

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 December 2009 (10.12.2009)

(10) International Publication Number
WO 2009/147684 A2

(51) International Patent Classification:

A61K 48/00 (2006.01)

(21) International Application Number:

PCT/IL2009/000570

(22) International Filing Date:

7 June 2009 (07.06.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/131,162 6 June 2008 (06.06.2008) US

(71) Applicant (for all designated States except US): **QUARK PHARMACEUTICALS, INC.** [US/US]; 6501 Dumbar-ton Circle, Fremont, California 94555 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **ALPERT, Egvenia** [IL/IL]; 25 Kobobi street, apartment 14, 96757 Jerusalem (IL). **SPIVAK, Igor** [IL/IL]; Rabbi Yehudah Hanassi St. 8/16, 35425 Haifa (IL). **BAR-ILAN, Amir** [IL/IL]; 12 Shoshanat Hacarmel Street, 34321 Haifa (IL).

(74) Common Representative: **QUARK PHARMACEUTICALS, INC.**; Dr. Lilly Glazer, c/o QBI Enterprises Ltd., Weizmann Science Park, P.O.Box 4071, 70400 Nes Ziona (IL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))

WO 2009/147684 A2

(54) Title: COMPOSITIONS AND METHODS FOR TREATMENT OF EAR DISORDERS

(57) Abstract: The present invention relates to pharmaceutical compositions useful for topical, non-invasive delivery of an oligonucleotide to the ear and to methods for the treatment of an ear disorder, including hearing loss arising from chemical-induced ototoxicity, acoustic trauma and presbycusis; and microbial infections. The method comprises topically administering to the ear of a subject in need thereof a pharmaceutical composition comprising an inhibitory oligonucleotide, a permeability enhancer and a pharmaceutically acceptable carrier, wherein the oligonucleotide reduces or inhibits expression of a gene associated with the ear disorder in the subject.

COMPOSITIONS AND METHODS FOR TREATMENT OF EAR DISORDERS**FIELD OF THE INVENTION**

The present invention relates to otic compositions and methods for delivery of an 5 oligonucleotide compound, including siRNA, to the middle and inner ear useful in the treatment of an ear disorder, including hearing loss resulting from chemical-induced ototoxicity, acoustic trauma and presbycusis; tumors and microbial infections.

BACKGROUND OF THE INVENTION10 **The Human Ear**

The ear is comprised of three major structural components: the outer, middle, and inner ears, which function together to convert sound waves into nerve impulses that travel to the brain, where they are perceived as sound. The inner ear also helps to maintain balance.

15 The anatomy of the middle and the inner ear is well known to those of ordinary skill in the art (see, e.g., *Atlas of Sensory Organs: Functional and Clinical Analysis*, Andrs Csillag, Humana Press (2005), pages 1-82, incorporated herein by reference). In brief, the middle ear consists of the eardrum and a small air-filled chamber containing a sequence of three tiny bones known as the ossicles, which link the eardrum to the inner 20 ear.

The inner ear (labyrinth) is a complex structure consisting of the cochlea, which is the organ of hearing and the vestibular system, the organ of balance. The vestibular system consists of the saccule and the utricle, which determine position sense, and the semicircular canals, which help maintain balance.

25 The cochlea houses the organ of Corti, which consists, in part, of about 20,000 specialized sensory cells, called "inner ear hair cells" or "hair cells". These cells have small hairline projections (cilia) that extend into the cochlear fluid. Sound vibrations transmitted from the ossicles in the middle ear to the oval window in the inner ear cause the fluid and cilia to vibrate. Hair cells in different parts of the cochlea vibrate in response 30 to different sound frequencies and convert the vibrations into nerve impulses which are sent to the brain for processing and interpretation. The inner ear hair cells are surrounded

by inner ear support cells. Supporting cells underlie, at least partially surround, and physically support sensory hair cells within the inner ear. Representative examples of support cells include inner rod (pillar cells), outer rod (pillar cells), inner phalangeal cells, outer phalangeal cells (of Deiters), cells of Held, cells of Hensen, cells of Claudius, cells of Boettcher, interdental cells and auditory teeth (of Huschke).

5 The spiral ganglion is the group of nerve cells that send a representation of sound from the cochlea to the brain. The cell bodies of the spiral ganglion neurons are found in the spiral structure of the cochlea and are part of the central nervous system. Their dendrites make synaptic contact with the base of hair cells, and their axons are bundled together to 10 form the auditory portion of the eighth cranial nerve (vestibulocochlear nerve).

Hearing loss

Despite the protective effect of the acoustic reflex, loud noise can damage and destroy 15 hair cells. Irreversible hair cell death is elicited by metabolic or biochemical changes in the hair cells that involve reactive oxygen species (ROS). Exposure to certain drugs and continued exposure to loud noise, *inter alia*, cause progressive damage, eventually resulting in ringing in the ears (tinnitus) and or hearing loss.

Acquired hearing loss can be caused by several factors including exposure to harmful noise levels, exposure to ototoxic drugs such as cisplatin and aminoglycoside antibiotics and aging.

20 International Patent Publication No. WO 2008/050329 to the assignee of the present invention relates to siRNA compounds, compositions comprising same and to methods of use thereof for treating diseases and disorders related to expression of proapoptotic genes. US Ser. No. 11/ 655,610 to the assignee of the present invention relates to methods of treating hearing impairment by inhibiting a pro-apoptotic gene in general and p53 in 25 particular. International Patent Publication No. WO 2005/119251 relates to methods of treating deafness. International Patent Publication No. WO/2005/055921 relates to foam compositions for treatment of ear disorders. US Patent No. 7,087,581 relates to methods of treating diseases and disorders of the inner ear.

30 There remains a genuine need for easy to use, high compliance pharmaceutical therapies, which effect, *inter alia*, otoprotection, chemoprotection and hearing regeneration.

SUMMARY OF THE INVENTION

The present invention provides pharmaceutical compositions and methods useful in treating an ear disorder, including middle ear and inner ear disorders. The present invention overcomes certain of the limitations in the prior art by providing a non-invasive 5 method of treating an ear disorder comprising topically administering an oligonucleotide to a target gene, wherein the inhibitory oligonucleotide is formulated for topical, non-invasive application. This method is surprising in view of the size of an oligonucleotide and in view of the use of transtympanic injection for delivery of oligonucleotides heretofore. This method also overcomes the limitations associated with use of oral 10 therapeutics, which are often associated with adverse systemic side effects.

According to one aspect, the present invention provides a method of treating a subject suffering from or at risk of an ear disorder which comprises topically administering to the canal of the subject's ear a pharmaceutical composition comprising an oligonucleotide inhibitor, a permeability enhancer and a pharmaceutically acceptable excipient or 15 mixtures thereof, thereby reducing expression of a gene associated with the disorder in the ear of the subject in an amount effective to treat the subject.

In various embodiments the permeability enhancer is a polyol. In some embodiments the oligonucleotide is in admixture with a polyol. In some embodiments the polyol is selected from glycerol, propylene glycol, polyethylene glycol, sorbitol, xylitol, or maltitol. 20 According to one embodiment the polyol is glycerol. In various embodiments glycerol is present at a final concentration of about 0.1% to about 35%; about 1% to about 30%; about 5% to about 25%, preferably about 10% to about 20%. In some embodiments the final concentration of glycerol in the pharmaceutical composition is about 2.5%, 5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5% or about 30%. In one preferred 25 embodiment, the final concentration of glycerol in the pharmaceutical composition is about 10%. In some embodiments the pharmaceutical composition is brought to the subject's body temperature, which is about 35°C –38°C, prior to application to the ear.

In some embodiments, the pharmaceutical composition is applied to the ear canal when the subject's head is tilted to one side and the treated ear is facing upward. In some 30 embodiments, the pharmaceutical composition is applied to the ear using a receptacle for eardrops, for example using a dropper of for example, 10-100 microliter per drop, or a wick.

In some embodiments an ear disorder relates to chemical-induced hearing loss; for example hearing loss induced by *inter alia* cisplatin and its analogs; aminoglycoside antibiotics, quinine and its analogs; salicylate and its analogs; phosphodiesterase type 5 (PDE5) inhibitors or loop-diuretics. In some embodiments the ear disorder refers to noise-induced hearing loss. In other embodiments the ear disorder is age related hearing loss.

In various embodiments the pharmaceutical composition is formulated as eardrops, ear cream, ear ointment, ear foam or mousse. In certain preferred embodiments the pharmaceutical composition is formulated as eardrops. In some embodiments the method comprising unilateral administration of an oligonucleotide to a subject's ear.

10 In some embodiments the oligonucleotide is an inhibitory nucleic acid compound selected from the group consisting of an antisense, a siRNA, a shRNA, an aptamer, a ribozyme, a dsRNA or DNA compound. In various preferred embodiment the oligonucleotide is siRNA.

15 In another embodiment the oligonucleotide comprises a sufficient number of consecutive nucleotides having a sequence of sufficient homology to a nucleic acid sequence present within a target gene to reduce or inhibit expression of the gene in the subject. In certain embodiments the siRNA is chemically synthesized and chemically modified. The modifications comprise base modifications, sugar modifications, internucleotide linkage modifications or combinations thereof.

20 In one embodiment the method and composition for the present invention utilize a siRNA compound having the following structure:

5' (N)_x - Z 3' (antisense strand)

3' Z'-(N')_y-z" 5' (sense strand)

25 wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or an unconventional moiety;

wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

30 wherein Z and Z' may be present or absent, but if present is independently 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

wherein z" may be present or absent, but if present is a capping moiety covalently attached at the 5' terminus of (N')y;

wherein each of x and y is independently an integer between 18 and 40;

5 wherein the sequence of (N')y is substantially complementary to the sequence of (N)x; and wherein (N)x comprises an antisense sequence (N)x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In various embodiments (N)x comprises 2'-O-methyl (2'OMe) modified and unmodified 10 ribonucleotides, wherein N at the 3' terminus of (N)x is a 2'OMe modified ribonucleotide, (N)x comprises at least five alternating 2'OMe modified ribonucleotides beginning at the 3' end and at least nine 2'OMe modified ribonucleotides in total and each remaining N is an unmodified ribonucleotide and (N')y comprises at least one mirror nucleotide, or a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide 15 phosphate bond.

In additional embodiments (N)x comprises modified ribonucleotides in alternating positions wherein each N at the 5' and 3' termini are modified in their sugar residues and the middle ribonucleotide is not modified, e.g. ribonucleotide in position 10 in a 19-mer strand. In various embodiments in (N)x and (N')y the nucleotides alternate between 20 2'OMe sugar modified ribonucleotides and unmodified ribonucleotides. In some embodiments the ribonucleotide located at the middle position of (N)x is unmodified and the ribonucleotide located at the middle position of (N')y is 2'OMe sugar modified.

For all the structures, in some embodiments the covalent bond joining each consecutive N or N' is a phosphodiester bond. In various embodiments all the covalent bonds are 25 phosphodiester bonds.

In various embodiments x = y and each of x and y is 19, 20, 21, 22 or 23. In some embodiments x = y = 21. In other embodiments x = y = 19.

In one embodiment of the above structure, (N')y comprises at least one mirror nucleotide at one terminus or both termini or in a penultimate position. In various embodiments 30 (N')y comprises one mirror nucleotide at the 3' penultimate position. In one preferred embodiment x=y=19 and (N')y comprises an L-deoxyribonucleotide at position 18. In one embodiment, a siRNA compound of the invention inhibits the expression of a target

gene selected from a viral gene, a bacterial gene and a mammalian gene associated with a disorder in the inner ear of a subject. In some embodiments the target gene is a mammalian gene wherein the gi number of the mRNA of the target gene is set forth in Table 1.

5 In certain embodiments the target gene is selected from one or more of the group consisting of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4 (REDD1), DDIT4L (REDD2), NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, and CDKN1B (p27KIP).

For convenience and without wishing to be bound to theory the target genes are classified
10 into two groups: Group I target genes relate to otoprotection and include TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4 (REDD1), DDIT4L (REDD2), NOX4, HTRA2, CAPNS1 (Calpain), ID3 and Group II target genes relate to cellular regeneration and proliferation and include ID3, HES1, HES5, and CDKN1B (p27KIP).

According to various embodiments, the method of the present invention provides for
15 inhibiting more than one target gene associated with the ear disorder using one or more oligonucleotides of the invention.

Accordingly, in one embodiment, the method of the invention is directed treating a subject suffering from an ear disorder by inhibiting two or more target genes designated herein as Group I target genes. In a non-limiting example a siRNA compound to each of
20 the following target genes is administered to a subject: at least one of TP53BP2 (ASPP2), CASP2 and HTRA2, optionally in combination with CAPNS1 (Calpain), optionally in combination with at least one of NOX3, NOX4 and RAC1, optionally in combination with at least one of DDIT4, DDIT4L and ID3, and optionally in combination with at least one of HRK and BNIP3. Without being bound by theory, inhibition of at least one of these
25 target genes is associated with the protection against ototoxin-induced hearing loss.

In another embodiment, the method of the invention is directed to treating a subject suffering from an ear disorder by inhibiting two or more target genes designated herein as Group II: at least one of CDKN1B and ID3, optionally in combination with at least one of HES1 and HES5. Without being bound by theory, the inhibition of at least one of these
30 target genes is associated with the promotion of proliferation of supporting cells or outer or inner hair cells in the cochlea.

In a preferred embodiment, the method comprises administering the oligonucleotides directed against at least one of CDKN1B and ID3 prior to administering the oligonucleotides directed against at least one of HES1 and HES5. In another embodiment, all oligonucleotides are administered together.

5 In a further embodiment, an oligonucleotide directed against a target gene in one group is administered sequentially to an oligonucleotide directed against a target gene in the other group. For example, a siRNA that targets a group I gene is administered to a subject before administration of a siRNA that targets a group II gene. In another embodiment, a siRNA directed against a group I gene is administered to a subject together with a siRNA 10 directed against a group II gene. In various embodiments the target gene is a mammalian gene. In certain embodiments the mammalian gene is a human gene wherein the gi number for the mRNA of the human gene is set forth in Table 1.

In a second aspect the present invention provides an otic pharmaceutical composition comprising: (a) a therapeutically effective amount of at least one an oligonucleotide 15 molecule compound which inhibits the expression of a human target gene associated with an ear disorder in the inner ear or middle ear (b) a permeability enhancer; and (c) at least one pharmaceutically acceptable excipient or carrier, or mixtures thereof. In some embodiments the permeability enhancer is a polyol selected from the group consisting of glycerol, propylene glycol, sorbitol, xylitol and maltitol.

20 In preferred embodiments the polyol is glycerol. In various embodiments glycerol is present at a final concentration of about 0.1% to about 35%; about 1% to about 30%; about 5% to about 25%, about 7% to about 15%, preferably about 10% to about 20%. In some embodiments the final concentration of glycerol in the pharmaceutical composition is about 2.5%, 5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5% or about 30%. In 25 one preferred embodiment, the final concentration of glycerol in the pharmaceutical composition is about 10%.

In some embodiments the composition is formulated for non-invasive application to the human ear, preferably to the ear canal. In various embodiments the composition is formulated as a cream, a foam, a mousse, a paste, an ointment, an emulsion, a solution, a 30 gel, a spray, a suspension, a microemulsion, microspheres, microcapsules, nanospheres, nanoparticles, lipid vesicles, liposomes, polymeric vesicles, patches, a biological insert.

In various embodiments the pharmaceutical composition is formulated as liquid eardrops, ear cream, ear ointment, ear foam or mousse. In preferred embodiments the pharmaceutical composition is formulated as liquid eardrops.

5 In some embodiments the oligonucleotide is an inhibitory nucleic acid compound selected from the group consisting of an antisense, an unmodified siRNA, a chemically modified siRNA, an shRNA, an aptamer, a ribozyme, a dsRNA or DNA compound. In various preferred embodiment the oligonucleotide is siRNA.

10 In various embodiments the siRNA is chemically modified to increase stability, increase activity, reduce off target effects, and or to reduce innate immune stimulation. The concentration of siRNA in the composition is between 0.1mg/ml to 100mg/ml, preferably between 1mg/ml to 100mg/ml, and more preferably between 5mg/ml to 20mg/ml.

In a preferred embodiment, the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3.

15 15 In some embodiments the oligonucleotide reduces or inhibits expression of a gene associated with a middle ear disorder or an inner ear disorder.

In some embodiments the pharmaceutical composition according to the present invention comprises a chemically modified siRNA compound comprising one of Structures (A)-(P) disclosed herein.

20 **BRIEF DESCRIPTION OF THE FIGURES**

Fig. 1. Cy3 labelled DDIT4 siRNA in spiral ganglion (ganglion of Corti) in the apical turn of the organ of Corti, 3 days after application of eardrops.

Fig. 2. Shows Cy3 labelled DDIT4 siRNA in three rows of outer hear cells, inner hear cells and supporting cells in all, basic, second and apical turns of organ of Corti.

25 25 Fig. 3. Shows fluorescence in all parts of the auditory epithelium of dissected rat cochlea 3 days post administration of eardrops (perfused and non perfused).

Fig 4. provides Tables A1-A7 which set forth antisense and sense sequences useful in the preparation of siRNA compounds to certain target genes useful in practicing the present invention.

DETAILED DESCRIPTION OF THE PRESENT INVENTION

The present invention relates in general to compositions and to methods useful in the treatment of middle and inner ear disorders.

Methods, molecules and compositions, which inhibit the genes of the invention, are 5 discussed herein at length, and any of said molecules and/or compositions may be beneficially employed in the treatment of a subject suffering from any of said conditions.

The inhibitory nucleic acids of the present invention are preferably siRNA compounds that possess modifications which may increase activity, increase stability, and/or minimize toxicity when compared to the unmodified compound. These compounds, when 10 admixed with a pharmaceutical vehicle that effects delivery of the nucleic acid to the middle and inner ear, provide effective, safe and patient compliant therapeutic compounds useful in treating a variety of ear disorders. The compounds are designed to prevent or attenuate target gene expression associated with the ear disorder. In certain embodiment the target gene is transcribed into any one of the mRNA polynucleotides set forth in Table 15 1. In a preferred embodiment, the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B.

Without wishing to be bound to theory the target genes are classified in two groups, group I directed to genes associated with otoprotection and include TP53BP2 (ASPP2), BNIP3, 20 CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, and group II associated with regeneration in cells of the inner ear and include ID3, HES1, HES5, CDKN1B. For some of the genes there is no clear group delineation and the grouping is provided for convenience only.

Details of several target genes are presented in Table 1, hereinbelow. This list is intended 25 to be representative and non-limiting.

Table 1: Non-limiting example of human target genes for treating hearing loss

No.	Gene	Full name and Human Gene ID
1	TP53BP2	tumor protein p53 binding protein, 2 gi 112799848 ref NM_001031685.2 (SEQ ID NO:1) gi 112799845 ref NM_005426.2 (SEQ ID NO:2)

No.	Gene	Full name and Human Gene ID
2	LRDD	leucine-rich repeats and death domain containing gi 61742781 ref NM_018494.3 (SEQ ID NO:3) gi 61742783 ref NM_145886.2 (SEQ ID NO:4) gi 61742785 ref NM_145887.2 (SEQ ID NO:5)
3	CYBA	cytochrome b-245, alpha polypeptide gi 68509913 ref NM_000101.2 (SEQ ID NO:6)
4	p53	tumor protein p53 gi 8400737, NM_000546.2 (SEQ ID NO:7)
5	CASP2	caspase 2, apoptosis-related cysteine peptidase gi 39995058 ref NM_032982.2 (SEQ ID NO:8) gi 39995060 ref NM_032983.2 (SEQ ID NO:9)
6	NOX3	NADPH oxidase 3 gi 11136625 ref NM_015718.1 (SEQ ID NO:10)
7	HRK	harakiri gi 4504492 ref NM_003806.1 (SEQ ID NO:11)
8	CAPNS1	Calpain small subunit 1 gi 51599152 ref NM_001749.2 (SEQ ID NO:12) gi 51599150 ref NM_001003962.1 (SEQ ID NO:13)
9	RTP801	Redd1; DNA-damage-inducible transcript 4 gi 56676369 ref NM_019058.2 (SEQ ID NO:14)
10	RTP801L	Redd2; DNA-damage-inducible transcript 4-like gi 34222182 ref NM_145244.2 (SEQ ID NO:15)
11	Notch1	Notch homolog 1, translocation-associated (Drosophila) gi 148833507 ref NM_017617.3 (SEQ ID NO:16)
12	Rac1	ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein) gi 38505164 ref NM_198829.1 (SEQ ID NO:17) gi 156071511 ref NM_018890.3 (SEQ ID NO:18) gi 156071503 ref NM_006908.4 (SEQ ID NO:19)
13	HES1	hairy and enhancer of split 1, (Drosophila) gi 8400709 ref NM_005524.2 (SEQ ID NO:20)
14	HES5	hairy and enhancer of split 5 (Drosophila) gi 145301612 ref NM_001010926.2 (SEQ ID NO:21)
15	ID1	inhibitor of DNA binding 1, dominant negative helix-loop-helix protein gi 31317298 ref NM_002165.2 transcript variant 1 (SEQ ID NO:22) gi 31317296 ref NM_181353.1 transcript variant 2 (SEQ ID NO:23)
16	ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix protein gi 33946335 ref NM_002166.4 (SEQ ID NO:24)
17	ID3	inhibitor of DNA binding 3, dominant negative helix-loop-helix protein gi 156119620 ref NM_002167.3 (SEQ ID NO:25)
18	CDKN1B	cyclin-dependent kinase inhibitor 1B (p27, Kip1) gi 17978497 ref NM_004064.2 (SEQ ID NO:26)
19	CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) gi 47132605 ref NM_058195.2 transcript variant 4 (SEQ ID NO:27) gi 98985803 ref NM_058197.3 transcript variant 3 (SEQ ID NO:28) gi 47132606 ref NM_000077.3 transcript variant 1 (SEQ ID NO:29)

No.	Gene	Full name and Human Gene ID
20	HTRA2	Htra serine peptidase 2 var 1 gi:73747817 ref NM_013247 (SEQ ID NO:30) var 2 gi:73747818 ref NM_145074 (SEQ ID NO:31)
21	KEAP1	Kelch-like ECH-associated protein 1 var 1 gi:45269144 ref NM_203500 (SEQ ID NO:32) var 2 gi:45269143 ref NM_012289 (SEQ ID NO:33)
22	SHC1	Src homology 2 domain containing) transforming prot. 1 var 1 gi:52693920 ref NM_183001 (SEQ ID NO:34) var 2 gi:34147725 ref NM_003029 (SEQ ID NO:35)
23	ZNHIT1	Zn finger HIT type 1 gi:37594439 ref NM_006349 (SEQ ID NO:36)

Table 1 provides the gi (GeneInfo identifier) and accession numbers for polynucleotide sequences of the mRNA for certain target genes set forth above.

Ear Disorders

5 The present invention is directed to compositions and methods useful in treating a patient suffering from or at risk of various ear disorders. Ear disorders include hearing loss induced for example by ototoxins, excessive noise or ageing. Middle and inner ear disorders produce many of the same symptoms, and a disorder of the middle ear may affect the inner ear and vice versa.

10 In addition to hearing loss, ear disorders include *Myringitis*, an eardrum infection caused by a variety of viruses and bacteria; Temporal bone fracture for example due to a blow to the head; Auditory nerve tumors (acoustic neuroma, acoustic neurinoma, vestibular schwannoma, eighth nerve tumor).

15 In various embodiments, the methods and compositions of the invention are useful in treating various conditions of hearing loss. Without being bound by theory, the hearing loss may be due to apoptotic inner ear hair cell damage or loss (Zhang et al., Neuroscience 2003. 120:191-205; Wang et al., J. Neuroscience 23((24):8596-8607), wherein the damage or loss is caused by infection, mechanical injury, loud sound (noise), aging (presbycusis), or chemical-induced ototoxicity.

20 By "ototoxin" in the context of the present invention is meant a substance that through its chemical action injures, impairs or inhibits the activity of the sound receptors component of the nervous system related to hearing, which in turn impairs hearing (and/or balance). In the context of the present invention, ototoxicity includes a deleterious effect on the inner ear hair cells. Ototoxins include therapeutic drugs including antineoplastic agents, salicylates, loop-diuretics, quinines, and aminoglycoside antibiotics, contaminants in

foods or medicinals, and environmental or industrial pollutants. Typically, treatment is performed to prevent or reduce ototoxicity, especially resulting from or expected to result from administration of therapeutic drugs. Preferably a composition comprising therapeutically effective amount of a chemically modified siRNA compound of the invention is given immediately after the exposure to prevent or reduce the ototoxic effect. More preferably, treatment is provided prophylactically, either by administration of the pharmaceutical composition of the invention prior to or concomitantly with the ototoxic pharmaceutical or the exposure to the ototoxin.

Incorporated herein by reference are chapters 196, 197, 198 and 199 of The Merck 10 Manual of Diagnosis and Therapy, 14th Edition, (1982), Merck Sharp & Dome Research Laboratories, N.J. and corresponding chapters in the most recent 16th edition, including Chapters 207 and 210) relating to description and diagnosis of hearing and balance impairments.

Accordingly, in one aspect the present invention provides a method and pharmaceutical 15 compositions for treating a mammal, preferably human, to prevent, reduce, or treat a hearing impairment, disorder or imbalance, preferably an ototoxin-induced hearing condition, by administering to a mammal in need of such treatment a chemically modified siRNA compound of the invention. One embodiment of the invention is a method for treating a hearing disorder or impairment wherein the ototoxicity results from 20 administration of a therapeutically effective amount of an ototoxic pharmaceutical drug. Typical ototoxic drugs are chemotherapeutic agents, e.g. antineoplastic agents, and antibiotics. Other possible candidates include loop-diuretics, quinines or a quinine-like compound, PDE-5 inhibitors and salicylate or salicylate-like compounds.

Ototoxicity is a dose-limiting side effect of antibiotic administration. From 4 to 15% of 25 patients receiving 1 gram per day for greater than 1 week develop measurable hearing loss, which slowly becomes worse and can lead to complete permanent deafness if treatment continues. Ototoxic aminoglycoside antibiotics include but are not limited to neomycin, paromomycin, ribostamycin, lividomycin, kanamycin, amikacin, tobramycin, viomycin, gentamicin, sisomicin, netilmicin, streptomycin, dibekacin, fortimicin, and 30 dihydrostreptomycin, or combinations thereof. Particular antibiotics include neomycin B, kanamycin A, kanamycin B, gentamicin C1, gentamicin C1a, and gentamicin C2, and the like that are known to have serious toxicity, particularly ototoxicity and nephrotoxicity, which reduce the usefulness of such antimicrobial agents (see Goodman and Gilman's

The Pharmacological Basis of Therapeutics, 6th ed., A. Goodman Gilman et al., eds; Macmillan Publishing Co., Inc., New York, pp. 1169-71 (1980)).

Ototoxicity is also a serious dose-limiting side-effect for anti-cancer agents. Ototoxic neoplastic agents include but are not limited to vincristine, vinblastine, cisplatin and 5 cisplatin-like compounds and taxol and taxol-like compounds. Cisplatin-like compounds include carboplatin (Paraplatin ®), tetraplatin, oxaliplatin, aroplatin and transplatin inter alia and are platinum based chemotherapeutics.

Diuretics with known ototoxic side-effect, particularly "loop" diuretics include, without being limited to, furosemide, ethacrylic acid, and mercurials.

10 Ototoxic quinines include but are not limited to synthetic substitutes of quinine that are typically used in the treatment of malaria. In some embodiments the hearing disorder is side-effect of inhibitors of type 5 phosphodiesterase (PDE-5), including sildenafil (Viagra®), vardenafil (Levitra®) and tadalafil (Cialis).

15 Salicylates, such as aspirin, are the most commonly used therapeutic drugs for their anti-inflammatory, analgesic, anti-pyretic and anti-thrombotic effects. Unfortunately, they too have ototoxic side effects. They often lead to tinnitus ("ringing in the ears") and temporary hearing loss. Moreover, if the drug is used at high doses for a prolonged time, the hearing impairment can become persistent and irreversible.

In some embodiments a method is provided for treatment of infection of a mammal by 20 administration of an aminoglycoside antibiotic, the improvement comprising administering a therapeutically effective amount of one or more chemically modified siRNAs compounds which down-regulate expression a target gene, to the subject in need of such treatment to reduce or prevent ototoxin-induced hearing impairment associated with the antibiotic.

25 The methods and pharmaceutical and compositions of the present invention are also effective in the treatment of acoustic trauma or mechanical trauma, preferably acoustic or mechanical trauma that leads to inner ear hair cell loss. With more severe exposure, injury can proceed from a loss of adjacent supporting cells to complete disruption of the organ of Corti. Death of the sensory cell can lead to progressive Wallerian degeneration and loss 30 of primary auditory nerve fibers. The methods of the invention are useful in treating acoustic trauma caused by a single exposure to an extremely loud sound, or following long-term exposure to everyday loud sounds above 85 decibels, for treating mechanical

inner ear trauma, for example, resulting from the insertion of an electronic device into the inner ear or for preventing or minimizing the damage to inner ear hair cells associated with the operation.

Another type of hearing loss is presbycusis, which is hearing loss that gradually occurs in 5 most individuals as they age. About 30-35 percent of adults between the ages of 65 and 75 years and 40-50 percent of people 75 and older experience hearing loss. The methods of the invention are useful in preventing, reducing or treating the incidence and/or severity of inner ear disorders and hearing impairments associated with presbycusis.

Definitions

10 For convenience certain terms employed in the specification, examples and claims are described herein.

It is to be noted that, as used herein, the singular forms "a", "an" and "the" include plural forms unless the content clearly dictates otherwise.

15 Where aspects or embodiments of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the group.

A "polypeptide" refers to an amino acid sequence encoded by any of the above listed genes, including splice variants, isoforms, orthologs, or paralogs and the like.

20 An "inhibitor" is a compound which is capable of reducing the expression of a gene or the activity of the product of such gene to an extent sufficient to achieve a desired biological or physiological effect. The term "inhibitor" as used herein refers to one or more of an oligonucleotide or nucleic acid including antisense, siRNA, shRNA, miRNA and ribozyme. Inhibition may also be referred to as down-regulation or, for RNAi, silencing.

25 The term "inhibit" as used herein refers to reducing the expression of a gene or the activity of the product of such gene to an extent sufficient to achieve a desired biological or physiological effect. Inhibition may be complete or partial.

30 As used herein, the terms "polynucleotide" and "nucleic acid" may be used interchangeably and refer to nucleotide sequences comprising deoxyribonucleic acid (DNA), and ribonucleic acid (RNA). The terms should also be understood to include, as equivalents, analogs of either RNA or DNA made from nucleotide analogs. Throughout

this application mRNA sequences are set forth as representing the corresponding genes. The terms "mRNA polynucleotide sequence" and mRNA are used interchangeably.

"Oligonucleotide" or "oligomer" refers to a single stranded or double stranded deoxyribonucleotide or ribonucleotide sequence or chimera thereof, from about 2 to about 5 100 nucleotides, preferably about 15 to about 60, or 18 to about 23. Each DNA or RNA nucleotide that makes up the oligonucleotide may be independently natural or synthetic, and or modified or unmodified. Modifications include changes to the sugar moiety, the base moiety and or the linkages between nucleotides in the oligonucleotide. The oligonucleotides or oligonucleotide compounds of the present invention are single or 10 double stranded compounds comprising deoxyribonucleotides, ribonucleotides, modified deoxyribonucleotides, modified ribonucleotides and combinations thereof.

"Nucleotide" or "nucleotide monomer" is meant to encompass a deoxyribonucleotide and a ribonucleotide, which may be natural or synthetic, and or modified or unmodified. Modifications include changes and substitutions to the sugar moiety, the base moiety 15 and/or the internucleotide linkages.

Analogs of, or modifications to, a nucleotide / oligonucleotide are preferably employed with the present invention, provided that said analog or modification does not substantially adversely affect the function of the nucleotide / oligonucleotide. In some embodiments a chemical modification results in an increase in activity or stability or a 20 reduction in off-target effects or induction of innate immune responses. Acceptable modifications include modifications of the sugar moiety, modifications of the base moiety, modifications in the internucleotide linkages and combinations thereof.

The nucleotides can be selected from naturally occurring or synthetic modified bases. Naturally occurring bases include adenine, guanine, cytosine, thymine and uracil. 25 Modified bases of nucleotides include inosine, xanthine, hypoxanthine, 2- aminoadenine, 6-methyl, 2-propyl and other alkyl adenines, 5-halo uracil, 5-halo cytosine, 6-aza cytosine and 6-aza thymine, pseudo uracil, 4- thiouracil, 8-halo adenine, 8-aminoadenine, 8-thiol adenine, 8-thiolalkyl adenines, 8-hydroxyl adenine and other 8-substituted adenines, 8- halo guanines, 8-amino guanine, 8-thiol guanine, 8-thioalkyl guanines, 8- hydroxyl 30 guanine and other substituted guanines, other aza and deaza adenines, other aza and deaza guanines, 5-trifluoromethyl uracil and 5- trifluoro cytosine.

In addition, compounds comprising nucleotide analogs prepared wherein the structure of one or more nucleotide is fundamentally altered and better suited as therapeutic or

experimental reagents. An example of a nucleotide analog is a peptide nucleic acid (PNA) wherein the deoxyribose (or ribose) phosphate backbone in DNA (or RNA is replaced with a polyamide backbone which is similar to that found in peptides. PNA analogs have been shown to be resistant to enzymatic degradation and to have extended lives *in vivo* 5 and *in vitro*.

Possible modifications to the sugar residue are manifold and include 2'-O alkyl, locked nucleic acid (LNA), glycol nucleic acid (GNA), threose nucleic acid (TNA), arabinoside, altritol (ANA) and other, 6-membered sugars including morpholinos, and cyclohexinyls.

LNA compounds are disclosed in International Patent Publication Nos. WO 00/47599, 10 WO 99/14226, and WO 98/39352. Examples of siRNA compounds comprising LNA nucleotides are disclosed in Elmen et al., (NAR 2005. 33(1):439-447) and in International Patent Publication No. WO 2004/083430.

Backbone modifications, such as ethyl (resulting in a phospho-ethyl triester); propyl (resulting in a phospho-propyl triester); and butyl (resulting in a phospho-butyl triester) 15 are also possible. Other backbone modifications include polymer backbones, cyclic backbones, acyclic backbones, thiophosphate-D-ribose backbones, amides, phosphonoacetate derivatives. Certain structures include siRNA compounds having one or a plurality of 2'-5' internucleotide linkages (bridges or backbone).

Additional modifications which may be present in the molecules of the present invention 20 include nucleoside modifications such as artificial nucleic acids, peptide nucleic acid (PNA), morpholino and locked nucleic acid (LNA), glycol nucleic acid (GNA), threose nucleic acid (TNA), arabinoside, and mirror nucleoside (for example, beta-L-deoxynucleoside instead of beta-D-deoxynucleoside. Further, said molecules may 25 additionally contain modifications on the sugar, such as 2'-alkyl, 2'-fluoro (2'-deoxy-2'-fluoro), 2'O-allyl, 2'amine and 2'alkoxy. Additional sugar modifications are discussed herein.

Further, the inhibitory nucleic acid molecules of the present invention may comprise one 30 or more gaps and/or one or more nicks and/or one or more mismatches. Without wishing to be bound by theory, gaps, nicks and mismatches have the advantage of partially destabilizing the nucleic acid / siRNA, so that it may be more easily processed by endogenous cellular machinery such as DICER, DROSHA or RISC into its inhibitory components.

In the context of the present invention, a gap in a nucleic acid refers to the absence of one or more internal nucleotides in one strand, while a nick in a nucleic acid refers to the absence of an internucleotide linkage between two adjacent nucleotides in one strand. Any of the molecules of the present invention may contain one or more gaps and/or one 5 or more nicks.

siRNAs and RNA interference

RNA interference (RNAi) is a phenomenon involving double-stranded (ds) RNA-dependent gene specific posttranscriptional silencing. Originally, attempts to study this phenomenon and to manipulate mammalian cells experimentally were frustrated by an 10 active, non-specific antiviral defense mechanism which was activated in response to long dsRNA molecules (Gil et al. Apoptosis, 2000. 5:107-114). Later it was discovered that synthetic duplexes of 21 nucleotide RNAs could mediate gene specific RNAi in mammalian cells, without the stimulation of the generic antiviral defense mechanisms (see Elbashir et al. Nature 2001, 411:494-498 and Caplen et al. PNAS USA 2001, 15 98:9742-9747). As a result, small interfering RNAs (siRNAs), which are short double-stranded RNAs, have become powerful tools in attempting to understand gene function. Thus RNA interference (RNAi) refers to the process of sequence-specific post-transcriptional gene silencing in mammals mediated by small interfering RNAs (siRNAs) (Fire et al, Nature 1998. 391, 806) or microRNAs (miRNA; Ambros, Nature 2004 20 431:7006,350-55; and Bartel, Cell. 2004. 116(2):281-97). The corresponding process in plants is commonly referred to as specific post transcriptional gene silencing or RNA silencing and is referred to as quelling in fungi.

A siRNA is a double-stranded RNA molecule which inhibits, either partially or fully, the expression of a gene/ mRNA of its endogenous or cellular counterpart, or of an 25 exogenous gene such as a viral nucleic acid. The mechanism of RNA interference is detailed *infra*.

Several studies have revealed that siRNA therapeutics are effective *in vivo* in both mammals and in humans. Bitko et al., have shown that specific siRNA molecules directed against the respiratory syncytial virus (RSV) nucleocapsid N gene are effective in treating 30 mice when administered intranasally (Bitko et al., Nat. Med. 2005, 11(1):50-55). siRNA has recently been successfully used for inhibition in primates (Tolentino et al., Retina 2004. 24(1):132-138). For a review of the use of siRNA as therapeutics, see for example

Barik (J. Mol. Med. 2005. 83: 764-773) or Dykxhoorn et al (2006. Gene Ther. 13:541-552).

siRNA Structures

The selection and synthesis of siRNA corresponding to known genes has been widely reported; (see for example Ui-Tei et al., J Biomed Biotech. 2006; 2006: 65052; Chalk et al., BBRC. 2004, 319(1): 264-74; Sioud & Leirdal, Met. Mol Biol.; 2004, 252:457-69; Levenkova et al., Bioinform. 2004, 20(3):430-2; Ui-Tei et al., NAR. 2004, 32(3):936-48).

For examples of the use of, and production of, modified siRNA see, for example, Braasch et al., Biochem. 2003, 42(26):7967-75; Chiu et al., RNA, 2003, 9(9):1034-48; PCT publications WO 2004/015107 (atugen AG) and WO 02/44321 (Tuschl et al). US Patent Nos. 5,898,031 and 6,107,094, teach chemically modified oligomers. US Patent Publication Nos. 2005/0080246 and 2005/0042647 relate to oligomeric compounds having an alternating motif and dsRNA compounds having chemically modified internucleoside linkages, respectively.

Other modifications have been disclosed. The inclusion of a 5'-phosphate moiety was shown to enhance activity of siRNAs in Drosophila embryos (Boutla, et al., Curr. Biol. 2001, 11:1776-1780) and is required for siRNA function in human HeLa cells (Schwarz et al., Mol. Cell, 2002, 10:537-48). Amarzguioui et al., (NAR, 2003, 31(2):589-95) showed that siRNA activity depended on the positioning of the 2'-O-methyl modifications. Holen et al (NAR. 2003, 31(9):2401-07) report that an siRNA having small numbers of 2'-O-methyl modified nucleosides gave good activity compared to wild type but that the activity decreased as the numbers of 2'-O-methyl modified nucleosides was increased. Chiu and Rana (RNA. 2003, 9:1034-48) teach that incorporation of 2'-O-methyl modified nucleosides in the sense or antisense strand (fully modified strands) severely reduced siRNA activity relative to unmodified siRNA. The placement of a 2'-O-methyl group at the 5'-terminus on the antisense strand was reported to severely limit activity whereas placement at the 3'-terminus of the antisense and at both termini of the sense strand was tolerated (Czauderna et al., NAR. 2003, 31(11):2705-16; WO 2004/015107). The molecules of the present invention offer an advantage in that they are non-toxic and may be formulated as pharmaceutical compositions for treatment of various diseases.

International Patent Publication No. WO 2008/050329 to the assignee of the present invention and hereby incorporated in its entirety relates to siRNA compounds, compositions comprising same and to methods of use thereof for treating diseases and disorders related to expression of proapoptotic genes. US Ser. No. 11/ 655610 relates to 5 methods of treating hearing impairment by inhibiting a pro-apoptotic gene in general and p53 in particular. International Patent Publication No. WO 2005/119251 relates to methods of treating deafness. International Patent Publication No. WO/2005/055921 relates to foam compositions for treatment of ear disorders. US Patent No. 7,087,581 relates to methods of treating diseases and disorders of the inner ear.

10 According to one aspect the present invention provides a method for the treatment of ear disorders comprising the step of administering a pharmaceutical composition comprising administering a composition comprising a chemically modified inhibitory oligonucleotide compound; a permeability enhancer and pharmaceutically acceptable carrier. The compound comprises at least one modified nucleotide selected from the group consisting of a sugar modification, a base modification and an internucleotide linkage modification.

15 The present invention also relates to compounds which down-regulate expression of various genes, particularly to novel small interfering RNAs (siRNAs), and to the use of these novel siRNAs in the treatment of hearing loss, in the regeneration of inner ear cells and in preventing chemical-induced hearing loss.

20 A non-limiting list of human target genes useful in the present invention is provided in Table 1, set forth in SEQ ID NOS 1-36. In a preferred embodiment, the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3. The reference to mRNA associated with those genes is set forth therein. For each 25 gene 19-mer, 21-mer and 23-mer sequences is generated, which are prioritized based on their score in the proprietary algorithm as the best sequences for targeting the human gene expression. The 21- or 23-mer siRNA sequences can also be generated by 5' and/or 3' extension of the 19-mer sequences disclosed herein. Such extension is preferably complementary to the corresponding mRNA sequence. Certain 23-mer oligomers were 30 devised by this method where the order of the prioritization is the order of the corresponding 19-mer. The siRNA oligomers useful in practicing the invention are disclosed in Tables B of US Ser. No. 11/978,089, assigned to the assignee of the present invention and which is hereby incorporated by reference in their entirety and are set forth

as SEQ ID NOS:97-68654 in that application. Certain siRNA oligomers useful in the compositions and methods of the present invention are disclosed in US Ser. Nos. 11/207119, 11/811,112, 11/655636, and International Patent Application Nos. PCT/IL2008/000797, PCT/IL2008/000874, PCT/IL2009/000053, PCT/IL2009/000302, 5 assigned to the assignee of the present invention and which are hereby incorporated by reference in their entirety. Certain 19-mer antisense and sense oligonucleotides sequences useful in the preparation of siRNA compounds of various lengths are shown in Fig. 4. The abbreviations for cross species sequences are as follows: Chp: chimpanzee, Ms: Mouse, Chn: chinchilla; GP: guinea-pig.

10 In some embodiments the present invention provides a composition and method comprising a long oligonucleotide, typically about 41-500 nucleotides in length) comprising none or one or more stem and loop structures, which is processed intracellularly by endogenous cellular complexes (e.g. by DROSHA and DICER as described above) to produce one or more smaller double stranded oligonucleotides 15 (siRNAs). In some embodiments the long oligonucleotide is a single stranded oligonucleotide comprising one or more stem and loop structures, wherein each stem region comprises a sense and corresponding antisense siRNA sequence. Any molecules, such as, for example, antisense DNA molecules which comprise the inhibitory sequences disclosed herein (with the appropriate nucleic acid modifications) are particularly 20 desirable and may be used in the same capacity as their corresponding RNAs / siRNAs for all uses and methods disclosed herein.

Oligonucleotides

The present invention provides double-stranded oligonucleotides (e.g. siRNAs), which down-regulate the expression of a desired gene. An siRNA of the invention is a duplex 25 oligoribonucleotide in which the sense strand is derived from the mRNA sequence of the desired gene, and the antisense strand is complementary to the sense strand. In general, some deviation from the target mRNA sequence is tolerated without compromising the siRNA activity (see e.g. Czauderna et al., NAR. 2003, 31(11):2705-2716). An siRNA of the invention inhibits gene expression on a post-transcriptional level with or without 30 destroying the mRNA. Without being bound by theory, siRNA may target the mRNA for specific cleavage and degradation and/ or may inhibit translation from the targeted message.

In various embodiments the siRNA comprises an RNA duplex comprising a first strand and a second strand, whereby the first strand comprises a ribonucleotide sequence at least partially complementary to about 18 to about 40 consecutive nucleotides of a target nucleic acid which is mRNA transcribed from a target gene, and the second strand 5 comprises a ribonucleotide sequence at least partially complementary to the first strand and wherein said first strand and or said second strand comprises a one or more chemically modified ribonucleotides and or unconventional moieties.

In one embodiment the siRNA compound comprises at least one ribonucleotide comprising a 2' modification on the sugar moiety ("2' sugar modification"). In certain 10 embodiments the compound comprises 2'O-alkyl or 2'-fluoro or 2'O-allyl or any other 2' modification, optionally on alternate positions. Other stabilizing modifications are also possible (e.g. terminal modifications). In some embodiments a preferred 2'O-alkyl is 2'O-methyl (methoxy, 2'OMe) sugar modification.

In some embodiments the backbone of the oligonucleotides is modified and comprises 15 phosphate-D-ribose entities but may also contain thiophosphate-D-ribose entities, triester, thioate, 2'-5' bridged backbone (also may be referred to as 5'-2'), PACE and the like.

As used herein, the terms "non-pairing nucleotide analog" means a nucleotide analog which comprises a non-base pairing moiety including but not limited to: 6 des amino adenosine (Nebularine), 4-Me-indole, 3-nitropyrrole, 5-nitroindole, Ds, Pa, N3-Me ribo 20 U, N3-Me riboT, N3-Me dC, N3-Me-dT, N1-Me-dG, N1-Me-dA, N3-ethyl-dC, N3-Me dC. In some embodiments the non-base pairing nucleotide analog is a ribonucleotide. In other embodiments it is a deoxyribonucleotide. In addition, analogues of polynucleotides may be prepared wherein the structure of one or more nucleotide is fundamentally altered and better suited as therapeutic or experimental reagents. An example of a nucleotide 25 analogue is a peptide nucleic acid (PNA) wherein the deoxyribose (or ribose) phosphate backbone in DNA (or RNA is replaced with a polyamide backbone which is similar to that found in peptides. PNA analogues have been shown to be resistant to enzymatic degradation and to enhance stability *in vivo* and *in vitro*. Other useful modifications include polymer backbones, cyclic backbones, acyclic backbones, thiophosphate-D-ribose 30 backbones, triester backbones, thioate backbones, 2'-5' bridged backbone, artificial nucleic acids, morpholino nucleic acids, glycol nucleic acid (GNA), threose nucleic acid (TNA), arabinoside, and mirror nucleoside (for example, beta-L-deoxyribonucleoside instead of beta-D-deoxyribonucleoside). The compounds of the present invention can be

synthesized using one or more inverted nucleotides, for example inverted thymidine or inverted adenine (see, for example, Takei, et al., 2002, JBC 277(26):23800-06).

Additional modifications include terminal modifications on the 5' and/or 3' part of the oligonucleotides and are also known as capping moieties. Such terminal modifications are
5 selected from a nucleotide, a modified nucleotide, a lipid, a peptide, a sugar and inverted abasic moiety.

What is sometimes referred to in the present invention as an "abasic nucleotide" or "abasic nucleotide analog" is more properly referred to as a pseudo-nucleotide or an unconventional moiety. A nucleotide is a monomeric unit of nucleic acid, consisting of a
10 ribose or deoxyribose sugar, a phosphate, and a base (adenine, guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA). A modified nucleotide comprises a modification in one or more of the sugar, phosphate and or base. The abasic pseudo-nucleotide lacks a base, and thus is not strictly a nucleotide.

The term "unconventional moiety" as used herein refers to abasic ribose moiety, an abasic
15 deoxyribose moiety, a deoxyribonucleotide, a modified deoxyribonucleotide, a mirror nucleotide, a non-base pairing nucleotide analog and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide phosphate bond; bridged nucleic acids including LNA and ethylene bridged nucleic acids. In some embodiments of the present invention a preferred unconventional moiety is an abasic ribose moiety, an abasic deoxyribose
20 moiety, a deoxyribonucleotide, a mirror nucleotide, and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide phosphate bond.

Abasic deoxyribose moiety includes for example abasic deoxyribose-3'-phosphate; 1,2-dideoxy-D-ribofuranose-3-phosphate; 1,4-anhydro-2-deoxy-D-ribitol-3-phosphate. Inverted abasic deoxyribose moiety includes inverted deoxyriboabasic; 3',5' inverted
25 deoxyabasic 5'-phosphate.

A "mirror" nucleotide is a nucleotide with reversed chirality to the naturally occurring or commonly employed nucleotide, i.e., a mirror image (L-nucleotide) of the naturally occurring (D-nucleotide), also referred to as L-RNA in the case of a mirror ribonucleotide, and "spiegelmer". The nucleotide can be a ribonucleotide or a
30 deoxyribonucleotide and may further comprise at least one sugar, base and or backbone modification. See US Patent No. 6,586,238. Also, US Patent No. 6,602,858 discloses nucleic acid catalysts comprising at least one L-nucleotide substitution. Mirror nucleotide includes for example L-DNA (L-deoxyriboadenosine-3'-phosphate (mirror dA); L-

deoxyribocytidine-3'-phosphate (mirror dC); L-deoxyriboguanosine-3'-phosphate (mirror dG); L-deoxyribothymidine-3'-phosphate (mirror image dT)) and L-RNA (L-riboadenosine-3'-phosphate (mirror rA); L-ribocytidine-3'-phosphate (mirror rC); L-riboguanosine-3'-phosphate (mirror rG); L-ribouracil-3'-phosphate (mirror dU).

5 The term “capping moiety” as used herein includes abasic ribose moiety, abasic deoxyribose moiety, modifications abasic ribose and abasic deoxyribose moieties including 2' O alkyl modifications; inverted abasic ribose and abasic deoxyribose moieties and modifications thereof; C6-imino-Pi; a mirror nucleotide including L-DNA and L-RNA; 5'O-Me nucleotide; and nucleotide analogs including 4',5'-methylene nucleotide; 1-(β -D-erythofuranosyl)nucleotide; 4'-thio nucleotide, carbocyclic nucleotide; 5'-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 12-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; alpha-nucleotide; threo-pentofuranosyl nucleotide; acyclic 3',4'-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5'-5'-inverted abasic moiety; 1,4-butanediol phosphate; 5'-amino; and bridging or non bridging methylphosphonate and 5'-mercapto moieties.

10

15

Certain preferred capping moieties are abasic ribose or abasic deoxyribose moieties; inverted abasic ribose or abasic deoxyribose moieties; C6-amino-Pi; a mirror nucleotide including L-DNA and L-RNA.

20 A further end modification is a biotin group. Such biotin group may preferably be attached to either the most 5' or the most 3' nucleotide of the first and/or second strand or to both ends. In a more preferred embodiment the biotin group is coupled to a polypeptide or a protein. It is also within the scope of the present invention that the polypeptide or protein is attached through any of the other aforementioned end modifications.

25 The various end modifications as disclosed herein are preferably located at the ribose moiety of a nucleotide of the nucleic acid according to the present invention. More particularly, the end modification may be attached to or replace any of the OH-groups of the ribose moiety, including but not limited to the 2'OH, 3'OH and 5'OH position, provided that the nucleotide thus modified is a terminal nucleotide. Inverted abasic or

30 abasic are nucleotides, either deoxyribonucleotides or ribonucleotides which do not have a nucleobase moiety (for example see Sternberger, et al., (2002). Antisense Nucleic Acid Drug Dev, 12, 131-43).

Modified deoxyribonucleotide includes, for example 5'OMe DNA (5-methyl-deoxyriboguanosine-3'-phosphate) which may be useful as a nucleotide in the 5' terminal position (position number 1); PACE (deoxyriboadenine 3' phosphonoacetate, deoxyribocytidine 3' phosphonoacetate, deoxyriboguanosine 3' phosphonoacetate, 5 deoxyribothymidine 3' phosphonoacetate.

Bridged nucleic acids include LNA (2'-O, 4'-C-methylene bridged Nucleic Acid adenosine 3' monophosphate, 2'-O,4'-C-methylene bridged Nucleic Acid 5-methyl-cytidine 3' monophosphate, 2'-O,4'-C-methylene bridged Nucleic Acid guanosine 3' monophosphate, 5-methyl-uridine (or thymidine) 3' monophosphate); and ENA (2'-O,4'-C-ethylene bridged nucleic acid adenosine 3' monophosphate, 2'-O,4'-C-ethylene bridged nucleic acid 5-methyl-cytidine 3' monophosphate, 2'-O,4'-C-ethylene bridged nucleic acid guanosine 3' monophosphate, 5-methyl-uridine (or thymidine) 3' monophosphate).

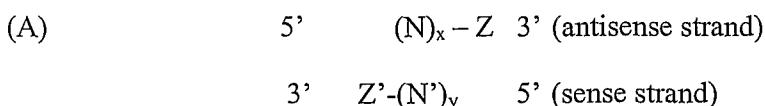
In certain embodiments the complementarity between said first strand and the target nucleic acid is perfect. In some embodiments, the strands are substantially complementary, i.e. having one, two or up to three mismatches between said first strand and the target nucleic acid. Substantially complementary refers to complementarity of greater than about 84%, to another sequence. For example in a duplex region consisting of 19 base pairs one mismatch results in 94.7% complementarity, two mismatches results in about 89.5% complementarity and 3 mismatches results in about 84.2% complementarity, rendering the duplex region substantially complementary. Accordingly substantially identical refers to identity of greater than about 84%, to another sequence.

In some embodiments the first strand and the second strand of the compound are linked by a loop structure, which is comprised of a non-nucleic acid polymer such as, *inter alia*, polyethylene glycol. Alternatively, the loop structure is comprised of a nucleic acid, 25 including modified and non-modified ribonucleotides and modified and non-modified deoxyribonucleotides.

In further embodiments, the 5'-terminus of the first strand of the siRNA is linked to the 3'-terminus of the second strand, or the 3'-terminus of the first strand is linked to the 5'-terminus of the second strand, said linkage being via a nucleic acid linker typically having 30 a length between 2-100 nucleobases, preferably about 2 to about 30 nucleobases.

In preferred embodiments of the compounds of the invention having alternating ribonucleotides modified in at least one of the antisense and the sense strands of the compound, for 19 mer and 23 mer oligomers the ribonucleotides at the 5' and 3' termini

of the antisense strand are modified in their sugar residues, and the ribonucleotides at the 5' and 3' termini of the sense strand are unmodified in their sugar residues. For 21 mer oligomers the ribonucleotides at the 5' and 3' termini of the sense strand are modified in their sugar residues, and the ribonucleotides at the 5' and 3' termini of the antisense strand are unmodified in their sugar residues, or may have an optional additional modification at the 3' terminus. As mentioned above, it is preferred that the middle nucleotide of the antisense strand is unmodified.


According to one preferred embodiment of the invention, the antisense and the sense strands of the oligonucleotide / siRNA are phosphorylated at the 3'-terminus and not at the 5'-terminus. According to another preferred embodiment of the invention, the antisense and the sense strands are non-phosphorylated. According to yet another preferred embodiment of the invention, the 5' most ribonucleotide in the sense strand is modified to abolish any possibility of *in vivo* 5'-phosphorylation.

Any siRNA sequence can be prepared having any of the modifications / structures disclosed herein. The compound comprising a combination of sequence plus structure is useful in the treatment of the conditions disclosed herein.

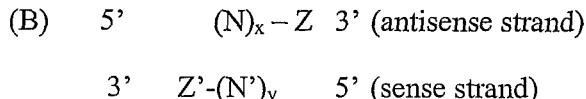
Structural motifs

According to the present invention the siRNA compounds are chemically and/or structurally modified according to one of the following modifications set forth in
20 Structures (A)-(P) or as tandem siRNA or RNAstar.

In one aspect the present invention provides a compound set forth as Structure (A):

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

wherein each of $(N)_x$ and $(N')_y$ is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;


wherein each of x and y is an integer between 18 and 40:

wherein each of Z and Z' may be present or absent, but if present is 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

wherein the sequence of $(N')_y$ is a sequence substantially complementary to $(N)_x$; and

wherein the sequence of $(N)_x$ comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In certain embodiments the present invention provides a compound having structure (B)

10

wherein each of $(N)_x$ and $(N')_y$ is an oligomer in which each consecutive N or N' is an unmodified ribonucleotide or a modified ribonucleotide joined to the next N or N' by a covalent bond;

wherein each of Z and Z' may be present or absent, but if present is 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

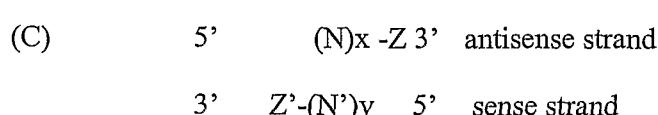
wherein each of x and $y = 19, 21$ or 23 and $(N)_x$ and $(N')_y$ are fully complementary

wherein alternating ribonucleotides in each of $(N)_x$ and $(N')_y$ are modified to result in a 2'-O-methyl modification in the sugar residue of the ribonucleotides;

wherein the sequence of $(N')_y$ is a sequence substantially complementary to $(N)_x$; and

wherein the sequence of $(N)_x$ comprises an antisense sequence substantially complementary to the substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In some embodiments each of $(N)_x$ and $(N')_y$ is independently phosphorylated or non-phosphorylated at the 3' and 5' termini.


25 In certain embodiments wherein each of x and $y = 19$ or 23 , each N at the 5' and 3' termini of $(N)_x$ is modified; and each N' at the 5' and 3' termini of $(N')_y$ is unmodified.

In certain embodiments wherein each of x and $y = 21$, each N at the 5' and 3' termini of $(N)_x$ is unmodified; and each N' at the 5' and 3' termini of $(N')_y$ is modified.

30 In particular embodiments, when x and $y = 19$, the siRNA is modified such that a 2'-O-methyl (2'-OMe) group is present on the first, third, fifth, seventh, ninth, eleventh,

thirteenth, fifteenth, seventeenth and nineteenth nucleotide of the antisense strand (N)_x, and whereby the very same modification, i. e. a 2'-OMe group, is present at the second, fourth, sixth, eighth, tenth, twelfth, fourteenth, sixteenth and eighteenth nucleotide of the sense strand (N')_y. In various embodiments these particular siRNA compounds are blunt ended at both termini.

5 In some embodiments, the present invention provides a compound having Structure (C):

10 wherein each of N and N' is a nucleotide independently selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

wherein each of (N)x and (N')y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

15 wherein in (N)x the nucleotides are unmodified or (N)x comprises alternating modified ribonucleotides and unmodified ribonucleotides; each modified ribonucleotide being modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle position of (N)x being modified or unmodified preferably unmodified;

20 wherein (N')y comprises unmodified ribonucleotides further comprising one modified nucleotide at a terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a mirror nucleotide, a bicyclic nucleotide, a 2'-sugar modified nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

25 wherein if more than one nucleotide is modified in (N')y, the modified nucleotides may be consecutive;

wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

30 wherein the sequence of (N')y comprises a sequence substantially complementary to (N)x; and wherein (N)x comprises an antisense sequence substantially complementary to from

about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In particular embodiments, $x=y=19$ and in $(N)x$ each modified ribonucleotide is modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle of $(N)x$ is unmodified. Accordingly, in a compound wherein $x=19$, $(N)x$ comprises 2'-O-methyl sugar modified ribonucleotides at positions 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 5. In other embodiments, $(N)x$ comprises 10 2'O Me modified ribonucleotides at positions 2, 4, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 6. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 15. In other embodiments, 15 $(N)x$ comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 14. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 1, 2, 3, 7, 9, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 5. In 20 other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 1, 2, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 6. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 1, 2, 3, 5, 7, 9, 11, 13, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for 25 example in position 15. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 1, 2, 3, 5, 7, 9, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 14. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 7, 9, 11, 13, 15, 17 and 19 and may further comprise at least one abasic 30 or inverted abasic unconventional moiety for example in position 5. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 1, 2, 4, 6, 7, 9, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 5. In other embodiments, $(N)x$ comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 14, 16, 17 and 19 and may

further comprise at least one abasic or inverted abasic unconventional moiety for example in position 15. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 1, 2, 3, 5, 7, 9, 11, 13, 14, 16, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 15. In other 5 embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 7. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example 10 in position 8. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 9. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example 15 in position 10. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 11. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in 20 position 12. In other embodiments, (N)x comprises 2’O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 15, 17 and 19 and may further comprise at least one abasic or inverted abasic unconventional moiety for example in position 13.

In yet other embodiments (N)x comprises at least one nucleotide mismatch relative to the 25 one of the genes. In certain preferred embodiments, (N)x comprises a single nucleotide mismatch on position 5, 6, or 14. In one embodiment of Structure (C), at least two nucleotides at either or both the 5’ and 3’ termini of (N’y are joined by a 2’-5’ phosphodiester bond. In certain preferred embodiments x=y=19 or x=y=23; in (N)x the nucleotides alternate between modified ribonucleotides and unmodified ribonucleotides, 30 each modified ribonucleotide being modified so as to have a 2’-O-methyl on its sugar and the ribonucleotide located at the middle of (N)x being unmodified; and three nucleotides at the 3’ terminus of (N’y are joined by two 2’-5’ phosphodiester bonds (set forth herein as Structure I). In other preferred embodiments, x=y=19 or x=y=23; in (N)x the nucleotides alternate between modified ribonucleotides and unmodified

ribonucleotides, each modified ribonucleotide being modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle of (N)^x being unmodified; and four consecutive nucleotides at the 5' terminus of (N')^y are joined by three 2'-5' phosphodiester bonds. In a further embodiment, an additional nucleotide located in the middle position of (N)^y may be modified with 2'-O-methyl on its sugar. In another preferred embodiment, in (N)^x the nucleotides alternate between 2'-O-methyl modified ribonucleotides and unmodified ribonucleotides, and in (N')^y four consecutive nucleotides at the 5' terminus are joined by three 2'-5' phosphodiester bonds and the 5' terminal nucleotide or two or three consecutive nucleotides at the 5' terminus comprise 10 3'-O-methyl modifications.

In certain preferred embodiments of Structure C, x=y=19 and in (N')^y, at least one position comprises an abasic or inverted abasic unconventional moiety, preferably five positions comprises an abasic or inverted abasic unconventional moieties. In various embodiments, the following positions comprise an abasic or inverted abasic: positions 1 15 and 16-19, positions 15-19, positions 1-2 and 17-19, positions 1-3 and 18-19, positions 1-4 and 19 and positions 1-5. (N')^y may further comprise at least one LNA nucleotide.

In certain preferred embodiments of Structure C, x=y=19 and in (N')^y the nucleotide in at least one position comprises a *mirror nucleotide*, a deoxyribonucleotide and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide bond;

20 In certain preferred embodiments of Structure C, x=y=19 and (N')^y comprises a mirror nucleotide. In various embodiments the mirror nucleotide is an L-DNA nucleotide. In certain embodiments the L-DNA is L-deoxyribocytidine. In some embodiments (N')^y comprises L-DNA at position 18. In other embodiments (N')^y comprises L-DNA at positions 17 and 18. In certain embodiments (N')^y comprises L-DNA substitutions at 25 positions 2 and at one or both of positions 17 and 18. In certain embodiments (N')^y further comprises a 5' terminal cap nucleotide such as 5'-O-methyl DNA or an abasic or inverted abasic moiety as an overhang.

In yet other embodiments (N')^y comprises a DNA at position 15 and L-DNA at one or both of positions 17 and 18. In that structure, position 2 may further comprise an L-DNA or an abasic unconventional moiety.

Other embodiments of Structure C are envisaged wherein x=y=21 or wherein x=y=23; in these embodiments the modifications for (N')^y discussed above instead of being on positions 15, 16, 17, 18 are on positions 17, 18, 19, 20 for 21 mer and on positions 19,

20, 21, 22 for 23 mer ; similarly the modifications at one or both of positions 17 and 18 are on one or both of positions 19 or 20 for the 21 mer and one or both of positions 21 and 22 for the 23 mer. All modifications in the 19 mer are similarly adjusted for the 21 and 23 mer.

5 According to various embodiments of Structure (C), in (N')y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides at the 3' terminus are linked by 2'-5' internucleotide linkages. In one preferred embodiment, four consecutive nucleotides at the 3' terminus of (N')y are joined by three 2'-5' phosphodiester bonds, wherein one or more of the 2'-5' nucleotides which form the 2'-5' phosphodiester bonds further 10 comprises a 3'-O-methyl sugar modification. Preferably the 3' terminal nucleotide of (N')y comprises a 2'-O-methyl sugar modification. In certain preferred embodiments of Structure C, x=y=19 and in (N')y two or more consecutive nucleotides at positions 15, 16, 17, 18 and 19 comprise a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide bond. In various embodiments the nucleotide forming the 2'-5' 15 internucleotide bond comprises a 3' deoxyribose nucleotide or a 3' methoxy nucleotide. In some embodiments the nucleotides at positions 17 and 18 in (N')y are joined by a 2'-5' internucleotide bond. In other embodiments the nucleotides at positions 16, 17, 18, 16-17, 17-18, or 16-18 in (N')y are joined by a 2'-5' internucleotide bond.

20 In certain embodiments (N')y comprises an L-DNA at position 2 and 2'-5' internucleotide bonds at positions 16-17, 17-18, or 16-18. In certain embodiments (N')y comprises 2'-5' internucleotide bonds at positions 16-17, 17-18, or 16-18 and a 5' terminal cap nucleotide.

25 According to various embodiments of Structure (C), in (N')y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides at either terminus or 2-8 modified nucleotides at each of the 5' and 3' termini are independently mirror nucleotides. In some embodiments the mirror nucleotide is an L-ribonucleotide. In other embodiments the mirror nucleotide is an L-deoxyribonucleotide. The mirror nucleotide may further be modified at the sugar or base moiety or in an internucleotide linkage.

30 In one preferred embodiment of Structure (C), the 3' terminal nucleotide or two or three consecutive nucleotides at the 3' terminus of (N')y are L-deoxyribonucleotides.

In other embodiments of Structure (C), in (N')y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides at either terminus or 2-8 modified nucleotides at each of the 5' and 3' termini are independently 2' sugar modified nucleotides. In some embodiments

the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar modification comprises a methoxy moiety (2'-OMe). In one series of preferred embodiments, three, four or five consecutive nucleotides at the 5' terminus of (N')y comprise the 2'-OMe modification. In another 5 preferred embodiment, three consecutive nucleotides at the 3' terminus of (N')y comprise the 2'-O-methyl modification.

In some embodiments of Structure (C), in (N')y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides at either or 2-8 modified nucleotides at each of the 5' and 3' termini are independently bicyclic nucleotide. In various embodiments the bicyclic 10 nucleotide is a locked nucleic acid (LNA). A 2'-O, 4'-C-ethylene-bridged nucleic acid (ENA) is a species of LNA (see below).

In various embodiments (N')y comprises modified nucleotides at the 5' terminus or at both the 3' and 5' termini.

In some embodiments of Structure (C), at least two nucleotides at either or both the 5' and 15 3' termini of (N')y are joined by P-ethoxy backbone modifications. In certain preferred embodiments x=y=19 or x=y=23; in (N)x the nucleotides alternate between modified ribonucleotides and unmodified ribonucleotides, each modified ribonucleotide being modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle position of (N)x being unmodified; and four consecutive nucleotides at the 3' 20 terminus or at the 5' terminus of (N')y are joined by three P-ethoxy backbone modifications. In another preferred embodiment, three consecutive nucleotides at the 3' terminus or at the 5' terminus of (N')y are joined by two P-ethoxy backbone modifications.

In some embodiments of Structure (C), in (N')y 2, 3, 4, 5, 6, 7 or 8, consecutive 25 ribonucleotides at each of the 5' and 3' termini are independently mirror nucleotides, nucleotides joined by 2'-5' phosphodiester bond, 2' sugar modified nucleotides or bicyclic nucleotide. In one embodiment, the modification at the 5' and 3' termini of (N')y is identical. In one preferred embodiment, four consecutive nucleotides at the 5' terminus of (N')y are joined by three 2'-5' phosphodiester bonds and three consecutive 30 nucleotides at the 3' terminus of (N')y are joined by two 2'-5' phosphodiester bonds. In another embodiment, the modification at the 5' terminus of (N')y is different from the modification at the 3' terminus of (N')y. In one specific embodiment, the modified nucleotides at the 5' terminus of (N')y are mirror nucleotides and the modified

nucleotides at the 3' terminus of (N')y are joined by 2'-5' phosphodiester bond. In another specific embodiment, three consecutive nucleotides at the 5' terminus of (N')y are LNA nucleotides and three consecutive nucleotides at the 3' terminus of (N')y are joined by two 2'-5' phosphodiester bonds. In (N)x the nucleotides alternate between modified ribonucleotides and unmodified ribonucleotides, each modified ribonucleotide being modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle of (N)x being unmodified, or the ribonucleotides in (N)x being unmodified

In another embodiment of Structure (C), the present invention provides a compound wherein $x=y=19$ or $x=y=23$; in $(N)x$ the nucleotides alternate between modified ribonucleotides and unmodified ribonucleotides, each modified ribonucleotide being modified so as to have a 2'-O-methyl on its sugar and the ribonucleotide located at the middle of $(N)x$ being unmodified; three nucleotides at the 3' terminus of $(N')y$ are joined by two 2'-5' phosphodiester bonds and three nucleotides at the 5' terminus of $(N')y$ are LNA such as ENA.

15 In another embodiment of Structure (C), five consecutive nucleotides at the 5' terminus of (N')^y comprise the 2'-O-methyl sugar modification and two consecutive nucleotides at the 3' terminus of (N')^y are L-DNA.

In yet another embodiment, the present invention provides a compound wherein $x=y=19$ or $x=y=23$; $(N)x$ consists of unmodified ribonucleotides; three consecutive nucleotides at the 3' terminus of $(N')y$ are joined by two 2'-5' phosphodiester bonds and three consecutive nucleotides at the 5' terminus of $(N')y$ are LNA such as ENA.

According to other embodiments of Structure (C), in $(N')^y$ the 5' or 3' terminal nucleotide, or 2, 3, 4, 5 or 6 consecutive nucleotides at either termini or 1-4 modified nucleotides at each of the 5' and 3' termini are independently phosphonocarboxylate or phosphinocarboxylate nucleotides (PACE nucleotides). In some embodiments the PACE nucleotides are deoxyribonucleotides. In some preferred embodiments in $(N')^y$, 1 or 2 consecutive nucleotides at each of the 5' and 3' termini are PACE nucleotides.

In some embodiments, the present invention provides a compound having Structure (D):

(D) 5' (N)x -Z 3' antisense strand
 3' Z'-(N')y 5' sense strand

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide or a modified deoxyribonucleotide;

5 wherein each of (N)_x and (N')_y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

10 wherein (N)_x comprises unmodified ribonucleotides further comprising one modified nucleotide at the 3' terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

15 wherein (N')_y comprises unmodified ribonucleotides further comprising one modified nucleotide at the 5' terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

20 wherein in each of (N)_x and (N')_y modified and unmodified nucleotides are not alternating;

wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

25 wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

30 In one embodiment of Structure (D), x=y=19 or x=y=23; (N)_x comprises unmodified ribonucleotides in which two consecutive nucleotides linked by one 2'-5' internucleotide linkage at the 3' terminus; and (N')_y comprises unmodified ribonucleotides in which two consecutive nucleotides linked by one 2'-5' internucleotide linkage at the 5' terminus.

In some embodiments, $x=y=19$ or $x=y=23$; $(N)x$ comprises unmodified ribonucleotides in which three consecutive nucleotides at the 3' terminus are joined together by two 2'-5' phosphodiester bonds; and $(N')y$ comprises unmodified ribonucleotides in which four consecutive nucleotides at the 5' terminus are joined together by three 2'-5' phosphodiester bonds (set forth herein as Structure II).

According to various embodiments of Structure (D) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of $(N)x$ and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of $(N')y$ 10 are linked by 2'-5' internucleotide linkages.

