(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

T OO0

(43) International Publication Date (10) International Publication Number
30 May 2003 (30.05.2003) PCT WO 03/044662 Al
(51) International Patent Classification’: GOG6F 9/445 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US01/42947 CZ, DE, DK, DM, DZ, EC, EE, ES, F1, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
15 November 2001 (15.11.2001) SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZW.
(25) Filing Language: English

(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(71) Applicant (for all designated States except US): AL-
ADDIN KNOWLEDGE SYSTEMS, LTD. [IL/IL]; Beit
Oved Street 15, 67021 Tel Aviv (IL).

(72) Inventor; and Published:
(75) Inventor/Applicant (for US only): OS,Ron, Van [—/USL; _— yish international search report
715 Timberpine Avenue, Sunnyvale, CA 94086 (US).

For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: CASCIO, Anthony, T.; Burns, Doane, Swecker & ance Notes on Codes and Abbreviations" appearing at the begin-
Mathis, LLP, PO Box 1404, Alexandria, VA 22313 (US). ning of each regular issue of the PCT Gazette.

(54) Title: INCREMENTALLY INCREASING OR DECREASING THE AVAILABLE FUNCTIONALITIES OF A COMPUTER
PROGRAM

System
Hook

Client

201
Pt VR

E Agent Process

213 1 f219

209 211 Hook H Agent Control
V| Panel Applet
Plugin el Apple

205

Command

Prneast | Message || survey Inet

Plugin Plugin Plugin Plugin

é @T [.f\ i "l‘" 1 }Ik ,f\ 1 é Persistent Storage
: v i ' t ¥ :

Registry
File System

| 203 Resident Agent
N ;

221
Scheduler, Piugin And
Cache Manager

Remote Dialup Monitor

CommandFile
PreProcessor

|) 2234

Al

e (57) Abstract: The present invention, generally speaking, allows for incremental distribution of a computer program through a

\© two-way automated exchange of information between a user’s machine and a server machine via a wide area computer network,

\© e.g., the Internet. The user initially purchases the core program. The core program may be distributed electronically. The menu
structure of the core program may include menu items relating to capabilities that are not part of the core program. When the user
selects menu items not directly supported by the core program, a dialog is displayed asking the user whether the user wishes to

~~ download a program module corresponding to the selected menu item, either immediately or in the background at the next available
opportunity. The program module may be distributed on either a "Buy/Try" or "Try/Buy" basis, Try/Buy being preferred such that the
user is afforded an opportunity to use the new program feature for a period of time before committing to buy the additional program
module. The menu structure of the program may also be dynamically updated to include menu items relating to capabilities developed

g after distribution of the core program. Program modules implementing these capabilities may be downloaded and purchased in the
same manner.

10

15

20

25

WO 03/044662 PCT/US01/42947

INCREMENTALLY INCREASING OR DECREASING THE AVAILABLE FUNCTIONALITIES OF A COMPU
TER PROGRAM

BACKGROUND OF THE INVENTION

Field of the Invention .

The present invention relates to software distribution and particularly to
electronic software distribution (ESD).
State of the Art :

Application software has become increasingly sophisticated and
feature-laden. Many application programs are now aptly described by the
proverbial 80/20 rule—80% of program usage is confined to 20% of the program
features; the remaining 80% of program features account for only about 20% of
program use. Custom installation capabilities have been developed in view of this
phenomenon. That is, the user may choose to install only a subset of the program
that the user expects to actually use, saving disk space on the user’s machine.
Nevertheless, the user is generally required to purchase the entire application
program at one time. To draw an analogy, the usér is required to purchase an
entire seven-course meal when all the user may really have wanted is a good
dessert.

As electronic software distribution becomes increasingly prevalent, the
largely monolithic nature of existing software becomes an increasingly greater
inconvenience. Large programs take a long time to download, and long downloads
are easily interrupted, causing them to fail. Even where multiple partial downloads
are possible, the user is noticeably inconvenienced.

The monolithic nature of existing software programs also makes upgrade

problematic. Upgrade typically requires a significant investment and entails

10

15

20

25

WO 03/044662 PCT/US01/42947

2-

significant effort and inconvenience. Again, the transfer of a large binary image is
required. ‘

On the software publisher’s side of the equation, large, monolithic,
expensive software programs limit software publisher’s sales strategies and market

penetration. Distribution costs remain unnecessarily high.

SUMMARY OF THE INVENTION

The present invention, generally speaking, allows for incremental
distribution of a computer pfogram through a two-way autorﬁafed exchange of
information between a user’s machine and a server machine via a wide area
computer network, e.g., the Internet. The user initially purchases the core
program. The cofe program may be distributed electronically. The menu structure
of the core program may include menu items relating to capabilities that are not
part of the core program. When the user selects menu items not directly supported
by the core program, a dialog is displayed asking the user whether the user wishes
to dbwnload a program module corresponding to the selected menu item, either
immediately or in the background at the next available opportunity. The program
module may be distributed on either a “Buy/Try” or “Try/Buy” basis, Try/Buy
being preferred such that the user is afforded an opportunity to use the new
program feature for a period of time before committing to buy the additional
program module. The menu structure of the program may also be dynamically
updated ,to‘ include menu items relating to capabilities developed after distribution
of the core program. Program modules implementing these capabilities may be
downloaded and purchased in the same manner.

The functionality of a program can not only be increased but might also be
decreased incrementally. In particular, a software publisher may be afforded the
ability to remotely control the availability of one or more features of an

application. Enablement/disablement is achieved by intercepting key operating

10

15

20

25

WO 03/044662 PCT/US01/42947

3-

system messages and only permitting authorized activities to complete within the
target application. No source code changes are required. Furthermore, the Internet
may be used for remote control of the application.

