(12) STANDARD PATENT (11) Application No. AU 2012296510 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(43)

(44)

(71)

(72)

(74)

(56)

Title
Mapping in a storage system

International Patent Classification(s)
GOG6F 3/06 (2006.01) GO6F 11/14 (2006.01)

Application No: 2012296510 (22) Date of Filing: 2012.08.16
WIPO No: WO013/025864

Priority Data

Number (32) Date (33) Country
13/211,288 2011.08.16 us
Publication Date: 2013.02.21

Accepted Journal Date: 2017.10.26

Applicant(s)
Pure Storage, Inc.

Inventor(s)
Colgrove, John;Hayes, John;Miller, Ethan;Sandvig, Cary

Agent / Attorney
Fisher Adams Kelly Callinans, L 6 175 Eagle St, BRISBANE, QLD, 4000, AU

Related Art

US 2011/0167221 A1
US 2006/0155946 A1
US 7873619 B1

US 2002/0087544 A1

2013/025864 A1 I 000 OO0 PO 0

<

W

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2013/025864 A1l

21 February 2013 (21.02.2013) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 3/06 (2006.01) GO6F 11/14 (2006.01) kind of national protection available). AE, AG, AL, AM,
. .. i AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCTIUSI012/051059 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
16 August 2012 (16.08.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
-) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(30) Priority Data: ZW.
13/211,288 16 August 2011 (16.08.2011) US
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant (for all designated States except US): PURE kind of regional protection available): ARIPO (BW, GH,
STORAGE, INC. [US/US]; 650 Castro Street, Suite 220, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Mountain View, California 94041 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK
(72) Inventors; and 4 > o > 2 S > i
(75) Tnventors/Applicants (for US only): COLGROVE, John E/[Eé El\iKF IMiR’NiBN%R’PIiRigUﬁ (I)E’RIS’ EE L; ;“II(J . é‘l\\i
[US/US]; 722 Vista Grande Ave., Los Altos, California TR > 0 AI,JI B’F le CF’ C (’} Ci Cl\;[G,A éN ,G > GW,
94024 (US). HAYES, John [CA/US]; 800 High School ML),MR N](E S,N "l:D "fG) > - GA, GN, GQ, >
Way, #330, Mountain View, California 94041 (US). ? T T ’
MILLER, Ethan [US/US]; 203 Kalkar Drive, Santa Cruz, Published:
California 95060 (US). SANDVIG, Cary [US/US]; 284 P .
Donahoe St Palo E\lto) California 9413 03 (%S[)] — with international search report (Art. 21(3))
(74) Agent: RANKIN, Rory, D.; Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C., P.O. Box 398, Austin, Texas
78767-0398 (US).
(54) Title: MAPPING IN A STORAGE SYSTEM
Level “New F”
Level “F-1" :""95316
w ey Pointer
Lol Yoy Pori e
Page “23" 2 398 6 246
Key Pointer w4856 7 | 423
4 512 4-""77" 7 o423 | |
6 246 I » 9 388 Page “317"
9 814 a-="""" Key Pointer
12 921 Page 83" 9 814
\\\ Key Pointer Flatten 1 | 5%
,,,,,,,,,, Page'24 el |11 [o8 e
Key Pointer CA 12 | 543
17 436 -~ __ 13 | 221 / P """" . 318 """""
23 508 T =17 | 614 ‘ Kage)
2% 613 - ey Pointer
29 870 N Page “84” 1; Zzg
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr hIS Sal Key Pointer
R 19 | 493 20 | %02
T \\\ 20 | 902 25 | 508
W 23 | ses .
A9 [711 Page™sty™
Key Pointer |
26 | 613
29 | 870
FIG. 10

(57) Abstract: A system and method for maintaining a mapping table in a data storage subsystem. A data storage subsystem supports
multiple mapping tables. Records within a mapping table are arranged in multiple levels which may be logically ordered by time.
Each level stores pairs of a key value and a pointer value. New records are inserted in a created new (youngest) level. All levels other
than the youngest may be read only. In response to detecting a flattening condition, a data storage controller is configured to identity
a group of two or more adjacent levels of the plurality of levels for flattening which are logically adjacent in time. A new level is cre -
ated and one or more records stored within the group are stored in the new level, in response to detecting each of the one or more re -
cords stores a unique key among keys stored within the group.

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
TITLE: MAPPING IN A STORAGE SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to computer networks and, more particularly, to maintaining a

mapping structure in a storage system.

Description of the Related Art

[0002] As computer memory storage and data bandwidth increase, so does the amount and
complexity of data that businesses daily manage. Large-scale distributed storage systems, such
as data centers, typically run many business operations. A datacenter, which also may be
referred to as a server room, is a centralized repository, either physical or virtual, for the storage,
management, and dissemination of data pertaining to one or more businesses. A distributed
storage system may be coupled to client computers interconnected by one or more networks. If
any portion of the distributed storage system has poor performance, company operations may be
impaired. A distributed storage system therefore maintains high standards for data availability
and high-performance functionality.

[0003] The distributed storage system comprises physical volumes, which may be hard disks,
solid-state devices, storage devices using another storage technology, or partitions of a storage
device. Software applications, such as a logical volume manager or a disk array manager,
provide a means of allocating space on mass-storage arrays. In addition, this software allows a
system administrator to create units of storage groups including logical volumes. Storage
virtualization provides an abstraction (separation) of logical storage from physical storage in
order to access logical storage without end-users identifying physical storage.

[0004] To support storage virtualization, a volume manager performs input/output (I/O)
redirection by translating incoming I/O requests using logical addresses from end-users into new
requests using addresses associated with physical locations in the storage devices. As some
storage devices may include additional address translation mechanisms, such as address
translation layers which may be used in solid state storage devices, the translation from a logical
address to another address mentioned above may not represent the only or final address
translation. Redirection utilizes metadata stored in one or more mapping tables. In addition,

information stored in one or more mapping tables may be used for storage deduplication and

1

2012296510 05 Feb 2016

10

15

20

25

30

35

2

mapping virtual sectors at a specific snapshot level to physical locations. The volume
manager may maintain a consistent view of mapping information for the virtualized
storage. However, a supported address space may be limited by a storage capacity
used to rnaintain a mapping table.

[0005] The technology and mechanisms associated with chosen storage disks
determines the methods used by a volume manager. For example, a volume
manager that provides mappings for a granularity leve! of a hard disk, a hard disk
partition, or a logical unit number (LUN) of an external storage device is limited to
redirecting, locating, removing duplicate data, and so forth, for large chunks of data.
One example of another type of storage disk is a Solid-State Disk (SSD). An 8SD
may emulate a HDD interface, but an SSD utilizes solid-state memory to store
persistent data rather than electromechanical devices as found in a HDD. For
example, an SSD may comprise banks of Flash memory. Accordingly, a large
supported address space by one or more mapping tables may not be achieved in
systems comprising SSDs for storage while utilizing mapping table allocation
algorithms developed for HDDs.

[0006] In view of the above, systems and methods for efficiently performing
storage virtualization for data stored among a plurality of solid-state storage devices

are desired.

SUMMARY OF THE INVENTION |

[0007] Various embodiments of a computer system and methods for efficiently
managing mapping tables in a data storage system are contemplated.

[0008] The present invention provides a computer system including: a data storage
medium; a mapping table organized as a plurality of levels, each level of the plurality
of levels including one or more mapping table entries, where each of the plurality of
entries has a tuple including a key; and a data storage controlier coupled to the data
storage medium; wherein in response to detecting a fiattening condition, the data
storage controlier is configured to: identify a group of two or more levels of the
plurality of levels which are logically adjacent in time; create a new level in the
piurality of levels; insert one or more first records stored within the group into the new
level, in response to detecting each of the one or more first records stores a unique
key among keys stored within the group; and utilize a filtering condition to determine
which of the first records are inserted into the new level, wherein the filtering

condition includes a validity of a given record as determined by the overlay table.

2556608v1

2012296510 05 Feb 2016

10

15

20

25

30

3

[0009] Also contemplated are embodiments the data storage controlter is further
configured to insert one or more second records stored within the group into the new
level, in response to detecting each of the one or more second records corresponds
to two or more records storing a same non-unique key within the group, andisin a
younger level of the two or more adjacent ievels.

[0010] Also contemplated are embodiments wherein only a youngest level of the
plurality of levels may be updated with new mapping table entries. Additionally,
flattening operations on the mapping table need not be synchronized with such
updates to the mapping table.