According to one preferred embodiment of Structure (D), four consecutive nucleotides at the 5' terminus of $(N')y$ are joined by three 2'-5' phosphodiester bonds and three consecutive nucleotides at the 3' terminus of $(N')x$ are joined by two 2'-5' phosphodiester bonds. Three nucleotides at the 5' terminus of $(N')y$ and two nucleotides at the 3' 15 terminus of $(N')x$ may also comprise 3'-O-methyl modifications.

According to various embodiments of Structure (D), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides starting at the ultimate or penultimate position of the 3' terminus of $(N)x$ and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of $(N')y$ 20 are independently mirror nucleotides. In some embodiments the mirror is an L-ribonucleotide. In other embodiments the mirror nucleotide is L-deoxyribonucleotide.

In other embodiments of Structure (D), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of $(N)x$ and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides 25 starting at the ultimate or penultimate position of the 5' terminus of $(N')y$ are independently 2' sugar modified nucleotides. In some embodiments the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar modification comprises a methoxy moiety (2'-OMe).

In one preferred embodiment of Structure (D), five consecutive nucleotides at the 5' terminus of $(N')y$ comprise a 2'OMe sugar modification and five consecutive nucleotides at the 3' terminus of $(N')x$ comprise the 2'OMe sugar modification. In another preferred embodiment of Structure (D), ten consecutive nucleotides at the 5' terminus of $(N')y$ 30 comprise the 2'OMe sugar modification and five consecutive nucleotides at the 3'

terminus of (N')x comprise the 2'OMe sugar modification. In another preferred embodiment of Structure (D), thirteen consecutive nucleotides at the 5' terminus of (N')y comprise the 2'OMe sugar modification and five consecutive nucleotides at the 3' terminus of (N')x comprise the 2'-O-methyl modification.

5 In some embodiments of Structure (D), in (N')y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of (N')x and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of (N')y are independently a bicyclic nucleotide. In various embodiments the bicyclic nucleotide is 10 a locked nucleic acid (LNA) such as a 2'-O, 4'-C-ethylene-bridged nucleic acid (ENA).

In various embodiments of Structure (D), (N')y comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

15 In various embodiments of Structure (D), (N')x comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

In embodiments wherein each of the 3' and 5' termini of the same strand comprises a 20 modified nucleotide, the modification at the 5' and 3' termini is identical. In another embodiment, the modification at the 5' terminus is different from the modification at the 3' terminus of the same strand. In one specific embodiment, the modified nucleotides at the 5' terminus are mirror nucleotides and the modified nucleotides at the 3' terminus of the same strand are joined by 2'-5' phosphodiester bond.

25 In one specific embodiment of Structure (D), five consecutive nucleotides at the 5' terminus of (N')y comprise the 2'OMe sugar modification and two consecutive nucleotides at the 3' terminus of (N')y are L-DNA. In addition, the compound may further comprise five consecutive 2'OMe sugar modified nucleotides at the 3' terminus of (N')x.

30 In various embodiments of Structure (D), the modified nucleotides in (N')x are different from the modified nucleotides in (N')y. For example, the modified nucleotides in (N')x are 2' sugar modified nucleotides and the modified nucleotides in (N')y are nucleotides

linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)_x are mirror nucleotides and the modified nucleotides in (N')_y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)_x are nucleotides linked by 2'-5' internucleotide linkages and the modified nucleotides in (N')_y are mirror nucleotides.

In additional embodiments, the present invention provides a compound having Structure (E):

10 wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide or a modified deoxyribonucleotide;

15 wherein each of (N)_x and (N')_y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

20 wherein (N)_x comprises unmodified ribonucleotides further comprising one modified nucleotide at the 5' terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

25 wherein (N')_y comprises unmodified ribonucleotides further comprising one modified nucleotide at the 3' terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

wherein in each of (N)_x and (N')_y modified and unmodified nucleotides are not alternating;

wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

5 wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In certain preferred embodiments the ultimate nucleotide at the 5' terminus of (N)_x is unmodified.

10 According to various embodiments of Structure (E) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of (N)_x, preferably starting at the 5' penultimate position, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of (N')_y are linked by 2'-5' internucleotide linkages.

15 According to various embodiments of Structure (E), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides starting at the ultimate or penultimate position of the 5' terminus of (N)_x, preferably starting at the 5' penultimate position, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides starting at the ultimate or penultimate position of the 3' terminus of (N')_y are independently mirror nucleotides. In some 20 embodiments the mirror is an L-ribonucleotide. In other embodiments the mirror nucleotide is L-deoxyribonucleotide.

In other embodiments of Structure (E), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of (N)_x, preferably starting at the 5' penultimate position, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of (N')_y are independently 2' sugar modified nucleotides. In some embodiments the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar modification comprises a methoxy moiety (2'-OMe).

30 In some embodiments of Structure (E), in (N')_y 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 5' terminus of (N)_x, preferably starting at the 5' penultimate position, and 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13 or 14 consecutive ribonucleotides starting at the ultimate or penultimate position of the 3' terminus of (N')y are independently a bicyclic nucleotide. In various embodiments the bicyclic nucleotide is a locked nucleic acid (LNA) such as a 2'-O, 4'-C-ethylene-bridged nucleic acid (ENA).

5 In various embodiments of Structure (E), (N')y comprises modified nucleotides selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, a nucleotide joined to an adjacent nucleotide by a P-alkoxy backbone modification or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage
10 at the 3' terminus or at each of the 3' and 5' termini.

In various embodiments of Structure (E), (N)x comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage at the
15 5' terminus or at each of the 3' and 5' termini.

In one embodiment where both 3' and 5' termini of the same strand comprise a modified nucleotide, the modification at the 5' and 3' termini is identical. In another embodiment, the modification at the 5' terminus is different from the modification at the 3' terminus of the same strand. In one specific embodiment, the modified nucleotides at the 5' terminus
20 are mirror nucleotides and the modified nucleotides at the 3' terminus of the same strand are joined by 2'-5' phosphodiester bond.

In various embodiments of Structure (E), the modified nucleotides in (N)x are different from the modified nucleotides in (N')y. For example, the modified nucleotides in (N)x are 2' sugar modified nucleotides and the modified nucleotides in (N')y are nucleotides
25 linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x are mirror nucleotides and the modified nucleotides in (N')y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x are nucleotides linked by 2'-5' internucleotide linkages and the modified nucleotides in (N')y are mirror nucleotides.

30 In additional embodiments, the present invention provides a compound having Structure (F):

(F) 5' (N)x -Z 3' antisense strand

3' Z'-(N')y 5' sense strand

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide or a modified deoxyribonucleotide;

5 wherein each of (N)x and (N')y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

wherein each of (N)x and (N')y comprise unmodified ribonucleotides in which each of (N)x and (N')y independently comprise one modified nucleotide at the 3' terminal or 10 penultimate position wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, a nucleotide joined to an adjacent nucleotide by a P-alkoxy backbone modification or a nucleotide joined to an adjacent nucleotide by a 2'-5' phosphodiester bond;

15 wherein in each of (N)x and (N')y modified and unmodified nucleotides are not alternating;

wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

20 wherein the sequence of (N')y is a sequence substantially complementary to (N)x; and wherein the sequence of (N)x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

25 In some embodiments of Structure (F), x=y=19 or x=y=23; (N')y comprises unmodified ribonucleotides in which two consecutive nucleotides at the 3' terminus comprises two consecutive mirror deoxyribonucleotides; and (N)x comprises unmodified ribonucleotides in which one nucleotide at the 3' terminus comprises a mirror deoxyribonucleotide (set forth as Structure III).

According to various embodiments of Structure (F) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 30 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 3' termini of (N)x and (N')y are linked by 2'-5' internucleotide linkages.

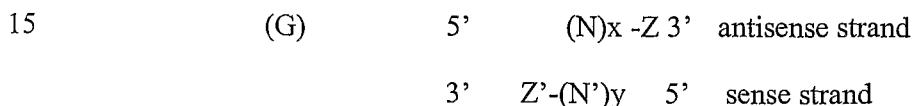
According to one preferred embodiment of Structure (F), three consecutive nucleotides at the 3' terminus of (N')y are joined by two 2'-5' phosphodiester bonds and three consecutive nucleotides at the 3' terminus of (N')x are joined by two 2'-5' phosphodiester bonds.

5 According to various embodiments of Structure (F), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides independently beginning at the ultimate or penultimate position of the 3' termini of (N)x and (N')y are independently mirror nucleotides. In some embodiments the mirror nucleotide is an L-ribonucleotide. In other embodiments the mirror nucleotide is an L-deoxyribonucleotide.

10 In other embodiments of Structure (F), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 3' termini of (N)x and (N')y are independently 2' sugar modified nucleotides. In some embodiments the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar 15 modification comprises a methoxy moiety (2'-OMe).

In some embodiments of Structure (F), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 3' termini of (N)x and (N')y are independently a bicyclic nucleotide. In various embodiments the bicyclic nucleotide is a locked nucleic acid (LNA) such as a 2'-O, 4'-C-ethylene-bridged nucleic acid (ENA).

20 In various embodiments of Structure (F), (N')y comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage at the 25 3' terminus or at both the 3' and 5' termini.


In various embodiments of Structure (F), (N)x comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage at the 30 3' terminus or at each of the 3' and 5' termini.

In one embodiment where each of 3' and 5' termini of the same strand comprise a modified nucleotide, the modification at the 5' and 3' termini is identical. In another

embodiment, the modification at the 5' terminus is different from the modification at the 3' terminus of the same strand. In one specific embodiment, the modified nucleotides at the 5' terminus are mirror nucleotides and the modified nucleotides at the 3' terminus of the same strand are joined by 2'-5' phosphodiester bond.

5 In various embodiments of Structure (F), the modified nucleotides in (N)x are different from the modified nucleotides in (N')y. For example, the modified nucleotides in (N)x are 2' sugar modified nucleotides and the modified nucleotides in (N')y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x are mirror nucleotides and the modified nucleotides in (N')y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x 10 are nucleotides linked by 2'-5' internucleotide linkages and the modified nucleotides in (N')y are mirror nucleotides.

In additional embodiments, the present invention provides a compound having Structure (G):

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide or a modified deoxyribonucleotide;

20 wherein each of (N)x and (N')y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

wherein each of (N)x and (N')y comprise unmodified ribonucleotides in which each of (N)x and (N')y independently comprise one modified nucleotide at the 5' terminal or 25 penultimate position wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, a nucleotide joined to an adjacent nucleotide by a P-alkoxy backbone modification or a nucleotide joined to an adjacent nucleotide by a 2'-5' phosphodiester bond;

wherein for (N)x the modified nucleotide is preferably at penultimate position of the 5' 30 terminal;

wherein in each of (N)_x and (N')_y modified and unmodified nucleotides are not alternating;

5 wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

10 In some embodiments of Structure (G), x=y=19 or x=y=23.

According to various embodiments of Structure (G) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 5' termini of (N)_x and (N')_y are linked by 2'-5' internucleotide linkages. For (N)_x the modified nucleotides preferably starting at the penultimate position of the 5' 15 terminal.

According to various embodiments of Structure (G), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides independently beginning at the ultimate or penultimate position of the 5' termini of (N)_x and (N')_y are independently mirror nucleotides. In some embodiments the mirror nucleotide is an L-ribonucleotide. In other embodiments the 20 mirror nucleotide is an L-deoxyribonucleotide. For (N)_x the modified nucleotides preferably starting at the penultimate position of the 5' terminal.

In other embodiments of Structure (G), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 5' termini of (N)_x and (N')_y are independently 2' sugar modified 25 nucleotides. In some embodiments the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar modification comprises a methoxy moiety (2'-OMe). In some preferred embodiments the consecutive modified nucleotides preferably begin at the penultimate position of the 5' terminus of (N)_x.

30 In one preferred embodiment of Structure (G), five consecutive ribonucleotides at the 5' terminus of (N')_y comprise a 2'OMe sugar modification and one ribonucleotide at the 5' penultimate position of (N')_x comprises a 2'OMe sugar modification. In another

preferred embodiment of Structure (G), five consecutive ribonucleotides at the 5' terminus of (N')y comprise 2'OMe sugar modification and two consecutive ribonucleotides at the 5' terminal position of (N')x comprise a 2'OMe sugar modification.

In some embodiments of Structure (G), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 5' termini of (N)x and (N')y are bicyclic nucleotides. In various embodiments the bicyclic nucleotide is a locked nucleic acid (LNA) such as a 2'-O, 4'-C-ethylene-bridged nucleic acid (ENA). In some preferred embodiments the consecutive modified nucleotides preferably begin at the penultimate position of the 5' terminus of (N)x.

In various embodiments of Structure (G), (N')y comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage at the 5' terminus or at each of the 3' and 5' termini.

In various embodiments of Structure (G), (N)x comprises a modified nucleotide selected from a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage at the 5' terminus or at each of the 3' and 5' termini.

In one embodiment where each of 3' and 5' termini of the same strand comprise a modified nucleotide, the modification at the 5' and 3' termini is identical. In another embodiment, the modification at the 5' terminus is different from the modification at the 3' terminus of the same strand. In one specific embodiment, the modified nucleotides at the 5' terminus are mirror nucleotides and the modified nucleotides at the 3' terminus of the same strand are joined by 2'-5' phosphodiester bond. In various embodiments of Structure (G), the modified nucleotides in (N)x are different from the modified nucleotides in (N')y. For example, the modified nucleotides in (N)x are 2' sugar modified nucleotides and the modified nucleotides in (N')y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x are mirror nucleotides and the modified nucleotides in (N')y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)x are

nucleotides linked by 2'-5' internucleotide linkages and the modified nucleotides in (N')y are mirror nucleotides.

In additional embodiments, the present invention provides a compound having Structure (H):

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide or a modified deoxyribonucleotide;

10 wherein each of (N)_x and (N')_y is an oligomer in which each consecutive nucleotide is joined to the next nucleotide by a covalent bond and each of x and y is an integer between 18 and 40;

wherein (N)x comprises unmodified ribonucleotides further comprising one modified nucleotide at the 3' terminal or penultimate position or the 5' terminal or penultimate position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

20 wherein (N')y comprises unmodified ribonucleotides further comprising one modified nucleotide at an internal position, wherein the modified nucleotide is selected from the group consisting of a bicyclic nucleotide, a 2' sugar modified nucleotide, a mirror nucleotide, an altritol nucleotide, or a nucleotide joined to an adjacent nucleotide by an internucleotide linkage selected from a 2'-5' phosphodiester bond, a P-alkoxy linkage or a PACE linkage;

25 wherein in each of (N)^x and (N')^y modified and unmodified nucleotides are not
alternating;

wherein each of Z and Z' may be present or absent, but if present is 1-5 deoxyribonucleotides covalently attached at the 3' terminus of any oligomer to which it is attached;

30 wherein the sequence of $(N')_y$ is a sequence substantially complementary to $(N)_x$; and
wherein the sequence of $(N)_x$ comprises an antisense sequence substantially

complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In one embodiment of Structure (H), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 3' terminus or the 5' terminus or both termini of (N)_x are independently 2' sugar modified nucleotides, bicyclic nucleotides, mirror nucleotides, altritol nucleotides or nucleotides joined to an adjacent nucleotide by a 2'-5' phosphodiester bond and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive internal ribonucleotides in (N')_y are independently 2' sugar modified nucleotides, bicyclic nucleotides, mirror nucleotides, altritol nucleotides or nucleotides joined to an adjacent nucleotide by a 2'-5' phosphodiester bond. In some embodiments the 2' sugar modification comprises the presence of an amino, a fluoro, an alkoxy or an alkyl moiety. In certain embodiments the 2' sugar modification comprises a methoxy moiety (2'-OMe).

In another embodiment of Structure (H), 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive ribonucleotides independently beginning at the ultimate or penultimate position of the 3' terminus or the 5' terminus or 2-8 consecutive nucleotides at each of 5' and 3' termini of (N')_y are independently 2' sugar modified nucleotides, bicyclic nucleotides, mirror nucleotides, altritol nucleotides or nucleotides joined to an adjacent nucleotide by a 2'-5' phosphodiester bond, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive internal ribonucleotides in (N)_x are independently 2' sugar modified nucleotides, bicyclic nucleotides, mirror nucleotides, altritol nucleotides or nucleotides joined to an adjacent nucleotide by a 2'-5' phosphodiester bond.

In one embodiment wherein each of 3' and 5' termini of the same strand comprises a modified nucleotide, the modification at the 5' and 3' termini is identical. In another embodiment, the modification at the 5' terminus is different from the modification at the 3' terminus of the same strand. In one specific embodiment, the modified nucleotides at the 5' terminus are mirror nucleotides and the modified nucleotides at the 3' terminus of the same strand are joined by 2'-5' phosphodiester bond.

In various embodiments of Structure (H), the modified nucleotides in (N)_x are different from the modified nucleotides in (N')_y. For example, the modified nucleotides in (N)_x are 2' sugar modified nucleotides and the modified nucleotides in (N')_y are nucleotides linked by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)_x are mirror nucleotides and the modified nucleotides in (N')_y are nucleotides linked

by 2'-5' internucleotide linkages. In another example, the modified nucleotides in (N)_x are nucleotides linked by 2'-5' internucleotide linkages and the modified nucleotides in (N')_y are mirror nucleotides.

In one preferred embodiment of Structure (H), x=y=19; three consecutive ribonucleotides 5 at the 9-11 nucleotide positions 9-11 of (N')_y comprise 2'OMe sugar modification and five consecutive ribonucleotides at the 3' terminal position of (N')_x comprise 2'OMe sugar modification.

For all the above Structures (A)-(H), in various embodiments x = y and each of x and y is 19, 20, 21, 22 or 23. In certain embodiments, x=y=19. In yet other embodiments x=y=23.

10 In additional embodiments the compound comprises modified ribonucleotides in alternating positions wherein each N at the 5' and 3' termini of (N)_x are modified in their sugar residues and the middle ribonucleotide is not modified, e.g. ribonucleotide in position 10 in a 19-mer strand, position 11 in a 21 mer and position 12 in a 23-mer strand.

15 In some embodiments where x = y =21 or x = y =23 the position of modifications in the 19 mer are adjusted for the 21 and 23 mers with the proviso that the middle nucleotide of the antisense strand is preferably not modified.

In some embodiments, neither (N)_x nor (N')_y are phosphorylated at the 3' and 5' termini. In other embodiments either or both (N)_x and (N')_y are phosphorylated at the 3' termini.

20 In yet another embodiment, either or both (N)_x and (N')_y are phosphorylated at the 3' termini using non-cleavable phosphate groups. In yet another embodiment, either or both (N)_x and (N')_y are phosphorylated at the terminal 2' termini position using cleavable or non-cleavable phosphate groups. These particular siRNA compounds are also blunt ended and are non-phosphorylated at the termini; however, comparative experiments have 25 shown that siRNA compounds phosphorylated at one or both of the 3'-termini have similar activity *in vivo* compared to the non-phosphorylated compounds.

In certain embodiments for all the above-mentioned Structures, the compound is blunt ended, for example wherein both Z and Z' are absent. In an alternative embodiment, the compound comprises at least one 3' overhang, wherein at least one of Z or Z' is present.

30 Z and Z' independently comprises one or more covalently linked modified or non-modified nucleotides, for example inverted dT or dA; dT, LNA, mirror nucleotide and the like. In some embodiments each of Z and Z' are independently selected from dT and

dTdT. siRNA in which Z and/or Z' is present have similar activity and stability as siRNA in which Z and Z' are absent.

In certain embodiments for all the above-mentioned Structures, the compound comprises one or more phosphonocarboxylate and /or phosphinocarboxylate nucleotides (PACE nucleotides). In some embodiments the PACE nucleotides are deoxyribonucleotides and the phosphinocarboxylate nucleotides are phosphinoacetate nucleotides. Examples of PACE nucleotides and analogs are disclosed in US Patent Nos. 6,693,187 and 7,067,641, both incorporated herein by reference.

In certain embodiments for all the above-mentioned Structures, the compound comprises one or more locked nucleic acids (LNA) also defined as bridged nucleic acids or bicyclic nucleotides. Preferred locked nucleic acids are 2'-O, 4'-C-ethylene nucleosides (ENA) or 2'-O, 4'-C-methylene nucleosides. Other examples of LNA and ENA nucleotides are disclosed in WO 98/39352, WO 00/47599 and WO 99/14226, all incorporated herein by reference.

15 In certain embodiments for all the above-mentioned Structures, the compound comprises one or more altritol monomers (nucleotides), also defined as 1,5 anhydro-2-deoxy-D-altrito-hexitol (see for example, Allart, et al., 1998. *Nucleosides & Nucleotides* 17:1523-1526; Herdewijn et al., 1999. *Nucleosides & Nucleotides* 18:1371-1376; Fisher et al., 2007, *NAR* 35(4):1064-1074; all incorporated herein by reference).

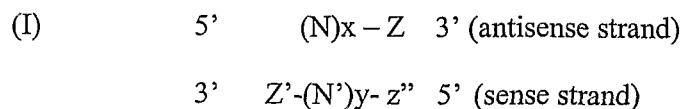
20 The present invention explicitly excludes compounds in which each of N and /or N' is a deoxyribonucleotide (D-A, D-C, D-G, D-T). In certain embodiments (N)^x and (N')^y may comprise independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or more deoxyribonucleotides. In certain embodiments the present invention provides a compound wherein each of N is an unmodified ribonucleotide and the 3' terminal nucleotide or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides at the 3' terminus of (N')^y are deoxyribonucleotides. In yet other embodiments each of N is an unmodified ribonucleotide and the 5' terminal nucleotide or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 consecutive nucleotides at the 5' terminus of (N')^y are deoxyribonucleotides. In further embodiments the 5' terminal nucleotide or 2, 3, 4, 5, 6, 7, 8, or 9 consecutive nucleotides at the 5' terminus and 1, 2, 3, 4, 5, or 6 consecutive nucleotides at the 3' termini of (N)^x are deoxyribonucleotides and each of N' is an unmodified ribonucleotide. In yet further embodiments (N)^x comprises unmodified ribonucleotides and 1 or 2, 3 or 4 consecutive deoxyribonucleotides independently at each of the 5' and 3' termini and 1 or 2, 3, 4, 5 or 6 consecutive

deoxyribonucleotides in internal positions; and each of N' is an unmodified ribonucleotide. In certain embodiments the 3' terminal nucleotide or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13 or 14 consecutive nucleotides at the 3' terminus of (N')y and the terminal 5' nucleotide or 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 13 or 14 consecutive nucleotides at the 5' terminus of (N)x are deoxyribonucleotides. The present invention excludes compounds in which each of N and/or N' is a deoxyribonucleotide. In some embodiments the 5' terminal nucleotide of N or 2 or 3 consecutive of N and 1,2, or 3 of N' is a deoxyribonucleotide. Certain examples of active DNA/RNA siRNA chimeras are disclosed in US patent publication 2005/0004064, and Ui-Tei, 2008 (NAR 36(7):2136-10 2151) incorporated herein by reference in their entirety.

Unless otherwise indicated, in preferred embodiments of the structures discussed herein the covalent bond between each consecutive N or N' is a phosphodiester bond.

An additional novel molecule provided by the present invention is an oligonucleotide comprising consecutive nucleotides wherein a first segment of such nucleotides encode a first inhibitory RNA molecule, a second segment of such nucleotides encode a second inhibitory RNA molecule, and a third segment of such nucleotides encode a third inhibitory RNA molecule. Each of the first, the second and the third segment may comprise one strand of a double stranded RNA and the first, second and third segments may be joined together by a linker. Further, the oligonucleotide may comprise three 15 20 double stranded segments joined together by one or more linker.

Thus, one molecule provided by the present invention is an oligonucleotide comprising consecutive nucleotides which encode three inhibitory RNA molecules; said oligonucleotide may possess a triple stranded structure, such that three double stranded arms are linked together by one or more linker, such as any of the linkers presented 25 hereinabove. This molecule forms a "star"-like structure, and may also be referred to herein as RNAsstar. Such structures are disclosed in PCT patent publication WO 2007/091269, assigned to the assignee of the present invention and incorporated herein in its entirety by reference.


A covalent bond refers to an internucleotide linkage linking one nucleotide monomer to 30 an adjacent nucleotide monomer. A covalent bond includes for example, a phosphodiester bond, a phosphorothioate bond, a P-alkoxy bond, a P-carboxy bond and the like. The normal internucleoside linkage of RNA and DNA is a 3' to 5' phosphodiester linkage. In certain preferred embodiments a covalent bond is a phosphodiester bond. Covalent bond

encompasses non-phosphorous-containing internucleoside linkages, such as those disclosed in WO 2004/041924 *inter alia*. Unless otherwise indicated, in preferred embodiments of the structures discussed herein the covalent bond between each consecutive N or N' is a phosphodiester bond.

- 5 For all of the structures above, in some embodiments the oligonucleotide sequence of (N)x is fully complementary to the oligonucleotide sequence of (N')y. In other embodiments (N)x and (N')y are substantially complementary. In certain embodiments (N)x is fully complementary to a target sequence. In other embodiments (N)x is substantially complementary to a target sequence.
- 10 In some embodiments, neither (N)x nor (N')y are phosphorylated at the 3' and 5' termini. In other embodiments either or both (N)x and (N')y are phosphorylated at the 3' termini (3' Pi). In yet another embodiment, either or both (N)x and (N')y are phosphorylated at the 3' termini with non-cleavable phosphate groups. In yet another embodiment, either or both (N)x and (N')y are phosphorylated at the terminal 2' termini position using cleavable 15 or non-cleavable phosphate groups. Further, the inhibitory nucleic acid molecules of the present invention may comprise one or more gaps and/or one or more nicks and/or one or more mismatches. Without wishing to be bound by theory, gaps, nicks and mismatches have the advantage of partially destabilizing the nucleic acid / siRNA, so that it may be more easily processed by endogenous cellular machinery such as DICER, DROSHA or 20 RISC into its inhibitory components.

In the context of the present invention, a gap in a nucleic acid refers to the absence of one or more internal nucleotides in one strand, while a nick in a nucleic acid refers to the absence of an internucleotide linkage between two adjacent nucleotides in one strand. Any of the molecules of the present invention may contain one or more gaps and/or one 25 or more nicks.

In one aspect the present invention provides a compound having Structure (I):

wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or 30 an unconventional moiety;

wherein each of (N)x and (N')y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' may be present or absent, but if present is independently 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

5 wherein z'' may be present or absent, but if present is a capping moiety covalently attached at the 5' terminus of $(N')y$;

wherein $x = 18$ to 27;

wherein $y = 18$ to 27;

10 wherein $(N)x$ comprises modified and unmodified ribonucleotides, each modified ribonucleotide having a 2'-O-methyl on its sugar, wherein N at the 3' terminus of $(N)x$ is a modified ribonucleotide, $(N)x$ comprises at least five alternating modified ribonucleotides beginning at the 3' end and at least nine modified ribonucleotides in total and each remaining N is an unmodified ribonucleotide;

15 wherein in $(N')y$ at least one unconventional moiety is present, which unconventional moiety may be an abasic ribose moiety, an abasic deoxyribose moiety, a modified or unmodified deoxyribonucleotide, a mirror nucleotide, and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide phosphate bond; and

20 wherein the sequence of $(N')y$ is a sequence substantially complementary to $(N)x$; and wherein the sequence of $(N)x$ comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In some embodiments $x = y = 19$. In other embodiments $x = y = 23$. In some embodiments the at least one unconventional moiety is present at positions 15, 16, 17, or 18 in $(N')y$. In some embodiments the unconventional moiety is selected from a mirror nucleotide, an abasic ribose moiety and an abasic deoxyribose moiety. In some preferred embodiments 25 the unconventional moiety is a mirror nucleotide, preferably an L-DNA moiety. In some embodiments an L-DNA moiety is present at position 17, position 18 or positions 17 and 18.

In other embodiments the unconventional moiety is an abasic moiety. In various embodiments $(N')y$ comprises at least five abasic ribose moieties or abasic deoxyribose 30 moieties.

In yet other embodiments (N')_y comprises at least five abasic ribose moieties or abasic deoxyribose moieties and at least one of N' is an LNA.

In some embodiments (N)x comprises nine alternating modified ribonucleotides. In other embodiments of Structure (I) (N)x comprises nine alternating modified ribonucleotides

5 further comprising a 2'O modified nucleotide at position 2. In some embodiments (N)x comprises 2'O Me modified ribonucleotides at the odd numbered positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19. In other embodiments (N)x further comprises a 2'O Me modified ribonucleotide at one or both of positions 2 and 18. In yet other embodiments (N)x comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17, 19.

10 In various embodiments z" is present and is selected from an abasic ribose moiety, a deoxyribose moiety; an inverted abasic ribose moiety, a deoxyribose moiety; C6-amino-Pi; a mirror nucleotide.

In another aspect the present invention provides a compound having Structure (J) set forth below:

15 (J) 5' (N)x - Z 3' (antisense strand)
3' Z'-(N')y-z" 5' (sense strand)

wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or an unconventional moiety;

wherein each of (N)x and (N')y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond:

wherein Z and Z' may be present or absent, but if present is independently 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

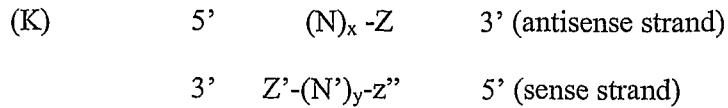
25 wherein z'' may be present or absent but if present is a capping moiety covalently attached at the 5' terminus of $(N')_v$:

wherein $x = 18$ to 27 .

wherein $v = 18$ to 27 :

wherein (N)x comprises modified or unmodified ribonucleotides, and optionally at least one unconventional moiety;

wherein in (N')_y at least one unconventional moiety is present, which unconventional moiety may be an abasic ribose moiety, an abasic deoxyribose moiety, a modified or unmodified deoxyribonucleotide, a mirror nucleotide, a non-base pairing nucleotide analog or a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide phosphate bond; and


wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

10 In some embodiments x =y=19. In other embodiments x =y=23. In some preferred embodiments (N)_x comprises modified and unmodified ribonucleotides, and at least one unconventional moiety.

In some embodiments in (N)_x the N at the 3' terminus is a modified ribonucleotide and (N)_x comprises at least 8 modified ribonucleotides. In other embodiments at least 5 of the 15 at least 8 modified ribonucleotides are alternating beginning at the 3' end. In some embodiments (N)_x comprises an abasic moiety in one of positions 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.

In some embodiments the at least one unconventional moiety in (N')_y is present at positions 15, 16, 17, or 18. In some embodiments the unconventional moiety is selected 20 from a mirror nucleotide, an abasic ribose moiety and an abasic deoxyribose moiety. In some preferred embodiments the unconventional moiety is a mirror nucleotide, preferably an L-DNA moiety. In some embodiments an L-DNA moiety is present at position 17, position 18 or positions 17 and 18. In other embodiments the at least one unconventional moiety in (N')_y is an abasic ribose moiety or an abasic deoxyribose moiety.

25 In yet another aspect the present invention provides a compound having Structure (K) set forth below:

wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or 30 an unconventional moiety;

wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' may be present or absent, but if present is independently 1-5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is 5 present;

wherein z" may be present or absent but if present is a capping moiety covalently attached at the 5' terminus of (N')_y;

wherein x =18 to 27;

wherein y =18 to 27;

10 wherein (N)_x comprises a combination of modified or unmodified ribonucleotides and unconventional moieties, any modified ribonucleotide having a 2'-O-methyl on its sugar; wherein (N')_y comprises modified or unmodified ribonucleotides and optionally an unconventional moiety, any modified ribonucleotide having a 2'OMe on its sugar;

wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and 15 wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an of a target gene associated with an ear disorder.

In some embodiments x =y=19. In other embodiments x =y=23. In some preferred embodiments the at least one preferred one unconventional moiety is present in (N)_x and 20 is an abasic ribose moiety or an abasic deoxyribose moiety. In other embodiments the at least one unconventional moiety is present in (N)_x and is a non-base pairing nucleotide analog. In various embodiments (N')_y comprises unmodified ribonucleotides. In some embodiments (N)_x comprises at least five abasic ribose moieties or abasic deoxyribose moieties or a combination thereof. In certain embodiments (N)_x and/or (N')_y comprise 25 modified ribonucleotides which do not base pair with corresponding modified or unmodified ribonucleotides in (N')_y and/or (N)_x.

In various embodiments the present invention provides an siRNA set forth in Structure (L):

(L) 5' (N)_x - Z 3' (antisense strand)
30 3' Z'-(N')_y 5' (sense strand)

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

5 wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' are absent;

wherein x=y=19;

10 wherein in (N')_y the nucleotide in at least one of positions 15, 16, 17, 18 and 19 comprises a nucleotide selected from an abasic unconventional moiety, a mirror nucleotide, a deoxyribonucleotide and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide bond;

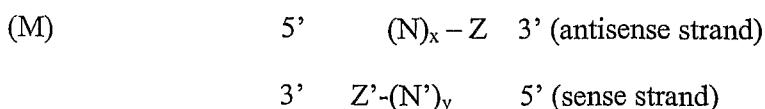
wherein (N)_x comprises alternating 2'OMe sugar modified ribonucleotides and unmodified ribonucleotides so as to have 2'OMe sugar modified ribonucleotide at the middle position of (N)_x; and

15 wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

20 In some embodiments of Structure (L), in (N')_y the nucleotide in one or both of positions 17 and 18 comprises a modified nucleotide selected from an abasic unconventional moiety, a mirror nucleotide and a nucleotide joined to an adjacent nucleotide by a 2'-5' internucleotide bond. In some embodiments the mirror nucleotide is selected from L-DNA and L-RNA. In various embodiments the mirror nucleotide is L-DNA.

25 In various embodiments (N')_y comprises a modified nucleotide at position 15 wherein the modified nucleotide is selected from a mirror nucleotide and a deoxyribonucleotide.

In certain embodiments (N')_y further comprises a modified nucleotide or pseudo nucleotide at position 2 wherein the pseudo nucleotide may be an abasic unconventional moiety and the modified nucleotide is optionally a mirror nucleotide.

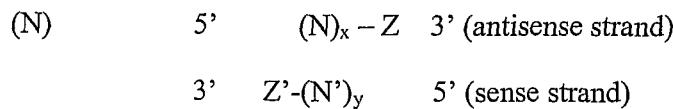

30 In various embodiments the antisense strand (N)_x comprises 2'OMe modified ribonucleotides at the odd numbered positions (5' to 3'; positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19). In some embodiments (N)_x further comprises 2'OMe modified ribonucleotides

at one or both positions 2 and 18. In other embodiments (N)_x comprises 2'O Me modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17, 19.

Other embodiments of Structures (L) are envisaged wherein x=y=21 or wherein x=y=23; in these embodiments the modifications for (N')_y discussed above instead of being in 5 positions 17 and 18 are in positions 19 and 20 for 21-mer oligonucleotide and 21 and 22 for 23 mer oligonucleotide; similarly the modifications in positions 15, 16, 17, 18 or 19 are in positions 17, 18, 19, 20 or 21 for the 21-mer oligonucleotide and positions 19, 20, 10 21, 22, or 23 for the 23-mer oligonucleotide. The 2'O Me modifications on the antisense strand are similarly adjusted. In some embodiments (N)_x comprises 2'O Me modified ribonucleotides at the odd numbered positions (5' to 3'); positions 1, 3, 5, 7, 9, 12, 14, 16, 18, 20 for the 21 mer oligonucleotide [nucleotide at position 11 unmodified] and 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 for the 23 mer oligonucleotide [nucleotide at position 12 unmodified]. In other embodiments (N)_x comprises 2'O Me modified ribonucleotides at 15 positions 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 [nucleotide at position 11 unmodified for the 21 mer oligonucleotide and at positions 2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 23 for the 23 mer oligonucleotide [nucleotide at position 12 unmodified].

In some embodiments (N')_y further comprises a 5' terminal cap nucleotide. In various embodiments the terminal cap moiety is selected from an abasic unconventional moiety, an inverted abasic unconventional moiety, an L-DNA nucleotide, and a C6-imine phosphate (C6 amino linker with phosphate at terminus). 20

In other embodiments the present invention provides a compound having Structure (M) set forth below:



25 wherein each of N and N' is selected from a pseudo-nucleotide and a nucleotide; wherein each nucleotide is selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide; wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond; 30 wherein Z and Z' are absent; wherein x =18 to 27;

wherein $y = 18$ to 27 ;

wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In other embodiments the present invention provides a double stranded compound having Structure (N) set forth below:

10 wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

wherein each of $(N)_x$ and $(N')_y$ is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

15 wherein Z and Z' are absent;

wherein each of x and y is an integer between 18 and 40;

wherein the sequence of $(N')_y$ is a sequence substantially complementary to $(N)x$; and wherein the sequence of $(N)_x$ comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an antisense sequence to the mRNA of a target gene associated with an ear disorder;

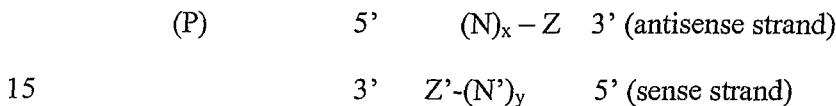
wherein (N)x, (N')y or (N)x and (N')y comprise non base-pairing modified nucleotides such that (N)x and (N')y form less than 15 base pairs in the double stranded compound.

In other embodiments the present invention provides a compound having Structure (O) set forth below:

25 (O) 5' (N)_x - Z 3' (antisense strand)
 3' Z'-(N')_y 5' (sense strand)

wherein each of N is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

wherein each of N' is a nucleotide analog selected from a six membered sugar nucleotide, seven membered sugar nucleotide, morpholino moiety, peptide nucleic acid and combinations thereof;


5 wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' are absent;

wherein each of x and y is an integer between 18 and 40;

10 wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In other embodiments the present invention provides a compound having Structure (P) set forth below:

wherein each of N and N' is a nucleotide selected from an unmodified ribonucleotide, a modified ribonucleotide, an unmodified deoxyribonucleotide and a modified deoxyribonucleotide;

20 wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' are absent;

wherein each of x and y is an integer between 18 and 40;

25 wherein one of N or N' in an internal position of (N)_x or (N')_y or one or more of N or N' at a terminal position of (N)_x or (N')_y comprises an abasic moiety or a 2' modified nucleotide;

wherein the sequence of (N')_y is a sequence substantially complementary to (N)_x; and wherein the sequence of (N)_x comprises an antisense sequence substantially substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

In various embodiments (N')y comprises a modified nucleotide at position 15 wherein the modified nucleotide is selected from a mirror nucleotide and a deoxyribonucleotide.

In certain embodiments (N')y further comprises a modified nucleotide at position 2 wherein the modified nucleotide is selected from a mirror nucleotide and an abasic 5 unconventional moiety.

In various embodiments the antisense strand (N)x comprises 2'O-Me modified ribonucleotides at the odd numbered positions (5' to 3'; positions 1, 3, 5, 7, 9, 11, 13, 15, 17, 19). In some embodiments (N)x further comprises 2'O-Me modified ribonucleotides at one or both positions 2 and 18. In other embodiments (N)x comprises 2'O Me 10 modified ribonucleotides at positions 2, 4, 6, 8, 11, 13, 15, 17, 19.

An additional novel molecule provided by the present invention is an oligonucleotide comprising consecutive nucleotides wherein a first segment of such nucleotides encode a first inhibitory RNA molecule, a second segment of such nucleotides encode a second inhibitory RNA molecule, and a third segment of such nucleotides encode a third 15 inhibitory RNA molecule. Each of the first, the second and the third segment may comprise one strand of a double stranded RNA and the first, second and third segments may be joined together by a linker. Further, the oligonucleotide may comprise three double stranded segments joined together by one or more linker.

Thus, one molecule provided by the present invention is an oligonucleotide comprising 20 consecutive nucleotides which encode three inhibitory RNA molecules; said oligonucleotide may possess a triple stranded structure, such that three double stranded arms are linked together by one or more linker, such as any of the linkers presented hereinabove. This molecule forms a "star"-like structure, and may also be referred to herein as RNAsstar.

25 Said triple-stranded oligonucleotide may be an oligoribonucleotide having the general structure:

5' Oligo1 (sense) LINKER A Oligo2 (sense) 3'

3' Oligo1 (antisense) LINKER B Oligo3 (sense) 5'

3' Oligo3 (antisense) LINKER C Oligo2 (antisense) 5'

or

5' Oligo1 (sense) LINKER A Oligo2 (antisense) 3'

60

3' Oligo1 (antisense) LINKER B Oligo3 (sense) 5'

3' Oligo3 (antisense) LINKER C Oligo2 (sense) 5'

or

5' Oligo1 (sense) LINKER A Oligo3 (antisense) 3'

3' Oligo1 (antisense) LINKER B Oligo2 (sense) 5'

5' Oligo3 (sense) LINKER C Oligo2 (antisense) 3'

wherein one or more of linker A, linker B or linker C is present; any combination of two or more oligonucleotides and one or more of linkers A-C is possible, so long as the 5 polarity of the strands and the general structure of the molecule remains. Further, if two or more of linkers A-C are present, they may be identical or different.

Thus, a triple-armed structure is formed, wherein each arm comprises a sense strand and complementary antisense strand (i.e. Oligo1 antisense base pairs to Oligo1 sense etc.). The triple armed structure may be triple stranded, whereby each arm possesses base 10 pairing.

Further, the above triple stranded structure may have a gap instead of a linker in one or more of the strands. Such a molecule with one gap is technically quadruple stranded and not triple stranded; inserting additional gaps or nicks will lead to the molecule having additional strands. Preliminary results obtained by the inventors of the present invention 15 indicate that said gapped molecules are more active in inhibiting certain target genes than the similar but non-gapped molecules. This may also be the case for nicked molecules.

According to one preferred embodiment of the invention, the antisense and the sense strands of the siRNA are phosphorylated only at the 3'-terminus and not at the 5'-terminus. According to another preferred embodiment of the invention, the antisense and 20 the sense strands are non-phosphorylated. According to yet another preferred embodiment of the invention, the 5' most ribonucleotide in the sense strand is modified to abolish any possibility of *in vivo* 5'-phosphorylation.

The invention further provides a vector capable of expressing any of the aforementioned oligoribonucleotides in unmodified form in a cell after which appropriate modification 25 may be made. In preferred embodiment the cell is a mammalian cell, preferably a human cell.

Pharmaceutical Compositions

The inventors of the present invention have overcome many of the obstacles in development of a composition for delivery of a therapeutic oligonucleotide to the middle and inner ear. Accordingly the present invention provides a pharmaceutical composition 5 comprising one or more inhibitory oligonucleotide compounds; a permeability enhancer and a pharmaceutically acceptable vehicle or carrier. In some embodiments the composition comprises a mixture of two or more different oligonucleotides / siRNA compound.

A "penetration enhancer" or "permeability enhancer" includes a polyol such as 10 polyethylene glycol (PEG), glycerol (glycerin), maltitol, sorbitol etc.; diethylene glycol monoethyl ether, azone, benzalkonium chloride (ADBAC), cetylperidium chloride, cetyltrimethylammonium bromide, dextran sulfate, lauric acid, menthol, methoxysalicylate, oleic acid, phosphatidylcholine, polyoxyethylene, polysorbate 80, sodium glycholate, sodium lauryl sulfate, sodium salicylate, sodium taurocholate, sodium taurodeoxycholate, 15 sulfoxides, sodium deoxycholate, sodium glycodeoxycholate, sodium taurocholate and surfactants such as sodium lauryl sulfate, laureth-9, cetylpyridinium chloride and polyoxyethylene monoalkyl ethers, benzoic acids, such as sodium salicylate and methoxy salicylate, fatty acids, such as lauric acid, oleic acid, undecanoic acid and methyl oleate, fatty alcohols, such as octanol and nonanol, laurocapram, cyclodextrins, thymol, 20 limonene, urea, chitosan and other natural and synthetic polymers.

Suitable polyols for inclusion in the solutions of the invention include glycerol and sugar alcohols such as sorbitol, mannitol or xylitol, polyethylene glycol and derivatives thereof. In some embodiments the composition further includes a preservative. Accepted 25 preservatives such as benzalkonium chloride and disodium edetate (EDTA) are included in the compositions of the invention in concentrations sufficient for effective antimicrobial action, about 0.0001 to 0.1%, based on the weight of the composition.

The invention further provides a pharmaceutical composition comprising at least one compound of the invention covalently or non-covalently bound to one or more compounds of the invention in an amount effective to inhibit one or more genes as 30 disclosed above; and a pharmaceutically acceptable carrier. In some embodiments the compound is processed intracellularly by endogenous cellular complexes to produce one or more oligoribonucleotides of the invention.

Additionally, the invention provides a method of inhibiting the expression of a target gene, by at least 50% as compared to a control, comprising contacting an mRNA transcript of the target gene with composition of the invention. In some embodiments an active siRNA compound inhibits gene expression at a level of at least 50%, 60% or 70% 5 as compared to control. In certain preferred embodiments inhibition is at a level of at least 75%, 80% or 90% as compared to control. In some embodiments the target gene is a human gene as disclosed herein.

In one embodiment the oligoribonucleotide inhibits one or more of the genes as disclosed in the present invention, whereby the inhibition is selected from the group 10 comprising inhibition of gene function, inhibition of polypeptide and inhibition of mRNA expression. In certain embodiments, the target gene is a viral, bacterial or mammalian gene. In various embodiments the target gene is a mammalian gene, preferably a human gene. In some embodiments the target gene having an mRNA selected from any one of SEQ ID NO:1-SEQ ID NO:36.

15 In one embodiment the compound inhibits expression of a polypeptide encoded by a target gene whereby the inhibition is selected from the group comprising inhibition of function (which may be examined by an enzymatic assay or a binding assay with a known interactor of the native gene / polypeptide, *inter alia*), inhibition of protein (which may be examined by Western blotting, ELISA or immuno-precipitation, *inter alia*) and inhibition 20 of mRNA expression (which may be examined by Northern blotting, quantitative RT-PCR, *in-situ* hybridisation or microarray hybridisation, *inter alia*).

In additional embodiments the invention provides a method of treating a subject suffering 25 from a disease accompanied by an elevated level a gene of the present invention, the method comprising administering to the subject a compound of the invention in a therapeutically effective dose thereby treating the subject.

Delivery

The siRNA molecules of the present invention is delivered to the ear by direct application 30 of pharmaceutical composition to the outer ear. In some embodiments the pharmaceutical composition is applied to the ear canal. Delivery to the ear may also be referred to as aural or otic delivery comprising siRNA; a penetration enhancer and a pharmaceutically acceptable vehicle.

In some embodiments the siRNA molecules of the invention are delivered in liposome or lipofectin formulations and the like and can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in US Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.

5 Delivery systems aimed specifically at the enhanced and improved delivery of siRNA into mammalian cells have been developed, (see, for example, Shen et al FEBS Let. 2003, 539:111-114; Xia et al., Nat. Biotech. 2002, 20:1006-1010; Reich et al., Mol. Vision 2003, 9: 210-216; Sorensen et al., J. Mol. Biol. 2003. 327: 761-766; Lewis et al., Nat. Gen. 2002, 32: 107-108 and Simeoni et al., NAR 2003, 31,11: 2717-2724). siRNA has
10 recently been successfully used for inhibition of gene expression in primates (see for example, Tolentino et al., Retina 24(4):660.

The "therapeutically effective dose" for purposes herein is thus determined by such considerations as are known in the art. The dose must be effective to achieve improvement including but not limited to improved survival rate or more rapid recovery,
15 or improvement or elimination of symptoms and other indicators as are selected as appropriate measures by those skilled in the art.

In general, the active dose of compound for humans is in the range of from 1ng/kg to about 20-100 mg/kg body weight per day, preferably about 0.01 mg to about 2-10 mg/kg body weight per day, in a regimen of one dose per day or twice or three or more times per
20 day for a period of 1-4 weeks or longer. In various embodiments the siRNA is chemically modified to increase stability, increase activity, reduce off target effects, and or to reduce innate immune stimulation. Dosage to the ear is determined, *inter alia*, by the activity of the oligonucleotide, the indication and the severity of the disorder and comprises administering a dose of about 0.1 ng to about 10 mg, about 1 ng to about 1 mg, or about
25 10 ng to about 1 mg, total oligonucleotide in pharmaceutically acceptable agent. The concentration of siRNA in the composition is between 0.1 mg/ml to 100 mg/ml, preferably between 1 mg/ml to 100 mg/ml, and more preferably between 5 mg/ml to 20 mg/ml.

The compounds of the present invention are administered by topical administration. It
30 should be noted that the compound can be administered as the compound or as pharmaceutically acceptable salt and can be administered alone or as an active ingredient in combination with pharmaceutically acceptable carriers, solvents, diluents, excipients, adjuvants and vehicles. The compounds are administered as eardrops, ear cream, ear

ointment, foam, mousse or any of the above in combination with a delivery device. Implants of the compounds are also useful. Liquid forms are prepared as drops. The liquid compositions include aqueous solutions, with and without organic co-solvents, aqueous or oil suspensions, emulsions with edible oils, as well as similar pharmaceutical vehicles. In 5 another embodiment the administration comprises non-invasive topical or local administration. Eardrops may also be referred to as otic drops or aural drops. In a preferred embodiment, the ear drops remain in the ear canal for about 30 min in order to prevent leakage of the drops out of the canal. It is thus preferable that the subject receiving the drops keep his head on the side with the treated ear facing upward to 10 prevent leakage of the drop out of the canal.

In preferred embodiments the subject being treated is a warm-blooded animal and, in particular, mammals including human.

Methods of Treatment

In another aspect, the present invention relates to a method for the treatment of a subject 15 in need of treatment for an ear disease or disorder associated with the abnormal expression of a target gene, comprising administering to the subject an amount of an oligonucleotide which reduces or inhibits expression of a target gene associated with the ear disorder in a pharmaceutical composition comprising the oligonucleotide, a permeability enhancer and a pharmaceutically acceptable carrier. In some embodiments 20 the target gene is listed in Table 1. In a preferred embodiment, the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3.

In preferred embodiments the subject being treated is a warm-blooded animal and, in particular, mammals including human.

25 The methods of the invention comprise administering to the subject a pharmaceutical composition comprising one or more inhibitory compounds which down-regulate expression of a gene associated with an ear disorder; and a pharmaceutically acceptable vehicle, in a therapeutically effective dose so as to thereby treat the subject.

The term "treatment" refers to both therapeutic treatment and prophylactic or preventative 30 measures, wherein the object is to prevent or slow down (lessen) the ear disorder. Those in need of treatment include those already experiencing the disease or condition, those prone to having the disease or condition, and those in which the disease or condition is to

be prevented. The compounds of the invention may be administered before, during or subsequent to the onset of the disease or condition or symptoms associated therewith. In cases where treatment is for the purpose of prevention, then the present invention relates to a method for delaying the onset of or averting the development of the disease or disorder. In some embodiments the method comprises administering eardrops which are warmed to 35°C to about 38°C to the subject's ear. In some embodiments the method of comprises administering the composition of the present invention unilaterally, e.g. to one of the subject's ear. In various embodiments the composition is allowed to penetrate the subject's ear for about 5 minutes to about 60 minutes.

10 One aspect of the present invention relates to combination therapy. The active ingredients that comprise a combination therapy may be administered together via a single dosage form or by separate administration of each active agent. In some embodiments the combination therapy comprises administering to a subject in need thereof a composition according to the present invention and an ototoxin. For example, the present invention is

15 directed to an improved method for treatment of hearing loss in a mammal comprising co-administering to the mammal an ototoxin and a therapeutically effective amount of one or more compounds of the present invention. Ototoxic agents include cisplatin and cisplatin-like compounds, aminoglycosides, loop diuretics, and hydroquinone and their analogs.

20 Co-administration comprises administering two or more agents, each of which is formulated and administered separately, or by administering two or more agents in a single formulation. While the two or more agents can be administered simultaneously, they need not be. For example, administration of a first agent (or combination of agents) can precede administration of a second agent (or combination of agents) by minutes, hours, days, or weeks. Thus, the two or more agents can be administered within minutes

25 of each other or within any number of hours of each other or within any number of days or weeks of each other. In some cases even longer intervals are possible.

Methods, molecules and compositions, which inhibit the genes of the invention, are discussed herein at length, and any of said molecules and/or compositions may be beneficially employed in the treatment of a subject suffering from any of said conditions.

30 The present invention also provides for a process of preparing a pharmaceutical composition, which comprises:

providing one or more compounds of the invention ; and

admixing said compound with a pharmaceutically acceptable carrier.

The present invention also provides for a process of preparing a pharmaceutical composition, which comprises admixing one or more compounds of the present invention with a pharmaceutically acceptable carrier.

In a preferred embodiment, the compound used in the preparation of a pharmaceutical 5 composition is admixed with a carrier in a pharmaceutically effective dose. In a particular embodiment the compound of the present invention is conjugated to a steroid or to a lipid or to another suitable molecule e.g. to cholesterol.

Oligonucleotide Synthesis

The compounds of the present invention can be synthesized by any of the methods that 10 are well-known in the art for synthesis of ribonucleic (or deoxyribonucleic) oligonucleotides. Such synthesis is, among others, described in Beaucage and Iyer, Tetrahedron 1992; 48:2223-2311; Beaucage and Iyer, Tetrahedron 1993; 49: 6123-6194 and Caruthers, et. al., Methods Enzymol. 1987; 154: 287-313; the synthesis of thioates is, among others, described in Eckstein, Annu. Rev. Biochem. 1985; 54: 367-402, the 15 synthesis of RNA molecules is described in Sproat, in Humana Press 2005 edited by Herdewijn P.; Kap. 2: 17-31 and respective downstream processes are, among others, described in Pingoud et. al., in IRL Press 1989 edited by Oliver R.W.A.; Kap. 7: 183-208.

Other synthetic procedures are known in the art e.g. the procedures as described in Usman et al., J. Am. Chem. Soc., 1987, 109:7845; Scaringe et al., NAR, 1990, 18:5433; Wincott 20 et al., NAR 1995, 23:2677-2684; and Wincott et al., Methods Mol. Bio., 1997, 74:59, and these procedures may make use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. The modified (e.g. 2'-O-methylated) nucleotides and unmodified nucleotides are incorporated as desired.

25 The oligonucleotides of the present invention can be synthesized separately and joined together post-synthetically, for example, by ligation (Moore et al., Science 1992, 256:9923; International Patent Publication No. WO 93/23569; Shabarova et al., NAR 1991, 19:4247; Bellon et al., Nucleosides & Nucleotides, 1997, 16:951; Bellon et al., Bioconjugate Chem 1997, 8:204), or by hybridization following synthesis and/or 30 deprotection.

It is noted that a commercially available machine (available, *inter alia*, from Applied Biosystems) can be used; the oligonucleotides are prepared according to the sequences

disclosed herein. Overlapping pairs of chemically synthesized fragments can be ligated using methods well known in the art (e.g., see US Patent No. 6,121,426). The strands are synthesized separately and then are annealed to each other in the tube. Then, the double-stranded siRNAs are separated from the single-stranded oligonucleotides that were not annealed (e.g. because of the excess of one of them) by HPLC. In relation to the siRNAs or siRNA fragments of the present invention, two or more such sequences can be synthesized and linked together for use in the present invention.

The compounds of the invention can also be synthesized via tandem synthesis methodology, as described for example in US Patent Publication No. 2004/0019001 (McSwiggen), wherein both siRNA strands are synthesized as a single contiguous oligonucleotide fragment or strand separated by a cleavable linker which is subsequently cleaved to provide separate siRNA fragments or strands that hybridize and permit purification of the siRNA duplex. The linker can be a polynucleotide linker or a non-nucleotide linker.

15 The present invention further provides for a pharmaceutical composition comprising two or more siRNA molecules for the treatment of any of the diseases and conditions mentioned herein, whereby said two molecules may be physically mixed together in the pharmaceutical composition in amounts which generate equal or otherwise beneficial activity, or may be covalently or non-covalently bound, or joined together by a nucleic acid linker of a length ranging from 2-100, preferably 2-50 or 2-30 nucleotides.

20

Thus, the siRNA molecules may be covalently or non-covalently bound or joined by a linker to form a tandem siRNA compound. Such tandem siRNA compounds comprising two siRNA sequences are typically about 38-150 nucleotides in length, more preferably 38 or 40-60 nucleotides in length, and longer accordingly if more than two siRNA sequences are included in the tandem molecule. A longer tandem compound comprised of two or more longer sequences which encode siRNA produced via internal cellular processing, e.g., long dsRNAs, is also envisaged, as is a tandem molecule encoding two or more shRNAs. Such tandem molecules are also considered to be a part of the present invention. A tandem compound comprising two or more siRNAs sequences of the invention is envisaged.

An siRNA molecule that targets a gene associated with an ear disorder may be the main active component in a pharmaceutical composition, or may be one active component of a pharmaceutical composition containing two or more siRNAs (or molecules which encode

or endogenously produce two or more siRNAs, be it a mixture of molecules or one or more tandem molecules which encode two or more siRNAs), said pharmaceutical composition further being comprised of one or more additional siRNA molecule which targets one or more additional gene. Simultaneous inhibition of said additional gene(s) 5 will likely have an additive or synergistic effect for treatment of the diseases disclosed herein.

Additionally, the siRNA disclosed herein or any nucleic acid molecule comprising or encoding such siRNA can be linked or bound (covalently or non-covalently) to antibodies (including aptamer molecules) against cell surface internalizable molecules expressed on 10 the target cells, in order to achieve enhanced targeting for treatment of the diseases disclosed herein. For example, anti-Fas antibody (preferably a neutralizing antibody) may be combined (covalently or non-covalently) with any other siRNA.

The compounds of the present invention can be delivered for example as double stranded compounds, as double stranded hairpin compounds or as tandem compounds. It is also 15 envisaged that a long oligonucleotide (typically 25-500 nucleotides in length) comprising one or more stem and loop structures, where stem regions comprise the sequences of the oligonucleotides of the invention, may be delivered in a carrier, preferably a pharmaceutically acceptable carrier, and may be processed *intracellularly* by endogenous cellular complexes (e.g. by DROSHA and DICER as described above) to produce one or 20 more smaller double stranded oligonucleotides (siRNAs) which are oligonucleotides of the invention. This oligonucleotide can be termed a tandem shRNA construct. It is envisaged that this long oligonucleotide is a single stranded oligonucleotide comprising one or more stem and loop structures, wherein each stem region comprises a sense and corresponding antisense siRNA sequence of the genes of the invention. In particular, it is 25 envisaged that this oligonucleotide comprises an antisense sequence (N)_x relative to the mRNA transcribed from a mammalian gene selected from the group set forth in Table 1. In a preferred embodiment, the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3.

30 A number of PCT applications have recently been published that relate to the RNAi phenomenon. These include: PCT publication WO 00/44895; PCT publication WO 00/49035; PCT publication WO 00/63364; PCT publication WO 01/36641; PCT

publication WO 01/36646; PCT publication WO 99/32619; PCT publication WO 00/44914; PCT publication WO 01/29058; and PCT publication WO 01/75164.

RNA interference (RNAi) is based on the ability of dsRNA species to enter a cytoplasmic protein complex, where it is then targeted to the complementary cellular RNA and 5 specifically degrade it. The RNA interference response features an endonuclease complex containing an siRNA, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded RNA having a sequence complementary to the antisense strand of the siRNA duplex. Cleavage of the target RNA may take place in the middle of the region complementary to the antisense strand of the 10 siRNA duplex (Elbashir et al., *Genes Dev.*, 2001, 15(2):188-200). In more detail, longer dsRNAs are digested into short (17-29 bp) dsRNA fragments (also referred to as short inhibitory RNAs, "siRNAs") by type III RNases (DICER, DROSHA, etc.; Bernstein et al., *Nature*, 2001, 409(6818):363-6; Lee et al., *Nature*, 2003, 425(6956):415-9). The RISC protein complex recognizes these fragments and complementary mRNA. The whole 15 process is culminated by endonuclease cleavage of target mRNA (McManus & Sharp, *Nature Rev Genet*, 2002, 3(10):737-47; Paddison & Hannon, *Curr Opin Mol Ther.* 2003, 5(3):217-24). (For additional information on these terms and proposed mechanisms, see for example Bernstein et al., *RNA* 2001, 7(11):1509-21; Nishikura, *Cell* 2001, 107(4):415-8 and PCT publication WO 01/36646).

20 Several groups have described the development of DNA-based vectors capable of generating siRNA within cells. The method generally involves transcription of short hairpin RNAs that are efficiently processed to form siRNAs within cells (Paddison et al. *PNAS USA* 2002, 99:1443-1448; Paddison et al. *Genes & Dev* 2002, 16:948-958; Sui et al. *PNAS USA* 2002, 8:5515-5520; and Brummelkamp et al. *Science* 2002, 296:550-553).

25 These reports describe methods to of generate generating siRNAs capable of specifically targeting numerous endogenously and exogenously expressed genes.

The invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of words of description rather than of limitation.

30 Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention can be practiced otherwise than as specifically described.

Throughout this application, various publications, including United States Patents, are

referenced by author and year and patents by number. The disclosures of these publications and patents and patent applications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

5 The present invention is illustrated in detail below with reference to examples, but is not to be construed as being limited thereto.

Citation of any document herein is not intended as an admission that such document is pertinent prior art, or considered material to the patentability of any claim of the present application. Any statement as to content or a date of any document is based on the 10 information available to applicant at the time of filing and does not constitute an admission as to the correctness of such a statement.

EXAMPLES

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following 15 preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the claimed invention in any way.

Material and Methods: General

Standard molecular biology protocols known in the art not specifically described herein are generally followed essentially as in Sambrook et al., *Molecular cloning: A laboratory 20 manual*, Cold Springs Harbor Laboratory, New-York (1989, 1992), and in Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Baltimore, Maryland (1988), and as in Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Baltimore, Maryland (1989) and as in Perbal, *A Practical Guide to Molecular Cloning*, John Wiley & Sons, New York (1988), and as in Watson et al., *Recombinant 25 DNA*, Scientific American Books, New York and in Birren et al (eds) *Genome Analysis: A Laboratory Manual Series*, Vols. 1-4 Cold Spring Harbor Laboratory Press, New York (1998) and methodology as set forth in US Patent Nos. 4,666,828; 4,683,202; 4,801,531; 5,192,659 and 5,272,057 and incorporated herein by reference. Polymerase chain reaction (PCR) was carried out generally as in *PCR Protocols: A Guide To Methods And 30 Applications*, Academic Press, San Diego, CA (1990). In situ (In cell) PCR in combination with Flow Cytometry can be used for detection of cells containing specific

DNA and mRNA sequences (Testomi et al., Blood 1996, 87:3822.) Methods of performing RT-PCR are also well known in the art.

Cell culture:

HeLa cells (American Type Culture Collection) were cultured as described in Czauderna,
5 et al. (NAR, 2003. 31:670-82). Human keratinocytes were cultured at 37°C in Dulbecco's modified Eagle medium (DMEM) containing 10% FCS. The mouse cell line, B16V (American Type Culture Collection), was cultured at 37°C in Dulbecco's modified Eagle medium (DMEM) containing 10% FCS. Culture conditions were as described in (Methods Find Exp Clin Pharmacol. 1997 May; 19(4):231-9).:
10 In each case, the cells were subject to the experiments as described herein at a density of about 50,000 cells per well and the double-stranded nucleic acid according to the present invention was added at 20 nM, whereby the double-stranded nucleic acid was complexed using 1 µg/ml of a proprietary lipid as described below.

Induction of hypoxia-like conditions:

15 Where required, cells were treated with CoCl₂ for inducing a hypoxia-like condition as follows: siRNA transfections were carried out in 10-cm plates (30-50% confluency) as described by Czauderna et al., 2003; Kretschmer et al., 2003. Briefly, siRNA were transfected by adding a preformed 10x concentrated complex of GB and lipid in serum-free medium to cells in complete medium. The total transfection volume was 10 ml. The final lipid concentration was 1.0 µg/ml; the final siRNA concentration was 20 nM unless otherwise stated. Induction of the hypoxic responses was carried out by adding CoCl₂ (100µM) directly to the tissue culture medium 24 h before lysis.
20

Preparation of cell extracts and immuno blotting

The preparation of cell extracts and immuno blot analysis were carried out essentially as
25 described (Klippel et al. Mol Cell Biol, 1998. 18:5699-711; Klippel, A., et al., Mol Cell Biol, 1996. 16:4117-27).

Example 1: in vitro testing of siRNA compounds

About 1.5-2x10⁵ tested cells (HeLa cells and/or 293T cells for siRNA targeting human genes and NRK52 cells and/or NMUMG cells for siRNA targeting the rat/mouse gene)
30 were seeded per well in a 6 well plate (70-80% confluent).

24 hours later, cells were transfected with siRNA compounds using the Lipofectamine™ 2000 reagent (Invitrogen) at final concentrations of 5nM or 20nM. The cells were incubated at 37°C in a CO₂ incubator for 72 hours.

As positive control for transfection PTEN-Cy3 labeled siRNA compounds were used. An 5 additional positive control used was a blunt-ended 19-mer siRNA, i.e. x=y=19 wherein Z and Z' are both absent. This siRNA was non-phosphorylated and had alternating ribonucleotides modified at the 2' position of the sugar residue in both the antisense and the sense strands, wherein the moiety at the 2' position is methoxy (2'OMe) and wherein the ribonucleotides at the 5' and 3' termini of the antisense strand are modified in their 10 sugar residues, and the ribonucleotides at the 5' and 3' termini of the sense strand are unmodified in their sugar residues.

As negative control for siRNA activity GFP siRNA compounds were used.

At 72 hours after transfection the cells were harvested and RNA is extracted from the cells. Transfection efficiency was tested by fluorescent microscopy.

15 The percent of inhibition of gene expression using specific preferred siRNA structures is determined using qPCR analysis of a target gene in cells expressing the endogenous gene. In general, the siRNAs having specific sequences that were selected for *in vitro* testing were specific for human and a second species such as rat or rabbit genes. In some examples, similar results are obtained using siRNAs having these RNA sequences and 20 modified as described herein. The siRNA oligomers tested herein are selected from siRNA compounds comprising oligonucleotides in Fig. 4, from Tables B of US Ser. No. 11/978,089, which are hereby incorporated by reference in their entirety and are set forth as SEQ ID NOS:97-68654. The siRNA oligomers tested herein are also disclosed in US Ser. Nos. or PCT application Nos. 11/207119, 11/811,112, 11/655636, 25 PCT/IL2008/000797, PCT/IL2008/000874, PCT/IL2009/000053, PCT/IL2009/000302 which are hereby incorporated by reference in their entirety.

Example 2: Middle/inner ear delivery routes of Cy3 labelled DDIT4_1 siRNA.

The objectives of the study were as follows: To establish procedures for topical, non-invasive delivery of a therapeutic oligonucleotide to the middle/ inner ear.

30 To estimate the temporal pattern of distribution of siRNA DDIT4-Cy3 into cochlear structures, following instillation of pharmaceutical compositions into right external auditory canal in rats (REAC).

The substance tested was Cy3-labeled siRNA against RTP801 (DDIT4_1-Cy3) (sense strand: GUGCCAACCUGAUGCAGCU; antisense strand: AGCUGCAUCAGGUUGGCAC).

Description of the test material: double-stranded Cy3-labeled 19-mer siRNA, Cy3 is linked to the 3' end of the antisense strand via a dT nucleotide. Both sense and anti-sense strands harbor alternating 2'-OMe modifications on every odd nucleotide of the anti-sense strand and on every even nucleotide of the sense strand. Under sterile conditions, 42.43mg of DDIT4_1-Cy3 powder (BioSpring) were dissolved in 2.1 ml of sterile double distilled water, to achieve clear 20 mg/ml (1.5mM) solution. The solution was stored at – 10 80°C until use. Formulated (*formulated compound*) sterile 10mg/ml *Cy3DDIT4_1* in 20% sterile glycerol solution in pyrogen free water.

Control Article(s) (including positive/negative controls and vehicle)

Vehicle - 20% sterile glycerol solution in pyrogen free water.

Test system: Male rats, 10-14 weeks old, weighing 200-220gr

15 Experimental design: The study included 5 experimental groups as described in Table 2, below: Experimental groups I-IV (treated with siRNA (DDIT4_1-Cy3) glycerol based eardrop/3 rats/time point) and group V (a; b and c)-3 rats/time point (20% glycerol treated control group). Rats were treated with a single siRNA (DDIT4_1-Cy3) glycerol based or 20% glycerol only eardrop (warmed to 37°C; only one ear treated: a.d. = aurio dexta= 20 right ear (right external auditory canal: REAC) / a.s. aurio sinister = left ear was used as non- treated control) as follows:

Groups I-IV: dose regime: 100 µg/10 µl/ear of 20% glycerol/time point, administration route: REAC 3 rats per time point.

Group V (a-c): REAC 10µl 20% glycerol only treated control.

25 Table 2: Study Design

Group	SiRNA Type	Dose µg/rat	Volume (µl)	Route	Time point (Days)	Group Size
I	DDIT4_1-Cy3	100 µg	10.00	REAC	1	3
II	DDIT4_1-Cy3	100 µg	10.00	REAC	3	3
III	DDIT4_1-Cy3	100 µg	10.00	REAC	7	3
IV	DDIT4_1-Cy3	100 µg	10.00	REAC	14	3
V (a, b, c)	Glycerol 20%	none	10.00	REAC	3; 7; 14	3x3

Preparation of test and control articles for administration: One (1) ml of 100% glycerol with 4 ml pyrogen free water, were mixed by inversion for no less than 30 minutes.

Anesthesia: Rats were anesthetized with Equithesine 4ml/kg body weight.

Right external auditory canal (REAC) delivery: A 10 μ l sample volume (warm glycerol based eardrops, 37°C) was slowly instilled into external REAC, using blunt pipette tip. This volume was delivered into each right ear (groups I-IV according study design). During and after REAC instillations, rats were observed and returned to cage after regaining consciousness.

Scheduled euthanasia: Rats from all groups were euthanized according to the study design 10 (Table 2, Time points termination).

Termination step: was accomplished by cardiac puncture and blood collection; collected serum/plasma was stored (-20°C) for further siRNA blood detection analysis (back up).

Tissue Collection: Rats were sacrificed. Left and right temporal bones including cochlea were gently harvested from all animals; and bony cochlea were prepared and proceed for 15 cryosections as described below.

Tissue embedding protocol for cryosections

Perforated bony cochlea: the cochlear apical end of the cochlear capsule was placed in fixative: 4% PFA in PBS pH 7.2-7.4 and incubated at room temperature 1.5 h with rotation on a rotator. The samples were washed 3x5 min with PBS with rotation. The 20 bony cochlea was decalcified in 10% EDTA / PBS pH 7.2-7.4 overnight or longer at 4°C with rotation. Decalcification was determined by gently pressing on the bony cochlea with a forceps/syringe needles. If decalcification required more time, the decalcification solution (fresh 10% EDTA in PBS) was changed.

For the infiltration step: stock solutions of 10% and 30% sucrose in PBS were prepared. 25 The tissue was rinsed 2x5 min in PBS, pH 7.2-7.4, followed by washing 30 min in 10% sucrose, at room with rotation on the tissue rotator. The tissue was washed 30 min in a 2:1 solution of 10:30% sucrose at of the room temperature with rotation, followed by a 30 min wash in a 1:1 solution of 10:30% sucrose at room temperature with rotation, then in a 1:2 solution of 10:30% sucrose at room temperature with rotation for 30 min, and finally 30 at 4°C in 30% sucrose with rotation, overnight.

The cochleae were transferred into tubes with degassed OCT (30 min in desiccator) and the vials maintained at 4°C overnight with rotation.

The cochleae were placed in the OCT and oriented by aligning an imaginary plane through the modiolus parallel with the bottom of the embedding mold, followed by 5 placement in cryostat for cryosectioning.

Evaluation:

Delivery of siRNA was evaluated using fluorescent microscopy and digital imaging. A tissue fragments (cochlea) will be considered positive (i.e., a successful Cy3 DDIT4_1 10 siRNA transfer incorporation occurred) only if histological (microscopic) examination showed clear fluorescence signal within specific cochlear structures. Background DAPI staining was assisted in identification of cochlea tissue (anatomical or topographical) structure. Inner ear delivery was considered positive if histological examination showed consistency within the group (i.e. time points, time course etc).

