 light chain variable region

<400> SEQUENCE: 117

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
 1 5 10 15

Gln Lys Val Thr Met Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Asn
 20 25 30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Ser Pro Lys Leu Leu Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

Pro Asp Arg Phe Ile Gly Ser Gly Thr Tyr Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln

-continued

85	90	95
----	----	----

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Asp Leu	100	105
---	-----	-----

110

Lys

```

<210> SEQ ID NO 118
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3F10 light chain variable region

```

<400> SEQUENCE: 118

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Thr Met Ser Val Gly	1	15
---	---	----

5

10

15

Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Thr	20	30
---	----	----

25

25

30

Ser Asn Gln Leu Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln	35	45
---	----	----

35

40

45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Thr Glu Ser Gly Val	50	60
---	----	----

55

55

60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr	65	80
---	----	----

65

70

75

80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln	85	95
---	----	----

85

90

95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu	100	110
---	-----	-----

100

105

110

Lys

```

<210> SEQ ID NO 119
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3F4 light chain variable region

```

<400> SEQUENCE: 119

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Thr Val Thr Ala Gly	1	15
---	---	----

1

5

10

15

Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Thr	20	30
---	----	----

20

25

30

Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln	35	45
---	----	----

35

40

45

Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Ala Ser Gly Val	50	60
---	----	----

55

55

60

Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr	65	80
---	----	----

65

70

75

80

Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln	85	95
---	----	----

85

90

95

His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu	100	110
---	-----	-----

100

105

110

Lys

```

<210> SEQ ID NO 120
<211> LENGTH: 113

```

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3B11 light chain variable region

<400> SEQUENCE: 120

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ala Met Ser Val Gly
 1 5 10 15
 Gln Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
 20 25 30
 Ser Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45
 Ser Pro Lys Leu Leu Val Tyr Phe Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60
 Pro Asp Arg Phe Ile Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80
 Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln
 85 90 95
 His Tyr Ser Thr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 100 105 110

Lys

<210> SEQ ID NO 121
 <211> LENGTH: 107
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G12 light chain variable region

<400> SEQUENCE: 121

Asp Ile Val Met Thr Gln Ser Pro Lys Phe Met Ser Thr Ser Val Gly
 1 5 10 15
 Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asp Val Gly Thr Ala
 20 25 30
 Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Glu Leu Leu Ile
 35 40 45
 Tyr Trp Thr Ser Thr Arg His Thr Gly Val Pro Asp Arg Phe Ser Gly
 50 55 60
 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala
 65 70 75 80
 Glu Asp Leu Ala Asp Tyr Phe Cys Gln Gln His Tyr Ser Ile Pro Leu
 85 90 95
 Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Arg
 100 105

<210> SEQ ID NO 122
 <211> LENGTH: 107
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3D1 light chain variable region

<400> SEQUENCE: 122

Asp Ile Lys Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly
 1 5 10 15
 Glu Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Thr Tyr
 20 25 30

-continued

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Glu Thr Leu Ile
35 40 45

Tyr Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Tyr
65 70 75 80

Glu Asp Met Gly Ile Tyr Tyr Cys Leu Gln Tyr Asp Glu Phe Pro Leu
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

<210> SEQ ID NO 123

<211> LENGTH: 107

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C2 light chain variable region

<400> SEQUENCE: 123

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly
1 5 10 15

Glu Arg Val Thr Leu Thr Cys Lys Ala Ser Gln Asp Ile His Asn Tyr
20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
35 40 45

His Arg Ala Asn Arg Leu Val Ala Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Tyr
65 70 75 80

Glu Asp Leu Gly Ile Tyr Tyr Cys Leu Gln Tyr Asp Ala Phe Pro Leu
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

<210> SEQ ID NO 124

<211> LENGTH: 107

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3E6 light chain variable region

<400> SEQUENCE: 124

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Met Tyr Ala Ser Leu Gly
1 5 10 15

Glu Arg Val Thr Leu Thr Cys Lys Ala Ser Gln Asp Ile His Asn Tyr
20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Thr Leu Ile
35 40 45

His Arg Ala Asn Arg Leu Val Ala Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Gln Asp Tyr Ser Leu Thr Ile Ser Ser Leu Glu Tyr
65 70 75 80

Glu Asp Leu Gly Ile Tyr Tyr Cys Leu Gln Tyr Asp Ala Phe Pro Leu
85 90 95

Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys

-continued

100 105

<210> SEQ ID NO 125
<211> LENGTH: 107
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3H3 light chain variable region
<400> SEQUENCE: 125

Asp	Ile	Val	Met	Ser	Gln	Ser	Pro	Ser	Ser	Met	Tyr	Ala	Ser	Leu	Gly
1			5			10				15					
Glu	Arg	Val	Thr	Ile	Thr	Cys	Lys	Ala	Ser	Gln	Asp	Ile	His	Arg	Phe
	20				25						30				
Leu	Asn	Trp	Phe	Gln	Gln	Lys	Pro	Gly	Lys	Ser	Pro	Lys	Thr	Leu	Ile
	35				40					45					
Phe	His	Ala	Asn	Arg	Leu	Val	Asp	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly
	50				55					60					
Ser	Gly	Ser	Gly	Leu	Asp	Tyr	Ser	Leu	Thr	Ile	Ser	Ser	Leu	Glu	Tyr
	65				70				75					80	
Glu	Asp	Met	Gly	Ile	Tyr	Phe	Cys	Leu	Gln	Tyr	Asp	Ala	Phe	Pro	Leu
	85				90					95					
Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	Glu	Leu	Lys					
	100				105										

<210> SEQ ID NO 126
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 heavy chain variable region
<400> SEQUENCE: 126

His	Glu	Ile	Gln	Leu	Gln	Gln	Ser	Gly	Pro	Glu	Leu	Val	Lys	Pro	Gly
1				5			10			15					
Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Thr	Ser	Gly	Tyr	Thr	Phe	Thr	Asp
	20				25						30				
Tyr	Asn	Met	His	Trp	Val	Lys	Gln	Lys	Pro	Gly	Gln	Gly	Leu	Glu	Trp
	35				40					45					
Ile	Gly	Tyr	Ile	Asn	Pro	Tyr	Asn	Asp	Val	Thr	Glu	Tyr	Asn	Glu	Lys
	50				55					60					
Phe	Lys	Gly	Arg	Ala	Thr	Leu	Thr	Ser	Asp	Lys	Ser	Ser	Ser	Thr	Ala
	65				70					75				80	
Tyr	Met	Asp	Leu	Ser	Ser	Leu	Thr	Ser	Asp	Asp	Ser	Ala	Val	Tyr	Phe
	85				90					95					
Cys	Ala	Trp	Phe	Gly	Leu	Arg	Gln	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr
	100				105					110					
Val	Ser	Thr													
	115														

<210> SEQ ID NO 127
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3F6 heavy chain variable region
<400> SEQUENCE: 127

-continued

His Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly
 1 5 10 15

Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Glu
 20 25 30

Tyr Asn Ile His Trp Val Lys Gln Lys Pro Gly Gln Gly Pro Glu Trp
 35 40 45

Ile Gly Asn Ile Asn Pro Tyr Asn Asp Val Thr Glu Tyr Asn Glu Lys
 50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ala Ser Ser Thr Ala
 65 70 75 80

Tyr Met Asp Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
 85 90 95

Cys Ala Arg Trp Gly Leu Arg Asn Trp Gly Gln Gly Thr Leu Val Thr
 100 105 110

Val Ser Ala
 115

<210> SEQ ID NO 128
 <211> LENGTH: 115
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3E8 heavy chain variable region

<400> SEQUENCE: 128

His Glu Val Gln Leu Gln Gln Ser Val Pro Glu Leu Val Lys Pro Gly
 1 5 10 15

Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Glu
 20 25 30

Tyr Asn Met His Trp Val Lys Gln Lys Pro Gly Gln Gly Pro Glu Trp
 35 40 45

Ile Gly Asn Ile Asn Pro Tyr Asn Asn Val Thr Glu Tyr Asn Glu Lys
 50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ser Asp Lys Ser Ser Ser Thr Ala
 65 70 75 80

Tyr Leu Asp Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
 85 90 95

Cys Ala Arg Trp Gly Leu Arg Asn Trp Gly Gln Gly Thr Leu Val Thr
 100 105 110

Val Ser Ala
 115

<210> SEQ ID NO 129
 <211> LENGTH: 114
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A9 heavy chain variable region

<400> SEQUENCE: 129

His Gln Val Gln Val Gln Gln Pro Gly Ala Glu Leu Val Arg Pro Gly
 1 5 10 15

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp
 20 25 30

Tyr Glu Val His Trp Val Arg Gln Arg Pro Val His Gly Leu Glu Trp

-continued

35	40	45
----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Asp Thr Ala Tyr Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

Tyr Met Glu Leu Ser Ser Leu Thr Ala Glu Asp Ser Ala Val Tyr Tyr	85	90	95
---	----	----	----

Cys Ile Gly Tyr Ala Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val	100	105	110
---	-----	-----	-----

Ser Ser

<210> SEQ ID NO 130

<211> LENGTH: 114

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3B1 heavy chain variable region

<400> SEQUENCE: 130

His Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Arg Pro Gly	1	5	10	15
---	---	---	----	----

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp	20	25	30
---	----	----	----

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp	35	40	45
---	----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Gly Thr Ala Tyr Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Gly Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr	85	90	95
---	----	----	----

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val	100	105	110
---	-----	-----	-----

Ser Ser

<210> SEQ ID NO 131

<211> LENGTH: 114

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3B2 heavy chain variable region

<400> SEQUENCE: 131

His Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly	1	5	10	15
---	---	---	----	----

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp	20	25	30
---	----	----	----

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp	35	40	45
---	----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Ala Thr Ala Tyr Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr	85	90	95
---	----	----	----

-continued

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
 100 105 110

Ser Ser

<210> SEQ ID NO 132
 <211> LENGTH: 114
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3F4 heavy chain variable region

<400> SEQUENCE: 132

His Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
 1 5 10 15

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
 20 25 30

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp
 35 40 45

Ile Gly Val Ile Asp Pro Glu Thr Gly Ser Thr Ala Tyr Asn Gln Lys
 50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ala Ser Ser Thr Ala
 65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
 85 90 95

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
 100 105 110

Ser Ser

<210> SEQ ID NO 133
 <211> LENGTH: 114
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3E9 heavy chain variable region

<400> SEQUENCE: 133

His Glu Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
 1 5 10 15

Ala Ser Ala Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
 20 25 30

Tyr Glu Met His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp
 35 40 45

Ile Gly Val Ile Asp Pro Glu Thr Gly Ser Thr Ala Tyr Asn Gln Lys
 50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala
 65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
 85 90 95

Cys Met Gly Tyr Ala Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
 100 105 110

Ser Ser

<210> SEQ ID NO 134
 <211> LENGTH: 114
 <212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3B8 heavy chain variable region

<400> SEQUENCE: 134

His	Glu	Val	Gln	Leu	Gln	Gln	Ser	Gly	Ala	Glu	Leu	Val	Arg	Pro	Gly
1				5				10				15			
Ala	Ser	Val	Thr	Leu	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp
				20				25			30				
Tyr	Glu	Ile	His	Trp	Val	Lys	Gln	Thr	Pro	Val	His	Gly	Leu	Glu	Trp
				35			40				45				
Ile	Gly	Val	Ile	Asp	Pro	Glu	Thr	Gly	Asp	Thr	Ala	Tyr	Asn	Gln	Asn
				50			55			60					
Phe	Thr	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Lys	Ser	Ser	Ser	Thr	Ala
				65			70			75			80		
Tyr	Met	Glu	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr
				85			90			95					
Cys	Met	Gly	Tyr	Ala	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val
				100			105			110					
Ser Ser															