The foregoing capabilities may be implemented by a software agent
installed on the user’s machine. The agent may be distributed and installed
together with the core Aprogram, for example. Except as the user may direct,
communication between the agent and the server is optimized to be unobtrusive or
transparent, using spare bandwidth of intermittent Internet connections, for
example. The agent is software non-specific and may be instructed to operate with
respect to any arbitrary software program, and may further be instructed at various
times to operate with respect to various different software programs, including

multiple different software programs on a single machine.

BRIEF DESCRIPTION OF THE DRAWING
The present invention may be further understood from the following
description in conjunction with the appended drawing. In the drawing:

Figure 1 is a generalized block diagram of a system with which the present
invention may be used;

Figure 2 is a more detailed block diagram of the agent of Figure 1;

Figure 3 is a diagram illustrating a distributed server architecture that may
be used in the system;

Figure 4 is an illustration of a screen display in which the time and place of
message delivery is controlled;

Figure 5 is a flowchart showing a general sequence of execution events;

Figure 6 is an illustration of a screen display showing an example
pull-down menu;

Figure 7 is an illustration of a screen display showing the pull-down menu
of Figure 6 modified to disable a menu item;

10

15

20

25

WO 03/044662 PCT/US01/42947

A4-

Figure 8 is an illustration of a screen display showing an Enhanced Feature
dialog displayed upon selection of an added menu item within the
" pull-down menu of Figure 6;

Figure 9 is an illustration of a screen display showing another example
pull-down menu; ,

Figure 10 is an illustration of a screen display showing the pull-down menu
of Figure 9 modified to add menu items.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A persistent client architecture that may be used to implement incremental
software distribution will first be described, followed by a description of the
application of the persistent client architecture to incremental software distribution.

Referring now to Figure 1, the general architecture of the present system
will be described. A user machine 101 is assumed to include a run-time
environment 103, provided by an operating system, a Web browser or the like,
and to be running one or I;lore computer programs 105. The computer programs
may be software applications, system software or embedded computer programs.
Individualized, interactive program execution flow is made possible by equipping
the user machine with a persistent client, or persistent agent 107, that engages in
two-way communication with a server 109. The agent may be installed
concurrently with an application, may be pfe—loaded on the user’s machine, may
be separately installed from a disk or download, etc. The connection between the

agent and the server may be a virtual connection, i.e., a connection that

time—Shares a physical communications channel with other communications. In an

exemplary embodiment, the virtual connection uses spare bandwidth of Internet

connections, continuous or intermittent, to communicate with the server. The agent

10

15

20.

25

WO 03/044662 PCT/US01/42947

-5-

can and typically does interact with the application without a concurrent Internet
connection. ‘

Communications between the agent and the server are preferably two-way.
In the uplink direction, the agent communicates control, configuration and usage
information (and in some embodiments, registration information, survey
information, etc.). In the downlink direction, the server communicates
non-executable contenf, executable content, or both, including control information,
agent updates, etc. Separate servers may be responsibie for delivering |
non-executable content and executable content, as described more fully hereinafter.
Note that non-executable content may nevertheless be active, i.e., contain HTTP
links enabling the user to “click through” to relﬁted Web sites. Executable content
may relate to the application or to the agent or both. Executable content related to
the application may include updates, bug fixes, additional code modules, etc.
Executable content related to the agent allows the agent to be transparently
upgraded with new capabilities in the field, avoiding the potential problém of agent
obsolescence. .

Referring to Figure 2, a detailed block diagram of the agent is shown.

In an exemplary embodiment, the agent follows a plug-in architecture. An
agent process 201 therefore includes a resident agent 203 and various plug-ins that .
interface to the resident agent through a plug-in APIL. In an exemplary
embodiment, the plug-ins include a command processor plug-in 205, a message
plug-in 207, a survey plug-in 209, an Inet plug-in 211 that handles virtual
connections to the Internet, and a hook plug-in 213. The message plug-in, survey
plug-in, and possibly other plug-ins are capable of taking actions within the
process and User Interface (UI) space of the client applications. Other plug-ins
may be included with the agent or added to the agent by download. If a plug-in

needs the assistance of another plug-in, the agent will pass parameters

10

15

20

25

WO 03/044662

PCT/US01/42947

-6-

transparently to the target plug-in. Persistent storage 215 is provided for the

plug-ins as well as for the resident agent, e.g., within the registry file system.

The modularity resulting from plug—in- architecture’ of the agent is important

. from the standpoint of allowing for user-transparent operation. The core agent and

the plug-ins are all small modules that are easily downloadable. The time needed

to download a module is typically only a few seconds.

Core tasks of the agent include the following:

1.
2.

Manage plug-ins and inter-plug-in communication.

Download contént (command files) and determine an appropriate
command interpreter for handling the command files. Retrieve the
command interpreter plug-in from the server and invoke it with the
downloaded command file.

Maintain state (e.g., the current command file) to survive system
crashes and restarts. The operating system registry may be used for
persistent storage of state information including the configurations
of the plug-ins, the status of events and the registered client
applications.

Monitor the system Internet connection and schedule uploads and
downloads.

Track target applications and determine their‘usage. From this
information and the command file data, schedule actions to be taken
in the target applications user interface (UI) space through the
plug-in interface.

Change its level and type of activity, including becoming inactive in

response to a server.

The agent is capable of interacting with software applications in all respects

without modification of the application itself. In particular, a small system hook

10

15

20

25

WO 03/044662 PCT/US01/42947

-

217 (e.g., a linkable code module) is inserted into the message processing loop.
Usiﬁg data provided by the agent, the system hook determines if any relevant
actions are happening within a monitored application and if sb, passes this
information off asynchronously to the hook plug-in 213. The system hook is
designed to not degrade the user’s system performance or application performance.
More particularly, in an exemplary embodiment, the agent when it first launches
loads the hook plug-in 213, which starts execution of a separate thread. This
thread interacts with the system hook 217 and is responsible for selecting messages
of interest. The separate thread ensures that processing of the messages of the
client application are not noticeably slowed down. Note that, to prevent recﬁrsibn
in the message processing, the system hook ignores any messages related to the
agent itself.