Figure 1 shows the delivery of Cy3-labelled DDIT4 siRNA into the spiral ganglion 15 (ganglion of Corti) in the apical turn of the organ of Corti following application of ear drops containing Cy3-labelled siRNA formulated in 20% glycerol. Upper panel is X40 magnification of phalloidin-labelled cells (left panel), bright field (BF, right panel) and the merge thereof (middle panel, M). Bottom panel is X60 magnification of phalloidin-labelled cells (left panel), bright field (BF, right panel) and the merge thereof (middle 20 panel, M). Three days after eardrop application (100 ug in 10 ul of 20% glycerol of Cy3-labelled DDIT4 siRNA) the rats were perfused with 4% PFA. Temporal bones were removed and the bony cochleae were dissected. Whole mount Corti were prepared with Alexa488 labelled phalloidin which binds to actin filaments. Delivery of siRNA was evaluated using confocal microscopy and digital imaging. A tissue fragment was 25 considered positive (i.e., a successful Cy3 DDIT4 siRNA transfer intracellular incorporation occurred) only where histological (microscopic) examination showed clear fluorescence signal within specific cells or structures.

Figure 2 shows the delivery of Cy3 labelled DDIT4 siRNA in three rows of outer hair 30 cells, inner hair cells and supporting cells in basic, second and apical turns of organ of Corti. The delivery of Cy3 labelled DDIT4 siRNA was determined three days after eardrop application (100 ug in 10 ul of 20% glycerol of Cy3-labeled DDIT4 siRNA).

Figure 3 shows the delivery of Cy3 labelled DDIT4 siRNA into the rat auditory epithelium. Top panel is dissected rat bony cochlea (perfused with 4% PFA). Bottom panel demonstrates the delivery of Cy3 labelled DDIT4 siRNA into the basic, second and apical turns of the auditory epithelium.

5 **Example 3: Examination of Inner Ear Non-invasive Delivery of Formulated Cy3-DDIT4_1 siRNA in Rats**

Description of the test material: double-stranded Cy3-labeled 19-mer DDIT4_1 siRNA, Cy3 is linked to the 3' end of the antisense strand via an extra 'dT' nucleotide. Both sense and anti-sense strands harbor alternating 2'OMe sugar modified ribonucleotides on every 10 odd nucleotide of the antisense strand and on every even nucleotide of the sense strand.

Three different formulations were tested:

Formulation 1: 100 μ g of Cy3 DDIT4 siRNA in 10 μ l of 30% glycerol.

Formulation 2: 100 μ g of Cy3 DDIT4 siRNA in 10 μ l of PBS.

Formulation 3: 100 μ g of Cy3 DDIT4 siRNA in 10 μ l of 20% mineral oil (v/v), 40% 15 Propylene glycol (v/v) and 10% Ethanol (v/v).

Right external auditory canal (REAC) delivery: A 10 μ l sample volume (warm formulated eardrops, 37°C) was slowly instilled into external REAC, using blunt pipette tip. This volume was delivered into the right ear. During and after REAC instillations, rats were kept on contralateral side for 40 minutes and returned to its cage following recovery.

20 Tissue Collection: Rats were decapitated. Both temporal bones were gently harvested from all animals and postfixed for additional 1 hour in 10% neutral buffered formalin. Thereafter the bony cochlea was dissected, followed by Alexa488-phalloidin immunostaining and whole mount organ of Corti preparation and contra stained with DAPI stain.

25 Delivery of siRNA was evaluated using fluorescence microscopy and digital imaging. Tissue fragments (organ of Corti) were considered positive (i.e., a successful Cy3 DDIT4_1 siRNA delivery occurred) only if histological (microscopic) examination showed clear fluorescent signal within specific cochlea's structures. Background DAPI staining was used for the identification of cochlea tissue structure. Inner ear delivery was 30 considered positive if histological examination had consistency within all turns of organ of Corti (basal, second and apical).

Results: Positive siRNA delivery into the inner ear cochlear structures was detected following application of 30% glycerol (Formulation 1) or 20% mineral oil (v/v), 40% Propylene glycol (v/v) and 10% Ethanol (v/v) (Formulation 3) using ear drops. All turns of organ of Corti and spiral ganglions were labeled at the amount of 100ug, however the 5 signal with the mineral oil formulation was weaker than the glycerol formulation.

Example 4:QM5 siRNA Treatment in ear drops Induced Knockdown of p53 Protein Expression Levels in the Rat Inner Ear After Cisplatin Administration

The objective of this experiment was to evaluate the knockdown of Cisplatin induced p53 protein in the inner ear (Cochlea) of rats that were treated with eardrops contain QM5 10 siRNA (rat siRNA targeting rat p53).

Experimental group I: was treated once with QM5 siRNA (sense strand: GAAGAAAAUUUCCGCAAAA; antisense strand: UUUUGCGAAAUUUUCUUC): at a dose of 100 μ g/ 30% Glycerol /10 μ l, delivered by the eardrops (ErD), route: REAC; QM5 siRNA treatment was performed on day 1, prior to the 1st Cisplatin administration. 15 The contra lateral ear (Left), serves as untreated control. QM5 siRNA is designed as alternating ribonucleotides modified at the 2' position of the sugar residue in both the antisense and the sense strands, wherein the moiety at the 2' position is methoxy (2'OMe sugar modified).

Experimental Group II: untreated normal control rats

20 Experiment Design:

Group No.:	Treatment QM5 siRNA 100 μ g/10 μ l of 30% glycerol	Delivery route REAC (10 μ l)	Cisplatin I.P. dose regime (2mg/kg)	Termination time point (hrs)	Group size
I	Day 1	ErD	X5	72	19
II	none	none	none	N/A	12 (6x2)

Measured Variables: Body weight, Serum Creatinine and P53 protein signal by ELISA.

P53 Protein signal

The Cisplatin control group (Sample 2) exhibited an increase of 49% in the level of P53 25 protein signal compared to the Naïve group (Sample 1). Namely, the rats receiving Cisplatin treatment showed increased p53 levels in cochlea with respect naïve rats. The

QM5 siRNA treatment caused a reduction of p53 signal to 2.69, which is only 12% higher compared to the Naïve group.

Table 3: QM5 siRNA Treatment in eardrop Induced Knockdown of p53 Protein Expression Levels in the Rat Inner Ear After Cisplatin Administration

Sample	Sample Description	P53 protein level
1	Naïve rat cochlea 346ug/well	2.40
2	Cisplatin only Left ear 346ug/well	3.58
3	Cisplatin plus QM5 siRNA Right ear 346ug/well	2.69

5

Example 5: Inner Ear Delivery of Fluorescence Labelled siRNA with L-DNA structure in Rats.

Description of the test material: sterile 10mg/ml Cy3-AS-CASP2_4-Struc-L-DNA (alternating 2-O-methylation in the antisense strand and L-DNA nucleotide in position 18 of the sense strand; Sense: GCCAGAAUGUGGAACUCCU Antisense: AGGAGUUUCCACAUUCUGGC) or DDIT4_1-Cy3.5 (alternating 2-O-methylation in the sense and antisense strands) *in* 30% sterile glycerol solution in pyrogen free water. Cy3 is linked to the 3' end of the antisense strand.

General: The study included 4 experimental groups as described in Table 4: Experimental groups I-IV (treated by siRNA (DDIT4_1-Cy3.5 or Cy3-AS-CASP2_4-Struc-L-DNA) glycerol based eardrop). Rats were treated by Ear Drops (*ErD*) with a single siRNA dose as follows:

Groups I-IV: dose regime: 100 µg/10µl/ear of 30% glycerol administration route: REAC (right external auditory canal)/unilateral (Groups I and III) and REAC/LEAC (right/left external auditory canals)/bilateral (Groups II and IV).

Table 4: Study Design

Group	SiRNA Type	Dose µg/rat	Delivery Vol.(µl)	Route	Termination (Days)	Group Size
I	DDIT4_1-Cy3.5	100 µg	10.00	REAC/Unilateral	3	1
II	DDIT4_1-Cy3.5	100 µg	10.00	REAC/LEAC/Bilateral	3	1
III	Cy3-AS-CASP2_4-Struc-L-DNA	100 µg	10.00	REAC/Unilateral	3	1
IV	Cy3-AS-CASP2_4-Struc-L-DNA	100 µg	10.00	REAC/LEAC/Bilateral	3	1

Right external auditory canal (REAC/unilateral) delivery: A 10 μ l sample volume (warm glycerol based eardrops, 37 $^{\circ}$ C) was slowly instilled into REAC, using blunt pipette tip. This volume was delivered into each right ear (groups I and III according study 5 design). During and after REAC instillations, rats were kept on contra lateral recumbency (left side) for 40 minutes and then returned to its cage after recovery.

Right and Left bilateral external auditory canal (REAC/LEAC/bilateral) delivery: A 10 μ l sample volume (warm glycerol based eardrops, 37 $^{\circ}$ C) was slowly instilled into external REAC, using blunt pipette tip. This volume was delivered into each right ear 10 (groups II and IV according study design). During and after REAC instillations, rats were kept on contra lateral recumbency (left side) for 30 minuets, after that turned to the right side and a 10 μ l sample volume (warm glycerol based eardrops, 37 $^{\circ}$ C) was slowly instilled into LEAC, using blunt pipette tip and were kept for additional 30 minutes and returned to its cage after recovery.

15 **Tissue Collection:** Rats were decapitated. Left and right temporal bones including cochlea were collected and post fixed in 4%PFA, whole mount Corti staining was performed.

EVALUATION: Delivery of siRNA was evaluated using light microscopy and digital imaging. Tissue fragments (cochlea) were considered positive (i.e., a successful siRNA 20 delivery) only if histological (microscopic) examination showed clear fluorescence signal within specific cochlea's structures. Background DAPI staining was used to assist in identifying cochlea tissue structure.

Results: Positive siRNA delivery into the inner ear cochlear structures following application of the siRNA by ear drops was observed with both siRNA molecules (Cy3.5 25 labelled DDIT4 with alternating structure, and Cy3 labelled Casp2_4 with L-DNA structure). The siRNA which was delivered by unilateral application (right ear) was detected in all turns of organ of Corti and spiral ganglions at the concentration of 100 μ g in 10 μ l 30% warm glycerol.

30 **Example 6: The effect of glycerol concentration on siRNA delivery to rat inner ear tissues using ear drop formulation as determined by siRNA quantitation.**

6-A: Rats were subjected to unilateral application of eardrops containing 200 μ g siRNA / 10 μ l of PBS, 5%, 10%, 20% or 30% Glycerol. The concentration of siRNA was 10mg/ml

and the siRNA molecule tested was specific to CASP2_mRNA (CASP_4 siRNA molecule having alternating 2'OMe sugar modified ribonucleotides in the antisense strand and L-DNA nucleotide in position 18 of the sense strand; Sense sequence: GCCAGAAUGUGGAACUCCU Antisense sequence: AGGAGUUCCACAUUCUGGC).

5 The cochlear tissue was dissected four hours following eardrops application and the amount of siRNA in the tissue was determined quantitatively using qPCR. Table 5 below summarizes the quantitative results obtained in this experiment.

These results revealed that the delivery of siRNA into the cochlea by eardrops was effective when the eardrop formulation comprises between 5-20% glycerol as a carrier.

10 The delivery of siRNA into the cochlea by eardrops was most effective when the eardrop formulation comprises 10% glycerol as a carrier.

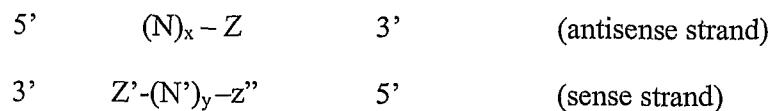
Table 5:

Treatment	No of animals	SiRNA quantity (fmol/1µg RNA)	Std
200µg/10µl PBS	3	29.09	21.20
200µg/10µl 5% Glycerol	2	92.17	27.72
200µg/10µl 10% Glycerol	3	161.21	16.26
200µg/10µl 20% Glycerol	2	93.78	6.52
200µg/10µl 30% Glycerol	3	39.21	22.83

6-B: The above experiment is carried out in the same format with the exception of

15 treating the animals with cisplatin. 10 experimental groups of (6 rats/group each) as follows: Groups are treated with a single siRNA administration: at a dose of 100mg/10ml, PBS, 5%, 10%, 20% 25% or 30% Glycerol delivered by eardrops (ErD), route: REAC; siRNA treatment is performed on day 1 (study initiation), 24 hours prior to the 1st Cisplatin administration (at Cisplatin dose regime: 4mg/kg daily; administration route: 20 I.P.; injection volume: 1ml for 250g rat BW). Rats are subjected to 3 consecutive i.p. injections of Cisplatin (stock concentration: 50mg/ml; LD50 I.P. dose 6.4mg/kg). Termination step is performed 24 hrs after the last Cisplatin administration on Day 5 after study initiation. Control Group is treated with a single Vehicle ErD application 10µl in the same manner as test groups. One experimental group is untreated intact control. The 25 scheduled euthanasia is performed according to the study design. SiRNA to target genes TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3.

Example 7: chinchilla models of hearing loss**(i) Chinchilla model of carboplatin-induced or cisplatin-induced cochlea hair cell death**


Chinchillas are pre-treated by direct administration of specific siRNA in 5%, 10%, 12.5%, 15%, 20%, 25% or 30% glycerol or other permeability enhancer to the left ear of each animal. Glycerol or other vehicle/agent (same final concentrations) is administered to the right ear of each animal as placebo. Two days following the administration of the specific siRNA compounds of the invention, the animals are treated with carboplatin (75 mg/kg i.p.) or cisplatin (intraperitoneal infusion of 13mg/kg over 30 minutes). After sacrifice of the chinchillas (two weeks post carboplatin treatment) the % of dead cells of inner hair cells (IHC) and outer hair cells (OHC) is calculated in the left ear (siRNA treated) and in the right ear (saline treated). It is calculated that the percent of dead cells of inner hair cells (IHC) and outer hair cells (OHC) is lower in the left ear (siRNA treated) than in the right ear (vehicle control).

(ii) Chinchilla model of acoustic-induced cochlea hair cell death

The activity of specific siRNA in an acoustic trauma model is studied in chinchilla. The animals are exposed to an octave band of noise centered at 4 kHz for 2.5h at 105 dB. The left ear of the noise-exposed chinchillas is pre-treated (48 h before the acoustic trauma) with 30 µg of siRNA in ~10 µL of glycerol; the right ear is pre-treated with vehicle (10% glycerol). The compound action potential (CAP) is a convenient and reliable electrophysiological method for measuring the neural activity transmitted from the cochlea. The CAP is recorded by placing an electrode near the base of the cochlea in order to detect the local field potential that is generated when a sound stimulus, such as click or tone burst, is abruptly turned on. The functional status of each ear is assessed 2.5 weeks after the acoustic trauma. Specifically, the mean threshold of the compound action potential recorded from the round window is determined 2.5 weeks after the acoustic trauma in order to determine if the thresholds in the siRNA-treated ear are lower (better) than the untreated (vehicle control) ear. In addition, the amount of inner and outer hair cell loss is determined in the siRNA-treated and the control ear.

CLAIMS

1. An otic pharmaceutical composition comprising: (a) a therapeutically effective amount of at least one oligonucleotide compound which inhibits the expression of a human target gene associated with an ear disorder in the inner ear and/or in the middle ear; (b) 0.1% to about 30% (v/v) glycerol; and (c) at least one pharmaceutically acceptable excipient or carrier, or mixtures thereof.
5
2. The otic pharmaceutical composition according to claim 1 wherein the target gene is selected from one or more of TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIS4, DDIS4L, NOX4, HTRA2, CAPNS1 (Calpain), ID3, HES1, HES5, CDKN1B and ID3.
10
3. The otic pharmaceutical composition of claim 1 or 2, comprising glycerol at a final concentration of about 5% to about 25% by volume of the composition.
4. The otic pharmaceutical composition of claim 3 comprising glycerol at a final concentration of about 7% to about 13% by volume of the composition.
15
5. The otic pharmaceutical composition of claim 4 comprising glycerol at a final concentration of about 10% by volume of the composition.
6. The otic pharmaceutical composition of any one of claims 1-5, wherein the oligonucleotide compound is selected from the group consisting of an antisense, an unmodified siRNA, a chemically modified siRNA, a shRNA, an aptamer, a ribozyme, a dsRNA or DNA compound.
20
7. The otic pharmaceutical composition of claim 6, wherein the oligonucleotide compound is a chemically modified siRNA.
8. The otic pharmaceutical composition of claim 7, wherein the siRNA has structure set forth below:
25

wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or an unconventional moiety;

30 wherein each of $(N)_x$ and $(N')_y$ is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

wherein Z and Z' may be present or absent, but if present is independently 1 to 5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

5 wherein z" may be present or absent, but if present is a capping moiety covalently attached at the 5' terminus of (N')y;

wherein each of x and y is independently an integer between 18 and 40;

10 wherein the sequence of (N')y is substantially complementary to the sequence of (N)x; and wherein (N)x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

9. The otic pharmaceutical composition of claim 1, comprising between 0.1 mg/ml to 100 mg/ml of at least one oligonucleotide compound.
10. The otic pharmaceutical composition of claim 9, comprising between 1 mg/ml to 50 mg/ml of at least one oligonucleotide compound.
15. The otic pharmaceutical composition of claim 9, comprising between 5 mg/ml to 20 mg/ml of at least one oligonucleotide compound.
12. The otic pharmaceutical composition according to any of claims 1 to 11 wherein such composition is designed for topical non-invasive administration.
13. The otic pharmaceutical composition according to claim 12, wherein such 20 composition is designed for instillation, deposition or spraying into the ear canal.
14. The otic pharmaceutical composition according to claim 13, wherein the composition is formulated as a cream, a foam, a paste, an ointment, an emulsion, a liquid solution, a gel, spray, a suspension, a microemulsion, microspheres, microcapsules, nanospheres, nanoparticles, lipid vesicles, liposomes, polymeric 25 vesicles, a patch, a biological insert.
15. The otic pharmaceutical composition according to claim 14, wherein the composition is formulated as an eardrop.
16. Use of the otic pharmaceutical composition according to any of claims 1 to 15, for the treatment of an ear disorder.

17. Use according to claim 16, wherein the ear disorder is selected from a middle ear disorder and / or an inner ear disorder.
18. A method of treating a subject suffering from or at risk of an ear disorder, the method comprises topically administering to the canal of the subject's ear an otic pharmaceutical composition comprising a therapeutically effective amount of at least one oligonucleotide compound; a permeability enhancer and a pharmaceutically acceptable excipient or carrier, or mixtures thereof, thereby reducing expression of a human target gene associated with the disorder in the inner ear and/or in the muddle ear of the subject.
19. A method of reducing hearing loss in a subject which comprises topically administering to the canal of the subject's ear an otic pharmaceutical composition comprising: (a) a therapeutically effective amount of at least one oligonucleotide compound which inhibits the expression of a human target gene associated with the hearing loss; (b) a permeability enhancer and (c) a pharmaceutically acceptable excipient or carrier, or mixtures thereof, thereby reducing the hearing loss in the subject.
20. The method according to claim 19 wherein the hearing loss is selected from ototoxin-induced hearing loss, acoustic induced hearing loss or age related hearing loss.
21. The method according to claim 20, wherein the ototoxin is cisplatin or cisplatin analog.
22. The method according to claim 20 wherein the target gene is selected from one or more of: TP53BP2 (ASPP2), BNIP3, CASP2, NOX3, HRK, RAC1, DDIT4, DDIT4L, NOX4, HTRA2, CAPNS1 (Calpain) and ID3.
23. A method of inducing ear hair cell regeneration in a subject's ear which comprises topically administering to the canal of the subject's ear an otic pharmaceutical composition comprising: (a) therapeutically effective amount of at least one oligonucleotide compound which inhibits the expression of a human target gene associated with a hair cell loss in the ear; (b) a permeability enhancer and (c) a pharmaceutically acceptable excipient or carrier, or mixtures thereof, thereby inducing hair cell regeneration in the subject's ear.

24. The method according to claim 23 wherein the target gene is selected from one or more of HES1, HES5, CDKN1B and ID3.

25. The method according to claim 23 wherein the ear hair cell is an outer hair cell and/or an inner hair cell.

5 26. The method according to any one of claims 18-25 wherein the permeability enhancer is glycerol.

27. The method of claim 26, wherein glycerol is present at a final concentration of about of about 0.1-30% v/v of the composition.

10 28. The method of claim 27, wherein glycerol is present at a final concentration of about 5-25% v/v of the composition.

29. The method of claim 27 wherein the glycerol is present at a final concentration of about 7% to about 13% v/v of the composition.

30. The method of claim 27 wherein the glycerol is present at a final concentration of about 10% v/v of the composition.

15 31. The method of any one of claims 18 or 30, wherein oligonucleotide compound is selected from the group consisting of an antisense, an unmodified siRNA, a chemically modified siRNA, a shRNA, an aptamer, a ribozyme, a dsRNA or DNA compound.

32. The method of claim 31, wherein the oligonucleotide compound is a chemically modified siRNA.

20 33. The method of claim 31, wherein the siRNA has structure set forth below:

5' (N)_x - Z 3' (antisense strand)
3' Z'-(N')_y-z" 5' (sense strand)

25 wherein each of N and N' is a ribonucleotide which may be unmodified or modified, or an unconventional moiety;

wherein each of (N)_x and (N')_y is an oligonucleotide in which each consecutive N or N' is joined to the next N or N' by a covalent bond;

30 wherein Z and Z' may be present or absent, but if present is independently 1 to 5 consecutive nucleotides covalently attached at the 3' terminus of the strand in which it is present;

wherein z" may be present or absent, but if present is a capping moiety covalently attached at the 5' terminus of (N')y;

wherein each of x and y is independently an integer between 18 and 40;

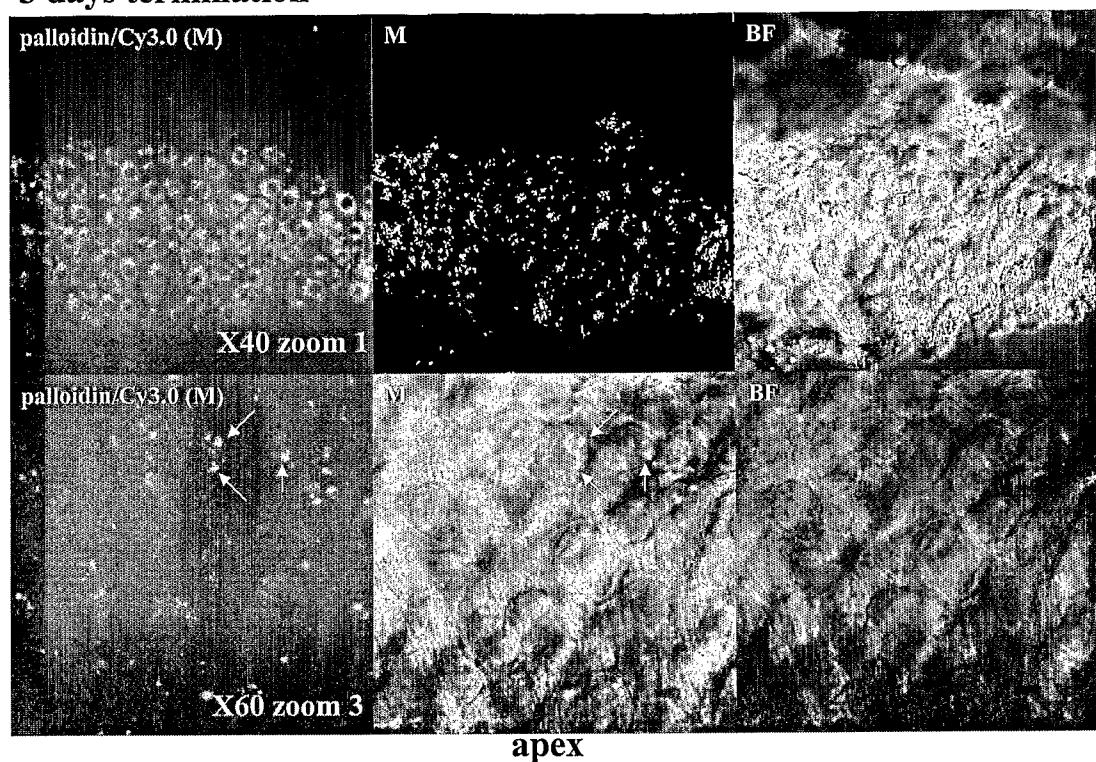
5 wherein the sequence of (N')y is substantially complementary to the sequence of (N)x; and wherein (N)x comprises an antisense sequence substantially complementary to from about 18 to about 40 consecutive ribonucleotides in an mRNA of a target gene associated with an ear disorder.

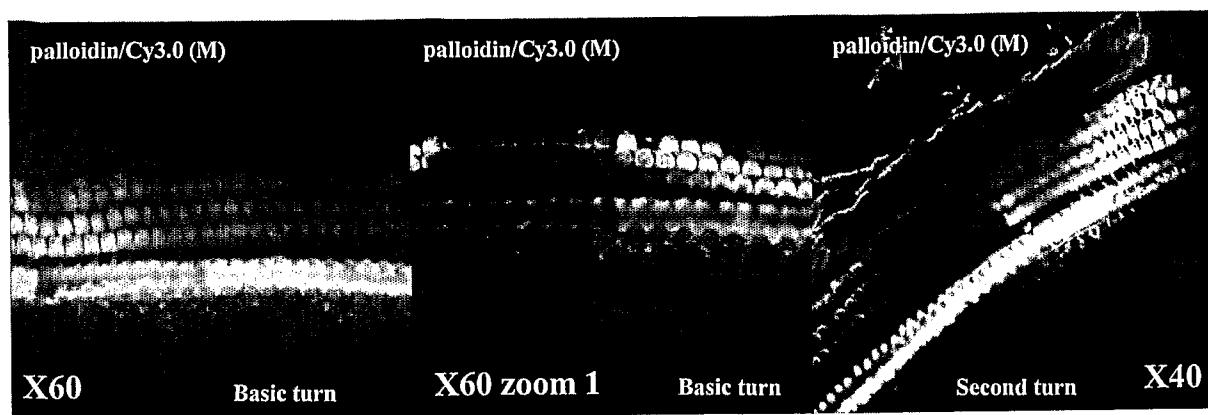
34. The method of claims 32 or 33 wherein the composition comprises between 0.1 mg/ml to 100 mg/ml of at least one chemically modified siRNA.

10 35. The method of claim 34 wherein the composition comprises between 1 mg/ml to 50 mg/ml of at least one chemically modified siRNA.

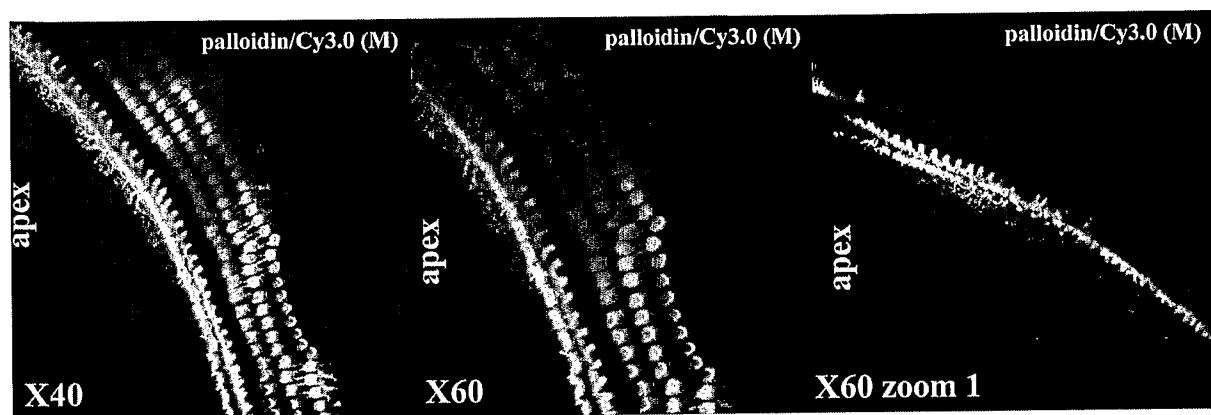
36. The method of any one of claims 18 to 35 wherein the composition is designed for topical non-invasive administration.

15 37. The method of claim 36, wherein the composition is designed for instillation, deposition or spraying into the ear canal.


38. The method of claim 37, wherein the composition is formulated as a cream, a foam, a paste, an ointment, an emulsion, a liquid solution, a gel, spray, a suspension, a microemulsion, microspheres, microcapsules, nanospheres, nanoparticles, lipid vesicles, liposomes, polymeric vesicles, a patch, a biological insert.

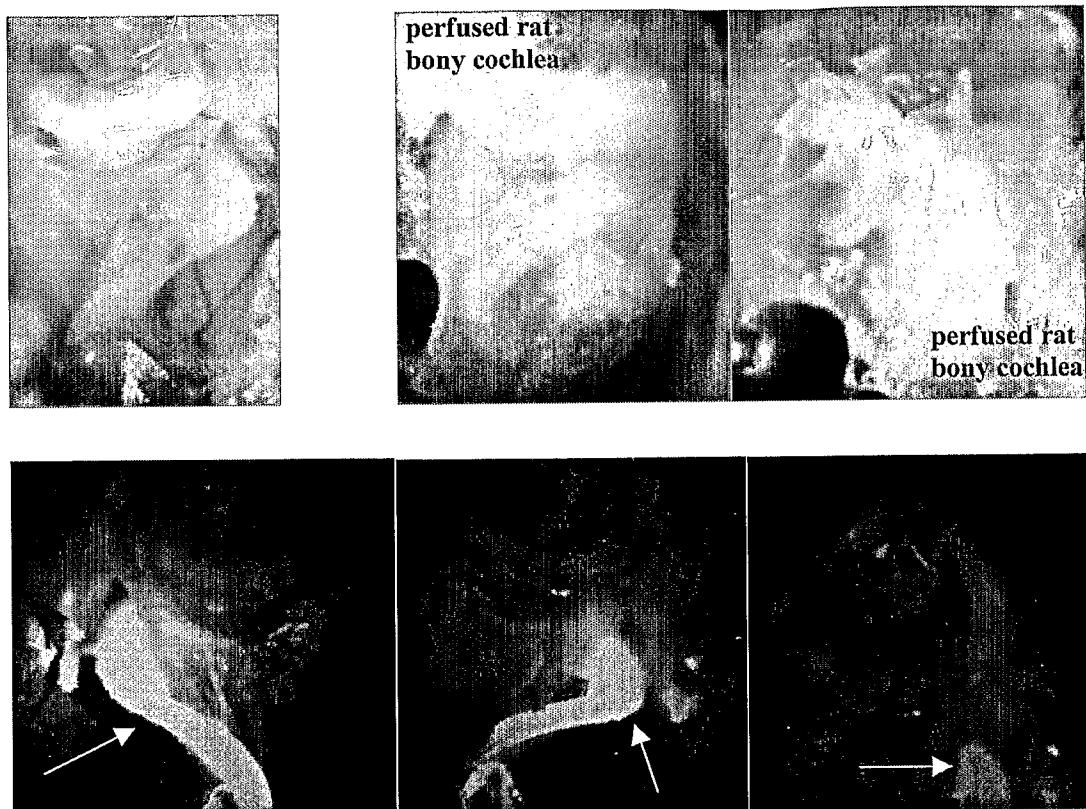

20 39. The method of claim 38, wherein the composition is formulated as an eardrop.

40. The method according to any one of claims 18-36 or 39 wherein the eardrops are warmed to 35°C to about 38°C before administering to the subject's ear.


25 41. The method of claim 40 wherein the eardrops are administered unilaterally to the subject's ear.

42. The method of claim 41 wherein the eardrops are allowed to penetrate the subject's ear for about 5 minutes to about 60 minutes.

Figure 1**3 days termination**


Figure 2

3 days termination

Figure 3

3 days after inoculation

FIGURE 4

Table A1: HES1 - hairy and enhancer of split 1

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-8400709 ORF:237-1079
1	GCGCCUUUGUAAAUA	UUUUAAAUAACAAAGGCGC	Rat,Ms	[1301-1319] 3'UTR
2	CAAGUAAAAGAGACACAA	UUUGUGUCUCUUUACUUG		[147-165] 5'UTR
3	CUCUAAACAGGAACUUGAA	UUCAAGUCCUGUUAGAG		[1137-1155] 3'UTR
4	GGUGCUGUAACAGCGGA	UUCCGCUGUAUCAGCACC	Ms	[21-39] 5'UTR
5	UGCCAAAGAGUUGAAAA	UUUCAACACAUUUGGCA	Rat,Ms	[1367-1385] 3'UTR
6	CUUGAAUACUGGGAGAGAA	UUCUCUCCAGUUAUCAG		[1150-1168] 3'UTR
7	GUAAAAGAGACACAAACAA	UUGUUUGUGUCUUCUUC		[150-168] 5'UTR
8	CGUGAAGAACUCCAAAAAU	AUUUUGGAGUUCUUCAG		[181-199] 5'UTR
9	GAACUUAUACUGGGAGA	UCUCCCAGUAUCAAGUUC		[1147-1165] 3'UTR
10	GGACAUUCUGGAAUAGACA	UGUCAUUUCCAGAAUGUCC		[470-488] ORF
11	GGAGAAAAGACGAAGAGCA	UGCUCUUCGUCUUUCUCC	GP	[362-380] ORF
12	CAGCAUCUGAGCACAGAA	UUUCUGUGCUCAGAUGCUG		[325-343] ORF
13	AGAAAGCUAUAACGCCUA	UAGGCCUUUGAUGACUUUCU	Rat,Ms,GP,Chn	[339-357] ORF
14	AGCACAGAAAGCUAUCAAA	UUUAGAUGACUUCUGUGCU	Rat,Ms,Chn	[334-352] ORF
15	CUUCCCUCGGACUCUAAA	UUUAGAGUCCGGAGGGAAG		[1125-1143] 3'UTR
16	GAGAGAAGAGGACUUUUU	AAAAAAAGGUCCUCUCUC		[1162-1180] 3'UTR
17	UCACCAAGUAGGCCACAAA	UUUUGGGCUACUJUGGUGA		[84-102] 5'UTR
18	GCCUUAUUAUGGAGAAAAGA	UCUUUUCUCCAUAAUAGGC		[353-371] ORF
19	GGCAUCCAAGCUGGAGAA	UUCUCCAGCUUUGGAUGGC	Rat,GP,Chn	[448-466] ORF
20	UGAAAACACUGAUUUUGGA	UCCAAAACAGUGUUUUCA	Rat,Ms,GP,Chn	[406-424] ORF
21	UCGUGAAGAACUCCAAAAAA	UUUUGGAGUUCUUCACGA		[180-198] 5'UTR
22	CUUUUUUAUGUGAUGCCAA	UUGGCAUCACAUAAAAAG		[1354-1372] 3'UTR
23	GUUACUUUUUGUAGAGAGA	UCUCUCUACAAAAGUAAC		[1220-1238] 3'UTR
24	AGUCUGAGCCAGCUGAAAA	UUUCAGCUGGUCAGACU		[393-411] ORF
25	CCAGCUGUAUAUAGGAGA	UCUCCAUUAUACAGCUGG	Rat,Ms,Chn	[240-258] ORF
26	GGGAGAGAAAGAGGACUUUU	AAAAGUCCUCUCUCUCC		[1160-1178] 3'UTR
27	ACUGCAUGACCCAGAUCA	UUGAUCUGGGCUAUGCAGU	Rat,Ms,GP,Chn	[670-688] ORF
28	GCUGAUUAUAGGAGAAAA	UUUUCUCCAUUAUACAGC	Rat,Ms,Chn	[243-261] ORF
29	UUGCUCUUCUCAUUCCCAA	UUGGGAAUGGAGAAAGCAA		[922-940] ORF
30	UGAUUUJUGGAUGCUUGAA	UUCAGAGCAUCAAAUA		[415-433] ORF
31	UCAAGUAAAAGAGACACAA	UUGUGUCUCUUUUACUUGA		[146-164] 5'UTR
32	GGAUGCUCUGAAGAAAGAU	AUCUUUCUUCAGAGCAUC		[422-440] ORF
33	CUGGAACAGCGCUACUGAU	AUCAGUAGCGCUGUUCAG		[66-84] 5'UTR
34	GGAUAAAACCAAGACAGCA	UGCUGUCUUUGGUUUUAUCC		[311-329] ORF
35	GGAGCUGGUGCUGUAACA	UGUUAUCAGCACCAGCUCC		[15-33] 5'UTR
36	UGCUCAGUAGUUUUGUGAA	UUCACAAAACUACUGAGCA		[123-141] 5'UTR
37	AGAAGAGGACUUUUUUGAU	AUAAAAAAAGGUCCUCUUCU		[1165-1183] 3'UTR
38	GGAGAGAAGAGGACUUUUU	AAAAAGUCCUCUUCUCUCC		[1161-1179] 3'UTR
39	UUUGGAUGGUCUGAAGAAA	UUUCUUCAGAGCAUCAAA		[419-437] ORF
40	AGUAAAAGAGACACAAACAA	UGUUUGUGUCUCUUUACU		[149-167] 5'UTR
41	UGCGCCUUUGUAAAUA	UUUAAAUAACAAAGGCGCA	Rat,Ms	[1300-1318] 3'UTR
42	GCCAGUUGUUCUCCUCAU	AUGAGGAAAGCAACAGC		[916-934] ORF
43	UUCUGGAAAGACAGUGAA	UUCACUGUCAUUCAGGAA	Rat	[475-493] ORF
44	CACUGAUUUGGAUGCUCU	AGAGCAUCCAAAUCAGUG		[412-430] ORF
45	GUAUUAAGUGACUGACCAU	AUGGUCAGUACUUUAUAC	Rat,Ms,GP	[1242-1260] 3'UTR
46	GAUUUJUGGAUGCUCUGAAG	CUCAGAGCAUCAAAUAU		[416-434] ORF
47	GCAUCUGAGCACAGAAAGU	ACUUUCUGUGCUCAGAUGC		[327-345] ORF
48	ACAGCAUCUGAGCACAGAA	UUCUGUGCUCAGAUGCUGU		[324-342] ORF
49	AGCUGAUUAUAGGAGAAA	UUUCUCCAUUAUACAGCU	Rat,Ms,Chn	[242-260] ORF
50	GUGAAGAACUCCAAAAUA	UAUUUUGGAGUUCUUCAC		[182-200] 5'UTR
51	UUUCGUGAAGAACUCCAAA	UUUGGAGUUCUUCAGCAA		[178-196] 5'UTR
52	AGAUCAUGCCAUAGCCUA	UAGGUCAUGGCAUUGAUCU		[682-700] ORF
53	AUAGCUCGGCGCAUCCAA	UUGGAAUGCCGCGAGC		[439-457] ORF
54	CGCUACUGAUACCAAGUA	UACUJUGGUGAUCAGUAGCG		[75-93] 5'UTR
55	GAAAGUCUGAGCCAGCUGA	UCAGCUGGCUACAGACUUC		[390-408] ORF
56	ACCAAGUAGCCACAAAUA	UAUUUUGGGCUACUJUGGU		[86-104] 5'UTR
57	UGGAAAUGACAGUGAAGCA	UGCUCACUGUCAUUC	Rat	[478-496] ORF
58	AAAGUCUGAGCCAGCUGAA	UUCAGCUGGCUACAGACUU		[391-409] ORF
59	AAAAGACGAAGAGCAAGAA	UUCUUGCUCUUCGUCUUU		[366-384] ORF
60	GAGAAGAGGACUUUUUUGA	UCAAAAAGGUCCUCUUC		[1164-1182] 3'UTR
61	UGGUGCUGUAACAGCGGA	UCCCGUGUUAUCAGCACCA	Ms	[20-38] 5'UTR

62	CCAUGCACUAUAAAUGUAU	AUACAAAUAUAGUGCAUGG		[1257-1275] 3'UTR
63	AGCUGAAAACACUGAUUU	AAAUCAGUGUUUUCAGCU	GP,Chn	[403-421] ORF
64	UGAUGCCAAGAUGUUUGA	UCAAAACAUUUUGGCAUCA	Rat,Ms	[1364-1382] 3'UTR
65	UUUUGUAGAGAGCUGUA	UACAGCUCUCUACAAAAA		[1226-1244] 3'UTR
66	GAAAGAUAGCUCGCGCAU	AUGCCGCGAGCUAUCUUC		[434-452] ORF
67	AGCUGUAUUAAGUGACUGA	UCAGUCACUUAACAGCU	Rat,Ms,GP	[1238-1256] 3'UTR
68	CGGACAUUCUGGAAAGAC	GUCAUUCAGAAUGUCGG		[469-487] ORF
69	AAGUCAUCAAAAGCCUAUUA	UAAUAGGCUUUGAUGACUU		[342-360] ORF
70	AGUUUUGUGAAAGUCUAA	UUGAGACUUUCACAAAACU		[131-149] 5'UTR
71	AUGCCAAAGAUGUUUGAAA	UUUCAAACAUUUUGGCAU	Rat,Ms	[1366-1384] 3'UTR
72	UGUUAUUAAGUGACUGACCA	UGGUUCAGUCACUUAUACA	Rat,Ms,GP	[1241-1259] 3'UTR
73	GAAGAGGACUUUUUUGAUU	AAUCAAAAAGGUCCUUC		[1166-1184] 3'UTR
74	UCCGGACUCUAAACAGGAA	UUCCUGUUUAGAGUCCGGA		[1131-1149] 3'UTR
75	CACCAAGUAGCCACAAA	AUUUUGUGGUACUUGGUG		[85-103] 5'UTR
76	CUGCAUGACCCAGAUCAAU	AUUGAUUCUGGGUCAUGCAG		[671-689] ORF
77	UAUGGAGAAAAGACGAAGA	UCUUCGUCUUUUCUCCAU		[359-377] ORF
78	UAUUAUUGGAGAAAAGACGA	UCGUCCUUUUCUCCAUAAA		[356-374] ORF
79	AUJUGGAUUGCUCUJUGUA	UACAAAGGCACAUCCAAU	Rat,Ms	[1293-1311] 3'UTR
80	GGACUUUUUUGAUJAAGUG	CACCUUAUCAAAAAGUCC		[1171-1189] 3'UTR
81	UCUUCCCUCCGGACUUA	UUAGAGUCCGGAGGGAGA		[1124-1142] 3'UTR
82	AGCCUAAAUGGAGAAAAG	CUUUUCUCCAUAAAAGGU		[352-370] ORF
83	AGAGCUGUAAAUGLACU	AGUCACUAAAACAGCUCU	Rat,Ms,GP	[1236-1254] 3'UTR
84	UUUUGGAUGCUCUGAAGAA	UUCUUCAGAGCAUCCAAA		[418-436] ORF
85	AAGUCUGAGCCAGCUGAAA	UUUCAGCUGGUCCAGACUU		[392-410] ORF
86	ACGACACCGGAUAAACCAA	UUGGUUUAUCGGUGUCGU	Chn	[303-321] ORF
87	AAAUGCCAGCUGAUAAA	AUUUAUACAGCUGGCAUU	Rat,Ms,Chn	[235-253] 5'UTR+ORF
88	AUUGCCTUUUGUAAAUA	UAUAAAACAAAGGCGCAAU	Rat,Ms	[1298-1316] 3'UTR
89	UGAAUACUGGGAGAGAAGA	UCUUCUCUCCAGAUUCA		[1152-1170] 3'UTR
90	ACUUGAAUACUGGGAGAGA	UCUCUCCCAGAUUCAAGU		[1149-1167] 3'UTR
91	AAAGCCUAAAUGGAGAAA	UUUCUCCAUAAAAGGUU		[350-368] ORF
92	UAGUUUJUGUGAAAGUCU	UGAGACUUCACAAAACUA		[130-148] 5'UTR
93	GAUJUGAAAAGUCUCU	AAGAGCAUJJUCAAACAU	Ms	[1374-1392] 3'UTR
94	GUGGUUACUUUUGGUUUU	AAAAACACAAAGUAACAC		[1187-1205] 3'UTR
95	CUGGGAGAGAAGAGGACU	AAGUCCUCUUCUCUCCAG		[1158-1176] 3'UTR
96	ACGUGCGAGGGCGUAAAUA	UAUUAACGCCCLUCGACGU		[615-633] ORF
97	AGUCAUAAAGCCUAUUAU	AUAAAAGGCUUJUGAUGACU		[343-361] ORF
98	AAGGGCGACAUUCUGGAAA	UUUCCAGAAUGUCGCCU		[465-483] ORF
99	AAGCCUAAAUGGAGAAA	UUUUCUCCAUAAAAGGUU		[351-369] ORF
100	CUCAGAUGACAUUUCGUUU	AAACGAAAUGUCAUUCUGAG		[1321-1339] 3'UTR
101	GCCAAAGAUGUUUGAAA	AUUUCAAACAUUUUGGC	Ms	[1368-1386] 3'UTR
102	CCUCACCCACUUGCUCAGUA	UACUGAGCAUGUCUGAGG		[113-131] 5'UTR
103	UAGAGAGAGCUGUAUUAAG	CUUAUACAGCUCUCUCA		[1231-1249] 3'UTR
104	UCUAAACAGGAACUUGAAU	AUUCAGUUCUCGUUUJAGA		[1138-1156] 3'UTR
105	CGGACUCUAAACAGGAACU	AGUUCUGUUUJAGUCCG		[1133-1151] 3'UTR
106	UCUUCJUGGUCCUGGAACA	UGUJUCAGGACCAAGGAGA		[55-73] 5'UTR
107	CAAAGAUJUGAAAAGUC	GCAUUUCAAACACUUUUG	Ms	[1370-1388] 3'UTR
108	UUUCGUUUUUUACACGAGA	UCUCGUGAAAAAAAGCAA	Rat,Ms	[1332-1350] 3'UTR
109	AGUGACUGACCAUGCACUA	UAGUGCAUGGUCCAGUCACU	GP	[1248-1266] 3'UTR
110	GGAACUUGAAUACUGGGAG	CUCCCAGUUAUCAAGUUCC		[1146-1164] 3'UTR
111	GCUUCAGCGAGUGCAUGAA	UUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[574-592] ORF
112	GCGGACAUUCUGGAAAGUA	UCAUUCAGAAUGUCGCC		[468-486] ORF
113	AAAAACACUGUUUJUGGAU	AUCCAAAACAGUGUUUUC	Rat,Ms,GP,Chn	[407-425] ORF
114	AAAGACGAAGAGCAAGAAU	AUUCUUCUUCUUCGUCUU		[367-385] ORF
115	CAGAUGACAUUUCGUUUU	AAAAACGAAAAGUCAUUCUG		[1323-1341] 3'UTR
116	AGCUCAGAUGACAUUUCGU	ACGAAAAGUCAUUCUGAGCU		[1319-1337] 3'UTR
117	GAUACUGGGAGAGAAGAG	CUCUUCUCUCCAGUUAUC		[1153-1171] 3'UTR
118	ACAGGAACUUGAAUACUGG	CCAGUAUCAAGUUCUGU		[1143-1161] 3'UTR
119	GGCCAGUJUGGUCCUCA	UGAGGAAGCAACUGGCC		[915-933] ORF
120	UGAUCACCAAGUAGCCACA	UGUGGUCAUCUUGGUGAU		[81-99] 5'UTR
121	AAGACAGCAUCUGAGCACA	UGUGUCAGAUGUCUGCUU		[321-339] ORF
122	ACCGGAUAAAACAAAGACA	UGUCUUCGGUUUAUCCGGU	Chn	[308-326] ORF
123	GCCAGCUGAUAAAUGGAG	CUCCAUAAAUCAGCUGGCC	Rat,Ms,Chn	[239-257] ORF
124	AAAAUGCCAGCUGAUAAA	UUUAUACAGCUGGCCA	Rat,Ms,Chn	[234-252] 5'UTR+ORF
125	AAGUCUCAAGAAAAGAGA	UCUCUUUACUUGAGACUU		[141-159] 5'UTR
126	AACGCAGUGUACCUUCCA	UGGAAGGUGACACUGCGU	Ms	[1011-1029] ORF
127	GACCCAGAUCAUAGCCAUG	CAUGGCAUUGAUCUGGGUC		[677-695] ORF
128	GAGUGCAUGAACGAGGUGA	UCACCUUCGUUCAUGCACU	Rat,Ms,GP,Chn	[582-600] ORF

129	AGAAGGCGGACAUUCUGGA	UCCAGAAUGUCGCCUUUCU		[463-481] ORF
130	AGAAAAGAUAGCUCGCGCA	UGCCGCGAGCUACUUUCU		[433-451] ORF
131	GACAGCAUCUGAGCACAGA	UCUGUGCUCAGAUGCUGUC		[323-341] ORF
132	CCGGUAACCAAGACAG	CUGUCUUUGGUUUAUCCGG	Chn	[309-327] ORF
133	CACGACACCGGUAACCA	UGGUUUAUCCGGUGCGUG	Chn	[302-320] ORF
134	GCACUUUCAGUAGUUU	AAAACUACUGAGCAAGUGC		[118-136] 5'UTR
135	AGAUGUUUAGAAUUGCUCU	AGAGCAUUUCAACAUU	Ms	[1373-1391] 3'UTR
136	AUAAAAGCUCAGAUGACAU	AUGUCAUCUGAGCUUUUAU		[1314-1332] 3'UTR
137	GAAGUUACUUUUGUAGAG	CUCUACAAAAGUAACUUC		[1217-1235] 3'UTR
138	CUCCGGACUCUAAACAGGA	UCCUGUUUAGAGUCGGAG		[1130-1148] 3'UTR
139	GCGCUACUGAUCACCAAGU	ACUUGGUGAUCAGUAGCGC		[74-92] 5'UTR
140	CCAGCUGAAAACACUGAUU	AAUCAGUGUUUCAGCGG	GP,Chn	[401-419] ORF
141	AUUAUGGAGAAAAGACGAA	UUCGUCUUUUCUCCAUAAU		[357-375] ORF
142	CAAAGACAGCAUCUGAGCA	UGCUCAUGCUGUCUUUG		[319-337] ORF
143	GUCUCAAGUAAAAGAGACA	UGUCUCUUUACUUGAGAC		[143-161] 5'UTR
144	UCAGUAGUUUUGUGAAAGU	ACUUUCACAAAACUACUGA		[126-144] 5'UTR
145	GUGACUGACCAUCACAUU	AUAGUGCAUGGUCAGUCAC	GP	[1249-1267] 3'UTR
146	UGACCCAGAUCAUAGCCAU	AUGGCAUUGAUCIUGGGUCA		[676-694] ORF
147	GAAGAAAAGAUAGCUCGGG	CCCGAGCUACIJJUC		[431-449] ORF
148	ACACCGGAUAAACAAAGA	UCUJUGGUUUAUCCGGUGU	Chn	[306-324] ORF
149	UUUCUGUGAAGAACUCCAA	UUGGAGUUUCUACGAAAAA		[177-195] 5'UTR
150	AAGAAAAGAGACACAAAC	GUUUGUGUCUCCCCUUACUU		[148-166] 5'UTR
151	CGCCUUUGUUAUAAAAG	CUUUUAUAAUACAAAAGCG	Rat,Ms	[1302-1320] 3'UTR
152	AUAAUAAAACCCUCAGCA	UGCUGAGGGUUUAAUUAU		[102-120] 5'UTR
153	AUACUGGGAGAGAAGAGGA	UCCUCUUCUCUCCAGUAU		[1155-1173] 3'UTR
154	GGCGGACAUUCUGGAAUAG	CAUUCAGAAUUGUCCGCC		[467-485] ORF
155	UGGAGAAGGCGGACAUUCU	AGAAUGUCGCCUUCUCCA		[460-478] ORF
156	AGUAGUUUUGUGAAAGUCU	AGACUUUCACAAAACUACU		[128-146] 5'UTR
157	GAUGCCAAAGAUUGUUGAA	UUCAACACAUUJUGGCAUC	Rat,Ms	[1365-1383] 3'UTR
158	AUGUGAUGCCAAAGAUUGU	AACAUUCUJUGGCAUCACAU	Rat,Ms	[1361-1379] 3'UTR
159	UUGGAUUGCGCCUUUQUAU	UAACAAAGGCGCAUCCAA	Rat,Ms	[1294-1312] 3'UTR
160	UCAGCGAGUGCAUGAACGA	UCGUUCAUGCACUCUGCUGA	Rat,Ms,GP,Chn	[577-595] ORF
161	CCUAAAUGGAGAAAGAC	GUCUUUCUCCAAUUAAGG		[354-372] ORF
162	AGCCAGUGUCAACACGACA	UGUCGUGUUGACACUGGGU	Rat,Ms	[290-308] ORF
163	GUAGUUUUGUGAAAGUCUC	GAGACUUUCACAAAACUAC		[129-147] 5'UTR
164	CUAAGGUGUUUUGGAGGUU	AAGCCUCCAAACACCUUAG		[874-892] ORF
165	AGUGCAUGAACGAGGUGAC	GUCACCUCGUUCAUGCACU	Rat,Ms,GP,Chn	[583-601] ORF
166	AAAUGACAGUGAACCCCU	AGGUGCUUCAGUCUAAUU	Rat	[481-499] ORF
167	AGAAAAGACGAAGAGCAAG	CUUGCUCUUCGUUUUCU	GP	[364-382] ORF
168	UUCGUGAAGAACCUAAA	UUUUGGAGUUCUUCACGAA		[179-197] 5'UTR
169	UCUUUUUAUUGUGAUGCCA	UGGCAUCACAUAAAAGA		[1353-1371] 3'UTR
170	CUGACCAUGCACAUUUU	AAAUAUAGUGCAUGGUCAG	GP	[1253-1271] 3'UTR
171	AGUGGUACUUCUJUGGUUU	AAAACACAAAGUAACACAU		[1186-1204] 3'UTR
172	AGAGAAAGGGACUJUUUUG	CAAAAAAGGUCCUCUUCU		[1163-1181] 3'UTR
173	AGGUGUUUJGGAGGCUUCC	UGGAAGGCCUCAAACACCU		[877-895] ORF
174	UGAGCCAGUGAACACAU	AGUGUUUCAGCUGGGCUA	Chn	[397-415] ORF
175	CAGAAAGUCAUCAAGCCU	AGGCUUUJGAUGACUUUCUG	Rat,Ms,GP,Chn	[338-356] ORF
176	GCUCUAAAUAUCUUCU	AGGAAGAUUUUUAAGAGC	Rat,Ms	[1387-1405] 3'UTR
177	GUUAAUACCGAGGUGCGCA	UGCGCACCUCGGUUAUAC		[627-645] ORF
178	CUGAUUUJUGGAGGCUUC	UCAGAGCAUCCAAAUCAG		[414-432] ORF
179	GUCUGAGCCAGCUGAAAAC	GUUUUCAGCUGGUUCAGAC		[394-412] ORF
180	UGCCAGCUGAUUAUAGGA	UCCAAUUAUACAGCUGGC	Rat,Ms,Chn	[238-256] ORF
181	AAGUGGUACUUCUJUGUUU	AAACACAAAGUAACACUU		[1185-1203] 3'UTR
182	CAGGAACUUGAAUACUGGG	CCCAGUAUJCAAGUUCUG		[1144-1162] 3'UTR
183	GGACUCAAACAGGAACUU	AAGUUCUCGUUJAGAGUCC		[1134-1152] 3'UTR
184	AUCACCAAGUAGGCCAA	UUUGUGGUACUJUGGUAU		[83-101] 5'UTR
185	GAUCACCAAGUAGGCCAA	UUGUGGUACUJUGGUAGU		[82-100] 5'UTR
186	AAAUGAAAGUCUGGCCAG	CUGGCUCAGACUUUCAUU		[386-404] ORF
187	GAUAAAAGAAAGUUGAG	CUCAGACUUUCAUUUUUC		[382-400] ORF
188	CUAUUAGGAGAAAAGACG	CGUCUUUCUCCAUAAUAG		[355-373] ORF
189	AUCUGAGCACAGAAAGUCA	UGACUUUCUGUGUCAGAU		[329-347] ORF
190	GUUUUGUGAAAGUCUCAAG	CUUGAGACUUUCACAAAAC		[132-150] 5'UTR
191	CAUUCGUUUUUUACACGA	UCCGUGAAAAACGAAAG	Rat,Ms	[1330-1348] 3'UTR
192	AGGAACUJUGAAUACUGGG	UCCAGAUUCAAGUUCU		[1145-1163] 3'UTR
193	CCGGACUCUAAACAGGAAC	GUUCCUGUUUAGAGUCCGG		[1132-1150] 3'UTR
194	UUUGCUUUCCUCAUUC	UGGGAAUGAGGAAAGCAAA		[921-939] ORF
195	GGAAAUGACAGUGAAC	GUGGUUCACUGUCAUUC	Rat	[479-497] ORF

196	GACAUUUCGUUUUUUACAC	GUGAAAAAAACGAAUGUC	Rat,Ms	[1328-1346] 3'UTR
197	AUUUUGGAUGCUCUGAAGA	UCUUCAGAGCAUCACAAAU		[417-435] ORF
198	UAAAUGAAAGUCUGAGCCA	UGGCUCAGACUUUCAUUA		[385-403] ORF
199	UGUCAACACGACACCGAU	AUCCGGUGUCGUGUUGACA	Chn	[296-314] ORF
200	CUUUCUGACGUAGUUUUGUG	ACACAAACUACUGAGCAAG		[121-139] 5'UTR
201	UUUUAGUGAUGCCAAAGA	UCUUUGGCAUCACAUAAAA	Rat,Ms	[1357-1375] 3'UTR
202	CGUUUUUACACGAGAUUU	AAAUCUCGUGUAAAAACG	Rat,Ms	[1335-1353] 3'UTR
203	UGUUCAUUUGGUUGUGCGC	GCGCAUCCAAUJUGAACA	Rat,Ms	[1286-1304] 3'UTR
204	ACUGACCAUGGCACUAUAAU	AAUAUAGUGCAUGGUCAGU	GP	[1252-1270] 3'UTR
205	UUGAAUACUGGGAGAGAAG	CUUCUCUCCAGUAUCAA		[1151-1169] 3'UTR
206	CUCAAGUAAAAGAGACACA	UGUGUCUCUUUUACUUGAG		[145-163] 5'UTR
207	UUGUAGAGAGAGCUGUAUU	AAUACAGCUCUCUACAA		[1228-1246] 3'UTR
208	AGUUACUUUUUGUAGAGAG	CUCUCUACAAAAAGUAACU	Rat,Ms	[1219-1237] 3'UTR
209	UGAUUAAGUGGUUACUUUG	CAAAGUAACCACUUAUCA	GP	[1180-1198] 3'UTR
210	GAGGACUUUUUGAUUAAG	CUUAAUCAAAAAGUCCUC		[1169-1187] 3'UTR
211	GCCAGCUGAAAACACUGAU	AUCAGUGUUUCAGCUGGC	GP,Chn	[400-418] ORF
212	UCAGCACUUGCUCAGUAGU	ACUACUGAGCAAGUGCUGA		[115-133] 5'UTR
213	GAUUAGUGGUUACUUUGU	ACAAAGUAACCAACUUAUC	GP	[1181-1199] 3'UTR
214	UAAGGUGUUGGAGGCUUC	GAAGCCUCCAAAACACCUA		[875-893] ORF
215	GCUACUGAUCCACAUAG	CUACUGGUGAUCAGUAGC		[76-94] 5'UTR
216	ACUGAUUUUGGUAGCUCUG	CAGAGCAUCCAAAUCAGU		[413-431] ORF
217	CUGAAAACACUGAUUJUG	CCAAAUCAGUGUUUCAG	Rat,Ms,GP,Chn	[405-423] ORF
218	GUGCUGAUACAGCGGAU	AUJCCGCUGUUACAGCAC	Ms	[22-40] 5'UTR
219	UUAGUGAUGCCAAAGAUG	CAUCUUUGGCAUCACAUAA	Rat,Ms	[1359-1377] 3'UTR
220	UGGAUUGCGCCUUUGUAUU	AAUACAAAGCGCAUCCA	Rat,Ms	[1295-1313] 3'UTR
221	GCUGUAAAAGUGACUGAC	GUCAGUCACUAAAACAGC	Rat,Ms,GP	[1239-1257] 3'UTR
222	ACUGGGAGAGAAGAGGACU	AGUCCUCUUCUCUCCAGU		[1157-1175] 3'UTR
223	AGCUGGUGCUGAUACAGC	GCUGUUAUCAGCACCAGCU	Ms	[17-35] 5'UTR
224	UCAAAGCCUAUUAUGGAGA	UCUCCAUAAUAGGCUUUGA		[348-366] ORF
225	CGGAUAAAACCAAGACAGC	GCGUCUUUGGUUUUACCG	Chn	[310-328] ORF
226	UCUUUUUCGUGAAGAACUC	GAGUUCUUCAGCAGAAAAGA		[174-192] 5'UTR
227	UGAAAGCUCUAAGUAAAAG	CUUUUACUUGAGACUUA		[138-156] 5'UTR
228	UUUUGUGAAAGCUCUAAGU	ACUUGAGACUUCACAAAAA		[133-151] 5'UTR
229	CUCAGUAGUUUUGUGAAAG	CUUUCACAAAACUACUGAG		[125-143] 5'UTR
230	GACUCUAAACAGGAACUJUG	CAAGUUCUGUUUAGAGUC		[1135-1153] 3'UTR
231	UUGGAUGCUCUGAAGAAAAG	CUUUUCUACAGCAUCCAA		[420-438] ORF
232	UAUUGGAUUGCGCCUUUGU	ACAAAGGCGCAUCCAUA	Rat,Ms	[1292-1310] 3'UTR
233	GAGAGCUGUAUUAAGUGAC	GUCACUAAAACAGCUCUC	Rat,Ms,GP	[1235-1253] 3'UTR
234	UCUGGAAAUGACAGUGAAG	CUUCACUGUCAUUCAGA	Rat	[476-494] ORF
235	AGCAUCUGAGCACAGAAAG	CUUUCUGUGCUCAGAUGCU		[326-344] ORF
236	CCAAAGAUGUUUGAAAUG	CAUUUCAAACAUUUUGG	Ms	[1369-1387] 3'UTR
237	UCAGAUGACAUUUUCGUUUU	AAAACGAAAUGUCAUCUGA		[1322-1340] 3'UTR
238	ACAGCGCUACUGUACCCA	UGGUGAUCAGUAGCGCUGU		[71-89] 5'UTR
239	UCUGAGCACAGAAAUCAU	AUGACUUCUGUCAGCAGA	Rat,Ms	[330-348] ORF
240	AGCACUUCUGCUCAGUUU	AAACUACUGAGCAAGUGCU		[117-135] 5'UTR
241	CAGCACUUCUGCAGUJAGUU	AAACUACUGAGCAAGUGCU		[116-134] 5'UTR
242	AUAAAACCCUCAGCACU	AGUGCUGAGGGUUUUUUAU		[104-122] 5'UTR
243	UGUUUGGAGGCUCCAGGU	ACCUGGAAGGCCUCCAAACA		[880-898] ORF
244	CAGCUGAAAACACUGAUUU	AAAUCAGUGUUUCAGCUG	GP,Chn	[402-420] ORF
245	UCAUCAAAGCCUAUUAUGG	CCAAUUAAGGCUUUGAUGA		[345-363] ORF
246	ACUUGCLCAGUAGUUUUGU	ACAAAACUACUGAGCAAGU		[120-138] 5'UTR
247	CUGUAAAAGUGACUGACC	GGUCAGACUAAAUCAG	Rat,Ms,GP	[1240-1258] 3'UTR
248	UUUGUAGAGAGAGCUGUAU	AAUACGUCUCUACUACAAA		[1227-1245] 3'UTR
249	CUUUUUGUAGAGAGAGCUG	CAGCUCUCUACAAAAAG		[1224-1242] 3'UTR
250	UACUGGGAGAGAAGAGGAC	GUCCUCUUCUCUCCAGUA		[1156-1174] 3'UTR
251	CCAGAUCAUGCCAUHGACC	GGUCAUGGCAUJUGAUCUGG		[680-698] ORF
252	GCAUGACCCAGAUCAAUGC	GCAUUGAUCUGGGUCAUGC		[673-691] ORF
253	CUCUGAAGAAGAGAUAGCUC	GAGCUAUCUUUCUUCAGAG		[427-445] ORF
254	GCUGAAAACACUGAUUUUG	CAAAACGUGUUUUUCAGC	GP,Chn	[404-422] ORF
255	CACCGGAUAAAACCAAAGAC	GUCUUGGUUUUAUCCGGUG	Chn	[307-325] ORF
256	CAGUAGUUUUGUGAAAGUC	GACUUUCACAAAACUACUG		[127-145] 5'UTR
257	GUUUUUUACCGAGAUUUC	GAAAUCUGUGUAAAAAC	Rat,Ms	[1336-1354] 3'UTR
258	AACCCUACAGCACUUGCUCA	UGAGCAAGUGUGUGGGUU		[110-128] 5'UTR
259	AAAAGCUCAGAUGACAUUU	AAAUGCUAUCUGAGCUUUU		[1316-1334] 3'UTR
260	UUAAAAGCUCAGAUGAC	GUCAUCUGAGCUUUUAJAA		[1312-1330] 3'UTR
261	UGCUUUCUCUACUCCAAAC	GUUGGGAAUGAGGAAAGCA		[923-941] ORF
262	CGAUGGCCAGUUUGCUUUC	GAAAGCAAACUGGCCAUCG		[911-929] ORF

263	CCCAAGAUCAAUGCCAUGAC	GUCAUGGCAUUGAUCUGGG		[679-697] ORF
264	GCUCUGAAGAAAGAUAGCU	AGCUAUUCUUUCUUCAGAGC		[426-444] ORF
265	AGCGCUACUGAUCACCAAG	CUUGGUGAUCAGUAGCGCU		[73-91] 5'UTR
266	AUGAAAGUCUGAGCCAGCU	AGCUGGCUCAGACUUUCAU		[388-406] ORF
267	AUCAAAGCCUAUUAUGGAG	CCUCAUAUAGGCUUUGAU		[347-365] ORF
268	UGAGCACAGAAAAGUCAUCA	UGAUGACUUUCUGGCUCA	Rat,Ms	[332-350] ORF
269	CUCAGCACUUGCUCAGUAG	CUACUGAGCAAGUGCUGAG		[114-132] 5'UTR
270	UAUAAAUAACCCUCAGCAC	GUGCUGAGGGUUUAUUAUA		[103-121] 5'UTR
271	GACUUUUUUGAUUAAGUGG	CCACUUAUCAAAAAGUC		[1172-1190] 3'UTR
272	GCUAAGGUGUUUGGAGGU	AGCCUCCAAAACACCUUAGC		[873-891] ORF
273	AGGGCGUAAAACCGAGGU	ACCUUCGGUAAAACGCCU		[622-640] ORF
274	UGAGCACAGACCCAAAGUGU	ACACUUGGGUCUGUGCUCA		[535-553] ORF
275	GUCAUAAAGCCUAUUAUG	CAUAAUAGGCUUJUGAUGAC		[344-362] ORF
276	UAAACCAAAGACAGCAUCU	AGAUGCUGUCUUJUGGUUA		[314-332] ORF
277	GGAGAAAAAAUUCUCGUCC	GGACGAGGAUUUUUCUCC	Rat,Chn	[254-272] ORF
278	UUGCUAGUAGUUUUGUGA	UCACAAAACUACUGAGCA		[122-140] 5'UTR
279	GAGCUGUAAAAGUGACUG	CAGUCACUAAAACAGCUC	Rat,Ms,GP	[1237-1255] 3'UTR
280	GCAUUCCAAGCUGGAGAAAG	CUUCCAGCUGGUAGC	Rat,GP,Chn	[449-467] ORF
281	UCUGAGCCAGCUGAAAACA	UGUUUUCAGCUGGUAGA		[395-413] ORF
282	GCCUUUUGUAAAUAAGC	GCUUUUAAAUAACAAAGC		[1303-1321] 3'UTR
283	AAGUGACUGACCAUCGACU	AGUGCAUGGUCAGUCACUU	Rat,Ms,GP	[1247-1265] 3'UTR
284	GAGCCAGCUGAAAACACUG	CAGGUUUUCAGCUGGCU	Chn	[398-416] ORF
285	AAUGAAAGUCUGAGGCCAGC	GCUUGGCUCAGACUUUCAU		[387-405] ORF
286	UGGAGAAAAGACGAAGAGC	GCUUCUCGUUUUUUCUCCA	GP	[361-379] ORF
287	AUGGAGAAAAGACGAAGAG	CUCUUCGUUUUUCUCCAU	GP	[360-378] ORF
288	CCAAAGACAGCAUCUGAGC	GCUCAGAUGCUGUCUUUGG		[318-336] ORF
289	UCUCUCCUUGGUCCUGGAA	UUCAGGACCAAGGAGAGA	Rat,Ms	[53-71] 5'UTR
290	UCGUUUUUUACACGAGAU	AAUCUCGUGAAAAACGA	Rat,Ms	[1334-1352] 3'UTR
291	ACUUUUUUGUAGAGAGAGC	AGCUCUCUACAAAAGU		[1223-1241] 3'UTR
292	UUAUGGUUACUUUGUGU	ACACAAAGUAACCCACUUA		[1183-1201] 3'UTR
293	AAACAGGAACUUGAAUACU	AGUAUCAAGUCCUGUUU		[1141-1159] 3'UTR
294	GAUCAUGCCAUGACCUAC	GUAGGUCAUGGCAUJGAUC		[683-701] ORF
295	UUAUGGAGAAAAGACGAAG	CUUCGUUUUUCUCCAUAA		[358-376] ORF
296	AACACGGACACCGGUAAC	GUUUUACCGGUGUCGUUU	Chn	[300-318] ORF
297	UGGCCAGUUUGCUUUCCUC	GAGGAAGCAAUCUGGCCA		[914-932] ORF
298	AACUGCAGACCCAGAUC	UGAUCUGGGUCAUGCAGUU	Rat,Ms,GP,Chn	[669-687] ORF
299	UCUGAAGAAAAGAUAGCUCG	CGAGCUAUUCUUUCUUCAGA		[428-446] ORF
300	AUGCUCUGAAGAAAAGAUAG	CUAUCUUUCUUCAGAGCAU		[424-442] ORF
301	CUGAGCCAGCUGAAAACAC	GUGUUUCAGCUGGUAGC	Chn	[396-414] ORF
302	ACCAAAGACAGCAUCUGAG	CUCAGAUGCUGUCUUUGGU		[317-335] ORF
303	UGCUGAUACAGCGGAAUC	GAUUCGCGCUGUUAUCAGCA	Ms	[23-41] 5'UTR
304	UGUGAUGCCAAAAGAUUUU	AAACAUUCUUGGCAUCACA	Rat,Ms	[1362-1380] 3'UTR
305	GACAUUCUGGAAAUGACAG	CUGUCAUUCCAGAAUGUC	Rat	[471-489] ORF
306	AGACAGCAUCUGAGCACAG	CUGUGCUCAGAUGCUGCU		[322-340] ORF
307	GAGAAAAAUUCCUCGUCCC	GGGACGAGGAAUUUUCU	Rat,Chn	[255-273] ORF
308	UUCGUUUUUACACGAGAU	AUCUCGUAAAACAGGAA	Rat,Ms	[1333-1351] 3'UTR
309	CAGCAUCAUGCCAUGACCU	AGGUCAUGGCAUJGAUCUG		[681-699] ORF
310	UGCAUGACCCAGAUCAUG	CAUUGAUCAUGGGGUCAUGCA		[672-690] ORF
311	ACUGAUACCCAAGUAGCCA	UGGCUACUUGGUGAUCAGU		[79-97] 5'UTR
312	ACACGACACCGGAAAC	GGUUUAUCCGGUGUCGUGU	Chn	[301-319] ORF
313	UACUUUUUUGUAGAGAGAGC	GCUCUCUACAAAAGUA		[1222-1240] 3'UTR
314	CUGAAGAAAGAUAGCUCGC	GGCAGCUAUUCUUCUUCAG		[429-447] ORF
315	AGCCAGCUGAAAACACUGA	UCAGUGUUUCAGCUGGU	GP,Chn	[399-417] ORF
316	AAAGCUAUCAAAGCCUAAU	AAUAGGCUUUGAUGACUUU		[341-359] ORF
317	CUGAGCACAGAAAAGUCAUC	GAUGACUUCUGUGCUCAG	Rat,Ms	[331-349] ORF
318	AGUCUCAAGAAAAGAGAC	GUCUCUUUUAUUCUGAGACU		[142-160] 5'UTR
319	UGCUCUGAAGAAAAGAUAGC	GCUAUCUUCUUCAGAGCA		[425-443] ORF
320	AAAAAAUACUUCUUCUUGGG	CCCAAGGAAGAUUUUUA	Rat,Ms	[1392-1410] 3'UTR
321	GUGAUGCCAAGAUGUUUUG	CAAACAUUCUUCUGGUCAUCAC	Rat,Ms	[1363-1381] 3'UTR
322	AAUACUGGGAGAGAAGAGG	CCUUCUUCUCCAGUAAU		[1154-1172] 3'UTR
323	AAAAAAUGAAAGUCUGAGC	GCUCAGACUUUCAUUUUAU		[383-401] ORF
324	AAACCAAAGACAGCAUCUG	CAGAUGCUGUCUUUGGUU		[315-333] ORF
325	AGUUUGCUUUCUCAUUC	GGAAUGAGGAAAGCAAACU		[919-937] ORF
326	CUGGAAAAGACAGUGAAGC	GCUCUCACUGUCAUUC	Rat	[477-495] ORF
327	CAUUCCAAGCUGGAGAAGG	CCUUCUCCAGCUUJGGAAUG	Rat,GP,Chn	[450-468] ORF
328	AACACIUGUUUUGGAUGCU	AGCAUCCAAAUCAGUUU		[410-428] ORF
329	UUUUUAUGUGAUGCCAAAG	CUUUGGCAUCACAUAAAAA	Rat,Ms	[1356-1374] 3'UTR