[0011] These and other embodiments will become apparent upon consideration
of the following description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a generalized block diagram illustrating one embodiment of

network architecture.

[0013] FIG. 2is a generalized block diagram of one embodiment of a mapping
table.

[0014] FIG. 3Ais a generalized block diagram of one embodiment of a primary
index used to access a mapping table.

[0015] FIG. 3B is a generalized block diagram of another embodiment of a
primary index used to access a mapping table.

[0016] FIG. 4 is a generalized block diagram of another embodiment of a primary
index and mapping table.

[0017] FIG. 5A is a generalized flow diagram illustrating one embodiment of a
method for performing a read access.

[0018] FIG. 5B is a generalized flow diagram illustrating one embodiment of a
method for performing a write operation,

[0018] FIG. 6is a generalized block diagram of one embodiment of a multi—node
network with shared mapping tables.

[0020] FIG. 7 is a generalized block diagram of one embodiment of a secondary

index used to access a mapping table.

2556608v1

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
[0021] FIG. 8 is a generalized block diagram of one embodiment of a tertiary index accessing
a mapping table.

[0022] FIG. 9 illustrates onec embodiment of a method that utilizes overlay tables.

[0023] FIG. 10 is a generalized block diagram of one embodiment of a flattening operation
for levels within a mapping table.

[0024] FIG. 11 is a generalized block diagram of another embodiment of a flattening
operation for levels within a mapping table.

[0025] FIG. 12 is a generalized flow diagram illustrating one embodiment of a method for
flattening levels within a mapping table.

[0026] FIG. 13 is a generalized flow diagram illustrating one embodiment of a method for
efficiently processing bulk array tasks within a mapping table.

[0027] FIG. 14 is a generalized block diagram illustrating an embodiment of a data layout
architecture within a storage device.

[0028] While the invention is susceptible to various modifications and alternative forms,
specific embodiments are shown by way of example in the drawings and are herein described in
detail. It should be understood, however, that drawings and detailed description thereto are not
intended to limit the invention to the particular form disclosed, but on the contrary, the invention
is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the

present invention as defined by the appended claims.

DETAILED DESCRIPTION

[0029] 1In the following description, numerous specific details are set forth to provide a
thorough understanding of the present invention. However, one having ordinary skill in the art
should recognize that the invention might be practiced without these specific details. In some
instances, well-known circuits, structures, signals, computer program instruction, and techniques
have not been shown in detail to avoid obscuring the present invention.

[0030] Referring to FIG. 1, a generalized block diagram of one embodiment of a network
architecture 100 is shown. As described further below, one embodiment of network architecture
100 includes client computer systems 110a-110b interconnected to one another through a
network 180 and to data storage arrays 120a-120b. Network 180 may be coupled to a second
network 190 through a switch 140. Client computer system 110c is coupled to client computer
systems 110a-110b and data storage arrays 120a-120b via network 190. In addition, network 190

may be coupled to the Internet 160 or otherwise outside network through switch 150.

4

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
[0031] It is noted that in alternative embodiments, the number and type of client computers
and servers, switches, networks, data storage arrays, and data storage devices is not limited to

those shown in FIG. 1. At various times one or more clients may operate offline. In addition,
during operation, individual client computer connection types may change as users connect,
disconnect, and reconnect to network architecture 100. Further, while the present description
generally discusses network attached storage, the systems and methods described herein may also
be applied to directly attached storage systems and may include a host operating System
configured to perform one or more aspects of the described methods. Numerous such alternatives
are possible and are contemplated. A further description of each of the components shown in
FIG. 1 is provided shortly. First, an overview of some of the features provided by the data
storage arrays 120a-120b is described.

[0032] In the network architecture 100, each of the data storage arrays 120a-120b may be
used for the sharing of data among different servers and computers, such as client computer
systems 110a-110c. In addition, the data storage arrays 120a-120b may be used for disk
mirroring, backup and restore, archival and retrieval of archived data, and data migration from
one storage device to another. In an alternate embodiment, one or more client computer systems
110a-110c may be linked to one another through fast local area networks (LANS) in order to
form a cluster. Such clients may share a storage resource, such as a cluster shared volume
residing within one of data storage arrays 120a-120b.

[0033] Each of the data storage arrays 120a-120b includes a storage subsystem 170 for data
storage. Storage subsystem 170 may comprise a plurality of storage devices 176a-176m. These
storage devices 176a-176m may provide data storage services to client computer systems 110a-
110c. Each of the storage devices 176a-176m uses a particular technology and mechanism for
performing data storage. The type of technology and mechanism used within each of the storage
devices 176a-176m may at least in part be used to determine the algorithms used for controlling
and scheduling read and write operations to and from each of the storage devices 176a-176m.
For example, the algorithms may locate particular physical locations corresponding to the
operations. In addition, the algorithms may perform input/output (I/O) redirection for the
operations, removal of duplicate data in the storage subsystem 170, and support one or more
mapping tables used for address redirection and deduplication.

[0034] The logic used in the above algorithms may be included in one or more of a base
operating system (OS) 132, a volume manager 134, within a storage subsystem controller 174,

control logic within each of the storage devices 176a-176m, or otherwise. Additionally, the

5

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
logic, algorithms, and control mechanisms described herein may comprise hardware and/or
software.
[0035] Each of the storage devices 176a-176m may be configured to receive read and write
requests and comprise a plurality of data storage locations, each data storage location being
addressable as rows and columns in an array. In one embodiment, the data storage locations
within the storage devices 176a-176m may be arranged into logical, redundant storage containers
or RAID arrays (redundant arrays of inexpensive/independent disks).
[0036] In some embodiments, each of the storage devices 176a-176m may utilize technology
for data storage that is different from a conventional hard disk drive (HDD). For example, one or
more of the storage devices 176a-176m may include or be further coupled to storage consisting
of solid-state memory to store persistent data. In other embodiments, one or more of the storage
devices 176a-176m may include or be further coupled to storage using other technologies such as
spin torque transfer technique, magnetoresistive random access memory (MRAM) technique,
shingled disks, memristors, phase change memory, or other storage technologies. These different
storage techniques and technologies may lead to differing 1/0 characteristics between storage
devices.
[0037] In onc embodiment, the included solid-state memory comprises solid-state drive (SSD)
technology. The differences in technology and mechanisms between HDD technology and SDD
technology may lead to differences in input/output (I/O) characteristics of the data storage
devices 176a-176m. A Solid-State Disk (SSD) may also be referred to as a Solid-State Drive.
Without moving parts or mechanical delays, an SSD may have a lower read access time and
latency than a HDD. However, the write performance of SSDs is generally slower than the read
performance and may be significantly impacted by the availability of free, programmable blocks
within the SSD.
[0038] Storage array efficiency may be improved by creating a storage virtualization layer
between user storage and physical locations within storage devices 176a-176m. In one
embodiment, a virtual layer of a volume manager is placed in a device-driver stack of an
operating system (OS), rather than within storage devices or in a network. Many storage arrays
perform storage virtualization at a coarse-grained level to allow storing of virtual-to-physical
mapping tables entirely in memory. However, such storage arrays are unable to integrate
features such as data compression, deduplication and copy-on-modify operations. Many file

systems support fine-grained virtual-to-physical mapping tables, but they do not support large

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
storage arrays, such as device groups 173a-173m. Rather, a volume manager or a disk array
manager is used to support device groups 173a-173m.

[0039] In one embodiment, one or more mapping tables may be stored in the storage devices
176a-176m, rather than memory, such as RAM 172, memory medium 130 or a cache within
processor 122. The storage devices 176a-176 may be SSDs utilizing Flash memory. The low
read access and latency times for SSDs may allow a small number of dependent read operations
to occur while servicing a storage access request from a client computer. The dependent read
operations may be used to access one or more indexes, one or more mapping tables, and user data
during the servicing of the storage access request.

[0040] In one example, 1/O redirection may be performed by the dependent read operations.
In another example, inline deduplication may be performed by the dependent read operations. In
yet another example, bulk array tasks, such as a large copy, move, or zeroing operation, may be
performed entirely within a mapping table rather than accessing storage locations holding user
data. Such a direct map manipulation may greatly reduce I/O traffic and data movement within
the storage devices 176a-176m. The combined time for both servicing the storage access request
and performing the dependent read operations from SSDs may be less than servicing a storage
access request from a spinning HDD.