The Inet plug-in 211 is responsible fof handling all Internet traffic. In an
exemplary embodiment, it supports various types of Internet transactions,
including registering an agent with the server and obtaining a user ID, retrieving a
command file using the user ID, uploading data to the server, and downloading
resources from the server. Data may be exchanged using POST and GET
commands, for example, ‘as in the HTTP1.1 or higher protocol. The. Inet plug-in is
designed to gracefully fail if any transaction is not completed across the Internet.

The command processor plug-in 205 is responsible for converting the
command file into tangible actions. For example, it scans the command file and
schedules all resource downloads required by the command file, expands any
macros, and generates a clean version of the command file. It then processes the
command file, merges it with existing command files, removes all completed
events from the command file, and schedules all events and actions to be taken by.
the agent. Finally, it marks the command file as active in persistent storage and
uploads a command line status update that allows the server to track the execution

of events in the client application.

10

15

20

25

WO 03/044662 PCT/US01/42947

-8-

An agent control panel applet 219 may be provided to enable user
interaction with the agent to control prospective operation of the agent, although
typically the user will not have occasion to use the control panel. For purposes of
the present application, the agent control panel applet is assumed to be inactive.

In an exemplary embodiment, the resident agent includes a
scheduler/manager 221, a remote dialup monitor 223, and a command file
pre-processor 225. The resident agent also includes a client map 227, an event
map 229 and a plug-in map 231. The resident agent is responsible for dynamically
maintaining the configuration and status of active plug-ins, the registered client
applications and the events working on the client applications. A command queue
contains actual evenf information and is processed upon each agent start. In an
exemplary embodiment, the agent. is started by a machine start table within the
registry of the operating system.

The scheduler/manager 221 is responsible for establishing periodic Internet
connections with the server, through the Inet plug-in 211. If a connection becomes
available, each client object is allowed bandwidth to service the client’s needs.
Subsequently, all pending POST operations are processed. The scheduler/manager
can be invoked either via an event driven method, in the case of dialup Internet
access, or at periodic intervals in thé case of direct (or proxied) LAN-based
Internet access. In the case of dialup access, different dialup access methods may
be used depending on the software configuration of the user machine. The remote
dialup monitor 223 determines which dialup access method is used and
establishment of an Internet connection is detected accordingly.

The client map 227, event map 229 and plug-in map 231 together operate

~ to establish “client channels” though which interaction between the clients and the

server occurs. The client map consists of one or more client objects. At a
minimum, a privileged client object is present that is allowed to add clients to and

remove agents from the client map and to add agents to and remove agents from

10

15

20

25

WO 03/044662

PCT/US01/42947

9.

the plug-in map. All other client channels can only be used to schedule events and
direct the agent to download content from a server. A client object within the
client map has a corresponding event object within the event map and a.
corresponding plug-in object within the plug-in map. The event map in
combination with the client map causes user interactions in the client applications
UI space.

_ Note that preferred support for copies of applications already in the field
can be added simply by causing the agent to download client objects for those
applications. A client object (or “affinity module”) contains information tﬁat
allows the system hook to recognize events from a particular application.

Referring agéin to Figure 1, the agent 107 checks in with the server 109
when a check-in interval for the application has elapsed. The agenf may receive
back a command file from the server, which the agent then interprets. The
interpretation of the command file may cause the agent to fetch resources from the
server and/or place information back onto it. The agent may also be instructed to
check-in for another command file. The privileged client is also considered an
application for the agent. Therefore the agent checks in with the appropriate server
on a check-in interval separate from the check-in intervals of other applications.
Alsb, an application’s command file may cause the privileged client to check in, or .
vice versa.

When the agent 107 has acquired the resources and commands from the
server 109 to actually do some work, it can be instructed to immediately display
appropriate messages to the user, or (more commonly) to wait untii the target
application is running, and work in the context of the application. The agent
converts system event data into tangible actions events for the attached plug-ins,
with messages appearing to the user as coming from the vendor, within the
application’s screen window and only while the application is running. Referring

again to Figure 2, a typical sequence of events is as follows:

10

15

20

25

WO 03/044662

PCT/US01/42947

-10-

The system hook 217 determines that a new application has
launched or obtained the user’s focus.

The resident agent 203 queries its client objects to see if the
application is a client. If it is not a client, the agent remains
dormant.

A valid client with user input will cause the resident agent 203 to
instruct the sysfem hook 217 to start detailed monitoring of the
application and route selected application messages through the
hook plug-in 213.

The hook plug-in 213 will reflect the message asynchronously to the
resident agent 203, which will catalog the events under the current
user’s name.

The resident agent 203 queries its client/event map 227, 229 to look
for a match.

If a match exists, the event is executed, which could include
invoking a plug-in to undertake action in the application’s UI space.
If visible content is shown in the application’s UT space, the client
application is temporarily disabled and cannot receive user focus.- - -
If any uploadable content is generated during this event, it is passed -
to the Inet plug-in 211, which will either send it or schedule it to be
sent the next time bandwidth is a{Iailable.

After completion of the event, the user focus is set back to the client
application. |

The agent returns to Step 4 above until the client application loses
focus. When the client application loses focus, the agent transfers
any client application-related data to persistent storage, at which

point the agent reverts to Step 1 above.