330	AAAGCUCAGAUGACAUUUC	GAAAUGUCAUCUGAGCUUU		[1317-1335] 3'UTR
331	AUUCUGGAAAUGACAGUGA	UCACUGUCAUUUCCAGAAU	Rat	[474-492] ORF
332	ACAGAAAGUCAUCAAAGCC	GGCUUUGAUGACUUUCUGU	Rat,Ms,GP,Chn	[337-355] ORF
333	AUGCCACUGAUAAAUGG	CCAUUAUAUCAGCUGGCAU	Rat,Ms,Chn	[237-255] ORF
334	UCAUAUUGGAUUGGCCUU	AAGGCGCAAUCCAAUAUGA	Rat,Ms	[1289-1307] 3'UTR
335	GUUUGCUUUCUCAAUUCC	GGGAUUGAGGAAAGCAAAC		[920-938] ORF
336	AAGAAAGAUAGCUCGGGC	GGCGCAGCUAUUUUCUUU		[432-450] ORF
337	AUGGAGAAAAAUUCCUCGU	ACGAGGAUUUUUCUCCAU	Rat,Chn	[252-270] ORF
338	GUCUACCUCUCUCCUUGGU	ACCAAGGAGAGAGGUAGAC	Rat,Ms	[46-64] 5'UTR
339	AAGAUGUUUGAAAUGCUC	GAGCAUUUUCAAACAUUU	Ms	[1372-1390] 3'UTR
340	UUUUUGUAGAGAGAGCUGU	ACAGCUCUCUCAACAAAAA		[1225-1243] 3'UTR
341	GAAAUGACAGUGAAGCACC	GGUGCUUACUGUCAUUUC	Rat	[480-498] ORF
342	UGCUCUUAAAUAUCUCC	GGAAGAAUUUUAAGAGCA	Rat,Ms	[1386-1404] 3'UTR
343	UAUUAAUGAGACUGACCAUG	CAUGGUCAUCACUUAAA	Rat,Ms,GP	[1243-1261] 3'UTR
344	AAAACACUGAUUUUGGAUG	CAUCCAAAUCAGUGUUUU	Rat,Ms,GP,Chn	[408-426] ORF
345	UCAAUGCCAUGACCUACCC	GGGUAGGUCAUGGCAUUGA		[685-703] ORF
346	ACAUUCUGGAAAUGACAGU	ACUGUCAUUUCCAGAAUGU	Rat	[472-490] ORF
347	UGAAGAAAAGAUAGCUCGCG	CGCGAGCUAUUUUCUCA		[430-448] ORF
348	UGGAGAAAAAUUCCUCGU	GACGAGGAUUUUUCUCCA	Rat,Chn	[253-271] ORF
349	UUUUUCGUGAAGAACCCA	UGGAGUUCUUCACGAAAAA		[176-194] 5'UTR
350	UACUGAUCAACCAAGUAGCC	GGCUACUUGGUGAUCAGUA		[78-96] 5'UTR
351	AUUCCAAGCUGGAGAAGGC	GCCUUCUCCAGCUUGGAU	Rat,GP,Chn	[451-469] ORF
352	CAUCUGAGCACAGAAAGUC	GACUUUCUGUGGUCAUGAUG		[328-346] ORF
353	AAAGUCUCAAGUAAAAGAG	CUCUUUUACUUGAGACUUU		[140-158] 5'UTR
354	AUAUUGGAUUGGCCUUUG	CAAAGGCGCAUCCAAUAU	Rat,Ms	[1291-1309] 3'UTR
355	UCCCCUCCGGACUCAAACA	UGUUUAGAGUCCGGAGGG		[1127-1145] 3'UTR
356	CAACUGCAUGACCCAGAUC	GAUCUGGGGUCAUGCAGUUG	Rat,Ms,GP,Chn	[668-686] ORF
357	AAACACUGAUUUUGGAUGC	GCAUCACAAUACAGUGUUU	Rat,Ms,GP,Chn	[409-427] ORF
358	AAAGACACGCAUCUGAGCAC	GUCUCAGAUGCUGUCUUU		[320-338] ORF
359	AAUGGAGAAAAAUUCCUCG	CGAGGAAUUUUUCUCCA	Rat,Chn	[251-269] ORF
360	UUCUUUUUCGUGAAGAACU	AGUUCUUCACGAAAAAGAA		[173-191] 5'UTR
361	UUACUUUUUJUGAGAGAG	CUCUCUCACAAAAAGUAA		[1221-1239] 3'UTR
362	ACCCAGAUCAUGCCAUGA	UCAUGGCAUUGAUCUGGU		[678-696] ORF
363	AUGACCCAGAUCAUGCCA	UGGCAUUGAUCUGGGCAU		[675-693] ORF
364	CUUCAGCAGUGCAUGAAC	GUUCAUGCACUCGCUAG	Rat,Ms,GP,Chn	[575-593] ORF
365	CAUUCUGGAAAUGACAGUG	CACUGUCAUUUCCAGAAU	Rat	[473-491] ORF
366	CACUUGCLCAGUAGUUUUG	CAAAACUACUGAGCAAGUG		[119-137] 5'UTR
367	AUGGCCAGUUUGCUUUCU	AGGAAGCAACUGGCCAU		[913-931] ORF
368	UGAAAGUCUGAGCCAGCUG	CAGCUGGUCAAGACUUUCA		[389-407] ORF
369	AUUUCGUUUUUUACACGAG	CUCGUGUAAAAACGAAAU	Rat,Ms	[1331-1349] 3'UTR
370	UAAGUGGUUACUUUUGUU	AAACACAAAGUACCCACUA		[1184-1202] 3'UTR
371	AAUAAUAAAACCCUCAGC	GCUGAGGGGUUUUUUAU		[101-119] 5'UTR
372	CUUUCUCUCAUCCCCAACGG	CCGUUGGGAAUGAGGAAAG		[925-943] ORF
373	CUACUGAUCCAAGUAGAC	GCUACUUGGUCAUCAGUAG		[77-95] 5'UTR
374	ACAUUUUCGUUUUUUACACG	CGGUAGAAAAACGAAAGU	Rat,Ms	[1329-1347] 3'UTR
375	GUUCAUAUUGGAUUGCGCC	GGCGCAUCCAAUAGAAC	Rat,Ms	[1287-1305] 3'UTR
376	UAAGUGACUGACCAUGCA	GUGCAUGGUCAUCUUA	Rat,Ms,GP	[1246-1264] 3'UTR
377	AUUAAGUGACUGACCAUGC	GCAUGGUCAUCACUUAAU	Rat,Ms,GP	[1244-1262] 3'UTR
378	CUGAUCAACCAAGUAGCCAC	GUGGUCAUUGGUGUCAUG		[80-98] 5'UTR
379	UAAUGGAGAAAAAUCCUC	GAGGAUUUUUCUCCAUA	Rat,Ms,Chn	[250-268] ORF
380	UUCCCCUCCGGACUAAAC	GUUUAGAGUCGGGAGGG		[1126-1144] 3'UTR
381	GCUUUUCCUCAUCCCCAACG	CGUUGGGAAUGAGGAAAGC		[924-942] ORF
382	CAUGACCCAGAUCAUGCC	GGCAUUGAUCUGGGCAU		[674-692] ORF
383	ACACUGAUUUUGGAUGCUC	GAGCAUCCAAAUCAGUGU		[411-429] ORF
384	AUAAACCAAAAGACGCAUC	GAUGCUGUCUUUGGUUAU		[313-331] ORF
385	GCUGAUAAACAGCGGGAAUC	GGAUUCCGCUGUUUAUCAGC	Ms	[24-42] 5'UTR
386	UAAAUAACCGAGGUGCGCAC	GUGCGCACCUCCGGUUAU		[628-646] ORF
387	CUGAUAAACAGCGGGAAUCC	GGGAUUCCGCUGUUUAUCAG	Ms	[25-43] 5'UTR
388	UAAACCCUACGACAUUGCU	AGCAAGUGCUGAGGGUU		[108-126] 5'UTR
389	AUUAAGUGGUACUUUGUG	CACAAAGUAACCCACUUA		[1182-1200] 3'UTR
390	ACUUGAUAAUCUGGGAGAG	CUCUCCCAGUUAUCAAGUU		[1148-1166] 3'UTR
391	AAACCCUCAGCACUUGCUC	GAGCAAGUGCUGAGGGUU		[109-127] 5'UTR
392	UAUUACCGAGGUGCGCACU	AGUGCGCACCUCCGGUUA		[629-647] ORF
393	AAGAUAGCUCGGCGCAUC	GAAUGCCGCGAGCUAUUU		[436-454] ORF
394	UCUCAAGUAAAAGAGACAC	GUGUCUUUUACUUGAGA		[144-162] 5'UTR
395	UUCAGCGAGUGCAUGAACG	CGUUCAUGCACUCGCUAA	Rat,Ms,GP,Chn	[576-594] ORF
396	AUUCUUUUUCGUGAAGAAC	GUUCUUCACGAAAAAGAU		[172-190] 5'UTR

397	UUCAUAUUGGAUUGCGGCCU	AGGCGCAAUCCAAUAUGAA	Rat,Ms	[1288-1306] 3'UTR
398	UUUCUCUCAUUCCAAACGGG	CCCGUUGGGAAUGAGGAAA		[926-944] ORF
399	UACCUUCUCUCCUUGGUCCU	AGGACCAAGGAGAGAGGUA	Rat,Ms	[49-67] 5'UTR
400	AUAAAUGAAAGUCUGAGCC	GGCUCAGACUUUCAUUUAU		[384-402] ORF
401	CUUUUUCUGUGAAGAACUCC	GGAGUUUCUACAGAAAAAG		[175-193] 5'UTR
402	AUGUCAUAUUGGAUUGCG	CGCAAUCCAAUUAUGAACAU	Rat,Ms	[1285-1303] 3'UTR
403	GAUGGCCAGUUUCGUUCC	GGAAAGCAAACUGGCCAUC		[912-930] ORF
404	AAGGUGUUUGGAGGUUCC	GGAGGCCUCCAAACACCUU		[876-894] ORF
405	AUGACAGUGAAGCACCUC	GGAGGUGGUUCUACUGUCAU	Rat,GP,Chn	[483-501] ORF
406	UUCUUUUUAUGUGAUGCC	GGCAUCACAUAAAAAGAA		[1352-1370] 3'UTR
407	AUCAUUGCAUGACCUACC	GGUAGGUCAUGGCAUUGAU		[684-702] ORF
408	UCUACCUUCUCUCCUUGGU	GACCAAGGAGAGAGGUAGA	Rat,Ms	[47-65] 5'UTR
409	AUAAAACCUUCAGCACUUGC	GCAAGUGCUGAGGGUUUAU		[107-125] 5'UTR
410	AAUGACAGUGAAGCACCUC	GAGGUGCUUCACUGUCAU	Rat	[482-500] ORF
411	UAUGUUCAUAUUGGAUUGC	GCAAUCCAAUAUGAACAU	Rat,Ms	[1284-1302] 3'UTR
412	AACAGCGCUACUGAUCACC	GGUGAUCAUGAGCGCUGUU		[70-88] 5'UTR

Table A1(a)

262	CAUUCUGGAAUAGACAGUGAAGC	GCUUCACUGUCAUUCAGAAUG	Rat	[473-495] ORF
263	ACAUUCUGGAAUAGACAGUGAAG	CUUCACUGUCAUUCAGAAUGU	Rat	[472-494] ORF
264	GACAUUCUGGAAUAGACAGUGAA	UUCACUGUCAUUCAGAAUGUC	Rat	[471-493] ORF
265	AAACACUGAUUUUGGAUGCUCUGA	UCAGAGCAUCCAAAACAGUGUU		[410-432] ORF
266	AAACACUGAUUUUGGAUGCUCUG	CAGAGCAUCCAAAACAGUGUUU		[409-431] ORF
267	AAAACACUGAUUUUGGAUGCUCU	AGAGCAUCCAAAACAGUGUUU		[408-430] ORF
268	GUAUUAAGUGACUGACCAUGCAC	GUGCAUGGUCAUGUCACUUAUAC	Rat,Ms,GP	[1242-1264] 3'UTR
269	UGUAUUAAGUGACUGACCAUGCA	UGCAUGGUCAUGUCACUUAUACA	Rat,Ms,GP	[1241-1263] 3'UTR
270	CUGUAUUAAGUGACUGACCAUGC	GCAUGGUCAUGUCACUUAUACAG	Rat,Ms,GP	[1240-1262] 3'UTR
271	GCUGUAUUAAGUGACUGACCAUG	CAUGGUCAUGUCACUUAUACAGC	Rat,Ms,GP	[1239-1261] 3'UTR
272	AGCUGUAUUAAGUGACUGACCAU	AUGGUCAUGUCACUUAUACAGC	Rat,Ms,GP	[1238-1260] 3'UTR
273	GCAUCUGAGCACAGAAAUGUCAUC	GAUGACUUUCUGUGGUCAUGGC		[327-349] ORF
274	AGCAUCUGAGCACAGAAAUGUCAU	AUGACUUUCUGUGGUCAUGGU		[326-348] ORF
275	AAAGACAGCAUCUGAGCACAGAA	UUCUGUGUCAGAUGGUUGGUUU		[320-342] ORF
276	GUGAAGAACUCCAAAAAAUAAA	AUUUUUUUUUUGGAGGUUCUUCAC		[182-204] 5'UTR
277	CUUUUUCGUGAAGAACUCCAAA	UUUJUGGAGGUUCUUCAGAAAAAG		[175-197] 5'UTR
278	UCUUUUUUCGUGAAGAACUCCAAA	UUJUGGAGGUUCUUCACGAAAAAGA		[174-196] 5'UTR
279	AGAUCAUUGCCAUGACCUACCCC	GGGGUAGGUCAUGGCAUUGAU		[682-704] ORF
280	CAGAUCAUUGCCAUGACCUACCC	GGGUAGGUCAUGGCAUUGAU		[681-703] ORF
281	CCAGAUCAUUGCCAUGACCUACC	GGUAGGUCAUGGCAUUGAU		[680-702] ORF
282	CCCAGAUCAUUGCCAUGACCUAC	GUAGGUCAUGGCAUUGAU		[679-701] ORF
283	ACCCAGAUCAUUGCCAUGACCUA	UAGGUCAUGGCAUUGAU		[678-700] ORF
284	AUAGCUCCGGGCAUCCAAGCUG	CAGCUUUGGAAUUGCCGCGAGC		[439-461] ORF
285	GAUAGCUCCGGGCAUCCAAGCU	AGCUUUGGAAUUGCCGCGAGC		[438-460] ORF
286	AGAUAGCUCCGGGCAUCCAAGC	GCUUUGGAAUUGCCGCGAGC		[437-459] ORF
287	AAGAUAGCUCCGGGCAUCCAAG	CUJUGGAUUGCCGCGAGC		[436-458] ORF
288	AAAAGAUAGCUCCGGGCAUCCAA	UUGGAUUGCCGCGAGC		[435-457] ORF
289	CGCUACUGAUCAACCAAGUAGCC	UGGUCAUUGGUCAUGUAGCG		[75-97] 5'UTR
290	GCGCUACUGAUCAACCAAGUAGCC	GGCUACUUGGUCAUGUAGCG		[74-96] 5'UTR
291	AGCGCUACUGAUCAACCAAGUAGC	GCUACUUGGUCAUGUAGCG		[73-95] 5'UTR
292	AUGAAAGUCUGAGCCAGCUGAA	UUUCAGCUGGUCAAGACUUUCAU		[388-410] ORF
293	AAUGAAAGUCUGAGCCAGCUGAA	UUCAGCUGGUCAAGACUUUCAU		[387-409] ORF
294	AAUGAAAGUCUGAGCCAGCUGA	UACGCUUGGUCAAGACUUUCAU		[386-408] ORF
295	UGGAAAUGACAGUGAAGCACCUC	GAGGUCCUUCACUGUCAUUCCA	Rat	[478-500] ORF
296	CUGGAAAUGACAGUGAAGCACC	AGGUCCUUCACUGUCAUUCCAG	Rat	[477-499] ORF
297	UCUGGAAAUGACAGUGAAGCACC	GGUGCUUCACUGUCAUUCCAGA	Rat	[476-498] ORF
298	CCGGACUCUAAACAGGAACUJUGA	UCAAGUUCGUUUUAGAGGU		[1132-1154] 3'UTR
299	CCAGUUCUUCUCCAUUCCCA	UGGGAAUGAGGAAAGC		[917-939] ORF
300	GAGCUUGGUCAUGUACAGCGGA	UCCGUUGUAAUCAGCACCGCUC	Ms	[16-38] 5'UTR
301	UGGAACAGCGCUACUGAUCAACCA	UGGUCAUGUAGCGCUGUCCA		[67-89] 5'UTR
302	CCAUGCACUAUAAUUGUAAUUA	AUAUAACAAUUAUAGUGCAUGG		[1257-1279] 3'UTR
303	ACCAUGCACUAUAAUUGUAAUUA	AUAUAACAAUUAUAGUGCAUGG		[1256-1278] 3'UTR
304	GACCAUGCACUAUAAUUGUAAU	AUAUACAAUUAUAGUGCAUGG		[1255-1277] 3'UTR
305	UGACCAUGCACUAUAAUUGUAAU	UAUACAAUUAUAGUGCAUGG		[1254-1276] 3'UTR
306	CUGACCAUGCACUAUAAUUGUAAU	AUACAAUUAUAGUGCAUGG		[1253-1275] 3'UTR
307	CCAGCGUAAAACACUGAUUUUGG	CCAAAUCAGGUUUUCAGCUGG	GP,Chn	[401-423] ORF
308	GCCAGCGUAAAACACUGAUUUUGG	CAAAUCAGGUUUUCAGCUGG	GP,Chn	[400-422] ORF
309	AGCCAGCGUAAAACACUGAUUUU	AAAUCAGGUUUUCAGCUGG	GP,Chn	[399-421] ORF

310	UGUGAUGCCAAAGAUGUUUGAAA	UUUCAAACAUUUUGGCAUCACA	Rat,Ms	[1362-1384] 3'UTR
311	AUGUGAUGCCAAAGAUGUUUGAA	UUCAAACAUUUUGGCAUCACAU	Rat,Ms	[1361-1383] 3'UTR
312	UAUGUGAUGCCAAAGAUGUUUGA	UCAAACAUUUUGGCAUCACAU	Rat,Ms	[1360-1382] 3'UTR
313	CUUUUUGUAGAGAGAGCUGUAU	AAUACAGCUCUCUCUACAAAAG		[1224-1246] 3'UTR
314	ACUUUUGUAGAGAGAGCUGUAU	UAACAGCUCUCUCUACAAAAGU		[1223-1245] 3'UTR
315	UACUUUUGUAGAGAGAGCUGUA	UACAGCUCUCUCUACAAAAGUA		[1222-1244] 3'UTR
316	GAAAGAUAGCUCCGGCAUUC	UGGAUGCCGCGAGCUAUUC		[434-456] ORF
317	AGAAAGAUAGCUCCGGCAUUC	GGAAUGCCGCGAGCUAUUCU		[433-455] ORF
318	AGAAAGAUAGCUCCGGCAUUC	GAAUGCCGCGAGCUAUUCUUC		[432-454] ORF
319	GAAGAAAGAUAGCUCCGGCAU	AAUGCCGCGAGCUAUUCUUC		[431-453] ORF
320	UGAAGAAAGAUAGCUCCGGCAU	AUGCCGCGAGCUAUUCUUCUCA		[430-452] ORF
321	GAGCUGUAUUAAGUGACUGACCA	UGGUACAGUCACUUAAUACAGCUC	Rat,Ms,GP	[1237-1259] 3'UTR
322	AGAGCUGUAUUAAGUGACUGAC	GGUCAGUCACUUAAUACAGCUC	Rat,Ms,GP	[1236-1258] 3'UTR
323	GAGAGCUGUAUUAAGUGACUGAC	GUAGUCACUUAAUACAGCUC	Rat,Ms,GP	[1235-1257] 3'UTR
324	AGAGAGCUGUAUUAAGUGACUGA	UCAGUCACUUAAUACAGCUC	Rat,Ms,GP	[1234-1256] 3'UTR
325	AGAGAGAGCUGUAUUAAGUGACU	AGUACUUAUACAGCUC		[1232-1254] 3'UTR
326	UAGAGAGAGCUGUAUUAAGUGAC	GUACUUAUACAGCUC		[1231-1253] 3'UTR
327	AAAGUCAUCAAAGCCUAUUAUGG	CCAUUAUAGGCUUUGAUGACUU		[341-363] ORF
328	GAAAGUCUCAAGUAAAAGAGACA	UGUCUUUUACUUGAGACUU		[139-161] 5'UTR
329	UGAAAGUCUCAAGUAAAAGAGAC	GUCUCUUUACUUGAGACUU		[138-160] 5'UTR
330	UAGUUUUGUGAAAGUCUAGUA	UACUUGAGACUUUACACAAACUA		[130-152] 5'UTR
331	GUAGUUUUGUGAAAGUCUAGU	ACUUGAGACUUUACACAAACUA		[129-151] 5'UTR
332	AGUAGUUUUGUGAAAGUCUAG	CUUGAGACUUUACACAAACUA		[128-150] 5'UTR
333	CAGUAGUUUUGUGAAAGUCUAA	UUGAGACUUUACACAAACUA		[127-149] 5'UTR
334	GAGAGAGCUGUAUUAAGUGACUG	CAGUCACUUAAUACAGCUC	Rat,Ms,GP	[1233-1255] 3'UTR
335	GAAGAGGACUUUUUUGAUUAAGU	ACUUUAUCAAAAAGUCCU		[1166-1188] 3'UTR
336	UCCGGACUCUAAACAGGAACUUG	CAAGUUCUGUUUAGAGUC		[1131-1153] 3'UTR
337	CUCCGGACUCUAAACAGGAACU	AAGUUCUGUUUAGAGUC		[1130-1152] 3'UTR
338	CCUCGGACUCUAAACAGGAACU	AGUUCUCGUUUAGAGUC		[1129-1151] 3'UTR
339	CCUCGGACUCUAAACAGGAAC	GUUCUCGUUUAGAGUC		[1128-1150] 3'UTR
340	UCCUCGGACUCUAAACAGGA	UUCUCGUUUAGAGUC		[1127-1149] 3'UTR
341	CUGCAUGACCCAGAUCAUGCCA	UGGCAUJUGACUGGUCAUG		[671-693] ORF
342	AUUAUGGAGAAAAGACGAAGAGC	GCUCUUCGUUUUCUCC		[357-379] ORF
343	UAUUUAUGGAGAAAAGACGAAGAG	CUCUUCGUUUUCUCC		[356-378] ORF
344	CUAUUAUGGAGAAAAGACGAAGA	UCUUCGUUUUCUCC		[355-377] ORF
345	CCUUAUAGGAGAAAAGACGAAG	CUUCGUUUUCUCC		[354-376] ORF
346	AUAUUGGAUUGGCCUUUGUAU	AAUACAAAGGCGCAUCCAAU	Rat,Ms	[1291-1313] 3'UTR
347	CAUAUUGGAUUGGCCUUUGUAU	AAUACAAAGGCGCAUCCAAU	Rat,Ms	[1290-1312] 3'UTR
348	UCAUAUUGGAUUGGCCUUUGUA	UACAAAGGCGCAUCCAAU	Rat,Ms	[1289-1311] 3'UTR
349	UAAGUGACUGACCAUCACUA	UAUAGUGCAUGGUCA	GP	[1246-1268] 3'UTR
350	UUAAGUGACUGACCAUCACUA	UAUGUGCAUGGUCA	Rat,Ms,GP	[1245-1267] 3'UTR
351	AUUAAGUGACUGACCAUCACUA	UAGUGCAUGGUCA	Rat,Ms,GP	[1244-1266] 3'UTR
352	UAUUUAUGGACUGACCAUCACU	AGUGCAUGGUCA	Rat,Ms,GP	[1243-1265] 3'UTR
353	AGGACUUUUUUGAUUAAGUGGU	AACCACUUUAUCAAAAAGUCC		[1170-1192] 3'UTR
354	GAGGACUUUUUUGAUUAAGUGGU	ACACACUUUAUCAAAAAGUCC		[1169-1191] 3'UTR
355	AGAGGACUUUUUUGAUUAAGUGGU	CCACUUUAUCAAAAAGUCC		[1168-1190] 3'UTR
356	AAGAGGACUUUUUUGAUUAAGUG	CACUUUAUCAAAAAGUCC		[1167-1189] 3'UTR
357	CCUCUCUCCUCCGACUCUA	UUAGAGUCGGAGGGAA		[1120-1142] 3'UTR
358	AACCAAAGACACCAUCUGAGCAC	GUGCUCAGAUGC		[316-338] ORF
359	AAACCAAAGACACCAUCUGAGCA	UGCUAGAUGC		[315-337] ORF
360	UAAACCAAAGACACCAUCUGAGC	GCUCAGAUGC		[314-336] ORF
361	AUAAACCAAAGACACCAUCUGAG	CUCAGAUGC		[313-335] ORF
362	GAUAAACCAAAGACACCAUCUGA	UCAGAUGC		[312-334] ORF
363	ACUGACCAUCACUAUUAUGUA	UACAAUAUAGUGCA	GP	[1252-1274] 3'UTR
364	AAAUAGCCAGCUGAUUAUAGGGAG	CUCCAUUAUACAGC	Rat,Ms,Chn	[235-257] 5'UTR+ORF
365	AAAAUAGCCAGCUGAUUAUAGGG	GUCCCUUCUCUCCAGUAU	Rat,Ms,Chn	[234-256] 5'UTR+ORF
366	UGAAUACUGGGAGAGAGAGAC	GUCCCUUCUCUCCAGUAU		[1152-1174] 3'UTR
367	UUGAAUACUGGGAGAGAGAGAC	GUCCCUUCUCUCCAGUAU		[1151-1173] 3'UTR
368	CUAACAGGAACUUGAAUACUGG	CCAGUUAUAGUUC		[1139-1161] 3'UTR
369	UCUAAACAGGAACUUGAAUACUG	CAGUUAUAGUUC		[1138-1160] 3'UTR
370	UCAGUAGUUUUGUGAAAGUC	UGAGACUUUAC		[126-148] 5'UTR
371	GAUGUUUUGAAAAGUC	UUUUAAAGAGCA	Ms	[1374-1396] 3'UTR
372	AGAUGUUUUGAAAAGUC	UUUAAGAGCA	Ms	[1373-1395] 3'UTR
373	AAGAUGUUUUGAAAAGUC	UUAAGAGCA	Ms	[1372-1394] 3'UTR
374	AAAGAUGUUUUGAAAAGUC	UAAGAGCA	Ms	[1371-1393] 3'UTR
375	CAAAGAUGUUUUGAAAAGUC	AAGAGCA	Ms	[1370-1392] 3'UTR
376	GUGGUUACUUUUGGUUUUUA	UUAAAAAAACACAAAGUACCAC		[1187-1209] 3'UTR

377	AGUGGUUACUUUGUGUUUUUUUA	AAAAAAAACACAAAGUAACCACU		[1186-1208] 3'UTR
378	AAGUGGUUACUUUGUGUUUUUU	AAAAAAACACAAAGUAACCACU		[1185-1207] 3'UTR
379	UAAGUGGUUACUUUGUGUUUUU	AAAAAAACACAAAGUAACCACU		[1184-1206] 3'UTR
380	UUAAGUGGUUACUUUGUGUUUU	AAAAACACAAAGUAACCACU		[1183-1205] 3'UTR
381	AUACUGGGAGAGAAGAGGACUU	AAAGUCCUCUUCUCUCCAGUAU		[1155-1177] 3'UTR
382	AAUACUGGGAGAGAAGAGGACU	AAGUCCUCUUCUCUCCAGUAU		[1154-1176] 3'UTR
383	ACGUGCGAGGGCGUAAUACCG	UCGGUAAAACGCCCCUCGCACGU		[615-637] ORF
384	CACGUGCGAGGGCGUAAUACCG	CGGUAAAACGCCCCUCGCACGU		[614-636] ORF
385	CCACGUGCGAGGGCGUAAUAC	GGUAAAACGCCCCUCGCACGU		[613-635] ORF
386	UCCACGUGCGAGGGCGUAAUAC	GUAAAACGCCCCUCGCACGU		[612-634] ORF
387	GUCCACGUGCGAGGGCGUAAU	UAUAAAACGCCCCUCGCACGU		[611-633] ORF
388	UAUAAAAGCUCAGAUGACAUU	GAAAGUCAUCUGAGCUUUUAUA		[1313-1335] 3'UTR
389	UUUAUAAAAGCUCAGAUGACAU	AAAUGUCAUCUGAGCUUUUAUA		[1312-1334] 3'UTR
390	AUUAUAAAAGCUCAGAUGACAU	AAUGUCAUCUGAGCUUUUAUA		[1311-1333] 3'UTR
391	UAUUAUAAAAGCUCAGAUGACAU	AUGUCAUCUGAGCUUUUAUA		[1310-1332] 3'UTR
392	GUUAUAAAAGCUCAGAUGAC	UGUCAUCUGAGCUUUUAUA		[1309-1331] 3'UTR
393	CUCAGAUGACAUUUCGUUUUUA	AAAAAAACGAAAAGUCAUCUGAG		[1321-1343] 3'UTR
394	GCUCAGAUGACAUUUCGUUUU	AAAAAACGAAAAGUCAUCUGAG		[1320-1342] 3'UTR
395	AGCUCAGAUGACAUUUCGUUUU	AAAACGAAAAGUCAUCUGAGC		[1319-1341] 3'UTR
396	AAGCUCAGAUGACAUUUCGUUU	AAAACGAAAAGUCAUCUGAGC		[1318-1340] 3'UTR
397	AAAGCUCAGAUGACAUUUCGUU	AAAACGAAAAGUCAUCUGAGC		[1317-1339] 3'UTR
398	GCCAAAGAUGUUJUGAAAUGCUC	GAGCAUUUUCAAACAUUUUGGC	Ms	[1368-1390] 3'UTR
399	CCUCAGCACUUCUCAGUAGUU	AAACUACUGAGCAAGUGCUGAGG		[113-135] 5'UTR
400	CCCUCAGCACUUCUCAGUAGU	AAACUACUGAGCAAGUGCUGAGG		[112-134] 5'UTR
401	ACCCUCAGCACUUCUCAGUAG	ACUACUGAGCAAGUGCUGAGG		[111-133] 5'UTR
402	AACCCUCAGCACUUCUCAGUAG	CUACUGAGCAAGUGCUGAGG		[110-132] 5'UTR
403	AAACCCUCAGCACUUCUCAGUA	UACUGAGCAAGUGCUGAGG		[109-131] 5'UTR
404	UUCAUUUGGAUGUCGCCUUUGU	ACAAAGGCGCAAUCAAUAUGAA	Rat,Ms	[1288-1310] 3'UTR
405	GUUCAUUUGGAUUGCGCCUUUG	CAAAAGGCGCAAUCAAUAUGAC	Rat,Ms	[1287-1309] 3'UTR
406	UGUUCAUUUGGAUUGCGCCUU	AAAGGCGCAAUCAAUAUGACA	Rat,Ms	[1286-1308] 3'UTR
407	UCUCCUUGGUCCUGGAACAGGC	GCGCUGUUCCAGGACCAAGGAGA		[55-77] 5'UTR
408	CUCUCCUUGGUCCUGGAACAGC	CGCUGUUCCAGGACCAAGGAGA		[54-76] 5'UTR
409	UCUCUCCUUGGUCCUGGAACAGC	CGCUGUUCCAGGACCAAGGAGA		[53-75] 5'UTR
410	CUCUCCUUGGUCCUGGAACAG	CGUUCCAGGACCAAGGAGAGA		[52-74] 5'UTR
411	CCUCUCUCCUUGGUCCUGGAACA	UGUUCCAGGACCAAGGAGAGAG		[51-73] 5'UTR
412	CCAAAGAUGUUJUGAAAUGCUC	AGAGCAUUUUCAAACAUUUUGG	Ms	[1369-1391] 3'UTR
413	UUUCGUUUUUUACACGAGAUU	GAAACUUCGUGAAAAACGAAA	Rat,Ms	[1332-1354] 3'UTR
414	AUUUCGUUUUUUACACGAGAUU	AAAUCUCGUGAAAAACGAAA	Rat,Ms	[1331-1353] 3'UTR
415	CAUUUCGUUUUUUACACGAGAU	AAUCUCGUGAAAAACGAAAUG	Rat,Ms	[1330-1352] 3'UTR
416	ACAUUUCGUUUUUUACACGAGAU	AUCUCGUGAAAAACGAAAUGU	Rat,Ms	[1329-1351] 3'UTR
417	GACAUUUCGUUUUUUACACGAGA	UUCUCGUGAAAAACGAAAUGU	Rat,Ms	[1328-1350] 3'UTR
418	AACAGGAACUUGAAUACUGGGAG	CUCCCAGUUAUCAAGUUCUGU		[1142-1164] 3'UTR
419	GCUUCAGCGAGUGCAUGAACAG	CUCGUUAUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[574-596] ORF
420	GGCUUCAGCGAGUGCAUGAACAG	UCGUUCAUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[573-595] ORF
421	CGGCUUCAGCGAGUGCAUGAAC	CGGUUCAUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[572-594] ORF
422	CCGGCUUCAGCGAGUGCAUGAAC	GUUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[571-593] ORF
423	GCCGGCUUCAGCGAGUGCAUGAA	UUCAUGCACUCGCUGAAGC	Rat,Ms,GP,Chn	[570-592] ORF
424	GAAAACACUGUUJUGGAUGCUC	GAGCAUCCAAAUCAGUUUUUC	Rat,Ms,GP,Chn	[407-429] ORF
425	CAGAUGACAUUUCGUUUUUUACA	UGUAAAAACGAAAUGUCAUCUG		[1323-1345] 3'UTR
426	UCAGAUGACAUUUCGUUUUUUAC	GUAAAAACGAAAUGUCAUCUGA		[1322-1344] 3'UTR
427	AAAAGCUCAGAUGACAUUUCGUU	AACGAAAAGUCAUCUGAGCUUU		[1316-1338] 3'UTR
428	AAAAGCUCAGAUGACAUUUCGU	ACGAAAAGUCAUCUGAGCUUU		[1315-1337] 3'UTR
429	GAUACUGGGAGAGAAGAGGACU	AGUCCUCUUCUCUCCAGUAU		[1153-1175] 3'UTR
430	AAACAGGAACUUGAAUACUGGG	UCCCAGUUAUCAAGUUCUGU		[1141-1163] 3'UTR
431	AAAACAGGAACUUGAAUACUGGG	CCCAGUUAUCAAGUUCUGU		[1140-1162] 3'UTR
432	CGAUGGCCAGUUUCGUUCCUCA	UGAGGAAAGCAAACUCCGGCAUC		[911-933] ORF
433	ACUGAUACCAAGUAGCCACAA	UUUGUGGCACUUGGGUGAUCAGU		[79-101] 5'UTR
434	UACUGAUACCAAGUAGCCACAA	UUGUGGCACUUGGGUGAUCAGU		[78-100] 5'UTR
435	CUACUGAUACCAAGUAGCCACAA	UGUGGCACUUGGGUGAUCAGU		[77-99] 5'UTR
436	CAAAGACAGCAUCUGAGCACAG	UCUGUGGCACUUGGGUGU		[319-341] ORF
437	CCAAAGACAGCAUCUGAGCACAG	CUGUGGCACUUGGGUGU		[318-340] ORF
438	ACCAAAGACAGCAUCUGAGCACA	UGUGGCACUUGGGUGU		[317-339] ORF
439	ACACCGGAUAAACCAAAGACAGC	GCUGUCUUGGUUAUCCGGU	Chn	[306-328] ORF
440	GACACCGGAUAAACCAAAGACAG	CUGUCUUGGUUAUCCGGU	Chn	[305-327] ORF
441	AAGUCUCAAGUAAAAGAGACACA	UGUGUCUUUUACUUGAGACU		[141-163] 5'UTR
442	AAAGUCUCAAGUAAAAGAGACAC	GUGUCUUUUACUUGAGACU		[140-162] 5'UTR
443	AACGGAGUGUCACCUUCCAGCGG	CCGCUUGGAAGGUGACACUGCGU	Ms	[1011-1033] ORF

444	CAACGCAGUGUCACCUUCCAGCG	CGCUGGAAGGUGACACUGCGUUG	Ms	[1010-1032] ORF
445	CCAACGCAGUGUCACCUUCCAGC	GCUGGAAGGUGACACUGCGUUGG	Ms	[1009-1031] ORF
446	CCCAACGCAGUGUCACCUUCCAG	CUGGAAGGUGACACUGCGUUGGG	Ms	[1008-1030] ORF
447	CCCCAACGCAGUGUCACCUUCCA	UGGAAGGUGACACUGCGUUGGGG	Ms	[1007-1029] ORF
448	GACCCAGAUCAUAGCCAUGACCU	AGGUCAUGGCAUUGAUCUGGGUC		[677-699] ORF
449	UGACCCAGAUCAUAGCCAUGACC	GGUCAUGGCAUUGAUCUGGGUCA		[676-698] ORF
450	AUGACCCAGAUCAUAGCCAUGAC	GUCAUGGCAUUGAUCUGGGUCAU		[675-697] ORF
451	CAUGACCCAGAUCAUAGCCAUGA	UCAUGGCAUUGAUCUGGGUCAUG		[674-696] ORF
452	GCAUGACCCAGAUCAUAGCCAUG	CAUGGCAUUGAUCUGGGUCAUGC		[673-695] ORF
453	GAGUGCAUGAACGAGGUGACCCG	CGGGUCACCUUCGUUCAUGCACUC	Rat,Ms,GP,Chn	[582-604] ORF
454	CGAGUGCAUGAACGAGGUGACCC	GGGUACCCUCGUUCAUGCACUCG	Rat,Ms,GP,Chn	[581-603] ORF
455	GCGAGUGCAUGAACGAGGUGACC	GGUCACCUUCGUUCAUGCACUCGC	Rat,Ms,GP,Chn	[580-602] ORF
456	AGCGAGUGCAUGAACGAGGUGAC	GUCACCUUCGUUCAUGCACUCGC	Rat,Ms,GP,Chn	[579-601] ORF
457	CAGCGAGUGCAUGAACGAGGUGA	UCACCUUCGUUCAUGCACUCGCUG	Rat,Ms,GP,Chn	[578-600] ORF
458	CUGGAGAAGGCGGACAUUCUGGA	UCCAGAAUGUCCGCCUUUCUCCAG		[459-481] ORF
459	CUGAAGAAAGAUAGCUCGCGCA	UGCCGCGAGCUACUUUCUUCAG		[429-451] ORF
460	GCACUUCGCUAGUAGUUUUGUGA	UCACAAAACUACUGAGCAAGUGC		[118-140] 5'UTR
461	AGCACUUCGCUAGUAGUUUUGUG	CACAAAACUACUGAGCAAGUGC		[117-139] 5'UTR
462	CAGCACUUCGCUAGUAGUUUUGU	ACAAAACUACUGAGCAAGUGC		[116-138] 5'UTR
463	UCAGCACUUCGCUAGUAGUUUUG	CAAAACUACUGAGCAAGUGC		[115-137] 5'UTR
464	CUCAGCACUUCGCUAGUAGUUU	AAAACUACUGAGCAAGUGC		[114-136] 5'UTR
465	AUAAAAGCUCAGAUGACAUUUCG	CGAAAUGUCAUCUGAGCUUUUAU		[1314-1336] 3'UTR
466	AAGAAGUACUUUUUUAGAGAG	CUCUCUACAAAAGUAACUUUCU		[1215-1237] 3'UTR
467	UAAGAAGUACUUUUUUAGAGAG	UCUCUACAAAAGUAACUUUCUUA		[1214-1236] 3'UTR
468	CUAAGAAGUACUUUUUUAGAGAG	CUCUCACAAAAGUAACUUUCUUA		[1213-1235] 3'UTR
469	UCCCCUCCGGACUCUAAACAGGA	UCCUGUUUAGAGUCCGGAGGGAA		[1126-1148] 3'UTR
470	GAGCCAGCUGAAAACACUGAUUU	AAAUCAGUUUUUCAGCUGGCU	GP,Chn	[398-420] ORF
471	UGAGCCAGCUGAAAACACUGAUU	AAAUCAGUUUUUCAGCUGGCU	GP,Chn	[397-419] ORF
472	CUCAGUAGUUUUGUGAAAGUCUC	GAGACUUUCACAAAACACUGAG		[125-147] 5'UTR
473	UGCAUGACCCAGAUCAUGCCAU	AUGGCAGUAGUCAUGGGGUCAUG		[672-694] ORF
474	UCUGAAGAAAGAUAGCUCGCGC	GCCCGAGGCUAUCUUUCUUCAGA		[428-450] ORF
475	CUCUGAAGAAAGAUAGCUCGCGG	CCCGCGAGCUAUCUUUCUUCAGA		[427-449] ORF
476	UUUUUUUUCGUGAAGAACUCAA	UUGGAGUUCUUCAGCAGAAAAGAA		[173-195] 5'UTR
477	UUUAUGUGAUGCCAAAGAUGUU	AAACAUUUUUGGCAUCACAUAAA	Rat,Ms	[1358-1380] 3'UTR
478	UUUUUAUGUGAUGCCAAAGAUGU	AAACAUUUUUGGCAUCACAUAAA	Rat,Ms	[1357-1379] 3'UTR
479	UUUUUAUGUGAUGCCAAAGAUGU	ACAUUUUUGGCAUCACAUAAA	Rat,Ms	[1356-1378] 3'UTR
480	UUUUUUUAUGUGAUGCCAAAGAUG	CAUCUUUUGGCAUCACAUAAAAAA	Rat,Ms	[1355-1377] 3'UTR
481	CGCCUUUGUAAAUAUAAAAGCUCA	UGAGCUUUUAUAAAACAAAGGC	Rat,Ms	[1302-1324] 3'UTR
482	UAAAUAACCCUCAGCACUUCGUC	GAGCAAGUGCUGAGGGUUUAUUA		[105-127] 5'UTR
483	AUAAAUAACCCUCAGCACUUCG	AGCAAGUGCUGAGGGUUUAUUA		[104-126] 5'UTR
484	UAUAAAUAACCCUCAGCACUUC	GCAAGUGCUGAGGGUUUAUUA		[103-125] 5'UTR
485	AUUAUAUAACCCUCAGCACUUG	CAAGUGCUGAGGGUUUAUUAU		[102-124] 5'UTR
486	AAUUAUAUAACCCUCAGCACU	AAGUGCUGAGGGUUUAUUAU		[101-123] 5'UTR
487	AAUUAUAUAACCCUCAGCACU	AUGUGCUGAGGGUUUAUUAU		[100-122] 5'UTR
488	AAAUAUAUAACCCUCAGCAC	GUGCGAGGGUUUAUUAUUAU		[99-121] 5'UTR
489	CAAAUAUAUAACCCUCAGCA	UGCUGAGGGUUUAUUAUUAU		[98-120] 5'UTR
490	AGAGGCGGCUAAGGUGUUGAG	CCUAAAACACCUUAGCCGCCUCU		[866-888] ORF
491	GAGAGGCGGCUAAGGUGUUGAG	UCCAAACACCUUAGCCGCCUCU		[865-887] ORF
492	GGAGAGGCGGCUAAGGUGUUG	CCAAACACCUUAGCCGCCUCU		[864-886] ORF
493	UGGAGAGGCGGCUAAGGUGUUG	CAAAACACCUUAGCCGCCUCU		[863-885] ORF
494	CUGGAGAGGCGGCUAAGGUGU	AAACACCUUAGCCGCCUCU		[862-884] ORF
495	GCUGGAGAAGGGGGACAUUCUG	CCAGAAUGUCCGCCUUCUCCAGC		[458-480] ORF
496	AGCUGGAGAAGGGGGACAUUC	CAGAAUGUCCGCCUUCUCCAGC		[457-479] ORF
497	AACUGGAGAAGGGGGACAUUC	AGAAUGUCCGCCUUCUCCAGC		[456-478] ORF
498	UUUAUGUGAUGCCAAAGAUGUU	CAAAACAUUUUGGCAUCACAUAA	Rat,Ms	[1359-1381] 3'UTR
499	UCAGCGAGUGCAUGAACGAGG	CACCUUCGUUCAUGCACUCGC	Rat,Ms,GP,Chn	[577-599] ORF
500	UUCAGCGAGUGCAUGAACGAG	ACCUUCGUUCAUGCACUCGC	Rat,Ms,GP,Chn	[576-598] ORF
501	CUUCAGCGAGUGCAUGAACGAG	CCUCGUUCAUGCACUCGC	Rat,Ms,GP,Chn	[575-597] ORF
502	AGCCAGUGUCAACACGACACCG	CCGGUGUGUUGUUGACACUGGC	Rat,Ms	[290-312] ORF
503	CAGCCAGUGUCAACACGACACCG	CGGUGUGUUGUUGACACUGGC	Rat,Ms	[289-311] ORF
504	CCAGCCAGUGUCAACACGACAC	GGUGUGUUGUUGACACUGGC	Rat,Ms	[288-310] ORF
505	CCCAGCCAGUGUCAACACGACAC	GUGUGUUGUUGACACUGGC	Rat,Ms	[287-309] ORF
506	CCCCAGCCAGUGUCAACACGACA	UGUCCUGUUGACACUGGC	Rat,Ms	[286-308] ORF
507	CUAAGGUGUUUUGGAGGCUUC	CUGGAAGGCCUCAAACACCUUAG		[874-896] ORF
508	GCUAAGGUGUUUUGGAGGCUUC	UGGAAGGCCUCAAACACCUUAG		[873-895] ORF
509	GGCUAAGGUGUUUUGGAGGCUUC	GGAAAGGCCUCAAACACCUUAG		[872-894] ORF
510	CGGCUAAGGUGUUUUGGAGGCUUC	GAAGGCCUCAAACACCUUAG		[871-893] ORF

511	CGGGCUAAGGUGUUUGGAGGCUU	AAGCCUCCAAACACCUUAGCCGC		[870-892] ORF
512	AGUGCAUGAACGAGGUGACCCGC	GCGGGUCACCUCGUUCAUGCACU	Rat,Ms,GP,Chn	[583-605] ORF
513	AAAUGACAGUGAAGCACCUCGG	CCGGAGGUGCUUCACUGUCAUUU	Rat	[481-503] ORF
514	AAAUGACAGUGAAGCACCUCGG	CCGGAGGUGCUUCACUGUCAUUU	Rat	[480-502] ORF
515	GGAAAUGACAGUGAAGCACCUC	GGAGGUGCUUCACUGUCAUUU	Rat	[479-501] ORF
516	GAUUCUUUUUUUAUGUGAUAGCC	UGGCAUCACAUAAAAGAAAUC		[1349-1371] 3'UTR
517	AUUAAGGGGUUACUUUGGUUUU	AAAACACAAAGUACCCACUUAAU		[1182-1204] 3'UTR
518	AGGUGUUGGGAGGCUUCCAGGU	ACCUUGGAAGCCUCCAAACACCU		[877-899] ORF
519	AAGGUGUUGGGAGGCUUCCAGGU	ACCUUGGAAGCCUCCAAACACCU		[876-898] ORF
520	UAAGGUGUUGGGAGGCUUCCAGG	CCUGGAAGCCUCCAAACACCUUA		[875-897] ORF
521	CUGAGCCAGCUGAAAACACUGAU	AUCAGUGUUUUCAGCUGGUCAG	Chn	[396-418] ORF
522	UCUGAGCCAGCUGAAAACACUGA	UCAGUGUUUUCAGCUGGUCAGA	Chn	[395-417] ORF
523	GUCUGAGCCAGCUGAAAACACUG	CAGUGUUUUCAGCUGGUCAGAC	Chn	[394-416] ORF
524	GCUCUAAAUAUCUUCCUUJG	CCAAAGGAAGAUUUUAAGAGC	Rat,Ms	[1387-1409] 3'UTR
525	UGCUCUAAAUAUCUUCCUUJG	CAAAGGAAGAUUUUAAGAGCA	Rat,Ms	[1386-1408] 3'UTR
526	AUGCUCUAAAUAUCUUCCUUU	AAAGGAAGAUUUUAAGAGCAU	Rat,Ms	[1385-1407] 3'UTR
527	AAUGCUCUAAAUAUCUUCCUU	AAAGGAAGAUUUUAAGAGCAU	Rat,Ms	[1384-1406] 3'UTR
528	AAAUGCUCUAAAUAUCUUCCU	AAAGGAAGAUUUUAAGAGCAUU	Rat,Ms	[1383-1405] 3'UTR
529	CCGAUGGCCAGUUGCUUCCUC	GAGGAAGCAAACUGGCCAUCGG		[910-932] ORF
530	CCCGAUGGCCAGUUGCUUCCU	AGGAAAGCAAACUGGCCAUCGGG		[909-931] ORF
531	UCCCGAUGGCCAGUUGCUUCC	GGAAAGCAAACUGGCCAUCGGG		[908-930] ORF
532	CUCCCGAUGGCCAGUUGCUUCC	GAAACCAAACUGGCCAUCGGGAG		[907-929] ORF
533	GCUCCCGAUGGCCAGUUGCUU	AAAGCAAACUGGCCAUCGGGAGC		[906-928] ORF
534	GUUAAUACCGAGGUGCGCACUG	CGAGUGCGCACCUCGGUUAUAAC		[627-649] ORF
535	CGUUAAUACCGAGGUGCGCACU	GAGUGCGCACCUCGGUUAUAACG		[626-648] ORF
536	GCGUUAAUACCGAGGUGCGCAC	AGUGCGCACCUCGGUUAUAACGC		[625-647] ORF
537	GGCGUUAAUACCGAGGUGCGCAC	GUGCGCACCUCGGUUAUAACGCC		[624-646] ORF
538	GGCGUUAAUACCGAGGUGCGCA	UGCGCACCUCGGUUAUAACGCC		[623-645] ORF
539	GAUUAAGGGGUUACUUUGGUUU	AAACACAAAGUAACCCACUUAAUC		[1181-1203] 3'UTR
540	UAAAUGAAAGUCUGAGGCCAGUG	CAGCUGGUCAGACUUUCAUUUA		[385-407] ORF
541	AUAAAUGAAAGUCUGAGGCCAGU	AGCUGGUCAGACUUUCAUUUAU		[384-406] ORF
542	AUAAAUGAAAGUCUGAGGCCAGC	GCUGGUCAGACUUUCAUUUAU		[383-405] ORF
543	GAUAAAUGAAAGUCUGAGCCAG	CGUGGUCAGACUUUCAUUUAU		[382-404] ORF
544	AGAUAUAUGAAAGUCUGAGCCA	UGGCUCAGACUUUCAUUUAU		[381-403] ORF
545	AGAUAUAUAUGAAAGUCUGAGCC	GGCUCAGACUUUCAUUUAU		[380-402] ORF
546	CAAGAAUAUAUGAAAGUCUGAGC	GCUCAGACUUUCAUUUAU		[379-401] ORF
547	GCAAGAAUAUAUGAAAGUCUGAG	CUCAGACUUUCAUUUAU		[378-400] ORF
548	CAUCUGAGCACAGAAAGUCAUCA	UGAUGACUUUCUGUGUCAGAUG		[328-350] ORF
549	UGACAUUUCGUUUUUUACAGAG	CUCGUGAAAAACGAAAUGUCA	Rat,Ms	[1327-1349] 3'UTR
550	AUGACAUUUCGUUUUUUACACGA	UCGUGUAAAAACGAAAUGUCAU	Rat,Ms	[1326-1348] 3'UTR
551	GAUGACAUUUCGUUUUUUACACG	CGUGUAAAAACGAAAUGUCAUC	Rat,Ms	[1325-1347] 3'UTR
552	AGAUGACAUUUCGUUUUUUACAC	GUGUAAAAACGAAAUGUCAUCU	Rat,Ms	[1324-1346] 3'UTR
553	CAGUGUCAACACGACACCGGAUA	UAUCCGGUGCUGGUUGACACUG	Chn	[293-315] ORF
554	CCAGUGUCAACACGACACCGGAU	AUCCGGUGCUGGUUGACACUGG	Chn	[292-314] ORF
555	CGUUUUUAACCGAGAUUUCUUU	AAAGAAAUCUGUGUAAAAACG	Rat,Ms	[1335-1357] 3'UTR
556	UCGUUUUUUAACCGAGAUUUCUU	AAGAAAUCUGUGUAAAAACG	Rat,Ms	[1334-1356] 3'UTR
557	UUCGUUUUUUAACCGAGAUUUCU	AGAAAUCUGUGUAAAAACGAA	Rat,Ms	[1333-1355] 3'UTR
558	AUGUUCAUAUUUGGUUUGCGCCU	AAGGGCGAAUCCAAUAUGAACAU	Rat,Ms	[1285-1307] 3'UTR
559	UAUGUUCAUAUUUGGUUUGCGCCU	AGGGCGAAUCCAAUAUGAACAU	Rat,Ms	[1284-1306] 3'UTR
560	AUAUGUUCAUAUUUGGUUUGCGCC	GGCGCAAUCCAAUAUGAACAU	Rat,Ms	[1283-1305] 3'UTR
561	UAUAUGUUCAUAUUUGGUUUGCGC	GCGCAAUCCAAUAUGAACAU	Rat,Ms	[1282-1304] 3'UTR
562	UGAUUAAGUGGUUACUUUGUGUU	AACACAAAGUACCCACUUAAUCA	GP	[1180-1202] 3'UTR
563	UGAUUAAGUGGUUACUUUGUGU	ACACAAAGUACCCACUUAAUCA	GP	[1179-1201] 3'UTR
564	UUUGAUUAAGUGGUUACUUUGUG	CACAAAGUACCCACUUAAUCAAA	GP	[1178-1200] 3'UTR
565	UUUUGAUUAAGUGGUUACUUUGU	ACAAAGUACCCACUUAAUCAAAA	GP	[1177-1199] 3'UTR
566	UUUUGAUUAAGUGGUUACUUUGU	CAAGUAACCCACUUAAUCAAAAA	GP	[1176-1198] 3'UTR
567	GCUACUGAUACACAGGGAAUCCCC	GUGGCACUACUUGGUGAUCAGAC		[76-98] 5'UTR
568	GUGCUGUAACACAGGGAAUCCCC	GGGGGAUUCGGCUGUUAUCAGAC	Ms	[22-44] 5'UTR
569	AUUCUUUUUCGUGAAGAACUCC	UGGAGUUUCACGAAAAAGAAU		[172-194] 5'UTR
570	AAUUCUUUUUCGUGAAGAACUCC	GGAGUUUCACGAAAAAGAAU		[171-193] 5'UTR
571	AAAUCUUUUUCGUGAAGAACU	GAGUUUCACGAAAAAGAAU		[170-192] 5'UTR
572	UGUUUGGAGGCUUCCAGGUGUA	UACCACCUUGGAAGCCUCCAAAC		[880-902] ORF
573	GUGUUUGGAGGCUUCCAGGUGU	ACACCUUGGAAGCCUCCAAACAC		[879-901] ORF
574	GGUGUUUGGAGGCUUCCAGGUGG	CCACCUUGGAAGCCUCCAAACACC		[878-900] ORF
575	UUACUUUUUGUAGAGAGAGCUGU	ACAGCUCUCUACAAAAAGUAA		[1221-1243] 3'UTR
576	GCUCUGAAGAAAGAUAGCUCGCG	CGCGAGCUAUCUUUCUUCAGAGC		[426-448] ORF
577	UGCUCUGAAGAAAGAUAGCUCGCG	GCGAGCUAUCUUUCUUCAGAGCA		[425-447] ORF

578	AUGCUCUGAAGAAAGAUAGCUCG	CGAGCUAUCUUUCUUCAGAGCAU		[424-446] ORF
579	GUUUUUUACACGAGAUUCUUUU	AAAAGAAAUCUGUGUAAAAAAC	Rat,Ms	[1336-1358] 3'UTR
580	UAAACCCUCAGCACUUCUCAGU	ACUGAGCAAGUGCUGAGGGUUUA		[108-130] 5'UTR
581	AAUAAAACCCUCAGCACUUCUGCUA	UGAGCAAGUGCUGAGGGUUUAU		[106-128] 5'UTR
582	UGUAUUAAAAGCUCAGAUGAC	GUCAUCUGAGCUUUUAUAUACA		[1308-1330] 3'UTR
583	UGCUUUUCUCAUUCCCAACGGGG	CCCCGUUGGGAUAGGAAAGCG		[923-945] ORF
584	GACUUUUUAGAUAAAGGUUAC	GUAAACACUUUAUACAAAAAGUC		[1172-1194] 3'UTR
585	GGCGCUAAGGUUUUGGAGGU	AGCCUCAAACACCUUAGCCGCC		[869-891] ORF
586	AGGGCGUUAAAUCCGAGGU	GCGCACCUCCGGUAAAACGCCU		[622-644] ORF
587	GAGGGCGUUAAAUCCGAGGU	CGCACCUCCGGUAAAACGCCU		[621-643] ORF
588	CGAGGGCGUUAAAUCCGAGGU	GCACCUCCGGUAAAACGCCU		[620-642] ORF
589	GCGAGGGCGUUAAAUCCGAGGU	CACCUCCGGUAAAACGCCU		[619-641] ORF
590	UGCGAGGGCGUUAAAUCCGAGGU	ACCUCCGGUAAAACGCCU		[618-640] ORF
591	UGAGCACAGACCAAGUGUCUG	CAGCACACUUGGGUCUGUCU		[535-557] ORF
592	CUGAGCACAGACCAAGUGUCU	AGCACACUUGGGUCUGUCU		[534-556] ORF
593	GCUGAGCACAGACCAAGUGUC	GCACACUUGGGUCUGUCU		[533-555] ORF
594	CGCUGAGCACAGACCAAGUGUC	CACACUUGGGUCUGUCU		[532-554] ORF
595	GCGCUGAGCACAGACCAAGUGU	ACACUUGGGUCUGUCU		[531-553] ORF
596	GGAGAAAAAUUCCUCGUCCCCG	CGGGGACGAGGAUUUUUCU	Rat,Chn	[254-276] ORF
597	UGGAGAAAAAUUCCUCGUCCCCG	CGGGGACGAGGAUUUUUCU	Rat,Chn	[253-275] ORF
598	AUGGAGAAAAAUUCCUCGUCCC	GGGACGAGGAUUUUUCU	Rat,Chn	[252-274] ORF
599	AAUGGAGAAAAAUUCCUCGUCC	GGGACGAGGAUUUUUCU	Rat,Chn	[251-273] ORF
600	UAUAGGAGAAAAAUUCCUCGUCC	GGACGAGGAUUUUUCU	Rat,Chn	[250-272] ORF
601	GCAUCCAAGCUGGAGAAGCGG	CGGCCUUCUCCAGCUUGGAUGC	Rat,GP,Chn	[449-471] ORF
602	GCCUUUGUAUAAAAGCUCAG	CUGACUUUUAUAAUACAAGGC		[1303-1325] 3'UTR
603	ACCUCUCUCCUUGGUCCUGAAC	GUCCAGGACCAAGGAGAGAGGU	Rat,Ms	[50-72] 5'UTR
604	UACCUUCUCCUUGGUCCUGAA	UCCAGGACCAAGGAGAGAGGU	Rat,Ms	[49-71] 5'UTR
605	GAUCAUGCCAUGACCUACCCG	CGGGGUAGGUCAUGGCAUUGAUC		[683-705] ORF
606	AGCAAGAAUAAAGAAAGUGA	UCAGACUUUCAUUUAUUCUUGCU	Ms	[377-399] ORF
607	UGCUGAUACAGCGGAAUCCCC	GGGGGUUCCGCUGUUAUCAGCA	Ms	[23-45] 5'UTR
608	GAGAAAAAUUCCUCGUCCCCG	ACCGGGGACGAGGAUUUUUCU	Rat,Chn	[255-277] ORF
609	AAAAAAUACUUCUCCUJUUGGGAA	CUUCCCCAAAGGAAGAUUUUUA	Rat,Ms	[1392-1414] 3'UTR
610	AAAAAAUACUUCUCCUJUUGGGAA	UCCCCAAAGGAAGAUUUUUA	Rat,Ms	[1391-1413] 3'UTR
611	CUUAAAAAUACUUCUCCUJUUGGGAA	UCCCCAAAGGAAGAUUUUUA	Rat,Ms	[1390-1412] 3'UTR
612	UCUAAAAAUACUUCUCCUJUUGGGAA	CCCCAAAGGAAGAUUUUUA	Rat,Ms	[1389-1411] 3'UTR
613	CUCUAAAAAUACUUCUCCUJUUGGGAA	CCCCAAAGGAAGAUUUUUAAGAG	Rat,Ms	[1388-1410] 3'UTR
614	CAUCCAAGCUGGAGAAGCGG	UCCGCCUUCUCCAGCUUGGAUG	Rat,GP,Chn	[450-472] ORF
615	AUAUAGGAGAAAAAUCCUCGUC	GACGAGGAUUUUUCUCCAUUAU	Rat,Chn	[249-271] ORF
616	UAUAAUAGGAGAAAAAUCCUCGUC	ACGAGGAUUUUUCUCCAUUAU	Rat,Chn	[248-270] ORF
617	GUCUACCUCUCCUUGGUCCUG	CAGGACCAAGGAGAGAGGUAC	Rat,Ms	[46-68] 5'UTR
618	CGUCUACCUCUCCUUGGUCCU	AGGACCAAGGAGAGAGGUAC	Rat,Ms	[45-67] 5'UTR
619	CGGCUUACCUUCUCCUUGGUCC	GGACCAAGGAGAGAGGUAC	Rat,Ms	[44-66] 5'UTR
620	CCCGCUUACCUUCUCCUUGGUCC	GACCAAGGAGAGAGGUAC	Rat,Ms	[43-65] 5'UTR
621	CCCCGUUACCUUCUCCUUGGUCC	ACCAAGGAGAGAGGUAC	Rat,Ms	[42-64] 5'UTR
622	AAAAUUCGUUUAAAUAUCUCC	GGAGAUUUUAAGAGCAUUU	Rat,Ms	[1382-1404] 3'UTR
623	UCAAUUGCCAUGACCUACCCCGG	CCGGGGGUAGGUCAUGGCAUUGA		[685-707] ORF
624	AUCAUUGCCAUGACCUACCCCGG	CCGGGGUAGGUCAUGGCAUUGA		[684-706] ORF
625	AUCCAAGCUGGAGAAGGCGGAC	GUCCGCCUUCUCCAGCUUGGAU	Rat,GP,Chn	[451-473] ORF
626	AUAAUAGGAGAAAAAUCCUCG	CGAGGAUUUUUCUCCAUUAU	Rat,Chn	[247-269] ORF
627	AAAAUUCUUUUUCGUGAAGAACU	AGUUCUUCAGAAAAAGAUUUU		[169-191] 5'UTR
628	ACAAAAAUAAUAAACCCUCAGC	GCUGAGGUUUUAUAAUUUUGU		[97-119] 5'UTR
629	CUUCCUCAUUCCCAACGGGGCC	GGCCCCGUUGGGAAUGAGGAAG		[925-947] ORF
630	GUUCCUCAUUCCCAACGGGGC	GCCCCGUUGGGAAUGAGGAAGC		[924-946] ORF
631	GAUUAUAGGAGAAAAAUCCUC	GAGGAUUUUUCUCCAUUAUAC	Rat,Ms,Chn	[246-268] ORF
632	GCUGAUACAGCGGAAUCCCC	CGGGGGAUCCGCUGUUAUCAGC	Ms	[24-46] 5'UTR
633	UUAAUACCGAGGUGCGACUCGG	CGAGGUGCGACCUUCGGUUUA		[628-650] ORF
634	CUGAUACAGCGGAAUCCCCGG	ACGGGGGUUCCGCUGUUAUCAG	Ms	[25-47] 5'UTR
635	UAAUACCGAGGUGCGACUCGG	GCCGAGGUGCGACCUUCGGU		[629-651] ORF
636	AAAAAUUCUUUUUCGUGAAGAAC	GUUCUUCAGAAAAAGAUUUU		[168-190] 5'UTR
637	UUUCCUCAUUCCCAACGGGGC	AGGCCCGUUGGGAAUGAGGAAG		[926-948] ORF
638	CUACCUCUCUCCUUGGUCCUG	UCCAGGACCAAGGAGAGAGGUAG	Rat,Ms	[48-70] 5'UTR
639	UCUACCUCUCUCCUUGGUCCUG	CCAGGACCAAGGAGAGAGGUAG	Rat,Ms	[47-69] 5'UTR
640	UUUAUAGGUCAUUAUUGGUUGCG	CGCAUCCAAUAGAACAUUAU	Rat,Ms	[1281-1303] 3'UTR
641	AUGACAGUGAAGCACCUCGGAA	UUCGGAGGUGCUUCACUGUCAU	Rat,GP,Chn	[483-505] ORF
642	AAUGACAGUGAAGCACCUCGGAA	UCCGGAGGUGCUUCACUGUCAU	Rat,GP,Chn	[482-504] ORF
643	AGAUUUCUUUUUAUGUGAUGCC	GGCAUCACAUAAAAGAAUACU		[1348-1370] 3'UTR
644	UUUAUAGGUCAUUAUUGGUUG	GCAAUCCAAUAGAACAUUAUAAA	Rat,Ms	[1280-1302] 3'UTR

Table A2 HES5 - hairy and enhancer of split 5

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-145301612 ORF:82-582
1	CCUCCACUAUGAUCCUUA	UUAAGGAUCAUAGUGGAGG		[1160-1178] 3'UTR
2	GCUGUAUCCUCAUAGGAA	UUUCCUAUGAGGAUACAGC		[1027-1045] 3'UTR
3	CCGAAGCCGCAUAUAAA	UUUAUUAUGGCCGUUCGG		[1267-1285] 3'UTR
4	CCGCCAUAAAUAUCUGA	UCAGAUUUUAUAUGGCGG		[1273-1291] 3'UTR
5	CGAAGCCGCAUAUAAA	UUUUAUAUGGCCGUUCGG		[1268-1286] 3'UTR
6	CAGAGUCCCUGCCGUUUA	UAAAACGGCAGGGACUCUG		[760-778] 3'UTR
7	AGAUGAAGCUGCUGUACCA	UGGUACAGCAGCUUCAUCU		[416-434] ORF
8	CUACCUAGCACAGCAA	UUUGCUGUGCUCUAGGUAG	Rat,GP	[282-300] ORF
9	ACGACUUUGUACUCAGAA	UUUCUGAGUACAAGUCGU		[1212-1230] 3'UTR
10	GGUUGUUCUGUGUUUGCAU	AUGCAAACACAGAACAAACC	GP	[822-840] 3'UTR
11	CUCCGAAGCCGCAUAUUA	UAUUAUGGCCGUUCGGAG		[1265-1283] 3'UTR
12	CCAACUCCAAGCUGGAGAA	UUCUCCAGCUUJGGAGUUG	Ms,GP,Chn	[236-254] ORF
13	AGAAAAACCGACUGCGGA	UUCAGCAGCUUJGGAGUUG	Ms	[125-143] ORF
14	CGCAGAUGAAGCUGCUGU	UACAGCAGCUUCAUCUGCG		[413-431] ORF
15	CUUUGUACUCAGAAUJUGA	UCAUUUCUGAGUACAAAG		[1216-1234] 3'UTR
16	GUUCUGUGUUUGCAUUAAA	UUAAAUGCAAACACAGAAC		[826-844] 3'UTR
17	CAGAGAAUGUGUGUGCAGA	UCUGCACACACAAUCUCUG		[745-763] 3'UTR
18	GCACGACUUUGUACUCAGA	UCUGAGUACAAAGUCGUGC		[1210-1228] 3'UTR
19	GGUUCUAUGUAUUUUGUAG	CUACAAAUAUCAUAGAAC	Ms,GP,Chn	[879-897] 3'UTR
20	GCUACCUGAAGCACAGCAA	UUGCUGUGCUUCAGGUAGC	Rat,GP,Chn	[281-299] ORF
21	AACUCUCAGUCACGUGGAA	UUCCACGUGACUGAGAGUU		[1234-1252] 3'UTR
22	CGACUUUGUACUCAGAAAU	AAUUCUGAGUACAAAGUCG		[1213-1231] 3'UTR
23	CCAAAAGGUCCUGAGUGU	ACACUCAGGAGGCCUUUUGG		[1090-1108] 3'UTR
24	CAAUCAGGGCCCACUUUCU	AGAAGAUGGGCCUGAUUG		[782-800] 3'UTR
25	CGCCAUAAAUAUUCUGAU	AUCAGAUUUUAUAUGGCG		[1274-1292] 3'UTR
26	GGGUUCUAUGUAUUUUGU	UACAAAUAUCAUAGAACCC	Ms,GP,Chn	[878-896] 3'UTR
27	UGGAGAUGGUGUGACGCUA	UAGCUGACAGCCAUUCCCA		[266-284] ORF
28	CACGACUUUGUACUCAGAA	UUCUGAGUACAAAGUCGUG		[1211-1229] 3'UTR
29	CCUCAUAGGAAACAGUGAU	AUCACUGUUUCCUAUGAGG		[1034-1052] 3'UTR
30	GGGUUGUUCUGUUUUGCA	UGCAAACACAGAACACCC	GP	[821-839] 3'UTR
31	GUGUGGGCACGACUUUGUA	UACAAAGCUGUGGCCACAC		[1204-1222] 3'UTR
32	GAAGCCGCCAUAAAUAUAA	AAUUUAUAUUGGCCGUUC		[1269-1287] 3'UTR
33	CUCCACUAUGAUCCUAAA	UUUAAGGAUCAUAGUGGAG		[1161-1179] 3'UTR
34	GAGAAAAACCGACUGCGGA	UCCGCAGUCGGUUUUUCUC	Ms	[124-142] ORF
35	CUCAGAAAUUGAACUCUCA	UGAGAGUCAAAUUCUGAG		[1223-1241] 3'UTR
36	CUAUGAUCCUAAAAGGAU	AAUCCUUUAAGGAUCAUAG		[1166-1184] 3'UTR
37	AGCUGUAUCCUCAUAGGA	UUCCUAUGAGGAUACAGCU		[1026-1044] 3'UTR
38	GCAUCAACAGCAGCAUCGA	UCGAUGCUGCUUGAUGC	GP,Chn	[173-191] ORF
39	CCCGUCGGUUUUAGGACAA	UUGGUCCUAAAACGGCAGGG		[766-784] 3'UTR
40	GCCUUUUGUGAAGGCCGAA	UUCGGCCUUCACAAAAGGC		[1003-1021] 3'UTR
41	CUAUGAUUUJUGUAGGCC	GGCACUACAAAUAUCUAG		[883-901] 3'UTR
42	AGGACUACAGCGAACGGCA	UAGCCUUCGCGUAGGUCCU		[338-356] ORF
43	UCCGAAGCCGCAUAUAAA	UUUUAUGGGCCGUUCGGG		[1266-1284] 3'UTR
44	GCCUCCACUAUGAUCCUA	UAAGGAUCAUAGUGGAGGG		[1159-1177] 3'UTR
45	GAACUCUCAGUCACGUGGA	UCCACGUGACUGAGAGUUC		[1233-1251] 3'UTR
46	GCACAUUUGCCUUUUGUGA	UCACAAAAGCAAAUGUGC	Ms	[995-1013] 3'UTR
47	AGCAAGUGACUUCUGGGAA	UUCCCAGAAGUCACUUGCU	GP,Chn	[844-862] 3'UTR
48	CUGUCAGCUACCUGAAGCA	UGCUUAGGUAGCUGACAG		[275-293] ORF
49	UGGUGUGACGUACCUUGAA	UUCAGGUAGCUGACAGCCA		[272-290] ORF
50	CACAUUUGCCUUUUGUGAA	UUCACAAAAGCAAAUGUG	Ms	[996-1014] 3'UTR
51	GCCGUUUUAGGACAAUCAG	CUGAUUGGUCCUAAAACGGC		[770-788] 3'UTR
52	CUCAGAGAAUGGUGUGUGCA	UGCACACACAAUUCUCUGAG		[743-761] 3'UTR
53	GACUUUGUACUCAGAAUUA	AAUUCUGAGUACAAAGUC		[1214-1232] 3'UTR
54	CACUUAUGAUCCUAAAAGGA	UCCUUUAAGGAUCAUAGUG		[1164-1182] 3'UTR
55	UUGUGAAGGCCGAUCUGA	UCGAGUUCCGCCUUCACAA		[1008-1026] 3'UTR
56	AGCUGCUGUACCACUUCCA	UGGAAGUGGUACAGCAGCU		[422-440] ORF
57	GCAAGUGACUUCUGGGAA	CUUCCCAGAAGUCACUUGC	GP,Chn	[845-863] 3'UTR
58	UGUUCUGUGUUJUGCAUUUA	AAAUGCAAACACAGAACAA		[825-843] 3'UTR
59	CCAAAGAGAAAAACCGACU	AGUCGGUUUUUCUCUUUGG		[119-137] ORF
60	CCGUUUJAGGACAAUCAGG	CCUGAUUGGUCCUAAAACGG		[771-789] 3'UTR
61	AGAGAAUGGUGUGUGCAGAG	CUCUGCACACACAUUCUCU	Ms	[746-764] 3'UTR
62	UCAGCUACCUGAAGCACAG	CUGUGCUUCAGGUAGCUGA	Rat	[278-296] ORF
63	CUCGAGCUGUAUCCUCAUA	UAUGAGGAUACAGCUCGAG		[1022-1040] 3'UTR