[0041] In addition, the information within a mapping table may be compressed. A particular
compression algorithm may be chosen to allow identification of individual components, such as a
key within a record among multiple records. Therefore, a search for a given key among multiple
compressed records may occur. If a match is found, only the matching record may be
decompressed. Compressing the tuples within records of a mapping table may further enable
fine-grained level mapping. This fine-grained level mapping may allow direct map manipulation
as an alternative to common bulk array tasks. Further details concerning efficient storage
virtualization will be discussed below.

[0042] Again, as shown, network architecture 100 includes client computer systems 110a-
110c interconnected through networks 180 and 190 to one another and to data storage arrays
120a-120b. Networks 180 and 190 may include a variety of techniques including wireless
connection, direct local area network (LAN) connections, wide area network (WAN) connections
such as the Internet, a router, storage area network, Ethernet, and others. Networks 180 and 190
may comprise one or more LANs that may also be wireless. Networks 180 and 190 may further
include remote direct memory access (RDMA) hardware and/or software, transmission control

protocol/internet protocol (TCP/IP) hardware and/or software, router, repeaters, switches, grids,

7

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
and/or others. Protocols such as Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI,
and so forth may be used in networks 180 and 190. Switch 140 may utilize a protocol
associated with both networks 180 and 190. The network 190 may interface with a set of
communications protocols used for the Internet 160 such as the Transmission Control Protocol
(TCP) and the Internet Protocol (IP), or TCP/IP. Switch 150 may be a TCP/IP switch.

[0043] Client computer systems 110a-110c are representative of any number of stationary or
mobile computers such as desktop personal computers (PCs), servers, server farms, workstations,
laptops, handheld computers, servers, personal digital assistants (PDAs), smart phones, and so
forth. Generally speaking, client computer systems 110a-110c include one or more processors
comprising one or more processor cores. Each processor core includes circuitry for executing
instructions according to a predefined general-purpose instruction set. For example, the x86
instruction set architecture may be selected. Alternatively, the Alpha®, PowerPC®, SPARC®,
or any other general-purpose instruction set architecture may be selected. The processor cores
may access cache memory subsystems for data and computer program instructions. The cache
subsystems may be coupled to a memory hierarchy comprising random access memory (RAM)
and a storage device.

[0044] Each processor core and memory hierarchy within a client computer system may be
connected to a network interface. In addition to hardware components, each of the client
computer systems 110a-110c may include a base operating system (OS) stored within the
memory hierarchy. The base OS may be representative of any of a variety of operating systems,
such as, for example, MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®, Linux®, Solaris®,
AIX®, DART, or otherwise. As such, the base OS may be operable to provide various services
to the end-user and provide a software framework operable to support the execution of various
programs. Additionally, each of the client computer systems 110a-110c may include a
hypervisor used to support virtual machines (VMs). As is well known to those skilled in the art,
virtualization may be used in desktops and servers to fully or partially decouple software, such as
an OS, from a system’s hardware. Virtualization may provide an end-user with an illusion of
multiple OSes running on a same machine each having its own resources and access to logical
storage entities (e.g., LUNSs) built upon the storage devices 176a-176m within each of the data
storage arrays 120a-120b.

[0045] Each of the data storage arrays 120a-120b may be used for the sharing of data among
different servers, such as the client computer systems 110a-110c. Each of the data storage arrays

120a-120b includes a storage subsystem 170 for data storage. Storage subsystem 170 may

8

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
comprise a plurality of storage devices 176a-176m. Each of these storage devices 176a-176m
may be an SSD. A controller 174 may comprise logic for handling received read/write requests.
A random-access memory (RAM) 172 may be used to batch operations, such as received write

requests. In various embodiments, when batching write operations (or other operations) non-
volatile storage (¢.g., NVRAM) may be used.

[0046] The base OS 132, the volume manager 134 (or disk array manager 134), any OS
drivers (not shown) and other software stored in memory medium 130 may provide functionality
providing access to files and the management of these functionalities. The base OS 132 may be a
storage operating system such as NetApp Data ONTAP® or otherwise. The base OS 132 and the
OS drivers may comprise program instructions stored on the memory medium 130 and
executable by processor 122 to perform one or more memory access operations in storage
subsystem 170 that correspond to received requests. The system shown in FIG. 1 may generally
include one or more file servers and/or block servers.

[0047] Each of the data storage arrays 120a-120b may use a network interface 124 to connect
to network 180. Similar to client computer systems 110a-110c, in one embodiment, the
functionality of network interface 124 may be included on a network adapter card. The
functionality of network interface 124 may be implemented using both hardware and software.
Both a random-access memory (RAM) and a read-only memory (ROM) may be included on a
network card implementation of network interface 124. One or more application specific
integrated circuits (ASICs) may be used to provide the functionality of network interface 124.
[0048] In addition to the above, each of the storage controllers 174 within the data storage
arrays 120a-120b may support storage array functions such as snapshots, replication and high
availability. In addition, each of the storage controllers 174 may support a virtual machine
environment that comprises a plurality of volumes with each volume including a plurality of
snapshots. In one example, a storage controller 174 may support hundreds of thousands of
volumes, wherein each volume includes thousands of snapshots. In one embodiment, a volume
may be mapped in fixed-size sectors, such as a 4-kilobyte (KB) page within storage devices
176a-176m. In another embodiment, a volume may be mapped in variable-size sectors such as
for write requests. A volume ID, a snapshot ID, and a sector number may be used to identify a
given volume.

[0049] An address translation table may comprise a plurality of entries, wherein each entry
holds a virtual-to-physical mapping for a corresponding data component. This mapping table

may be used to map logical read/write requests from each of the client computer systems 110a-

9

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

110c to physical locations in storage devices 176a-176m. A “physical” pointer value may be
read from the mapping table during a lookup operation corresponding to a received read/write
request. This physical pointer value may then be used to locate a physical location within the
storage devices 176a-176m. It is noted the physical pointer value may be used to access another
mapping table within a given storage device of the storage devices 176a-176m. Consequently,
one or more levels of indirection may exist between the physical pointer value and a target
storage location.

[0050] In another embodiment, the mapping table may comprise information used to
deduplicate data (deduplication table related information). The information stored in the
deduplication table may include mappings between one or more calculated hash values for a
given data component and a physical pointer to a physical location in one of the storage devices
176a-176m holding the given data component. In addition, a length of the given data component
and status information for a corresponding entry may be stored in the deduplication table.

[0051] Turning now to FIG. 2, a generalized block diagram of one embodiment of a mapping
table is shown. As discussed earlier, one or more mapping tables may be used for 1/0 redirection
or translation, deduplication of duplicate copies of user data, volume snapshot mappings, and so
forth. Mapping tables may be stored in the storage devices 176a-176m. The diagram shown in
FIG. 2 represents a logical representation of one embodiment of the organization and storage of
the mapping table. Each level shown may include mapping table entries corresponding to a
different period of time. For example, level “1” may include information older than information
stored in level “2”. Similarly, level “2” may include information older than information stored in
level “3”. The information stored in the records, pages and levels shown in FIG. 2 may be stored
in a random-access manner within the storage devices 176a-176m. Additionally, copies of
portions or all of a given mapping table entries may be stored in RAM 172, in buffers within
controller 174, in memory medium 130, and in one or more caches within or coupled to
processor 122. In various embodiments, a corresponding index may be included in each level
for mappings which are part of the level (as depicted later in FIG. 4). Such an index may include
an identification of mapping table entries and where they are stored (e.g., an identification of the
page) within the level. In other embodiments, the index associated with mapping table entries
may be a distinct entity, or entities, which are not logically part of the levels themselves.
[0052] Generally speaking, ecach mapping table comprises a set of rows and columns. A
single record may be stored in a mapping table as a row. A record may also be referred to as an

entry. In one embodiment, a record stores at least one tuple including a key. Tuples may (or may

10

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

not) also include data fields including data such as a pointer used to identify or locate data
components stored in storage subsystem 170. It is noted that in various embodiments, the
storage subsystem may include storage devices (e.g., SSDs) which have internal mapping
mechanisms. In such embodiments, the pointer in the tuple may not be an actual physical address
per se. Rather, the pointer may be a logical address which the storage device maps to a physical
location within the device. Over time, this internal mapping between logical address and physical
location may change. In other embodiments, records in the mapping table may only contain key
fields with no additional associated data fields. Attributes associated with a data component
corresponding to a given record may be stored in columns, or fields, in the table. Status
information, such as a valid indicator, a data age, a data size, and so forth, may be stored in
fields, such as Field0 to FicldN shown in FIG. 2. In various embodiments, cach column stores
information corresponding to a given type. In some embodiments, compression techniques may
be utilized for selected fields which in some cases may result in fields whose compressed
representation is zero bits in length.

