(55) 发明名称
一种低气味聚丙烯材料及其制备方法

(57) 摘要
本发明公开了一种低气味聚丙烯材料及其制备方法。所述低气味聚丙烯材料，包括下述重量份的组分：聚聚丙烯 30-80 份，三元乙丙橡胶 5-20 份，滑石粉 10-30 份，化学除味剂 1-2 份。按配比称取各原料，混合均匀后，熔融混炼，挤出造粒，即可制得。本发明的低气味聚丙烯材料，具有较低的气味，符合汽车内饰件测试气味 PV3900 标准。
1. 低气味聚丙烯材料, 其特征在于, 包括下述重量份的组分: 共聚聚丙烯 30-80 份, 三元乙丙橡胶 5-20 份, 滑石粉 10-30 份, 化学除味剂 1-2 份。

2. 如权利要求 1 的低气味聚丙烯材料, 其特征在于, 所述化学除味剂为 (9Z, 12R)-12- 羟基-9- 十八烯酸锌盐 (2:1) 和 / 或 3, 5- 二叔丁基 -4- 羟基肉桂酸。

3. 如权利要求 2 的低气味聚丙烯材料, 其特征在于, 所述化学除味剂, 由 40-60wt% (9Z, 12R)-12- 羟基-9- 十八烯酸锌盐 (2:1) 和 40-60wt% 3, 5- 二叔丁基 -4- 羟基肉桂酸组成。

4. 如权利要求 1-3 中任一项所述的低气味聚丙烯材料的制备方法, 其特征在于: 按配比称取各原料, 混合均匀后, 熔融混炼、挤出造粒。
一种低气味聚丙烯材料及其制备方法

技术领域
[0001] 本发明涉及一种塑料材料及其制备方法，尤其涉及一种低气味聚丙烯材料及其制备方法。

背景技术
[0002] 聚丙烯，英文缩写为 PP，是 1957 年于意大利首先投产工业生产，是继聚乙烯（PE）之后的又一个重要重要的塑料品种。它有较好的耐热性，在 135℃蒸煮 1000h 也不会被破坏，PP的比热容、热导率皆小于 PE，但耐热性优于 PE。PP 属于非极性聚合物，具有优异的介电性电绝缘性，电性能基本不受环境湿度及电场频率的影响，在允许的工作范围内，温度升高会使电性能降低，它的耐电弧性较高。PP 的耐化学性良好，除强氧化剂对它有侵蚀作用外，其他试剂对它均无作用。
[0003] 随着生活理念的提升，人们对汽车的要求也越来越高。高分子材料及高分子复合材料作为汽车内饰件的主要材料，其气味高低对车内气味有较大的影响。如果车内气味较大，不仅严重影响消费者的乘坐体验，还对车内乘员的健康有不利的影响，因此，各主机厂对车内空气质量也更加重视，对汽车材料尤其是内饰用塑料材料提出了更高的气味特性要求。

发明内容
[0004] 针对现有技术中存在的上述不足，本发明要解决的技术问题之一提供一种低气味聚丙烯材料。
[0005] 本发明要解决的技术问题之二是提供上述低气味聚丙烯材料的制备方法。
[0006] 本发明要解决的技术问题是通过如下技术方案实现的：
[0007] 一种低气味聚丙烯材料，包括下述重量份的组分：共聚聚丙烯 30~80 份，三元乙丙橡胶 5~20 份，滑石粉 10~30 份，化学除味剂 1~2 份。
[0008] 所述化学除味剂为 (9Z, 12R)-12- 羟基 -9- 十八烯酸锌盐 (2:1) 和 / 或 3,5- 二叔丁基 -4- 羟基肉桂酸。
[0009] 优选地，所述化学除味剂，由 40~60wt%(9Z, 12R)-12- 羟基 -9- 十八烯酸锌盐 (2:1) 和 40~60wt%3,5- 二叔丁基 -4- 羟基肉桂酸组成。
[0010] 本发明中化学除味剂能够与带异味的气体小分子发生螯合反应，进而将气味去除。
[0011] 本发明还提供了上述低气味聚丙烯材料的制备方法：按配比称取各原料，混合均匀后，熔融混炼、挤出造粒，即获得所述低气味聚丙烯材料。
[0012] 具体的，可以将各组分在高速混合机中混合均匀，控制转速在 300~400 转 / 分钟，在螺杆挤出机中熔融混炼、挤出造粒，控制机筒温度在 200~220℃，挤出的聚丙烯料在 10~40℃的冷水中冷却成型，即获得所述低气味聚丙烯材料。
[0013] 显然，在本发明中为提高产品的其他性能，还可以适应性地添加其他助剂，如抗老
化剂、阻燃剂、着色剂和抗静电剂等。