64	GUUGUUCUGUGUUUJGCAUU	AAUGCAAACACAGAACAAAC	GP	[823-841] 3'UTR
65	GAGAAUGUGUGUGCAGAGU	ACUCUGCACACACAAUCUC	Ms	[747-765] 3'UTR
66	UGCCUUUUGUGAAGGCCGA	UCGGCCUUUCACAAAAGCCA		[1002-1020] 3'UTR
67	GAAUGUGUGUGCAGAGUCC	GGACUCUGCACACACAAUC		[749-767] 3'UTR
68	AUGGUGUCAGCUACCUUGA	UCAGGUAGCUGACAGCCAU		[271-289] ORF
69	CAUAGGAAACAGUAUCAC	GUGAUCACUGUUUCCUAUG		[1037-1055] 3'UTR
70	GGGCACGACUUUJGCAUCA	UGAGUACAAAGUCGUGCCC		[1208-1226] 3'UTR
71	CGAGCUGUAUCCUCAUAGG	CCUAUGAGGAUACAGCUCG		[1024-1042] 3'UTR
72	ACUCGAGCUGUAUCCUCAU	AUGAGGAUACAGCUCGAGU		[1021-1039] 3'UTR
73	CUGUGUUUGCAUUUAAGCA	UGCUUAAAUGCAAACACAG		[829-847] 3'UTR
74	GAAGAUGAACUCUAGUCA	UGACUGAGAGUUCAUUUC		[1227-1245] 3'UTR
75	GAGCUGUAUCCUCAUAGGA	UCCUAUGAGGAUACAGCUC		[1025-1043] 3'UTR
76	CGGGCACAUUUGCCUUUUG	CAAAAGGCAAUGUGGCCCG		[992-1010] 3'UTR
77	CCCAAAGAGAAAAACCGAC	GUCCGGUUUUUCUCCUUUGGG		[118-136] ORF
78	UCCUCAUAGGAAACAGUGA	UCACUGUUUCCUAUGAGGA		[1033-1051] 3'UTR
79	AAGCAAGUGACUUCUGGG	UCCCAGAAGUCACUUGCUU		[843-861] 3'UTR
80	UUGUUUUGCAUUAAGCAA	UUGCUUAAAUGCAAACACA		[830-848] 3'UTR
81	CAUCUCUGCCAAGUGUCU	AGACACUUGGCGAGAAGU		[793-811] 3'UTR
82	GGCACGACUUUJGACUAG	CUGAGUACAAAGUCGUGGCC		[1209-1227] 3'UTR
83	GGGCACAUUUGCCUUUJUG	ACAAAAGGCAAAGUGGCC	Ms	[993-1011] 3'UTR
84	UUCUGUGUUUJGCAUUAAG	CUUAAAUGCAAACACAGAA		[827-845] 3'UTR
85	UCUUCUGCCAAGUGUCUGA	UCAGACACUUGGCGAGAAGA		[795-813] 3'UTR
86	ACAUUJGCUUJUGUGAAG	CUUCACAAAAGGCAAAGU	Ms	[997-1015] 3'UTR
87	UCAACAGCAGCAUCGAGCA	UGCUCGAUGCUGCUGUUGA	Chn	[176-194] ORF
88	CGUUUUJAGGACAUCAGGG	CCCUGAUJUGGUCAAACAG		[772-790] 3'UTR
89	CCACUAUGAUCCUUAAGG	CCUUUAAGGAUCAUAGUGG		[1163-1181] 3'UTR
90	UGCCGUUUUJAGGACAAUCA	UGAUUGGUCCUAAAACCGCA		[769-787] 3'UTR
91	GUCAGCUACCUGAAGCACA	UGUGCUUCAGGUAGCUGAC	Rat	[277-295] ORF
92	AAUCUGAGCUGUAUCCUCA	UGAGGAUACAGCUCUGAGU		[1020-1038] 3'UTR
93	GCGGGCACAUUUGCCUUU	AAAAGGCAAAGUGGCCCG		[991-1009] 3'UTR
94	ACCUGUAGAGGACUUUCAU	AAAGAAAGUCCUACAGGU		[926-944] 3'UTR
95	CCUGCJGUUUJAGGACAU	AUJUGUCCAAAACGGCAGG		[767-785] 3'UTR
96	AGUCCCUGCCGUUUJAGGA	UCCUAAAACGGCAGGGACU		[763-781] 3'UTR
97	CUGUAGAGGACUUUCUCA	UGAAGAAAGUCCUACAG	GP	[928-946] 3'UTR
98	CAGAAAUAUGAACUCUCAGU	ACUGAGAGUCAUUCUCUG		[1225-1243] 3'UTR
99	CCUAAAAGGAUUCUCUCA	ACAGAGGAUCCUUUAAGG		[1173-1191] 3'UTR
100	CAAAGAGAAAACCGACUG	CAGUCGGUUUUUCUCCUUUG		[120-138] ORF
101	CUUUJGUGAAGGCCGAACU	AGUUCGGCCUUCACAAAAG		[1005-1023] 3'UTR
102	CCAUUCUCAGAGAAUGUGU	ACACAUUCUCUGAGAAUGG		[738-756] 3'UTR
103	UGAAGCUGCUGUACCACUU	AAGUGGUACAGCAGCUCA		[419-437] ORF
104	UGAUUAUJUGUGUGCCGG	CCCGGCACUACAAAUAUCA		[886-904] 3'UTR
105	UGUUGCAUUAAGCAAGU	ACUUGCUAAAUGCAAACA		[832-850] 3'UTR
106	AUGUGUGUGCAGAGUCCU	AGGGACUCUGCACACACAU		[751-769] 3'UTR
107	ACACGCAGAUGAAGCUGCU	AGCAGCUUCAUCUGCGUGU	Rat,Ms	[410-428] ORF
108	CCAACCUGUAGAGGACUU	AAAGUCCUCUACAGGUUGG		[923-941] 3'UTR
109	CCCAACCUGUAGAGGACUU	AAGUCCUCUACAGGUUGGG		[922-940] 3'UTR
110	GACAAUCAGGGCCCAUCUU	AAGAUGGGCCCUGAUUGUC		[780-798] 3'UTR
111	UCAUAGGAAACAGUGAUCA	UGAUACUGUUUCCUUAUGA		[1036-1054] 3'UTR
112	UAUGAUUAUJUGUGUGCCG	CGGCACUACAAAUAUCAUA		[684-902] 3'UTR
113	UGAAGCACAGCAAAGCCUU	AAGGCUUUJGUGCUUCA	Rat,GP	[287-305] ORF
114	UGGGUGCCUCCACUAUGAU	AUCAUAGUGGAGGGACCCA		[1154-1172] 3'UTR
115	GUGUUJGCAUUAAGCAAG	CUUGCUAAAUGCAAACAC		[831-849] 3'UTR
116	CCAUCUUCUGCCAAGUGUC	GACACUUGGCGAGAAGAUGG		[792-810] 3'UTR
117	UCAGAAAUAUGAACUCUCAG	CUGAGAGUCAUUCUCUGA		[1224-1242] 3'UTR
118	AUGGCCAAAAGGCUCUCCUGA	UCAGGAGCCUUUJUGGCCAU		[1086-1104] 3'UTR
119	UAUCCUCAUAGGAAACAGU	ACUGUUUCCUAUGAGGAUA		[1031-1049] 3'UTR
120	ACUUUCUUCAGGGCCCGUA	UACGGGGCCUAGAAGAAUG		[937-955] 3'UTR
121	GGCACAUUJGCUUJUGUG	CACAAAAGGCAAAGUGGCC	Ms	[994-1012] 3'UTR
122	CAUCAACAGCAGCAUCGAG	CUCGAUGCUGCUGUUGAUG	Chn	[174-192] ORF
123	GCAUUUAAGCAAGUGACUU	AAGUCACUUGCUUAAAUGC		[837-855] 3'UTR
124	UACAGCGAAGGCUACUCGU	ACGAGUAGCCUUCGCGUGUA		[343-361] ORF
125	GACUACAGCGAAGGCUACU	AGUAGCCUUCGCGUGAUGUC		[340-358] ORF
126	CCCAUCUUCUGCCAAGUGU	ACACUUGGCGAGAAGAUGGG		[791-809] 3'UTR
127	AAGCCGCCAUAAAUAAC	GAUUUUAAAUGGCGGCCUU		[1270-1288] 3'UTR
128	AGGAUUCUCUGUGUGGGU	ACCCACACAGAGGAUCCU		[1179-1197] 3'UTR
129	CUUAAAGGAUCCUCUCUGUG	CACAGAGGAUCCUUAAG		[1174-1192] 3'UTR
130	UCAGAGGAUUGUGUGUGCAG	CUGCACACACAUUCUCUGA		[744-762] 3'UTR

131	UUAGGACAAUCAGGGCCA	UGGGCCCUGAUUGGUCCUAA		[776-794] 3'UTR
132	GAAGCACAGCAAAGCCUUC	GAAGGCUUUGCUGGUUC	Rat	[288-306] ORF
133	UGUACUCAGAAAUGAACU	AGUUCAUUUUCUGAGUACA		[1219-1237] 3'UTR
134	CGAACUCGAGCUGUAUCCU	AGGAUACAGCUCGAGUUCG		[1018-1036] 3'UTR
135	AGAGGACUUUCUUCAGGGC	GCCCUAGAGAAAGGUCCUCU	Ms	[932-950] 3'UTR
136	GUGCCUCCACUUAUGAUCCU	AGGAUCAUAGUGGAGGCAC		[1157-1175] 3'UTR
137	UGUAGAGGACUUUCUUCAG	CUGAAGAAAGGUCCUCUACA		[929-947] 3'UTR
138	UGCAUUUAAGCAAGUGACU	AGUCACUUCGUUAAAUGCA		[836-854] 3'UTR
139	GAAAACCGACUGCGGAAG	CUUCCGCAGUCGGUUUUUC	Ms	[126-144] ORF
140	CAACCUGUAGAGGACUUC	GAAAAGUCCUCUACAGGUUG		[924-942] 3'UTR
141	CAAGUGACUUCUGGGAAAGU	ACUUCCAGAAGUCACUUG	GP,Chn	[846-864] 3'UTR
142	GUUUUAGGACAUCAGGGCCAU	GCCCUGAUUUGUCCUAAAAC		[773-791] 3'UTR
143	GCCGCCAUAUAAAUCUG	CAGAUUUUAAAUAUGCGGC		[1272-1290] 3'UTR
144	AAUUGAACUCUCAGUCACG	CGUGACUGAGAGUUCAUU		[1229-1247] 3'UTR
145	ACCGCAUCAACAGCAGCAU	AUGCUGCUGUUGAUGCGGU	Rat,Ms,Chn	[170-188] ORF
146	UAGGACAAUCAGGGCCAU	AUGGGCCUGAUUGUCCUAA		[777-795] 3'UTR
147	UACCUAGCACAGCAAAG	CUUUCUGUGCUUCAGGU	Rat,GP	[283-301] ORF
148	UUAAGGAAUUCUCUGUGU	ACACAGAGGAUCCUUUAA		[1175-1193] 3'UTR
149	ACAUCCUGGAGAUGGCUGU	ACAGCCAUCUCCAGGAUGU		[260-278] ORF
150	UCCUGCCGUUUUAGGACA	UGUCCUAAAACGGCAGGG		[765-783] 3'UTR
151	CAUUCUCAGAGAAUGUGUG	CACACAUUCUCUGAGAAUG		[739-757] 3'UTR
152	AGAUGGCUGUCAGCUACC	AGGUAGCUGACAGCCAU		[269-287] ORF
153	CAAAGGGCUCCUAGUGUG	CACACUCAGGAGCCUUUUG		[1091-1109] 3'UTR
154	GUAGAGGACUUUCUUCAGG	CCUGAAGAAAGUCCUCUAC	Ms	[930-948] 3'UTR
155	CCUGUAGAGGACUUUCUUC	GAAGAAAAGUCCUCUACAGG	GP	[927-945] 3'UTR
156	UUUGCACAUUAAGCAAGUGA	UCACUUCGUUAAAUGCAA		[834-852] 3'UTR
157	AGAGAAAAACCGACUGCGG	CCGCAGUCGGUUUUUCUCU		[123-141] ORF
158	GCAGAUGAAGCUGCUGUAC	GUACAGCAGCUUCAUCUGC		[414-432] ORF
159	AGCACAGCAAAGCCUUCGU	ACGAAGGCUUUGCUGUGCU		[290-308] ORF
160	ACUUUUGACUCAGAAAUG	CAAUUUCUGAGUACAAAGU		[1215-1233] 3'UTR
161	GUGGGCACGACUUUUGACU	AGUACAAAGUCGUGGCCAC		[1206-1224] 3'UTR
162	GAUCCUUAAAGGAUCCUC	GAGGAUCCUUUAAGGAUC		[1170-1188] 3'UTR
163	UCCACUUAUGGUCCUAAAAG	CUUUAAGGAUCAUAGUGGA		[1162-1180] 3'UTR
164	CUCAUAGGAAACAGUGAU	GAUCACUGUUUCCUAUGAG		[1035-1053] 3'UTR
165	CUGUACCUCAUAGGAAAC	GUUUCCUAUGAGGAUACAG		[1028-1046] 3'UTR
166	CAAGAUGAAGCUGCUGUACC	GGUACAGCAGCUUCAUCUG		[415-433] ORF
167	ACUAUGACCUUAAAGGAU	AUCCUUUAAGGAUCAUAGU		[1165-1183] 3'UTR
168	GUAAUCUCAUAGGAAACAG	CUGUUUCCUUAUGAGGAUAC		[1030-1048] 3'UTR
169	AACCUGUAGAGGACUUUCU	AGAAAAGUCCUCUACAGGUU		[925-943] 3'UTR
170	AGAGUCCCUGCCGUUUUAG	CUAAAACGGCAGGGACUCU		[761-779] 3'UTR
171	GAAGCUGCUGUACCACUUC	GAAGUGGUACAGCAGCUUC		[420-438] ORF
172	ACGCAGAUGAAGCUGCUGU	ACAGCAGCUUCAUCUGCGU		[412-430] ORF
173	AGCCGCCAUUAUAAAACU	AGAUUUUUAUAGGCGGCCU		[1271-1289] 3'UTR
174	CAACUCCAAGCUGGAGAAG	CUUCUCCAGCUUCCAGGUUG	Ms,GP,Chn	[237-255] ORF
175	AGCUACCUGAAGCACAGCA	UGCUGUCCUCAGGUAGCU	Rat,GP,Chn	[280-298] ORF
176	AUUCCUCUGUGGGUGGA	UCCACCCACACAGAGGAU		[1182-1200] 3'UTR
177	UUUUGUGAAGGCCGAACUC	GAGUUCGGGUUUCACAAAAA		[1006-1024] 3'UTR
178	CUGAAGCACAGCAAAGCCU	AGGCUUUGCUGUGCUUCAG	Rat,GP	[286-304] ORF
179	AUJUGACUCUCAGUCACGU	ACGUGACUGAGAGUCAA		[1230-1248] 3'UTR
180	UUGUUCUGGUUUUGCAUUU	AAAUGCAAACACAGAACAA	GP	[824-842] 3'UTR
181	AGAAUAGUGUGUGCAGAGUC	GACUCUGCACACACAUUCU		[748-766] 3'UTR
182	GAUGAAGCUGCUGUACCAC	GUGGUACAGCAGCUUCAUC		[417-435] ORF
183	UGUGGGCACGACUUUUGAC	GUACAAAGUCGUGGCCACA		[1205-1223] 3'UTR
184	CAUUAAGCAAGUGACUUC	GAAGUCACUJUGCUUAAAUG		[838-856] 3'UTR
185	AAAUCUGAUUGUUCAGGCC	GGGCUGAACAAUCAGAUUU		[1284-1302] 3'UTR
186	AAAUUUAGACUCUCAGUCAC	GUGACUGAGAGUUCAUUU		[1228-1246] 3'UTR
187	CCUUUUGUGAAGGCCGAAC	GUUCGGCCUUCACAAAAGG		[1004-1022] 3'UTR
188	ACAUCAGGGCCCAUCUUC	GAAGAUGGGCCUGAUUGU		[781-799] 3'UTR
189	CCCAUUCUCAGAGAAUGUG	CACAUUCUCUGAGAAUGGG		[737-755] 3'UTR
190	AAGAGAAAACCGACUGCG	CGCAGUCGGUUUUUCUCU		[122-140] ORF
191	AAAAGGUUCCUCUGUGGG	CCACACAGAGGAUCCUUU		[1177-1195] 3'UTR
192	AUCCUUAAGGAUCCUCU	AGAGGAUCCUUUAAGGAU		[1171-1189] 3'UTR
193	UGCCUCCACUAUGAUCCU	AAGGAUCAUAGUGGAGGCA		[1158-1176] 3'UTR
194	AUGAUUUUGUAGUGCCGG	CCGGCACUACAAAUAUCAU		[885-903] 3'UTR
195	AUUUAAGCAAGUGACUUCU	AGAAGUCACUUGCUCUAAU		[839-857] 3'UTR
196	UUAAGCAAGUGACUUCUGG	CCAGAAGUCACUUGCUCUAA		[841-859] 3'UTR
197	GUUUGCACAUUAAGCAAGUG	CACUUGCACAUUAUGCAAAAC		[833-851] 3'UTR

198	CUGCCGUUUUAGGACAAUC	GAUUGGUCCUAAAACGGCAG			[768-786] 3'UTR
199	ACCUAGCACAGCAAAGC	GUUUGCUGUCUUCAGGU	Rat,GP		[284-302] ORF
200	AAAAGGCUCCUGAGUGUC	GCACACUCAGGAGCCUUU			[1092-1110] 3'UTR
201	UAAGCAAGUGACUUCUGGG	CCAGAAGUCACUUCGUUA			[842-860] 3'UTR
202	AAUCAGGGCCCAUCUUCUG	CAGAAGAUGGGCCUGAUU			[783-801] 3'UTR
203	ACUCAGAAAUGAACUCUC	GAGAGUCAAUUUCUGAGU			[1222-1240] 3'UTR
204	GAACUCGAGCUGUAUCCUC	GAGGAUACAGCUCGAGUUC			[1019-1037] 3'UTR
205	AUGAACUGCUGUACCAACU	AGUGGUACAGCAGCUAU			[418-436] ORF
206	UUGUACUCAGAAAUGAAC	GUUCAAUUUCUGAGUACAA			[1218-1236] 3'UTR
207	UGGCACGACUUJUGUACUC	GAGUACAAAGUCGUCCCCA			[1207-1225] 3'UTR
208	UCUAUGAUUUUGUAGUGC	GCACUACAAAUUAUAGA			[682-900] 3'UTR
209	UUGCAUUUAGCAAGUGAC	GUCACUUCGUUAAAUGCAA			[635-853] 3'UTR
210	AAAGAGAAAACCACUGUC	GCAGUCGGUUUUUCUCUUU			[121-139] ORF
211	UCGAGCUGUAUCCUCAUAG	CUAUGAGGAAUACAGCUCGA			[1023-1041] 3'UTR
212	UAGAGGACUUUCUUCAGGG	CCUCUGAAGAAAGGUCCUCUA	Ms		[931-949] 3'UTR
213	UGUCAGCUACCUGAAGCAGC	GUGCUUCAGGUAGCUGAC			[276-294] ORF
214	AGAAAUGAACUCUCAGUC	GACUGAGAGUUCUCAUUUCU			[1226-1244] 3'UTR
215	UGAUCCUUAAAGGAUCCU	AGGAAUCCUUAAGGAUCA	Ms		[1169-1187] 3'UTR
216	AUCCUGGAGAUGGCGUCA	UGACAGCCAUUCUCCAGGAU			[262-280] ORF
217	AUUCUCAGAGAAUGUGUGU	ACACACAUUCUCUGAGAAU			[740-758] 3'UTR
218	UCCUUAAGGAUCCUCUG	CAGAGGAAUCCUUUAAGGA			[1172-1190] 3'UTR
219	UAUGAUCCUUAAGGAUUC	GAAUCCUUUAAGGAUCA			[1167-1185] 3'UTR
220	UGUAUCCUCAUAGGAAACA	UGUUUCCUAUGAGGAUACA			[1029-1047] 3'UTR
221	UCUCAGAGAAUGUGUGUGC	GCACACACAUUCUCUGAGA			[742-760] 3'UTR
222	UGAACUCUCAGUCACGUGG	CCACGUGACUGAGAGUUCA			[1232-1250] 3'UTR
223	GUACUCAGAAAUGAACUC	GAGUUCAUUUCUGAGUAC			[1220-1238] 3'UTR
224	AAAUCUGAUJGUUCAGCC	GGCUGAACAAUCAGAAUUU			[1283-1301] 3'UTR
225	AAUGUGUGUGCAGAGUCC	GGGACUCUCACACACAAU			[750-768] 3'UTR
226	ACUACAGCGAAGGCCAACUC	GAGUAGCCUUCGCGUGUAGU			[341-359] ORF
227	AAGGAUUCUCUGUGUGGG	CCCACACAGAGGAUCCUU			[1178-1196] 3'UTR
228	UAAAAGGAUUCUCUGUGUG	CACACAGAGGAUCCUUUA			[1176-1194] 3'UTR
229	UAGGAAACAGUGAUCACCC	GGGUGAUACUGUUUCCUA			[1039-1057] 3'UTR
230	UUGCCUUUJUGAAGGCCG	CGGCCUUACACAAAGGCAA			[1001-1019] 3'UTR
231	UCUGUGUUUJUGCAUUAAGC	GCUUAAAUGCAAACACAGA			[828-846] 3'UTR
232	AAAACCGACUGCGGAAGC	GCUUCCGCAGUCGGUUUUU	Ms		[127-145] ORF
233	ACUCUCAAGCUGGAGAAGG	CCUUCUCCAGCUUUGGAGU	Ms,GP,Chn		[238-256] ORF
234	CAUUUGCCUUUJUGAAGG	CCUUCACAAAAGGCAAUG	Ms		[998-1016] 3'UTR
235	ACUCUCAGUCACGUGGAAG	CUUCCACGUGACUGAGAGU			[1235-1253] 3'UTR
236	UACUCAGAAAUGAACUCU	AGAGUUCAUUUCUGAGUA			[1221-1239] 3'UTR
237	UUUAAGCAAGUGACUUCUG	CAGAAGUACACUJGUUAAA			[840-858] 3'UTR
238	AGUGACUUCUGGAAAGUCC	GGACUUCCCAGAAGUCACU	GP,Chn		[848-866] 3'UTR
239	AAGUGACUUCUGGAAAGUC	GACUUCCCAGAAGUCACU	GP,Chn		[847-865] 3'UTR
240	AAGCUGCUGUACACUUC	GGAAAGUGGUACAGCAGCUU			[421-439] ORF
241	UUCUCUGUGGGUGGUA	AUCCACCCACACAGAGGAA			[1183-1201] 3'UTR
242	AUCCUCAUAGGAAACAGUG	CACGUUUCUCAUGAGGAU			[1032-1050] 3'UTR
243	UUCUCAGAGAAUGUGUGUG	CACACACAUUCUCUGAGAA			[741-759] 3'UTR
244	AUAGGAAACAGUGAUCACC	GGUGAUACUGUUUCCUAU			[1038-1056] 3'UTR
245	UUGAACUCUCAGUCACGUG	CACGUGACUGAGAGUCAA			[1231-1249] 3'UTR
246	AUUUGCCUUUJUGAAGGC	GCCUUCACAAAAGGCAA	Ms		[999-1017] 3'UTR
247	CUUCUGCCAAGUGUCUGAC	GUCAGACACUUGGCAGAA			[796-814] 3'UTR
248	AUCAACAGCAGCAUCGAGC	GCUCGAUGCUGCUGUJGAU	Chn		[175-193] ORF
249	AUCUUCUGCCAAGUGUCUG	CAGACACUUGGCAGAAGAU			[794-812] 3'UTR
250	UUUJAGGACAACAGGGCC	GGCCCUGAUJGUUCCUAAA			[774-792] 3'UTR
251	AAGCACAGCAAAGCCUUC	CGAAGCGUUJGUUGCUU	Rat		[289-307] ORF
252	UUCUGCCAAGUGUCUGACC	GGUCAGACACUUGGCAGAA			[797-815] 3'UTR
253	UUUJAGGACAACAGGGCC	CGAGGUUCGGCCUUCACAAA			[1007-1025] 3'UTR
254	UUUJAGGACAACAGGGCC	GGGCCCUGAUJGUUCCUAAA			[775-793] 3'UTR
255	AAAAAUUCUGAUJGUUCAGC	GCUGAACAAUCAGAUUUUA			[1282-1300] 3'UTR
256	UUUJCCUUUJUGAAGGCC	GGCCUUACACAAAAGGCAA			[1000-1018] 3'UTR
257	AUGAUCCUUAAGGAUUC	GGAAUCCUUAAGGAUCAU	Ms		[1168-1186] 3'UTR

Table A3 ID1 - inhibitor of DNA binding 1

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-31317298 ORF:100-567	Human-31317296 ORF:100-549
-----	-------------	-----------------	----------	-------------------------------	-------------------------------

1	CAAUGAUCACCGACUGAAA	UUUCAGUCGGUGAUCAUUG		[901-919] 3'UTR	[1140-1158] 3'UTR
2	CGGAUCUGAGGGAGAACAA	UUGUUCUCCCCUAGAUCCG		[656-674] 3'UTR	[895-913] 3'UTR
3	AGGUAAAACGUGCUGCUUA	UAGAGCAGCACGUUACC	Chp	[281-299] ORF	[281-299] ORF
4	UGGACGAGCAGCAGGUAAA	UUUACCUUCGUCUGGUCC	Chp	[269-287] ORF	[269-287] ORF
5	GCUGAACUCGGAAUCCGAA	UUCGGAAUUCGGAGUUCAGC	GP,Chp	[423-441] ORF	[423-441] ORF
6	GUUGGAGCUGAACUCGGAA	UUCGGAGGUUCAGCUCCAC	GP	[417-435] ORF	[417-435] ORF
7	CGUUCUUAACGUUCCAUU	AAUGGAACAGUUAAGAACG		[7-25] 5'UTR	[7-25] 5'UTR
8	AGUUGGAGCUGAACUCGGAA	UCCGAGGUUCAGCUCCACU	GP	[416-434] ORF	[416-434] ORF
9	AAUGAUCACCGACUGAAA	UUUUCAGUCGGUGAUCAUU		[902-920] 3'UTR	[1141-1159] 3'UTR
10	GAGGGAGAACAAAGACCGA	AUCGGUCUUGUUUCUCCCUC		[663-681] 3'UTR	[902-920] 3'UTR
11	GAUCUGAGGGAGAACAAAGA	UCUUGUUCUCCCCUAGAUC		[658-676] 3'UTR	[897-915] 3'UTR
12	CAGUCGCCAACAAUCAUGA	UCAUGAUUCUUGGCGACUG		[85-103] 5'UTR+ORF	[85-103] 5'UTR+ORF
13	AGUCGCCAACAAUCAUGA	UUCAUGAUUCUUGGCGACU		[86-104] 5'UTR+ORF	[86-104] 5'UTR+ORF
14	GGAUCUGAGGGAGAACAAAG	CUUGUUCUCCCCUAGAUCC		[657-675] 3'UTR	[896-914] 3'UTR
15	ACUACAUCAUCGGACCUUCA	UGAAGGUCCUGAUQUAGU		[398-416] ORF	[398-416] ORF
16	UGCUGCUCUACGACAUGAA	UUCAUUGCGUAGAGCAGCA	GP,Chn,Chp	[290-308] ORF	[290-308] ORF
17	UGAGGGAGAACAAAGACCGA	UCGGGUUCUUGUUCUCCCUA		[662-680] 3'UTR	[901-919] 3'UTR
18	GUUUCACCUCUACUUUUUUU	AAAAAAAUGAGGGUGGAAGC		[43-61] 5'UTR	[43-61] 5'UTR
19	CGCAUCUUGUGUCGUGAA	UUCAGCGACACAAGAUGCG	GP,Chn,Chp	[550-568] ORF+3'UTR	[789-807] 3'UTR
20	AGCUGAACUCGGAAUCCGA	UCGGAUUCCGAGUUCAGCU	GP,Chp	[422-440] ORF	[422-440] ORF
21	GGGCUUUUUUUUUUUUUUU	AAUAAACAAAAAAACAGCCC	Chp	[944-962] 3'UTR	[1183-1201] 3'UTR
22	AGGUGGAGAUUCUCCAGCA	UCGUGGAGAAUCUCCACCU	Chp	[371-389] ORF	[371-389] ORF
23	GCAAGGUGGAGAUUCUCCA	UGGAGAAUCUCCACCUUGC	Chp	[368-386] ORF	[368-386] ORF
24	AGGUGAGCAAGGUGGAGAU	AUCUCCACCUUCGUCACCU	Chp	[362-380] ORF	[362-380] ORF
25	GCCAGUCGCCAACAAUCAU	AUGAUUCUUGGCGACUGGC		[83-101] 5'UTR+ORF	[83-101] 5'UTR+ORF
26	ACGUUUGGUUCUUCAGA	UCUGAGAACGACCAAACGU	Chp	[850-868] 3'UTR	[1089-1107] 3'UTR
27	CACGUUUGGUUCUUCAG	CUGAGAACGACCAAACGUG	Chp	[849-867] 3'UTR	[1088-1106] 3'UTR
28	CUCGGAAUCCGAAGUUGGA	UCCAACUUCGGAUUCGGAG		[429-447] ORF	[429-447] ORF
29	AUAUUAACAUAGAUCACCGA	UCGGUGAUCAUUGUAAAU	Chp	[895-913] 3'UTR	[1134-1152] 3'UTR
30	CCAUUUUCCGUACUUCGUU	AAGCAGAUACGGAAAUGG		[21-39] 5'UTR	[21-39] 5'UTR
31	CUUUGCCCAACUCGUUUU	UGAAACAGAAUUGGCAAAAG	Chp	[64-82] 5'UTR	[64-82] 5'UTR
32	CGGUUJUGGUUCUUCAGAU	AUCUGAGAACGACCAAACG	Chp	[851-869] 3'UTR	[1090-1108] 3'UTR
33	GAGAUUUCUCCACGUCA	UGACGUGCUGGAGAACUC	Chp	[376-394] ORF	[376-394] ORF
34	GUCGCCAACAUCAUGAAA	UUUCAUGAUUCUUGGCCAC	Chp	[87-105] 5'UTR+ORF	[87-105] 5'UTR+ORF
35	GAUCACCGACAUCAAAAU	AUAUUUUCAGUCGGUGAUC		[905-923] 3'UTR	[1144-1162] 3'UTR
36	CCUCUCUGCACACCUACUA	UAGUAGGUGUGCGAGAGAG	Chp	[753-771] 3'UTR	[992-1010] 3'UTR
37	CAAGAAUCAUGAAAGUCGC	GCGACUUUCAUGAUUCUUG	Chp	[92-110] 5'UTR+ORF	[92-110] 5'UTR+ORF
38	CGCUUUGCCCAACUCGUUU	AAACAGAAUUGGCAAGCG	Chp	[62-80] 5'UTR	[62-80] 5'UTR
39	UUCUCAGAUUUUCAGAGGA	UUCCUCAGAAUUCUGAGAA	Chp	[861-879] 3'UTR	[1100-1118] 3'UTR
40	ACCUUCAGUUGGAGCUGAA	UUCAGCUCCAACUGAAGGU		[410-428] ORF	[410-428] ORF
41	GCUGUACUCACGCCUCAA	UUGAGGCCGUGAGUACAGC		[311-329] ORF	[311-329] ORF
42	UGAUCACCGACAUCAAAAU	UAUUUUUCAGUCGGUGAUCA		[904-922] 3'UTR	[1143-1161] 3'UTR
43	ACACCUUCAGUACUGACCGA	UCUGGUGACUAGUAGGUGU	Chp	[762-780] 3'UTR	[1001-1019] 3'UTR
44	GAAUCAUGAAAGUCGCCAG	CUGGCGACUUUCAUGAUUC	Chp	[95-113] 5'UTR+ORF	[95-113] 5'UTR+ORF
45	CGGGCUUCCACCUUUUUU	AAAAGUGGGUGGAAGCCCG		[40-58] 5'UTR	[40-58] 5'UTR
46	AGAACCGCAAGGUGAGCAA	UUGCUCACCUUGCGUUUC	Chp	[353-371] ORF	[353-371] ORF
47	GGAAUUCAGUGUCUGUGG	CCACAGAGCACGUAAUUC	Chp	[616-634] 3'UTR	[855-873] 3'UTR
48	GUUACUCACGCCUCAAGGA	UCCUUGAGGCGUGAGUAC		[314-332] ORF	[314-332] ORF
49	GUUCUUACUGUUCUCAUU	AAAUGGAACAGUUAAGAAC		[8-26] 5'UTR	[8-26] 5'UTR
50	AGAUUCUCCACGCACGUAU	AUGACGUGCUGGAGAAUCU	Chp	[377-395] ORF	[377-395] ORF
51	ACGACAUGAACCGCUGUUA	UAACAGCCGUUCAUGUCGU	Chp	[299-317] ORF	[299-317] ORF
52	CCGACUGAAAUAUUGUUU	AAACAAUAUUUUCAGUCGG		[910-928] 3'UTR	[1149-1167] 3'UTR
53	CACCGACUGAAAUAUUGU	ACAAUAUUUUCAGUCGGUG		[908-926] 3'UTR	[1147-1165] 3'UTR
54	ACAAUGAUCACCGACUGAA	UUCAGUCGGUGAUCAUUGU		[900-918] 3'UTR	[1139-1157] 3'UTR
55	CUCAGAUUUCAGAGGA	AUUUUCUCAGAAUUCUGAG	Chp	[863-881] 3'UTR	[1102-1120] 3'UTR
56	AACUGUUCUCAUUCGUUA	UACGGAAAUGGAACAGUU		[14-32] 5'UTR	[14-32] 5'UTR
57	UCGGUUJUGGCCCAUCUGU	AACAGAAUUGGCAAGCGA	Chp	[61-79] 5'UTR	[61-79] 5'UTR
58	GGGCAAGGAGAAUUCAGCG	CACGUAAUUCUUCUJUGCC	Chp	[608-626] 3'UTR	[847-865] 3'UTR
59	GCAUCUUGUGUCGUGAAG	CUUCAGCGACACAAGAUGC	GP,Chn,Chp	[551-569] ORF+3'UTR	[790-808] 3'UTR
60	CGACUACAUCAUCAGGAC	AAGGUCCCUGAUGUAGUCG		[396-414] ORF	[396-414] ORF
61	UCAUCGACUACAUCAUCAGG	UCCCUUGAUGUAGUCGUGA	Chn,Chp	[392-410] ORF	[392-410] ORF
62	GGUGAGCAAGGUGGAGAUU	AAUCUCCACCUUUCGUAC	Chp	[363-381] ORF	[363-381] ORF
63	CUACGACAUAGAACGGCUGU	ACAGCCGUUCAUGUCGUAG	Chp	[297-315] ORF	[297-315] ORF
64	CUCGUGUGUUUCUCAUUUU	AAAAAUAGAAACACACGAG	Chp	[803-821] 3'UTR	[1042-1060] 3'UTR
65	UAAACGUGCUGCUUCUACGA	UCGUAGAGCAGCAGCUUUA	Chp	[284-302] ORF	[284-302] ORF
66	CCACCUCAUUUUUUUCGU	AGCGAAAAAAUAGGUGG		[47-65] 5'UTR	[47-65] 5'UTR
67	GAGGAUUACGUGUCUGU	ACAGAGCACGUAAUUCUC	Chp	[614-632] 3'UTR	[853-871] 3'UTR

68	UCGGAAUCCGAAGUUGGAA	UCCAACUUCGGAUUCCGA		[430-448] ORF	[430-448] ORF
69	CUACAUCAUCAGGGACCUUCAG	CUGAAGGUCCUGAUGUAG		[399-417] ORF	[399-417] ORF
70	UGUUUCAGCCAAGUCGCCAA	UUGGCGACUGGCUGAAACA		[76-94] 5'UTR	[76-94] 5'UTR
71	CACGUUCUUAACUGUUCCA	UGGAACAGUUAAGAACGUG		[5-23] 5'UTR	[5-23] 5'UTR
72	GGGCUCUCCACCUCAUUUUU	AAAAAUGAGGUGGAAGCCC		[41-59] 5'UTR	[41-59] 5'UTR
73	ACUGUUCUUAUUUCCGUAU	UAACGGAAAUGGAACAGU		[15-33] 5'UTR	[15-33] 5'UTR
74	UGGAGAUUCUCCAGCACGU	ACGUGCUGGAGAAUCUCCA	Chp	[374-392] ORF	[374-392] ORF
75	AGCCAGUCGCCAGAAUUA	UGAUUCUJUGGCACUGGU		[82-100] 5'UTR	[82-100] 5'UTR
76	CUAGUCACCAAGACUUUA	UAAAGUCUCUGGUGACUAG	Chp	[769-787] 3'UTR	[1008-1026] 3'UTR
77	UACAAUGAUACCGACUGA	UCAGUCGGUGAUCAUUGUA		[899-917] 3'UTR	[1138-1156] 3'UTR
78	ACUCGUGUGUUUCUAUUUU	AAAAUAGAAACACACGAGU		[802-820] 3'UTR	[1041-1059] 3'UTR
79	ACGUGCUGCUCUACGACAU	AUGUCGUAGAGCAGCACGU	GP,Chn,Chp	[287-305] ORF	[287-305] ORF
80	CCAUUCUGUUUCAGCCAGU	ACUGGCUGAAACAGAAUGG		[70-88] 5'UTR	[70-88] 5'UTR
81	CCACGUUCUUAACGUUCC	GGAACAGUUAAGAACGUGG		[4-22] 5'UTR	[4-22] 5'UTR
82	AUCACCGACUGAAAAAUUU	AAUAUUUUCAGUCGGUGAU		[906-924] 3'UTR	[1145-1163] 3'UTR
83	ACCUACUAGUACCCAGAGA	UCUCUGGUGACUAGUAGGU	Chp	[764-782] 3'UTR	[1003-1021] 3'UTR
84	CUCUCUGCACACCUCUAG	CUAGUAGGUGUGCAGAGAG	Chp	[754-772] 3'UTR	[993-1011] 3'UTR
85	CGGAAUCCGAAGUUGGAAAC	GUUCCACAUUCGGAUUCCG		[431-449] ORF	[431-449] ORF
86	GAUUCUCCAGCAGCUAUC	GAUGACGUGCUGGAGAACU	Chp	[378-396] ORF	[378-396] ORF
87	CAAGGUGGAGAUUCUCCAG	CUGGAGAAUCUCCACCUUG	Chp	[369-387] ORF	[369-387] ORF
88	GCUGCUUCUACGACAUAGA	GUUCAUGUCGUAGAGCAGC	GP,Chn,Chp	[291-309] ORF	[291-309] ORF
89	UCAGCCAGUCGCCAGAAU	AUUCUUGGCGACUGGCGUA		[80-98] 5'UTR	[80-98] 5'UTR
90	GUGCUUCUCAGAUUUUCUGA	UCAGAAACUGAGAACGAC	Rat,Chp	[857-875] 3'UTR	[1096-1114] 3'UTR
91	ACUAGUCACCAGAGACUUU	AAAGUCUCUGGUGACUAGU	Chp	[768-786] 3'UTR	[1007-1025] 3'UTR
92	GCCCAUUCUGUUUCAGCCA	UGGCUGAAACAGAAUUGGC		[68-86] 5'UTR	[68-86] 5'UTR
93	ACCUAUUUUUUUUCGCUUU	AAAGCGAAAAAAUAGAGGU		[49-67] 5'UTR	[49-67] 5'UTR
94	UGGUGCUUCUCAGAUUUCU	AGAAAUUCUGAGAACGACCA	Chp	[855-873] 3'UTR	[1094-1112] 3'UTR
95	UCAUGAAAGUCGCCAGUGG	CCACUGGCGACUUUCAUGA	Chp	[98-116] 5'UTR+ORF	[98-116] 5'UTR+ORF
96	AUGAUCAACCGACUGAAAAU	AUUUCAGUCGGUGAUCAU		[903-921] 3'UTR	[1142-1160] 3'UTR
97	UCUCAGAUUUCUGAGGAAA	UUUCCUCAGAAAUCUGAGA	Chp	[862-880] 3'UTR	[1101-1119] 3'UTR
98	UCACGUUUGGUGCUUCUCA	UGAGAACGACCAACGUGA	Chp	[848-866] 3'UTR	[1087-1105] 3'UTR
99	AAAAAAUUGGUCACGUUUGG	CCAAACGUGACCAUJJUUU		[839-857] 3'UTR	[1078-1096] 3'UTR
100	CGUGUGUUCUCAUUUUUG	CAAAAUUAGAAACACAGC	Chp	[805-823] 3'UTR	[1044-1062] 3'UTR
101	UCGCAUCUUGUGUCGCUA	UCAGCGACACAAGAUGCAG	Ms,GP,Chn, Chp	[549-567] ORF	[788-806] 3'UTR
102	CAUCGACUACAUAGGGAC	GUCCCCUGAUUGAUUGCAG	Chn,Chp	[393-411] ORF	[393-411] ORF
103	GAGCAAGGUGGAGAUUCUC	GAGAAUCUCCACCUUGCUC	Chp	[366-384] ORF	[366-384] ORF
104	UCGCCAAGAAUCAUGAAAG	CUUUCAUGAUUCUUGGCGA	Chp	[88-106] 5'UTR+ORF	[88-106] 5'UTR+ORF
105	CCUCAUUUUUUUCGCUUUG	CAAAGCGAAAAAAUAGGG		[50-68] 5'UTR	[50-68] 5'UTR
106	UCCACUCGUGGUUUUCUAU	AUAGAAACACAGAGUGGA		[799-817] 3'UTR	[1038-1056] 3'UTR
107	GGGAUUCACUCUGUGUU	AACACACGAGUGGAAUCC		[794-812] 3'UTR	[1033-1051] 3'UTR
108	CACACCUACUAGCACCAG	CUGGUGACUAGUAGGUGUG	Chp	[761-779] 3'UTR	[1000-1018] 3'UTR
109	AGCACGUACUCGACUACAU	AUGUAGUCGAUGACCGUGCU	GP,Chn,Chp	[386-404] ORF	[386-404] ORF
110	CCAAGAAUCAUGAAAGUCG	CGACUUUCAUGAUUCUUGG	Chp	[91-109] 5'UTR+ORF	[91-109] 5'UTR+ORF
111	UUUUUUUCGCUUUGCCAU	AUGGGCAAAGCGAAAAAA		[55-73] 5'UTR	[55-73] 5'UTR
112	GUUUUACAAUAGUUCUGUG	CACAGAACUAUUGUAAAAC	Chp	[925-943] 3'UTR	[1164-1182] 3'UTR
113	GAUUCUGAGGAAAUJGCU	AGCAAUUUCCUCAGAAAC	Chp	[867-885] 3'UTR	[1106-1124] 3'UTR
114	GGUGCUUCUCAGAUUUCUG	CAGAAUCUGAGAACGACC	Chp	[856-874] 3'UTR	[1095-1113] 3'UTR
115	AUUCACGUUCUUAACUGU	ACAGUUAAGAACGUGGAAU		[1-19] 5'UTR	[1-19] 5'UTR
116	AAUCAUGAAAGUCGCCAGU	ACUGGCGACUUUCAUGAUU	Chp	[96-114] 5'UTR+ORF	[96-114] 5'UTR+ORF
117	CCAGUCGCCAAGAAUCAUG	CAUGAUUCUUGGCGACUGG		[84-102] 5'UTR+ORF	[84-102] 5'UTR+ORF
118	AUUUUUUUCGCUUUGCCCA	UGGGCAAAGCGAAAAAAU		[54-72] 5'UTR	[54-72] 5'UTR
119	CUUCUCAGAUUUCUGAGGA	UCCUCAGAAAUCUGAGAAG	Chp	[860-878] 3'UTR	[1099-1117] 3'UTR
120	UCCUCUCUGCACACCUCU	AGUAGGUGUGCAGAGAGGA	Chp	[752-770] 3'UTR	[991-1009] 3'UTR
121	CAAGAGGAUUACGUGCUC	GAGCAGGUAAUUCCUUCUUG	Chp	[611-629] 3'UTR	[850-868] 3'UTR
122	GACCUUCAGUUGGAGCUGA	UCAGCUCCAACUGAGGUC		[409-427] ORF	[409-427] ORF
123	ACAUCAAGGGACCUUCAGUU	AACUGAAGGUCCUGAUGU		[401-419] ORF	[401-419] ORF
124	CACGUCAUCGACUACAUCA	UGAUGUAGUCGAUGACGUG	GP,Chn,Chp	[388-406] ORF	[388-406] ORF
125	UCAGAUUUCUGAGGAAAUU	AAUJJUCCUCAGAAACUGA	Chp	[864-882] 3'UTR	[1103-1121] 3'UTR
126	ACUGCGCCCUAACUGCAU	AUGCAGUUAAGGGCGCAGU	Chp	[690-708] 3'UTR	[929-947] 3'UTR
127	UUCAGCCAGUCGCCAGAA	UUUUCUGCGACUGGCUGAA		[79-97] 5'UTR	[79-97] 5'UTR
128	GCAAGAGGAUUUACGUGCU	AGCAGCUAAUUCUCUUCUUG	Chp	[610-628] 3'UTR	[849-867] 3'UTR
129	CACCUAUUUUUUCGCUU	AAGCGAAAAAAUAGAGGUG		[48-66] 5'UTR	[48-66] 5'UTR
130	ACCGACUGAAAAAUJGUU	AAACAAUUUUCAGUGCGGU		[909-927] 3'UTR	[1148-1166] 3'UTR
131	AUCUGAGGGAGAACAGAC	GUCUUGUUUCUCCUCAGAU		[659-677] 3'UTR	[898-916] 3'UTR
132	CCUUCAGUUGGAGCUGAAC	GUUCAGCUCCAACUGAAGG		[411-429] ORF	[411-429] ORF
133	UCGACUACAUCAUCAGGGACCU	AGGUCCUGAUGUAGUCGA	Rat,Ms,Chn, Chp	[395-413] ORF	[395-413] ORF
134	GGUAAACGUGCUGCUUCUAC	GUAGAGCAGCAGCUUACC	Chp	[282-300] ORF	[282-300] ORF

135	AGGAUUUACGUGCUCUGUG	CACAGAGCACGUAAUUCU	Chp	[615-633] 3'UTR	[854-872] 3'UTR
136	UUCUCCAGCACGUCAUCGA	UCGAUGACGUGCUGGAGAA	Chp	[380-398] ORF	[380-398] ORF
137	AUGAAAGUCGCCAGUGGCA	UGCCACUGGCGACIUUCAU	Chp	[100-118] ORF	[100-118] ORF
138	UUCGCUUUGCCAUUCUGU	ACAGAAUGGGCAAAGCGAA	Chp	[60-78] 5'UTR	[60-78] 5'UTR
139	GGCUUCCACCUCAUUUUUU	AAAAAAUGAGGUGGAAGGCC		[42-60] 5'UTR	[42-60] 5'UTR
140	CACUCGUGGUUUUCUAUU	AAAUAAGAAACACAGAGUG		[801-819] 3'UTR	[1040-1058] 3'UTR
141	CGUCAUCGACAUACAUAGG	CCUGAUGAGCUGGAAGACG	Chn,Chp	[390-408] ORF	[390-408] ORF
142	CAGGUAAACGUGCUGCUCU	AGAGCAGCACGUUUACUCUG	Chp	[280-298] ORF	[280-298] ORF
143	CCUACUAGUACCCAGAGAC	GUCUGGGUGACUAGUAGG	Chp	[765-783] 3'UTR	[1004-1022] 3'UTR
144	UCUGCACACCUACUAGUCA	UGACUAGUAGGUGUGCAGA	Chp	[757-775] 3'UTR	[996-1014] 3'UTR
145	GAAUUAUGGUCUGUGGGGG	CCACAGAGCACGUAAUUC	Chp	[617-635] 3'UTR	[856-874] 3'UTR
146	ACGAGCAGCAGGUAAACGU	ACGUUUUACCUUGCUCUGU	Chp	[272-290] ORF	[272-290] ORF
147	UCACCGACUGAAAAAUJUG	CAAAUUUUCAGUCGGUGA		[907-925] 3'UTR	[1146-1164] 3'UTR
148	GAUCGCAUCUUGUGUCGCU	AGCGACACAAGAUGCGAUC	Ms,GP,Chn,Chp	[547-565] ORF	[786-804] 3'UTR
149	UCCAUUUUCGUUAUCUGCU	AGCAGAUACGGAAAUGGA		[20-38] 5'UTR	[20-38] 5'UTR
150	GUUCCAUUUUCGUUAUCUG	CAGAUACGGAAAUGGAAC		[18-36] 5'UTR	[18-36] 5'UTR
151	UGUUCCAUUUUCGUUAUCU	AGAUACGGAAAUGGAACA		[17-35] 5'UTR	[17-35] 5'UTR
152	UCUACGACAUGAACGGCUG	CAGCCGUUACGUUGGUAGA	Rat,Ms,Chn,Chp	[296-314] ORF	[296-314] ORF
153	AAAAAAUGGUACGUUUUGGU	ACCAAAACGUGACCAUUUUU	Chp	[840-858] 3'UTR	[1079-1097] 3'UTR
154	UUACGUGCUCUGUGGUCCU	AGACCCACAGAGCACGUUA	Chp	[620-638] 3'UTR	[859-877] 3'UTR
155	CAUUUUUUCGUUUUGGCC	GGGCAAAGCGAAAAAAUG		[53-71] 5'UTR	[53-71] 5'UTR
156	UUACAAUGAUACCCGACUG	CAGUCGGUGAUCAJUGUAA		[898-916] 3'UTR	[1137-1155] 3'UTR
157	CUACUAGUCACCAAGAGACU	AGUCUCUGGUGACUAGUAG	Chp	[766-784] 3'UTR	[1005-1023] 3'UTR
158	UGAACUCGAAUCCGAAGU	ACUUUCGGAUUCCGAGUUC	GP,Chp	[425-443] ORF	[425-443] ORF
159	AUGAACGGCUGUUACUCAC	GUGAGUACAGCCGUUCAU	Chp	[304-322] ORF	[304-322] ORF
160	AGAAUCAUGAAAGUCGCCA	UGGCACGUUUCAUGAUUCU	Chp	[94-112] 5'UTR+ORF	[94-112] 5'UTR+ORF
161	CAUUCUGUUUCAGCCAGUC	GACUGGCGUAAACAGAAUG		[71-89] 5'UTR	[71-89] 5'UTR
162	GCACACCUACUAGUCACCA	UGGUGACUAGUAGGUGC	Chp	[760-778] 3'UTR	[999-1017] 3'UTR
163	CAUUUUCCGUUAUCUGCUUC	GAAGCGAGUACGGAAAUG		[22-40] 5'UTR	[22-40] 5'UTR
164	CUGAACUCGGAAUCCGAAG	CUUCGGAUUCCGAGUUCAG	GP,Chp	[424-442] ORF	[424-442] ORF
165	UUCCACUCUGGUUUUCUA	UAGAAACACACGAGUGGAA		[798-816] 3'UTR	[1037-1055] 3'UTR
166	UAGUCACAGAGACUUUAG	CUAAAAGCUCUGGUACUA	Chp	[770-788] 3'UTR	[1009-1027] 3'UTR
167	AGAGGAUUUACGUGCUCUG	CAGAGCACGUAAUUCUCU	Chp	[613-631] 3'UTR	[862-870] 3'UTR
168	ACGUCAUCGACUACUACUG	CUGAUGUAGUGCAUGACGU	GP,Chn,Chp	[389-407] ORF	[389-407] ORF
169	AACGUGCUCUACGACA	UGUCGUAGAGCAGCACGU	GP,Chn,Chp	[286-304] ORF	[286-304] ORF
170	CUUCCACCUCAUUUUUUUC	AAAAAAAUGAGGUGGAAG		[44-62] 5'UTR	[44-62] 5'UTR
171	UUCGGGCUUCCACCUCAUU	AAUGAGGUGGAAGCCGAA		[38-56] 5'UTR	[38-56] 5'UTR
172	CCUUAAUCUGCAUCCAGCCU	AGGCUGGUGAUGCAGUUAAGG		[697-715] 3'UTR	[936-954] 3'UTR
173	UUGGAGCUGAACUCGGAAU	AUUCCGAGGUUCAGCUCCAA	GP	[418-436] ORF	[418-436] ORF
174	AAGGUGAGCAAGGUGGAGA	UCUCCACCUUGCUCACCUU	Chp	[361-379] ORF	[361-379] ORF
175	CUGUUACUCACGCCUCAAG	CUUGAGGCGUGAGUACAG		[312-330] ORF	[312-330] ORF
176	UAACUGUUCCAUUUUUCCG	ACGGAAAUGGAACAGUUA		[13-31] 5'UTR	[13-31] 5'UTR
177	CUCUACGACAUGAACGGCU	AGCGGUUCAUGUGCUGAG	Rat,Ms,Chn,Chp	[295-313] ORF	[295-313] ORF
178	ACGUUUCUUAACGUUCCAU	AUGGAACAGUUAAGAACGU		[6-24] 5'UTR	[6-24] 5'UTR
179	AUUCUGAGGAAAUGGUCCU	AAGCAAUUJUCCUCAGAAA	Chp	[868-886] 3'UTR	[1107-1125] 3'UTR
180	AAUGGUACGUUUUGGUCCU	AGCACCACACGUGACCAU	Chp	[843-861] 3'UTR	[1082-1100] 3'UTR
181	CACCUACUAGUACCCAGAG	CUCUGGUGACUAGUAGGUG	Chp	[763-781] 3'UTR	[1002-1020] 3'UTR
182	CUGCACACCUACUAGUCAC	GUGACUAGUAGGUGUGCAG	Chp	[758-776] 3'UTR	[997-1015] 3'UTR
183	AAUUACGUGCUCUGUGGGU	ACCCACAGAGCACGUAAU	Chp	[618-636] 3'UTR	[857-875] 3'UTR
184	UCUUAAUCGUUCCAUUUUC	AAAAAUGGAACAGUUAAGA		[10-28] 5'UTR	[10-28] 5'UTR
185	AUUAACAAUGAUACCCGACU	AGUCGGUGAUCAUUGUAAU		[897-915] 3'UTR	[1136-1154] 3'UTR
186	UCGGGCUUCCACCUCAUU	AAAUGAGGUGGAAGCCGA		[39-57] 5'UTR	[39-57] 5'UTR
187	AAAAAAAUGGUACGUUUG	CAAACCGUGACCAUUUUUA	Chn	[838-856] 3'UTR	[1077-1095] 3'UTR
188	UGGGAUUCCACUCUGUGU	ACACAGGAGUGGAUCCCA		[793-811] 3'UTR	[1032-1050] 3'UTR
189	CUUCAGUUGGAGCUGAACU	AGUUACGCUUCAUCUGAAG		[412-430] ORF	[412-430] ORF
190	AGAUUUCUGAGGAAAUGC	GCAAUUUCUCAGAAAUCU	Chp	[866-884] 3'UTR	[1105-1123] 3'UTR
191	UUAACUGCAUCCAGCCUGG	CCAGGGUGGAUGCAGUUA		[699-717] 3'UTR	[938-956] 3'UTR
192	ACAUAGAACGGCGUUCACU	GAGUAAACAGCCGUUCAGU	Chp	[302-320] ORF	[302-320] ORF
193	CUUACUGGUUCCAUUUUC	GGAAAAAUGGAACAGUUAAG		[11-29] 5'UTR	[11-29] 5'UTR
194	UUUCAGCCAGUCGCCAGA	UCUUGCGACUGGCGUAAA		[78-96] 5'UTR	[78-96] 5'UTR
195	CCCAUUCUGUUUCAGCCAG	CUGGCGUGAACAGAAUGGG		[69-87] 5'UTR	[69-87] 5'UTR
196	AUUCCACUCUGUGUULU	AGAAACACACGAGUGGAAU		[797-815] 3'UTR	[1036-1054] 3'UTR
197	CAUCUUGUGUCGCGUAGC	GCUUCAGCGACACAAGAUG	Chp	[552-570] ORF+3'UTR	[791-809] 3'UTR
198	GAACUCGAAUCCGAAGUU	AAUCUUCGGAUUCCGAGUUC	Chp	[426-444] ORF	[426-444] ORF
199	AAACUGUGCUGCUCUACGAC	GUCGUAGAGCAGCACGUUU	Chp	[285-303] ORF	[285-303] ORF
200	UCAUUUUUUCGUUUUGCC	GGCAAAGCGAAAAAAUGA		[52-70] 5'UTR	[52-70] 5'UTR
201	UUUCUGAGGAAAUCGUUU	AAAGCAAUUUCUCAGAAA	Chp	[869-887] 3'UTR	[1108-1126] 3'UTR

202	CAGCACGUCAUCGACUACA	UGUAGUCGAUGACGUGCUG	GP,Chn,Chp	[385-403] ORF	[385-403] ORF
203	UUUUUCGUUUUGGCCAUU	AAUGGGCAAAGCGAAAAAA		[56-74] 5'UTR	[56-74] 5'UTR
204	UUCUGAGGAAAUUCGUUUG	CAAAGCAUUUUCUCAGAA		[870-888] 3'UTR	[1109-1127] 3'UTR
205	UCUCUGCACCUACUAGU	ACUAGUAGGUGUGCAGAGA	Chp	[755-773] 3'UTR	[994-1012] 3'UTR
206	ACUCGGAUCCGAAGUJGG	CCAACUUCGGAUUCCGAGU	Chp	[428-446] ORF	[428-446] ORF
207	GUCAUCGACUACUACAGGG	CCCUGAUGUAGUCGAUGAC	Chn,Chp	[391-409] ORF	[391-409] ORF
208	AGCAGGUAAAACGUGCUGCU	AGCAGCACGUUACCGUGCU	Chp	[278-296] ORF	[278-296] ORF
209	AGCAGCAGGUAAACGUGCU	AGCAGGUUACCGUGCUGCU	Chp	[275-293] ORF	[275-293] ORF
210	CUCUGCACACCUACUAGU	GACUAGUAGGUGUGCAGAG	Chp	[756-774] 3'UTR	[995-1013] 3'UTR
211	UCUGAGGGAGAACAGACC	GGUCUUGUUCUCUCUCAGA		[660-678] 3'UTR	[899-917] 3'UTR
212	UCCACGUUCUUAACGUUC	GAACAGUAAAAGACGUGGA		[3-21] 5'UTR	[3-21] 5'UTR
213	UUUCGUUUUGGCCAUUCU	AGAAUGGGCAAAGCGAAAA		[58-76] 5'UTR	[58-76] 5'UTR
214	CAGUUUCUGAGGAAUJUG	CAAAUUCUCAGAAUCUG	Chp	[865-883] 3'UTR	[1104-1122] 3'UTR
215	UGGUCACGUUUGGUGCUUC	GAAGCACCAAACGUGACCA	Chp	[845-863] 3'UTR	[1084-1102] 3'UTR
216	UGUUACUCAGGCCUCAAGG	CCUUGAGGCGUGAGUAACA		[313-331] ORF	[313-331] ORF
217	GUAAAACGUGCUGCUACG	CGUAGAGCACGACGUUAC	Chp	[283-301] ORF	[283-301] ORF
218	UACUAGUACCAGAGACUU	AAGUCUCUGGUGACUAGUA	Chp	[767-785] 3'UTR	[1006-1024] 3'UTR
219	GACUACAUCAAGGGACCUUC	GAAGGUCCUGAUGUAGUC		[397-415] ORF	[397-415] ORF
220	GCCAAGAAUCAUGAAAGUC	GACUUUCAUGAUUCJUGGC	Chp	[90-108] 5'UTR+ORF	[90-108] 5'UTR+ORF
221	UAUUAACAAUGAUACCCGAC	GUCGGUGAUCAUUGUAAA		[896-914] 3'UTR	[1135-1153] 3'UTR
222	GCUUCUCAGAUUCUGAGG	CCUCAGAAACUGAGAACG	Chp	[859-877] 3'UTR	[1098-1116] 3'UTR
223	UGGAGCUGAACUCGGAAUC	GAUUCCGAGUUCAGCUCCA	GP	[419-437] ORF	[419-437] ORF
224	CUGUUCUCAUUUUCGUUAUC	GAUACGGAAAUGGAACAG		[16-34] 5'UTR	[16-34] 5'UTR
225	UUAACGUUUCCAUUUUCCG	CGGAAAUGGAACAGUUA		[12-30] 5'UTR	[12-30] 5'UTR
226	UCCACGUUCUAAACGUUU	AAACAGUUAAGAACGUGGA		[2-20] 5'UTR	[2-20] 5'UTR
227	GCUUUGGCCAUUCUGUUUC	AAAACAGAAUGGGCAAAGC	Chp	[63-81] 5'UTR	[63-81] 5'UTR
228	GUAAUUAACAAUGAUACACC	GGUGAUCAUUGUAAUAC	Chp	[893-911] 3'UTR	[1132-1150] 3'UTR
229	GAUUCCACUCGUGGUUUC	GAACACACGAGGUGAAC		[796-814] 3'UTR	[1035-1053] 3'UTR
230	AAGAGGAAUACGUGCUCU	AGAGCACGUAAAUCUCU	Chp	[612-630] 3'UTR	[851-869] 3'UTR
231	GUGAGCAAGGUGGAGAUUC	GAAUCUCCACCUUCGUCAC	Chp	[364-382] ORF	[364-382] ORF
232	UGCUCUACGACAUGAACGG	CCGUUCUAGUGCUAGAGCA	Rat,Ms,GP,Chn,Chp	[293-311] ORF	[293-311] ORF
233	AAGAAUCAUGAAAGUCGGC	GGCGACUUUCAUGAUUCU	Chp	[93-111] 5'UTR+ORF	[93-111] 5'UTR+ORF
234	UGCUUCUCAGAUUUUCUGAG	CUCAGAAUCUGAGAAC	Rat,Chp	[858-876] 3'UTR	[1097-1115] 3'UTR
235	UAUCUGCUUCGGGUUCCA	UGGAAGCCCGAAGCAGAU		[31-49] 5'UTR	[31-49] 5'UTR
236	UGCCCAUUCGUUUUCAGCC	GGCUGAAAAGAACUGGGCA	Chp	[67-85] 5'UTR	[67-85] 5'UTR
237	UCUGAGGAAAUUCGUUUGU	ACAAAGCAUUUUCUCAGA		[871-889] 3'UTR	[1110-1128] 3'UTR
238	AAAUGGUACGUUUGGU	GCACCAACAGUGACAUU	Chp	[842-860] 3'UTR	[1081-1099] 3'UTR
239	GGCAAGAGGAAUUCAGUGC	GCACGUAAUUCUCUJUGCC	Chp	[609-627] 3'UTR	[848-866] 3'UTR
240	UUCCAUUUUCGUUAUCUGC	GCAGAUACGGAAAUGGAA		[19-37] 5'UTR	[19-37] 5'UTR
241	AUCGCAUCUUGUGUCGUG	CAGCGACACAAGAUGCGAU	Ms,GP,Chn,Chp	[548-566] ORF	[787-805] 3'UTR
242	UACGACAUGAACGGCUGU	ACACGGGUUCAUGUGCUA	Chp	[298-316] ORF	[298-316] ORF
243	CUCUUUUUUUCGUUUGC	GCAAAGCGAAAAAAUGAG		[51-69] 5'UTR	[51-69] 5'UTR
244	CUUAACUGCAUCCAGCG	CAGGCUUGGAUGCAGUUA		[698-716] 3'UTR	[937-955] 3'UTR
245	GGAAUCCGAAGUUGGAAC	GGUUCUCAACUUCGGAUUC		[432-450] ORF	[432-450] ORF
246	UACAUCAAGGACCUUCAGU	ACUGAAGGUCCUGAGUUA		[400-418] ORF	[400-418] ORF
247	UUACUCAGGCCUCAAGGAG	CUCCUUGAGGCGUGAGUA		[315-333] ORF	[315-333] ORF
248	AGUCACCGAGACUUUAGG	CCUAAAUCUCUGGUGACU	Chp	[771-789] 3'UTR	[1010-1028] 3'UTR
249	GACGAUCGCAUCUUGUGUC	GACACAAAGAUGCGAUCG	Ms,GP,Chn,Chp	[544-562] ORF	[783-801] 3'UTR
250	AACUCGGAAUCCGAAGUUG	CAACUCGGAUUCCGAGUU	Chp	[427-445] ORF	[427-445] ORF
251	AUCAGGGACCUUCAGUJGG	CCAACUGAAGGUCCUGAU		[403-421] ORF	[403-421] ORF
252	CUGCUCUACGACAUGAACG	CGUUCAUGUGCUAGAGCA	Rat,Ms,GP,Chn,Chp	[292-310] ORF	[292-310] ORF
253	UCCACCUCAUUUUUUCGC	GCGAAAAAAAGAGGUGGA		[46-64] 5'UTR	[46-64] 5'UTR
254	AUGGUACGUUUGGU	AAGCACCAACGUGACAU	Chp	[844-862] 3'UTR	[1083-1101] 3'UTR
255	UGAACCGGUUACUCACG	CGUGAGUACAGCCGUCA	Chp	[305-323] ORF	[305-323] ORF
256	UUCGUUUUACGCCAGUCG	GCGACUGGCGUAAACAGAA		[73-91] 5'UTR	[73-91] 5'UTR
257	UUUGCCCAUUCGUUUCAG	CUGAACAGAAUGGGCAA	Chp	[65-83] 5'UTR	[65-83] 5'UTR
258	UAUAAUACAAUGACCCG	CGGUGAUCAUUGUAAUA	Chp	[894-912] 3'UTR	[1133-1151] 3'UTR
259	GUCAGUUUUGGUGCUUC	GAGAACGACCAAACGUGAC	Chp	[847-865] 3'UTR	[1086-1104] 3'UTR
260	UUUCGUUJGCCAUUCUG	CAGAAUGGCAAAGCGAAA	Chp	[59-77] 5'UTR	[59-77] 5'UTR
261	GAAUCCGAAGUUGGAACCC	GGGUUCCACAUUCGGAUUC		[433-451] ORF	[433-451] ORF
262	UUUACAAUAGUUCUGUGGG	CCCACAGAACAUUUGUAA	Chp	[927-945] 3'UTR	[1166-1184] 3'UTR
263	UUCAGUUGGAGCUGAACUC	GAGUUCAGCUCCACUGAA		[413-431] ORF	[413-431] ORF
264	UGGUGCUUCUCAGAUUUC	GAAACUGAGAAGCACCA	Chp	[854-872] 3'UTR	[1093-1111] 3'UTR
265	AGCAAGGUGGAGAUUCUCC	GGAGAAUCUCCACCUUGCU	Chp	[367-385] ORF	[367-385] ORF
266	AUUAUCGUCUCUGUGGU	GACCCACAGAGCAGCUAAU	Chp	[619-637] 3'UTR	[858-876] 3'UTR
267	ACGAUCGCAUCUUGUGU	CGACACAAAGAUGCGAUC	Ms,GP,Chn,Chp	[545-563] ORF	[784-802] 3'UTR
268	AAGGUGGAGAUUCUCCAGC	GCUGGAGAAUCUCCACCUU	Chp	[370-388] ORF	[370-388] ORF

269	AAAUGGUACGUUUGGUG	ACCAAAACGUGACCAUUUU	Chp	[841-859] 3'UTR	[1080-1098] 3'UTR
270	UGCACCUACUAGUCACC	GGUGACUAGUAGGUGUGCA	Chp	[759-777] 3'UTR	[998-1016] 3'UTR
271	UCAGUUGGAGCUGAACUCG	CGAGULUCAGCUCCAACUGA		[414-432] ORF	[414-432] ORF
272	UUUUACAAUAGUUCUGGG	CCACAGAACAUUUGUAAAA	Chp	[926-944] 3'UTR	[1165-1183] 3'UTR
273	AUCUUGUGUCGCUAGCG	CGCUUCAGCAGACAAAGAU	Chp	[553-571] ORF+3'UTR	[792-810] 3'UTR
274	AUUCUGUUUCAGCCAGUG	CGACUUGGCUAAACAGAAU		[72-90] 5'UTR	[72-90] 5'UTR
275	AUCAUGAAAGUCGCCAGUG	CACUGGCACUUUCAUGAU	Chp	[97-115] 5'UTR+ORF	[97-115] 5'UTR+ORF
276	UUUUUCGCUUUGCCCAUC	GAUAGGGAAAGCGAAAAA		[57-75] 5'UTR	[57-75] 5'UTR
277	AUUUUCGUAUCUGCUUCG	CGAAGCAGAUACGAAAAAU	Chp	[23-41] 5'UTR	[23-41] 5'UTR
278	AUCGACUACAUCAUCAGGGACC	GGUCCCUGAUGUAGUCGAU	Rat,Ms,Chn,Chp	[394-412] ORF	[394-412] ORF
279	UUUCCGUAUCUGCUUCGGG	CCCGAAGCAGAUACGGAAA	Chp	[25-43] 5'UTR	[25-43] 5'UTR
280	UUGCCCAUCUGUUUCAGC	GCUGAAACAGAAUAGGGCAA	Chp	[66-84] 5'UTR	[66-84] 5'UTR
281	AUUCUCCAGCAGCUACUG	CGAUGACGUGCUGGAGAAU	Chp	[379-397] ORF	[379-397] ORF
282	UUUUCGUAUCUGCUUCGG	CCGAAGCAGAUACGAAAAA	Chp	[24-42] 5'UTR	[24-42] 5'UTR
283	UCCACCUAUUUUUUUCG	CGAAAAAAAUGAGGUGGAA		[45-63] 5'UTR	[45-63] 5'UTR

