(54) 发明名称
色谱法从钩吻醇取物中制备钩吻碱甲

(57) 摘要
本发明公开了一种从钩吻提取物中制备钩吻碱甲的方法，包括步骤：(1) 乙酸乙酯萃取；(2) 硅胶色谱纯化；(3) 反相色谱纯化。本发明是一种制备钩吻碱甲的简化工艺，能极大地提高钩吻碱甲的得率，可用于钩吻碱甲的工业制备。
1. 从钩吻提取物中制备钩吻碱甲的方法，其特征在于：包括步骤：

(1) 乙酸乙酯萃取步骤

将钩吻提取物的水溶液用体积比为 0.5 : 1 ~ 2 : 1 的乙酸乙酯萃取 3 次，合并乙酸乙酯层，减压回收溶剂，得萃取纯化的浸膏 A。

(2) 硅胶色谱纯化步骤

将步骤 (1) 所得浸膏 A 用 100~200 目或 200~300 目柱层析硅胶柱色谱分离，并以体积比为 100 : 1 ~ 25 : 1 的氯仿：甲醇溶液进行洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样后于紫外灯 254nm 下观察，合并含有钩吻碱甲的流份，减压回收溶剂，得浸膏 B。

(3) 反相 C₁₈ 色谱纯化步骤

将步骤 (2) 所得的浸膏 C 反相硅胶柱色谱分离，体积比为 40% ~ 50% 的甲醇：水溶液洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样后于紫外灯 254nm 下观察，合并含有钩吻碱甲的流份，减压回收溶剂，即得纯化的钩吻碱甲。

其中，所述硅胶色谱纯化步骤与反相色谱纯化步骤的顺序能够颠倒。

2. 如权利要求 1 所述的从钩吻提取物中制备钩吻碱甲的方法，其特征在于：所述步骤 (1) 中钩吻提取物中所用的提取溶剂为体积浓度为 70% ~ 95% 的乙醇溶液，钩吻提取物的水溶液浓度相当于生药 0.5g • ml⁻¹ ~ 1.0g • ml⁻¹。

3. 如权利要求 1 所述的从钩吻提取物中制备钩吻碱甲的方法，其特征在于：所述乙酸乙酯萃取中，钩吻提取物的水溶液与乙酸乙酯溶液的体积比为 0.5 : 1 ~ 2 : 1。

4. 如权利要求 1 所述的从钩吻提取物中制备钩吻碱甲的方法，其特征在于：所述硅胶色谱纯化步骤中，硅胶为 100~200 目或 200~300 目柱层析硅胶或薄层层析硅胶，浸膏样品与硅胶重量比为 1 : 30 ~ 1 : 100。

5. 如权利要求 1 所述的从钩吻提取物中制备钩吻碱甲的方法，其特征在于：所述反相色谱纯化步骤中，浸膏样品与 C₁₈ 反相硅胶重量比为 1 : 30 ~ 1 : 50。
色谱法从钩吻醇取物中制备钩吻碱甲

技术领域
[0001] 本发明涉及一种钩吻醇甲 (gelsemine) 的制备方法，特别是涉及一种从钩吻提取物中分离制备钩吻醇甲的方法。

背景技术
[0002] 钩吻 (Gelsemium elegans Benth.) 为马钱科胡蔓藤属植物，分中国钩吻和北美钩吻两种。我国盛产于福建、浙江、江西、广东、湖南等地，又名断肠草。其药用部位为全草。具有祛风攻毒，消肿止痛的功效。
[0003] 钩吻醇类化合物是存在于钩吻中的一类化合物，被证明在肿瘤、镇痛等方面有较好的活性。临床上用于抑制肿瘤细胞生长、治疗神经痛，局部用于扩瞳等作用，可以被认为是钩吻药效的物质基础之一。
[0004] 钩吻醇甲 (Gelsemine) 为自钩吻中分离得到的一种钩吻醇类化合物，其含量较高，具有一定的开发新药的潜力。其药理作用主要包括：其能抑制肿瘤细胞生长，镇痛，镇静等作用。目前技术公开钩吻醇甲的制备方法（专利号：CN 101323618A，公开日 2008 年 12 月 17 日）是将钩吻醇甲用流动相溶解后，采用高速逆流色谱仪进行制备，该制备方法操作繁琐，设备费用昂贵，制备量少，不利于工业化生产。因此，钩吻醇甲分离手段的不足是限制其医药用途的一个主要原因。
[0005]