<210> SEQ ID NO 135
 <211> LENGTH: 114
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G8 heavy chain variable region

<400> SEQUENCE: 135

His	Gln	Val	Gln	Leu	Lys	Gln	Ser	Gly	Ala	Glu	Leu	Val	Arg	Pro	Gly
1					5			10				15			
Ala	Ser	Val	Thr	Leu	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp
				20				25			30				
Tyr	Glu	Ile	His	Trp	Val	Lys	Gln	Thr	Pro	Val	His	Gly	Leu	Glu	Trp
				35			40			45					
Ile	Gly	Val	Ile	Asp	Pro	Ala	Thr	Gly	Asp	Thr	Ala	Tyr	Asn	Gln	Lys
				50			55			60					
Phe	Lys	Gly	Lys	Ala	Thr	Leu	Thr	Ala	Asp	Lys	Ser	Ser	Ser	Thr	Ala
				65			70			75			80		
Tyr	Met	Glu	Val	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr
				85			90			95					
Cys	Met	Gly	Tyr	Ser	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val
				100			105			110					
Ser Ser															

<210> SEQ ID NO 136
 <211> LENGTH: 114
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3F7 heavy chain variable region

<400> SEQUENCE: 136

His	Gln	Ala	Tyr	Leu	Gln	Gln	Ser	Gly	Ala	Glu	Leu	Val	Arg	Pro	Gly
1					5			10				15			
Ala	Ser	Val	Thr	Leu	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp

-continued

20	25	30
----	----	----

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp	35	40	45
---	----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Asp Thr Ala Tyr Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Asp Lys Ala Thr Leu Thr Ala Asp Lys Ala Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr	85	90	95
---	----	----	----

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val	100	105	110
---	-----	-----	-----

Ser Ser

<210> SEQ ID NO 137

<211> LENGTH: 114

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3E12 heavy chain variable region

<400> SEQUENCE: 137

His Gln Val Gln Leu Gln Gln Ser Glu Ala Glu Leu Val Lys Pro Gly	1	5	10	15
---	---	---	----	----

Ala Ser Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp	20	25	30
---	----	----	----

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp	35	40	45
---	----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Asp Thr Ala Tyr Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

Tyr Met Glu Leu Ser Arg Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr	85	90	95
---	----	----	----

Cys Met Gly His Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val	100	105	110
---	-----	-----	-----

Ser Ser

<210> SEQ ID NO 138

<211> LENGTH: 114

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3G12 heavy chain variable region

<400> SEQUENCE: 138

His Glu Val Gln Leu Gln Gln Ser Val Ala Glu Leu Val Arg Pro Gly	1	5	10	15
---	---	---	----	----

Ala Ser Val Thr Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp	20	25	30
---	----	----	----

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Ala His Gly Leu Glu Trp	35	40	45
---	----	----	----

Ile Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys	50	55	60
---	----	----	----

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Ile Ser Ser Ser Thr Ala	65	70	75	80
---	----	----	----	----

-continued

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
85 90 95

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
100 105 110

Ser Ser

<210> SEQ ID NO 139
<211> LENGTH: 114
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3F10 heavy chain variable region

<400> SEQUENCE: 139

His Glu Val Gln Leu Gln Gln Ser Val Ala Glu Leu Val Arg Pro Gly
1 5 10 15

Ala Pro Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
20 25 30

Tyr Glu Val His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp
35 40 45

Ile Gly Val Ile Asp Pro Glu Thr Gly Ala Thr Ala Tyr Asn Gln Lys
50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ala Ala
65 70 75 80

Tyr Met Glu Leu Ser Arg Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
85 90 95

Cys Met Ser Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
100 105 110

Ser Ser

<210> SEQ ID NO 140
<211> LENGTH: 114
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3C3 heavy chain variable region

<400> SEQUENCE: 140

His Glu Val Gln Leu Gln Gln Ser Val Ala Glu Val Val Arg Pro Gly
1 5 10 15

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
20 25 30

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp
35 40 45

Ile Gly Val Ile Asp Pro Glu Thr Gly Val Thr Ala Tyr Asn Gln Arg
50 55 60

Phe Arg Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe
85 90 95

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
100 105 110

Ser Ser

-continued

<210> SEQ ID NO 141
<211> LENGTH: 114
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G5 heavy chain variable region
<400> SEQUENCE: 141

His Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Arg Pro Gly
1 5 10 15

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
20 25 30

Tyr Glu Ile His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp
35 40 45

Ile Gly Val Leu Asp Pro Gly Thr Gly Arg Thr Ala Tyr Asn Gln Lys
50 55 60

Phe Lys Asp Lys Ala Thr Leu Ser Ala Asp Lys Ser Ser Ser Thr Ala
65 70 75 80

Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
85 90 95

Cys Met Ser Tyr Ser Asp Tyr Trp Gly Pro Gly Thr Thr Leu Thr Val
100 105 110

Ser Ser

<210> SEQ ID NO 142
<211> LENGTH: 114
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3B11 heavy chain variable region
<400> SEQUENCE: 142

His Glu Val Gln Leu Gln Gln Ser Val Ala Glu Leu Val Arg Pro Gly
1 5 10 15

Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp
20 25 30

Tyr Glu Met His Trp Val Lys Gln Thr Pro Val Arg Gly Leu Glu Trp
35 40 45

Ile Gly Val Ile Asp Pro Ala Thr Gly Asp Thr Ala Tyr Asn Gln Lys
50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Ala Ala
65 70 75 80

Phe Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
85 90 95

Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val
100 105 110

Ser Ser

<210> SEQ ID NO 143
<211> LENGTH: 115
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E6 heavy chain variable region
<400> SEQUENCE: 143

His Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly

-continued

1	5	10	15
Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Asp			
20	25	30	
Tyr Glu Met His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp			
35	40	45	
Ile Gly Gly Ile Asp Pro Glu Thr Gly Asp Thr Val Tyr Asn Gln Lys			
50	55	60	
Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala			
65	70	75	80
Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr			
85	90	95	
Cys Ile Ser Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr			
100	105	110	
Val Ser Ser			
115			

<210> SEQ ID NO 144
 <211> LENGTH: 115
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 4A2 heavy chain variable region

1	5	10	15
His Gln Val Lys Leu Gln Gln Ser Gly Thr Glu Leu Val Arg Pro Gly			
20	25	30	
Ala Ser Val Thr Leu Ser Cys Lys Ala Ser Gly Tyr Lys Phe Thr Asp			
35	40	45	
Tyr Glu Met His Trp Val Lys Gln Thr Pro Val His Gly Leu Glu Trp			
50	55	60	
Ile Gly Gly Ile Asp Pro Glu Thr Gly Gly Thr Ala Tyr Asn Gln Lys			
65	70	75	80
Phe Lys Gly Lys Ala Ile Leu Thr Ala Asp Lys Ser Ser Thr Thr Ala			
85	90	95	
Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr			
100	105	110	
Val Ser Ser			
115			

<210> SEQ ID NO 145
 <211> LENGTH: 117
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3E10 heavy chain variable region

1	5	10	15
His Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly			
20	25	30	
Ala Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Asp Thr Phe Thr Asp			
35	40	45	
Tyr Tyr Met Asn Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp			

-continued

Ile Gly Asp Ile Asn Pro Asn Tyr Gly Gly Ile Thr Tyr Asn Gln Lys
 50 55 60

Phe Lys Gly Lys Ala Thr Leu Thr Val Asp Thr Ser Ser Ser Thr Ala
 65 70 75 80

Tyr Met Glu Leu Arg Gly Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr
 85 90 95

Cys Gln Ala Tyr Tyr Arg Asn Ser Asp Tyr Trp Gly Gln Gly Thr Thr
 100 105 110

Leu Thr Val Ser Ser
 115

<210> SEQ ID NO 146

<211> LENGTH: 118

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3D1 heavy chain variable region

<400> SEQUENCE: 146

His Glu Val Gln Leu Gln Glu Ser Gly Pro Asp Leu Val Lys Pro Ser
 1 5 10 15

Gln Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Phe Ser Ile Thr Ser
 20 25 30

Gly Tyr Gly Trp His Trp Ile Arg Gln Phe Pro Gly Asp Lys Leu Glu
 35 40 45

Trp Met Gly Tyr Ile Ser Phe Asn Gly Asp Tyr Asn Tyr Asn Pro Ser
 50 55 60

Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

Phe Leu Gln Leu Ser Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr
 85 90 95

Cys Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr
 100 105 110

Leu Val Thr Val Ser Ala
 115

<210> SEQ ID NO 147

<211> LENGTH: 118

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3C2 heavy chain variable region

<400> SEQUENCE: 147

His Asp Val Gln Leu Gln Glu Ser Gly Pro Asp Leu Val Lys Pro Ser
 1 5 10 15

Gln Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Phe Ser Ile Thr Ser
 20 25 30

Gly Tyr Gly Trp His Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu
 35 40 45

Trp Met Gly Tyr Ile Ser Phe Asn Gly Asp Ser Asn Tyr Asn Pro Ser
 50 55 60

Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe
 65 70 75 80

Phe Leu Gln Leu Asn Ser Val Thr Ser Glu Asp Thr Ala Thr Tyr Tyr
 85 90 95

-continued

Cys Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Pro
100 105 110

Leu Val Thr Val Ser Ala
115

<210> SEQ ID NO 148
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 light chain CDR1

<400> SEQUENCE: 148

Lys Ser Ser Gln Ser Leu Leu His Ser Asp Gly Lys Thr Tyr Leu Asn
1 5 10 15

<210> SEQ ID NO 149
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 light chain CDR2

<400> SEQUENCE: 149

Leu Val Ser Lys Leu Asp Ser
1 5

<210> SEQ ID NO 150
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 light chain CDR3

<400> SEQUENCE: 150

Trp Gln Gly Thr His Phe Pro Arg Thr
1 5

<210> SEQ ID NO 151
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 heavy chain CDR1

<400> SEQUENCE: 151

Gly Tyr Thr Phe Thr Asp Tyr Asn Met His
1 5 10

<210> SEQ ID NO 152
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 heavy chain CDR2

<400> SEQUENCE: 152

Tyr Ile Asn Pro Tyr Asn Asp Val Thr Glu
1 5 10

<210> SEQ ID NO 153
<211> LENGTH: 7
<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A2 heavy chain CDR3

<400> SEQUENCE: 153

Ala Trp Phe Gly Leu Arg Gln
1 5

<210> SEQ ID NO 154
<211> LENGTH: 16
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 light chain CDR1

<400> SEQUENCE: 154

Arg Ser Ser Lys Ser Leu Leu His Ser Asn Gly Asn Thr Tyr Leu Tyr
1 5 10 15

<210> SEQ ID NO 155
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 light chain CDR2

<400> SEQUENCE: 155

Arg Met Ser Asn Leu Ala Ser
1 5

<210> SEQ ID NO 156
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 light chain CDR3

<400> SEQUENCE: 156

Met Gln His Leu Glu Tyr Pro Tyr Thr
1 5

<210> SEQ ID NO 157
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 heavy chain CDR1

<400> SEQUENCE: 157

Gly Asp Thr Phe Thr Asp Tyr Tyr Met Asn
1 5 10

<210> SEQ ID NO 158
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 heavy chain CDR2

<400> SEQUENCE: 158

Asp Ile Asn Pro Asn Tyr Gly Gly Ile Thr
1 5 10

<210> SEQ ID NO 159

-continued

<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3E10 heavy chain CDR3

<400> SEQUENCE: 159

Gln Ala Tyr Tyr Arg Asn Ser Asp Tyr
1 5

<210> SEQ ID NO 160
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G12 light chain CDR1