10

15

20

25

WO 03/044662 PCT/US01/42947

-11-

If the agent 107 were to somehow be disabled and hence unable to intercept
UI messages, then the user would be able to access functionality intended to be
disabled and would be unable to access added functionality. To ensure that the
agent 107 remains operational during the time that a target program is run, the
program can be “injected” with or otherwise have added to it a code stub in a
manner described, for example, in the previously-referenced U.S. patent
application. A call is made by the code stub from within the injected software
program to the agent to verify that the agent is in fact operation before the user is

.allowed to begin using the software program or before all of the functionality of
the application will be unlocked and made available to the end user.

Various alternatives allow for such c'ode' injection to be performed. In one
alternative, the application components are injected at the time that the final
application installer is built (“early binding”). In accordance with another
alternative, the application installer is combined with the agent installer which,
during installation on the end user machine, will inject code into the appropriate
application modules to ensure that the agent is running.

Having described the structure and function of the agent, the server will
now be described.

Referring once again to Figure 1, the essential job of the server 109 is the
delivery of an appropriate command file to particular agent. The command files in
the agent determine the action that the agent is going to take—which of the various
kinds of activities it will carry out, at what time, with respect to what user
operation, etc. The server maintains a record for every single user of an
application. When the agent working for one of its user’s connects to the server, it
consults a table of rules that determines which, if any, of the potential command
files that the server has for that application are appropriate for that agent. Those
rules are predicates that are based on all the data in a database 111 relative to that

user.

10

15

20

25

WO 03/044662 PCT/US01/42947

-12-

An example of a rule might be “If installation of this application took place
60 or more days ago, send Command File A,” which causes the ageﬁt to perform
some action, “and if installation took place less than 60 days ago, send Command
File B,” which takes some other action. The two actions would differ with respect
to the degree of experience that particular user has with the program. For
example, in the case where an upgrade has become available, a publisher may
choose to send one upgrade message to experienced users, more appropriate to
their experience level, and another upgrade message to less experienced users,
more appropriate to their experience level. The determination of experience level
may be based, for example, on the time elapsed since installation.

The server uses a rules engine 111 to apply rules that have been created in
a table sequentially to determine which if any of those rules are true for a
particular agent that is querying the server at a particular point in time. Upon
discovering that one or more of those rules “fires,” i.e. is true, then the
corresponding one or more command files are downloaded to the agent. The
publisher therefore enjoys very “fine-grain” control of the activities of an agent
based on the attributes of that agent. Very sharp targeting results in which
particular information is sent to particular agent based its characteristics and its
history.

As may be appreciated from the foregoing description, the server has two
different types of responsibilities. One function of the server is to maintain the
agent. Operations to maintain the agent occur through the control channel
described previously. Another function of the server is to provide customer
support for specific client applications. These two distinct functions can be
combined on one physical server machine or on multiple physical server machines.
More preferably, these two functions are separated, with agent maintenance being
handled by a technology provider server and customer support being handled by a

collection of software vendor servers. In general, executable content is provided

10

15

20

25

WO 03/044662 PCT/US01/42947

-13-

from the technology provider server 301 across the control channel and
non-executable content is exéhanged with software vendor servers 303a - 303n
across other channels as shown in Figure 3. In this manner, executable; content
may be assured to be virus-free. Also, private vendor-customer information may
be passed directly to the vendor without being passed through a third party. For
tracing and billing purposes, the privileged client periodically connects to the
technology provider server and informs it of activities of the agent on behalf of
various client applications.

Identifiers are allocated to support the foregoing separation of functions. In
particular, the agent when it is first activated seeks a connection opportunity and,
when a connection is established, obtains an agent ID 305 from the technology

provider server through the control channel. At the same time or at a later time,

- the agent receives from the server a command file instructing the agent to look for

a particular application. If that application is found installed on the user’s system,
a client ID 307 is obtained for that copy of the application. Only the technology
provider server need be aware of the correspondence between agent IDs and client
IDs. Transactions between the agent and the vendor server use only the client ID.

At a vendor server, a Database Management System (DBMS, 309a - 309n)
maintains a per-client-copy database of information uploaded from various
instances of an application. In an exemplary embodiment, the agent collects
numerical counts for each menu bar item in a client application. The vendor may
determine from the database how often the file:print command has been used, for
example. The DBMS includes a rules engine. Business rules are established
governing the actions to be taken in relation to a particular copy of the application
depending upon the data stored for that application. When action is to be taken, a
command file is prepared and transferred to the agent.

Note that the system has the ability to precisely targét the moment a

message dialog appears in a client application. The vendor can pick an operation

10

15

20

25

WO 03/044662 PCT/US01/42947

-14-

from among a menu hierarchy of the Vapplication, a time delay, and a number of
times to repeat the operation until it is completed with a click-through or other
affirmative response. The system also has the ability to determine who among the
vendors installed base will see a particular message. Criteria can be based on
demographics, responses to past offers, responses to past surveys, usage
informétion, time since the application was installed, evenirandom selection. Any
information in the database can be used to determine who gets a particular
message. For example, a particular rule might send all users a message before or
after use of a particular feature after that feature I}as been used a specified number
of times (Figure 4).

Preferably, a Web-based administration tool is provided to allow business

" rules to be set up and changed through a familiar Web-form interface.

Application of the persistent client to incremental software distribution will
now be described. In general, the foregoing agent technology lends itself to
working with legacy applications, which have no native mechanism for reducing
or apportioning their respective feature sets, nor any mechanism for increasing
their featu;e sets.

The described agent technology is able to attach itself into the main window
of the target application. This attachment allows direct access to all of the window -
objects that the target application generates for constructing the user interface.
Some of these elements are the actual menu bar and menu items. These window
objects can be dynamically updated by code added at runtime to the target
applicatibn to accomplish: 1) removal of a menu item constructed by the target
application; 2) addition of a menu item and installation of a command handler to
add functionality; 3) disabling a menu item, by graying it out; 4) rerouting a menu
command handler such that the attached code gets the first chance to handle the

user command. The latter feature allows for display to the user of a message

10

15

20

25

WO 03/044662 PCT/US01/42947

-15-

informing the user that the feature is for sale. A combination of these capabilities
allows the agent to tailor a legacy application for incremental deployment.