[0053] A key is an entity in a mapping table that may distinguish one row of data from
another row. Each row may also be referred to as an entry or a record. A key may be a single
column, or it may consist of a group of columns used to identify a record. In some embodiments,
a key may correspond to a range of values rather than to a single value. A key corresponding to a
range may be represented as a start and end of a range, or as a start and length, or in other ways.
The ranges corresponding to keys may overlap with other keys, either ranges or individual
values. In one example, an address translation mapping table may utilize a key comprising a
volume identifier (ID), a logical or virtual address, a snapshot ID, a sector number, and so forth.
A given received read/write storage access request may identify a particular volume, sector and
length. A sector may be a logical block of data stored in a volume. Sectors may have different
sizes on different volumes. The address translation mapping table may map a volume in sector-
size units.

[0054] A volume identifier (ID) may be used to access a volume table that conveys a volume
ID and a corresponding current snapshot ID. This information along with the received sector
number may be used to access the address translation mapping table. Therefore, in such an
embodiment, the key value for accessing the address translation mapping table is the
combination of the volume ID, snapshot ID, and the received sector number. In one
embodiment, the records within the address translation mapping table are sorted by volume ID,

followed by the sector number and then by the snapshot ID. This ordering may group together

11

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
different versions of data components in different snapshots. Therefore, during a lookup for a
storage access read request, a corresponding data component may be found with fewer read

operations to the storage devices 176a-176m.

[0055] The address translation mapping table may convey a physical pointer value that
indicates a location within the data storage subsystem 170 storing a data component
corresponding to the received data storage access request. The key value may be compared to
one or more key values stored in the mapping table. In the illustrated example, simpler key
values, such as “07, “2”, “12” and so forth, are shown for ease of illustration. The physical
pointer value may be stored in one or more of the fields in a corresponding record.

[0056] The physical pointer value may include a segment identifier (ID) and a physical
address identifying the location of storage. A segment may be a basic unit of allocation in each
of the storage devices 176a-176m. A segment may have a redundant array of independent device
(RAID) level and a data type. During allocation, a segment may have one or more of the storage
devices 176a-176m selected for corresponding storage. In one embodiment, a segment may be
allocated an equal amount of storage space on each of the one or more selected storage devices of
the storage devices 176a-176m. The data storage access request may correspond to multiple
sectors, which may result in multiple parallel lookups. A write request may be placed in an
NVRAM buffer, such as RAM 172, and a write completion acknowledgment may be sent to a
corresponding client computer of the client computers 110a-110c. At a later time, an
asynchronous process may flush the buffered write requests to the storage devices 176a-176m.
[0057] In another example, the mapping table shown in FIG. 2 may be a deduplication table.
A deduplication table may utilize a key comprising a hash value determined from a data
component associated with a storage access request. The initial steps of a deduplication
operation may be performed concurrently with other operations, such as a read/write request, a
garbage collection operation, a trim operation, and so forth. For a given write request, the data
sent from one of the client computer systems 110a-110c may be a data stream, such as a byte
stream. As is well known to those skilled in the art, a data stream may be divided into a
sequence of fixed-length or variable-length chunks. A chunking algorithm may perform the
dividing of the data stream into discrete data components which may be referred to as “chunks”.
A chunk may be a sub-file content-addressable unit of data. In various embodiments, a table or
other structure may be used to determine a particular chunking algorithm to use for a given file
type or type of data. . A file's type may be determined by referring to its file name extension,

separate identifying information, the content of the data itself, or otherwise. The resulting

12

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
chunks may then be stored in one of the data storage arrays 120a-120b to allow for sharing of
the chunks. Such chunks may be stored separately or grouped together in various ways.

[0058] In various embodiments, the chunks may be represented by a data structure that allows
reconstruction of a larger data component from its chunks (e.g. a particular file may be
reconstructed based on one or more smaller chunks of stored data). A corresponding data
structure may record its corresponding chunks including an associated calculated hash value, a
pointer (physical and/or logical) to its location in one of the data storage arrays 120a-120b, and
its length. For each data component, a deduplication application may be used to calculate a
corresponding hash value. For example, a hash function, such as Message-Digest algorithm 5
(MDS5), Secure Hash Algorithm (SHA), or otherwise, may be used to calculate a corresponding
hash value. In order to know if a given data component corresponding to a received write
request is already stored in one of the data storage arrays 120a-120b, bits of the calculated hash
value (or a subset of bits of the hash value) for the given data component may be compared to
bits in the hash values of data components stored in one or more of the data storage arrays 120a-
120b.

[0059] A mapping table may comprise one or more levels as shown in FIG. 2. A mapping
table may comprise 16 to 64 levels, although another number of levels supported within a
mapping table is possible and contemplated. In FIG. 2, three levels labeled Level “17, Level “2”
and Level “N” are shown for ease of illustration. Each level within a mapping table may include
one or more partitions. In one embodiment, each partition is a 4 kilo-byte (KB) page. For
example, Level “N” is shown to comprise pages 210a-210g, Level “2” comprises pages 210h-
210j and Level “1” comprises pages 210k-210n. It is possible and contemplated other partition
sizes may also be chosen for each of the levels within a mapping table. In addition, it is possible
one or more levels have a single partition, which is the level itself.

[0060] In one embodiment, multiple levels within a mapping table are sorted by time. For
example, in FIG. 2, Level “1” may be older than Level “2”. Similarly, Level “2” may be older
than Level “N”. In one embodiment, when a condition for inserting one or more new records in
the mapping table is detected, a new level may be created. In various embodiments, when a new
level is created the number/designation given to the new level is greater than numbers given to
levels that preceded the new level in time. For example, if the most recent level created is
assigned the value 8, then a newly created level may be assigned the value 9. In this manner a
temporal relationship between the levels may be established or determined. As may be

appreciated, numerical values need not be strictly sequential. Additionally, alternative

13

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
embodiments may reverse the numbering scheme such that newer levels have smaller numerical
designations. Further, other embodiments may utilize non-numerical designations to distinguish

between levels. Numerous such embodiments are possible and are contemplated. Each next
older level has a label decremented by one from a label integer value of a previous younger level.
A separate table not shown may be used to logically describe the mapping table. For example,
cach entry of the separate table may include a given level ID and a list of the page IDs stored
within the given level ID.

[0061] By creating a new highest level for an insertion of new records, the mapping table is
updated by appending the new records. In one embodiment, a single level is created as a new
highest level and each of the new records is inserted into the single level. In another
embodiment, the new records may be searched for duplicate keys prior to insertion into the
mapping table. A single level may be created as a new highest level. When a given record
storing a duplicate key is found, each of the records buffered ahead of the given record may be
inserted into the single level. The new records may be buffered in a manner to preserve memory
ordering, such as in-order completion of requests. Then another single level may be created and
the remainder of the new records may be inserted into this other single level unless another
record storing a duplicate key is found. If such a record is found, then the steps are repeated.
Existing records within the mapping table storing a same key value as one of the new records are
not edited or overwritten in-place by the insertion of the new records.

[0062] Although the sizes of the levels are illustrated as increasing with lower levels being
larger than newer levels, the higher levels may alternate between being larger or smaller than
neighboring levels. The number of newer records to insert into the mapping table may vary over
time and create the fluctuating level sizes. The lower levels may be larger than newer levels due
to flattening of the lower levels. Two or more lower levels may be flattened into a single level
when particular conditions are detected. Further details are provided later.

[0063] With no edits in-place for the records stored in the mapping table, newer records
placed in higher levels may override records storing a same key value located in the lower levels.
For example, when the mapping table is accessed by a given key value, one or more levels may
be found to store a record holding a key value matching the given key value. In such a case, the
highest level of the one or more levels may be chosen to provide the information stored in its
corresponding record as a result of the access. Further details are provided later. In addition,
further details about the detected conditions for inserting one or more new records into the

mapping table and the storage of information are provided later.

14

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
[0064] In one embodiment, entries within a given page may be sorted by key. For example,
the entries may be sorted in ascending order according to a key included in the entry.