<400> SEQUENCE: 160

Lys Ala Ser Gln Asp Val Gly Thr Ala Val Ala
1 5 10

<210> SEQ ID NO 161
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G12 light chain CDR2

<400> SEQUENCE: 161

Trp Thr Ser Thr Arg His Thr
1 5

<210> SEQ ID NO 162
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G12 light chain CDR3

<400> SEQUENCE: 162

Gln Gln His Tyr Ser Ile Pro Leu Thr
1 5

<210> SEQ ID NO 163
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G12 heavy chain CDR1

<400> SEQUENCE: 163

Gly Tyr Ile Phe Thr Asp Tyr Glu Ile His
1 5 10

<210> SEQ ID NO 164
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3G12 heavy chain CDR2

<400> SEQUENCE: 164

Val Ile Asp Pro Glu Thr Gly Asn Thr Ala
1 5 10

-continued

<210> SEQ ID NO 165
 <211> LENGTH: 6
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3G12 heavy chain CDR3

<400> SEQUENCE: 165

Met Gly Tyr Ser Asp Tyr
 1 5

<210> SEQ ID NO 166
 <211> LENGTH: 240
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: humanized 3D3 light chain

<400> SEQUENCE: 166

Met Val Leu Gln Thr Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser
 1 5 10 15

Gly Ala Tyr Gly Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala
 20 25 30

Val Ser Leu Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser
 35 40 45

Leu Leu Asn Ser Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln
 50 55 60

Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg
 65 70 75 80

Glu Ser Ser Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
 85 90 95

Phe Thr Leu Thr Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr
 100 105 110

Tyr Cys Gln Gln His Tyr Ser Thr Pro Leu Thr Phe Gly Gln Gly Thr
 115 120 125

Lys Leu Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe
 130 135 140

Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys
 145 150 155 160

Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
 165 170 175

Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln
 180 185 190

Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser
 195 200 205

Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His
 210 215 220

Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240

<210> SEQ ID NO 167
 <211> LENGTH: 462
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: humanized 3D3 heavy chain

-continued

<400> SEQUENCE: 167

```

Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Ala Thr Gly
1           5          10          15

Thr His Ala Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
20          25          30

Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe
35          40          45

Thr Asp Tyr Glu Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
50          55          60

Glu Trp Met Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn
65          70          75          80

Gln Lys Phe Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser
85          90          95

Thr Ala Tyr Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val
100         105         110

Tyr Tyr Cys Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val
115         120         125

Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
130         135         140

Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
145         150         155         160

Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
165         170         175

Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
180         185         190

Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
195         200         205

Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
210         215         220

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
225         230         235         240

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
245         250         255

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
260         265         270

Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
275         280         285

Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
290         295         300

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
305         310         315         320

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
325         330         335

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
340         345         350

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
355         360         365

Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
370         375         380

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
385         390         395         400

```

-continued

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
405 410 415

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
420 425 430

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
435 440 445

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455 460

<210> SEQ ID NO 168

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: humanized 3D3 light chain variable region

<400> SEQUENCE: 168

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
100 105 110

Lys

<210> SEQ ID NO 169

<211> LENGTH: 113

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: humanized 3D3 heavy chain variable region

<400> SEQUENCE: 169

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
20 25 30

Glu Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys Phe
50 55 60

Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser
100 105 110

-continued

Ser

<210> SEQ ID NO 170
<211> LENGTH: 234
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: humanized 3C4 light chain

<400> SEQUENCE: 170

Met Val Leu Gln Thr Gln Val Phe Ile Ser Leu Leu Leu Trp Ile Ser
1 5 10 15

Gly Ala Tyr Gly Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser
20 25 30

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp
35 40 45

Ile His Asn Phe Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro
50 55 60

Lys Thr Leu Ile Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser
65 70 75 80

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser
85 90 95

Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Ser Cys Leu Gln Tyr Asp
100 105 110

Glu Ile Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
115 120 125

Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln
130 135 140

Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr
145 150 155 160

Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser
165 170 175

Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr
180 185 190

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys
195 200 205

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro
210 215 220

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230

<210> SEQ ID NO 171
<211> LENGTH: 466
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: humanized 3C4 heavy chain

<400> SEQUENCE: 171

Met Asp Trp Thr Trp Arg Ile Leu Phe Leu Val Ala Ala Ala Thr Gly
1 5 10 15

Thr His Ala Glu Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys
20 25 30

Pro Ser Gln Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Ile
35 40 45

-continued

Thr Ser Gly Tyr Gly Trp His Trp Ile Arg Gln His Pro Gly Lys Gly
 50 55 60
 Leu Glu Trp Ile Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn
 65 70 75 80
 Pro Ser Leu Lys Ser Arg Val Thr Ile Ser Gln Asp Thr Ser Lys Asn
 85 90 95
 Gln Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln
 115 120 125
 Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val
 130 135 140
 Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala
 145 150 155 160
 Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
 165 170 175
 Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val
 180 185 190
 Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
 195 200 205
 Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys
 210 215 220
 Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp
 225 230 235 240
 Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
 245 250 255
 Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile
 260 265 270
 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu
 275 280 285
 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
 290 295 300
 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg
 305 310 315 320
 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
 325 330 335
 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
 340 345 350
 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
 355 360 365
 Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu
 370 375 380
 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
 385 390 395 400
 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
 405 410 415
 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp
 420 425 430
 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His
 435 440 445

-continued

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
 450 455 460

Gly Lys
 465

<210> SEQ ID NO 172
 <211> LENGTH: 107
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: humanized 3C4 light chain variable region
 <400> SEQUENCE: 172

Asp Ile Val Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
 20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Thr Leu Ile
 35 40 45

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
 100 105

<210> SEQ ID NO 173
 <211> LENGTH: 116
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: humanized 3C4 heavy chain variable region
 <400> SEQUENCE: 173

Glu Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
 1 5 10 15

Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Ile Thr Ser Gly
 20 25 30

Tyr Gly Trp His Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu Trp
 35 40 45

Ile Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
 50 55 60

Lys Ser Arg Val Thr Ile Ser Gln Asp Thr Ser Lys Asn Gln Phe Ser
 65 70 75 80

Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
 100 105 110

Val Thr Val Ser
 115

<210> SEQ ID NO 174
 <211> LENGTH: 113
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence

-continued

```
<220> FEATURE:  
<223> OTHER INFORMATION: Humanized 3D3 light chain variable region  
consensus 1  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (9)..(9)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (15)..(15)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (17)..(17)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (18)..(18)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (19)..(19)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (21)..(21)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (49)..(49)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (64)..(64)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (69)..(69)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (84)..(84)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (89)..(89)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (91)..(91)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (93)..(93)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (106)..(106)  
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison  
with SEQ ID NO.:16  
<220> FEATURE:  
<221> NAME/KEY: MISC_FEATURE  
<222> LOCATION: (112)..(112)
```

-continued

<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison with SEQ ID NO.:16

<400> SEQUENCE: 174

Asp Ile Val Met Thr Gln Ser Pro Xaa Ser Leu Ala Val Ser Xaa Gly
1 5 10 15

Xaa Xaa Xaa Thr Xaa Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Xaa Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Xaa
50 55 60

Pro Asp Arg Phe Xaa Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Xaa Gln Ala Glu Asp Xaa Ala Xaa Tyr Xaa Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa
100 105 110

Lys

<210> SEQ ID NO 175
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3D3 light chain variable region
consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be D or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be E or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (18)..(18)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(19)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (21)..(21)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (49)..(49)
<223> OTHER INFORMATION: Xaa may be P or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (64)..(64)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa may be S or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (89)..(89)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa may be V or D
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (93)..(93)
<223> OTHER INFORMATION: Xaa may be an aromatic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (106)..(106)
<223> OTHER INFORMATION: Xaa may be Q or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (112)..(112)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

<400> SEQUENCE: 175

```

Asp Ile Val Met Thr Gln Ser Pro Xaa Ser Leu Ala Val Ser Xaa Gly
 1 5 10 15

Xaa Xaa Xaa Thr Xaa Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
 20 25 30

Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Xaa Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Xaa
 50 55 60

Pro Asp Arg Phe Xaa Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

Ile Ser Ser Xaa Gln Ala Glu Asp Xaa Ala Xaa Tyr Xaa Cys Gln Gln
 85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa
 100 105 110

Lys

```

<210> SEQ_ID NO 176
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3D3 light chain variable region
  consensus 3
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be D or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa may be L or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be E or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (18)..(18)
<223> OTHER INFORMATION: Xaa may be R or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(19)
<223> OTHER INFORMATION: Xaa may be A or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE

```

-continued

```

<222> LOCATION: (21)..(21)
<223> OTHER INFORMATION: Xaa may be I or M
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (49)..(49)
<223> OTHER INFORMATION: Xaa may be P or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (64)..(64)
<223> OTHER INFORMATION: Xaa may be V or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa may be S or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be L or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (89)..(89)
<223> OTHER INFORMATION: Xaa may be v or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa may be V or D
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (93)..(93)
<223> OTHER INFORMATION: Xaa may be Y or F
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (106)..(106)
<223> OTHER INFORMATION: Xaa may be Q or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (112)..(112)
<223> OTHER INFORMATION: Xaa may be I or L

<400> SEQUENCE: 176

Asp Ile Val Met Thr Gln Ser Pro Xaa Ser Leu Ala Val Ser Xaa Gly
1 5 10 15

Xaa Xaa Xaa Thr Xaa Asn Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser
20 25 30

Asn Phe Gln Lys Asn Phe Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Xaa Pro Lys Leu Leu Ile Tyr Phe Ala Ser Thr Arg Glu Ser Ser Xaa
50 55 60

Pro Asp Arg Phe Xaa Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Xaa Gln Ala Glu Asp Xaa Ala Xaa Tyr Xaa Cys Gln Gln
85 90 95

His Tyr Ser Thr Pro Leu Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa
100 105 110

Lys

<210> SEQ_ID NO 177
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3D3 heavy chain variable region
  consensus 1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison

```

-continued

```
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(19)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(20)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)..(38)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)..(40)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (42)..(42)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (48)..(48)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (67)..(67)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (70)..(70)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (74)..(74)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ ID NO.:18
```

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (76)..(76)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:18
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (109)..(109)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:18

```

<400> SEQUENCE: 177

Glu Val Gln Leu Xaa Gln Ser Xaa Ala Glu Xaa Xaa Xaa Pro Gly Ala
 1 5 10 15

Ser Val Xaa Xaa Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
 20 25 30

Glu Ile His Trp Val Xaa Gln Xaa Pro Xaa Xaa Gly Leu Glu Trp Xaa
 35 40 45

Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys Phe
 50 55 60

Lys Gly Xaa Xaa Thr Xaa Thr Ala Asp Xaa Ser Xaa Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Xaa Ala Val Tyr Tyr Cys
 85 90 95

Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Xaa Xaa Thr Val Ser
 100 105 110

Ser

```

<210> SEQ ID NO 178
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3D3 heavy chain variable region
      consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be V or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be G or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be K or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE

```

-continued

```

<222> LOCATION: (19)..(19)
<223> OTHER INFORMATION: Xaa may be K or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(20)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)..(38)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)..(40)
<223> OTHER INFORMATION: Xaa may be A or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (42)..(42)
<223> OTHER INFORMATION: Xaa may be G or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa may be Q or H
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (48)..(48)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (67)..(67)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (70)..(70)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (74)..(74)
<223> OTHER INFORMATION: Xaa may be T or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (76)..(76)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa may be L or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (109)..(109)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