[0006] 式 1

发明内容
[0007] 本发明要解决的技术问题是提供一种从钩吻提取物中制备钩吻醇甲的方法，以解决现有技术中制备手段繁琐，产率极低的技术问题。
[0008] 为解决上述技术问题，本发明从钩吻提取物中制备钩吻醇甲的方法，包括步骤：
[0009] （1）乙酸乙酯萃取步骤
[0100] 将钩吻提取物的水溶液用体积比为 0.5 : 1 ~ 2 : 1 的乙酸乙酯萃取 3 次，合并乙酸乙酯层，减压回收溶剂，得萃取纯化的浸膏 A。
[0111] （2）硅胶色谱纯化步骤
[0112] 将步骤 (1) 所得浸膏 A 用 100-200 目或 200-300 目柱层析硅胶柱色谱分离，并以体积比为 100 : 1 ~ 25 : 1 氯仿 - 甲醇溶液进行洗脱，将洗脱液薄层硅胶板 (GF254) 点样后于紫外灯 254nm 下观察，合并含有钩吻醇甲的流份，减压回收溶剂，得浸膏 B。
[0013] (3) 反相 C_{18} 色谱纯化步骤

[0014] 将步骤 (2) 所得的浸膏 C 用 30%甲醇溶解后，反相硅胶分离（浸膏样品与 C_{18} 反相硅胶重量比为 1 : 30 ~ 1 : 50），体积比为 40% ~ 50% 的甲醇 - 水溶液洗脱，洗脱液作 TLC 检识，合并含有钩吻碱甲的流份，减压回收溶剂，得钩吻碱甲的纯品。

[0015] 其中，所述硅胶色谱纯化步骤与反相色谱纯化步骤的顺序能够颠倒。

[0016] 所述步骤 (1) 中钩吻提取物中所用的提取溶剂为体积浓度为 70% ~ 95% 的乙醇溶液。

[0017] 采用本发明的方法依次经 (1) 乙酸乙酯萃取；(2) 硅胶色谱纯化；(3) 反相色谱纯化，能极大地提高得率，因此，该方法是一种制备钩吻碱甲的简化工艺，可用于钩吻碱甲的工业制备。

图 1 是钩吻碱甲的 ^1H-NMR 图。
图 2 是钩吻碱甲的 ^13C-NMR 图。
图 3 是钩吻碱甲的 DEPT 图。

具体实施方式

[0018] 下面将结合具体实施例对本发明做进一步详细说明。

[0019] 实施例 1 钩吻碱甲的制备

[0020] 钩吻药材 1kg，去除杂质后粉碎成粗粉，体积浓度为 70%乙醇 5L 回流提取 3 次，每次 2 小时，合并提取液，回收溶剂得提取液约 1L。

[0021] 将提取液用 2L 乙酸乙酯萃取 3 次，合并乙酸乙酯层，减压回收溶剂得浸膏 A 约 40g。

[0022] 将浸膏 A 用硅胶柱色谱分离（硅胶为 100 ~ 200 目或 200 ~ 300 目柱层析硅胶，浸膏样品与硅胶重量比为 1 : 30，硅胶柱规格 Φ100*1000mm），并以体积比为 50 : 1 的氯仿 - 甲醇溶液进行洗脱，将洗脱液薄层硅胶板（GF_{254}) 点样，以体积比为 10 : 1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，减压回收溶剂，得浸膏 B 约 7g。

[0023] 将浸膏 B 用反相 C_{18} 硅胶柱色谱分离（浸膏样品与硅胶重量比为 1 : 40，硅胶柱规格 Φ60*600mm)，体积比为 40% 的甲醇 - 水溶液洗脱，将洗脱液薄层硅胶板（GF_{254}) 点样，以体积比为 10 : 1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，即得纯化的钩吻碱甲 0.26g。