Table A4 ID2 - inhibitor of DNA binding 2

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-33946335 ORF:184-588
1	UGCUAUACAACAUGAACGA	UCGUUCAUGUUGUUAUGCA		[287-305] ORF
2	AUGAACGACUGCUACCCA	UGGAGUAGCAGUCGUCAU	Rat,Ms,GP,Chn	[298-316] ORF
3	ACAAACAUAGAACGACUGUA	UAGCAGUCGUUCAUGUUGU	Rat,Ms,GP	[293-311] ORF
4	UGUUAUACUGAACCCAAA	UUUUGGUUCAGUUUAACAA	Ms	[1284-1302] 3'UTR
5	GCCUGCUAUACAAACAUAA	UUCAUGUUGUUAUGCAGGCC		[284-302] ORF
6	CCUUCUGAGUUAAGUCAA	UUGACAUUAACUCAGAAGG		[544-562] ORF
7	GUCUAAUUCUGCAUAAA	UUUGAAUGCAGAAUAGAC		[1115-1133] 3'UTR
8	CGAAAACGUAAAUAACACA	UGUGAUUUUAACGUUUUCG		[874-892] 3'UTR
9	UGAACGACUGCUACUCCAA	UUGGAGUAGCAGUCGUUCA	Rat,Ms,GP,Chn	[299-317] ORF
10	CAACAUGAACGACUGCUAC	GUAGCAGUCGUUCAUGUUG	Rat,Ms,GP	[294-312] ORF
11	CUAUACAACAUGAACGACU	AGUCGUUCAUGUUGUUAUAG		[289-307] ORF
12	UAUACAACAUGAACGACUG	CAGUCGUUCAUGUUGUUA		[290-308] ORF
13	CGUUAAAUAUCACAAAGGAAU	AUUCCUUGUGAUUUUAACG		[880-898] 3'UTR
14	GAAGGAAAACUAAGAAUGA	UCAUUCUUAGUUUUUCUUC		[735-753] 3'UTR
15	GAAUCUUUUAAGUGUGCUAA	UUCAGCACUAAAAGAUUC		[649-667] 3'UTR
16	GACUUUUGCCUUUUUUCAA	UUUGAAAAAAGGCAAAGUC		[914-932] 3'UTR
17	CGGUACAGCAUGAACGCCU	AAGGCUUUCAUGCUGACCG		[176-194] 5'UTR+ORF
18	ACGUUAAAUCACAAAGGAA	UCCUUGUGAUUUUAACGU		[879-897] 3'UTR
19	GGGUGUUCUCUACUUGGA	UCCAAGUAAGGAACACCC		[765-783] 3'UTR
20	CCUACUGAAUGCUGUUAU	AUACACAGCAUCAGUAGG	Ms	[1016-1034] 3'UTR
21	GAAGCUUUUUGGUCAGAAA	UUUCUGACCAAAAGACUUC		[979-997] 3'UTR
22	CCAGUAAUCAGUCACUAA	UUAAGUGACUGAAUACU		[958-976] 3'UTR
23	CAGUAAUCAUGACUAAA	UUUAAGUGACUGAAUACUG		[959-977] 3'UTR
24	CAAGGAAUUGGCCAAUCUA	UAGAUUUGGCCAAUUCUUG		[891-909] 3'UTR
25	GAACGACUGCUACUCCAG	CUUGGAGUAGCAGUCGUUC	Rat,Ms,GP,Chn	[300-318] ORF
26	GGAGCGAAAACGUUAAA	AUUUUACGUUUUCGCUCC		[870-888] 3'UTR
27	GAACCCAAAUAACAAAG	CUUGUAUUUAUUUGGGUUC		[1294-1312] 3'UTR
28	GCUAAUACAACAUAGAC	GUUCGUUCAUGUUGUUAUGC		[288-306] ORF
29	AAGGAUUUGCCAAUCUA	UUAGAUUUGGCCAAUUCU		[892-910] 3'UTR
30	AGAAGGUGAGCAAGAUGGA	UCCAUCUUGCUCACCUUCU	GP,Chn	[353-371] ORF
31	ACUGGUACUCCAAGCUAA	UUGAGCUUUGGAGUAGCAGU	Rat,Ms	[305-323] ORF
32	GGGAGCGAAAACGUUAAA	UUUUACGUUUUCGCUCC		[869-887] 3'UTR
33	GGACUGUGAUUUUCGUUAU	AUAACGAAUACACAGUCC		[781-799] 3'UTR
34	CCAGUGCUUUGAUUUUUAU	AUAAAUAACAAAGCACUGG		[1258-1276] 3'UTR
35	CAUGAACGACUGCUACUCC	GGAGUAGCAGUCGUUCAUG	Rat,Ms,GP	[297-315] ORF
36	CCUUUUGACACAAGCCUA	UAGGCUUGUGUCAAAAGG		[1001-1019] 3'UTR
37	GUCCUUGCAGGUUCUGAA	UUCAGAACGCCUGCAAGGAC		[522-540] ORF
38	UGAGGUCCGUUAGGAAAAA	UUUUCCUAACGGACCUCA	Rat,Ms	[203-221] ORF
39	GGAAAACUAAGAAUGAUCA	UGAUCAUUCUUAJGUUUUCC		[738-756] 3'UTR
40	GUGAGGUCCGUUAGGAAAAA	UUUUCCUAACGGACCUAC	Rat,Ms	[202-220] ORF
41	GUUGGAAGGUUUUCUUUAU	AUAAAAGAAAACCUUCCAC	Ms	[833-851] 3'UTR
42	CAUUCACAAAGGAGGACAA	UUGGUCCUUCUUGUGAAAUG		[681-699] 3'UTR
43	GGAAAACAGCCUGUCGGA	UCCGACAGGCUGUUUUUCC	Rat,Ms	[215-233] ORF
44	AGGUGAGCAAGAUGGAAA	AUUUCCAUUCUJUGCUCACC	GP,Chn	[356-374] ORF
45	GGUGAUUUGCCUGCUUUUU	AAUAAAAGCAGGCAUCACC		[1231-1249] 3'UTR
46	UGAUUACUUAUUCUGCU	AGCAUGAAUAGUACAUCA		[1141-1159] 3'UTR
47	CUUUAUAGUGGCAGAGAU	AUCUCUGCCACUAACAAAG		[1096-1114] 3'UTR
48	CCUUGUGAACUCUUUAAA	AAUAAAAGAGGUUCACAAAG		[1069-1087] 3'UTR

49	AGCCUGCUAUACAACAUGA	UCAUGUUGUAUAGCAGGCC		[283-301] ORF
50	GCCCCUUCUGCAGUUGGAA	UCCACACUGCAGAAAGGGC		[821-839] 3'UTR
51	CAACAACAAAUACCGAA	UCCGUGAAUUUGUUGUUG		[633-651] 3'UTR
52	CUGAAUAAGGGUGUUCAU	AUGAACACCGCUUAUUCAG		[585-603] ORF+3'UTR
53	GAGUUAUAGUCAAAGACA	UGUCAUUGACAUUACUC		[550-568] ORF
54	AUGUUAUACUGAACCCAA	UUGGGGUUCAGUUAACAU	Ms	[1283-1301] 3'UTR
55	UGUCAUUUUCUGCAUCAA	UUGAAUGCAGAAAUAGACA		[1114-1132] 3'UTR
56	GCGUGAAUACAGAAGGAU	AUCCUCUGGUUAUCACGC		[939-957] 3'UTR
57	CAAAGGUGGAGCUGJAAUA	UAUUCACGCUCACCUUUG		[929-947] 3'UTR
58	CCUGCUAUACAACAUGAAC	GUUCAUGUUGUUAAGCAGG		[285-303] ORF
59	GAUGUACUUUUCAUGCUA	UAGCAUGAAUAGUACAU		[1142-1160] 3'UTR
60	GAAGGAUCCAGUAUCAGU	ACUGAAUACUGGAUCCUUC		[951-969] 3'UTR
61	ACCAGUGCUUUGAUUUUU	AAAAAAUCAAAGCACUGGU		[1257-1275] 3'UTR
62	GGACCAGUGCUUUGAUUUU	AAAAUCAAAGCACUGGUCC		[1255-1273] 3'UTR
63	UGUGUUUAUUGAUGGUGA	UCAACAUUCAAUAAACACA		[1217-1235] 3'UTR
64	GACUGCUACUCCAAGCUA	UGAGCUUUGAGUAGCAGUC	Rat,Ms	[304-322] ORF
65	UCUGCAUCAAAAGUGUAA	UUACACUUUUGAUGCAGA		[1122-1140] 3'UTR
66	CUUUGCACAACAAACCAA	UUGUUGUUGJUGUGCAAAG		[617-635] 3'UTR
67	AAUGUAAAUGACAGCAA	UUUGCUGCAUJUGACAUJ		[555-573] ORF
68	GCUUUAUUCAGAGGACCA	UGGUCCUCUGAAAUAAGC		[1242-1260] 3'UTR
69	ACUGAUGCUGUQUAUAA	UAUUAACACAGCAUUCAGU	Ms	[1019-1037] 3'UTR
70	ACCCGAUGAGGCCUCUAA	UAUAGCAGGCUCAUCGGGU		[275-293] ORF
71	AGAGGACCAGUGCUUJGUA	AUCAAAGCACUGGUCCUCU		[1252-1270] 3'UTR
72	AAACCUUUGUGAACUCUUA	AAAAGAGUUACAAAGGUU		[1066-1084] 3'UTR
73	AACAUGAACGACUGCUACU	AGUAGCAGUCGUUCAUGU	Rat,Ms,GP	[295-313] ORF
74	AGUUGGAAGGUUUUCUUA	AAAAGAAAACCUCUCCAACU	Ms	[832-850] 3'UTR
75	CUUUGACUGUGAUJUCGU	ACGAAUUAUCACAGGUCAA		[778-796] 3'UTR
76	CCAGGGUGUUCUCUUAUU	AAGUAAGAGAACACCCUGG		[762-780] 3'UTR
77	CACAAGGAGGACAAGUUGA	UCAACUUGUCCUCUUGUG		[686-704] 3'UTR
78	ACAUGAACGACUGCUACUC	GAGUAGCAGUCGUUCAUGU	Rat,Ms,GP	[296-314] ORF
79	GCAAGAUGGAAUCCUGCA	UGCAGGUUUUCUCAUCUUG		[362-380] ORF
80	GAAACCUUUGUACUCUJJ	AAAGAGUUCACAGGUUUC		[1065-1083] 3'UTR
81	GCAGUUGGAAGGUUUUCU	AAAGAAAACCUCUCCAACUGC		[830-848] 3'UTR
82	CUAUGUCAGCCUGCAUCA	UGAUGCAGGCUJACAAUAG		[434-452] ORF
83	CCACAUUUGUCAGCCUGCA	UGCAGGCUJACAAUAGUGG		[431-449] ORF
84	AGAGAUGUCUAAUUCUGCA	UGCAGAAAAGACAUUCU		[1109-1127] 3'UTR
85	CUGAAUGCUGUGUAUUAU	AUAAUAACACAGCAUUCAG	Ms	[1020-1038] 3'UTR
86	UUGACACAAGCCUACUGAA	UUCAGUAGGUUGUGUCAA		[1006-1024] 3'UTR
87	UGCACAAACAAACAACAA	UUGUUGUUGUUGUUGUGCA		[620-638] 3'UTR
88	GUUUAACUGAACCCAAAU	AUUUGGGGUUCAGUUAUAC	Ms	[1285-1303] 3'UTR
89	UUGAGUGAAACCUCUUGGA	UUCACAAGGUUUCACUCAA		[1059-1077] 3'UTR
90	UUUCAAAGGUGGACCGUGA	UACACGCCACCUUUGAAA		[926-944] 3'UTR
91	GAAUGAUCAUCUUCCCAGG	CCUGGGGAAGUGAUCAUC		[748-766] 3'UTR
92	AAAGCACUGUGGGUGCUA	UUCAGCCACACAGUGCUU		[571-589] ORF+3'UTR
93	UUGUCAGCCUGCAUCACCA	UGGUGAUGCAGGUACAAA		[437-455] ORF
94	AGAUGGAAAUCUGCAGCA	UGCUGCAGGUUUUCCAU	Rat,Ms	[365-383] ORF
95	GAGGACCAGUGCUUJGAU	AAUCAAAGCACUGGUCCUC		[1253-1271] 3'UTR
96	GAUCCAGUAUUCAGUCACU	AGUGACUGAAUACUGGAUC		[955-973] 3'UTR
97	GGUCCGUUAGGAAACAG	CUGUUUUUCUACACGGACC	Rat,Ms	[206-224] ORF
98	GUGAUUGCCUGCUUUAUU	AAAUAAGCAGGCCAUUCAC		[1232-1250] 3'UTR
99	GAAUGGUGAUJUGCCUGCU	AAGCAGGCCAUUCACCAUJC		[1227-1245] 3'UTR
100	GUGUUUAUUGAAUGGUGAU	AUCACCAUCAUAAAACAC		[1218-1236] 3'UTR
101	AGACUUUGCCUUUUUCAA	UUGAAAAAAGGCAAAGUCU		[913-931] 3'UTR
102	UCUCUACUUGGACUGUGA	UACACAGUCCAAAGUAAGAGA		[771-789] 3'UTR
103	GGCAGAGAUGUCUAAUUCU	AGAAAUAAGACAUUCUGCC		[1106-1124] 3'UTR
104	CAAAGCACUGUGGGUGCA	UCAAGCCACACAGUGCUU		[570-588] ORF
105	CAAGCCUACUGAAUCGUCA	ACAGCAUUCAGUAGGCUU		[1012-1030] 3'UTR
106	UGGAGCGUGAAUACAGAA	UUCUGGUAUUCAGCUCCA		[935-953] 3'UTR
107	UUCCAGGGUGUUCUUA	AAAGAGAACACCCUGGGAA		[759-777] 3'UTR
108	UAAUGUAAAUGACAGCAA	UUGCUGUCAUJUGACAUUA		[554-572] ORF
109	CAGAGGACCAGUGCUUJGA	UCAAAGCACUGGUCCUCUG		[1251-1269] 3'UTR
110	GGAGCGUGAAUACAGAAAG	CUUCUGGUAUUCAGCUCC		[936-954] 3'UTR
111	AGCGAAAACGUUAAAUC	UGAUUUUACGUUUUCGCU		[872-890] 3'UTR
112	GAGCGAAAACGUUAAAUC	GAUUUUACGUUUUCGCU		[871-889] 3'UTR
113	CAGUUGGAAGGUUUUCU	AAAGAAAACCUCUCCACAC	Ms	[831-849] 3'UTR
114	UGGACUGUGUAUUCGUUA	UAAAGAAUACACAGUCCA		[780-798] 3'UTR
115	CCCAGGGUGUUCUUCUACU	AGUAAGAGAACACCCUGGG		[761-779] 3'UTR

116	GGAAUCUUUUAAGUGCUGA	UCAGCACUUAAAAGAUUCC		[648-666] 3'UTR
117	CAAAUGACAGCAAAGCACU	AGUGCUUUGCUGUCAUUUG	Chn	[560-578] ORF
118	GAUUGCUCUUAUUCUCA	UGAAAUAAGCAGGCAAUC		[1234-1252] 3'UTR
119	GUUGUAAACUUAACCCUUU	AAAGGGUUUAGUUUACAC	Ms	[1180-1198] 3'UTR
120	AACCUUGUGAACUCUUUA	UAAAAGAGUUCACAAGGUU		[1067-1085] 3'UTR
121	UACUGAAUGCUGUUAU	AUAUACACAGCAUUCAGUA	Ms	[1018-1036] 3'UTR
122	AAGUCUUUUGUCAGAAA	AUUUCUGACCAAAAGACUU		[980-998] 3'UTR
123	UGCCCUUUCUGCAGUUGGA	UCCACUGCAGAAAGGGCA		[820-838] 3'UTR
124	UGGAAGGAAAACUAAAGAA	AAUUCUAGUUUUCUCCUCA		[733-751] 3'UTR
125	AGUUGUAAACUUAACCCUU	AAGGGUUUAGUUUACACU	Ms	[1179-1197] 3'UTR
126	GCCUACUGAAUGCUGUGUA	UACACAGCAUUCAGUAGGC	Ms	[1015-1033] 3'UTR
127	AAAUGAAGUCUUUUGGUCA	UGACCAAAAGACUUCAUUU		[975-993] 3'UTR
128	CAGACUUUGCCUUUUUCA	UGAAAAAAGGCAAAGUCUG		[912-930] 3'UTR
129	ACAAAUUCACGGAUCUUU	AAAGAUUCGUGAAUJUGU		[638-656] 3'UTR
130	GGUGUUCAUGAUUUCUUUU	AAAAGAAAUCAGAACACC		[595-613] 3'UTR
131	AGGUCCGUUAGGAAAACA	UGUUUUUCUAAACGGACCU	Rat,Ms	[205-223] ORF
132	ACUACAUUCUUGGACCUUGCA	UGCAGGUCCAAGAUGUAGU		[392-410] ORF
133	CCUGCUUUAUUCAGAGGA	UCCUCUGAAAUAAGCAGG		[1239-1257] 3'UTR
134	AGAUGUCUAAUUCUGCAU	AAUGCAGAAAAGACAU		[1111-1129] 3'UTR
135	CUAUUUGAGUGAAAACCUG	CAAGGUUUCACUCAAAUAG		[1055-1073] 3'UTR
136	GUGGAGCGUGAAUACCAGA	UCUGGUUUCACGCUCCAC		[934-952] 3'UTR
137	GCCUUUUUUUCAAGGUGGA	UCCACCUUUGAAAAAAAGGC		[920-938] 3'UTR
138	CUCUACUJUGACUGUGAU	AUCACAGUCCAAAGUAAGAG		[772-790] 3'UTR
139	UCAUCGACUACAUUUGGA	UCCAAGAUGUAGUCGAUGA		[386-404] ORF
140	GAACAAAGGUGAGCAAG	CUUGCUCACCUUUCUUGUUC	GP,Chn	[348-366] ORF
141	CUGCAUUCAAAAGUGUAAU	AUUACACUUUUGAAUGCAG		[1123-1141] 3'UTR
142	AGGUGGAGCGUGAAUACCA	UGGUUAUCACGCUCCACCU		[932-950] 3'UTR
143	UCUUACUUGGACUGUGAU	UAUCACAGUCCAAGUAAGA		[773-791] 3'UTR
144	CCAUUCACAAGGAGGACA	UGUCCUCUUGUGAAAUGG		[680-698] 3'UTR
145	CCCUUCUGAGUUAUGUCA	UGACAUUAACUCAGAAAGGG		[543-561] ORF
146	UCCAGUAAUCAGUACUU	UAAGUGACUGAAUACUGGA		[957-975] 3'UTR
147	UCUGCAGUUGGAAGGUUUU	AAAACCUUCCACUGCAGA		[827-845] 3'UTR
148	GACUGUGAUUUCGUUAUU	AAAUAACGAAAUAUCACAGUC		[782-800] 3'UTR
149	CCCUCAACCGGAUAUCAG	CUGAUUAUCGUGUUGAGGG		[497-515] ORF
150	GCUACCUAACGCUAAGGA	UCCUUGAGCUUGGAGUAGC	Rat,Ms	[308-326] ORF
151	GUUUUUGGUAGCAAAUUA	UAUUUUCUAGCAAAAGAC		[982-1000] 3'UTR
152	AUACAGAAGGAUCCAGUA	UACUGGAUCCUUCUGGUAU		[945-963] 3'UTR
153	UCUUUUAAGUGCUGAACUU	AAGUUUCAGCACUAAAAGA		[652-670] 3'UTR
154	ACAACAACAAUUCACGGA	UCCGUGAAUJUGUUGUUGU		[632-650] 3'UTR
155	AAAUCUCCUGCAGCACGU	AUGACGUGCUGCAGGAUUU	Rat,Ms	[371-389] ORF
156	CCCAAAUAAAACAAAGUUC	GAACUUGUAUUUAUUUGGG		[1297-1315] 3'UTR
157	CUACUGAAUGCUGUGAU	UAUACACAGCAUUCAGUAG	Ms	[1017-1035] 3'UTR
158	GGUCAGAAUUAUCCUUUUU	AAAAGGUAAAUCUGACC		[989-1007] 3'UTR
159	UGAAGUCUUUUGGUCAGAA	UUCUGACAAAAGACUUCA		[978-996] 3'UTR
160	AGAAGGAUCCAGUAUUCAG	CUGAAUACUGGAUCCUUU		[950-968] 3'UTR
161	UCAAAGGUGGAGCGUGAAU	AUUCACGCUCCACCUUUGA		[928-946] 3'UTR
162	UUCAAGGUGGAGCGUGAA	UUCACGCUCCACCUUUGAA		[927-945] 3'UTR
163	GGAAGAAAACUAAGAAU	CAUUCUAGUUUUCCUUC		[734-752] 3'UTR
164	GCUGAAUAGCGGUUCA	UGAACACCGCUUAAUCAGC		[584-602] ORF+3'UTR
165	CACUGUGGGCUAAUAG	CUUAAUCAGCCACACAGUG		[575-593] ORF+3'UTR
166	CAGGCUUCUGAAUUCUU	AAGGGAAUUCAGAAGCCUG		[529-547] ORF
167	AAAUCUCCUGCAGCACGU	UGACGUGCUGCAGGAUUUC	Rat,Ms	[370-388] ORF
168	AAUGGUGAUUUCGUUGCUU	AAAGCAGGCAUACACCAUU		[1228-1246] 3'UTR
169	UUUCUUGUAUAGUGGCAGA	UCUGCCACUAUACAAGAAA	Ms	[1093-1111] 3'UTR
170	CAGAAAUAUCCUUUUUGAC	GUCAAAAAGGUAAAUCUG		[992-1010] 3'UTR
171	GCAGGCUUCUGAAUUCUU	AGGGAAUUCAGAAGCCUGC		[528-546] ORF
172	UCAGCAUCCUGGUCCUUGCA	UGCAAGGACAGGAUGCUGA	Rat,Ms,GP,Chn	[512-530] ORF
173	CACUAAUUGUCAGCCUGCAU	AUGCAGGCUAGCAAAUAGUG		[432-450] ORF
174	UCUUGUAUAGUGGCAGAGA	UCUCUGCCACUAUACAAGA		[1095-1113] 3'UTR
175	AAAGGGGGAGCGUGAAUAC	GUAAUUCAGCUCGCCACUUU		[930-948] 3'UTR
176	AUCACAAGGAAUUGCCCAA	UGGGGCAAUJUCCUUGUGAU	Ms	[887-905] 3'UTR
177	GCGAAAACGUAAAACAC	GUGAUUUUACGUUUUCG		[873-891] 3'UTR
178	CAAAUUCACGGAAUCUUUU	AAAAGAUUCGUGAAUUG		[639-657] 3'UTR
179	AUAUCAGCAUCCUGUCCUU	AAGGACAGGAUGCUGAU		[509-527] ORF
180	CCUCAACACGGAAUACAGC	GCUGAUUAUCGUGUUGAGG		[498-516] ORF
181	UGGAAAUCUCCUGCAGCACGU	ACGUGCUGCAGGAUUUCCA	Rat,Ms	[368-386] ORF
182	GUGUGUUUAUUGAUGGUG	CACCAUUCAUAAAACACAC		[1216-1234] 3'UTR

183	GCAUUCAAAAGUGUAAUGA	UCAUUACACUUUJUGAAUGC		[1125-1143] 3'UTR
184	GAGUGAAACCUUUGUGAACU	AGUUCACAAGGUUUCACUC		[1061-1079] 3'UTR
185	AGGAUUGCCAAUCUAAG	CUUAGAUUGGGCAAUUCCU		[893-911] 3'UTR
186	AACCAUUCACAAGGAGGA	UCCUCCUUGUGAAAUGGUU		[678-696] 3'UTR
187	CAACCAUUCACAAGGAGG	CCUCUUGUGAAAUGGUUG		[677-695] 3'UTR
188	GCGGUGUUCAGAUUUCUU	AAGAAAUCAUGAACACCCGC		[593-611] 3'UTR
189	CCUUGCAGGUUCUGAAU	AAUUCAGAAGCCUGCAAGG		[524-542] ORF
190	CCACCUCAACACGGAUAU	AUAUCCGUGUUGAGGGUGG		[494-512] ORF
191	ACAUCUJUGGACCUCAGAU	AUCUGCAGGUCCAAGAUGU	Ms	[395-413] ORF
192	CCCUUUCUGCAGUUGGAAG	CUUCCAACUGCGAGAAAGGG		[822-840] 3'UTR
193	UAUUUUUCUGCACACAACA	UGUUGUUGUGCAAAGAAUA		[613-631] 3'UTR
194	UGUCCUUCAGGCUUCUGA	UCAGAAGGCCUGCAAGGACA		[521-539] ORF
195	UCAACACGGAUUAUCAGCAU	AUGCUGAUUAUCUGUUGA		[500-518] ORF
196	CUGAACCCAAUAAAUAACA	UGUAAAUAUUUGGGUUCAG		[1292-1310] 3'UTR
197	CAAGUGUUCUAAAUGAUG	CAUCAAAUAAAACACACUUG	Ms	[1213-1231] 3'UTR
198	GAGAUGUCUAAAUCUGCAU	AUGCAGAAAAGACAUCAUC		[1110-1128] 3'UTR
199	GUUUUCUUGUAUAGUGGCA	UGCCACAUACAAAGAAAAC	Ms	[1091-1109] 3'UTR
200	ACCUUGUGAACUCUUUAU	AUAAAAGGUUCACAAAGGU		[1068-1086] 3'UTR
201	CCCAUCUAAAGCAGACUU	AAAGUCUGCUUAGAUJUGG		[901-919] 3'UTR
202	ACUUUUAAAUGCCCUUUCU	AGAAAAGGCAUAAAAGU		[811-829] 3'UTR
203	GUGCUGAACUUUUUUCU	UGAAAAAAUAAGUUCAGCAC		[660-678] 3'UTR
204	CGGAAUCUAAAAGUGUCUG	CAGCACUAAAAGAUUCCG		[647-665] 3'UTR
205	GUCAAAUGACAGCAAAGCA	UGCUUJUGCUGUCAUUGAC	Chn	[558-576] ORF
206	UGGUGAUUGCCUGCUUUUAU	AUAAAAGCAGGCAAUCACCA		[1230-1248] 3'UTR
207	AUGGUGAUUGCCUGCUUUUA	UAAAAGCAGGCAAUCACCAU		[1229-1247] 3'UTR
208	GUGGCAGAGAUGUCUAAUU	AAAUGACACUUCUGGCCAC		[1104-1122] 3'UTR
209	GAGUUUUUCUGUAUAGUGG	CCACAUACAAAGAAAACUC	Ms	[1089-1107] 3'UTR
210	AGUCUUUUGGUCAAGAAAUU	AAUUCUGACCAAAAGACU		[981-999] 3'UTR
211	AUACAAUAGAACGACUGC	GCAGUCGUUCAUGUUGUAU		[291-309] ORF
212	GGUGUUCUCUACUUGGAC	GUCCAAGUAAGAGAACACC		[766-784] 3'UTR
213	CAGGGUGUUCUCUACUUG	CAAGUAAGAGAACACCCUG		[763-781] 3'UTR
214	AAAACAGCCUGUCGGACCA	UGGUCCGACAGGCUGUUUU	Rat,Ms,GP	[218-236] ORF
215	CACACAACAAACAACA	UGUUGUUGUUGUUGUUGUG		[622-640] 3'UTR
216	GACCAGUGCUUUGAUUUUU	AAAAAAUCAAAGCACUGGUC		[1256-1274] 3'UTR
217	CAGCAUGAAAGCCUUCAGU	ACUGAAGGCUUUCUCAUGCG	Rat,Ms	[180-198] 5'UTR+ORF
218	ACGGAAUCUUUUAAGUGCU	AGCACUUAAAAGAUUCCGU		[646-664] 3'UTR
219	AACAAACAAUUCACGGAAU	AUUCCGUGAAUJUGUUGUU		[634-652] 3'UTR
220	CAACAAACAAUUCACG	CGUGAAUJUGUUGUUGUUG		[630-648] 3'UTR
221	ACAACAAACAAUUCAC	GUGAAUJUGUUGUUGUUGU		[629-647] 3'UTR
222	AUUCUUUGCACAACAAACAA	UUGUUGUUGUGCAAAGAAU		[614-632] 3'UTR
223	AACAAGAAGGUGAGCAAGA	UCUUCUCACCUUCUUGUU	GP,Chn	[349-367] ORF
224	GCAUGAAAGCCUUCAGUC	GGACUGAAGGCUUUCUAGC	Rat,Ms	[182-200] 5'UTR+ORF
225	UUGCCUGCUUUAUUCAGA	UCUGAAAAAAAGCAGGCCA		[1236-1254] 3'UTR
226	AGGAUCCAGUAUUCAGUCA	UGACUGAAUACUGGAUCCU		[953-971] 3'UTR
227	CAGAAGGAUCAGAUUAUCA	UGAAUACUGGAUCCUUCUG		[949-967] 3'UTR
228	CCAGAAGGAUCAGUUAUUC	GAAUACUGGAUCCUUCUGG		[948-966] 3'UTR
229	AGCAGACUUUUGCCUUUUUU	AAAAAAAGGCAAAGCUCGCU		[910-928] 3'UTR
230	CACGGAAUACAGCAUCCUG	CAGGAUGCUGAUACCCUGG		[504-522] ORF
231	AAAAUUACCUUUUUGACAC	GUGUAAAAGGUAAAUC		[994-1012] 3'UTR
232	UGAGCCUGCUUACAAACAU	AUGUUGUAGCAGGCUCA		[281-299] ORF
233	GAUGAGCCUGCUUACAAAC	GUUGUAGCAGGCUCAUC		[279-297] ORF
234	CUUACUJUGGACUGUGAU	AUAUCACAGUCCAAGUAAG		[774-792] 3'UTR
235	CUUCCAGGGUGUUCUUCU	AAGAGAACACCCUGGGAA		[758-776] 3'UTR
236	CUUUUAAGUGCUGAACUA	UAAGUUCAGCACUAAAAG		[653-671] 3'UTR
237	GUUCUCAGAAUUCCUUCUG	CAGAAGGGAAUUCAGAAC		[532-550] ORF
238	GAGCAAGAUGGAAUUCGG	CAGGUUUCCACUUCUGCUC		[360-378] ORF
239	AGGACCAAGUGCUUJUGAU	AAAUCAAAGCAGCUUCC		[1254-1272] 3'UTR
240	CUGCUUUAUUCAGAGGAC	GUCCUCUGAAAAGAGCAG		[1240-1258] 3'UTR
241	UAGUGGCAGAGAUGUCAU	AUAGACAUUCUGCCACUA		[1102-1120] 3'UTR
242	UCUAAUUGAGUGAAACCU	AAGGUUUACUCAAAUAGA		[1054-1072] 3'UTR
243	GUCAGAAAUAACCUUUUUG	CAAAAGGUAAAUCUGAC		[990-1008] 3'UTR
244	CGUGAAUACCAAGGAUC	GAUCCUUCUGGUUAUCACG		[940-958] 3'UTR
245	AUUGCCAAUCUAAGCAGA	UCUGCUUAGAUJUGGCAAU		[897-915] 3'UTR
246	AACGUAAAUAUCACAAGGA	UCCUUGUGUUUAACGUU		[878-896] 3'UTR
247	UAUAUACUUAUUCCCACAU	AUGGUGGGAAUAGUUAUA	Ms	[849-867] 3'UTR
248	CUUUAUACUUAUUCCCAC	GUGGGAAUAGUUAUAAG	Ms	[846-864] 3'UTR
249	UUACUJUGGACUGUGAUUU	AAAUCACAGGUCCAAGUA		[775-793] 3'UTR

250	GUGUUCUCUUACUJUGGACU	AGUCCAAGUAAGAGAACAC		[767-785] 3'UTR
251	CUAACACGGAUACAGCA	UGCUGAUAUCCGUGUUGAG		[499-517] ORF
252	UCGACUACAUCCUUGGACCU	AGGUCCAAGAUQUAGUCGA		[389-407] ORF
253	AAAGCCUUCAGUCCGUGA	UCACGGGACUGAAGGCUUU		[187-205] ORF
254	AGCACGUCAUCGACUACAU	AUGUAGUCGAUGACGUGCU		[380-398] ORF
255	AUGUCUAAUUCUGCAJUCA	UGAAUGCAGAAAUAGACAU		[1113-1131] 3'UTR
256	AGAGGUUUCUUGUUAJUG	CACUAUACAAGAAAACUCU	Ms	[1088-1106] 3'UTR
257	GAGCGUGAAUACCAAGG	CCUUCUGGUUAUCACGCUC		[937-955] 3'UTR
258	CUAACAGACUUUGCCUUU	AAAGGCAAAGUCUGCUUAG		[907-925] 3'UTR
259	UUCUGCAGUUGGAAGGUU	AAACCUUCCACUCGAGAA		[826-844] 3'UTR
260	ACAACAAAUUCACGGAAUC	GAUUCCGUGAAUUGUUGU		[635-653] 3'UTR
261	AAUUCCCUUCUGAGUUAU	AUUAACUCAGAAGGGAAU		[539-557] ORF
262	CAUCGACUACAUJUGGAC	GUCCAAGAUQUAGUCGAUG		[387-405] ORF
263	UGCAGCACGUCAUCGACU	UAGUCGAUGACGUGCUGCA		[377-395] ORF
264	UGACACAAGCCUACUGAAU	AUCAGUAGGCCUUGUGUCA		[1007-1025] 3'UTR
265	UCUUUGCACACAAACAACA	UGUUGUUGUUGUGCAAAGA		[616-634] 3'UTR
266	GUGGCUGAAUAGCGGUGU	ACACCGCUUAUCAGCCAC		[581-599] ORF+3'UTR
267	ACGGAAUACAGCAUCCUGU	ACAGGAUGCUGUAUCCGU		[505-523] ORF
268	ACUCGCAUCCACAUJUGU	ACAAUAGUGGGGAUGCGAGU		[422-440] ORF
269	UGAGUAGAACCUUJUGUAC	GUUCACAAGGUUUCACUCA		[1060-1078] 3'UTR
270	UCUUUUGGUCAGAAUJUAC	GUAAUUCUGACACAAAAGA		[983-1001] 3'UTR
271	GGAUCCAGAUUUCAGUCAC	GUGACUGAAUACUGGAUCC		[954-972] 3'UTR
272	GAUCAUCUUCCCAGGGUGU	ACACCCUGGGAAGAUGAUC		[752-770] 3'UTR
273	CACGAAUCUUUUAAGUGC	GCACUUAAAAGAUUCCGUG		[645-663] 3'UTR
274	GUUAGGAAAACAGCCUGU	ACAGGCUGUUUUCCUUAAC	Rat,Ms	[211-229] ORF
275	CGGAUACAGCAUCCUGUC	GACAGGAUGCUGUAUCCG		[506-524] ORF
276	CAGAACAAAGAAGGUGAGCA	UGCUCACCUUCUUGUUCUG	GP,Chn	[346-364] ORF
277	GUUAJUGGGCAGAGAUGUC	GACAUUCUGCCACUUAAC		[1099-1117] 3'UTR
278	AUGAAGUCUUUUGGUCAGA	UCUGACCAAAAGACUUCAU		[977-995] 3'UTR
279	GCCCAACUAAGCAGACAU	AAUCUGCUUAGAUJUGGGC		[900-918] 3'UTR
280	GAGCCUGCUAACACAAUG	CAUGUUGUAJAGCAGGCU		[282-300] ORF
281	CCGUJAGAAAAAACAGCCU	AGGCUGUUUUJUCCUACCG	Rat,Ms	[209-227] ORF
282	CUCGCAUCCCACAUJUGU	GACAAUAGUGGGAUJCGAG		[423-441] ORF
283	CCCAGAACAAAGAAGGUGAG	CUCACCUUCUUGUUCUGGG	GP,Chn	[344-362] ORF
284	ACUCCAAGCUCAAGGAGCU	AGCUCCUUGAGCUUJGGAGU		[311-329] ORF
285	UAUULUGAGUGAACCUUGU	ACAAGGUUUUCACUAAAUA		[1056-1074] 3'UTR
286	CUUUUUGACACAAGCCUAC	GUAGGCUGUUGUGUAAAAG		[1002-1020] 3'UTR
287	AAUJAAGUCUUUJUGGUCAG	CUGACCAAAAGACUUCAUU		[976-994] 3'UTR
288	UACAACAUGAACGACUGCU	AGCAGUCGUUCAUGUUGUA	Rat,Ms,GP	[292-310] ORF
289	AAUCACAAGGAAUUCGCCA	UGGGCAUUCUUCUGUGAUU	Ms	[886-904] 3'UTR
290	AAAUCCCCUUUCUGCGAUU	AACUGCAGAAAGGGCAUUU		[817-835] 3'UTR
291	AGGGGUUUCUCUUACUUGG	CCAAGUAAGAGAACACCCU		[764-782] 3'UTR
292	CUGUGUGGUCGAAUAGCG	CGCUUAAUUCAGCCACACAG		[577-595] ORF+3'UTR
293	AGUAAAUGUCAAAGACAG	CUGUCUUUJUGACUUAACU		[551-569] ORF
294	CUGAAUJUCCUUCUGAGUU	AACUCAGAAGGGAAUUCAG		[536-554] ORF
295	GACUCGCAUCCCACAUJUG	CAAUAGUGGGAUJCGAGUC		[421-439] ORF
296	AGUGGCAGAGAUGUCUAU	AAUAGACACUUCUGCCACU		[1103-1121] 3'UTR
297	UGUUAJUGGGCAGAGAUGU	ACAUCUCUGCCACAUUAACA		[1098-1116] 3'UTR
298	UCAGUCACUUAAAUGAAGU	ACUUCAUUUAAGUGACUGA		[965-983] 3'UTR
299	UCAGCAUGAAAGCCUUCAG	CUGAAGGCUUUCAUCGUGA		[179-197] 5'UTR+ORF
300	UCAAAUGACAGCAAAGCAC	GUGCUUUJUGCUGUAAUUGA	Chn	[559-577] ORF
301	UACAUUJUGGACCUUCAGCA	UCUGCAGGUCCAAAGAUUA	Ms	[394-412] ORF
302	GGUCAGCAUGAAAGCCUUC	GAAGGCUUUCAUCGUGACC		[177-195] 5'UTR+ORF
303	ACGUCAUCGACUACAUUU	AAGAUGUAGUGGAUGACGU		[383-401] ORF
304	CUUUUJUUCAGAGGACCG	CUGGUCCUCUGAAAUAAG		[1243-1261] 3'UTR
305	AUAGUGGCAGAGAUGUCU	UAGACAUUCUCUGCCACAU		[1101-1119] 3'UTR
306	UUUGAGUGAACCUUJUGUGA	UCACAAGGUUUJACUAAA		[1058-1076] 3'UTR
307	CUUUUAAAUGCCUUCUG	CAGAAAGGGCAJUAAAAG		[812-830] 3'UTR
308	UGAUCAUCUUCCCAGGGUG	CACCCUGGGAAAGAUCA		[751-769] 3'UTR
309	AGGAAAACUAAGAUGAUC	GAUCAUUCUAGUUUUCU		[737-755] 3'UTR
310	ACUGAACCCAAUAAAUCAC	GUAUUUJUJUGGGUUCAGU	Ms	[1291-1309] 3'UTR
311	AUUCAGAGGACCUUCAGCA	AGCACUGGUCCUCUGAAAU		[1247-1265] 3'UTR
312	AGCGUGAAUACCAAGAGA	UCCUUCUGGUUAUCACGC		[938-956] 3'UTR
313	ACAAGGAAUUGCCAAUCU	AGAUUGGGCAAUUCUUGU		[890-908] 3'UTR
314	UUCACAAAGGAGGACAAGU	ACUUGUCCUCUUGUGAA		[684-702] 3'UTR
315	AUUUCACAAGGAGGACAAG	CUUGUCCUCUUGUGAAAU		[682-700] 3'UTR
316	UCAACCAUUUCACAAGGAG	CUCCUUGUGAAUJGGUUGA		[676-694] 3'UTR

317	AGCGGUGUUCAUGAUUUCU	AGAAAUCAGAACACCGCU		[592-610] 3'UTR
318	UGACAGCAAAGCACUGUG	ACACAGUGCUUUCUGUGCA		[564-582] ORF
319	CGUCAUCGACUACAUUUG	CAAGAUGUAGUGCAUGACG		[384-402] ORF
320	AAGUGUGUUUUAUUGAUGG	CCAUUCAAAACACACACUU		[1214-1232] 3'UTR
321	ACGACUGCUACUCCAAGCU	AGCUUUGGAGUAGCAGUGU	Rat,Ms,GP,Chn	[302-320] ORF
322	UGGUCAGAAAUAUCCUUUU	AAAAGGUAAUUCUGACCA		[988-1006] 3'UTR
323	ACCAGAAGGAUCCAGUAJJ	AAUACUGGAUCCUUCUGGU		[947-965] 3'UTR
324	CUGCUAUACAACAUAGC	CGUUCAUGUUGUUAJAGCAG		[286-304] ORF
325	GGAAUUGCCAAUCUAAGC	GCUUUAGAUUGGGCAUUC		[894-912] 3'UTR
326	CUUUCUGCAGUUGGAAGGU	ACCUUCCAACUGCAGAAAG		[824-842] 3'UTR
327	GUGUGGCUGAAUAAGCGGU	ACCGCUUUAUCAGCCACAC		[579-597] ORF+3'UTR
328	UCAGAGGACCAGUGCUUUG	CAAAGCACUGGUCCUCUGA		[1250-1268] 3'UTR
329	UUCAGAGGACCAGUGCUUU	AAAGCACUGGUCCUCUGAA		[1249-1267] 3'UTR
330	AUUGAAUUGGUGAUUGCUG	CAGGCAUACACAUUCAAU		[1224-1242] 3'UTR
331	AUGAUGUACUUAUUCUGC	GCAUGAAUAAGUACAUCAU		[1140-1158] 3'UTR
332	GCAGAGAUGCUUAUUCUG	CAGAAAUAGACAUUCUGC		[1107-1125] 3'UTR
333	UUGUUAUAGUGGCAGAGAU	CAUCUCUGCCACAUACAA		[1097-1115] 3'UTR
334	UUCAGUCACUAAAUGAAG	CUUCAUUUAAGUGACUGAA		[964-982] 3'UTR
335	GUAAUUCAGUCACUAAAUG	CAUAAAAGUGACUGAAUAC		[961-979] 3'UTR
336	UGAAUACCAGAAGGAUCCA	UGGAUCCUUCUGGUUAUCA		[942-960] 3'UTR
337	GCAGACUUUGCCUUUUUC	GAAAAAAAGGCAAAGUCUGC		[911-929] 3'UTR
338	CAUCUCCCCAGGGUGUUCU	AGAACACCCUGGGAAUGAUG		[755-773] 3'UTR
339	UUCACGGAALCUUUUAAGU	ACUUAAAAGAUUCGUGAA		[643-661] 3'UTR
340	UUCUGAAUUCCCUUCUGAG	CUCAGAAGGGAAUUCAGAA		[534-552] ORF
341	UGGACUCGCAUCCACUAU	AUAGUGGGAUUCGAGUCCA	Ms	[419-437] ORF
342	CUGCUACUCCAAGCUCAAG	CUUGACUUGGAGUAGCAG	Rat,Ms	[306-324] ORF
343	GAUUUGCCCAACUAAGCA	UGCUCUAGAUUGGCAUUC		[895-913] 3'UTR
344	UGCAGUUGGAAGGUUUUCU	AGAAAAACCUUCCACUGCA		[829-847] 3'UTR
345	UUUAAAUGCCUUUCUGCA	UGCAGAAAAGGCAUUUAAA		[814-832] 3'UTR
346	AUAAGCGGUGUUCAUAGAU	AAUCAUGAACACCGCUUUA		[589-607] 3'UTR
347	GUCAGCAUGAAAGCCUUCU	UGAAGGCUUUCUACUGCUGAC		[178-196] 5'UTR+ORF
348	GAGGUCCGUUAGAAAAAC	GUUUUCCUAAACGGACCU	Rat,Ms	[204-222] ORF
349	GCUAUGUUUAACUGAAC	GGUUCAGUUUAACAUAGC	Ms	[1280-1298] 3'UTR
350	UUCUGCAUUAAAAGUGUA	UACACUUUUGAAUGCAGAA		[1121-1139] 3'UTR
351	CAGAGAUGUCUAAUUCUGC	GCAGAAAAGACAUUCUG		[1108-1126] 3'UTR
352	UAUAGUGGCAGAGAUGUCU	AGACAUUCUGCCACUUA		[1100-1118] 3'UTR
353	UUUAUACAUUCCACCA	UGGUGGGAAUAGUAJAUAA	Ms	[848-866] 3'UTR
354	AAGAAUGAUCAUCUCCCA	UGGGAAGAUGAUCAUUUCU		[746-764] 3'UTR
355	AGUGCUGAACUUUUUC	GAAAAAAUAGUUCAGCACU		[659-677] 3'UTR
356	AUGUAAAUGACAGCAAAG	CUUUGCUGCAUUUGACAU		[556-574] ORF
357	GAUGUCUAUUCUGCAUUC	GAUGCGAGAAAAGACAU		[1112-1130] 3'UTR
358	UUUGACACAAGCCUACUGA	UCAGUAGGCUUUGUGUCAA		[1005-1023] 3'UTR
359	CUUAAAUGAGUCUUUUGG	CCAAAAGACUCAUUUAAG		[972-990] 3'UTR
360	GUCACUAAAUGAGUCUU	AAGACUCAUUUAAGUGAC		[968-986] 3'UTR
361	CAAUCUAGCAGACUUC	GCAAAGUCUGCCUAGAUJUG		[903-921] 3'UTR
362	CCAAUCUAGCAGACUUUG	CAAAGUCUGCUUAGAUUUG		[902-920] 3'UTR
363	AAAGCUAAAACACAAGG	CCUUGUGAUUUUACGUUU		[877-895] 3'UTR
364	AUAUACAUUCCCAUG	CAUGGUGGGAAUAGUAUAU	Ms	[850-868] 3'UTR
365	AUGAGCCUGCUUACAACA	UGUUGUAUAGCAGGCCUAU		[280-298] ORF
366	UGAAUAAGCGGUGUCAUG	CAUGAACACCGCUUAUUCA		[586-604] ORF+3'UTR
367	UGGCAGAGAUGCUUUC	GAAAAGACAUUCUGGCCA		[1105-1123] 3'UTR
368	GACACAAGCCUACUGAAUG	CAUUCAGUAGGCUUGUGUC		[1008-1026] 3'UTR
369	CAGUCACUAAAUGAAGUC	GACUUCAUUUAAGUGACUG		[966-984] 3'UTR
370	AAGCAGACUUUGCCUUUU	AAAAAGGCAAAGUCUGCUU		[909-927] 3'UTR
371	UGGCUGAAUAAGCGGUGU	AACACCGCUUAUUCAGCCA		[582-600] ORF+3'UTR
372	UCUGAAUUCCCUUCUGAG	ACUCAGAAGGGAAUUCAGA		[535-553] ORF
373	UCCUUGCAGGCUUUCUGAAU	AUCUAGAAGCCUGCAAGGA		[523-541] ORF
374	CGACUACAUUJUGGCAAC	CAGGUCCAAAGAUUGUGUC		[390-408] ORF
375	CAAGAUGGAAAUCUGCAG	CUGCAGGAUUCUCAUUG	Rat,Ms	[363-381] ORF
376	CAUAAAGCCUUACGUCCC	GGGGACUGAAGGCUUUC		[183-201] 5'UTR+ORF
377	CUAUGUUUAACUGAACCC	GGGUUCAGUUUAACAUAG	Ms	[1281-1299] 3'UTR
378	CUAUCUUCUGCAUAAAAG	CUUUGUAUGCAGAAAAG		[1117-1135] 3'UTR
379	UCACAAGGAAUUGCCAAU	AUUGGGCAUUCUUGUGA	Ms	[888-906] 3'UTR
380	GACUUUAAAUGCCUUUC	GAAAGGGCAUAAAAGUC		[810-828] 3'UTR
381	UUCAACCAUUUCACAAGGA	UCCUUGUGAAUUGGUUGAA		[675-693] 3'UTR
382	CAACAAUUCACGGAAUCU	AGAUUCGUGAAUUCUUGUG		[636-654] 3'UTR
383	CGUUAGGAAAACAGCCUG	CAGGCUGUUUUUCUACACG	Rat,Ms	[210-228] ORF

384	AGCAAAGCACUGUGGGCU	AGCCACACAGUGCUUJGCU		[568-586] ORF
385	GUCCGUUAGGAAAACAGC	GCUGUUUUUCUCAACGGAC	Rat,Ms	[207-225] ORF
386	CUACAUUCUUGGACCUGCG	CUGCAGGUCCAAGAUUGAG		[393-411] ORF
387	UAUGUUUAACUGAACCCA	UGGGUUCAGUUUAACAU	Ms	[1282-1300] 3'UTR
388	UUUCAGGAGCAGUGCUU	AAGCACUGGUCCUCUGAAA		[1248-1266] 3'UTR
389	CAAAAGUGUAUGAUJAC	GUACAUCAUUAACCUUJUG		[1130-1148] 3'UTR
390	GUGAACUCUUUAAAUGAG	CUCUAUUAAAAGAGUUCAC		[1073-1091] 3'UTR
391	GUGAACCUUGUGAACUCU	AGAGUUCACAAGGUUCAC		[1063-1081] 3'UTR
392	UUUGGUCAGAAAACCUCU	AAGGUAAAUCUGACCAAA		[986-1004] 3'UTR
393	UGCCUUUUUCAAGGUGG	CCACCUUUGAAAAAGGCA		[919-937] 3'UTR
394	AAGACUUUAAAUGCCUU	AAGGGCAUUAAAAGCUU		[808-826] 3'UTR
395	ACUUGGACUGUGAUUUCG	CGAAUACACAGUCCAAGU		[777-795] 3'UTR
396	AAAUGACAGCAAAGCACUG	CAGUGCUUUGCUGUCAUU		[561-579] ORF
397	UUUAAAUCAGAGGACCAGU	ACUGGUCCUCUGAAAUA		[1244-1262] 3'UTR
398	GUACUAAAUCAGCUAAC	GUUAGCAUGAAUAAGUAC		[1145-1163] 3'UTR
399	AAAGACUGCUACUCCAAGC	GCUGGUAGUAGCAGUCGUU	Rat,Ms,GP,Chn	[301-319] ORF
400	UUUUCAACCUUACACAA	CUUGUGAAAUGGUUGAAA		[673-691] 3'UTR
401	AUCUUUUAAGUGCUGAACU	AGUUCAGCACUAAAAGAU		[651-669] 3'UTR
402	UGAGUAAAUGUCAAAGAC	GUCAUUCACAUUAACUCA		[549-567] ORF
403	UCCCCUUCUGAGUUAUGU	ACAUUACUCAGAAGGGAA		[541-559] ORF
404	ACACGGAAUACAGCAUCU	AGGAUGCUGAUUAUCCGUGU		[503-521] ORF
405	CCCAUCCCACUUAUUGUCAG	CUGACAAUAGUGGGGAUGCG		[425-443] ORF
406	GAUGGAAAUCUCUGCAGCAC	GUGCUGCAGGAAUUCUCAUC	Rat,Ms	[366-384] ORF
407	CCAGAACAGAAGGUGAGC	GCUCACCUUCUUGUUCUGG	GP,Chn	[345-363] ORF
408	UAUUGAAUUGGUGAUJGCUU	AGGCAACUACCAUUCAU		[1223-1241] 3'UTR
409	AUUCUGCAUUCAAAAGUG	CACUUUUGAUGCAGAAA		[1119-1137] 3'UTR
410	AAUACAGAAGGAUCCAGU	ACUGGAUCCUUCUGGUAU		[944-962] 3'UTR
411	UGCCCCAACUAAAGCAGACU	AGUCUGCUUAGAUUGGCA		[899-917] 3'UTR
412	GGCUGAAUAGCGGGUUC	GAACACCGCUUACAGCC		[583-601] ORF+3'UTR
413	GUCAUCGACAUACUUGG	CCAAGAUGUAGUCGAUGAC		[385-403] ORF
414	CACGCAUCGACAUACU	AGAUGUAGUAGCAGUG		[382-400] ORF
415	AAUCCGCAGCACGUACU	GAUGACGUGCUGCAGGAUU	Rat,Ms	[372-390] ORF
416	AGUAAACCUUUGUGAACUC	GAGUUACAAAGGUUCACU		[1062-1080] 3'UTR
417	UAAGCAGACUUUCGCUUU	AAAAGGCAAAGUCUGCUUA	Ms	[908-926] 3'UTR
418	UUGGACUGUGAUUUCGUU	AACGAAUACACAGUCCAA		[779-797] 3'UTR
419	GCUGAACUUAUUUUCAAC	GUUGAAAAUAAGUUCAGC		[662-680] 3'UTR
420	ACCACCCUCAACACGGAU	UAUCCGUGUUGAGGGUGGU		[493-511] ORF
421	UGAAACCUUUGUGAACUU	AAGAGUUACAAAGGUUCA		[1064-1082] 3'UTR
422	AAGGAUCCAGUACUJAGUC	GACUGAAUACUGGAUCCU		[952-970] 3'UTR
423	AAAUCACAAGGAUUGCCC	GGGCAAUUCUUGUGAUU	Ms	[885-903] 3'UTR
424	CUUUUAAUCUUCUGACAAAC	GUUGUGCAAAGAUAAAAG		[609-627] 3'UTR
425	AAGCACUGUGGGUGGU	AUCAGCCACACAGUGCUU		[572-590] ORF+3'UTR
426	AUCCUGGUUUCUGCGCUU	AAGCCUGCAAGGAGCAGGAU		[517-535] ORF
427	CAACACGGAAUACAGCAUC	GAUGCUGAUUCCGUGUUG		[501-519] ORF
428	CAGCACGUCAUCGACUAC	UGUAGUGCAGUGACGUGCUG		[379-397] ORF
429	UGAAAGCCUUACGUCCGU	ACGGGACUGAAGGCUUCA		[185-203] ORF
430	UGAUGGCCUGCUUUUUAUC	AAAAAAAAGCAGGCAAUCA		[1233-1251] 3'UTR
431	UGCAUUCAAAAGUGUUAUG	CAAUACACUUUJUGAAUGCA		[1124-1142] 3'UTR
432	UACCAAGGAAGGAUCCAGUAU	AUACUGGAUCCUUCUGGU		[946-964] 3'UTR
433	UAAAUGCCCUUUCUGCAGU	ACUGCAGAAAGGGCAUUUA		[816-834] 3'UTR
434	CUAAGAAUGAUCAUCUUC	GGAAAGAUGUACAUUCUUA		[744-762] 3'UTR
435	GCAUCCCACUAAUUGUCAGC	GCUGACAAUAGUGGGAU		[426-444] ORF
436	AAGAAGGUGAGCAAGAUGG	CCAUCUUGCUCACCUU	GP,Chn	[352-370] ORF
437	AUUUGAGUGAAACCUUUG	CACAAGGUUUACACUAAA		[1057-1075] 3'UTR
438	ACACAAGCCUACUGAAUGC	GCAUUCAGUAGGGCUU		[1009-1027] 3'UTR
439	CUGCAGUUGGAAGGUUUC	AAAAACCUUCCACAGCAG		[828-846] 3'UTR
440	ACAGCAAAGCACUGUGGG	CCACACAGUGCUUJUGCUGU		[566-584] ORF
441	GACAGCAAAGCACUGUGUG	CACACAGUGCUUJUGCUGUC		[565-583] ORF
442	GGCUUCUGAAUUCUUCU	AGAAGGGAAUUCAGAAGCC		[531-549] ORF
443	UAUUGUCAGCCUGCAUCAC	GUGAUGCAGGGUGACAAUA		[435-453] ORF
444	AUCCCACAUUJUGUCAGCCU	AGGCUGACAAUAGUGGGAU		[428-446] ORF
445	UUUAUUGAAUJUGUGAUJG	GCAAUCACCAUJUAAA		[1221-1239] 3'UTR
446	AAGCCUACUGAAUJUGCUG	CACAGCAUUCAGUAGGCUU		[1013-1031] 3'UTR
447	UUUUGGUAGAAUJUUCU	AGGUAAUUCUGACCAAAA		[985-1003] 3'UTR
448	CCUUUUUCAAAAGGUUGGAG	CUCCACCUUUGAAAAAGG		[921-939] 3'UTR
449	ACUUUJGCCUUUUUCAAAAG	CUUUGAAAAAAGGCAAAGU		[915-933] 3'UTR
450	UCCCAGGGUGUUCUCUUC	GUAGAGAAACACCCUGGGA		[760-778] 3'UTR

451	UCAUCUUCCCAGGGUGUUC	GAACACCCUGGGAAGAUGA		[754-772] 3'UTR
452	AAAAAACAGCCUGUCGGAC	GUCCGACAGGCUGUUUUC	Rat,Ms,GP	[216-234] ORF
453	AUUCACGGAAUCUUUUAAG	CUUAAAAGAUUCCGUGAAU		[642-660] 3'UTR
454	UGUGGCUGAAUAAGCGGUG	CACCGCUUAAUCAGCCACA		[580-598] ORF+3'UTR
455	GUUAAGUCAAAUGACAGC	GCUGUCAUUUGACAUUAAC		[552-570] ORF
456	GAUUAUCAGCAUCCUGUCCU	AGGACAGGAUGCUGAUJAU		[508-526] ORF
457	AGUUUUUUCUUGUUAUGGGC	GCCACUAUACAAGAAAACU	Ms	[1090-1108] 3'UTR
458	AAAGACUUUAAAUGCCCU	AGGGCAUAAAAGUCUUU		[807-825] 3'UTR
459	UAAGAAUGAUCAUCUCC	GGGAAGAUGAUCAUUUUA		[745-763] 3'UTR
460	ACCAUUUCACAAGGAGGAC	GUCCUCUUGUGAAAUGGU		[679-697] 3'UTR
461	UGUGUGGCUGAAUAAGCGG	CCGCUUAAUCAGGCCACACA		[578-596] ORF+3'UTR
462	GGUGAGCAAGAUGGAAAUC	GAUUUCCAUUCUGCUCACC		[357-375] ORF
463	GUUUAIJUGAAUGGUGAUJUG	CAUACACCAUUCAAUAAAC		[1220-1238] 3'UTR
464	UGUUCUCUUAUUGGACUG	CAGUCCAAGUAAGAGAAC		[768-786] 3'UTR
465	GGAUAUUCAGCAUCCUGUCC	GGACAGGAUGCUGAUUACC		[507-525] ORF
466	ACUAUUGUCAGCCUGCAUC	GAUGCAGGCUGACAAUAGU		[433-451] ORF
467	UGCUAUGUUAUACUGAAC	GUUCAGUUAUACAAUAGCA	Ms	[1279-1297] 3'UTR
468	AGUGUGUUUUAUGGAUGGU	ACCAUUAUAAAACACACU		[1215-1233] 3'UTR
469	UUGCCUUUUUUCAAAGGUG	CACCUUJUGAAAAAGGCAA		[918-936] 3'UTR
470	CCUUUCUGCAGUUGGAAGG	CCUUCCAACUGCAGAAAGG		[823-841] 3'UTR
471	UUUCACAAGGAGGACAAGU	ACUUGUCUCCUJUGUGAAA		[683-701] 3'UTR
472	UUUCAACCAUUCACAAGG	CCUUGUGAAAUGGUUGAAA		[674-692] 3'UTR
473	AGGAAAAACAGCCUGUCGG	CCGACAGGCUGUUUUUCCU	Rat,Ms	[214-232] ORF
474	GACUACAUUCUUGGACCUGC	GCAGGUCCAAGAUGUAGUC		[391-409] ORF
475	UGCUUUAUUCAGAGGACC	GGUCCUCUGAAAUAAGCA		[1241-1259] 3'UTR
476	UAUCUAAUJUGAGUGAAACC	GGUUUCACUCAAUAGUA		[1052-1070] 3'UTR
477	ACCUUUUUGACACAAGCCU	AGGCUUUGUGCAAAAGGU		[1000-1018] 3'UTR
478	UUAACCUUUUUUGACACAAGC	GCUUGUGUCAAAAAGGUAA		[998-1016] 3'UTR
479	AAAAGUAAGCUCUUUJGGUC	GACCAAAAGACUUCAUUUA		[974-992] 3'UTR
480	AUCUAAGCAGACUJGGCCU	AGGCAAAGUCUGCUUAGAU		[905-923] 3'UTR
481	GUUCUCUUACUUGGACUGU	ACAGUCCAAGUAGAGAAC		[769-787] 3'UTR
482	AACAAUUCAGCGGAUCUU	AAGAUUCCGUGAAUJUGUU		[637-655] 3'UTR
483	UUUUUUCAGAGGACCAAGUG	CACUGGUCCUCUGAAAUA		[1245-1263] 3'UTR
484	UUCUGCAUUCAAAAGUGU	ACACUUUUGAUGCAGAAA		[1120-1138] 3'UTR
485	AGACUUUUAAAUGCCUUU	AAAGGGCAUAAAAGUCU		[809-827] 3'UTR
486	UUCUCUUACUUGGACUGUG	CACAGUCCAAGUAAGAGAA		[770-788] 3'UTR
487	UCUUCCCAGGGUGUUCU	AGAGAACACCCUGGGAAGA		[757-775] 3'UTR
488	AGAAUGAUCAUCUCCAG	CUGGGGAAGAUGAUCAUUC		[747-765] 3'UTR
489	AAUCUUUUAAUGCGUAAC	GUUCAGCACUAAAAGAUU		[650-668] 3'UTR
490	AUGGAAAUCUGCAGCAGC	CGUGCUGCAGGAUUCAU	Rat,Ms	[367-385] ORF
491	UUUUGACACAAAGCCUACU	AQUAGGCUUUGUGUCAAAA		[1003-1021] 3'UTR
492	UUGGUCAAGAAUUCUCCU	AAAGGUAAAUCUGACCCAA		[987-1005] 3'UTR
493	GAUUAACCGAGGAUCGAG	CUGGAUCUUCUGGUAUUC		[943-961] 3'UTR
494	UUGCACACAAACAACAA	UGUUGUUGUUGUGUGCAA		[619-637] 3'UTR
495	UUCJJUUCAGACACAAAC	GUUGUUGUUGUGCAAAGAA		[615-633] 3'UTR
496	UUAAGUCAAUGACAGCA	UGCUGUCAUUUGACAUUAA		[553-571] ORF
497	CACCCUCAACACGGUAUC	GAUAUCCGUGUUGAGGGUG		[495-513] ORF
498	CUACUCCAAGCUAAGGAG	CUCCUUGAGCUUJGGAGUAG		[309-327] ORF
499	UUUCUGCAGUUGGAAGGUU	AACCUUCCAACUGCAGAAA		[825-843] 3'UTR
500	UAGUUGUAACUUAACCU	AGGGUUAAGUUJACAUCA	Ms	[1178-1196] 3'UTR

Table A5 ID3 - inhibitor of DNA binding 3

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-156119620 ORF:406-765
1	GACUUUUUUGGUUUUCU	AAGAAAACCAAAAGAAGUC		[353-371] 5'UTR
2	GGGCCAUUUUGAAUAAAGA	UCUUUUUUCACAAUAGGCC	Chp	[261-279] 5'UTR
3	GGAGGAAGCCUGUUJGCAA	UUGCAACAGGCUCUCCUCC	Chp	[194-212] 5'UTR
4	GGACUUUUUGGUUUUCU	AGAAAACCAAAAGAAGUC		[352-370] 5'UTR
5	ACCAAAUUCUGGAAGUAAA	UUAACUCCAGAAUUCGU	Chp	[61-79] 5'UTR
6	GCAAAUUCUGGAAGUAAA	AUUUACUCCAGAAUUCGU	Chp	[62-80] 5'UTR
7	CCCACUUGACUUCACAAA	UUUGGUGAAGUCAAGUGGG	Chp	[882-900] 3'UTR
8	CUUUGGUUUUCUUCUCU	AGAGAAAAGAAACCAAAAG		[358-376] 5'UTR
9	GCUUGCGGGACAGCAUGA	UUCAUGUCGUCCAGCAAGC	Chp	[521-539] ORF
10	AAGCCUGUUUGCAUUAAA	UUAAAUGCAACACAGGCUU	Chp	[199-217] 5'UTR
11	GGAAAGUUAAGGUUUGAG	CUCAAAACCAUUAACUCC	Chp	[71-89] 5'UTR

12	GGAAAAGCAAAUCUGGA	UCCAGAAUUUGCUCUUUUCC	Chp	[65-73] 5'UTR
13	GAGGAAGCCUGUUGCAAU	AUUGCAAACAGGCUCCUC	Chp	[195-213] 5'UTR
14	CCCUGAUUUAGAACUCUA	UAGAGUUCAUAAAUCAGGG	Chp	[1136-1154] 3'UTR
15	AGGAGCGAAGGACUGUGAA	UUCACAGCUUCUGCUCCU	Chp	[930-948] 3'UTR
16	CGGAACUUGUCAUCUCAA	UUGGAGAUGACAAGUUCCG	Chp	[722-740] ORF
17	CGGGACUUCUUUGGUUUU	AAAACCAAAAGAAGUCCCG		[350-368] 5'UTR
18	GCGGGCCAUUUUGAAUAAA	UUUAUUCAAAAUGGCCCGC	Chp	[259-277] 5'UTR
19	CAGGGAAAGCUCAAAGAUCU	AGAUCUUUGAGCUUCCUG		[24-42] 5'UTR
20	GAAAAGCAAAUCUGGAA	UUCAGAAUUUGCUCUUUU	Chp	[56-74] 5'UTR
21	UGAGCUUGCUGGACGACAU	AUGUCGUCCAGCAAGCUCA	Chp	[518-536] ORF
22	GGCGGGCCAUUUUGAAUAA	UUAUUCAAAAUGGCCCGC	Chp	[258-276] 5'UTR
23	AAUUAAGCGGGCUGUGAA	UUCACAGCCCGCUUAAA	Chp	[211-229] 5'UTR
24	GCGGGACUUCUUUGGUUUU	AAACCAAAAGAAGUCCCGC		[349-367] 5'UTR
25	AGGUGACUUUCUGUAACAA	UUGUUACAGAAAGUCACC	Chp	[1192-1210] 3'UTR
26	GAAGCCUGUUUGCAAUAAA	UAAAUGCAACAGGCUUC	Chp	[198-216] 5'UTR
27	GGUGACUUUCUGUAACAAU	AUUGUUACAGAAAGUCACC	Chp	[1193-1211] 3'UTR
28	UGAACUUGUGGCCUGAAGA	UCUUCAGGCCACAAGUUC	Chp	[945-963] 3'UTR
29	CUGUGAACUUGUGGCCUGA	UCAGGCCACAAGUUCACAG	Chp	[942-960] 3'UTR
30	CCAGGAAAAGCAAAUJCU	AGAAUUUGCUUUUCCUGG	Chp	[52-70] 5'UTR
31	CUUCCAGGCAGGCUCUAUA	UAUAGAGCCUGCCUGGA		[287-305] 5'UTR
32	CUUCUUUGGUUUUCUUC	GAAAGAAAACCAAAAGAAG		[355-373] 5'UTR
33	AGUAAAUGGUUUUGAGUGA	UCACUAAAACCAUUAACU	Chp	[74-92] 5'UTR
34	AGCGGGACUUCUUUGGUU	AACCAAAAGAAGUCCCGC		[348-366] 5'UTR
35	GCLGCCAGGAAAAGCAAA	UUUGCUUUUUCUGGCCAGC	Chp	[48-66] 5'UTR
36	CCAAAUCCCUUCUGGAGA	UCUCCAGGAAGGGAUUJGG		[896-914] 3'UTR
37	GCCAGGUGGAAAUCUACA	UGUAGGAUUUCCACCUUGGC	Chp	[599-617] ORF
38	CAAUUAAGCGGGCUGUGA	UCACAGCCCGCUUAAAUG	Chp	[210-228] 5'UTR
39	GAGGCGGGCCAUUUUGAAU	AUUCAAAUGGCCCGCUC	Chp	[256-274] 5'UTR
40	CUGUAACAAUCUGGAUGUA	AUACAUUCGAUUGUACAG	Chp	[1202-1220] 3'UTR
41	CUGUUGCCUGAUUUAUGA	UCAUAAAUCAGGGCAACAG	Chp	[1130-1148] 3'UTR
42	AGCUUAGCCAGGUGGAAAU	AUJUCCACCUUGGCUAAGCU	Rat,Ms,GP,Chn ,Chp	[593-611] ORF
43	GCGCUUCCUCAUUCUUUGA	UCAAAAGAAUGAGGAAGCGC	Chp	[139-157] 5'UTR
44	CGAUUUUAAAACACUUGUG	CACAAGUGUUAAAAAACG	Chp	[1260-1278] 3'UTR
45	GUUCUGUUGCCUGAUAAA	UAAAUCAGGGCAACAGAAC	Chp	[1127-1145] 3'UTR
46	GGUUCUGUUGCCUGAUUU	AAAUCAGGGCAACAGAAC	Chp	[1126-1144] 3'UTR
47	UCUCCCCGUUUUCUUCUC	GAGAAAGAAAACCAAAAGA		[357-375] 5'UTR
48	CUUUUUUACAGGAAGGUGA	UCACCUUCCUGUAAAAAG	Ms,Chp	[1179-1197] 3'UTR
49	GCCCCACUUGACUUCACAA	UUGGUGAAGUCAAGUGGGC	Chp	[881-899] 3'UTR
50	ACGACAUGAACACUGCUA	UAGCAGUGGUUCAUGUGGU	Rat,Ms,GP,Chn ,Chp	[530-548] ORF
51	CCAGGCAGGCUCUAUAAGU	ACUUUAAGAGCCUGCCUGG		[290-308] 5'UTR
52	CGGGCCAUUUUGAAUAAAAG	CUUUUUCAAAAUGGCCCG	Chp	[260-278] 5'UTR
53	GGUAUCAGCGCUUCCUCAU	AUGAGGAAGCGCUGAUACC		[132-150] 5'UTR
54	AGGCAGGCUCUAUAAGUGA	UCACUUUAAGAGCCUGCCU		[292-310] 5'UTR
55	CUUUGGAGAAAGGUUCUGUU	AACAGAACCUUUCUCCAAAG	Chp	[1116-1134] 3'UTR
56	CGACAUAGAACACUGCUAC	GUAGCAGUGGUUCAUGUCG	Rat,Ms,GP,Chn ,Chp	[531-549] ORF
57	UCUGGAAGUUUAUGGUUUU	AAAACCAUUAACUCCAGA	Chp	[68-86] 5'UTR
58	CCUGGAGACUAAACCUGGU	ACCAGGUUUAGUCUCCAGG		[907-925] 3'UTR
59	GGCCAUUUGAAUAAAAGAG	CUCUUUAUCAAAAUGGCC	Chp	[262-280] 5'UTR
60	CUUUCUGUAACAAUCUGGAU	AUCGCAUUGUUACAGAAAG	Chp	[1198-1216] 3'UTR
61	GAAGUAAAUGGUUUUUGAGU	ACUCAAAACCAUUAACUUC	Chp	[72-90] 5'UTR
62	GCUCUCCAAACUAUGCCAA	UUGGCAUAGUUUUGGAGAGC	Chp	[1068-1086] 3'UTR
63	UGUCAUCCAAACGACAA	UUUGUCGUUGGAGAUGACA	Chp	[729-747] ORF
64	UAGCCAGGUGGAAUCCUA	UAGGAUUCACCUGGCCUA	Chp	[597-615] ORF
65	CUGCCAGGAAAAGCAAAU	AUUGGUUUUUCUGGCCAG	Chp	[49-67] 5'UTR
66	CACUGUAGCGGGACUUCUU	AAGAAGUCCCGCUACAGUG		[342-360] 5'UTR
67	GGCAGGGAAGCUCAAGAU	AUCUUUGAGCUUCCUGCC		[22-40] 5'UTR
68	UGUGAACUUGUGGCCUGAA	UUCAGGCCACAAGUUCACA	Chp	[943-961] 3'UTR
69	UGUCCUGACCUCCAGAA	UUCUGGAGGUGUCAGGACA		[774-792] 3'UTR
70	UUGUCAUCUCAACGACAA	UUGUCGUUGGAGAUGACAA	Chp	[728-746] ORF
71	CAGGAAAAGCAAAUCUG	CAGAAUUCGUUUUUCUG	Chp	[53-71] 5'UTR
72	GGGACUUCUUUGGUUUUC	GAAAACCAAAAGAAGUCC		[351-369] 5'UTR