```

<400> SEQUENCE: 178

Glu Val Gln Leu Xaa Gln Ser Xaa Ala Glu Xaa Xaa Xaa Pro Gly Ala
 1 5 10 15

Ser Val Xaa Xaa Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
 20 25 30

Glu Ile His Trp Val Xaa Gln Xaa Pro Xaa Xaa Gly Leu Glu Trp Xaa
 35 40 45

Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys Phe
 50 55 60

Lys Gly Xaa Xaa Thr Xaa Thr Ala Asp Xaa Ser Xaa Ser Thr Ala Tyr
 65 70 75 80

-continued

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Xaa Ala Val Tyr Tyr Cys
85 90 95

Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Xaa Xaa Thr Val Ser
100 105 110

Ser

<210> SEQ ID NO 179
<211> LENGTH: 113
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3D3 heavy chain variable region
consensus 3
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be V or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (8)..(8)
<223> OTHER INFORMATION: Xaa may be G or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be V or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be K or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (13)..(13)
<223> OTHER INFORMATION: Xaa may be K or R
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (19)..(19)
<223> OTHER INFORMATION: Xaa may be K or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(20)
<223> OTHER INFORMATION: Xaa may be V or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)..(38)
<223> OTHER INFORMATION: Xaa may be R or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)..(40)
<223> OTHER INFORMATION: Xaa may be A or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (42)..(42)
<223> OTHER INFORMATION: Xaa may be G or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa may be Q or H
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (48)..(48)
<223> OTHER INFORMATION: Xaa may be M or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (67)..(67)
<223> OTHER INFORMATION: Xaa may be R or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa may be V or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (70)..(70)
<223> OTHER INFORMATION: Xaa may be I or L

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (74)..(74)
<223> OTHER INFORMATION: Xaa may be T or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (76)..(76)
<223> OTHER INFORMATION: Xaa may be T or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa may be T or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa may be L or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (109)..(109)
<223> OTHER INFORMATION: Xaa may be V or L

<400> SEQUENCE: 179

Glu Val Gln Leu Xaa Gln Ser Xaa Ala Glu Xaa Xaa Xaa Pro Gly Ala
1 5 10 15

Ser Val Xaa Xaa Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr
20 25 30

Glu Ile His Trp Val Xaa Gln Xaa Pro Xaa Xaa Gly Leu Glu Trp Xaa
35 40 45

Gly Val Ile Asp Pro Glu Thr Gly Asn Thr Ala Phe Asn Gln Lys Phe
50 55 60

Lys Gly Xaa Xaa Thr Xaa Thr Ala Asp Xaa Ser Xaa Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Thr Ser Glu Asp Xaa Ala Val Tyr Tyr Cys
85 90 95

Met Gly Tyr Ser Asp Tyr Trp Gly Gln Gly Thr Xaa Xaa Thr Val Ser
100 105 110

Ser

<210> SEQ_ID NO 180
<211> LENGTH: 107
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3C4 light chain variable region
consensus 1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ_ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ_ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ_ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
with SEQ_ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE

```

-continued

```

<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (72)..(72)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (79)..(79)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (80)..(80)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (83)..(83)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (85)..(85)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (100)..(100)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (106)..(106)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:24
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (107)..(107)
<223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid

<400> SEQUENCE: 180

Asp Ile Val Met Xaa Gln Ser Pro Ser Ser Xaa Xaa Ala Ser Xaa Gly
1           5           10          15

Xaa Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
20          25          30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Xaa Pro Lys Thr Leu Ile
35          40          45

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
50          55          60

Ser Gly Ser Gly Xaa Asp Tyr Xaa Leu Thr Ile Ser Ser Leu Xaa Xaa
65          70          75          80

Glu Asp Xaa Xaa Xaa Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu

```

-continued

85 90 95

Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa Xaa
100 105

<210> SEQ ID NO 181
<211> LENGTH: 107
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3C4 light chain variable region
consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (5)..(5)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be S or Y
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be an acidic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa may be A or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa may be T or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (72)..(72)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (79)..(79)
<223> OTHER INFORMATION: Xaa may be Q or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (80)..(80)
<223> OTHER INFORMATION: Xaa may be P or F
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (83)..(83)
<223> OTHER INFORMATION: Xaa may be F or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be A or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (85)..(85)
<223> OTHER INFORMATION: Xaa may be T or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (100)..(100)
<223> OTHER INFORMATION: Xaa may be Q or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (106)..(106)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (107)..(107)

-continued

<223> OTHER INFORMATION: Xaa may be a basic amino acid

<400> SEQUENCE: 181

Asp Ile Val Met Xaa Gln Ser Pro Ser Ser Xaa Xaa Ala Ser Xaa Gly
1 5 10 15

Xaa Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
20 25 30

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Xaa Pro Lys Thr Leu Ile
35 40 45

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Xaa Asp Tyr Xaa Leu Thr Ile Ser Ser Leu Xaa Xaa
65 70 75 80

Glu Asp Xaa Xaa Xaa Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu
85 90 95

Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa Xaa
100 105

<210> SEQ_ID NO 182

<211> LENGTH: 107

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Humanized 3C4 light chain variable region
consensus 3

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (5)..(5)

<223> OTHER INFORMATION: Xaa may be T or S

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (11)..(11)

<223> OTHER INFORMATION: Xaa may be L or M

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (12)..(12)

<223> OTHER INFORMATION: Xaa may be S or Y

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (15)..(15)

<223> OTHER INFORMATION: Xaa may be V or L

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (17)..(17)

<223> OTHER INFORMATION: Xaa may be D or E

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (43)..(43)

<223> OTHER INFORMATION: Xaa may be A or S

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (69)..(69)

<223> OTHER INFORMATION: Xaa may be T or Q

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (72)..(72)

<223> OTHER INFORMATION: Xaa may be T or S

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (79)..(79)

<223> OTHER INFORMATION: Xaa may be Q or E

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (80)..(80)

<223> OTHER INFORMATION: Xaa may be P or F

<220> FEATURE:

<221> NAME/KEY: MISC_FEATURE

<222> LOCATION: (83)..(83)

-continued

```

<223> OTHER INFORMATION: Xaa may be F or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be A or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (85)..(85)
<223> OTHER INFORMATION: Xaa may be T or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (100)..(100)
<223> OTHER INFORMATION: Xaa may be Q or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (106)..(106)
<223> OTHER INFORMATION: Xaa may be I or L
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (107)..(107)
<223> OTHER INFORMATION: Xaa may be K or R

<400> SEQUENCE: 182

```

```

Asp Ile Val Met Xaa Gln Ser Pro Ser Ser Xaa Xaa Ala Ser Xaa Gly
1 5 10 15

```

```

Xaa Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asp Ile His Asn Phe
20 25 30

```

```

Leu Asn Trp Phe Gln Gln Lys Pro Gly Lys Xaa Pro Lys Thr Leu Ile
35 40 45

```

```

Phe Arg Ala Asn Arg Leu Val Asp Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

```

```

Ser Gly Ser Gly Xaa Asp Tyr Xaa Leu Thr Ile Ser Ser Leu Xaa Xaa
65 70 75 80

```

```

Glu Asp Xaa Xaa Tyr Ser Cys Leu Gln Tyr Asp Glu Ile Pro Leu
85 90 95

```

```

Thr Phe Gly Xaa Gly Thr Lys Leu Glu Xaa Xaa
100 105

```

```

<210> SEQ_ID NO 183
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3C4 heavy chain variable region
  consensus 1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
  with SEQ_ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
  with SEQ_ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (25)..(25)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
  with SEQ_ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)..(41)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
  with SEQ_ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (44)..(44)

```

-continued

```

<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (45)..(45)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (49)..(49)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (71)..(71)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (80)..(80)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (82)..(82)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (89)..(89)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (93)..(93)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (117)..(117)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
      with SEQ ID NO.:26

<400> SEQUENCE: 183

```

Glu Val Gln Leu Gln Glu Ser Gly Pro Xaa Leu Val Lys Pro Ser Gln
 1 5 10 15

Xaa Leu Ser Leu Thr Cys Thr Val Xaa Gly Phe Ser Ile Thr Ser Gly
 20 25 30

Tyr Gly Trp His Trp Ile Arg Gln Xaa Pro Gly Xaa Xaa Leu Glu Trp
 35 40 45

Xaa Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
 50 55 60

-continued

Lys Ser Arg Xaa Xaa Ile Xaa Gln Asp Thr Ser Lys Asn Gln Phe Xaa
65 70 75 80

Leu Xaa Leu Xaa Ser Val Thr Xaa Xaa Asp Thr Ala Xaa Tyr Tyr Cys
85 90 95

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100 105 110

Val Thr Val Ser Xaa
115

<210> SEQ ID NO 184
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3C4 heavy chain variable region
consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: xaa may be G or D
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (25)..(25)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)..(41)
<223> OTHER INFORMATION: Xaa may be H or F
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (44)..(44)
<223> OTHER INFORMATION: Xaa may be K or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (45)..(45)
<223> OTHER INFORMATION: Xaa may be G or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (49)..(49)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (71)..(71)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (80)..(80)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (82)..(82)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be S or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)

-continued

```

<223> OTHER INFORMATION: Xaa may be A or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (89)..(89)
<223> OTHER INFORMATION: Xaa may be A or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (93)..(93)
<223> OTHER INFORMATION: Xaa may be V or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (117)..(117)
<223> OTHER INFORMATION: Xaa may be any amino acid, A or absent

<400> SEQUENCE: 184

```

Glu Val Gln Leu Gln Glu Ser Gly Pro Xaa Leu Val Lys Pro Ser Gln
 1 5 10 15

Xaa Leu Ser Leu Thr Cys Thr Val Xaa Gly Phe Ser Ile Thr Ser Gly
 20 25 30

Tyr Gly Trp His Trp Ile Arg Gln Xaa Pro Gly Xaa Xaa Leu Glu Trp
 35 40 45

Xaa Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
 50 55 60

Lys Ser Arg Xaa Xaa Ile Xaa Gln Asp Thr Ser Lys Asn Gln Phe Xaa
 65 70 75 80

Leu Xaa Leu Xaa Ser Val Thr Xaa Xaa Asp Thr Ala Xaa Tyr Tyr Cys
 85 90 95

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
 100 105 110

Val Thr Val Ser Xaa
 115

```

<210> SEQ ID NO 185
<211> LENGTH: 117
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Humanized 3C4 heavy chain variable region
  consensus 3
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (10)..(10)
<223> OTHER INFORMATION: Xaa may be G or D
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be T or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (25)..(25)
<223> OTHER INFORMATION: Xaa may be S or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)..(41)
<223> OTHER INFORMATION: Xaa may be H or F
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (44)..(44)
<223> OTHER INFORMATION: Xaa may be K or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (45)..(45)
<223> OTHER INFORMATION: Xaa may be G or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (49)..(49)
<223> OTHER INFORMATION: Xaa may be I or M

```

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa may be V or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa may be T or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (71)..(71)
<223> OTHER INFORMATION: Xaa may be S or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (80)..(80)
<223> OTHER INFORMATION: Xaa may be S or F
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (82)..(82)
<223> OTHER INFORMATION: Xaa may be K or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa may be S or N
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa may be A or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (89)..(89)
<223> OTHER INFORMATION: Xaa may be A or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (93)..(93)
<223> OTHER INFORMATION: Xaa may be V or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (117)..(117)
<223> OTHER INFORMATION: Xaa may be A or absent

<400> SEQUENCE: 185

Glu Val Gln Leu Gln Glu Ser Gly Pro Xaa Leu Val Lys Pro Ser Gln
1           5           10          15

Xaa Leu Ser Leu Thr Cys Thr Val Xaa Gly Phe Ser Ile Thr Ser Gly
20          25          30

Tyr Gly Trp His Trp Ile Arg Gln Xaa Pro Gly Xaa Xaa Leu Glu Trp
35          40          45

Xaa Gly Tyr Ile Asn Tyr Asp Gly His Asn Asp Tyr Asn Pro Ser Leu
50          55          60

Lys Ser Arg Xaa Xaa Ile Xaa Gln Asp Thr Ser Lys Asn Gln Phe Xaa
65          70          75          80

Leu Xaa Leu Xaa Ser Val Thr Xaa Xaa Asp Thr Ala Xaa Tyr Tyr Cys
85          90          95

Ala Ser Ser Tyr Asp Gly Leu Phe Ala Tyr Trp Gly Gln Gly Thr Leu
100         105         110

Val Thr Val Ser Xaa
115