Additionally, in various embodiments, the pages within a level may be sorted according to any
desired sort order. In various embodiments, the pages within a level may also be sorted (e.g.,
according to key values or otherwise). In the example of FIG. 2, page 210a of Level N includes
records sorted according to key value in ascending order. In various embodiments, one or more
columns may be used to store key values. In the example of FIG. 2, two columns or fields are
shown in each tuple for storing key values. Utilizing such key values, the records then may be
sorted in a desired order. Sorting may be performed based on any of the key values for a records,
or any combination of key values for the record. In the example shown, the first record stores a
key value including 0 and 8 stored in two columns, and the last record stores a key value
including 12 and 33. In this illustrated example, each sorted record in page 210a between the
first and the last record stores a key value between 0 and 12 in the first column and the records
are arranged in a manner to store key values based (at least in part) on the first column in an
ascending order from 0 to 12. Similarly, page 210b includes sorted records, wherein the first
record stores key values of 12 and 39 and the last record stores key values of 31 and 19. In this
illustrated example, each sorted record in page 210b between the first and the last record stores a
key value between 12 and 31 in the first column and the records are arranged in a manner to
store key values in an ascending order from 12 to 31.

[0065] In addition to the above, the pages within Level N are sorted according to a desired
order. In various embodiments, pages within a level may be sorted in a manner that reflects the
order in which entries within a page are sorted. For example, pages within a level may be sorted
according to key values in ascending order. As the first key value in page 210b is greater than the
last key value in page 210a, page 210b follows page 210a in the sort order. Page 210g would
then include entries whose key values are greater than those included in pages 210a-210f (not
shown). In this manner, all entries within a level are sorted according to a common scheme. The
entries are simply subdivided into page, or other, size units. As may be appreciated, other sorting
schemes may be used as desired.

[0066] Referring now to FIG. 3A, a generalized block diagram of one embodiment of a
primary index used to access a mapping table is shown. A key generator 304 may receive one or
more requester data inputs 302. In one embodiment, a mapping table is an address translation
directory table. A given received read/write request may identify a particular volume, sector and

length. The key generator 304 may produce a query key value 306 that includes a volume

15

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
identifier (ID), a logical or virtual address, a snapshot ID, and a sector number. Other
combinations are possible and other or additional values may be utilized as well. Different

portions of the query key value 306 may be compared to values stored in columns that may or
may not be contiguous within the mapping table. In the shown example, a key value of “22” is
used for ease of illustration.

[0067] As described earlier, both a chunking algorithm and/or a segmenting algorithm
associated with the key generator 304 may receive data 302 corresponding to a storage access
request. These algorithms may produce one or more data components and select a hash function
to calculate a corresponding hash value, or query key value 306, for each data component. The
resulting hash value may be used to index the deduplication table.

[0068] A primary index 310, as shown in FIG. 3A, may provide location identifying
information for data stored in the storage devices 176a-176m. For example, referring again to
FIG. 2, a corresponding primary index 310 (or portion thereof) may be logically included in each
of level “17, level “2” and level “N”. Again, each level and each corresponding primary index
may be physically stored in a random-access manner within the storage devices 176a-176m.
[0069] In one embodiment, the primary index 310 may be divided into partitions, such as
partitions 312a-312b. In one embodiment, the size of the partitions may range from a 4 kilobyte
(KB) page to 256 KB, though other sizes are possible and are contemplated. Each entry of the
primary index 310 may store a key value. In addition, each entry may store a corresponding
unique virtual page identifier (ID) and a level ID corresponding to the key value. Each entry
may store corresponding status information such as validity information. When the primary
index 310 is accessed with a query key value, the entries within the index 310 may be searched
for one or more entries which match, or otherwise correspond to, the key value. Information from
the matching entry may then be used to locate and retrieve a mapping which identifies a storage
location which is the target of a received read or write request. In other words, the index 310
identifies the locations of mappings. In one embodiment, a hit in the index provides a
corresponding page ID identifying a page within the storage devices 176a-176m storing both the
key value and a corresponding physical pointer value. The page identified by the corresponding
page ID may be searched with the key value to find the physical pointer value.

[0070] In the example of FIG. 3A, a received request corresponds to a key “22”. This key is
then used to access index 310. A search of the index 310 results on a hit to an entry within
partition 312b. The matching entry in this case include information such as — page 28, and level

3. Based upon this result, the desired mapping for the request is found in a page identified as

16

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

page 28 within level 3 of the mapping tables. Using this information, an access may then be
made to the mapping tables to retrieve the desired mapping. If an access to the primary index
310 requires an access to storage, then at least two storage accesses would be required in order to
obtain a desired mapping. Therefore, in various embodiments as described below, portions of the
primary index are cached, or otherwise stored in a relatively fast access memory, in order to
eliminate one access to the storage devices. In various embodiments, the entire primary index for
the mapping tables is cached. In some embodiments, where the primary index has become too
large to cache in its entirety, or is otherwise larger than desired, secondary, tertiary, or other
index portions may be used in the cache to reduce its size. Secondary type indices are discussed
below. In addition to the above, in various embodiments mapping pages corresponding to recent
hits are also cached for at least some period of time. In this manner, processes which exhibit
accesses with temporal locality can be serviced more rapidly (i.e., recently accessed locations
will have their mappings cached and readily available).

[0071] Referring now to FIG. 3B, a generalized block diagram of one embodiment of a
cached primary index used to access a mapping table is shown. Circuit and logic portions
corresponding to those of FIG. 3A are numbered identically. The cached primary index 314 may
include copies of information stored in each of the primary indexes 310 for the multiple levels in
a mapping table. The primary index 314 may be stored in one or more of RAM 172, buffers
within controller 174, memory medium 130 and caches within processor 122. In one
embodiment, the primary index 314 may be sorted by key value, though sorting otherwise is
possible. The primary index 314 may also be divided into partitions, such as partitions 316a-
316b. In one embodiment, the size of the partitions 316a-316b may be a same size as the
partitions 312a-312b within the primary index 310.

[0072] Similar to the primary index 310, each entry of the primary index 314 may store one or
more of a key value, a corresponding unique virtual page identifier (ID), a level ID
corresponding to the key value, and status information such as valid information. When the
primary index 314 is accessed with a query key value 306, it may convey a corresponding page
ID identifying a page within the storage devices 176a-176m storing both the key value and a
corresponding pointer value. The page identified by the corresponding page ID may be searched
with the key value to find the pointer value. As shown, the primary index 314 may have multiple
records storing a same key value. Therefore, multiple hits may result from the search for a given
key value. In one embodiment, a hit with a highest value of a level ID (or whatever indicator is

used to identify a youngest level or most recent entry) may be chosen. This selection of one hit

17

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
from multiple hits may be performed by merge logic not shown here. A further description of
the merge logic is provided later.
[0073] Turning now to FIG. 4, a gencralized block diagram of another embodiment of a
mapping table and primary index used to access the mapping table is shown. Circuit and logic
portions corresponding to those of FIG. 3A are numbered identically. Mapping table 340 may
have a similar structure as the mapping table shown in FIG. 2. However, storage of a
corresponding primary index 310 for each level is now shown. A copy of one or more of the
primary index portions 310a-310i may be included in index copies 330 (e.g., cached copies).
Copies 330 may generally correspond to the cached index depicted in FIG. 3B. The information
in index copies 330 may be stored in RAM 172, buffers within controller 174, memory medium
130, and caches within processor 122. In the embodiment shown, the information in primary
indexes 310a-3101 may be stored with the pages of mappings in storage devices 176a-176m. Also
shown is a secondary index 320 which may be used to access a primary index, such as primary
index 3101 shown in the diagram. Similarly, accessing and updating the mapping table 340 may
occur as described earlier.
[0074] Mapping table 340 comprises multiple levels, such as Level “1” to Level “N”. In the
illustrated example, each of the levels includes multiple pages. Level “N” is shown to include
pages “0” to “D”, Level N-1 includes pages “E” to “G”, and so forth. Again, the levels within
the mapping table 310 may be sorted by time. Level “N” may be younger than Level “N-1"" and
so forth. Mapping table 340 may be accessed by at least a key value. In the illustrated example,
mapping table 340 is accessed by a key value “27” and a page ID “32”. For example, in one
embodiment, a level ID “8” may be used to identify a particular level (or “subtable”) of the
mapping table 340 to search. Having identified the desired subtable, the page ID may then be
used to identify the desired page within the subtable. Finally, the key may be used to identify the
desired entry within the desired page.
[0075] As discussed above, an access to the cached index 330 may result in multiple hits. In
one embodiment, the results of these multiple hits are provided to merge logic 350 which
identifies which hit is used to access the mapping table 340. Merge logic 350 may represent
hardware and/or software which is included within a storage controller. In one embodiment,
merge logic 350 is configured to identify a hit which corresponds to a most recent (newest)
mapping. Such an identification could be based upon an identification of a corresponding level
for an entry, or otherwise. In the example shown, a query corresponding to level 8, page 32, key

27 is received. Responsive to the query, page 32 of level 8 is accessed. If the key 27 is found

18

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
within page 32 (a hit), then a corresponding result is returned (e.g., pointer xF3209B24 in the
example shown). If the key 27 is not found within page 32, then a miss indication is returned.