			Rat,Ms,Chp	[1188-1206] 3'UTR
73	AGGAAGGUGACUUUCUGUA	UACAGAAAGUCACCUUCCU		
74	GGCUGCUCUCCAAACUAUG	CAUAGUUUUGGAGAGCAGCC	Chp	[1064-1082] 3'UTR
75	CUUGCUGGACGACAUGAAC	GUUCAUGUCGUCCAGCAAG	Chp	[522-540] ORF
76	UGCUGCCAGGAAAAAGCAA	UUGCUUUUUCCUGGCAGCA		[47-65] 5'UTR
77	GUUCUAAGGUCUUCAGA	UCUGAAGAGACCUUAGAAC		[1024-1042] 3'UTR
78	CAGCGCUCCUCAUUCUUU	AAAGAAUGAGGAAGCGCUG	Chp	[137-155] 5'UTR
79	GACUAAACCUUGGUGUCAG	CUGAGCACCAGGUUAGUC		[913-931] 3'UTR
80	GGAGCUUUUGCCACUGACU	AGUCAGUGGAAAGCUC	Chp	[749-767] ORF+3'UTR
81	UUCAGGGCAGGUCUUAUA	UUUAAGAGCCUGCCUGGAA		[288-306] 5'UTR
82	UGUACCUUUUUUACAGGAA	UUCUGUAAAAAAGGUACA	Ms,Chp	[1174-1192] 3'UTR
83	GUGGCUGCUCUCCAAACUA	UAGUUUUGGAGAGCAGCCAC	Chp	[1062-1080] 3'UTR
84	CACCAAAUCCCUUCCUGGA	UCCAGGAAGGGAUUUGGUG		[894-912] 3'UTR
85	CCGGAACUUGUCAUCUCCA	UGGAGAUGACAAGUUCGG	Chp	[721-739] ORF
86	GCGUCAUCGACUACAUUCU	AGAAUGUAGUCGAUGACGC	Chp	[620-638] ORF
87	AGCGCGUCAUCGACUACAU	AUGUAGUCGAUGACGCGCU	GP,Chn ,Chp	[617-635] ORF
88	UCAGCUUAGCCAGGUGGAA	UUCACCUGGCCUAGCUGA	Rat,Ms,GP,Chp	[591-609] ORF
89	CAGGCAGGCUCUUAAGUG	CACUUAUAGAGCCUGCCUG		[291-309] 5'UTR
90	GUCUUCUGGUCLCCUUGGA	UCCAAGGAGACCAGAAC	Chp	[1103-1121] 3'UTR
91	CCAAGUUUCUAAGGUCUCUU	AAGAGACCUJAGAACUUGG		[1020-1038] 3'UTR
92	AGCGAAGGACUGUGAACUU	AAGUUACAGCUUCUUCGU	Chp	[933-951] 3'UTR
93	AUCCCUUCCUGGAGACUAA	UUAGUCUCCAGGAAGGGAU		[900-918] 3'UTR
94	CUGUAGCGGGACUUCCCCU	AAAAGAAGUCCCGUACAG		[344-362] 5'UTR
95	ACUGUAGCGGGACUUCCCCU	AAAAGAAGUCCCGUACAGU		[343-361] 5'UTR
96	GAGUUAUAGGUUUUUGUAC	GUACAAAACCUCUUAUACUC	Chp	[1160-1178] 3'UTR
97	CUCACUCCGGAACUUGUCA	UGACAAGUUCCGGAGUGAG		[715-733] ORF
98	ACUACAUUCUGGACUGCA	UGCAGGUCGAGAAUGUAGU	Chp	[629-647] ORF
99	GGAGACUAAACCUUGGUGCU	AGCACCCAGGUUAGUCUCC		[910-928] 3'UTR
100	AGCGCUUCCUCAUUCUUUG	CAAAGAAUGAGGAAGCGCU	Chp	[138-156] 5'UTR
101	UCUGGUCUCCUUGGAGAAA	UUUCUCCAAGGAGACCAGA	Chp	[1107-1125] 3'UTR
102	CAACGACAAAAGGAGCUUU	AAAGCUCCUUUUGUCGUUG	Chp	[738-756] ORF
103	GGCAGGCUCUUAAGUGAC	GUCACUUAUAGAGCCUGCC		[293-311] 5'UTR
104	GCUUCCUCAUUUUUGUAAU	AUUCUAAAGAAUAGAGGAAGC	Chp	[141-159] 5'UTR
105	GUACCUUUUUUACAGGAAG	CUUCCUGUAAAAAAGGUAC	Ms,Chp	[1175-1193] 3'UTR
106	UGUUGCCUGAUUUUAGUA	UUCAUAAAUCAGGGCAACA	Chp	[1131-1149] 3'UTR
107	CUUCUGGUCUCCUUGGAGA	UCUCCAAGGAGACCAGAAC	Chp	[1105-1123] 3'UTR
108	AACCAAAUUCUGGAAGUUA	UAACUCCAGAAUUUGCUU	Chp	[60-78] 5'UTR
109	GAAUCCUACAGCGCGUCA	UGACCGCGCUGUAGGAUUL	Chp	[607-625] ORF
110	GACAUGAACACUGCUACU	AGUAGCAGUGGUUCAUGUC	Rat,Ms,GP,Chn ,Chp	[532-550] ORF
111	GGUUUUCUUUCUUCUUGGG	CCCAAAGAGAAAGAAAACC		[363-381] 5'UTR
112	CAGGAAGGUGACUUCUGU	ACAGAAAGUCACCUUCCUG	Rat,Ms,Chp	[1187-1205] 3'UTR
113	GUUAUUGGUUJUGAGUGAU	AUCACUAAAACCACUUAAC	Chp	[75-93] 5'UTR
114	GUGAACUUGGGCCUGAAG	CUUCAGGCCACAAGUUCAC	Chp	[944-962] 3'UTR
115	AGGCGGGCCAUUUUGAAUA	UAUUCAAAUUGGCCGCCU	Chp	[257-275] 5'UTR
116	GUGCUGCCAGGAAAAAGCA	UGCUUUUCCUGGCAGCAC		[46-64] 5'UTR
117	AAUJUCAAGGUUCUJUCA	UGAAGAGACCUUAGAACUU		[1022-1040] 3'UTR
118	CGACUACAUUCUGGACUG	CAGGUCCAGAAUGUAGUCG	Chp	[627-645] ORF
119	GAGCGAAGGACUGUGAACU	AGUUCACAGUCCUUCGCLC	Chp	[932-950] 3'UTR
120	CUUGUCAUCUCCACGACA	UGUCGUUGGAGAUGACAAAG	Chp	[727-745] ORF
121	GAAUAAAGAGGGUGCCUU	AAGGCACGCCUCUUUAUUC	Chp	[271-289] 5'UTR
122	AGGGAAGCUAAAGAUUCG	CAGAUUUUUGAGCUUCCU		[25-43] 5'UTR
123	GGAACUUGUCAUCUCCAAAC	GUUGGAGAUGACAAGUUC	Chp	[723-741] ORF
124	AAAAGCAAAUUCUGGAAGU	ACUUCCAGAAUUUGCUUUU	Chp	[58-76] 5'UTR
125	UGGUUUUCUUUCUUCUJUG	CCAAAGAGAAAGAAAAACCA		[362-380] 5'UTR
126	AAUCUGUCAUCUCCACGA	UCGUUGGAGAUGACAAGUU	Chp	[725-743] ORF
127	AGCUCACUCCGGACUUGU	ACAAGUUCGGAGUGAGCU	Rat,Ms	[713-731] ORF
128	CAUUCUGGACCUUCGAGUA	UACCUGCAGGUCGAGAAC	Chp	[633-651] ORF
129	UAGCGGGACUUCUUUJUG	ACCAAAAGAGACCCGCUA		[347-365] 5'UTR
130	UGGUCCUUCUUGGAGAAAGG	CCUUUCUCCAAGGGAGACCA	Chp	[1109-1127] 3'UTR
131	UUCUGGUCCUUCUUGGAGAA	UUCUCCAAGGGAGACCAGAA	Chp	[1106-1124] 3'UTR
132	AGUGGCUGCUCUCCAAACU	AGUUUGGAGAGCAGCCACU	Chp	[1061-1079] 3'UTR
133	AAUUCUGGAAGUUAUGGU	ACCAUUAACUCCAGAAUJU	Chp	[65-83] 5'UTR

134	ACAAAAGGAGCUUUUGCCA	UGGCAAAAGCUCCUUUJGU	Chp	[743-761] ORF
135	UGCUGGACGACAUGAACCA	UGGUUCAUGUCGUCCAGCA	Chp	[524-542] ORF
136	UAAAAGGGCGUGCCUUC	UGGAAGGCACGCCUCUUUA		[274-292] 5'UTR
137	AUUUAAGCGGGCUGUGAAC	GUUCACAGCCGCUUAAA	Chp	[212-230] 5'UTR
138	CGCUUCCUCAUUCUUUGAA	UUCAAAGAAUGAGGAAGCG	Chp	[140-158] 5'UTR
139	GGAAGCUAAAGAUCUGGG	CCCAGAUCUUUGAGCUCC	Chp	[27-45] 5'UTR
140	GUACAGCGCUUCCUCAUU	AAUGAGGAAGCGCUGAUAC	Chp	[133-151] 5'UTR
141	ACACUUUGGUUAUGAUGA	UCAUCAUAUACACAAGGU		[1270-1288] 3'UTR
142	ACUUUCUGUAACAAUGC	UCGCAUJGUUACAGAAAGU	Chp	[1197-1215] 3'UTR
143	CCAACGACAAAAGGAGCU	AAGCUCCUUUUGUCGUJGG	Chp	[737-755] ORF
144	UCAUCGACUACAUUCUCGA	UCGAGAAUGUAGUCGAUGA	Chp	[623-641] ORF
145	UGGAAAACCUACAGCGC	ACGCGCUGUAGGAUUC	Chp	[605-623] ORF
146	AGCUUGCGGGACGACAUGA	UCAUGUCGUCCAGCAAGCU	Chp	[520-538] ORF
147	CAUUUUGAAUAAAAGAGGCG	CGCCUCUUUAUCAAAUG	Chp	[265-283] 5'UTR
148	AAAGCAAAUUCUGGAAGUU	AAUCUCCAGAAUUGCUUU	Chp	[59-77] 5'UTR
149	UUUACAGGAAGGUGACUU	AAAGUCACCUUCCUGUAAA	Rat,Ms,Chp	[1183-1201] 3'UTR
150	GGUUUUGUACCUUUUUAC	GUAAAAAAGGUACAAAACC	Chp	[1169-1187] 3'UTR
151	AGGUUCUGUUGCCCUGAU	AAUCAGGGCACAGAACCU	Chp	[1125-1143] 3'UTR
152	UGGAAGUUAUAGGUUUUGA	UCAAAACCAUUAACUUC	Chp	[70-88] 5'UTR
153	UCCCUUCCUGGAGACUAA	UUUAGUCUCCAGGAAGGG		[901-919] 3'UTR
154	AGGUGGAAUACCUACAGCG	CGCUGUAGGAUUUC	Chp	[602-620] ORF
155	AGGAAAAAGCAAAUUCUGG	CCAGAAUJUGCUUUUCCU	Chp	[54-72] 5'UTR
156	GCAAUUUAAGCGGGCUGUG	CACAGCCGCUAAAUGC	Chp	[209-227] 5'UTR
157	GGAAGCCUGUUJGCAAUU	AAAUGCAACAGGCUUCC	Chp	[197-215] 5'UTR
158	CUCCUUGGAGAAAGGUUC	AGAACCUUUCUCCAAGGAG	Chp	[1113-1131] 3'UTR
159	AGGAAGCCUGUUJGCAUU	AAUUGCAACAGGCUUCCU	Chp	[196-214] 5'UTR
160	UUCUGUUGCCCUGAUUU	AUAAAUCAGGCAACAGAA	Chp	[1128-1146] 3'UTR
161	AGAGCUGGUUCUUCUGGU	AGACCAGAACGACAGCUC	Chp	[1096-1114] 3'UTR
162	UUCUGGAAGUUAUGGUUU	AAACCAUUAACUUC	Chp	[67-85] 5'UTR
163	AAAUCCUACAGCGCUAU	AUGACGCGCUGUAGGAUU	Chp	[608-626] ORF
164	UAAAUCCUUGCUGGCGGA	UCCGCCAGCAAGGAAUUA	Chp	[96-114] 5'UTR
165	GAAAGGUUCUGUUGCCCUG	CAGGGCAACAGAACCUU	Chp	[1122-1140] 3'UTR
166	UAAGGUUCUUCAGAGCG	ACGCUCUGAACGAGACCU		[1028-1046] 3'UTR
167	AAAGCACAAAGGAGCUUU	AAAAGCUCCUUUUGUCGU	Chp	[739-757] ORF
168	GUCAUCUCCAACGACAAA	UUUUGUCGUUGGAGAUGAC	Chp	[730-748] ORF
169	CCAGGUGGAAUACCUACAG	CUGUAGGAUUUC	Chp	[600-618] ORF
170	CCAUUUGUAAUAGAGGC	GCCUCUUUAAUCAAAU	Chp	[264-282] 5'UTR
171	UCAGCGCUUCCUCAUUCU	AAGAAUGAGGAAGCGCUGA	Chp	[136-154] 5'UTR
172	GGAGAAAGGUUCGUUGGC	GGCACAGAACCUUUC	Chp	[1119-1137] 3'UTR
173	UGCCCACUUGACUUCACCA	UGGUGAAGUCAAGGGCA	Chp	[880-898] 3'UTR
174	CUACAUUCUCGACCUCG	CUGCAGGUCCAGAACUGA	Chp	[630-648] ORF
175	GCAGGGAAAGCUAAAGAU	GAUCUUGAGCUUCC		[23-41] 5'UTR
176	AAAUCCUUGCUGGCGAGA	UCUCGCCAGCAAGGAAU	Chp	[98-116] 5'UTR
177	GUAAUAGGUUUUGUACCU	AGGUACAAACCUUAUAC	Chp	[1162-1180] 3'UTR
178	AAGGUUCUGUUGCCCUGAU	AUCAGGGCAACAGAACCU	Chp	[1124-1142] 3'UTR
179	GACUGUGAACUUGUGGCC	AGGCCACAAGUUCAGUC	Chp	[940-958] 3'UTR
180	UUGACUUCACCAAUCCU	AGGGAUUUGGUGAAGUCA		[887-905] 3'UTR
181	GGUCUCCUUGGAGAAAGGU	ACCUUUCUCCAAGGAGACC	Chp	[1110-1128] 3'UTR
182	UGGUCUUCUGGUUCUUC	CAAGGAGACCAAGAACCA	Chp	[1101-1119] 3'UTR
183	UGCUCUCCAAACUAGCCA	UGGCAUAGUUUGGAGAGCA	Chp	[1067-1085] 3'UTR
184	UAAACCUGGUUCAGGAG	CUCCUGAGCACCAAGGUU		[916-934] 3'UTR
185	CUUCCUGGAGACUAAACC	AGGUUAGUUC		[904-922] 3'UTR
186	UCACUCCGAAUCUJGUCAU	AUGACAAGUUCGGAGUGA		[716-734] ORF
187	UUGGUUUUCUUUCUUG	CAAAGAGAAAGAAAACAA		[361-379] 5'UTR
188	GCCUGUUUGCAUUAAGC	GCUUAAAUGCAACAGGC	Chp	[201-219] 5'UTR
189	GACUUUCUGUACAAUGC	CGCAUUGUACAGAAAGUC	Chp	[1196-1214] 3'UTR
190	AAAGGUUCUGUJGCCCUGA	UCAGGGCAACAGAACCUU	Chp	[1123-1141] 3'UTR
191	CAAGUUCUAGGUUCUUC	GAAGAGACCUUAGAACU		[1021-1039] 3'UTR
192	AGACUAAACCUGGUUCU	UGAGCACCAAGGUUAGUC		[912-930] 3'UTR
193	UGACUUCACCAAUCCU	AAGGGAUUUGGUGAAGUCA		[888-906] 3'UTR
194	AGGAGCUUUJGCCACUGAC	GUCAGUGCCAAAGCUCCU	Ms,Chp	[748-766] ORF+3'UTR

195	AAGGAGCUUUUGCCACUGA	UCAGUGGCAAAAGCUCCUU	Chp	[747-765] ORF
196	CGACAAAAGGAGCUUUUGC	GCAAAAGCUCCUUUUGUGC	Chp	[741-759] ORF
197	UACAGGAAGGUGACUUUCU	AGAAAGUCACCUUCCUGUA	Rat,Ms,Chp	[1185-1203] 3'UTR
198	AGUUCUAAGGUCUUCUAG	CUGAAGAGACCUUAGAACU		[1023-1041] 3'UTR
199	CUCCGGAACUUGUCAUCUC	GAGAUGACAAGUUCGGAG	Chp	[719-737] ORF
200	GAGCACAUGAACACUGCU	AGCAGUGGUCAUGUCGUC	Rat,Ms,GP,Chn ,Chp	[529-547] ORF
201	AAAAGGAGCUUUUGCCACU	AGUGGCAAAAGCUCCUUU	Chp	[745-763] ORF
202	AAUCCUACAGCGCGUCAUC	GAUGACGCGCUGUAGGAU	Chp	[609-627] ORF
203	AGCCGUUUUGCAUUUAAG	CUUAAUUGCAAACAGGC	Chp	[200-218] 5'UTR
204	AUCAGCGCUUCCUCAUUCU	AGAAUGAGGAAGCGCUGAU	Chp	[135-153] 5'UTR
205	UUUUUUACAGGAAGGUGAC	GUCACCUUCCGUAAAAAA	Rat,Ms,Chp	[1180-1198] 3'UTR
206	CCUUGGAGAAAGGUUCUGU	ACAGAACCUUUCUCCAAGG	Chp	[1115-1133] 3'UTR
207	GCUGCUCUCCAAACUAUGC	GCAUAGUUUUGGAGAGCAGC	Chp	[1065-1083] 3'UTR
208	GCCAUUUUGAAUAAAGAGG	CCUCUUUAUCAAAUAGGC	Chp	[263-281] 5'UTR
209	CUGGUCUCCUUGGAGAAAG	CUUUCUCCAAGGAGACCAG	Chp	[1108-1126] 3'UTR
210	CUAAACCUGGUGCUCAGGA	UCCUGAGCACCCAGGUUAG		[915-933] 3'UTR
211	CAAAUUCUGGAAGUUAUG	CAUUAACUUCAGAAUUG	Chp	[63-81] 5'UTR
212	UUCUCGACCUGCAGGUAGU	ACUACCUGCAGGUCGAGAA	Chp	[635-653] ORF
213	CAUCGACUACAUUCUCGAC	GUCGAGAAUGUAGUCGAUG	Chp	[624-642] ORF
214	GCUUAGCCAGGLGGAAUAC	GAUUUCCACCUGGCUAAGC	Rat,Ms,GP,Chn ,Chp	[594-612] ORF
215	UGGACGACAUGAACACUG	CAGUGGUUCALGUCGUCCA	Rat,Ms,GP,Chn ,Chp	[527-545] ORF
216	GAUUUUAAAUCUUCUGUG	CAGCAAGGAAUUAAAAAUC	Chp	[91-109] 5'UTR
217	GUCUCUUGGAGAAAGGUU	AACCUUUUCUCCAAGGAGAC	Chp	[1111-1129] 3'UTR
218	CUCUCCAAACUAUGCCAAG	CUUGGCAUAGUUUUGGAGAG	Chp	[1069-1087] 3'UTR
219	UCAUCUCCAACGACAAAG	CUUUGUCGUUGGAGAUGA	Chp	[731-749] ORF
220	CACUCGGAACUUCUGUACU	GAUGACAAGGUUCGGAGUG		[717-735] ORF
221	CGUCAUCGACUACAUUCUC	GAGAAUGUAGUCGAUGACG	Chp	[621-639] ORF
222	CCUCAUUCUUUGAAUCCGCG	GCGGAUUCAAAGAAUGAGG		[145-163] 5'UTR
223	AUCUCCAACGACAAAGGA	UCCUUUUGUCGUUGGAGAU	Chp	[733-751] ORF
224	CGCGUCAUCGACUACAUUC	GAAUGUAGUCGAUGACGCG	Chp	[619-637] ORF
225	GUAGCGGGACUUCUUUUGG	CCAAAAGAAGUCCCGCUAC		[346-364] 5'UTR
226	CUCAUUCUUUGAAUCCGCG	CGCGGAUUCAAAGAAUGAG		[146-164] 5'UTR
227	UCUGUUGCCUCUAAAUG	CAUAAAUCAGGGCAACAGA	Chp	[1129-1147] 3'UTR
228	CCCAAGUUCUAGGUCUCU	AGAGACCUUAGAACUUGGG		[1019-1037] 3'UTR
229	UCUCCAACGACAAAGGAG	CUCCUUUUGUCGUUGGAGA	Chp	[734-752] ORF
230	UGGAGAAAGGUUCUGUUGC	GCAACAGAACCUUUCUCCA	Chp	[1118-1136] 3'UTR
231	UGAAGAGGCCAGAGCUAGC	AGCUAGCUCUGGUCCUUA	Chp	[958-976] 3'UTR
232	UCCGACUACAUUCUCGACCU	AGGUUCGAGAAUGUAGUGA	Chp	[626-644] ORF
233	UUAGCCAGGUGGAAUCCU	AGGAUUUCCACCUGGCUAA	Rat,Ms,GP,Chn ,Chp	[596-614] ORF
234	AAUAAAGAGGCCUGCCUUC	GAAGGCACCCUCUUUAUU	Chp	[272-290] 5'UTR
235	UGAAUAAAAGAGGCCUGCCU	AGGCACGCCUCUUUAUCA	Chp	[270-288] 5'UTR
236	GGGAAGCUAAAGAUCUGG	CCAGAUUUUGAGCUUCCC	Chp	[26-44] 5'UTR
237	UGACUUUCUGUAACAAUGC	GCAUUGUUACAGAAAGUCA	Chp	[1195-1213] 3'UTR
238	ACUGUGAACUUGUUGGCCUG	CAGGCCACAAAGUUCACAGU	Chp	[941-959] 3'UTR
239	CUGGACGACAUGAACACAU	AGUGGUUCAGUCGUCCAG	GP,Chn ,Chp	[526-544] ORF
240	AUUCUGGAAGUUAUGGUU	AACCAUUACUUCAGAAU	Chp	[66-84] 5'UTR
241	CAAAUCCCUUCCUGGAGAC	GUCUCCAGGAAGGGAAUUG		[897-915] 3'UTR
242	CAAAAGGAGCUUUCUGCCAC	GUGGCAAAAGCUCCUUUUG	Chp	[744-762] ORF
243	CAGGUGGAAUCCUACAGC	GCUGUAGGAUUCACCGUG	Chp	[601-619] ORF
244	GUUUGCAUUAAAAGCGGGC	GCCCCGUUUAAAUGCAAAAC	Chp	[205-223] 5'UTR
245	AGCCAGGUGGAAUCCUAC	GUAGGAUUCACCGUGGU	Chp	[598-616] ORF
246	AAUCCCUUCCUGGAGACUA	UAGUCUCCAGGAAGGGAUU		[899-917] 3'UTR
247	UGUAGCGGGACUUCUJJUG	CAAAAGAAUCCCGUACAA		[345-363] 5'UTR
248	AGAAAGGUUCUGUUUCCCU	AGGGCAACAGAACCUUCU	Chp	[1121-1139] 3'UTR
249	UCUCCAAACUAUGCCAAGG	CCUUGGCAUAGUUUUGGAGA	Chp	[1070-1088] 3'UTR
250	AGGCACUGUGAACUUGUGC	GCCACACGUUCACAGUCCU	Chp	[938-956] 3'UTR
251	ACUUGUACUCCAACGAC	GUCGUUGGAGAUGACAAGU	Chp	[726-744] ORF
252	CAUUCUUUGAAUCCGCGGC	GCCCGCGGAUUCAAAGAAUG		[148-166] 5'UTR
253	UUGUACCUUUUUUACAGGA	UCCUGUAAAAAAGGUACAA	Ms,Chp	[1173-1191] 3'UTR
254	AAGUAAAUGGUUUUAGUG	CACUAAACCAUUAACUU	Chp	[73-91] 5'UTR
255	UCACAAAUCCCUUCUGG	CCAGGAAGGGAUUGGUGA		[893-911] 3'UTR

256	CAUCUCCAACGACAAAAGG	CCUUUUGUCGUUGGAGAUG	Chp	[732-750] ORF
257	ACAUUCUCGACCUGCAGGU	ACCUUCGAGGUUCGAGAAUGU	Chp	[632-650] ORF
258	UCACUGUAAGCGGGACUUUC	AGAAGUCCCGCUACAGUGA		[341-359] 5'UTR
259	UUUCUGUAACAAUGCGAUG	CAUCGCAUJGUUACAGAAA	Chp	[1199-1217] 3'UTR
260	UCULUCUGGUCCUUGGAG	CUCCAAGGAGACCAAGAAGA	Chp	[1104-1122] 3'UTR
261	ACUCCGGAACUUUGUCAUCU	AGAUGACAAGGUCCGGAGU		[718-736] ORF
262	GCCAGGAAAAGCAAAUC	GAUUUUGCUUUUUCUGGC	Chp	[51-69] 5'UTR
263	UUUUGAAUAAAAGAGGCGUG	CACGCCUCUUUAUUCAAAA	Chp	[267-285] 5'UTR
264	CUUCCUCAUUUCUUGAAUC	GAUUCAAAGAAGAGGAAAG	Chp	[142-160] 5'UTR
265	AACACUUGUGUAUAUGAUG	CAUCAUACACAAAGUGUU		[1269-1287] 3'UTR
266	UUUUUACAGGAAGGUGACU	AGUCACCUUCCUGUAAAAAA	Rat,Ms,Chp	[1181-1199] 3'UTR
267	CCUUUUUACAGGAAGGUG	CACCUUCUGUAAAAAAGG	Ms,Chp	[1178-1196] 3'UTR
268	GCCUGAUUUAUGAACUCU	AGAGUCAUAAAUCAGGGC	Chp	[1135-1153] 3'UTR
269	CUGGAGACUAAACCUGGUG	CACCAAGGUUAGUCUCCAG		[908-926] 3'UTR
270	CCUUCUCUGGAGACUAAACC	GGUUUAGUCUCCAGGAAGG		[903-921] 3'UTR
271	CUUCACCAAAUCCUUCUCC	AGGAAGGGAUUUGGUGAAG		[891-909] 3'UTR
272	ACGACAAAAGGAGCUUUUG	CAAAAGCUCUUUUGUCGU	Chp	[740-758] ORF
273	CUCCAACGACAAAAGGAGC	GCUCCUUUUGUCGUUGGAG	Chp	[735-753] ORF
274	CUGUUGCAUUUAAGCGG	CCGCUAAAUGCAAACAG	Chp	[203-221] 5'UTR
275	UACCUUUUUACAGGAAGG	CCUUCUGUAAAAAGGU	Ms,Chp	[1176-1194] 3'UTR
276	UUGGAGAAAAGGUUCUGUUG	CAACAGAACCUUCUCCAA	Chp	[1117-1135] 3'UTR
277	CUGGAAGGUUAUGGUUUUG	CAAAACCAUUAACUCCAG	Chp	[69-87] 5'UTR
278	CUAAGGUCUCUUCAGAGCG	CGCUCUGAAGAGACCUUAG		[1027-1045] 3'UTR
279	AAGAGCCAGAGCUAGCUCU	AGAGCUAGCUCUGGUCUU	Chp	[960-978] 3'UTR
280	AAGGACUGUGAACUUGGUG	CCACAAGUUCACAGGUCCU	Chp	[937-955] 3'UTR
281	UCCUGGAGACUAAAACCUGG	CCAGGUUAGUCUCCAGGA		[906-924] 3'UTR
282	AAAAAGCAAAUUCUGGAAG	CUUCCAGAAUUUGCUUUUU	Chp	[57-75] 5'UTR
283	ACAUGAACACUGCUACUC	GAGUAGCAGUGGUUCAUGU	Rat,Ms,GP,Chn ,Chp	[533-551] ORF
284	GCAGGCUCUUAAGUGACC	GGUCACUUUAAGAGCCUGC		[294-312] 5'UTR
285	AUUCUUGAAUCCGCGGU	AGCCCGGGAAUCAAAGAAU		[149-167] 5'UTR
286	GUGAUUUUAAAUCUUGC	GCAAGGAAUAAAACUAC	Chp	[89-107] 5'UTR
287	UGCCCGUGUUUAUGAACUC	GAGUUCUAAAUCAGGGCA	Chp	[1134-1152] 3'UTR
288	GACAAAAGGAGCUUUGGCC	GGCAAAGCUCUUUUGUC	Chp	[742-760] ORF
289	UGCCAGGAAAAGCAAAUU	AAUUUGCUUUUUCUGGCA	Chp	[50-68] 5'UTR
290	GAACUUGCUACUCCAACG	CGUUGGAGAUGACAAGUUC	Chp	[724-742] ORF
291	UGUUGCAUUUAAGCGGG	CCCGCUAAAUGCAAACA	Chp	[204-222] 5'UTR
292	UCUCCUUGGAGAAAGGUUC	GAACCUUUCUCCAGGAGA	Chp	[1112-1130] 3'UTR
293	AAAUCUGGAAGGUAAAUGG	CCAUAUACUCCAGAAUUU	Chp	[64-82] 5'UTR
294	ACCAAAUCCUUCUCCUGGAG	CUCCAGGAAGGGAUUUGGU		[895-913] 3'UTR
295	UGCAUUUAAGCGGGCUGU	ACAGCCCGCUAAAUGCA	Chp	[208-226] 5'UTR
296	UCAUUCUUUGAAUCCGCGG	CCGCGGAUCAAAGAAUGA		[147-165] 5'UTR
297	UUCUAGGUCUCUUCAGAG	CUCUGAAGAGACCUUAGAA		[1025-1043] 3'UTR
298	CCCUUCCUGGAGACUAAAC	GUUUAGUCUCCAGGAAGGG		[902-920] 3'UTR
299	UCCGGAACUUGCUACUCC	GGAGAUGACAAGUUCGGGA	Chp	[720-738] ORF
300	UJUGCAUJUUAAGCGGGCU	AGCCCGCUAAAUGCAA	Chp	[206-224] 5'UTR
301	GACUUUUGCCACUGACUC	GAGUCAGUGGCAAAAGCUC	Chp	[750-768] ORF+3'UTR
302	CAUGAACACUGCUACUCC	GGAGUAGCAGUGGUUCAUG	Chp	[534-552] ORF
303	CAGGCUCUUAAGUGACCG	CGGUACUUUAAGAGCCUG		[295-313] 5'UTR
304	CCGUUUGCAUAAAAGCG	CGCUAAAUGCAAACAGG	Chp	[202-220] 5'UTR
305	UUGCCUGAUUUUAUGAACU	AGUUCAAAUCAGGGCAA	Chp	[1133-1151] 3'UTR
306	GAGACUAAACCUUGGUGCUC	GAGCACCAGGUUUAGUCUC		[911-929] 3'UTR
307	UUCUGUAACAAUGCGAUGU	ACAUCGCAUJGUUACAGAA	Chp	[1200-1218] 3'UTR
308	AAGGUCUCUJUCAAGCGUG	CACGCUCUGAAGAGACCUU		[1029-1047] 3'UTR
309	AAAGGAGCUUUUGCCACUG	CAGUGGCAAAAGCUCUUU	Chp	[746-764] ORF
310	GACUACAUUCUCGACCUGC	GCAGGUCCAGAAUGUAGUC	Chp	[628-646] ORF
311	GAGAAAGGUUCUGUUGCCC	GGGCAACAGAACCUUUCUC	Chp	[1120-1138] 3'UTR
312	UUCACCAAAUCCUUCUCG	CAGGAAGGGAUUUGGUGAA		[892-910] 3'UTR
313	ACUUCACCAAAUCCUUC	GGAAAGGGAUUUGGUGAAGU		[890-908] 3'UTR
314	AUUUUAAAUCUUCUGCUGG	CCAGCAAGGAAUAAAUAU	Chp	[92-110] 5'UTR
315	CUUGACUUCACCAAAUCC	GGGAUUUGGUGAAGUCAAG		[886-904] 3'UTR
316	AUUUJGAAUAAAAGAGGC	ACGCCUCUJUUAUCAAAAU	Chp	[266-284] 5'UTR

317	UCCUCAUUUUUGAAUCCG	CGGAUUCAAAGAAUUGAGGA		[144-162] 5'UTR
318	UUACAGGAAGGUGACUUUC	GAAAGUCACCUUCCUGUAA	Rat,Ms,Chp	[1184-1202] 3'UTR
319	ACCUUUUUUACAGGAAGGU	ACCUUCCUGUAAAAAAGGU	Ms,Chp	[1177-1195] 3'UTR
320	UACAUUCUCGACCUGCAGG	CCUGCAGGUCGAGAAUGUA	Chp	[631-649] ORF
321	UUUUACAGGAAGGUGACUU	AAGUCACCUUCCUGUAAAA	Rat,Ms,Chp	[1182-1200] 3'UTR
322	AGUAAUAUAGGUUUUGUACC	GGUACAAAACCUAUUAUCU	Chp	[1161-1179] 3'UTR
323	UCCAAACUAUGCCAAGGCG	CGCCUUGGCAUAGUUUGGA	Chp	[1072-1090] 3'UTR
324	GACUUCACCAAAUCCCUUC	GAAGGGAUUUGGUGAAGUC		[889-907] 3'UTR
325	ACUUGACUUACACCAAAUCC	GGAUUUGGUGAAGGUCAAGU		[885-903] 3'UTR
326	GUUGCCCUGAUUUAGAAC	GUUCAUAAAUCAGGGCAAC	Chp	[1132-1150] 3'UTR
327	AGCUUUUUGCCACUGACUCG	CGAGUCAGUGGCAGAAAGCU	Chp	[751-769] ORF+3'UTR
328	UUGCUGGACGACAUGAAC	GGUUCAUGUCGUCCAGCAA	Chp	[523-541] ORF
329	UUUGAAUAAAAGAGGCCGUGC	GCACGCCUCUUUAUUCAAA	Chp	[268-286] 5'UTR
330	UCUAAGGUCUCUCAGAGC	GCUCUGAAGAGACCUUAGA		[1026-1044] 3'UTR
331	UUGCAAAUUAAGCGGGCUG	CAGCCCGUAAAUGCAA	Chp	[207-225] 5'UTR
332	GUCAUCGACUACAUUCUG	CGAGAAUGUAGUCGAUGAC	Chp	[622-640] ORF
333	CUGCUCUCAAACUAUGCC	GGCAUAGUUUGGAGAGCAG	Chp	[1066-1084] 3'UTR
334	ACUAAAACCUGGUCUCAGG	CCUGAGCACCAAGGUUAGU		[914-932] 3'UTR
335	UGGAGACUAAACCUGGUGC	GCACCAGGUUAGUCUCCA		[909-927] 3'UTR
336	AAAUCCCUUCUGGAGACU	AGUCUCCAGGAAGGGAUUU		[898-916] 3'UTR
337	UCCAACGACAAAAGGAGCU	AGCUCCUUUUGUCGUUGGA	Chp	[736-754] ORF
338	UAUCAGCGCUUCCUCAUUC	GAAUGAGGAAGCGCUGAUA	Chp	[134-152] 5'UTR
339	UUUUAAAUCUUCUGCUGGCG	CCGCCAGCAAGGAUUAAA	Chp	[95-113] 5'UTR
340	AUUCUCGACCUCGAGGUAG	CUACCUGCAGGUUCGAGAAU	Chp	[634-652] ORF
341	CUCCAAACUAUGCCAAGGC	GCCUUGGCAUAGUUUGGAG	Chp	[1071-1089] 3'UTR
342	UUUGUACCUUUUUUACAGG	CCUGUAAAAAAGGUACAAA	Ms,Chp	[1172-1190] 3'UTR
343	UCCUGGAGACUAAACCUG	CAGGUUAGUCUCCAGGAA		[905-923] 3'UTR
344	AUGAACCCACUGCUACUCC	GGGAGUAGCAGGUUCAU	Chp	[535-553] ORF
345	UUUUAAAUCUUCUGCUGGC	GCCAGCAAGGAUUAAA	Chp	[93-111] 5'UTR
346	AGGCUCUUAAGUGACCGC	GCGGUACUUAUAGAGCCU		[296-314] 5'UTR
347	AACUUGUGGCCUGAAGAGC	GCUCUUCAGGCCACAAGUU	Chp	[947-965] 3'UTR
348	UUUAAGCGGGCUGUGAACG	CGUUCACAGCCCGUAAA	Chp	[213-231] 5'UTR
349	UCCUUGGAGAAAGGUUCUG	CAGAACCUUUCUCCAAGGA	Chp	[1114-1132] 3'UTR
350	CUUAGCCAGGUGGAAUCC	GGAUUUCACCUUGGCUAAG	Rat,Ms,GP,Chn,Chp	[595-613] ORF
351	UUCUUUGAAUCCGGCUC	GAGCGCGGAUUCAGGAA		[150-168] 5'UTR
352	AAAUCUUCUGCUGGCGAG	CUCCGCCAGCAAGGAUUUA	Chp	[97-115] 5'UTR
353	UUUUAAAUCUUCUGCUGGC	CGCCAGCAAGGAUUAAA	Chp	[94-112] 5'UTR
354	AUAAAAGAGCGUGCCUUC	GGAAGGCACGCCUCUUUAU	Chp	[273-291] 5'UTR
355	UGAAUAAAAGAGGCCGUGCC	GGCACGCCUCUUUAUCAA	Chp	[269-287] 5'UTR
356	AUCGACUACAUUCUCGACC	GGUCGAGAAUGUAGUCGAU	Chp	[625-643] ORF
357	UUCUCUCAUUCUUUGAAUCC	GGAUUCAAAGAAUAGAGGA		[143-161] 5'UTR

Table A6 CDKN1B - cyclin-dependent kinase inhibitor 1B (p27, Kip1)

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-17978497 ORF:466-1062
1	AAACAAAAGGCCAACAGA	UCUGUUGGCUCUUUUGUUU		[954-972] ORF
2	CCGGGAGAAAGAUGUAAA	UUUGACAUUCUUCUCCCGG		[455-473] 5'UTR+ORF
3	CCAUAUUGGCCACUAAA	UUUUAGGGCCCAAUUUGG		[20-38] 5'UTR
4	CAAAACAAAAGGCCAACAA	UGUUGGCUCUUUUGUUUUG		[952-970] ORF
5	GGUGCUIUGGAGUUUUGAA	UUCAAAACUCCCAAGCACC		[1792-1810] 3'UTR
6	GGUGGACCACGAAGAGUUA	UAACUCUUCGUGGUCCACC		[570-588] ORF
7	AACAAAAGGCCAACAGAA	UUCUGUUGGCUCUUUUGUU		[955-973] ORF
8	GCAUGUGGCUUUUUUAAA	UUUUAAAAGGCCAACUGC		[1658-1676] 3'UTR
9	CCUGUUAAGCACUGAAAA	UUUUUAGUGCUUACAGG		[1181-1199] 3'UTR
10	CCAACAGAACAGAACAGAA	UUUUUUCUUCGUUCUGUUGG	Rat,Ms	[965-983] ORF
11	CGCAUUUGGGCCACUAAA	UUUUGGGUCCACCAAGUCG		[848-866] ORF
12	AAAUGAUCUGCCUCUAAA	UUUUAGAGGCCAGAUCAUJJ		[1237-1255] 3'UTR
13	CAUAUUGGCCACUAAA	UUUUUAGUGGCCACAUUAG		[21-39] 5'UTR
14	CGAUUUUCAGAAUCACAA	UUUGUGAUUCUGAAAAUCG		[651-669] ORF
15	CUGUAUAAGCACUGAAAA	UUUUUCAGUGCUUACAG		[1182-1200] 3'UTR

17	UGGGAGUUUUGAAUGUUAA	UUAACAUUCAAAACUCCCA		[1798-1816] 3'UTR
18	CAUUGCCUGUGAUGGAAA	UUUCCAUACACAGGCAAG		[2092-2110] 3'UTR
19	UCAAAACAAAAGAGCCAAC	GUUGGCUCUUUUGUUUUGA		[951-969] ORF
20	GUGUGAAAAGAUGCCAAU	AUUGGCAUCUUUUUACAC	Ms	[2341-2359] 3'UTR
21	CAUGUUUUGUGCAUUGUA	UACAAAUGCACAAAACAUG	Ms	[2224-2242] 3'UTR
22	AAGUGAAAUGGAUACUACA	UGUAGUAUCCAUUUACUU	Ms	[2057-2075] 3'UTR
23	CCCGGGAGAAAAGAUGUCAA	UUGACAUUUUCUCCCGGG		[454-472] 5'UTR+ORF
24	CAGAAGACGUCAACAGUAA	UUACGUUUGACGUUCUUC		[1044-1062] ORF
25	CUGUGAAAACACAGUAAA	UUUGACUGUGUUUACACAG		[1881-1899] 3'UTR
26	AGUUAUUACUCAGCAGAA	UUCUGCUGAGUAAAACU		[1736-1754] 3'UTR
27	CGUAAACAGCUCGAUUA	UUAAUUCGAGCUGUUUACG		[1058-1076] ORF+3'UTR
28	GCCAUUJGGGCCACUAAA	UUUAGUGGCCAAUAGGC		[19-37] 5'UTR
29	GUAGGAUAGUGAAAUGGA	UCCAUUUCACUUAUCCUAC		[2050-2068] 3'UTR
30	ACUUGUAGGUAAGUGAAA	UUUCACUUAUCCUACAAGU		[2046-2064] 3'UTR
31	CAAUGCGCAGGAAUAGGA	UCCUUUUUCCUGCGCAUG		[904-922] ORF
32	GGAAUUCGAAUUCAGAA	UUCUGAAAUCGAAAUUCC	GP,Chn	[644-662] ORF
33	CAUACUGAGCCAAGUAUA	UUUAUCUUGGCUCAGUAUG	Ms	[2311-2329] 3'UTR
34	UGCUGUGUUGGGUAGAAUA	UAUUCUACCCAACACAGCA		[2245-2263] 3'UTR
35	CUUGGAGAACGACUGCAGA	UCUGCAGUGGUUCUCCAAAG	GP,Chn	[597-615] ORF
36	CGAGGUGCUUGGGAGUUUU	AAAACUCCCAAGCACCUCG		[1789-1807] 3'UTR
37	CUGAAAACAACAACACAA	UUGUGUUUGUUUUUUCAG		[1193-1211] 3'UTR
38	CCUUGUUUAUCAGAUACAU	AUGUAUCUGAUAAAACAAGG	Chn	[1087-1105] 3'UTR
39	AUAAUUCUAAUUCUCUGA	UCGAGGGAUUUAGAAUUAU		[1900-1918] 3'UTR
40	CCUUUUUAGUAGCACAUAA	UUUAUGUGCUACAUAAAAGG		[1330-1348] 3'UTR
41	AGAAGACGUAAACGUAAA	UUUACGUUUGACGUUCU		[1045-1063] ORF+3'UTR
42	AGUGGAAUUCGAAUUCUCA	UGAAAAUCGAAAUUCCACU	GP,Chn	[641-659] ORF
43	GCCAAUUAUUGUUAACACAU	AUGUGUAACAAUAAUUGGC	Ms	[2354-2372] 3'UTR
44	GCUGCAUGUGGCCUUUUUUA	UAAAAAAGCCACAUAGCAGC		[1655-1673] 3'UTR
45	GUUAAGCACUGAAAAACA	UGUUUUUACAGUGCUUAUAC		[1184-1202] 3'UTR
46	AGACAAUUAACAAGCCAA	UUUGGCUUUGUAUAUJGUCU	Ms	[2201-2219] 3'UTR
47	CUCUGAAAAACACUGAAA	UUUCAGUGUUUUUACAGAG		[2140-2158] 3'UTR
48	AGAGAAAAGCACACUUGUA	UACAAGUGUGCUUUUCUCU		[2034-2052] 3'UTR
49	GGAGUAGCAUUAUGCAAU	AUUGCAUAAUGCUACAUCC		[1261-1279] 3'UTR
50	UCCUGUAUAGCACUGAAA	UUUCAGUGCUUUAUACAGGA	GP,Chn	[1180-1198] 3'UTR
51	GCGCAAGUGGAAUUCGAU	AUCGAAAUUCCACUUGCGC	GP,Chn	[636-654] ORF
52	CGCCAUUJGGGCCACUAA	UUAGUGGCCAAUAGGC		[18-36] 5'UTR
53	GGGAGUUUUGAAUGUUAAG	CUUACAUUCAAAACUCC		[1799-1817] 3'UTR
54	ACCGCAAGUGGAAUUCGA	UCGAAAUUCCACUUGCGC	Rat,Ms,GP,Chn	[635-653] ORF
55	UCAUGUAGAGAAAAGCACA	UGUGCUUUCUCUACUAGA		[2028-2046] 3'UTR
56	AAAUUUGAACACUGGUAA	UUAGCCAGUGUUCAAUUU		[1550-1568] 3'UTR
57	CGGUUUUUGUUUUUJGAGA	UCUCAAAAAACAAAACCG		[411-429] 5'UTR
58	GAGCCAACAGAACAGAAGA	UCUUCUGUUUCUGUUGGCUC		[962-980] ORF
59	AGGAUAGUGAAAUGGUA	UAUCCAUUUCACUUAUCCU		[2052-2070] 3'UTR
60	GGGUUGUAAUUGUUUUUU	AAGAAAACAAUCAACACC		[1475-1493] 3'UTR
61	GCUUCAUUGUACUACCUGU	ACAGGUAGUACAAUGAAGC	Rat,GP,Chn	[1297-1315] 3'UTR
62	GCAAUUAGGUUUUUCUUA	UAAGGAAAAACCUAAUUGC	Rat,GP,Chn	[1275-1293] 3'UTR
63	AGUGGCAAGAGGUGGAGAA	UUCUCCACCUUUCGCCACU		[689-707] ORF
64	GCAUACUGAGCCAAGUUA	UAUACUUGGCUCAGUAUGC	Ms	[2310-2328] 3'UTR
65	UAGACAAUUAACAAGCCAA	UUGGCUUUGUAUUUGUCU	Ms	[2200-2218] 3'UTR
66	UAUUGGCCACUAAAAAAA	UUUUUUAGUGGCCAAUA		[23-41] 5'UTR
67	AGUUUAAUCUCAUUGGGA	UCCCAAAUGAGAAUAAACU		[1596-1614] 3'UTR
68	CAUUGUACUACCUGUGUAU	AUACACAGGUAGUACAAUG	Rat,GP,Chn	[1301-1319] 3'UTR
69	CCUUAUJGGCUUCAUUGUA	UACAAUGAAGCAAUAAGG	Rat,GP,Chn	[1289-1307] 3'UTR
70	GCUCCCAGUCCAUUUGAU	AUCAAAUGGACUGGCGAGC		[234-252] 5'UTR
71	AGUGUACUUGGUACAUAA	UUAUGUACACAGGUACACU		[2121-2139] 3'UTR
72	CCCUCGAUJGGGCCACUAA	UCUUUAAAUAUUCGAGGG		[1912-1930] 3'UTR
73	UGACCAUCUGCUUUJUAUA	UAAAAGAACGAGAUGGUCA		[1821-1839] 3'UTR
74	AUAUUGGCCACUAAAAAA	UUUUUAGUGGCCAAUUAU		[22-40] 5'UTR
75	CUGUGUACAUACUCUGUA	UACAGAGUUAUGUACACAG		[2128-2146] 3'UTR
76	GAAUGUUAAGAAUJGACCA	UGGUCAUUCUUAACAUUC		[1808-1826] 3'UTR
77	AACACUGGCUAAAGAUAAU	AUUAUCUJJUAGCCAGUGU		[1557-1575] 3'UTR

78	GGUUUUUCCUUUUUGCUU	AAGCAAAUAAGGAAAACC	Rat,GP,Chn	[1282-1300] 3'UTR
79	GCACUGAAAAACAAACA	UGUUGUUGUUUUUCAGUGC		[1190-1208] 3'UTR
80	GGCCUCAGAACGUAAA	UUUGACGUUCUUCUGAGGCC		[1039-1057] ORF
81	ACAAAAGAGCAACAGAAC	GUUCUGUUGGCUCUUUUGU		[956-974] ORF
82	GGGUUAUGAAGAGCUUGC	AAGCAAGCUCUUCUACACC		[1398-1416] 3'UTR
83	AAGAGCCAACAGAACAGAA	UUCUGUUCUGUUGGCUCUU		[960-978] ORF
84	GCAUGUUUUGUGCAUUUGU	ACAAAUGCACAAACAU	Ms	[2223-2241] 3'UTR
85	CUCUGUCCAUUUACCAC	UGUGGAUAAAUGGACAGAG		[1983-2001] 3'UTR
86	AGAUCUGUAAGUACUUCA	UGAAGGUUACUUACAGAUCU		[1928-1946] 3'UTR
87	GGCUGUGUAAACACAGUCA	UGACUGUGUUUACACAGCC		[1879-1897] 3'UTR
88	GAUUCUUCUACUCAAAACA	UGUUUUGAGUAGAAGAAC		[940-958] ORF
89	ACUGCAGAGACAUGGAAGA	UCUUCCAUGUCUCUGCAGU	GP,Chn	[608-626] ORF
90	CAGUUAAUUCACUGCAGA	UCUGCUGAGUAAUUAACUG		[1735-1753] 3'UTR
91	AGAUGUAAUGUCCUUUCA	UGAAAGGGACAUUACACU		[1497-1515] 3'UTR
92	GAUGUAGCAUUAUGCAUU	AAUUGCAUAUGCUACACU		[1262-1280] 3'UTR
93	ACUGAAAACAACAAACACA	UGUGUUGUUGUUUUUCAGU		[1192-1210] 3'UTR
94	AAACGUAAAACAGCUCGAAU	AUUCGAGCUGUUUACGUUU		[1055-1073] ORF+3'UTR
95	ACGAUUCUUCUACUCAAA	UUUUGAGUAGAAGAACGU		[938-956] ORF
96	GCAACCGACGAJUCUUCUA	UAGAAGAAUCGUCGGUUGC		[931-949] ORF
97	AAUGCGCAGGAAUAGGAA	UUCCUUAAUCCUGCGCAUU		[905-923] ORF
98	UGCCAUAUUAUGUUACACA	UGUGUACAAUAAUJUGCA	Ms	[2353-2371] 3'UTR
99	GAUGCCAUAUUAUGUUACA	UGUAACAAUAAUJUGCAUC	Ms	[2351-2369] 3'UTR
100	AAGUGUACCUUGUACAU	UAUGUACACAGGUACACU		[2120-2138] 3'UTR
101	AUUCUAAAUCCCUCGAU	AUAUCGAGGGGUUUUAGAAU		[1903-1921] 3'UTR
102	GCUGUGUAAACACAGUCA	UUGACUGUGUUUACACAGC		[1880-1898] 3'UTR
103	CUGCAUGUGGUUUUUUUA	UUAAAAGGCCACAGCAG		[1656-1674] 3'UTR
104	GAGACAGCUGAUACUCAU	AUGAAGUACAGCUGUC		[1516-1534] 3'UTR
105	CAUCCUGUAAAGCACUGA	UCAGUGCUUUAACAGGAUG	Rat,Ms,GP,Chn	[1178-1196] 3'UTR
106	CAGAUACAUACUGCUUGA	UCAAGCAGUGAUGUACUG		[1097-1115] 3'UTR
107	GGGUCUGUGCUUUUJGGCU	AGCCAAAAGACACAGACC		[330-348] 5'UTR
108	CUAAAACAAAAGAGCCAA	UUGGCUCUUUJGUUUUJGAG		[950-968] ORF
109	AGCACUGCAGAGACAUGGA	UCCAUGUCUCUGCAGUGC	GP,Chn	[605-623] ORF
110	AAUAAUUCUAAAUCCCUG	CGAGGGGUUUJGUUUUJGU		[1899-1917] 3'UTR
111	CGGGCUGUGUAAACACAGU	ACUGUGUUUACACAGCCCG		[1877-1895] 3'UTR
112	UGGUGAUCCCCAACGUUA	AUAGCUUGGGAGAUCACCA		[1619-1637] 3'UTR
113	AGAUCUGGUGAUCCCCAA	UUGGGAGAUACCCAGACU		[1614-1632] 3'UTR
114	GAAGGGGUUGUAAUUGUUU	AAAACAAUUCAAACCCUUC		[1472-1490] 3'UTR
115	CGUUGGAUGUAGCAUUAUG	CAUAAUGCUACAUCCAACG		[1257-1275] 3'UTR
116	AAGCAAGGAAGAUUACAU	AUGUUAUCUUCUUCUGCUU	Ms,GP,Chn	[1118-1136] 3'UTR
117	UGGCCUCAGAACGUCAA	UUGACGUUCUCUGAGGCCA		[1038-1056] ORF
118	AUAAGGAAGCGACCUGCAA	UUGCAGGUCGUUCUUCUAU		[916-934] ORF
119	GUUUGCCCGAGUUCUACUA	UAGUAGAACUCGGGCAAGC	Rat,Ms	[713-731] ORF
120	CCAUUUGAAGUGUACCU	ACAGGUACACUUCAAU		[2113-2131] 3'UTR
121	GCUUACUCUGUCCUUUAU	AUAAAUGGACAGAGUAAGC		[1978-1996] 3'UTR
122	UUGGGAGUUUUGUAAUGUU	UACAUUCAAAACUCCCAA		[1797-1815] 3'UTR
123	UGAUAUACAGCAAGUAGAU	AUCUACUUGCUGUAAUCA		[1417-1435] 3'UTR
124	CUUAAAUGAUCUGCCUCUA	UAGAGGCAGAUCAUUUAAG		[1234-1252] 3'UTR
125	GCCCGAGUUCUACUACAGA	UCUGUAGUAGAACUCGGGC	Rat,GP,Chn	[717-735] ORF
126	GUAAAUGCUGUGUUGGGUA	UACCCAAACACAGCAUUUAC		[2240-2258] 3'UTR
127	CACUUGUAGGAUAGUGAA	UUCACUUUACCUACAGUG		[2045-2063] 3'UTR
128	UGGAUGUAGCAUUAUGCAA	UUGCAUAUAGCUACAUCCA		[1260-1278] 3'UTR
129	UGGAUUUUCGAUUUUCAGA	UCUGAAAUCGAAUUCAC	GP,Chn	[643-661] ORF
130	UGUGUGAAAAAGAGCCAA	UUGGCAUCUUUUUACACACA	Ms	[2340-2358] 3'UTR
131	AAUGCUGUGUUGGGUAGAA	UUCUACCCAAACACAGCAUU		[2243-2261] 3'UTR
132	GUAUAGAAAAACCAUUUGA	UCAAAUGGUUUUUCCAUAC		[2102-2120] 3'UTR
133	CUGUGUAUGGAAAAACCAU	AUGGUUUUCCAUACACAG		[2098-2116] 3'UTR
134	UCAUUGCCUGUGUAUGGAA	UCCAUACACAGGGCAUGA		[2091-2109] 3'UTR
135	CUUGUAGGAUAAGUGAAA	AUUCUACCUUACCUACAA		[2047-2065] 3'UTR
136	GUUCAUGUAGAGAAAAGCA	UGCUCUUUCUCUACAU		[2026-2044] 3'UTR
137	CUAAAUCCCUCGAUAUUU	AAAUAUCGAGGGGUUUAG		[1906-1924] 3'UTR
138	GUGUAAACACAGUAAA	AUUUUGACUGUGUUUACAC		[1883-1901] 3'UTR

139	GCUUGGGAGUUUJUGAAUGU	ACAUJUAAAACUCCCAAGC		[1795-1813] 3'UTR
140	GUGCUUGGGAGUUUUGAAU	AUUCAAAACUCCCAAGCAC		[1793-1811] 3'UTR
141	AGGUGCUUGGGAGUUUUGA	UCAAAACUCCCAAGCACCU		[1791-1809] 3'UTR
142	CGCUUJGUUUUJGUUCGGUU	AACCGAACAACAAAGCG		[397-415] 5'UTR
143	AUGAAGCAAGGAAGAUUA	UAUAUCUUCUUGCUUCAU	Ms,GP,Chn	[1115-1133] 3'UTR
144	AAAAGAGCCAACAGAACAG	CUGUUUCGUUGGCUCUUU		[958-976] ORF
145	GCAGGAAUAGGAAGCGAC	GUCGCUUCCUUAUUCUGC		[910-928] ORF
146	GUGAAAAGAUGCCAAUUA	UAAUUGGCAUCUUUUCAC	Ms	[2343-2361] 3'UTR
147	UUCACUUCGGCGUGUUA	UUACACAGCCGAAGUGAA		[1870-1888] 3'UTR
148	GGAGUUUUGAAUGUUAAGA	UCUUAACAUUCAAAACUCC		[1800-1818] 3'UTR
149	GAUUUACAGCAAGUAGUA	UAUCUACUUGCUGUAAAUC		[1418-1436] 3'UTR
150	AAGCACUGAAAAACACAA	UUGUUGUUUUCAGUGCUU		[1188-1206] 3'UTR
151	CAUUGGGUGGACCCAAAGA	UCUUUGGGUCCACCAAAUG		[850-868] ORF
152	AUUGCUGUGUAUGGAAAA	UUUCCAUACACAGGCAAU		[2093-2111] 3'UTR
153	GUGGACCACGAAGAGUUA	UUAACUCUUCGUGGUCCAC		[571-589] ORF
154	AAUUGACCAUCUGCUUUUA	UAAAAGCAGAUGGUCAAUU		[1818-1836] 3'UTR
155	AGUCUCUCAAAGUUGGA	UCCAACUUUAAGAGAGACU		[1710-1728] 3'UTR
156	ACAGCUGAUACUCAUUUA	UAAAUGAAGUAUCAGCUGU		[1519-1537] 3'UTR
157	UCAUUGUACUACCUGUGUA	UACACAGGUAGUACAAUGA	Rat,GP,Chn	[1300-1318] 3'UTR
158	CAUGGAAUGGACAUCUGU	ACAGGAUGUCCAUUCAUG	GP,Chn	[1167-1185] 3'UTR
159	CUUGAUGAAGCAAGGAAGA	UCUUCCUUGCUUCAUCAAG	Chn	[1111-1129] 3'UTR
160	GCUCGAAUUAAGAAUAGU	ACAUUUCUUAUUCGAGC		[1066-1084] 3'UTR
161	AAGAAGCCUGGGCCUACGAA	UUCUGAGGCCAGGCUUCU		[1030-1048] ORF
162	UGGCUAUGCUCUAAAAGGU	AACCUUUUAAGCAUAGCCA		[2291-2309] 3'UTR
163	CCUGUGUAUGGAAAAACCA	UGGUUUUUCUCAUACACAGG		[2097-2115] 3'UTR
164	AGUGAAAUGGAAUACAU	AUGUAGUAUCCAUUUCACU	Ms	[2058-2076] 3'UTR
165	AGAUGUCAAACGUGCGAGU	ACUCGCACGUUUGACAUU		[464-482] 5'UTR+ORF
166	AAAAGCAACAGAAACCUAU	AUAGGUUUCUGUUGCUUUU		[1675-1693] 3'UTR
167	UGGCUAAGAUAAAUGCUA	UAGCAUUUAUCUUUAGCCA		[1562-1580] 3'UTR
168	CAUGAAGAGAAGCAUUUUU	AAAAUUGCUUCUUCUCAUG	GP	[1450-1468] 3'UTR
169	GCUUGAUGAAGCAAGGAAG	CUUCCUUGCUUCAUCAAGC	Chn	[1110-1128] 3'UTR
170	AGAAGAAAAGUUUUCAGAC	GUCUGAAACAUUUUCUUCU	Rat,Ms,GP,Chn	[975-993] ORF
171	GCCAACAGAACAGAACAAA	UUUCUUCUGUUCUGUUGGC	Rat,Ms	[964-982] ORF
172	AGCCAACAGAACAGAACAA	UUCUUCUGUUCUGUUGGC		[963-981] ORF
173	CAAAGACUGAACCGUCGG	UCCGACGGAUCAUGCUUUG		[863-881] ORF
174	CUGAGGACACGCAUJUGGU	ACCAAAUGCGUGGUCCUCAG		[839-857] ORF
175	GGUUGCAUACUGAGCCAAG	CUUGGCUCAGUAUGCAACC	Ms	[2306-2324] 3'UTR
176	AGUUUACCCGGGACUUGGA	UCCAAGUCCCGGGUUAACU	GP,Chn	[584-602] ORF
177	GGAAUAGUGAAUAGGUAC	GUAUCCAUUUCACUUAUCC		[2053-2071] 3'UTR
178	AAGGUUCAUGUAGAGAAAA	UUUUCUCUCAUAGAACCUU		[2023-2041] 3'UTR
179	GCAAAAUCCGGAGGUGCUU	AAGCACCUUCGGAUUUUUGC		[1780-1798] 3'UTR
180	AAAAAGCAACAGAAACCUA	UAGGUUUUCGUUGCUUUUU		[1674-1692] 3'UTR
181	CAUUGGGAGAUUCUGGUGA	UCACCAGAUUCUCCCAAUG		[1606-1624] 3'UTR
182	UUGACUUCUGCAUGAAGAGAA	UUCUCUUCUGCAAGUCAA		[1442-1460] 3'UTR
183	UGUUUUUJUGAGAGUGCGA	UCGCACUCUCAAAAAACAA		[417-435] 5'UTR
184	GCAUUUAGCAAUUAGGUUU	AAACCUUUAUGCAUAAUGC		[1268-1286] 3'UTR
185	CCUGCAACCGACGAUUCUU	AAGAAUCGUCGGUUGCAGG		[928-946] ORF
186	UGGUGGACCCAAAGACUGA	UCAGCUUJUGGUCCACCA		[854-872] ORF
187	GUGGAAUJUCGAUJUCAG	CUGAAAAUCAAGAAUUCAC	GP,Chn	[642-660] ORF
188	GGCUAUGCUCUAAAAGGUUG	CAACCUUUUAAGCAUAGCC		[2292-2310] 3'UTR
189	AAGCCAAGUGGCAUGUUU	AAACAUCCACUUUUGGCUU	Ms	[2212-2230] 3'UTR
190	UUGCCUGUGUAUGGAAAAAA	UUUUCUCAUACACAGGCCA		[2094-2112] 3'UTR
191	UUCUAAAUCCUUCGCAUJUU	AAUAUCGAGGGAUUUAGAA		[1904-1922] 3'UTR
192	CCAGUAAAUCUCAGCGAG	CUGCUGAGUAAAACUGG		[1734-1752] 3'UTR
193	AUCUCCAAAGCAUCAUAAA	UUUAGAUAGCUUGGGAGAU		[1624-1642] 3'UTR
194	GCGUUGGAUGUAGCAUJAU	AUAAUGCUCACUCCAACGC		[1256-1274] 3'UTR
195	ACAACACACAAUACACU	AGUGUUUJUGGUUGUUGU		[1200-1218] 3'UTR
196	UAAGCACUGAAAACAACA	UGUUGUUUUUCAGUGCUUA		[1187-1205] 3'UTR
197	UAUCGCUGACUCAUGGAA	UUCCAUGAAGUCAGCGAU		[1155-1173] 3'UTR
198	AGAAAAGUUUUCAGACGGU	ACCGUCUGAACACUUUCU	Rat,Ms,GP,Chn	[978-996] ORF
199	ACUCAAAACAAAAGAGCCA	UGGCUCUUJUGUUUUGAGU		[949-967] ORF

200	CGAUUCUUCUACUCAAAAC	GUUUUGAGUAGAAGAAUCG		[939-957] ORF
201	CUAACUCUGAGGACACGCA	UGCGUGGUCCUCAGAGUUAG		[833-851] ORF
202	GACUUGGAGAACGACUGCA	UGCAGUGCUUCUCCAAGUC	GP,Chn	[595-613] ORF
203	UAGAGAAAAGCACACUUGU	ACAAGUGUGCUUUUCUCUA		[2033-2051] 3'UTR
204	GAGAUCUGGUGAUCUCCCA	UGGGAGAUCACCAGAUCUC		[1613-1631] 3'UTR
205	GCUUUGUUUUUGUUCGGUUU	AAACCGAACAAAACAAAGC		[398-416] 5'UTR
206	UGGACAUCCUGUAUAAGCA	UGCUUUAUACAGGAUGUCCA	Rat,Ms,GP,Chn	[1174-1192] 3'UTR
207	AUGGAAUGGACAUCCUGUA	UACAGGAUGUCCAUUCCAU	GP,Chn	[1168-1186] 3'UTR
208	CUGUGUCUUUUGGCCUCCGA	UCGGAGCCAAAAGACACAG		[334-352] 5'UTR
209	CAAACGUAAAACAGCUCGAA	UUCGAGCUGUUUACGUUUG		[1054-1072] ORF-3'UTR
210	AAAAAUGUUUCAGACGGUU	AACCGUCUGAACAUUUUC	Rat,Ms,GP,Chn	[979-997] ORF
211	CAGAAGAAAAGUUUCAGA	UCUGAAACAUUUUCUUCUG	Rat,Ms,GP,Chn	[974-992] ORF
212	CCGACGAUUCUUCUACUCA	UGAGUAGAAGAAUCGUCGG		[935-953] ORF
213	GGUGGACCCAAAGACUGAU	AUCAGUCUUUUGGUCCACC		[855-873] ORF
214	GUUGCAUACUGAGCCAAGU	ACUUGGCUCAGUAUGCAAC	Ms	[2307-2325] 3'UTR
215	UGGAGAAGCACUGCAGAGA	UCUCUGCAGUGCUUCUCCA	GP,Chn	[599-617] ORF
216	CCAUUUUACCACAGGAAAG	CUUUCUGUGGAAAAAUGG		[1989-2007] 3'UTR
217	UCCAUUUUACCACAGGAAA	UUUCCUGUGGAAAAAUGGA		[1988-2006] 3'UTR
218	UCAGCAGAAUGGUGAUCAC	GUGAUCCACAUUCUGCUGA		[1746-1764] 3'UTR
219	GUAGCAUUAUGCAAUUAGG	CCUAAUUGCAUAAUGCUAC		[1265-1283] 3'UTR
220	CACUAAAAUUUAGGCACU	AGUGCCUAAAUUUAGUG	Ms,GP,Chn	[1215-1233] 3'UTR
221	GGACAUCCUGUAUAAGCAC	GUGCUUUAUACAGGAUGUCC	Rat,Ms,GP,Chn	[1175-1193] 3'UTR
222	AAGACUGAUCCGUCGGACA	UGUCCGACGGGAUCAGCUU		[865-883] ORF
223	UCGAUUUUUAGAAUACCAA	UUGUGAUUCUGAAAUCGA	GP,Chn	[650-668] ORF
224	CGCAAGUGGAAUUUCGAUU	AAUCGAAAUUCCACUUGCG	GP,Chn	[637-655] ORF
225	AAGGAAGGUUCAUGUAGAG	CUCUACAUUGAACCUUCCU		[2019-2037] 3'UTR
226	UAUCCACAGGAAAGUGUUA	UAAACACUUUCCUGUGGAUA		[1994-2012] 3'UTR
227	ACUUCGGGUGUGUAAACA	UGUUUACACAGCCCGAAGU		[1873-1891] 3'UTR
228	UUUUUUGAGAGUGCGAGA	UCUCGCACUCUCAAAAAAA		[419-437] 5'UTR
229	AAAAGCGUUGGAUGUAGCA	UGCUACAUCCAACGCUUUU		[1252-1270] 3'UTR
230	AAGGUUGCAUACUGAGCCA	UGGCUCAGUAUGCAACCUU	Ms	[2304-2322] 3'UTR
231	UGUUGGGUAGAAUAGGUUU	AAACCACUUCUACCCAACA		[2250-2268] 3'UTR
232	UGUGUUGGGUAGAAUAGGU	ACCUACUUCUACCCAACACA		[2248-2266] 3'UTR
233	ACGAAGAGUUAACCCGGGA	UCCCGGGUUUACUCUUCGU	GP,Chn	[578-596] ORF
234	ACACUUGUAGGUAAGUGA	UCACUUAUCCUACAAGUGU		[2044-2062] 3'UTR
235	UGUGUAAACACAGUCAAAA	UUUUGACUGUUUUACACA		[1882-1900] 3'UTR
236	CUCUCUAAAGUUGGAAUU	AAUUCCAACUUUAAGAGAG		[1713-1731] 3'UTR
237	CAACAGAAACCUAUCCUCA	UGAGGAUAGGUUUCUGUUU		[1680-1698] 3'UTR
238	AGUUUGUUAGAUAGCUGCA	UGCAGCUACUAAACAAACU		[1642-1660] 3'UTR
239	AAAUUUGAACACUGGCUA	UAGCCAGUGUUUCAAAUUU		[1549-1567] 3'UTR
240	AAGAGCUUGCUUUGAUUA	AAAACUAAAGCAAGCUCUU		[1405-1423] 3'UTR
241	AAGCGUUGGAUGUAGCAUU	AAUGCUACAUCCAACGCUU		[1254-1272] 3'UTR
242	GUUUCUUGUUUAUCAGAU	AUCUGAUAAAACAAGGAAAC	Chn	[1083-1101] 3'UTR
243	GCAUUUUGGGACCCAAAG	CUUUGGGUCCACCAAAUGC		[849-867] ORF
244	CACUGCAGAGACAUGGAAG	CUUCCAUUGUCUCUGCAGUG	GP,Chn	[607-625] ORF
245	GAAGCACUGCAGAGACAUG	CAUGUCUCUGCAGUGCUUC	GP,Chn	[603-621] ORF
246	GUGCAUUUUGAACUGCUGU	ACAGCAUUUACAAUUGCAC	Ms	[2232-2250] 3'UTR
247	GAAGGUACUGUGUACAU	AUGUACACAGGUACACUUC		[2119-2137] 3'UTR
248	UUJUGAAGUGUACCUUGUA	UACACAGGUACACUUA		[2116-2134] 3'UTR
249	UAAUUCUAAAUCCCUCGAU	AUCGAGGGUUUAGAAUUA		[1901-1919] 3'UTR
250	UGUUAAGAAUUGACCAUCU	AGAUGGUCAUUUCUUAACA		[1811-1829] 3'UTR
251	CAGAAUGGUGAUCACUCA	UGGAGUGAUCACCAUUUC		[1750-1768] 3'UTR
252	AAUJUGAACACUGGUAAA	UUUAGCCAGUGUUCAAAU		[1551-1569] 3'UTR
253	CCCUUUCAGAGACAGCUGA	UCAGCUGUCUCUGAAAGGG		[1508-1526] 3'UTR
254	AUGUAAUGUCCUUUCAGA	UCUGAAAGGGCAUUACAU		[1499-1517] 3'UTR
255	UGACUUCAUGGAUUGGACA	UGUCCAUUCCUAGAAGUCA		[1161-1179] 3'UTR
256	AUCGCUGACUUCUAGGAAU	AUUCCAUGAAGUCAGCGAU		[1156-1174] 3'UTR
257	GCUGUGUUGGGUAGAAUAG	CUAUUCUACCCAACACAGC		[2246-2264] 3'UTR
258	GCACACUUGUAGGUAAGU	ACUUAUCCUACAAGUGUGC		[2042-2060] 3'UTR
259	UGUAGAGAAAAGCACACUU	AAGUGUGCUUUUCUCUACA		[2031-2049] 3'UTR
260	AAGAAUUGACCAUCUGCUU	AAGCAGAUGGUCAUUU		[1815-1833] 3'UTR