```

<210> SEQ ID NO 186
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant light chain variable region
consensus 1
<220> FEATURE:

-continued

```

<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (18)..(18)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (50)..(50)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (105)..(105)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (111)..(111)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in comparison
    with SEQ ID NO.:48

<400> SEQUENCE: 186

Asp Xaa Val Met Thr Gln Thr Pro Leu Ser Leu Xaa Val Xaa Xaa Gly
1           5           10           15

Xaa Xaa Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20          25          30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35          40          45

Pro Xaa Leu Leu Ile His Thr Val Ser Asn Arg Phe Ser Gly Val Pro
50          55          60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65          70          75          80

Ser Arg Val Glu Ala Glu Asp Xaa Gly Val Tyr Tyr Cys Phe Gln Gly
85          90          95

Ser His Val Pro Leu Thr Phe Gly Xaa Gly Thr Xaa Leu Glu Xaa Lys

```

-continued

100 105 110

```

<210> SEQ_ID NO 187
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant light chain variable region
  consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be A or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa may be L or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be an acidic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (18)..(18)
<223> OTHER INFORMATION: Xaa may be Q or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (50)..(50)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (105)..(105)
<223> OTHER INFORMATION: Xaa may be A or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (111)..(111)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid

<400> SEQUENCE: 187

```

Asp Xaa Val Met Thr Gln Thr Pro Leu Ser Leu Xaa Val Xaa Xaa Gly
 1 5 10 15

Xaa Xaa Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
 35 40 45

Pro Xaa Leu Leu Ile His Thr Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Xaa Gly Val Tyr Tyr Cys Phe Gln Gly
 85 90 95

Ser His Val Pro Leu Thr Phe Gly Xaa Gly Thr Xaa Leu Glu Xaa Lys

-continued

100 105 110

```

<210> SEQ_ID NO 188
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant light chain variable region
  consensus 3
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be V or I
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be A or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (14)..(14)
<223> OTHER INFORMATION: Xaa may be S or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (15)..(15)
<223> OTHER INFORMATION: Xaa may be L or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (17)..(17)
<223> OTHER INFORMATION: Xaa may be D or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (18)..(18)
<223> OTHER INFORMATION: Xaa may be Q or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (50)..(50)
<223> OTHER INFORMATION: Xaa may be K or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (88)..(88)
<223> OTHER INFORMATION: Xaa may be L or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (105)..(105)
<223> OTHER INFORMATION: Xaa may be A or Q
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (108)..(108)
<223> OTHER INFORMATION: Xaa may be R or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (111)..(111)
<223> OTHER INFORMATION: Xaa may be L or I

<400> SEQUENCE: 188

```

Asp Xaa Val Met Thr Gln Thr Pro Leu Ser Leu Xaa Val Xaa Xaa Gly
 1 5 10 15

Xaa Xaa Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
 35 40 45

Pro Xaa Leu Leu Ile His Thr Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Xaa Gly Val Tyr Tyr Cys Phe Gln Gly
 85 90 95

Ser His Val Pro Leu Thr Phe Gly Xaa Gly Thr Xaa Leu Glu Xaa Lys

-continued

100 105 110

<210> SEQ ID NO 189
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant-1 light chain variable region: Lvh1
<400> SEQUENCE: 189

Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95

Ser His Val Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 190
<211> LENGTH: 112
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant-2 light chain variable region: Lvh2
<400> SEQUENCE: 190

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Lys Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95

Ser His Val Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105 110

<210> SEQ ID NO 191
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant heavy chain variable region
consensus 1
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)...(2)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in

-continued

```
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(20)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)..(38)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)..(40)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)..(41)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)..(43)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (44)..(44)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (48)..(48)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (67)..(67)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)..(68)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)..(69)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (70)..(70)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (72)..(72)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
comparison with SEQ ID NO.:46
```

-continued

```

<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (74)..(74)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (76)..(76)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (82)..(82)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)..(84)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (87)..(87)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (111)..(111)
<223> OTHER INFORMATION: Xaa is an amino acid substitution in
      comparison with SEQ ID NO.:46

<400> SEQUENCE: 191

```

Gln Xaa Gln Leu Val Gln Ser Gly Xaa Glu Xaa Xaa Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Xaa Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Xaa Gln Xaa Xaa Gly Xaa Xaa Leu Glu Trp Xaa
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

Lys Gly Xaa Xaa Xaa Xaa Thr Xaa Asp Xaa Ser Xaa Ser Thr Ala Tyr
 65 70 75 80

Met Xaa Leu Xaa Ser Leu Xaa Ser Glu Asp Xaa Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Xaa Val
 100 105 110

Thr Val Ser Ser
 115

```

<210> SEQ_ID NO 192
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant heavy chain variable region
      consensus 2
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE

```

-continued

```
<222> LOCATION: (9)...(9)
<223> OTHER INFORMATION: Xaa may be P or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)...(11)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)...(12)
<223> OTHER INFORMATION: Xaa may be V or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)...(20)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)...(38)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)...(40)
<223> OTHER INFORMATION: Xaa may be S or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)...(41)
<223> OTHER INFORMATION: Xaa may be H or P
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (43)...(43)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (44)...(44)
<223> OTHER INFORMATION: Xaa may be S or G
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (48)...(48)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (67)...(67)
<223> OTHER INFORMATION: Xaa may be a basic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (68)...(68)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (69)...(69)
<223> OTHER INFORMATION: Xaa may be I or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (70)...(70)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (72)...(72)
<223> OTHER INFORMATION: Xaa may be an hydrophobic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (74)...(74)
<223> OTHER INFORMATION: Xaa may be K or T
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (76)...(76)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (82)...(82)
<223> OTHER INFORMATION: Xaa may be Q or E
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (84)...(84)
<223> OTHER INFORMATION: Xaa may be N or S
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
```

-continued

```

<222> LOCATION: (87)..(87)
<223> OTHER INFORMATION: Xaa may be T or R
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (91)..(91)
<223> OTHER INFORMATION: Xaa may be a neutral hydrophilic amino acid
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (111)..(111)
<223> OTHER INFORMATION: Xaa may be S or L

```

<400> SEQUENCE: 192

Gln Xaa Gln Leu Val Gln Ser Gly Xaa Glu Xaa Xaa Lys Pro Gly Ala

1 5 10 15

Ser Val Lys Xaa Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp

20 25 30

Tyr Met Ser Trp Val Xaa Gln Xaa Xaa Gly Xaa Xaa Leu Glu Trp Xaa

35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe

50 55 60

Lys Gly Xaa Xaa Xaa Xaa Thr Xaa Asp Xaa Ser Xaa Ser Thr Ala Tyr

65 70 75 80

Met Xaa Leu Xaa Ser Leu Xaa Ser Glu Asp Xaa Ala Val Tyr Tyr Cys

85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Xaa Val

100 105 110

Thr Val Ser Ser

115

```

<210> SEQ_ID NO 193
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant heavy chain variable region
  consensus 3
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (2)..(2)
<223> OTHER INFORMATION: Xaa may be I or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (9)..(9)
<223> OTHER INFORMATION: Xaa may be P or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (11)..(11)
<223> OTHER INFORMATION: Xaa may be M or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (12)..(12)
<223> OTHER INFORMATION: Xaa may be V or K
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (20)..(20)
<223> OTHER INFORMATION: Xaa may be M or V
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (38)..(38)
<223> OTHER INFORMATION: Xaa may be K or R
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (40)..(40)
<223> OTHER INFORMATION: Xaa may be S or A
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (41)..(41)

```

-continued

<223> OTHER INFORMATION: Xaa may be H or P
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (43)..(43)
 <223> OTHER INFORMATION: Xaa may be K or Q
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (44)..(44)
 <223> OTHER INFORMATION: Xaa may be S or G
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (48)..(48)
 <223> OTHER INFORMATION: Xaa may be I or M
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (67)..(67)
 <223> OTHER INFORMATION: Xaa may be K or R
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (68)..(68)
 <223> OTHER INFORMATION: Xaa may be A or V
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (69)..(69)
 <223> OTHER INFORMATION: Xaa may be I or T
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (70)..(70)
 <223> OTHER INFORMATION: Xaa may be L or I
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (72)..(72)
 <223> OTHER INFORMATION: Xaa may be V or A
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (74)..(74)
 <223> OTHER INFORMATION: Xaa may be K or T
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (76)..(76)
 <223> OTHER INFORMATION: Xaa may be S or T
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (82)..(82)
 <223> OTHER INFORMATION: Xaa may be Q or E
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (84)..(84)
 <223> OTHER INFORMATION: Xaa may be N or S
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (87)..(87)
 <223> OTHER INFORMATION: Xaa may be T or R
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (91)..(91)
 <223> OTHER INFORMATION: Xaa may be S or T
 <220> FEATURE:
 <221> NAME/KEY: MISC_FEATURE
 <222> LOCATION: (111)..(111)
 <223> OTHER INFORMATION: Xaa may be S or L

<400> SEQUENCE: 193

Gln Xaa Gln Leu Val Gln Ser Gly Xaa Glu Xaa Xaa Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Xaa Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Xaa Gln Xaa Xaa Gly Xaa Xaa Leu Glu Trp Xaa
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

-continued

Lys Gly Xaa Xaa Xaa Xaa Xaa Thr Xaa Asp Xaa Ser Xaa Ser Thr Ala Tyr
 65 70 75 80

Met Xaa Leu Xaa Ser Leu Xaa Ser Glu Asp Xaa Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Xaa Val
 100 105 110

Thr Val Ser Ser
 115

<210> SEQ ID NO 194

<211> LENGTH: 116

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 variant-1 heavy chain variable region: Hvhl

<400> SEQUENCE: 194

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110

Thr Val Ser Ser
 115

<210> SEQ ID NO 195

<211> LENGTH: 116

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 variant-2 heavy chain variable region: Hvhl

<400> SEQUENCE: 195

Gln Ile Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

Lys Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110

-continued

Thr Val Ser Ser
115

<210> SEQ ID NO 196
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant-3 heavy chain variable region: Hvh3
<400> SEQUENCE: 196

Gln Ile Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110

Thr Val Ser Ser
115

<210> SEQ ID NO 197
<211> LENGTH: 116
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 variant-4 heavy chain variable region: Hvh4
<400> SEQUENCE: 197

Gln Ile Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
20 25 30

Tyr Met Ser Trp Val Lys Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110

Thr Val Ser Ser
115

<210> SEQ ID NO 198
<211> LENGTH: 219
<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 murine light (kappa) chain

<400> SEQUENCE: 198

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Lys Leu Leu Ile His Thr Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95

Ser His Val Pro Leu Thr Phe Gly Ala Gly Thr Arg Leu Glu Leu Lys
100 105 110

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
115 120 125

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
130 135 140

Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
145 150 155 160

Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
180 185 190

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
195 200 205

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215

<210> SEQ ID NO 199

<211> LENGTH: 219

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 humanized ligh (kappa) chain variant 1: Lh1