[0024] 最终所得钩吻碱甲常规分析的 NMR 方法鉴定【Heterocycles, 1996, 43: 1015~1020】，并经高效液相检测【Kromasil-C_{18} 柱 (4.6mm*250mm)，检测波长 254nm，流动相水 - 甲醇 (50 : 50)，流速 1mL·min^{-1}，进样量 10μL，柱温 25℃，理论塔板数以钩吻碱甲计不低于 5000】，含量在 96%以上，其得率为 0.026%。

[0025] 实施例 2 钩吻碱甲的制备

[0026] 钩吻药材 1kg，去除杂质后粉碎成粗粉，体积浓度为 95%乙醇 5L 回流提取 3 次，每次 2 小时，合并提取液，回收溶剂得提取液约 2L。

[0027] 将提取液用 1L 乙酸乙酯萃取 3 次，合并乙酸乙酯层，减压回收溶剂得浸膏 A 约 35g。

[0028] 将浸膏 A 用反相 C_{18} 硅胶柱色谱分离（浸膏样品与 C_{18} 硅胶重量比为 1 : 30，硅胶
柱规格 Φ 100×1000mm，体积比为 50% 的甲醇 - 水溶液洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样，以体积比为 10:1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，得浸膏 B 约 3g。

【0029】将浸膏 B 用硅胶柱色谱分离 (硅胶为 100-200 目或 200-300 目柱层析硅胶，浸膏样品与硅胶重量比为 1:100，硅胶柱规格 Φ 60×600mm)，并以体积比为 100:1 的氯仿 - 甲醇溶液进行洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样，以体积比为 10:1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，减压回收溶剂，即得纯化的钩吻碱甲 0.31g。

【0030】最终所得钩吻碱甲常规规公知的 NMR 方法鉴定【Heterocycles, 1996, 43: 1015-1020】，并经高效液相色谱【Kromasil-C18 柱 (4.6mm×250mm)】，检测波长 254nm，流动相甲醇 - 水 (55:45)，流速 1ml·min⁻¹，进样量 10μl，柱温 25℃，理论塔板数以钩吻碱甲计不低于 5000】含量在 98% 以上，其得率为 0.031%。

【0031】实施例 3 钩吻碱甲的制备

【0032】钩吻药材 1kg，去杂质后粉碎成粗粉，体积浓度为 80% 乙醇 5L 回流提取 3 次，每次 2 小时，合并提取液，回收溶剂得提取液约 1L。

【0033】将提取液用 0.5L 乙酸乙酯萃取 3 次，合并乙酸乙酯层，减压回收溶剂得浸膏 A 约 35g。

【0034】将浸膏 A 用硅胶柱色谱分离 (硅胶为 100-200 目或 200-300 目柱层析硅胶，浸膏样品与硅胶重量比为 1:50，硅胶柱规格 Φ 100×1000mm)，并以体积比为 50:1 的氯仿 - 甲醇溶液进行洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样，以体积比为 10:1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，减压回收溶剂，得浸膏 B 约 15g。

【0035】将浸膏 B 用 30% 甲醇溶解后，反相 C₁₈ 硅胶分离 (浸膏样品与 C₁₈ 硅胶重量比为 1:50，硅胶柱规格 Φ 60×600mm)，体积比为 45% 的甲醇 - 水溶液洗脱，将洗脱液薄层硅胶板 (GF₂₅₄) 点样，以体积比为 10:1 的氯仿 - 甲醇溶液展开后置于紫外灯 254nm 下观察，收集含有钩吻碱甲的部分，即得纯化的钩吻碱甲 0.35g。

【0036】最终所得钩吻碱甲常规规公知的 NMR 方法鉴定【Heterocycles, 1996, 43: 1015-1020】，并经高效液相色谱【Kromasil-C18 柱 (4.6mm×250mm)】，检测波长 254nm，流动相甲醇 - 水 (55:45)，流速 1ml·min⁻¹，进样量 10μl，柱温 25℃，理论塔板数以钩吻碱甲计不低于 5000】含量在 97% 以上，其得率为 0.035%。

【0037】以上实验结果表明，本方法用于制备钩吻碱甲，工艺简单，得率在万分之二以上，因此，本发明可用于钩吻碱甲的工业制备。
图 1
图 2