This physical pointer value may be output from the mapping table 340 to service a storage access
request corresponding to the key value “27”.

[0076] In one embodiment, the mapping table 340 supports inline mappings. For example, a
mapping detected to have a sufficiently small target may be represented without an actual
physical sector storing user data within the storage devices 176a-176m. One example may be a
repeating pattern within the user data. Rather than actually store multiple copies of a repeated
pattern (e.g., a series of zeroes) as user data within the storage devices 176a-176m, a
corresponding mapping may have an indication marked in the status information, such as within
one of the fields of field0 to fieldN in the mapping table, that indicates what data value is to be
returned for a read request. However, there is no actual storage of this user data at a target
location within the storage devices 176a-176m. Additionally, an indication may be stored
within the status information of the primary index 310 and any additional indexes that may be
used (not shown here).

[0077] In addition to the above, in various embodiments the storage system may
simultaneously support multiple versions of the data organization, storage schemes, and so on.
For example, as the system hardware and software evolve, new features may be incorporated or
otherwise provided. Data, indexes, and mappings (for example) which are newer may take
advantage of these new features. In the example of FIG. 4, new level N may correspond to one
version of the system, while older level N-1 may correspond to a prior version. In order to
accommodate these different versions, metadata may be stored in association with each of the
levels which indicates which version, which features, compression schemes, and so on, are used
by that level. This metadata could be stored as part of the index, the pages themselves, or both.
When accesses are made, this metadata then indicates how the data is to be handled properly.
Additionally, new schemes and features can be applied dynamically without the need to quiesce
the system. In this manner, upgrading of the system is more flexible and a rebuild of older data to
reflect newer schemes and approaches is not necessary.

[0078] Turning now to FIG. 5A, one embodiment of a method for servicing a read access is
shown. The components embodied in the network architecture 100 and mapping table 340
described above may generally operate in accordance with method 500. For purposes of

discussion, the steps in this embodiment are shown in sequential order. However, some steps

19

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

may occur in a different order than shown, some steps may be performed concurrently, some
steps may be combined with other steps, and some steps may be absent in another embodiment.
[0079] Read and store (write) requests may be conveyed from one of the clients 110a-110c¢ to
one of the data storage arrays 120a-120b. In the example shown, a read request 500 is received,
and in block 502 a corresponding query key value may be generated. In some embodiments, the
request itself may include the key which is used to access the index and a “generation” of the key
502 is not required. As described earlier, the query key value may be a virtual address index
comprising a volume ID, a logical address or virtual address associated with a received request, a
snapshot ID, a sector number, and so forth. In embodiments which are used for deduplication,
the query key value may be generated using a hash function or other function. Other values are
possible and contemplated for the query key value, which is used to access a mapping table.
[0080] In block 504, the query key value may be used to access one or more cached indexes
to identify one or more portions of a mapping table that may store a mapping that corresponds to
the key value. Additionally, recently used mappings which have been cached may be searched as
well. If a hit on the cached mappings is detected (block 505), the cached mapping may be used to
perform the requested access (block 512). If there is no hit on the cached mappings, the a
determination may be made as to whether or not there is a hit on the cached index (block 506). If
s0, a result corresponding to the hit is used to identify and access the mapping table (block 508).

For example, with the primary index 310, an entry storing the query key value also may store a
unique virtual page ID that identifies a single particular page within the mapping table. This
single particular page may store both the query key value and an associated physical pointer
value. In block 508, the identified potion of the mapping table may be accessed and a search
performed using the query key value. The mapping table result may then be returned (block 510)
and used to perform a storage access (block 512) that corresponds to the target location of the
original read request.
[0081] In some embodiments, an index query responsive to a read request may result in a
miss. Such a miss could be due to only a portion of the index being cached or an error condition
(e.g., a read access to a non-existent location, address corruption, etc.). In such a case, an access
to the stored index may be performed. If the access to the stored index results in a hit (block
520), then a result may be returned (block 522) which is used to access the mapping tables (block
508). On the other hand, if the access to the stored index results in a miss, then an error condition
may be detected. Handling of the error condition may be done in any of a variety of desired

ways. In one embodiment, an exception may be generated (block 524) which is then handled as

20

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
desired. In one embodiment, a portion of the mapping table is returned in block 510. In various
embodiments, this portion is a page which may be a 4KB page, or otherwise. As previously

discussed, the records within a page may be sorted to facilitate faster searches of the content
included therein.

[0082] In one embodiment, the mapping table utilizes traditional database systems methods
for information storage in each page. For example, each record (or row or entry) within the
mapping table is stored one right after the other. This approach may be used in row-oriented or
row-store databases and additionally with correlation databases. These types of databases utilize
a value-based storage structure. A value-based storage (VBS) architecture stores a unique data
value only once and an auto-generated indexing system maintains the context for all values. In
various embodiments, data may be stored by row and compression may be used on the columns
(fields) within a row. In some embodiments, the techniques used may include storing a base
value and having a smaller field size for the offset and/or having a set of base values, with a
column in a row consisting of a base selector and an offset from that base. In both cases, the
compression information may be stored within (e.g., at the start) of the partition.

[0083] In some embodiments, the mapping table utilizes a column-oriented database system
(column-store) method for information storage in each page. Column-stores store each database
table column separately. In addition, attribute values belonging to a same column may be stored
contiguously, compressed, and densely packed. Accordingly, reading a subset of a table’s
columns, such as within a page, may be performed relatively quickly. Column data may be of
uniform type and may allow storage size optimizations to be used that may not be available in
row-oriented data. Some compression schemes, such as Lempel-Ziv—Welch (LZ) and run-length
encoding (RLE), take advantage of a detected similarity of adjacent data to compress. A
compression algorithm may be chosen that allows individual records within the page to be
identified and indexed. Compressing the records within the mapping table may enable fine-
grained mapping. In various embodiments, the type of compression used for a particular portion
of data may be stored in association with the data. For example, the type of compression could be
stored in an index, as part of a same page as the compressed data (e.g., in a header of some type),
or otherwise. In this manner, multiple compression techniques and algorithms may be used side
by side within the storage system. In addition, in various embodiments the type of compression
used for storing page data may be determined dynamically at the time the data is stored. In one
embodiment, one of a variety of compression techniques may be chosen based at least in part on

the nature and type of data being compressed. In some embodiments, multiple compression

21

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
techniques will be performed and the one exhibiting the best compression will then be selected

for use in compressing the data. Numerous such approaches are possible and are contemplated.

[0084] If there is a match of the query key value 306 found in any of the levels of the
mapping table (block 508), then in block 510, one or more indications of a hit may be conveyed
to the merge logic 350. For example, one or more hit indications may be conveyed from levels
“1” to “J” as shown in FIG. 4. The merge logic 350 may choose the highest level, which may
also be the youngest level, of the levels “1” to “J” conveying a hit indication. The chosen level
may provide information stored in a corresponding record as a result of the access.

[0085] In block 512, one or more corresponding fields within a matching record of a chosen
page may be read to process a corresponding request. In one embodiment, when the data within
the page is stored in a compressed format, the page is decompressed and a corresponding
physical pointer value is read out. In another embodiment, only the matching record is
decompressed and a corresponding physical pointer value is read out. In one embodiment, a full
physical pointer value may be split between the mapping table and a corresponding target
physical location. Therefore, multiple physical locations storing user data may be accessed to
complete a data storage access request.

[0086] Turning now to FIG. 5B, one embodiment of a method corresponding to a received
write request is shown. Responsive to a received write request (block 530), a new mapping table
entry corresponding to the request may be created (block 532). In one embodiment, a new
virtual-to-physical address mapping may be added (block 534) to the mapping table that pairs the
virtual address of the write request with the physical location storing the corresponding data
component. In various embodiments, the new mapping may be cached with other new mappings
and added to a new highest level of the mapping table entries. The write operation to persistent
storage (block 536) may then be performed. In various embodiments, writing the new mapping
table entry to the mapping tables in persistent storage may not be performed until a later point in
time (block 538) which is deemed more efficient. As previously discussed, in a storage system
using solid state storage devices, writes to storage are much slower than reads from storage.
Accordingly, writes to storage are scheduled in such a way that they minimize impact on overall
system performance. In some embodiments, the insertion of new records into the mapping table
may be combined with other larger data updates. Combining the updates in this manner may
provide for more efficient write operations. It is noted that in the method of 5B, as with each of

the methods described herein, operations are described as occurring in a particular order for case

22

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

of discussion. However, the operations may in fact occur in a different order, and in some cases
various ones of the operations may occur simultaneously. All such embodiments are
contemplated.