Many menu commands are accessible either through a mouse click or a
keyboard shortcut. In either event, the OS will formulate the correct windows
meséage to send the menu object to invoke a command. This higher-level message
is intercepted to handle the menu object interaction in the manner specified for the
particular application.

To reduce the feature set of an application, the agent can either: 1) Remove
the menu item from the application at runtime, to make the feature unavailable to
the user; or 2) Intercept the user interaction before it reaches the application and
substitute a dialog alertiné the user of what steps to take to acquire the
functionality. The steps could allow for a Try/Buy scenario. In order to positively
identify messages to be intercepted, it may be necessary to for the technology
provided run a test setup in which a copy of the target application is run. A test
person performs each UI action to be disabled while a separate computer program
(which may be the agent previously described) monitors and records the
corresponding messages.

To increase the feature set of an application, the agent performs the
following steps: 1) Insert a menu item into the application at runtime, to make the
feature available to the user; and 2) Handle the user interaction with this new menu
item and invoke the acquired functionality.

Any operating system (OS) that provides a Graphical User Interface (GUI)

handles the keyboard and pointing device input from the user and converts them
into a format (messages) suitable for processing by applications using the GUI
services. The agent can insert itself between the GUI and the application, thereby
monitoring and controlling the user input received by the application. In addition,
the agent can generate additional GUI messages to control the UI of the

application. As an example, when the OS detects that the user has clicked a mouse

10

15

20

25

WO 03/044662 PCT/US01/42947

-16-

button, it will determine which application has the user focus and should receive a
message describing this event. Once this message is received by the application, it
can execute some feature. Being able to monitor and control the flow of messages
between the OS and the application enables the agent to alter the applicétion
behavior at runtime. Further details concerning monitoring and control of the flow
of messages between the OS and the application may be found in U.S. Application
Serial No. 09/138,403 filed August 24, 1998 (Attys. Dkt. No. 031994-026),
incorporated herein by reference. A

The application Ul is constructed by issuing requests to the OS for
generating and displaying UI elements on the end user’s monitor. Examples are a
window with a title bar, a button, an edit text box, and so forth. By issuing
requests to the OS, the agent can add or remove UI elements from the
application’s UL In the case of the WindowsTM operating system, WIN32 API
calls are used for this purpose.

More particularly, during execution, the application constructs memory
objects that represent the various objects rendered on the screen. These objects are
called windows (window objects), well-known in the art. All of the Ul elements
are managed by the.OS on behalf of the program and become part of the desktop.
As all of these objects are part of the pﬁblic desktop, any other application, for
example the agent previously described, can query the system for what is on the
desktop. Once an object of interest is found, it can be injected with a small hook
code module which will execute in the context of the target application. Once part
of the application, it can perform various functions, e.g., adding/removing Ul
elements (menus), filtering the messages received by the OS, etc.

As an example, an applications menu structure can be altered at runtime by
sending the appropriate messages. Once menu items have been added to an
application to extend its feature set, the user is able to select them. If the user

selects the item, the persistent client can intercept the corresponding message and

10

15

20

25

WO 03/044662 PCT/US01/42947

-17-

execute the appropriate code. This code can be part of the original application or
new functionality that become available after the application had already been
released. In this case, the persistent client can display a dialog asking the user if
she or he wants to download the new feature corresponding to the new menu item,
either immediately or in the background.

Referring more particularly to Figure 5, an execution example is shown
leading to the user being asked to add a new feature to a product. Once the OS has
handled a user action, in this case the selection of a menu item, it formats a |
messagé describing this event and would normally send it to the application. In the
present instance, the message is intercepted by the agent and compared against a
list of dynamically added menu items (501). If the message did not originate from
a dynamically added menu item, the message is passed to the application and
processed as usual (503). If the message did originate from a dynamically added
menu item, the persistent client will check to see if the user has already
downloaded (or unlocked) the associated feature code (505). If the feature code is
in place, the client will execute the code (507). If the feature has not been
downloaded yet, a dialog is presented to the user informing the user of the feature
availability and steps to acquire it (509).

The program module may be distributed on either a “Buy/Try” or
“Try/Buy” basis, Try/Buy being preferred such that the user is afforded an
opportunity to use the new program feature for a period of time before committing
to buy the additional program module. Try/Buy self-wrapping of software
programs is described in U.S. Patent Application Serial No. 08/921,394 entitled
MULTI-TIER ELECTRONIC SOFTWARE DISTRIBUTION, filed August 29,
1997, incorporated herein by reference. The menu structure of the program may
also be dynamically updated to include menu items relating to capabilities
developed after distribution of the core program. Progfam modules implementing

these capabilities may be downloaded and purchased in the same manner.

10

15

20

25

WO 03/044662 PCT/US01/42947

-18-

Referring more particularly to Figure 6, an example is shown of a native
target application’s SEARCH menu. Using the techniques described, the agent is
able to disable a menu item in the target application, as shown in Figure 7. The
“Find Next F3” item has been dynamically disabled, preventing the user from
selecting this menu item. Alternatively, the menu item selection can be rerouted
and handled by the agent.

Instead of executing the corresponding function, a dialog can be shown to
allow the user to acquire the requested feature, as shown in Figure 8. If the user
decides not to acquire the feature, it can be disabled as in Figure 7. |

Steps performed by the agent to allow it to modify the attributes of the
menu items of the target application include identifying the target applicatién,
injecting a small hook into the message processing loop, and retrieving a handle to
the target application frame. A code example illustrating this processing is
provided as AAppendix A.