261	GUCUCUCUAAAAGUUGGAA	UUCCAACUUUAAGAGAGAC		[1711-1729] 3'UTR
262	CUUGCAUGAAGAGAAGCAA	UUGCUUCUCUUCAUGCAAG	GP	[1446-1464] 3'UTR
263	CUCUAAAAGCGUUGGAUGU	ACAUCCAACGCCUUUAGAG		[1248-1266] 3'UTR
264	CAA AUGCCGGUUCUGUGGA	UCCACAGAACCGCAUUUG		[1001-1019] ORF
265	UAACUCUGAGGACACGCAU	AUGCGUGUCUCAGAGUUA		[834-852] ORF
266	CUAGAGGGCAAGUACGAGU	ACUCGUACUJGCCCUCUAG		[673-691] ORF
267	UCGCCAGUCCAUUGAUCA	UGAUCAAAUGGACUGGCGA		[236-254] 5'UTR
268	CAGCGCAAGUGGAAUUCG	CGAAAUUCCACUJGCGCUG	Rat,Ms,GP,Chn	[634-652] ORF
269	GUGUACAUACUCUGUAAA	UUUACAGAGUUAUGUACAC		[2130-2148] 3'UTR
270	GUGUAGGGAAAACCAUUU	AAAUGGUUUUCCAUACAC		[2100-2118] 3'UTR
271	AACCGACGAUUCUUCUACU	AGUAGAAGAAUCGUCCGUU		[933-951] ORF
272	AGUACGAGUGGCCAGAGGU	ACCUCUUGCCACUCGUACU		[683-701] ORF
273	CUGAGCCAAGUAAAUAUUU	AAAUAUAUACUJGCGCAG	Ms	[2315-2333] 3'UTR
274	UGGCAUGUUUUGUGCAUUU	AAAUGCACAAAACAGCCA	Ms	[2221-2239] 3'UTR
275	AGUGGCAUGUUUUGUGCAU	AUGCACAAAACAGGCCACU	Ms	[2219-2237] 3'UTR
276	ACUCUGAAAACACUGAA	UUCAGGUUUUUAACAGAGU		[2139-2157] 3'UTR
277	GGAUACUACAUUUAAAAC	GUUUAAGAUGUAGUAUCC	Ms	[2066-2084] 3'UTR
278	UGGUGAUCACUCCAGGUAG	CUACCUGGAGUGAUCACCA		[1755-1773] 3'UTR
279	AAAGAUGUCAAACGUGCGA	UCGCACGUUUGACAUUUU		[462-480] 5'UTR+ORF
280	GGGAGAAAAGAUGUAAACG	CGUUUGACAUUUUCUCC		[457-475] 5'UTR+ORF
281	GUUUGUUAGAUAGCUGCAU	AUGCAGCUACUAACAAAC		[1643-1661] 3'UTR
282	CUGGCUAAAAGAUAAAUGCU	AGCAAUUAUCUUJAGCCAG		[1561-1579] 3'UTR
283	CCUCUAAAAGCGUUGGAAUG	CAUCCAACGCUUUUAGAGG		[1247-1265] 3'UTR
284	CUGACUUCAUGGAAUGGAC	GUCCAUUCCAUAGAAGCAG		[1160-1178] 3'UTR
285	UACAUAUUCGUGACUUCAU	AUGAAGCAGCGAUAGUJA		[1151-1169] 3'UTR
286	ACGCAUUUUGGUGGACCCAA	UUGGGUCCACAAAUGCGU		[847-865] ORF
287	UAACCCGGGACUJUGGAGAA	UUCUCCAAGUCCCGGGUJA	Rat,Ms,GP,Chn	[587-605] ORF
288	GAAAGAUGUCAAACGUGCG	CGCACGUUJGACAUUUUC		[461-479] 5'UTR+ORF
289	AGACCCGGGAGAAAAGAUGU	ACAUCUUUCUCCCGGGUCU		[451-469] 5'UTR+ORF
290	CUUUCAGAGACGCGUAUA	UAUCAGCUGUCUCUGAAAG		[1510-1528] 3'UTR
291	UUGAUUUACAGCAAGUAGA	UCUACUJGCGUAAAUCAA		[1416-1434] 3'UTR
292	UUUAGGCACUCUAAAUGA	UCAUUUAAGAGUGCCUAAA	GP,Chn	[1224-1242] 3'UTR
293	AUCCUGUUAACGACUGAA	UUCAGGUGCUUAACAGGAU	GP,Chn	[1179-1197] 3'UTR
294	AAUAAGGAAGCGACCUGCA	UGCAGGUGCGCUUCCUUUU		[915-933] ORF
295	AGGACACGCAUJUGGUGGA	UCCACCAAAGCGUGGUCCU		[842-860] ORF
296	AACUCUGAGGACACGCAUU	AAUGCGUGUCCUCAGAGU		[835-853] ORF
297	AUAUGGCUAUGCUAAAAG	CUUUUAAGCAUAGCCAUAU		[2288-2306] 3'UTR
298	GUGUUGGGUAGAAUAGGUU	AACCUAUUCUACCCAAACAC		[2249-2267] 3'UTR
299	AACUCUGAAAAACACUGA	UCAGUGUUUUACAGAGUU		[2138-2156] 3'UTR
300	AGGUUCAUGUAGAGAAAAG	CUUUUCUCLUAUGAACCU		[2024-2042] 3'UTR
301	GAAUGGUGAUCACUCCAGG	CCUGGAGUGAUCACCAUUC		[1752-1770] 3'UTR
302	CAGUCUCUCUAAAAGUUGG	CCAACUUUAAGAGAGACUG		[1709-1727] 3'UTR
303	UGAAGAGAAGCAUUUUGG	CCAAAAUUGCUUCUCUUC		[1452-1470] 3'UTR
304	CAGAACAGAAGAAAUGUU	AAACAUUUUCUUCUGUUUCU	Rat,Ms,GP,Chn	[969-987] ORF
305	CCAUUUGAUCACGGGAGAC	GUCUCCGCUGAUCAAAUUG		[244-262] 5'UTR
306	AUGCUGUGUUGGGUAGAAU	AUUCUACCCAAACACAGCAU		[2244-2262] 3'UTR
307	GGCAAAAAUCCAGGUGCU	AGCACCUJGGUUUUUGCC		[1779-1797] 3'UTR
308	CUCAUUUGGGAGAUJUGGU	ACCAGAUJCUCCCAAAGAG		[1604-1622] 3'UTR
309	CACAAAAUUUUGAACACUG	CAGUGUJUCAAUUUUUGUG		[1545-1563] 3'UTR
310	GCUUUGAUUUACAGCAAGU	ACUUGCUGUAAAUCAAAGC		[1413-1431] 3'UTR
311	ACUCUAAAUGAUCUGCCU	AGGCAGAUCAUAAAAGAGU		[1231-1249] 3'UTR
312	AGAGCCAACAGAACAGAAG	CUUCUGUUCUGUUGGCUU		[961-979] ORF
313	AAAGAGCCAACAGAACAGA	UCUGUUCUGUUGGCUUU		[959-977] ORF
314	AGGUUGCAUACUGAGCCAA	UUGGCUCAGUAUGCAACCU	Ms	[2305-2323] 3'UTR
315	GCUUAAAAGGUUGCAUACU	AGUAUGCAACCUUAAAAGC	Ms	[2298-2316] 3'UTR
316	GUUGGGUAGAAUAGGUUUU	AAAACCUCUUCUACCCAAAC		[2251-2269] 3'UTR
317	AGUAUJUCAUJGCGUGU	ACACAGGCAALUGAAAACU		[2085-2103] 3'UTR
318	GGUUCAUGUAGAGAAAAGC	GCUUUUUCUCAUAGAACCC		[2025-2043] 3'UTR
319	CAUUUAUCCACAGGAAGU	ACUUUCCUGUGGAAUAAAUG		[1990-2008] 3'UTR
320	UACUCUGUCCAUUUUACCA	UGGAUAAAUGGACAGAGUA		[1981-1999] 3'UTR
321	AUCUGUAAGUAACUUCACA	UGUGAAGUAACUACAGAU		[1930-1948] 3'UTR

322	AAUGGUGAUCACUCCAGGU	ACCUGGAGUGAUCACCAAU		[1753-1771] 3'UTR
323	CAGCAGAAUGGUGAUCACU	AGUGAUCACCAUUCUGCUG		[1747-1765] 3'UTR
324	ACCAGUUAAUUCACAGCA	UGCUGAGUAUUAUCUGGU		[1733-1751] 3'UTR
325	CGGGAGAAAGAUGUCAAAC	GUUUGACAUUUUCUCCCG		[456-474] 5'UTR+ORF
326	UGAUCUCCCAAGCUAUCUA	UAGAUAGCUUGGGAGAUCA		[1622-1640] 3'UTR
327	GCUGACUUCAUGGAAUGGA	UCCAUUCCAUGAAGUCAGC		[1159-1177] 3'UTR
328	GGCGCUUUGUUUUGUUCGG	CCGAACAAAACAAAGGCGCC		[395-413] 5'UTR
329	AGACGUCAAACGUAAACAG	CUGUUUACGUUUGACGUU	Chn	[1048-1066] ORF+3'UTR
330	AGAUGCCAAUUAUUGUUAC	GUAACAAUAAUUGGCAUCU	Ms	[2350-2368] 3'UTR
331	AAAUGCUGUGUUGGGUAGA	UCUACCCAAACACAGCAUUU		[2242-2260] 3'UTR
332	GUGGCAUGUUUUGUGCAUU	AAUGCACAAAACAUGGCCAC	Ms	[2220-2238] 3'UTR
333	CCAAAGUGGGCAUGUUUUGU	ACAAAACAUGGCCACUUUUGG	Ms	[2215-2233] 3'UTR
334	CAUUGAAGGUUACUGUG	CACAGGUACACUUCAAUG		[2114-2132] 3'UTR
335	GAAAAACCAUUUGAAGUGU	ACACUUCAAUGGUUUUUC		[2107-2125] 3'UTR
336	AGGAAGGUUCAUGUAGAGA	UCUCUACAUUGAACCUCU		[2020-2038] 3'UTR
337	UCACUUCGGGCUUGUGUAAA	UUUACACAGCCCGAAGUGA		[1871-1889] 3'UTR
338	GAGAAGAUGUCAAACGUG	CACGUUUAGACAUUUCLC		[459-477] 5'UTR+ORF
339	CUUUGAUUUACACAGAUA	UACUUGCUGUAAAUCAAAG		[1414-1432] 3'UTR
340	UUGCUUUGAUUUACAGCAA	UUGCUGUAAAUCAAAGCAA		[1411-1429] 3'UTR
341	CUAAAAGCGUUGGAUGUAG	CUACAUCCAACGCUUUUAG		[1250-1268] 3'UTR
342	GACUUCAUGGAUGGACAU	AUGUCCAUUCCAUAGAUC		[1162-1180] 3'UTR
343	AGAGACAUGGAAGAGCGA	UCGCCUCUCCAUUGUCU	Chn	[613-631] ORF
344	CAAAGUGGCAUGUUUUGUG	CACAAAACAUGCCACUUUUG	Ms	[2216-2234] 3'UTR
345	AGCCAAAGUGGCAUGUUUU	AAAACAUGCCACUUUUGGU	Ms	[2213-2231] 3'UTR
346	UGCAUGGGCUUUUUAAA	UUUAAAAGGCCACAUUGCA		[1657-1675] 3'UTR
347	UCUAAAAGCGUUGGAUGUA	UACAUCCAACGCUUUUAGA		[1249-1267] 3'UTR
348	GCCUCAAAAGCGUUGGAU	AUCCAACGCUUUUAGAGGC		[1246-1264] 3'UTR
349	AGGCACUCUAAAUGAUCU	AGAUCAUAAAAGAGGUGCCU		[1227-1245] 3'UTR
350	GCGCUUUGUUUUGUUCGGU	ACCGAACAAAACAAGCGC		[396-414] 5'UTR
351	UACAUACUGCUUGAUGAA	UUCAUCAAGCAGUGAUGUA		[1101-1119] 3'UTR
352	AUACAUACUGCUUGAUGA	UCAUCAAGCAGUGAUGU		[1100-1118] 3'UTR
353	AACAGCUCGAAUUAAGAAU	AUUCUAAAUCGAGCGU		[1062-1080] 3'UTR
354	CGCAGGAAUAGGAAGCGA	UCGCUUCCUUUACUCUGCG		[909-927] ORF
355	AGUCCAUUUGAUUCAGCGA	UCCGCUGAUCAAUGGACU		[241-259] 5'UTR
356	CGCCAGUCCAUUUGAUCA	CUGAUCAAUAGGACUGGCG		[237-255] 5'UTR
357	UUCGAUUCAGAAUACACA	UGUGAUUCUGAAAUCGAA	GP,Chn	[649-667] ORF
358	AGAACGACUGCAGAGACAU	AUGUCUCUGCAGUGCUUCU	GP,Chn	[602-620] ORF
359	UUGCAUACUGAGCCAAGUA	UACUUGGCUCAGUAUGCAA	Ms	[2308-2326] 3'UTR
360	CAUUGUAAAUGCUGUU	AAACACAGCAUUUACAAUG		[2235-2253] 3'UTR
361	ACUUGGAGAACGACUGCAG	CUGCAGUGCUUCUCCAAGU	GP,Chn	[596-614] ORF
362	GACAUAUACAAGCCAAG	CUUUGGCUCUGUAUUGUC	Ms	[2202-2220] 3'UTR
363	GGAAAAACCAUJUGAAGUG	CACUUCAAUGGUUUUUC		[2106-2124] 3'UTR
364	UGUGUAUGGAAAACCAU	AAUGGUUUUUCUACACACA		[2099-2117] 3'UTR
365	GCCUGUGUAUGGAAAACC	GGUUUUUCCAACACAGGC		[2096-2114] 3'UTR
366	AGAAAAAGCACACUJUGAG	CCUACAAUGUGUGCUUUUCU		[2036-2054] 3'UTR
367	CACAGGAAGUGUUUUUU	AAAAAAACACUUUCCUGUG		[1998-2016] 3'UTR
368	UCCACAGGAAGUGUUUU	AAUAAACACUUCUCCUGUGGA		[1996-2014] 3'UTR
369	UUGACCAUCUGCUUUUU	AAUAAAAGCAGAUGGUCAA		[1820-1838] 3'UTR
370	CUUUGGGAGUUUUGAAUGU	AAACAUAAAACUCCCAAG		[1796-1814] 3'UTR
371	UUUUUGAGAGUGCGAGAGA	UCUCUCGCACUCUCAAAA		[421-439] 5'UTR
372	GAAGAGAAAGCAUUUUGG	CCCAAAAUUGCUCUCUUC		[1453-1471] 3'UTR
373	AGCUUGCUUUGAUUUACAG	CUGUAAAUCAAAGCAAGCU		[1408-1426] 3'UTR
374	GUUCGGUUUUGUUUUUUG	CAAAAAACAAAACCGAAC		[408-426] 5'UTR
375	AACGUAAACAGCUCGAAU	AAUUCGAGCUCGUUACGUU		[1056-1074] ORF+3'UTR
376	UCAGAAGACGUAAACGUA	UACGUUUGACGUUCUGA		[1043-1061] ORF
377	ACCUUGCAACCGACGAUUCU	AGAAUCGUCGGUUGCAGGU		[927-945] ORF
378	AGCUUGCCGAGUUCUACU	AGUAGAACUUCGGCAAGCU	Rat,Ms	[712-730] ORF
379	UCCCUUCCACGCCAUUU	AAUAUGGCGGGUGGAAGGGA	Ms	[8-26] 5'UTR
380	UGUGAAAAAGAUGCCAAU	AAUUGGCAUCUUUUCACACA	Ms	[2342-2360] 3'UTR
381	AUGUGUGAAAAGAUGCCA	UGGCAUCUUUUCACACAU	Ms	[2339-2357] 3'UTR
382	CUAAAAGGUUUGCAUACUG	CAGUAUGCAACCUUUUAAG	Ms	[2299-2317] 3'UTR

383	UGUAAAUGCUGUGUUGGGU	ACCCAACACAGCAUUUACA		[2239-2257] 3'UTR
384	ACAAUUAACAAGCCAAAGU	ACUUUGGCUUGUUAUJUGU	Ms	[2203-2221] 3'UTR
385	GAAGAGUUAACCCGGGACU	AGUCCCGGGGUAAACUCUUC	GP,Chn	[580-598] ORF
386	GAGGUGCUUGGGAGUUUJG	CAAAACUCCCAAGCACCUC		[1790-1808] 3'UTR
387	GCAGAAUGGUGAUCACUCC	GGAGUGAUACCAUUCUGC		[1749-1767] 3'UTR
388	AGCUGCAUGUGGCUUUUU	AAAAAAGCCACAUGCAGCU		[1654-1672] 3'UTR
389	ACAAAAAAUUGAACACUGG	CCAGUGUUCAAUUUUJGU		[1546-1564] 3'UTR
390	CCUUCAGAGACAGCUGAU	AUCAGCUGUCUCUGAAAGG		[1509-1527] 3'UTR
391	AGAGCUUGCUUJGAUUUAC	GUAAAUCAAAGCAAGCUCU		[1406-1424] 3'UTR
392	GGUUUUGUUUUUUGAGAG	CUCUAAAAAACAAAACC		[412-430] 5'UTR
393	UUGJACUACCUGUGUJAUU	AUAUACACAGGUAGUACAA	Rat,Ms,GP,Chn	[1303-1321] 3'UTR
394	UGUUUUUGUUCGGUUUJGUU	AACAAAACCGAACAAAACA		[402-420] 5'UTR
395	UUAGGCACUCUAAAUGAU	AUCAUUUAAGAGUGGCCUA		[1225-1243] 3'UTR
396	GUUUAUCAGAUACAUCACU	AGUGAUGUAUCUGAUAAAC		[1091-1109] 3'UTR
397	UCCUUGUUUAUCAGAUACA	UGUAUCUGAAACAAAGGA	Chn	[1086-1104] 3'UTR
398	CAGUCCAUUUGAUCAGCGG	CCGCUGAUCAAAUGGACUG		[240-258] 5'UTR
399	GUAAUGUGUGAAAAGAUG	CAUCUUUUCACACAUUAC	Ms	[2336-2354] 3'UTR
400	AUGCUAAAAGGUUGCAUA	UAUGCAACCUUUUAAGCAU		[2296-2314] 3'UTR
401	UAUACAAGCCAAAGUGGC	UGCCACUUUJGUUGUUAU	Ms	[2207-2225] 3'UTR
402	UGAAGUGUACCUGUGUACA	UGUACACAGGUACACUUCA		[2118-2136] 3'UTR
403	CUUACUCUGUCCAUUUAUC	GAUAAAUGGACAGAGUAAG		[1979-1997] 3'UTR
404	AACCUAUCCUCACUGCCU	AGGGCAGUGAGGAUAGGUU		[1687-1705] 3'UTR
405	GCAACAGAAACCUAUCCUC	GAGGAUAGGUUUUCUGUUGC		[1679-1697] 3'UTR
406	ACCCGGGAGAAAAGAUGUCA	UGACAUUUJCUCCCGGGU		[453-471] 5'UTR+ORF
407	CAAAAUUUGAACACUGGC	GCCAGUGUUCAAUUUUUG		[1547-1565] 3'UTR
408	AAAGAUGUAAUGGUCCUUU	AAAGGGACAUUACAUUUU		[1495-1513] 3'UTR
409	AUAUUUGACUUGCAUGAAG	CUUCAUGCAAGUCAAAAU		[1438-1456] 3'UTR
410	UAUGAAGAGCUUGCUUJUGA	UCAAAGCAAGCUCUCAUA		[1401-1419] 3'UTR
411	CUAAAAUUUUAGGCACUCU	AGAGUGCCUAAAUUUUAG	Ms,GP,Chn	[1217-1235] 3'UTR
412	AGCACUGAAAACAACAC	GUUGUUGUUUUUCAGUGC		[1189-1207] 3'UTR
413	UGGAUUGGACAUCCUGUAU	AUACAGGAUGGUCCAUUCCA	GP,Chn	[1169-1187] 3'UTR
414	CUCAGAAGACGUAAACGU	ACGUUUGACGUUCUUCUGAG		[1042-1060] ORF
415	UUGCCCGAGUUCACUACU	UGUAGUAGAACUCGGGCAA	Rat,Ms,GP,Chn	[715-733] ORF
416	UAAAAGGUUGCAUCUGAG	CUCAGUAGCAACCUUUUA	Ms	[2301-2319] 3'UTR
417	AUUUGUAAAUGCUGUGUUG	CAACACAGCAUUUACAAAU		[2236-2254] 3'UTR
418	AUUUGAAGGUUACCUGUGU	ACACAGGUACACUUCAAAU		[2115-2133] 3'UTR
419	UAUUUCAUUGCCUGUGUAU	AUACACAGGCAAUGAAAUA		[2087-2105] 3'UTR
420	CUGUAAGUAACUUCACAUU	AAUGUGAAGGUACUUCAG		[1932-1950] 3'UTR
421	GGUGAUCUCCCAAGCUAU	GAUAGCUUGGGAGAUCACC		[1620-1638] 3'UTR
422	CUUAAAAGAUGUUAUGUCC	GGACAUUACAUUUUAAG		[1491-1509] 3'UTR
423	AUCACUGCUUGAUGAAGCA	UGCUUCAUCAAGCAGUGAU		[1104-1122] 3'UTR
424	UGUUUAUCAGAUACAUCAC	GUGAUGUACUGUAAAACA		[1090-1108] 3'UTR
425	CGUCAAACGUAAACAGCUC	GAGCUGUUUACGUUGACG	Chn	[1051-1069] ORF+3'UTR
426	UAAGGAAGCGACCUGCAAC	GUUGCAGGUCGCUUCCUUA		[917-935] ORF
427	UGUCCAUUUAUCCACAGGA	UCCUGUGGAUAAAUGGACA		[1986-2004] 3'UTR
428	AUJGGGCCACUAAAAAAAG	CUUUUUUAGUGGCCAAU		[24-42] 5'UTR
429	UAAGAAUUGACCAUCUGCU	AGCAGAUGGUCAUUUCUUA		[1814-1832] 3'UTR
430	GUUJAGAUAGCUGCAUGUGG	CCACAUCCGCAUACUAC		[1647-1665] 3'UTR
431	CUCCCAAGCUAUJUAAAGU	ACUUUAGAUAGCUUGGGAG		[1626-1644] 3'UTR
432	AUJUGACUUGCAUGAAGAG	CUCUUCAUGCAAGUAAAUA		[1440-1458] 3'UTR
433	UACCUUUUAUGUAGCACAU	AUGUGCUACAUAAAAGGU		[1328-1346] 3'UTR
434	AUJGUACUACCUGGUUAU	UAUACACAGGUAGUACAAU	Rat,GP,Chn	[1302-1320] 3'UTR
435	UAGCAUUAUGCAUJUAGGU	ACCUUAAUUGCAUAAUGCUA		[1266-1284] 3'UTR
436	GAUCUGCCUCUAAAAGCGU	ACGCUUUUAAGAGGCAGAUC		[1241-1259] 3'UTR
437	AUACAUUAUCGCGUACUCA	UGAAGUCAGCGAUJGUAU		[1150-1168] 3'UTR
438	AAAUGCCGGUUUCUGUGGAG	CUCCACAGAACCGGGCAUUU		[1002-1020] ORF
439	ACUCUGAGGACACGCAUUU	AAAUGCGUGGUCCUCAGAGU		[836-854] ORF
440	CAAGUACGAGUGGCAAGAG	CUCUUGCCACUCGUACUUG		[681-699] ORF
441	GAUUUUCAUGAACACAAAC	GUUUGUGAUUCUGAAAUC		[652-670] ORF
442	UGUGUACAUACUCUGUAA	UACAGAGGUUAUGUACACA		[2129-2147] 3'UTR
443	AAGAGUUAACCCGGGACUU	AAGUCCCGGUUAACUCUU	GP,Chn	[581-599] ORF

444	AUGUCAAACGUGCGAGUGU	ACACUCGCACGUUJUGACAU		[466-484] ORF
445	GAUCACUCCAGGUAGUUUG	CAAACUACCUCCGGAGUGAUC		[1759-1777] 3'UTR
446	AGAAAAGAUGUCAAACGUGC	GCACGUUUGACAUUUUCU		[460-478] 5'UTR+ORF
447	AUAGCUGCAUGUGGCUUUU	AAAAGCCACAUGCAGCUAU		[1652-1670] 3'UTR
448	UUUUGAGAGUGCGAGAGAG	CUCUCUGCACUCUCAAAA		[422-440] 5'UTR
449	GGCACUCUAAAUGAUCUG	CAGAUCAUUUAAGAGUGCC		[1228-1246] 3'UTR
450	AUAUCGCGUCAUCAUGGA	UCCAUGAAGUCAGCGAUAU		[1154-1172] 3'UTR
451	AAAAAAUACAUACUGCUGAC	GUCAGCGAUUAUGUAUUUU		[1146-1164] 3'UTR
452	UGCAACCGACGAUUCUUCU	AGAAGAAUCGUCCGGUUGCA		[930-948] ORF
453	CAGGAUAAGGAAGCGACC	GGUCGUUCCUUUAUUCUG		[911-929] ORF
454	UACUGAGCCAAGUAUAAUU	AAUUAUACUUGGUCCAGUA	Ms	[2313-2331] 3'UTR
455	AAAACCAUUUGAAGUGUAC	GUACACUUCAAAUGGUUUU		[2109-2127] 3'UTR
456	AAACAGUAUUUCAUUGCCU	AGGCAAGAAAACUGUUU		[2081-2099] 3'UTR
457	UUUAUCCACAGGAAAGUGUU	AACACUUUCUGUGGUAAA		[1993-2011] 3'UTR
458	UUCGGGCUGUGUAAACACA	UGUGUUUACACAGCCCGAA		[1875-1893] 3'UTR
459	CAAAAAUCCGAGGGUGCUUG	CAAGCACUCUGGAUUUUUG		[1781-1799] 3'UTR
460	UCUCUCUAAAAGUUGGAAU	AUUCCACUUUAAGAGAGA		[1712-1730] 3'UTR
461	CUUGCUUUGAUUACAGCA	UGCUGUAAAUCAAAGCAAG		[1410-1428] 3'UTR
462	UCCUUUUUGCUUCAUUGU	ACAAUGAAGCAAAUAGGA	Rat,GP,Chn	[1288-1306] 3'UTR
463	AAAGCGUUGGAUGUAGCAU	AUGCUACAUCCAACGCUUU		[1253-1271] 3'UTR
464	GACAUCUGUAUAGCACU	AGUGCUUUAACAGGAUGUC	Rat,Ms,GP,Chn	[1176-1194] 3'UTR
465	UGUGUCUUUUGGUCCGAG	CUCGGAGCCAAAAGACACA		[335-353] 5'UTR
466	GAAGAAAUGUUUCAGACG	CGUCUGAACAUUUUCUUC	Rat,Ms,GP,Chn	[976-994] ORF
467	UCCAUUUGAUCAGCGGAGA	UCUCCGCGAUCAAUGGA		[243-261] 5'UTR
468	CCCGAGUUCUACUACAGAC	GUCUGUAGUAGAACUCGGG	Rat,GP,Chn	[718-736] ORF
469	ACUGAGCCAAGUAUAAUUU	AAAUAUACUUGGUCCAGU	Ms	[2314-2332] 3'UTR
470	ACCUGUGUACAUACUCUG	CAGAGUUUAUGUACACAGGU		[2126-2144] 3'UTR
471	GUAGAGAAAAGCACACUUG	CAAGUGUGCUUUUCUUCUAC		[2032-2050] 3'UTR
472	UUUAAAGGAAGGUUCAUGU	ACAUGAACCUUCCUUUAAA		[2015-2033] 3'UTR
473	UCUAAAUCCCUCGUAUUUU	AAAUAUCGAGGGAUUUAGA		[1905-1923] 3'UTR
474	UUUCACUUUCGGCUGUGUA	UACACAGCCCGAAGUGAAA		[1869-1887] 3'UTR
475	AAGUUGGAAUUUACCAGUU	AACUGGUAAAUCCAACUU		[1721-1739] 3'UTR
476	ACCUUUUAUGUAGCACAU	UAUGUGCUACAUAAAAGGU		[1329-1347] 3'UTR
477	GUUUUGUUCGGUUUUGUUU	AAACAAAACCGAACAAAAC		[403-421] 5'UTR
478	AGCUCGAAUUAAGAAUAG	CAUAAUCUAAAUCUGAGCU		[1065-1083] 3'UTR
479	ACGUAAACGUAAAACAGCU	AGCUGUUUACGUUGACGU	Chn	[1050-1068] ORF+3'UTR
480	CUCUGAGGACACGCAUUG	CAAACUGCGUGUCCUCAGAG		[837-855] ORF
481	GCCAAGUGGCAGUUUUUG	CAAACACUGCCACUUUGGC	Ms	[2214-2232] 3'UTR
482	UUAACCGGGACUUGGAGA	UCUCCAAGUCCCGGGUUAA	GP,Chn	[586-604] ORF
483	UUCAUUGCCUGUGUAGGGA	UCCAUACACAGGCAAUAGAA		[2090-2108] 3'UTR
484	UGGACCACGAAGAGUUAC	GUUAACCUUCUGGGUCCA		[572-590] ORF
485	AAAGUUGGAAUUUACCAGU	ACUGGUAAAUCCAACUUU		[1720-1738] 3'UTR
486	UUGUUAGAUAGCUGCAUGU	ACAUGCAGCUACUAACAA		[1645-1663] 3'UTR
487	AAAGUUUGUUAGAUAGCUG	CAGCUACUACAAACUUU		[1640-1658] 3'UTR
488	UUGGAUGUAGCAUUAUGCA	UGCAUAAUGCUACAUCAA		[1259-1277] 3'UTR
489	UCAUGGAAUGGACAUUCUG	CAGGAUGGUCCAUUCCAU		[1166-1184] 3'UTR
490	CUUGUUUAUCAGAUACAU	GAUGUAUCUGUAUAAAAG		[1088-1106] 3'UTR
491	AAGACGUAAACGUAAACA	UGUUUACGUUUGACGUUU	Chn	[1047-1065] ORF+3'UTR
492	GAAGACGUAAACGUAAAC	GUUUACGUUUGACGUUC	Chn	[1046-1064] ORF+3'UTR
493	CAACCGACGAUUCUUCAC	GUAGAAGAAUCGUCCGUUG		[932-950] ORF
494	AAGUACGAGUGGCAAGAGG	CCUCUUGCCACUCGUACUU		[682-700] ORF
495	UGGAAAAACCAUUUGAAGU	ACUUCAAUUGGUUUUCCA		[2105-2123] 3'UTR
496	GAUAGUGAAAUGGAGUACU	AGUAUCCAUUUACUUAUC		[2054-2072] 3'UTR
497	AGCACACUUGUAGGAGUAAG	CUUACCUACAAGUGUGGU		[2041-2059] 3'UTR
498	AAACGUGCGAGUGUCUAC	GUAGACACUCGCACGUUU		[471-489] ORF
499	UACUCAGCAGAAUGGUGAU	AUCACCAUUCUGCUGAGUA		[1743-1761] 3'UTR
500	AAUGAUUCUGCCUCUAAAAG	CUUUUAGAGGAGCAUCAUU		[1238-1256] 3'UTR

Table A7 CDKN2A - cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)

No.	Sense siRNA	AntiSense siRNA	Other Sp	Human-47132606 ORF:213-683	Human-98985803 ORF:213-563	Human-47132605 ORF:38-559
-----	-------------	-----------------	----------	-------------------------------	-------------------------------	------------------------------

1	CCGUAAAUGGUCCAUUUAAA	UAUAAAUGGACAUUUACGG		[860-878] 3'UTR	[1134-1152] 3'UTR	[851-869] 3'UTR
2	AGCAAAUGGCAGAACAAA	UUUGGUUCUGGCCAUUUGCU	Chp	[1103-1121] 3'UTR	[1377-1395] 3'UTR	[1094-1112] 3'UTR
3	GCCUUUUAAACGUAGAUAAA	UAUAUCUACGUAAAAGGC	Chp	[826-844] 3'UTR	[1100-1118] 3'UTR	[817-835] 3'UTR
4	CCCGAUUGAAAGAACAGA	UCUGGUUCUUUCAUUCGGG	Chp	[675-693] ORF+3'UTR	[949-967] 3'UTR	[666-684] 3'UTR
5	CGAUJUGAAAGAACAGAGA	UCUCUGGUUCUUCAUCG	Chp	[677-695] ORF+3'UTR	[951-969] 3'UTR	[668-686] 3'UTR
6	GGGAAACUUAGAUCAUCAG	CUGAUGAUCUAAGUUUCC		[712-730] 3'UTR	[986-1004] 3'UTR	[703-721] 3'UTR
7	CUCGGGAAACUUAGAUCAU	AUGAUCUAGUUUCCGAG		[709-727] 3'UTR	[983-1001] 3'UTR	[700-718] 3'UTR
8	AAA AUGGUCCUGCCUUUAAA	UAAAAGGCAGGACAUUUU		[816-834] 3'UTR	[1090-1108] 3'UTR	[807-825] 3'UTR
9	CAGUAACCAUGCCCGCAUA	UAUGCGGGCAUGGUUACUG	Chp	[629-647] ORF	[903-921] 3'UTR	[620-638] 3'UTR
10	GGAAACUUAGAUCAUCAGU	ACUGAUGAUCUAAGUUUCC	Chp	[713-731] 3'UTR	[987-1005] 3'UTR	[704-722] 3'UTR
11	CAUUUUGUGAACUAGGGAA	UUCCUUAGUUCACAAAAG	Chp	[1045-1063] 3'UTR	[1319-1337] 3'UTR	[1036-1054] 3'UTR
12	CUCUGAGAAACCUUCGGAA	UUCCGAGGUUUCUCAGAG		[698-716] 3'UTR	[972-990] 3'UTR	[689-707] 3'UTR
13	GCAUUUUGUGAACUAGGGAA	UCCCUUAGUUCACAAAUGC	Chp	[1044-1062] 3'UTR	[1318-1336] 3'UTR	[1035-1053] 3'UTR
14	CGGAAGCUGUCGACUUCAU	AUGAAGUCGACAGCUUCG	Chp	[1020-1038] 3'UTR	[1294-1312] 3'UTR	[1011-1029] 3'UTR
15	CCAGAGAGGCUCUGAGAAA	UUUCUCAGAGGCCUCUCUGG	Chp	[689-707] 3'UTR	[963-981] 3'UTR	[680-698] 3'UTR
16	AAACUCUGGGAAACUUAGA	UCUAAGUUUCCCGAGGUUU		[705-723] 3'UTR	[979-997] 3'UTR	[696-714] 3'UTR
17	GGUUACUGGCCUUUCUUGA	UCAAGAGAACGCCAGUAACC	Chp	[1073-1091] 3'UTR	[1347-1365] 3'UTR	[1064-1082] 3'UTR
18	CAUUCAUUGGGCAUUUCU	AGAAAUGCCCACAUAGAAUG		[983-1001] 3'UTR	[1257-1275] 3'UTR	[974-992] 3'UTR
19	UGUCCUGCCUUUUAACGUA	UACGUAAAAGGCAGGACA		[820-838] 3'UTR	[1094-1112] 3'UTR	[811-829] 3'UTR
20	CCGCUUUCGUAGUUUCAU	AUGAAAACUACGAAAGCGG	Chp	[778-796] 3'UTR	[1052-1070] 3'UTR	[769-787] 3'UTR
21	CCUCGGGAAACUJAGAUCA	UGAUCUAGUUUCCCGAGG		[708-726] 3'UTR	[982-1000] 3'UTR	[699-717] 3'UTR
22	UACCGUAAAUGGUCCAUUU	UAAAUGGACAUUUACGGUA		[858-876] 3'UTR	[1132-1150] 3'UTR	[849-867] 3'UTR
23	UCGACLUCAUGACAAGCAU	AUGCUUGUCAUGAAGUCGA		[1029-1047] 3'UTR	[1303-1321] 3'UTR	[1020-1038] 3'UTR
24	CCUGCCUUUUAACGUAGAU	AUCUACGUAAAAGGCAGG	Chp	[823-841] 3'UTR	[1097-1115] 3'UTR	[814-832] 3'UTR
25	CGACUUCAUGACAAGCAUU	AAUGCUUGUCAUGAAGUCG		[1030-1048] 3'UTR	[1304-1322] 3'UTR	[1021-1039] 3'UTR
26	GAAACCUCGGGAAACUUAG	CUAAGUUUCCCGAGGUUUC		[704-722] 3'UTR	[978-996] 3'UTR	[695-713] 3'UTR
27	CACCAAGGGCAGUAACCAU	AUGGUUACUGGCCUCUGGUG	Chp	[620-638] ORF	[894-912] 3'UTR	[611-629] 3'UTR
28	GCCUUUUACUGUGUUGGA	UCCAACACAGUGAAAAGGC	Chp	[930-948] 3'UTR	[1204-1222] 3'UTR	[921-939] 3'UTR
29	GCGUGCAGUUCAUGACAA	UUGCUAUGAAGUCGACAGC		[1025-1043] 3'UTR	[1299-1317] 3'UTR	[1016-1034] 3'UTR
30	GAAGCUGUGACUUCAUGA	UCAUGAAGUCGACAGCUUC	Chp	[1022-1040] 3'UTR	[1296-1314] 3'UTR	[1013-1031] 3'UTR
31	GAGUUUUCUGGAGUGAGCA	UGCUCACUCCAGAAAACUC	Chp	[947-965] 3'UTR	[1221-1239] 3'UTR	[938-956] 3'UTR
32	CCACUACGUAAAUGUCCA	UGGACAUUUACGGUAGUGG		[854-872] 3'UTR	[1128-1146] 3'UTR	[845-863] 3'UTR
33	UGAGUCACACUGCUAGCAA	UUGCUAGCAGUGUGACUCA	Chp	[1089-1107] 3'UTR	[1363-1381] 3'UTR	[1080-1098] 3'UTR
34	CGCACAUUCAUGUGGGCAU	AUGCCCACAUAGAAUGUGCG		[979-997] 3'UTR	[1253-1271] 3'UTR	[970-988] 3'UTR
35	CCGAUUAAGAACCAAGAG	CUCUGGUUCUUUCAUCGG	Chp	[676-694] ORF+3'UTR	[950-968] 3'UTR	[667-685] 3'UTR
36	UAACCAUGCCCGAUAGAU	AUCUACUGGGCAUGGUUA	Chp	[632-650] ORF	[906-924] 3'UTR	[623-641] 3'UTR
37	ACAAGCAUUUUGUGAACUA	UAGUUCACAAAAGCUUGU		[1040-1058] 3'UTR	[1314-1332] 3'UTR	[1031-1049] 3'UTR
38	GCUUCUGCCUUUUCACUGU	ACAGUGAAAAGGCAGAACGC	Chp	[924-942] 3'UTR	[1198-1216] 3'UTR	[915-933] 3'UTR
39	CUAGCAAAGGCAGAACCA	UGGUUCUGCCAUUUGCUAG	Chp	[1101-1119] 3'UTR	[1375-1393] 3'UTR	[1092-1110] 3'UTR
40	GGAGUUUUCUGGAGUGAGC	GCUCACUCCAGAAAACUCC	Chp	[946-964] 3'UTR	[1220-1238] 3'UTR	[937-955] 3'UTR
41	CUCUUGAGUCACACUGCUA	UAGCAGUGUGACUCAAGAG	Chp	[1085-1103] 3'UTR	[1359-1377] 3'UTR	[1076-1094] 3'UTR
42	CAUGACAAGCAUUUUGUGA	UCACAAAAAUGCUUGUCAUG		[1036-1054] 3'UTR	[1310-1328] 3'UTR	[1027-1045] 3'UTR
43	AAAAAUGGUCCUGCCUUUUA	UAAAAGGCAGGACAUUUUU		[815-833] 3'UTR	[1089-1107] 3'UTR	[806-824] 3'UTR
44	CAAGCAUUUUGUGAACUAG	CUAGUUCACAAAAGCUUUG		[1041-1059] 3'UTR	[1315-1333] 3'UTR	[1032-1050] 3'UTR
45	UGUGUUGGAGUUUUCUGGA	UCCAGAAAACUCCAACACA	Chp	[940-958] 3'UTR	[1214-1232] 3'UTR	[931-949] 3'UTR
46	AGAUCAUCAGUCACCGAAG	CUUCGGUGACUGAUGAUCA	Chp	[721-739] 3'UTR	[995-1013] 3'UTR	[712-730] 3'UTR
47	AACCAGAGAGGCUCUGAGA	UCUCAGAGGCCUCUGGUU	Chp	[687-705] 3'UTR	[961-979] 3'UTR	[678-696] 3'UTR
48	GCUUCUCUUGAGUCACACU	AGUGUGACUCAAGAGAACG	Chp	[1081-1099] 3'UTR	[1355-1373] 3'UTR	[1072-1090] 3'UTR
49	AUGACAAGCAUUUUGUGAA	UUCACAAAAAUGCUUGUCAU		[1037-1055] 3'UTR	[1311-1329] 3'UTR	[1028-1046] 3'UTR
50	CGCUUUUCGUAGUUUUCAUJ	AAUGAAAACUACGAAAGCG	Chp	[779-797] 3'UTR	[1053-1071] 3'UTR	[770-788] 3'UTR
51	GAUJUGAAAGAACAGAGAG	CUCUCUGGUUCUUUCAAUC	Chp	[678-696] ORF+3'UTR	[952-970] 3'UTR	[669-687] 3'UTR
52	ACUGGCCUUUACGUAGAU	UGACUCAAGAGAACGCCAGU	Chp	[1077-1095] 3'UTR	[1351-1369] 3'UTR	[1068-1086] 3'UTR
53	CCCUAAGCGCACAUUCAUG	CAUGAAUGUGCGCUUAGGG		[972-990] 3'UTR	[1246-1264] 3'UTR	[963-981] 3'UTR
54	CUGCCUUUUAACGUAGAU	UAUCUACGUAAAAGGCAG	Chp	[824-842] 3'UTR	[1098-1116] 3'UTR	[815-833] 3'UTR
55	UGCCUUUUAACGUAGAU	UAUCUACGUAAAAGGCAG	Chp	[825-843] 3'UTR	[1099-1117] 3'UTR	[816-834] 3'UTR
56	UCCUGCCUUUUAACGUAGA	UCUACGUAAAAGGCAGGA		[822-840] 3'UTR	[1096-1114] 3'UTR	[813-831] 3'UTR
57	UAGCAAUUGGCAGAACCAA	UUGGUUCUGGCCAUUUGC	Chp	[1102-1120] 3'UTR	[1376-1394] 3'UTR	[1093-1111] 3'UTR

58	CACUGUGUUGGAGUUUUUCU	AGAAAACUCCAACACAGUG	Chp	[937-955] 3'UTR	[1211-1229] 3'UTR	[928-946] 3'UTR
59	GCACAUCAUGGGGGCAUU	AAUGCCCACAUAGAAUGUGC		[980-998] 3'UTR	[1254-1272] 3'UTR	[971-989] 3'UTR
60	CACUACGUAAAUGGUCAU	AUGGACAUUUACGGUAGUG		[855-873] 3'UTR	[1129-1147] 3'UTR	[846-864] 3'UTR
61	UAACGUAGAUUAUGCCUU	AAGGCAUAUACUACGUUA	Chp	[832-850] 3'UTR	[1106-1124] 3'UTR	[823-841] 3'UTR
62	UGUGAACUAGGAAGCUA	UGAGCUUCCUAGUUCACA	Chp	[1050-1068] 3'UTR	[1324-1342] 3'UTR	[1041-1059] 3'UTR
63	AAAUGUCCUGCCUUUUAC	GUAAAAGGCAGGACAUUU		[817-835] 3'UTR	[1091-1109] 3'UTR	[808-826] 3'UTR
64	UGACAAGCAUUUUGUGAAC	GUUCACAAAAGCUUGUCA		[1038-1056] 3'UTR	[1312-1330] 3'UTR	[1029-1047] 3'UTR
65	CUGUCGACUUCAUGACAAG	CUUGUCAUGAAGUCGACAG		[1026-1044] 3'UTR	[1300-1318] 3'UTR	[1017-1035] 3'UTR
66	CCUAAGCGCACAUCAUGU	ACAUGAAUGUCGCGCUUAGG		[973-991] 3'UTR	[1247-1265] 3'UTR	[964-982] 3'UTR
67	ACUGCUAGCAAAUGGCAGA	UCUGCCAUUUCGUAGCAGU	Chp	[1097-1115] 3'UTR	[1371-1389] 3'UTR	[1088-1106] 3'UTR
68	GGGUUACUGGCUUCUUCUUG	CAAGAGAAGCCAGUAACCC	Chp	[1072-1090] 3'UTR	[1346-1364] 3'UTR	[1063-1081] 3'UTR
69	ACCAGAGAGGCUCUGAGAA	UUCUCAGAGCCUCUCUGGU	Chp	[688-706] 3'UTR	[962-980] 3'UTR	[679-697] 3'UTR
70	AGCUGUCGACUUCAUGACA	UGCUAUGAAGUCGACAGCU	Chp	[1024-1042] 3'UTR	[1298-1316] 3'UTR	[1015-1033] 3'UTR
71	CCGCUUCUGCCUUUUACU	AGUGAAAAGGCAGAAGCGG	Chp	[922-940] 3'UTR	[1196-1214] 3'UTR	[913-931] 3'UTR
72	CUACCGUAAAUGUCCAUUU	AAAUGGACAUUUACGGUAG		[857-875] 3'UTR	[1131-1149] 3'UTR	[848-866] 3'UTR
73	UUAAAAAUGUCCUGCCUUU	AAAAGGCAGGACAUUUUAA		[813-831] 3'UTR	[1087-1105] 3'UTR	[804-822] 3'UTR
74	GAGCUUUUUAAAAGUCCU	AGGACAUUUUAAAAGCUC		[807-825] 3'UTR	[1081-1099] 3'UTR	[798-816] 3'UTR
75	GGAAGCUGUCGACUUCAUG	CAUGAAGUCGACAGCUCC	Chp	[1021-1039] 3'UTR	[1295-1313] 3'UTR	[1012-1030] 3'UTR
76	UGUUGGAGUUUCUGGAGU	ACUCCAGAAAACUCCAACA	Chp	[942-960] 3'UTR	[1216-1234] 3'UTR	[933-951] 3'UTR
77	AAAGAAAAACACCGCUUCU	AGAACGGGUGUUUUUCUUU	Chp	[911-929] 3'UTR	[1185-1203] 3'UTR	[902-920] 3'UTR
78	GAUCAUCAGUCACCGAAGG	CCUUCGGUGACUGAUGAUC	Chp	[722-740] 3'UTR	[996-1014] 3'UTR	[713-731] 3'UTR
79	UCUCUUGAGUCACACUGCU	AGCGAGUGACUCAAGAGA	Chp	[1084-1102] 3'UTR	[1358-1376] 3'UTR	[1075-1093] 3'UTR
80	CCCGUUUCGUAGUUUUCA	UGAAAACUACGAAAGCGGG	Chp	[777-795] 3'UTR	[1051-1069] 3'UTR	[768-786] 3'UTR
81	CUGCUAGCAAAUGGCAGAA	UUCUGCCAUUUCGUAGCAG	Chp	[1098-1116] 3'UTR	[1372-1390] 3'UTR	[1089-1107] 3'UTR
82	GGCUUCUCUUGAGUCACAC	GUGUGACUCAAGAGAAGCC	Chp	[1080-1098] 3'UTR	[1354-1372] 3'UTR	[1071-1089] 3'UTR
83	UAGAUCAUCAGUCACCGA	UUCGGUGACUGAUGAUCUA	Chp	[720-738] 3'UTR	[994-1012] 3'UTR	[711-729] 3'UTR
84	AGUCACACUGCUAGCAAU	AUUUGCUAGCAGUGUGACU	Chp	[1091-1109] 3'UTR	[1365-1383] 3'UTR	[1082-1100] 3'UTR
85	UCAUGACAAGCAUUUUGUG	CACAAAAUGCUUUGUCAUGA		[1035-1053] 3'UTR	[1309-1327] 3'UTR	[1026-1044] 3'UTR
86	AUUCAUUGGGCAUUCU	AAGAAAUGCCACAUCAAU		[984-1002] 3'UTR	[1258-1276] 3'UTR	[975-993] 3'UTR
87	GUUGGAGUUUUUCUGGAGUG	CACUCCAGAAAACUCCAAC	Chp	[943-961] 3'UTR	[1217-1235] 3'UTR	[934-952] 3'UTR
88	CUGUGUUGGAGUUUUUCUGG	CCAGAAAACUCCAACACAG	Chp	[939-957] 3'UTR	[1213-1231] 3'UTR	[930-948] 3'UTR
89	AGUCACCGAAGGUCCUACA	UGUAGGACCUUCGGUGACU	Chp	[729-747] 3'UTR	[1003-1021] 3'UTR	[720-738] 3'UTR
90	UCUUGAGUCACACUGCUAG	CUAGCAGUGUGACUCAAGA	Chp	[1086-1104] 3'UTR	[1360-1378] 3'UTR	[1077-1095] 3'UTR
91	UUAGAUCAUCAGUCACCGA	UCGGUGACUGAUGAUCUA	Chp	[719-737] 3'UTR	[993-1011] 3'UTR	[710-728] 3'UTR
92	GAAACUUAGAUCAUCAGUC	GACUGAUGACUAAGUUUC	Chp	[714-732] 3'UTR	[988-1006] 3'UTR	[705-723] 3'UTR
93	GUGUUGGAGUUUUUCUGGAG	CUCCAGAAAACUCCAACAC	Chp	[941-959] 3'UTR	[1215-1233] 3'UTR	[932-950] 3'UTR
94	UUUUACUGUGUUGGAGUU	AACUCCAACACAGUGAAAA	Chp	[933-951] 3'UTR	[1207-1225] 3'UTR	[924-942] 3'UTR
95	ACCGAAAUGUCCAUUUAU	AUAAAUGGACAUUUACGGU		[859-877] 3'UTR	[1133-1151] 3'UTR	[850-868] 3'UTR
96	GUACCAUGCCCCCAUAGA	UCUAUGCGGGCAUGGUAC	Chp	[631-649] ORF	[905-923] 3'UTR	[622-640] 3'UTR
97	AAAAAGAAAAAACACCGCU	AGCGGUGUUUUUCUUUUUU	Chp	[908-926] 3'UTR	[1182-1200] 3'UTR	[899-917] 3'UTR
98	AGCAUUUUGUGAACUAGGG	CCCUAGUUACACAAAUGCU		[1043-1061] 3'UTR	[1317-1335] 3'UTR	[1034-1052] 3'UTR
99	UGGAGUUUUUCUGGAGUGAG	CUCACUCCAGAAAACUCCA	Chp	[945-963] 3'UTR	[1219-1237] 3'UTR	[936-954] 3'UTR
100	AAAAAAUGUCCUGCCUUUU	AAAAGGCAGGACAUUUUA		[814-832] 3'UTR	[1088-1106] 3'UTR	[805-823] 3'UTR
101	CUGAGAAAACCUCGGGAAAC	GUUUCCGAGGUUUCUCAG		[700-718] 3'UTR	[974-992] 3'UTR	[691-709] 3'UTR
102	GAGAGGUCUCUGAGAAACCU	AGGUUUUCUCAGAGGCCUC	Chp	[692-710] 3'UTR	[966-984] 3'UTR	[683-701] 3'UTR
103	ACCAAGGGCAGUAACCAUG	CAUGGUUACUGCCUCUGGU	Chp	[621-639] ORF	[895-913] 3'UTR	[612-630] 3'UTR
104	ACACUGCUAGCAAAUGGCA	UGCCAUUUCGUAGCAGUGU	Chp	[1095-1113] 3'UTR	[1369-1387] 3'UTR	[1086-1104] 3'UTR
105	CUUUUCACUGUGUUGGAGU	ACUCCAACACAGUGAAAAG	Chp	[932-950] 3'UTR	[1206-1224] 3'UTR	[923-941] 3'UTR
106	ACCGCUUCUGCCUUUCAC	GUGAAAAGGCAGAAGCGGU	Chp	[921-939] 3'UTR	[1195-1213] 3'UTR	[912-930] 3'UTR
107	CUUGAGUCACACUGCUAGC	GCUAGCAGUGUGACUCAAG	Chp	[1087-1105] 3'UTR	[1361-1379] 3'UTR	[1078-1096] 3'UTR
108	GUGAACUAGGGAAAGCUCAG	CUGAGCUUCCUAGUUCAC	Chp	[1051-1069] 3'UTR	[1325-1343] 3'UTR	[1042-1060] 3'UTR
109	AUGUGGGCAUUCUUGCGA	UCGCAAGAAAUGCCACAU		[988-1006] 3'UTR	[1262-1280] 3'UTR	[979-997] 3'UTR
110	UUGGAGUUUUUCUGGAGUGA	UCACUCCAGAAAACUCAA	Chp	[944-962] 3'UTR	[1218-1236] 3'UTR	[935-953] 3'UTR
111	UCACUGUGUUGGAGUUUUC	AAAAACUCCAACACAGUGA	Chp	[936-954] 3'UTR	[1210-1228] 3'UTR	[927-945] 3'UTR
112	AAAAAGAAAAACACCGCUU	AAGCGGUGUUUUUCUUUUU	Chp	[909-927] 3'UTR	[1183-1201] 3'UTR	[900-918] 3'UTR
113	CGUAGAUUAUAGCCUUC	GGGAAGGCAUAUACUACG	Chp	[835-853] 3'UTR	[1109-1127] 3'UTR	[826-844] 3'UTR
114	AGAACCAAGAGAGGCUCUGA	UCAGAGGCCUCUCUGGUUCU	Chp	[685-703] 3'UTR	[959-977] 3'UTR	[676-694] 3'UTR

115	CACUGCUAGCAAUAGGCAG	CUGCCAUUUGCUGAUGCAGUG	Chp	[1096-1114] 3'UTR	[1370-1388] 3'UTR	[1087-1105] 3'UTR
116	AAGCAUUUUGUGAACUAGG	CCUAGUUCACAAAAAGCUU		[1042-1060] 3'UTR	[1316-1334] 3'UTR	[1033-1051] 3'UTR
117	UUUUAAAAAUGUCUGCCU	AGGCAGGACAUUUUUAAA		[811-829] 3'UTR	[1085-1103] 3'UTR	[802-820] 3'UTR
118	CAGAGAGGUCUGAGAAC	GUUUCUCAGAGCCUCUCUG	Chp	[690-708] 3'UTR	[964-982] 3'UTR	[681-699] 3'UTR
119	AUUCUUGCGACCUUCGCA	UGCGAGGCUCGCAAGAAA		[996-1014] 3'UTR	[1270-1288] 3'UTR	[987-1005] 3'UTR
120	CCUUUUACUGUGUUGGAG	CUCCACACAGUGAAAAGG	Chp	[931-949] 3'UTR	[1205-1223] 3'UTR	[922-940] 3'UTR
121	GUCCUGCCUUUAACGUAG	CUACGUAAAAGGCAGGAC		[821-839] 3'UTR	[1095-1113] 3'UTR	[812-830] 3'UTR
122	AUCAGUCACCGAAGGUCCU	AGGACCUUCGGUGACUGAU	Chp	[726-744] 3'UTR	[1000-1018] 3'UTR	[717-735] 3'UTR
123	AACCUCGGGAAACUUAGAU	AUCUAAGUUUCCCGAGGUU		[706-724] 3'UTR	[980-998] 3'UTR	[697-715] 3'UTR
124	AACCAUGCCCGCAUAGAUG	CAUCUAUGCGGGCAUGGUU	Chp	[633-651] ORF	[907-925] 3'UTR	[624-642] 3'UTR
125	AGCUUUUAAAAAUGGUCCUG	CAGGACAUUUUAAAAGCU		[808-826] 3'UTR	[1082-1100] 3'UTR	[799-817] 3'UTR
126	UGGGCUUCUUGAGUCAC	GUGACUCAAGAGAACCCAG	Chp	[1078-1096] 3'UTR	[1352-1370] 3'UTR	[1069-1087] 3'UTR
127	AAAACACCGCUUCUGCCUU	AAGGCAGAAGCGGUGUUUU	Chp	[916-934] 3'UTR	[1190-1208] 3'UTR	[907-925] 3'UTR
128	CAAUUGGCAGAACCAAAGC	GUUUGGUUCUGCCAUUUG	Chp	[1105-1123] 3'UTR	[1379-1397] 3'UTR	[1096-1114] 3'UTR
129	UCUGCCUUUUCACUGUGUU	AAACAGUGAAAAGGCAGA	Chp	[927-945] 3'UTR	[1201-1219] 3'UTR	[918-936] 3'UTR
130	CCACAUACCGUAAAUGUCC	GGACAUUACGGUAGUGGG		[853-871] 3'UTR	[1127-1145] 3'UTR	[844-862] 3'UTR
131	GUUUCGUAGUUUUCAUUU	AAAAGAAAACUACGAAAGC	Chp	[780-798] 3'UTR	[1054-1072] 3'UTR	[771-789] 3'UTR
132	AAAGAACCAAGAGAGGCUU	AGAGCCUCUCUGGUUCUU	Chp	[683-701] 3'UTR	[957-975] 3'UTR	[674-692] 3'UTR
133	GCUAGCAAUGGCAGAAC	GGUUCUGCCAUUUGCUAGC	Chp	[1100-1118] 3'UTR	[1374-1392] 3'UTR	[1091-1109] 3'UTR
134	CUGCCUUUUCACUGUGUUG	CAACACAGUGAAAAGGCAG	Chp	[928-946] 3'UTR	[1202-1220] 3'UTR	[919-937] 3'UTR
135	AAAAGAAAAAACACCGCUUC	GAAGCGGUGUUUUUCUUUU	Chp	[910-928] 3'UTR	[1184-1202] 3'UTR	[901-919] 3'UTR
136	GACAAGCAUUUUGUGAACU	AGUUCACAAAUGCUUGUC		[1039-1057] 3'UTR	[1313-1331] 3'UTR	[1030-1048] 3'UTR
137	UUUAAAAGUCCUGCCUU	AAGGCAGGACAUUUUUAAA		[812-830] 3'UTR	[1086-1104] 3'UTR	[803-821] 3'UTR
138	UCAGUCACCGAAGGUCCUA	UAGGACCUUCGGUGACUGA	Chp	[727-745] 3'UTR	[1001-1019] 3'UTR	[718-736] 3'UTR
139	UGAAAAGAACCAAGAGGGCU	AGCCUCUCUGGUUCUUCA	Chp	[681-699] ORF+3'UTR	[955-973] 3'UTR	[672-690] 3'UTR
140	UGUGGGCAUUUCUUGCGAG	CUCGCAAGAAUGCCCA		[989-1007] 3'UTR	[1263-1281] 3'UTR	[980-998] 3'UTR
141	AGAGCUUUUAAAAAUGUCC	GGACAUUUUUAAAAGCUCU		[806-824] 3'UTR	[1080-1098] 3'UTR	[797-815] 3'UTR
142	GUUUUCUGGAGUGAGCACU	AGUGCUCACUCCAGAAAAC	Chp	[949-967] 3'UTR	[1223-1241] 3'UTR	[940-958] 3'UTR
143	AACACCGCUUCUGCCUUUU	AAAAGGCAGAACGCGGUGUU	Chp	[918-936] 3'UTR	[1192-1210] 3'UTR	[909-927] 3'UTR
144	GAAAAAACACCGCUUCUGCC	GGCAGAACGGGUGUUUUUC	Chp	[914-932] 3'UTR	[1188-1206] 3'UTR	[905-923] 3'UTR
145	AUGUCCUGCCUUUUACGU	ACGUAAAAGGCAGGACAU		[819-837] 3'UTR	[1093-1111] 3'UTR	[810-828] 3'UTR
146	AUUUGUGAACUAGGGAAAG	CUUCCUAGUUCACAAA	Chp	[1046-1064] 3'UTR	[1320-1338] 3'UTR	[1037-1055] 3'UTR
147	GUCCACUUCAUGACAAGCA	UGCUUGUCAUGAAGUCGAC		[1028-1046] 3'UTR	[1302-1320] 3'UTR	[1019-1037] 3'UTR
148	ACUGUGUUGGAGUUUUCUG	CAGAAAACUCCAACACAGU	Chp	[938-956] 3'UTR	[1212-1230] 3'UTR	[929-947] 3'UTR
149	UUCACUGUGUUGGAGUUUU	AAAACUCCAACACAGUGAA	Chp	[935-953] 3'UTR	[1209-1227] 3'UTR	[926-944] 3'UTR
150	UUGAGUCACACUGCUAGCA	UGCUAGCAGUGUGACUAA	Chp	[1088-1106] 3'UTR	[1362-1380] 3'UTR	[1079-1097] 3'UTR
151	ACUUCAUAGACAAGCAUUUU	AAAAGCUUUGUCAUGAAGU		[1032-1050] 3'UTR	[1306-1324] 3'UTR	[1023-1041] 3'UTR
152	GUAAAAAGAAAAAACACCG	CGGUGUUUUUCUUUUUAC	Chp	[906-924] 3'UTR	[1180-1198] 3'UTR	[897-915] 3'UTR
153	GAAAAGAACCAAGAGGGCUC	GAGCCUCUCUGGUUCUUUC	Chp	[682-700] ORF+3'UTR	[956-974] 3'UTR	[673-691] 3'UTR
154	UUCAUGACAAGCAUUUUGU	ACAAAAGCUUUGUCAUGAA		[1034-1052] 3'UTR	[1308-1326] 3'UTR	[1025-1043] 3'UTR
155	CUUCAUGACAAGCAUUUUG	CAAAAGCUUUGUCAUGAAG		[1033-1051] 3'UTR	[1307-1325] 3'UTR	[1024-1042] 3'UTR
156	UUUCUGGAGUGAGCACUCA	UGAGUGCUCACUCCAGAAA	Chp	[951-969] 3'UTR	[1225-1243] 3'UTR	[942-960] 3'UTR
157	CUUCUGCCUUUUACUGUG	CACAGUGAAAAGGCAGAAG	Chp	[925-943] 3'UTR	[1199-1217] 3'UTR	[916-934] 3'UTR
158	ACCUCGGGAAACUUAGAUC	GAUCUAAGUUUCCCGAGGU		[707-725] 3'UTR	[981-999] 3'UTR	[698-716] 3'UTR
159	AGAAAAACACCGCUUCUGC	GCAGAACGGGUGUUUUUCU	Chp	[913-931] 3'UTR	[1187-1205] 3'UTR	[904-922] 3'UTR
160	UUAAACGUAGAUUAUAGCCU	AGGCAUUAUACUACGUAAA	Chp	[831-849] 3'UTR	[1105-1123] 3'UTR	[822-840] 3'UTR
161	CUUAGAUCAUCAGUCACCG	CGGUGACUGAUGAUCUAG	Chp	[718-736] 3'UTR	[992-1010] 3'UTR	[709-727] 3'UTR
162	AGAGGCUCUGAGAAACCUC	GAGGUUUCUCAGAGCCUCU	Chp	[693-711] 3'UTR	[967-985] 3'UTR	[684-702] 3'UTR
163	CACACUGCUAGCAAUAGGC	GCCAUUUGCUAGCAGUGUG	Chp	[1094-1112] 3'UTR	[1368-1386] 3'UTR	[1085-1103] 3'UTR
164	CACAUUCAUGGGGCAUUU	AAAUGCCCACAUAGAAUGUG		[981-999] 3'UTR	[1255-1273] 3'UTR	[972-990] 3'UTR
165	AAGCGCACAUUCAUGUGGG	CCCACAUAGAUGCGCUU		[976-994] 3'UTR	[1250-1268] 3'UTR	[967-985] 3'UTR
166	AAAAACACCGCUUCUGCCU	AGGCAGAACGGGUGUUUUU	Chp	[915-933] 3'UTR	[1189-1207] 3'UTR	[906-924] 3'UTR
167	AGUUUUUCUGGAGUGAGCAC	GUGCUACUCCAGAAAACU	Chp	[948-966] 3'UTR	[1222-1240] 3'UTR	[939-957] 3'UTR
168	UUCUGCCUUUUACACUGUG	ACACAGUGAAAAGGCAGAA	Chp	[926-944] 3'UTR	[1200-1218] 3'UTR	[917-935] 3'UTR
169	CUUUUUAAAUGGUCCUGCC	GGCAGGACAUUUUUAAAAG		[810-828] 3'UTR	[1084-1102] 3'UTR	[801-819] 3'UTR
170	AAAUGGCAGAACCAAAGCU	AGCUUUGGUUCUGCCAUUU	Chp	[1106-1124] 3'UTR	[1380-1398] 3'UTR	[1097-1115] 3'UTR
171	CGCUUCUGCCUUUUACACUG	CAGUGAAAAGGCAGAAGCG	Chp	[923-941] 3'UTR	[1197-1215] 3'UTR	[914-932] 3'UTR

172	AGUAACCAUGCCCGCAUAG	CUAUGCGGGCAUGGUUACU	Chp	[630-648] ORF	[904-922] 3'UTR	[621-639] 3'UTR
173	UCAUGUGGGCAUUUCUUGC	GCAAGAAAUGCCCACAAUGA		[986-1004] 3'UTR	[1260-1278] 3'UTR	[977-995] 3'UTR
174	ACUACCGUAAAUGGUCAUU	AAUUGGACAUUUACGGUAGU		[856-874] 3'UTR	[1130-1148] 3'UTR	[847-865] 3'UTR
175	ACAUUCAUGGGGCAUUUC	GAAAUGCCCACAAUGAAUGU		[982-1000] 3'UTR	[1256-1274] 3'UTR	[973-991] 3'UTR
176	CUUCUCUJUGAGUCACACUG	CAGUGUGACUCAAGAGAAAG	Chp	[1082-1100] 3'UTR	[1356-1374] 3'UTR	[1073-1091] 3'UTR
177	CUAAGCGCACAUUCAUGUG	CACAUGAAUGUGCGCUUAG		[974-992] 3'UTR	[1248-1266] 3'UTR	[965-983] 3'UTR
178	ACACCGCUUCUGCCUUUUC	GAAAAGGCAGAGCGGGUGU	Chp	[919-937] 3'UTR	[1193-1211] 3'UTR	[910-928] 3'UTR
179	GCUUUUAAAAAUGGUCCUGC	GCAGGACAUUUUUAAAAGC		[809-827] 3'UTR	[1083-1101] 3'UTR	[800-818] 3'UTR
180	UCAUCAGUCACCGAAGGU	GACCUUCGGUGACUGAUGA	Chp	[724-742] 3'UTR	[998-1016] 3'UTR	[715-733] 3'UTR
181	UGAACUAGGGAAAGCUCAGG	CCUGAGCUUCCUAGUUCA	Chp	[1052-1070] 3'UTR	[1326-1344] 3'UTR	[1043-1061] 3'UTR
182	UUCAUGUGGGCAUUUCUUG	CAAGAAAUGCCCACAAUGAA		[985-1003] 3'UTR	[1259-1277] 3'UTR	[976-994] 3'UTR
183	AACGUAGAUUAUAGCCUUC	GAAGGCAUUAUACUACGUU	Chp	[833-851] 3'UTR	[1107-1125] 3'UTR	[824-842] 3'UTR
184	AGAGAGGCUCUGAGAAACC	GGUUUCUCAGGCCUCU	Chp	[691-709] 3'UTR	[965-983] 3'UTR	[682-700] 3'UTR
185	AUCAUCAGUCACCGAAGGU	ACCUUCGGUGACUGAUGAU	Chp	[723-741] 3'UTR	[997-1015] 3'UTR	[714-732] 3'UTR
186	UUUGUGAACUAGGGAAAGCU	AGCUUCCUAGUUACACAAA	Chp	[1048-1066] 3'UTR	[1322-1340] 3'UTR	[1039-1057] 3'UTR
187	UUCUGGAGUGAGCACUAC	GUGAGUGCUCACUCCAGAA	Chp	[952-970] 3'UTR	[1226-1244] 3'UTR	[943-961] 3'UTR
188	AACUUAGAUCAUCAGUCAC	GUGACUGAUGAUCUAAGUU	Chp	[716-734] 3'UTR	[990-1008] 3'UTR	[707-725] 3'UTR
189	UUCUCUUGAGUCACACUGC	GCAGUGUGACUCAAGAGAA	Chp	[1083-1101] 3'UTR	[1357-1375] 3'UTR	[1074-1092] 3'UTR
190	UUUUGUGAACUAGGGAAAGC	GCUUCCUAGUUACACAAA	Chp	[1047-1065] 3'UTR	[1321-1339] 3'UTR	[1038-1056] 3'UTR
191	AUUGAAAGAACCGAGAGG	CCUCUCUGGUUCUUJCAAU	Chp	[679-697] ORF+3'UTR	[953-971] 3'UTR	[670-688] 3'UTR
192	AAGCUGUCGACUCAUGAC	GUCAUGAAGUCGACAGCUU	Chp	[1023-1041] 3'UTR	[1297-1315] 3'UTR	[1014-1032] 3'UTR
193	AAAAAAAGAAAAACACCGC	GCGGUGUUUUUCUUUUUUA	Chp	[907-925] 3'UTR	[1181-1199] 3'UTR	[898-916] 3'UTR
194	UACUGGCUUCUUGAGUC	GACUCAAGAGAACGCCAGUA	Chp	[1076-1094] 3'UTR	[1350-1368] 3'UTR	[1067-1085] 3'UTR
195	ACGUAGAUUAUAGCCUUC	GGAGGCAUUAUACUACGU	Chp	[834-852] 3'UTR	[1108-1126] 3'UTR	[825-843] 3'UTR
196	UUUCACUGUGUUGGAGUUU	AAACUCCAAACACAGUGAAA	Chp	[934-952] 3'UTR	[1208-1226] 3'UTR	[925-943] 3'UTR
197	AAUGUCCUGCCUUUUAACG	CGUUAAAAGGCAGGACAUU		[818-836] 3'UTR	[1092-1110] 3'UTR	[809-827] 3'UTR
198	UUUUCUGGAGUGAGCACUC	GAGUGCUCACUCCAGAAAA	Chp	[950-968] 3'UTR	[1224-1242] 3'UTR	[941-959] 3'UTR
199	UGUCGACUUCAUGACAAGC	GCUUGUCAUGAAGUCGACA		[1027-1045] 3'UTR	[1301-1319] 3'UTR	[1018-1036] 3'UTR
200	CAUGUGGGCAUUCUUGCG	CGCAAGAAAUGCCCACAU		[987-1005] 3'UTR	[1261-1279] 3'UTR	[978-996] 3'UTR
201	AAGAAAAACACCGCUUCUG	CAGAAGCGGGUGUUUUUUU	Chp	[912-930] 3'UTR	[1186-1204] 3'UTR	[903-921] 3'UTR
202	UUGUGAACUAGGGAAAGCUC	GAGCUUCCUAGUUCACAA	Chp	[1049-1067] 3'UTR	[1323-1341] 3'UTR	[1040-1058] 3'UTR
203	UGCUAGAAAUGGCAGAAC	GUUCUGCCAUUUGCUAGCA	Chp	[1099-1117] 3'UTR	[1373-1391] 3'UTR	[1090-1108] 3'UTR
204	ACUUAGAUCAUCAGUCACC	GGUGACUGAUGAUCUAGU	Chp	[717-735] 3'UTR	[991-1009] 3'UTR	[708-726] 3'UTR
205	GUCACACUGCUAGCAAUG	CAUUGCUAGCAGUGUGAC	Chp	[1092-1110] 3'UTR	[1366-1384] 3'UTR	[1083-1101] 3'UTR
206	AAUGGCAGAACAAAGCUC	GAGCUUUGGUUCUGCCAUU	Chp	[1107-1125] 3'UTR	[1381-1399] 3'UTR	[1098-1116] 3'UTR
207	AAGAACCCAGAGAGGCUCUG	CAGAGCCUCUCUGGUUCUU	Chp	[684-702] 3'UTR	[958-976] 3'UTR	[675-693] 3'UTR
208	UUGAAAAGAACAGAGAGGC	GCCUCUCUGGUUCUUUCAA	Chp	[680-698] ORF+3'UTR	[954-972] 3'UTR	[671-689] 3'UTR
209	UGCCUUUUACACUGUGUJGG	CCAACACAGUGAAAAGGCA	Chp	[929-947] 3'UTR	[1203-1221] 3'UTR	[920-938] 3'UTR
210	UAAGCGCACAUUCAUGUGG	CCACAUAGUUGUGCGCUUA		[975-993] 3'UTR	[1249-1267] 3'UTR	[966-984] 3'UTR
211	UUUAACGUAGAUUAUAGCC	GGCAUUAUACUACGUAAA	Chp	[830-848] 3'UTR	[1104-1122] 3'UTR	[821-839] 3'UTR