<400> SEQUENCE: 199

Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45

Pro Gln Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro
50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
85 90 95

-continued

Ser His Val Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
 100 105 110

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
 115 120 125

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
 130 135 140

Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
 145 150 155 160

Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
 165 170 175

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
 180 185 190

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
 195 200 205

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215

<210> SEQ ID NO 200
 <211> LENGTH: 219
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 humanized ligh (kappa) chain variant 2: Lh2

<400> SEQUENCE: 200

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
 1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
 20 25 30

Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser
 35 40 45

Pro Lys Leu Leu Ile Tyr Thr Val Ser Asn Arg Phe Ser Gly Val Pro
 50 55 60

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Phe Gln Gly
 85 90 95

Ser His Val Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
 100 105 110

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
 115 120 125

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
 130 135 140

Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
 145 150 155 160

Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
 165 170 175

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
 180 185 190

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
 195 200 205

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 210 215

-continued

<210> SEQ ID NO 201
<211> LENGTH: 446
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: 3A4 murine heavy (IgG1) chain

<400> SEQUENCE: 201

Gln Ile Gln Leu Val Gln Ser Gly Pro Glu Met Val Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
20 25 30

Tyr Met Ser Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile
35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Gly Lys Ala Ile Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Asn Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val
100 105 110

Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
115 120 125

Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
130 135 140

Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
145 150 155 160

Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
165 170 175

Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
180 185 190

Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
195 200 205

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
210 215 220

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
225 230 235 240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
245 250 255

Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
260 265 270

Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
275 280 285

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
290 295 300

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
305 310 315 320

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
325 330 335

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
340 345 350

-continued

Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 355 360 365

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 370 375 380

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 202

<211> LENGTH: 446

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 humanized heavy (Iggl) chain variant 1: Hh1

<400> SEQUENCE: 202

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30

Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

Lys Gly Arg Val Thr Ile Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110

Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
 115 120 125

Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
 130 135 140

Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
 145 150 155 160

Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 165 170 175

Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 180 185 190

Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
 195 200 205

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
 210 215 220

Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
 225 230 235 240

Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 245 250 255

-continued

Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
 260 265 270
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 275 280 285
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 290 295 300
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 305 310 315 320
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 325 330 335
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 340 345 350
 Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 355 360 365
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 370 375 380
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400
 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 203
 <211> LENGTH: 446
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 humanized heavy (Iggl) chain variant 2: Hh2
 <400> SEQUENCE: 203

Gln Ile Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30
 Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45
 Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60
 Lys Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110
 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
 115 120 125
 Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
 130 135 140
 Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
 145 150 155 160

-continued

Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 165 170 175
 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 180 185 190
 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
 195 200 205
 Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
 210 215 220
 Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
 225 230 235 240
 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 245 250 255
 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
 260 265 270
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 275 280 285
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 290 295 300
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 305 310 315 320
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 325 330 335
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 340 345 350
 Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 355 360 365
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 370 375 380
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400
 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 204
 <211> LENGTH: 446
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 humanized heavy (Iggl) chain variant 3: Hh3

<400> SEQUENCE: 204

Gln Ile Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15
 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asp
 20 25 30
 Tyr Met Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45
 Gly Asp Ile Asn Pro Tyr Asn Gly Asp Thr Asn Tyr Asn Gln Lys Phe
 50 55 60

-continued

Lys Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr
 65 70 75 80
 Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
 85 90 95
 Ala Arg Asp Pro Gly Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 100 105 110
 Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala
 115 120 125
 Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu
 130 135 140
 Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
 145 150 155 160
 Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser
 165 170 175
 Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu
 180 185 190
 Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr
 195 200 205
 Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr
 210 215 220
 Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
 225 230 235 240
 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 245 250 255
 Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val
 260 265 270
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 275 280 285
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 290 295 300
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 305 310 315 320
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 325 330 335
 Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 340 345 350
 Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 355 360 365
 Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 370 375 380
 Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 385 390 395 400
 Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 405 410 415
 Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 420 425 430
 Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 435 440 445

<210> SEQ ID NO 205

<211> LENGTH: 446

<212> TYPE: PRT

-continued

<213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: 3A4 humanized heavy (Igg1) chain variant 4: Hh4
 <400> SEQUENCE: 205

Gln	Ile	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala
1															
Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp	Asp
20															
Tyr	Met	Ser	Trp	Val	Lys	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Ile
35															
Gly	Asp	Ile	Asn	Pro	Tyr	Asn	Gly	Asp	Thr	Asn	Tyr	Asn	Gln	Lys	Phe
50															
Lys	Gly	Lys	Ala	Thr	Leu	Thr	Val	Asp	Lys	Ser	Thr	Ser	Thr	Ala	Tyr
65															
Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
85															
Ala	Arg	Asp	Pro	Gly	Ala	Met	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val
100															
Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	Val	Phe	Pro	Leu	Ala
115															
Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu	Gly	Cys	Leu
130															
Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Ser	Trp	Asn	Ser	Gly
145															
Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser
165															
Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu
180															
Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	Lys	Pro	Ser	Asn	Thr
195															
Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	Asp	Lys	Thr	His	Thr
210															
Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe
225															
Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro
245															
Glu	Val	Thr	Cys	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	
260															
Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr
275															
Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val
290															
Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys
305															
Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser
325															
Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro
340															
Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val
355															
Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly

-continued

370	375	380
-----	-----	-----

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp	385	390	395	400
---	-----	-----	-----	-----

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp	405	410	415
---	-----	-----	-----

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His	420	425	430
---	-----	-----	-----

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys	435	440	445
---	-----	-----	-----

<210> SEQ ID NO 206

<211> LENGTH: 34

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 206

atacccaagc ttgccaccat ggagacagac acac

34

<210> SEQ ID NO 207

<211> LENGTH: 33

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 207

atacccaagc ttcatttccc gggagacagg gag

33

<210> SEQ ID NO 208

<211> LENGTH: 41

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 208

atacccaagc ttgggccacc atgaacttgc tgctgtcttg g

41

<210> SEQ ID NO 209

<211> LENGTH: 34

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 209

atacccaagc ttctaacact ctccccctgtt gaag

34

<210> SEQ ID NO 210

<211> LENGTH: 3962

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: plasmid pK-CR5

<400> SEQUENCE: 210

ctaaattgtt agcgttaata tttttgttaaa attcgcgtta aatttttgtt aatcagctc

60

attttttaac caataggccg aaatcgccaa aatcccttat aaatcaaag aatagaccga

120

-continued

gatagggttg agtgttgttc cagttggaa caagagtcca ctattaaaga acgtggactc	180
caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc ccactacgtg aaccatcacc	240
ctaatcaagt tttttgggt cgaggtgccc taaagcacta aatcgaaacc ctaaaggag	300
cccccgattt agagcttgac ggggaaagcc ggcgaacgtg gcgagaaagg aagggaaagaa	360
agcgaaagga gcggggccta gggcgctgc aagtgtagcg gtcacgctgc gcgttaaccac	420
cacacccgccc gcgttaatg cgccgctaca gggcgctcc catcgccat tcaggctcg	480
caactgttgg gaagggcgat cggtgcgggc ctettcgata ttacgcggc tggcgaaagg	540
gggatgtgct gcaaggcgat taagttgggt aacgccaggg tttcccaagt cacgacgtt	600
taaaacgacg gccagtgagc gcgcgtataa cgactcacta tagggcgaat tggagctcca	660
ccgcgggtggc ggccgctcta gaactagtgg atccacatcg gcgcgcggaaa tgatttgc	720
ccatcatatgt cttcccgagt gagagacaca aaaaattcca acacactatt gcaatgaaaa	780
taaatttccct tattagcca gaggtcgaga tttaataaag cttgctagca gatctttga	840
cctggggagtg gacacctgtg gagagaaagg caaagtggat gtcattgtca ctcaagtgt	900
tggccagatc gggccagggtg aatatcaaat cctcctcgat tttggaaact gacaatctt	960
gcccggcgt aatgeccgct tttgagaggg agtactcacc ccaacagctg gatctcaagc	1020
ctgccacacc tcaccccgac cattcccgat ctcagaccg cctactttaa ttacatcatc	1080
agcagccacct cccggcggaaa caaccccgac cgcaccccg tgccgcggc cacgggtgt	1140
agcctacccct gcgactgtg ctggtagac gccttctcg agaggtttc cgatccggc	1200
gatgcggact cgctcagggtc cctcggtggc ggagttaccgt tggaggccgc acgggttcc	1260
gatccaagag tactggaaag accgcgaaga gtttgcctc aaccgcggagc ccaacagctg	1320
gcctctcgac acagegatgc ggaagagagt gaccgcggag gctggatcg tcccggtgt	1380
ttctatggag gtcaaaacag cgtggatggc gtctccaggc gatctgacgg ttcaactaac	1440
gagctctgtc tatataggcc tcccaccgtc cacgcctacc tgcacccggg tccaatctt	1500
ataataaaaa cagaccagat tgtctgtttt ttataataca aacagaccag attgtctgtt	1560
tgttataata caaaacagacc agattgtctg tttgttataa tacaaacaga ccagattgtc	1620
tgtttgttat aataaaaaa gaccagattt tctgtttgtt ataataaaaa cagaccagat	1680
tgtctgtttt ttaagggtgt cgactgtgaa cggaaagggtt cattaaggcg cgccgtcgac	1740
ctcgaggggg ggcccggtac ccagcttttgc ttccctttag tgagggtttaa ttgcgcgtt	1800
ggcgtaatca tggcatagc tggccctgt gtgaaattgt tatccgctca caattccaca	1860
caacatacga cccggaaagca taaagtgtaa agcctggggt gcctaatgag tgagctact	1920
cacattaatt gcgttgcgtc cactgccccgc tttcccgatcg ggaaacctgt cgtgccagct	1980
gcattaatga atcggccaac gcgcggggag aggccggtttgcgtattggc gctttccgc	2040
tccctcgctc actgactcgcc tgcgtcggt cggtcgctg cggcgagccg tatcgactca	2100
ctcaaaaggcg gtaatacggt tatccacaga atcaggggat aacgcaggaa agaacatgt	2160
agcaaaaaggc cagcaaaaggcc caagggaaacgg taaaaaggcc gcgttgctgg cgttttcca	2220
taggctccgc ccccccgtacg agcatcaca aaatcgacgc tcaagtcaaga ggtggcgaaa	2280
cccgacagga ctataaaagat accaggcggtt tccccctggaa agctccctcg tgcgtctcc	2340
tgttccgacc ctgcgcctta ccggatacct gtccgcctt ctcccttgg gaagcggtggc	2400