Special care needs to be taken to-ensure that a disabled menu item is no
longer accessible using short cuts. The injected code in the message processing
loop can selectively suppress windows messages passed from the operating system
to the target application. This mechanism ensures that disabled items are no longer
available to the target application. In addition, this mechanism allows the agent to
redirect messages intended for the target application to itself and handle the
message, €.g., by displaying to the user that the particular item is disabled and can
be purchased as a separate module. An example procedure for filtering messages
in this manner is provided as Appendix B. |

The agent also provides for the dynamic addition of menu items at runtime.
For example, the native target application’s FILE menu may appear as shown in
Figure 9. An eiample of a corresponding runtime-modified menu is shown in
Figure 10, in which two additional items have been added to allow the user to

either email or fax the document to a recipient. Steps performed by the agent to

10

WO 03/044662

-19-

allow it to modify the attributes of the menu items of the target application include
identifying the target application, injecting a small hook into the message
processing loop, and retrieving a handle to the target application frame. A code
example illustrating this processing for the addition of menu items is provided as
Appendix C.

When the user selects a new menu item, the added command is handled by
the injected code which monitors the windows messages received by the target
application frame. When a command from a dynamically added menu item is
selected the corresponding code can either execute inside the context of the target
application or out of process. In the former instance, the injected code handles the
message: HandleInProcessMenuCommand (...). In the latter instance, the message
is forwarded to the agent using PostMessage (...). A code example illustrating

these steps is provided as Appendix D.

PCT/US01/42947

WO 03/044662 PCT/US01/42947

20

APPENDIX A

//Dynamically éhange menu item attributes
/(/IWnd pClientWnd;
if(pClientWnd. Attach(ClientWnd))
{ CMenu* pClientTopMenu = pClientWnd.GetMenu();
if(pClientTopMenu) //Frame Menu
{ CMenu*pClientHelpMenu = pClientTopMenu->GetSubMenu(2);
if(pClientFileMenu) {/Search menu
if(Disable)

//disable menu item
V/J

pClientHelpMenu->EnableMenultem (m_TargetMenuCmd, MF_DISABLED | MF_BYCOMMAND);

}
else
/lenable menu item
" ’ - :
pClientHelpMenu->EnableMenultem (mn_TargetMenuCmd, MF_ ENABLED | MF_BYCOMMAND);
} .
}
}
pClientWnd.Detach();

WO 03/044662 PCT/US01/42947

21

APPENDIX B

LRESULT CALLBACK FilterMsgProc (INT hc, WPARAM wParam, LPARAM lParam)

{

static

WORD CurrentMehqud = 0;
PMSG pmsg = (PMSG)lParam;

if (hc == MSGF_MENU)

{

}

if ((pmsg->message == WM_MENUSELECT) && (pmsg->1lParam != 0x00))

{
if (! (HIWORD (pmsg->wParam) & MF_POPUP) && (LOWORD (pmsg->wParam)))

{
CurrentMenuCmd = LOWORD (pmsg->wParam) ;
}
else
{
CurrentMenuCmd = 0;
}
}
else if (CurrentMenuCmd && ((pmsg->message == WM_LBUTTONDOWN) |l (pmsg-
>message == WM_LBUTTONUP)))
f .
if (CurrentMenuCmd == m_TargetMenuCmd.cmd)
t .
//First close the Menu in Question and than put up a dialc
//
MessageBox (pmsg->hwnd, “"Has disabled this Cursor accessed
Feature", "eBoomerang", MB_ICONSTOP | MB_CK);
return 1;
}
}
else if((pmsg->message == WM_CHAR) || (WM_SYSCHAR == pmsg->message))
; ;
if (pmsg->wParam == m_TargetMenuCmd.kbd)
{ . .
//First close the Menu in Question and than put up a dialc
// .
MessageBox (pmsg->hwnd, "Has disabled this Accelerator
Feature®, "eBoomerang", MB_ICONSTOP | MB_OK);
return 1;
} .
L
else if(CurrentMenuCmd && (pmsg->message == WM_KEYDOWN) && (pmsg->wPal
== 0x000D))
{
?f(CurrentMenqud == m_TargetMenuCmd.cmd)
;;First close the Menu in Question and than put up a dialc
MessageBox (pmsg->hwnd, "Has disabled this KeyBoard accesse
Feature", "eBoomerang", MB_ICONSTOP | MB_OK);
return 1;
} .
}

return 0;

WO 03/044662 PCT/US01/42947

22

APPENDIX C

//Dynamically add or remove menu items
- :
CwWwnd pClientWnd;

if(pClientWnd. Attach(ClientWnd))
CMenu* pClientTopMenu = pClientWnd.GetMenu(;
if(i)ClientTopMenu) /[Frame Menu
{ CMenu*pClientHelﬁMenu = pCIientTopMen.u->GetSubMenu(O);
if(pClientFileMenu) /[File menu

{
if(Add)
{ ,

//Mnsert at the almost ‘Exit’ position

/"

pClientHelpMenu->InsertMenu (m_ExitMenu, MF_BYCOMMAND, m_ExtramenuCmd[0],
m_ExtraMenuTxt[0]); ‘ ’
pClientHelpMenu->InsertMenu (, m_ExtramenuCmd[0], MF_BYCOMMAND, m_ExtramenuCmd{1],
m_ExtraMenuTxt[1]); '
pClientHelpMenu->InsertMenu (mn_ExtramenuPos[0], MF_BYPOSITION, MF_SEPARATOR);

pClientHelpMenu->InsertMenu (m. ExtramenuPos[1], MF_BYPOSITION, MF_SEPARATOR);