[0087] In addition to the above, deduplication mechanisms may be used in some
embodiments. FIG. 5B depicts operations 550 which may generally correspond to deduplication
systems and methods. In the example shown, a hash corresponding to a received write request
may be generated (block 540) which is used to access deduplication tables (block 542). If there is
a hit (block 544) in the deduplication tables (i.c., a copy of the data already exists within the
system), then a new entry may be added to the deduplication tables (block 548) to reflect the new
write. In such a case, there is no need to write the data itself to storage and the received write
data may be discarded. Alternatively, if there is a miss in the deduplication table, then a new
entry for the new data is created and stored in the deduplication tables (block 546). Additionally,
a write of the data to storage is performed (block 536). Further, a new entry may be created in the
index to reflect the new data (block 538). In some embodiments, if a miss occurs during an inline
deduplication operation, no insertion in the deduplication tables is performed at that time. Rather,
during an inline deduplication operation, a query with a hash value may occur for only a portion
of the entire deduplication table (e.g., a cached portion of the deduplication table). If a miss
occurs, a new entry may be created and stored in the cache. Subsequently, during a post-
processing deduplication operation, such as an operation occurring during garbage collection, a
query with a hash value may occur for the entire deduplication table. A miss may indicate the
hash value is a unique hash value. Therefore, a new entry such as a hash-to-physical-pointer
mapping may be inserted into the deduplication table. Alternatively, if a hit is detected during
post-processing deduplication (i.e., a duplicate is detected), deduplication may be performed to
eliminate one or more of the detected copies.

[0088] Referring now to FIG. 6, a generalized block diagram of one embodiment of a multi-
node network with shared mapping tables is shown. In the example shown, three nodes 360a-
360c are used to form a cluster of mapping nodes. In one embodiment, each of the nodes 360a-
360c may be responsible for one or more logical unit numbers (LUNs). In the depicted
embodiment, a number of mapping table levels, level 1-N, are shown. Level 1 may correspond to
the oldest level, while level N may correspond to the newest level. For mapping table entries of
LUNs managed by a particular node, that particular node may itself have newer entries stored on
the node itself. For example, node 360a is shown to store mapping subtables 362a and 364a.

These subtables 362a and 362b may correspond to LUNs for which node 360a is generally

23

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
responsible. Similarly, node 360b includes subtables 362b and 364b which may correspond to
LUNs managed by that node, while node 360c includes subtables 362¢ and 364c which may
correspond to LUNs managed by that node. In such an embodiment, these “newer” level
mapping table entries are maintained only by their corresponding managing nodes and are
generally not found on other nodes.

[0089] In contrast to the above discussed relatively newer levels, older levels (i.e., levels N-2
down to level 1) represent mapping table entries which may be shared by all nodes 360a-360c in
the sense that any of the nodes may be storing a copy of those entries. In the example shown,
these older levels 370, 372, and 374 are collectively identified as shared tables 380. Additionally,
as previously discussed, in various embodiments these older levels are static — apart from
merging or similar operations which are discussed later. Generally speaking, a static layer is one
which is not subject to modification (i.e., it is “fixed”). Given that such levels are fixed in this
sense, an access to any copy of these lower levels may be made without concern for whether
another of the copies has been, or is being, modified. Consequently, any of the nodes may
safely store a copy of the shared tables 380 and service a request to those tables with confidence
the request can be properly serviced. Having copies of the shared tables 380 stored on multiple
nodes 360 may allow use of various load balancing schemes when performing lookups and
otherwise servicing requests.

[0090] In addition to the above, in various embodiments, the levels 380 which may be shared
may be organized in a manner which reflects the nodes 360 themselves. For example, node 360a
may be responsible for LUNs 1 and 2, node 360b may be responsible for LUNs 3 and 4, and
node 360c may be responsible for LUNs 5 and 6. In various embodiments, the mapping table
entries may include tuples which themselves identify a corresponding LUN. In such an
embodiment, the shared mapping tables 380 may be sorted according to key value, absolute
width or amount of storage space, or otherwise. If a sort of mapping table entries in the levels
380 is based in part on LUN, then entries 370a may correspond to LUNs 1 and 2, entries 370b
may correspond to LUNs 3 and 4, and entries 370c may correspond to LUNs 5 and 6. Such an
organization may speed lookups by a given node for a request targeted to a particular LUN by
effectively reducing the amount of data that needs to be searched, allowing a coordinator to
directly select the node responsible for a particular LUN as the target of a request. These and
other organization and sort schemes are possible and are contemplated. In addition, if it is desired

to move responsibility for a LUN from one node to another, the original node mappings for that

24

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

node may be flushed to the shared levels (e.g., and merged). Responsibility for the LUN is then
transferred to the new node which then begins servicing that LUN.

[0091] Referring now to FIG. 7, a generalized block diagram of one embodiment of a
secondary index used to access a mapping table is shown. As described earlier, requester data
inputs 302 may be received by a key generator 304, which produces a query key value 306. The
query key value 306 is used to access a mapping table. In some embodiments, the primary index
310 shown in FIG. 3 may be too large (or larger than desired) to store in RAM 172 or memory
medium 130. For example, older levels of the index may grow very large due to merging and
flattening operations described later in FIG. 10 and FIG. 11. Therefore, a secondary index 320
may be cached for at least a portion of the primary index instead of the corresponding portion of
the primary index 310. The secondary index 320 may provide a more coarse level of granularity
of location identification of data stored in the storage devices 176a-176m. Therefore, the
secondary index 320 may be smaller than the portion of the primary index 310 to which it
corresponds. Accordingly, the secondary index 320 may be stored in RAM 172 or in memory
medium 130.

[0092] In one embodiment, the secondary index 320 is divided into partitions, such as
partitions 322a-322b. Additionally, the secondary index may be organized according to level
with the more recent levels appearing first. In one embodiment, older levels have lower numbers
and younger levels have higher numbers (e.g., a level ID may be incremented with each new
level). Each entry of the secondary index 320 may identify a range of key values. For example,
the first entry shown in the example may identify a range of key values from 0 to 12 in level 22.
These key values may correspond to key values associated with a first record and a last record
within a given page of the primary index 310. In other words, the entry in the secondary index
may simply store an identification of key 0 and an identification of key 12 to indicate the
corresponding page includes entries within that range. Referring again to FIG. 3A, partition 312a
may be a page and the key values of its first record and its last record are 0 and 12, respectively.
Therefore, an entry within the secondary index 320 stores the range 0 to 12 as shown in FIG. 7.
Since remappings are maintained in the levels within the mapping table, a range of key values
may correspond to multiple pages and associated levels. The fields within the secondary index
320 may store this information as shown in FIG. 7. Each entry may store one or more
corresponding unique virtual page identifiers (IDs) and associated level IDs corresponding to the
range of key values. Each entry may also store corresponding status information such as validity

information. The list of maintained page IDs and associated level IDs may indicate where a