-continued

gttttctcat agctcacgct gtaggtatct cagttcggtg taggtcggtc gctccaagct	2460
gggctgtgtg cacaaccccc ccgttcagcc cgaccgctgc gccttatccg gtaactatcg	2520
tcttgagtcc aaccggtaa gacacgactt atcgccactg gcagcagcc a ctggtaacag	2580
gattagcaga gcgaggtatg taggcgggtgc tacagagttc ttgaagtggt ggcctaacta	2640
cggttacact agaaggacag tatttggat ctgcgcctcg ctgaagccag ttaccttcgg	2700
aaaaagagtt ggtagcttt gatccggcaa acaaaccacc gctggtagcg gtggttttt	2760
tgtttcaag cagcagatta cgcgcagaaa aaaaggatct caagaagatc ctttgcattt	2820
ttctacgggg tctgacgctc agtggAACGA aaactcacgt taaggattt tggtcatgag	2880
attatcaaaa aggatctca cctagatctt tttaaattaa aaatgaagtt tttaatcaat	2940
ctaaagtata tatgagtaaa cttggcttga cagttacaa tgcttaatca gtgaggcacc	3000
tatctcagcg atctgtctat ttgcgttcatc catagttgcg tgactccccg tcgtgttagat	3060
aactacgata cggggggct taccatctgg ccccagtgcg gcaatgatac cgcgagaccc	3120
acgctcaccc gtcggcattt ttcggatccat ccaggatctt aattgttgcg gggaaagctag	3180
agtaagtatg tcgcccgtta atatgttgcg caacgttgcg gtcattgcg caggcatcg	3240
gggtgtacgc tcgtcggttgc gatggcttc attcagtcg ggttcccaac gatcaaggcg	3300
agttatcatgaa tccccatgt tgcggaaaa agcggttgcg tccatgggtc ctccgatcg	3360
tgtcagaagt aagttggccg cagtgttgc actcatgtt atggcagcac tgcataattc	3420
tcttactgtc atgcccattcg taatgttgc ttctgtgact ggtgagact caaccaagtc	3480
attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc cggcgtcaa tacggataa	3540
taccggccca catagcagaa cttaaaagt gtcatcatt ggaaaacgtt ctccggccg	3600
aaaactctca aggatcttac cgcgttgcg atccagttcg atgtaaaccac ctgcgtgcacc	3660
caactgtatc tcaatgttccat ttacttcac cagcgttctt gggtagccaa aaacaggaa	3720
gcaaaaatgcc gcaaaaaagg gaataaggcc gacacggaaa tggtaatc tcataacttt	3780
ccttttcaa tattattgaa gcatttatca gggttattgt ctcatgagcg gatacatatt	3840
tgaatgtatt tagaaaaata aacaaatagg ggttccgcg acattcccc gaaaagtgc	3900
ac	3962

<210> SEQ ID NO 211
 <211> LENGTH: 6530
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: plasmid pMPG-CR5

<400> SEQUENCE: 211

gtcgacgata ccgtgcactt aattaagcgc gtcgaccaa atgatttgc ctccatatg	60
tccttcgag tgagagacac aaaaaattcc aacacactat tgcaatgaaa ataaattcc	120
tttattagcc agaggtcgag gtcggggat ccgtttaac ttggacctgg gagtggacac	180
ctgtggagag aaaggccaaag tggatgtcat tgcactcaa gtgtatggcc agatcggcc	240
aggtgaatat caaatccctcc tcgttttgg aaactgacaa tcttagcgcgaa gagaatgc	300
ccgcgtttga gagggagtagtc acacccaaac agctggatct caagcctgcc acacccatcacc	360

-continued

tcgaccatcc	gccgtctcaa	gaccgcctac	ttaattaca	tcatcagcag	caccccgcc	420
agaaacaacc	ccgaccgcca	cccgctgccc	cccgccacgg	tgcgtcagcct	accttgcgac	480
tgtgactgg	tagacgcctt	tctcgagagg	tttccgatcc	cggtcgatgc	ggactcgctc	540
aggtccctcg	gtggcggagt	accgttcgga	ggccgacggg	tttccgatcc	aagagtactg	600
gaaagaccgc	gaagagtttgc	tctcaaccg	cgagccaaac	agctggccct	cgcagacagc	660
gatgcggaaag	agagtgaccg	cggaggctgg	atcggtccc	gtgttctta	tggaggtcaa	720
aacagegtgg	atggcgttcc	caggcgatct	gacgggttcc	taaacgagct	ctgcttatat	780
aggcctccca	ccgtacacgc	ctaccccgac	ccgggtacca	atcttataat	acaaacagac	840
cagattgtct	gtttgttata	atacaacag	accagattgt	ctgtttgtta	taatacaaac	900
agaccagatt	gtctgtttgt	tataatcaa	acagaccaga	ttgtctgtt	gttataatac	960
aaacagacca	gattgtctgt	ttgttataat	acaaacagac	cagattgtct	gtttgttaag	1020
gttgcgagt	gaagacgaaa	gggttaatta	aggcgccgc	tgcgtactgt	tggcacgcca	1080
gaaatccgcg	cggtggttt	tgggggttgg	gggtgtttgg	cagccacaga	cgcgggtgt	1140
tctgtcgcg	ccagtgatcg	cggtccatgc	ccaggccatc	caaaaaacat	gggtctgtct	1200
gctcagtcca	gtcgtggacc	agaccccacg	caacgccccaa	aataataacc	cccaacgaacc	1260
ataaaccatt	ccccatgggg	gaccccgtec	ctaacccacg	ggcccgatgg	ctatggcagg	1320
gcctgcgc	ccgacgttgg	ctggtgcggcc	tgggcctca	cccgaaactg	gggggtgggg	1380
tggggaaaag	gaagaaacgc	ggggttattg	gccccatgg	ggtctcggt	gggtatcgac	1440
agagtgcac	ccctggggacc	gaaccccgcg	tttatgaaca	aacgacccaa	cacccgtgcg	1500
ttttattctg	tcttttatt	gcccgtcatag	cgccgggttcc	ttccggatt	gtctcttcc	1560
gtgtttcgt	tagcctcccc	catctccct	attccttgc	cctcgacga	gtgctgggc	1620
gtcggtttcc	actatcgcc	agtacttcta	cacagccatc	ggtccagacg	gccgcgcctc	1680
tgccggcgat	ttgtgtacgc	ccgacagtcc	cggtctcgga	tccgacgatt	gcgtcgatc	1740
gaccctgcgc	ccaagctgca	tcatcgaaat	tgcgtcaac	caagctctga	tagatgg	1800
caagaccaat	gcggaggata	tacggccgga	gcccggcga	tccgtcaagc	tccggatgcc	1860
tccgctcgaa	gtagegcgtc	tgcgtctca	tacaagccaa	ccacggccctc	cagaagaaga	1920
tgttggcgac	ctcgatttg	gaatccccga	acatcgccctc	gtcccgatca	atgaccgctg	1980
ttatgcggcc	attgtccgtc	aggacattgt	tggagccaa	atcccgatgc	acgaggtgcc	2040
ggacttcggg	gcagtcctcg	gccccaaagca	tcaagtcatc	gagacgttc	gcgacggacg	2100
cactgacgg	gtcggtccatc	acatgttgc	agtgtatcac	atggggatca	gcaatcgcc	2160
atatgaaatc	acgccccatgt	gtgttattgc	cgattcccttgc	cggtccgaaat	ggggccaaacc	2220
cgctcgatcg	gtcaagatcg	gccgcagcga	tccgtatccat	ggccctccg	accggctgca	2280
gaacagcg	cagttcggtt	tcaggcagg	cttgcacatgc	gacaccctgt	gcacggcg	2340
agatgcaata	ggtcaggcgtc	tgcgtgaatt	ccccatgtc	aagcacttcc	ggaatcg	2400
gcgcggccga	tgcaaaagtgc	cgataaaacat	aacgtatcttgc	gtagaaacca	tccggcgac	2460
tatttacccg	caggacatata	ccacggccctc	ctacatcgaa	gctgaaagca	cgagatttct	2520
cgccctccga	gagctgcac	aggtcggaga	cgctgtcgaa	ctttcgatc	agaaacttct	2580
cgacagacgt	cgcggtgagt	tcaggcttt	tcatatctca	ttgcccggga	tctgcggcac	2640

-continued

gctgttgcgc	ctgttaagcg	ggtcgctgca	gggtcgctcg	gtgttcgagg	ccacacgcgt	2700
caccttaata	tgcgaagtgg	acctgggacc	gcccccccc	gactgcatct	gcgtgttgc	2760
atccgcacat	gacaagacgc	tgggggggg	tttgttgcata	atagaactaa	agacatgcaa	2820
atataattct	tccggggaca	ccgcccagcaa	acgcgagcaa	cgggccacgg	ggatgaagca	2880
gggcacatggcg	gcccacgcgc	tgggtacgt	cttgcgtggc	tgcgcacgc	gaggctggat	2940
ggcctttccc	attatgattc	tttcgcgttc	cggcggcata	gggatgccc	cggtgcaggc	3000
catgcgttcc	aggcaggtag	atgacgacca	tcaaggacag	cttcaaggat	cgctcgccgc	3060
tcttaccagc	ctaacttcga	tcaactggacc	gctgatcgtc	acggcgattt	atgcgcctc	3120
ggcgagcaca	tggaaacgggt	tggcatggat	tgttagggcg	gcccttatacc	ttgtctgcct	3180
ccccgggttg	cgtcgggtg	catggagccg	ggccacctcg	acctgaatgg	aagccggcg	3240
cacccgcata	acggattcac	cactccaaga	attggagccaa	atcaatttt	gcccggaaact	3300
gtgaatgcgc	aaaccaaccc	ttggcagaac	atatccatcg	cgccgcacat	ctccagcagc	3360
cgcacggcgc	gcagcggaaag	gccaggaacc	gtaaaaaggc	cgcggtgtcg	gcgttttcc	3420
ataggctccg	ccccctgac	gagcatcaca	aaaatcgacg	ctcaagtca	aggtggcgaa	3480
acccgacagg	actataaaga	taccaggcgt	ttcccccctgg	aagctccctc	gtgcgcctc	3540
ctgttccgac	cctgcgcgtt	accggatacc	tgtccgcctt	tcccccctcg	ggaagcgtgg	3600
cgcttctca	tagtcacgc	tgttaggtatc	tcaaggatcg	gttaggtcg	cgctccaagc	3660
tgggctgtgt	gcacgaaccc	cccggtcagc	ccgaccgctg	cgcccttatcc	ggtaactatc	3720
gtcttggatc	caacccggta	agacacgact	tatgccact	ggcagcagcc	actggtaaca	3780
ggatttagcag	agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	tggcttaact	3840
acggctacac	tagaaggaca	gtatggta	tctgcgtct	gctgaagcca	gttacctcg	3900
aaaaaaagat	tggtagctct	tgtatccggca	aacaaaccac	cgctggtagc	gggtggtttt	3960
ttgtttgc	caacggcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	4020
tttctacggg	gtctgacgct	cagtggaaacg	aaaactcact	ttaaggggatt	ttggtcatga	4080
gattatcaa	aaggatctc	accttagatcc	ttttaaatta	aaaatgaat	tttaaatcaa	4140
tctaaagtat	atatgagtaa	acttggctcg	acagttacca	atgcttaatc	agtgaggcac	4200
ctatctcagc	gatctgtcta	tttcgttcat	ccatagtgc	ctgactcccc	gtcggttaga	4260
taactacgat	acgggagggc	ttaccatctg	gccccagtgc	tgcaatgata	ccgcgagacc	4320
cacgctcacc	ggctccagat	ttatcagcaa	taaaccagcc	agccggaaagg	gccgagcgca	4380
gaagtggtcc	tgcaacttta	tccgccttca	tccagtcata	taattgttgc	cgggaaagcta	4440
gagtaagtag	tgcgcagtt	aatagttgc	gcaacgttg	tgcattgtct	gcaggcata	4500
tgggtgtcagc	ctcggtgttt	ggtatggctt	cattcagctc	cggttcccaa	cgatcaaggc	4560
gagttacatg	atccccatg	ttgtgcaaaa	aagcggttag	ctccctcggt	cctccgatcg	4620
ttgtcagaag	taagttggcc	gcagtgttat	cactcatgtt	tatggcagca	ctgcataatt	4680
ctcttactgt	catgccccatcc	gtaagatgt	tttctgtgac	tggtgagtac	tcaaccaagt	4740
cattctgaga	atagtgtatg	cgccgaccga	gttgcgttttgc	ccggcggtca	acacgggata	4800
ataccgcgcc	acatagcaga	actttaaaag	tgctcatcat	tggaaaacgt	tcttcggggc	4860
aaaaactctc	aaggatctta	ccgctgttga	gatccagttc	gatgtaaaccc	actcggtcac	4920