}
else
{
/[Remove the menu
i
pCl?entHelpMenu-?RemoveMenu(m_Extramenqud[O], MF_BYCOMMAND);
pleQntHelpMenu->RemoveMenu(m_Einanwnqud[1], MF_BYCOMMAND);
pleentHelpMenu—>RemoveMenu(m_ExtramenuPos[O], MF_BYPOSITION);
pClientHelpMenu->RemoveMenu(m_ExtramenuPos[1], MF_BYPOSITION);
}
}
}
pClientWnd.Detach();

}

WO 03/044662 PCT/US01/42947

23

APPENDIX D

BOOL WINAPI HookProc (HWND hwnd, UINT uiMessage, WPARAM wParam, LPARAM lParam)
{

static UINT Lastmessage = WM_HOOKCLIENTDEACTIVATE;

static HWND LasthWnd = NULL;

static HWND Owner = NULL;

static DWORD LastPid 0;

static DWORD Command 0;

fnu

switch(uiMessage)
{
case WM.FORWARD UNWINDING_MSG:
hhkGetMessage = (HHOOK) lParam;
break; :

case WM_FORWARD_UNWINDING_WND:
hhkCallwndProc = (HHOOK) lParam;
break;

case WM_COMMAND:

if ((ghwndInjectRelay == NULL) || !IsWindow(ghwndInjectRelay))
(/
//Check if eBoomerang Client is still rumning
FindInjectRelayWindow() ;

}

if (!hhkGetMessage && (ghwndInjectRelay != NULL))

{
//Ask for an upload of the getMessage hook members
//

PostMessage (ghwndInjectRelay, WM_FORWARD_UNWINDING_MSG, (WPARAM) hwnd,
(LPARAM) GetCurrentProcessId()):

}

if (!hhkCallWndProc && (ghwndInjectRelay != NULL))

: el |
//Ask for an upload of the callWndProc hook members
/7

PostMessage (ghwndInjectRelay, WM_FORWARD_UNWINDING_WND, (WPARAM) hwnd,
(LPARAM) GetCurrentProcessld());

WO 03/044662 PCT/US01/42947

24

APPENDIX D (cont.)

}

if ((ghwndInjectRelay != NULL) && (hwnd != ghwndInjectRelay))
if (HIWORD (wParam) <=. 1) //ménu or accelerator
{

for(int i=0; i< m_maxcmds; i++)

//Check for a dynamically added command

// .
if ((m_ExtramenuCmd[i] == LOWORD (wParam))
{ .
if (INPROC)
HandleInProcessMenuCommand (r_ExtramenuCmd[i]) ;
else .
PostMessage (ghwndInjectRelay, WM_HOOKCLIENTCOMMAND,
(WPARAM) uiMessage, (LPARAM) hwnd) ;
} .
}
1
‘ return TRUE;
}

}

return FALSE;

WO 03/044662 PCT/US01/42947

25-

It will be appreciated by those of ordinary skill in the art that the invention
can be embodied in other specific forms without departing from the spirit or
essential character thereof. The presently disclosed embodiments are therefore
considered in all respects to be illustrative and not restrictive. The scope of the
invention is indicated by the appended claims rather than the foregoing description,
and all changes which come within the meaning and range of equivalents thereof

are intended to be embraced therein.

WO 03/044662 PCT/US01/42947

26-

What is claimed is:

1. A method of software distribution, comprising the steps of:
installing on an end user machine a program that displays command

menus from which the user selects menu items;

5 instructing a supervisory égent as to which menu items are to be
ehabled and which menu items are to be disabled; -
' when a menu item is selected, the supervisory agent intercepting a

corresponding message to the application; and

the supervisory agent passing the message along to the application

10 only if the menu item is enabled.

2. The method of Claim 1, further comprising taking steps to ensure
that disabled functionality cannot be restored by disabling the supervisory agent.

3. The method of Claim 1, further comprising blocking substantially
all code paths that would invoke disabled functionality.

15 4, The method of Claim 1, comprising the further step of'changing :
instructions of the supervisory agent as to which menu items are to be enabled and .

which menu items are to be disabled.

5. The method of Claim 4, wherein the instructions are changed from

a remote computer.

20 6. The method of Claim 5, wherein the instructions are changed over

the Internet.

WO 03/044662 PCT/US01/42947

1/6
101
USER 10
MACHINE
DIGITAL PRODUCT(S)/
APPLICATION(S)
™\
~ 105

Q 3 /103 /-107

RUN-TIME [7 PERSISTANT |

ENVIRONMENT _»| AGENT
\ ~ 109

\’ SERVER
~ 111
DBMS
F I G- — 1 RULES
ENGINE
113
OS Ul message
received
501 505
Feature
available
/509
907 Ask user if she/
Send message E t he wants to
to application X?C”,[e download the new
program New ieature feature, and execute

the request.

FIG._5

SUBSTITUTE SHEET (RULE 26)

PCT/US01/42947

WO 03/044662

2/6

! "
T~ @ : 182~ mNN !
! 10S8S8201d8.d !
“ m depy c_ms_n_%% SIAPUBURLOD !
_ 1
i — ez
, m depy Em>mMAI»IV Jonuopy dnjeig ejowey | (e—e |
1
m _ "
_ Jobeuep ayoen B !
" m dew E&WAL’V puy ubnid ‘4einpayos | ™ m
_ 22— "
weisAg a|i4 m 22— By UepISoL] N "
Ansibey | ! Y O
! 1
P KRN [N NIN PR NN P 1
P — Idv wbnid |
afel0]g uslsIsiad J A H « “
! 1
_ uibn|d '
. uibn|d uibn|d uibnjd : '
_ : 10ss9001d
"] Aening abessal PUBLILIOD !
ddy jeued | oot — — — 1 — "
19| 00
joauon ueby | ! >l00H 1L 602 202 soz m
1
_ $5900.1d uaby !
612~ T 2t DU N N SR e |
\ Y FSN
c I.GNL }OOH - suofeolddy JueliD
1zl weshs [