[0014] 聚丙烯与三元乙丙橡胶共混可以改善其韧性和平耐寒性，具有较好的抗臭氧、抗氧化和抗侵蚀能力，同时还具有一定的防震效果，配方中加入滑石粉后，可以降低摩擦系数，提高自润滑性。在聚丙烯、三元乙丙橡胶和滑石粉的基础配方中，添加化学除味剂能够与带异味的气体小分子发生螯合反应，进而将气味去除，使得本发明具有较低的气味，符合汽车内饰件测试气味 PV3900 标准，同时拉伸强度、弯曲强度、弯曲模量和冲击强度均较满足要求。

[0015] 本发明的低气味聚丙烯材料，可以用注塑工艺轻易加工成各种形状的零件，可用于制作汽车内饰件。

具体实施方式

[0016] 实施例 1
[0017] 按照表 1 中对应实施例 1 数据称取各原料。
[0018] 将各组分在高速混合机中混合均匀，控制转速在 350 转/分钟，在双螺杆挤出机中熔融混炼、挤出造粒，控制机筒温度在 210℃，挤出的聚丙烯料在 15℃的冷水中冷却成型，即获得所述低气味聚丙烯材料。
[0019] 表 1：低气味聚丙烯材料配方表 单位：公斤

<table>
<thead>
<tr>
<th></th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>对比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>共聚聚丙烯</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>三元乙丙橡胶</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>滑石粉</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>(9Z,12R)-12-羟基-9-十八烯酸锌盐(2:1)</td>
<td>0.8</td>
<td>1.6</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>（cas 号：13040-19-2）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5-二叔丁氧基-4-羟基肉桂酸</td>
<td>0.8</td>
<td>/</td>
<td>1.6</td>
<td>/</td>
</tr>
<tr>
<td>（cas 号：22014-01-3）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0020] 实施例 2-3
[0021] 按照表 1 中对应实施例 2-3 数据称取各原料，采用实施例 1 所述的方法制备所述低气味聚丙烯材料。
[0022] 对比例
[0023] 按照表 1 中对应的对比例数据称取各原料。采用实施例 1 所述的方法制备所述低气味聚丙烯材料。
[0024] 测试例 1
[0025] 表 2：聚丙烯材料性能测试表

<table>
<thead>
<tr>
<th></th>
<th>拉伸强度，Mpa</th>
<th>弯曲强度，Mpa</th>
<th>弯曲模量，Mpa</th>
</tr>
</thead>
</table>

4
测试例 2
采用汽车内饰件测试气味标准 PV3900 进行测试，评价等级如表 3，测试结果见表 4。
表 3：评价等级

<table>
<thead>
<tr>
<th>得分</th>
<th>评价</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>不能感受到的</td>
</tr>
<tr>
<td>2</td>
<td>可感受到的，无妨碍的</td>
</tr>
<tr>
<td>3</td>
<td>可明显感受到的，但没有太大妨碍的</td>
</tr>
<tr>
<td>4</td>
<td>有妨碍的</td>
</tr>
<tr>
<td>5</td>
<td>受较大妨碍的</td>
</tr>
<tr>
<td>6</td>
<td>难以忍受的</td>
</tr>
</tbody>
</table>

表 4：聚丙烯材料气味测试表

<table>
<thead>
<tr>
<th></th>
<th>等级</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>2.5</td>
</tr>
<tr>
<td>实施例 2</td>
<td>3.0</td>
</tr>
<tr>
<td>实施例 3</td>
<td>4.0</td>
</tr>
<tr>
<td>对比例</td>
<td>5.5</td>
</tr>
</tbody>
</table>

由表 4 中实施例 1-3 与对比例比较可见，本发明添加所述化学除味剂后，能够有效降低塑料气味；实施例 1 与实施例 2-3 比较可见，(9Z, 12R)-12- 羟基 -9- 十八烯酸锌盐 (2:1) 和 3, 5- 二叔丁基 -4- 羟基肉桂酸复配使用，对于去除气味有协同增效作用。