-continued

ccaaactgatc	ttcagcatct	tttactttca	ccagcgtttc	tggttggagca	aaaacaggaa	4980
ggcaaaaatgc	cgcaaaaaag	ggaataaggg	cgacacggaa	atgttgaata	ctcatactct	5040
tccttttca	atattattga	agcattttatc	agggttatttgc	tctcatgagc	ggatacatat	5100
ttgaatgtat	ttagaaaaat	aaacaaatag	gggttcccg	cacatttccc	cgaaaagtgc	5160
cacctgacgt	ctaagaaacc	attattatca	tgacattaac	ctataaaaat	aggcgatcatca	5220
cgaggccctt	tcgttcaa	gaattctcat	gtttgacage	ttatctctag	cagatccgga	5280
atccccctcc	ccaatttaaa	tgaggaccta	acctgtggaa	atctactgat	gtggggaggct	5340
gtaactgtac	aaacagaggt	tatttggaaata	actagcatgc	ttaaccttca	tgcagggtca	5400
caaaaagtgc	atgacgatgg	tggaggaaaa	cctattcaag	gcagtaattt	ccacttctt	5460
gtgttggtg	gagaccctt	ggaaatgcag	ggagtgcata	tgaattacag	gacaaagtac	5520
ccagatggta	ctataacccc	taaaaaccca	acagcccaagt	cccaggtaat	gaatactgac	5580
cataaggcct	atttggacaa	aaacaatgtt	tatccagtttgc	agtgtgggt	tcctgtatcct	5640
agtagaaatg	aaaatactag	gtatttttgg	actttcacag	gagggggaaa	tgttccccca	5700
gtacttcatg	tgaccaacac	agctaccaca	gtgttgcata	atgaacaggg	tgtggggcct	5760
ctttgttaag	ctgatagcct	gtatgttca	gctgctgata	tttggcct	gtttactaac	5820
agctctggaa	cacaacagt	gagaggcctt	gcaagatatt	ttaagatccg	cctgagaaaa	5880
agatctgtaa	agaatccta	cctaatttcc	ttttgtctaa	gtgacccat	aaacaggaga	5940
acccagagag	tggatggca	gcctatgtat	ggtatggaaat	cccaggtaga	agaggttagg	6000
gtgtttgatg	gcacagaaag	acttccagg	gaccagata	tgataagata	tattgacaaa	6060
cagggacaat	tgcaaacc	aatgtttaa	acaggtgctt	ttattgtaca	tatacat	6120
ataaaatgt	cttttgata	agccactttt	aagcttgc	tattttgggg	gtgggtttt	6180
aggccttta	aaacactgaa	agccttaca	caaatacgt	tcttgactat	gggggtctga	6240
ccttggaa	tgttcagcag	gggctgaagt	atctgagact	tgggaagagc	attgtgattt	6300
ggattcagtg	cttgcatt	gtccagagtc	ttcagttct	gaatccctt	ctttgtat	6360
atcaagaata	catttccca	tgcataattt	atatttcata	cttggaaaag	tatacatact	6420
tatctcagaa	tccagcctt	catttccattc	aacaattcta	gaagttaaaa	ctggggtaga	6480
tgctattaca	gaggtagaaat	gcttctaaa	cccagaaatg	ggggatctgc		6530

<210> SEQ ID NO 212

<211> LENGTH: 17

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: 3A4 heavy chain CDR2

<400> SEQUENCE: 212

Asp	Ile	Asn	Pro	Tyr	Asn	Gly	Asp	Thr	Asn	Tyr	Asn	Gln	Lys	Phe	Lys
1							5					10			15

Gly

<210> SEQ ID NO 213

<211> LENGTH: 43

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

-continued

<400> SEQUENCE: 213

atgccaagtg gtcccgaggct gatgttgtga tgacccaaac tcc

43

<210> SEQ ID NO 214

<211> LENGTH: 35

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 214

gggaagatga agacagatgg tgcagccaca gtccg

35

<210> SEQ ID NO 215

<211> LENGTH: 43

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 215

gggttccagg ttccactggc cagatccagt tggtgcaatc tgg

43

<210> SEQ ID NO 216

<211> LENGTH: 38

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: primer

<400> SEQUENCE: 216

ggggccaggg gaaagacaga tggcccttc gttgaggc

38

1. A method of treating breast cancer, the method comprising administering an antibody or an antigen binding fragment thereof, capable of specific binding to Kidney associated antigen 1 (KAAG1) to an individual having a breast cancer that has low expression of the estrogen receptor (ER), of the progesterone receptor (PgR) and/or of human epidermal growth factor receptor 2 (Her2).

2. (canceled)

3. The method of claim 1, wherein the individual has a breast cancer that is characterized as being negative for estrogen receptor (ER) expression, progesterone receptor (PgR) expression and/or for Her2 overexpression.

4. A method of treating triple negative breast cancer, the method comprising administering an antibody or an antigen binding fragment thereof capable of specific binding to Kidney associated antigen 1 (KAAG1) to an individual in need.

5. (canceled)

6. The method of claim 4, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

7. (canceled)

8. The method of claim 4, wherein the antibody or antigen binding fragment thereof binds an epitope comprised between amino acids 30 to 84 of KAAG1.

9. The method of claim 4, wherein the antibody or antigen binding fragment thereof is a monoclonal antibody, a chi-

meric antibody, a human antibody or a humanized antibody or an antigen binding fragment thereof.

10. The method of claim 4, wherein the antibody or antigen binding fragment thereof is administered in combination with an anti-cancer agent.

11. The method of claim 4, wherein the antibody or antigen binding fragment thereof comprises:

a. a CDRH1 as set forth in SEQ ID NO.:49, a CDRH2 as set forth in SEQ ID NO.:50 or in SEQ ID NO.:212, a CDRH3 as set forth in SEQ ID NO.:51, a CDRL1 as set forth in SEQ ID NO.: 52, a CDRL2 as set forth in SEQ ID NO.:53 and a CDRL3 as set forth in SEQ ID NO.: 54;

b. a light chain variable region as set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:46;

c. a light chain variable region as set forth in SEQ ID NO.:186 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:191 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46;

d. a light chain variable region as set forth in SEQ ID NO.:187 and a heavy chain variable region as set forth in SEQ ID NO.:192;

- e. a light chain variable region as set forth in SEQ ID NO.:188 and a heavy chain variable region as set forth in SEQ ID NO.:193;
- f. a light chain variable region as set forth in SEQ ID NO.:189 or SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;
- g. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:194;
- h. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:195;
- i. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:196;
- j. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:197;
- k. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:194;
- l. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:195;
- m. a light chain as set forth in SEQ ID NO.:199 or SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202, SEQ ID NO.:203, SEQ ID NO.:204 or SEQ ID NO.:205;
- n. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:202;
- o. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:203;
- p. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:204;
- q. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:205;
- r. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202;
- s. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:203;
- t. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:204 or;
- u. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:205.

12-31. (canceled)

32. The method of claim **11**, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

33. The method of claim **32**, wherein the therapeutic moiety is a cytotoxic agent.

34. The method of claim **6**, wherein the antibody or antigen binding fragment thereof has a high affinity for KAAG1.

35-39. (canceled)

40. The method of claim **1**, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

41. The method of claim **40**, wherein the antibody or antigen binding fragment thereof has a high affinity for KAAG1.

42. The method of claim **1**, wherein the antibody or antigen binding fragment thereof comprises:

- a. a CDRH1 as set forth in SEQ ID NO.:49, a CDRH2 as set forth in SEQ ID NO.:50 or in SEQ ID NO.:212, a CDRH3 as set forth in SEQ ID NO.:51, a CDRL1 as set forth in SEQ ID NO.:52, a CDRL2 as set forth in SEQ ID NO.:53 and a CDRL3 as set forth in SEQ ID NO.:54;
- b. a light chain variable region as set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:46;
- c. a light chain variable region as set forth in SEQ ID NO.:186 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:191 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46;
- d. a light chain variable region as set forth in SEQ ID NO.:187 and a heavy chain variable region as set forth in SEQ ID NO.:192;
- e. a light chain variable region as set forth in SEQ ID NO.:188 and a heavy chain variable region as set forth in SEQ ID NO.:193;
- f. a light chain variable region as set forth in SEQ ID NO.:189 or SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;
- g. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:194;
- h. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:195;
- i. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:196;
- j. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:197;
- k. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:194;
- l. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:195;
- m. a light chain as set forth in SEQ ID NO.:199 or SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202, SEQ ID NO.:203, SEQ ID NO.:204 or SEQ ID NO.:205;
- n. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:202;
- o. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:203;
- p. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:204;
- q. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:205;
- r. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202;
- s. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:203;
- t. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:204 or;

u. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:205.

43. The method of claim **42**, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

44. A method of treating basal-like breast cancer, the method comprising administering an antibody or an antigen binding fragment thereof capable of specific binding to Kidney associated antigen 1 (KAAG1) to an individual in need.

45. The method of claim **44**, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

46. The method of claim **45**, wherein the antibody or antigen binding fragment thereof has a high affinity for KAAG1.

47. The method of claim **44**, wherein the antibody or antigen binding fragment thereof comprises:

- a. a CDRH1 as set forth in SEQ ID NO.:49, a CDRH2 as set forth in SEQ ID NO.:50 or in SEQ ID NO.:212, a CDRH3 as set forth in SEQ ID NO.:51, a CDRL1 as set forth in SEQ ID NO.: 52, a CDRL2 as set forth in SEQ ID NO.:53 and a CDRL3 as set forth in SEQ ID NO.: 54;
- b. a light chain variable region as set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:46;
- c. a light chain variable region as set forth in SEQ ID NO.:186 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:48 and a heavy chain variable region as set forth in SEQ ID NO.:191 wherein at least one of the amino acid identified by X is an amino acid substitution in comparison with a corresponding amino acid in the polypeptide set forth in SEQ ID NO.:46;
- d. a light chain variable region as set forth in SEQ ID NO.:187 and a heavy chain variable region as set forth in SEQ ID NO.:192;
- e. a light chain variable region as set forth in SEQ ID NO.:188 and a heavy chain variable region as set forth in SEQ ID NO.:193;
- f. a light chain variable region as set forth in SEQ ID NO.: 189 or SEQ ID NO.:190 and a heavy chain variable

region as set forth in SEQ ID NO.:194, SEQ ID NO.:195, SEQ ID NO.:196 or SEQ ID NO.:197;

g. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:194;

h. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:195;

i. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:196;

j. a light chain variable region as set forth in SEQ ID NO.:189 and a heavy chain variable region as set forth in SEQ ID NO.:197;

k. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:194;

l. a light chain variable region as set forth in SEQ ID NO.:190 and a heavy chain variable region as set forth in SEQ ID NO.:195;

m. a light chain as set forth in SEQ ID NO.: 199 or SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202, SEQ ID NO.:203, SEQ ID NO.:204 or SEQ ID NO.:205;

n. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:202;

o. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:203;

p. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:204;

q. a light chain as set forth in SEQ ID NO.:199 and a heavy chain as set forth in SEQ ID NO.:205;

r. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:202;

s. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:203;

t. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:204 or;

u. a light chain as set forth in SEQ ID NO.:200 and a heavy chain as set forth in SEQ ID NO.:205.

48. The method of claim **47**, wherein the antibody or antigen binding fragment thereof is conjugated with a therapeutic moiety.

* * * * *