SUBSTITUTE SHEET (RULE 26)

PCT/US01/42947

WO 03/044662

3/6

alweld| e,

(uonrew.ojuy
a1eAlld)
U JeAIeg Iopusp

:%mw *

)

—~

ugoe _/

awen| |e___

(uorewiIOU|
aleAlld)
I loAI8S JIOpUBA

B60¢ m

\.NQM

ai wend AI_ :

ee0e .\

aj weby

gog /]
\) N
['l\

(Bunng ‘Buroel])
loAleg 1spinold
ABojouyoal

€ Old

|

uoneoiddy
/onpoid
sl

et

SUBSTITUTE SHEET (RULE 26)

PCT/US01/42947

WO 03/044662

4/6

4 E |

XICO] s!13unoooy]

] O

y0'2/€'0z oouejeg buipug v0'Z6L'LL 9ouejeg uang)

SIS geM HSIA

loises usns Buiked |[Ig axewl 0} a|qejieA. SHo8Uo
Wo1SN? 1NOge 8JoW Uies| 0] 8IS gem Ino JISIA ‘ainjes} Buglm
}08y9 s, usyoIny yim aousliedxe awos pey aA,noA 1ey MON

_ ‘ 1940 934D |
=] L6/5/6 e1ed

| Buposyd
odAL aleqg
— Aiobejen)
owspy
ssalppy
J0 18pI0
ey 0} Aed

_mmo_o __ptmamm_ **suodo _ ld _

“puld || e1efeq|

X0

Bupjosy? :syo8y SlIM ==

dieH mopuipt suodey sis seinfead 1p3 ol

V.1vao - SMOpUI 10} 9 u)INY [§]

SUBSTITUTE SHEET (RULE 26)

WO 03/044662 PCT/US01/42947

5/6
/& Untitled - Notepad M [=1Ed
File Edit §earch| Help
Eind... A
l Find Next F3 :m

]

FIG._6

/& Untitled - Notepad =]
File Edit |Search| Help
Eind...
Fing Nexi F3

FIG._7

/& Untitled - Notepad [_]B]X]
File Edit §earch| Help
Find... A |
| Find Next F3 |
Notepad Enhanced Feature
This enhanced Notepad feature will enable
you to recursively search your document by

pressing the F3 key.

Would you like to purchase the feature?

[Cancel | [Buy]

FIG._8

SUBSTITUTE SHEET (RULE 26)

WO 03/044662

6/6

PCT/US01/42947

/& Untitled - Notepad

[] P

File | Edit Search Help

New
Open
Save
Save As

Page Setup...

Print

Exit

FIG._9

/& Untitled - Notepad

O]

New
Open
Save
Save As

File | Edit Search Help

| Page Setup... |

Print

Send as Email
Send as Fax

Exit

FIG._10

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REP

ORT Int«lilitional Application No

PCT/US 01/42947

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F9/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that

such documents are included in the fields searched

EPO-Internal, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Cntation of document, with indication, where appropriate, of the relevant passages

ANONYMOUS :
Version 2.0"
ALADDIN SOFTWARE DOCUMENTATION,
June 2001 (2001-06), pages
c,ix-xii,1-9,11-29,47-75,85-99,1
-233, XP002209452

Retrieved from the Internet:

"Privilege User’s Gu

doc/privilegeusersguide.zip>
‘retrieved on 2002-08-08!

page 2, line 1 —page 3, line 11;
1.1,,4.1,15.1

page 4, line 1 -page 6, line 13
page 8, line 1 -page 9, last 1in
page 12, line 1 -page 14, line 7

page 22, line 31 -page 23, line
page 47, line 1 -page 49, line 2
page

223, line 18 - Tine 22

<URL:ftp://ftp.ealaddin.com/pub/privilege/

ide - 1-6
‘Online!

01-121,219

figures
e

13
3

-/

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :
*A" document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

'P* document published prior to the international filing date but
later than the priority date claimed

e

e

0

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principie or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
_mttal[l\ts, such combination being obvious to a person skilled
inthe art.

*&" document member of the same patent family

Date of the actual completion of the international search

9 August 2002

Date of mailing of the international search report

22/08/2002

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Carciofi, A

Form PCT/ISA/210 (second sheet) {July 1992)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

Intadilitional Application No

PCT/US 01/42947

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

WO 98 58306 A (OYLER SCOTT ;GUTHRIE JOHN
(US); TECHWAVE INC (US); KRISHNAN GANAPA)
23 December 1998 (1998-12-23)

page 2, line 21 - Tine 28

page 6, line 11 - Tine 27

page 7, line 20 —page 8, line 6

page 11, Tine 16 -page 12, line 24

EP 0 778 512 A (SUN MICROSYSTEMS INC)

11 June 1997 (1997-06-11)

column 1, Tine 19 - Tine 31

column 9, Tine 39 -column 10, line 39
column 11, Tine 47 -column 13, T1ine 8

US 6 243 692 Bl (FLOYD MICHEL ET AL)
5 June 2001 (2001-06-05)

column 1, Tine 50 —column 2, line 41;
figure 4

1-6

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intalillitional Application No

PCT/US 01/42947

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9858306 A 23-12-1998 US 6073124 A 06-06-2000
AU 8150598 A 04-01-1999
WO 9858306 Al 23-12-1998

EP 0778512 A 11-06-1997 US 5708709 A 13-01-1998
EP 0778512 A2 11-06-1997
JP 9288575 A 04-11-1997

US 6243692 Bl 05-06-2001 WO 9962017 Al 02-12-1999

Fomm PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