25

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
given query key value might be stored, but not confirm that the key value is present in that page
and level. The secondary index 320 is smaller than the primary index 310, but also has a coarse-
level of granularity of location identification of data stored in the storage devices 176a-176m.
The secondary index 320 may be sufficiently small to store in RAM 172 or in memory medium
130.
[0093] When the secondary index 320 is accessed with a query key value 306, it may convey
one or more corresponding page IDs and associated level IDs. These results are then used to
access and retrieve portions of the stored primary index. The one or more identified pages may
then be searched with the query key value to find a physical pointer value. In one embodiment,
the level IDs may be used to determine a youngest level of the identified one or more levels that
also store the query key value 306. A record within a corresponding page may then be retrieved
and a physical pointer value may be read for processing a storage access request. In the
illustrated example, the query key value 27 is within the range of keys 16 to 31. The page IDs
and level IDs stored in the corresponding entry are conveyed with the query key value to the
mapping table.
[0094] Referring now to FIG. 8, a generalized block diagram of one embodiment of a tertiary
index used to access a mapping table is shown. Circuit and logic portions corresponding to those
of FIG. 4 are numbered identically. As described earlier, the primary index 310 shown in FIG. 3
may be too large to store in RAM 172 or memory medium 130. In addition, as the mapping table
340 grows, the secondary index 320 may also become too large to store in these memories.
Therefore, a tertiary index 330 may be accessed prior to the secondary index 320, which may still
be faster than accessing the primary index 310.
[0095] The tertiary index 330 may provide a more coarse level of granularity than the
secondary index 320 of location identification of data stored in the storage devices 176a-176m.
Therefore, the tertiary index 330 may be smaller than the portion of the secondary index 320 to
which it corresponds. It is noted that each of the primary index 310, the secondary index 320,
the tertiary index 330, and so forth, may be stored in a compressed format. The compressed
format chosen may be a same compressed format used to store information within the mapping
table 340.
[0096] In one embodiment, the tertiary index 330 may include multiple partitions, such as
partitions 332a, 332b and so forth. The tertiary index 330 may be accessed with a query key
value 306. In the illustrated example, a query key value 306 of “27” is found to be between a
range of key values from 0 to 78. A first entry in the tertiary index 330 corresponds to this key

26

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
value range. A column in the tertiary index 330 may indicate which partition to access within
the secondary index 320. In the illustrated example, a key value range of 0 to 78 corresponds to
partition 0 within the secondary index 320.
[0097] It is also noted a filter (not shown) may be accessed to determine if a query key value
is not within any one of the indexes 310-330. This filter may be a probabilistic data structure
that determines whether an element is a member of a set. False positives may be possible, but
false negatives may not be possible. One example of such a filter is a Bloom filter. If an access
of such a filter determines a particular value is not in the full index 142, then no query is sent to
the storage. If an access of the filter determines the query key value is in a corresponding index,
then it may be unknown whether a corresponding physical pointer value is stored in the storage
devices 176a-176m.
[0098] In addition to the above, in various embodiments one or more overlay tables may be
used to modify or elide tuples provided by the mapping table in response to a query. Such
overlay tables may be used to apply filtering conditions for use in responding to accesses to the
mapping table or during flattening operations when a new level is created. In various
embodiments, other hardware and/or software may be used to apply filtering conditions. In some
embodiments, the overlay table may be organized as time ordered levels in a manner similar to
the mapping table described above. In other embodiments, they may be organized differently.
Keys for the overlay table need not match the keys for the underlying mapping table. For
example, an overlay table may contain a single entry stating that a particular volume has been
deleted or is otherwise inaccessible (e.g., there is no natural access path to query this tuple), and
that a response to a query corresponding to a tuple that refers to that volume identifier is instead
invalid. In another example, an entry in the overlay table may indicate that a storage location has
been freed, and that any tuple that refers to that storage location is invalid, thus invalidating the
result of the lookup rather than the key used by the mapping table. In some embodiments, the
overlay table may modify fields in responses to queries to the underlying mapping table. In some
embodiments, a single key may represent a range of values to efficiently identify multiple values
to which the same operation (eliding or modification) is applied. In this manner, tuples may
(effectively) be “deleted” from the mapping table by creating an “elide” entry in the overlay
table and without modifying the mapping table. In this case, the overlay table may include keys
with no associated non-key data fields.
[0099] Turning now to FIG. 9, one embodiment of a method for processing a read request in a

system including mapping and overlay tables is shown. Responsive to a read request being

27

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
received (block 900), a mapping table key (block 908) and first overlay table key (block 902)
corresponding to the request are generated. In this example, access to the overlay and mapping

tables is shown as occurring concurrently. However, in other embodiments, accesses to the tables
may be performed non-concurrently (e.g., sequentially or otherwise separate in time) in any
desired order. Using the key generated for the mapping table, a corresponding tuple may be
retrieved from the mapping table (block 910). If the first overlay table contains an “elide” entry
corresponding to the overlay table key (conditional block 906), any tuple found in the mapping
table is deemed invalid and an indication to this effect may be returned to the requester. On the
other hand, if the overlay table contains a “modify” entry corresponding to the overlay table key
(conditional block 912), the values in the first overlay table entry may be used to modify one or
more fields in the tuple retrieved from the mapping table (block 922). Once this process is done,
a second overlay table key is generated (block 914) based on the tuple from the mapping table
(whether modified or not) and a second lookup is done in a second overlay table (block 916)
which may or may not be the same table as the first overlay table. If an “clide” entry is found in
the second overlay table (conditional block 920), the tuple from the mapping table is deemed
invalid (block 918). If a “modify” entry is found in the second overlay table (conditional block
924), one or more fields of the tuple from the mapping table may be modified (block 926). Such
modification may include dropping a tuple, normalizing a tuple, or otherwise. The modified tuple
may then be returned to the requester. If the second overlay table does not contain a modify entry
(conditional block 924), the tuple may be returned to the requester unmodified. In some
embodiments, at least some portions of the overlay table(s) may be cached to provide faster
access to their contents. In various embodiments, a detected elide entry in the first overlay table
may serve to short circuit any other corresponding lookups (e.g., blocks 914, 916, etc.). In other
embodiments, accesses may be performed in parallel and “raced.” Numerous such embodiments
are possible and are contemplated.

[00100] Turning now to FIG. 10, a generalized block diagram of one embodiment of a
flattening operation for levels within a mapping table is shown. In various embodiments, a
flattening operation may be performed in response to detecting one or more conditions. For
example, over time as the mapping table 340 grows and accumulates levels due to insertions of
new records, the cost of searching more levels for a query key value may become undesirably
high. In order to constrain the number of levels to search, multiple levels may be flattened into a
single new level. For example, two or more levels which are logically adjacent or contiguous in

time order may be chosen for a flattening operation. Where two or more records correspond to a

28

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

same key value, the youngest record may be retained while the others are not included in the
new “flattened” level. In such an embodiment, the newly flattened level will return a same result
for a search for a given key value as would be provided by a search of the corresponding multiple
levels. Since the results of searches in the new flattened level do not change as compared to the
two or more levels it replaces, the flattening operation need not be synchronized with update
operations to the mapping table. In other words, flattening operations on a table may be
performed asynchronously with respect to updates to the table.

[00101] As previously noted, older levels are fixed in the sense that their mappings are not
modified (i.e., a mapping from A to B remains unchanged). Consequently, modifications to the
levels being flattened are not being made (e.g., due to user writes) and synchronization locks of
the levels are not required. Additionally, in a node-based cluster environment where each node
may store a copy of older levels of the index (e.g., as discussed in relation to FIG. 6), flattening
operations may be undertaken on one node without the need to lock corresponding levels in other
nodes. Consequently, processing may continue in all nodes while flattening takes place in an
asynchronous manner on any of the nodes. At a later point in time, other nodes may flatten
levels, or use an already flattened level. In one embodiment, the two or more levels which have
been used to form a flattened level may be retained for error recovery, mirroring, or other
purposes. In addition to the above, in various embodiments, records that have been clided may
not be reinserted in to the new level. The above described flattening may, for example, be
performed responsive to detecting the number of levels in the mapping table has reached a given
threshold. Alternatively, the flattening may be performed responsive to detecting the size of one
or more levels has exceeded a threshold. Yet another condition that may be considered is the
load on the system. The decision of whether to flatten the levels may consider combinations of
these conditions in addition to considering them individually. The decision of whether to flatten
may also consider both the present value for the condition as well as a predicted value for the
condition in the future. Other conditions for which flattening may be performed are possible and
are contemplated.

[00102] In the illustrated example, the records are shown simply as key and pointer pairs. The
pages are shown to include four records for ease of illustration. A level “F” and its next
contiguous logical neighbor, level “F-1” may be considered for a flattening operation. Level “F”
may be younger than Level “F-1”. Although two levels are shown to be flattened here, it is
possible and contemplated that three or more levels may be chosen for flattening. In the example

shown, Level “F-1” may have records storing a same key value found in Level “F”.

29

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
Bidirectional arrows are used to identify the records storing a same key value across the two
contiguous levels.

[00103] The new Level “New F” includes a key corresponding to the duplicate key values
found in Level “F” and Level “F-1”. In addition, the new Level “New F” includes a pointer
value corresponding to the youngest (or younger in this case) record of the records storing the
duplicate key value. For example, each of Level “F” and Level “F-1” includes a record storing
the key value 4. The younger record is in Level “F” and this record also stores the pointer value
512. Accordingly, the Level “F-1" includes a record storing the key value 4 and also the pointer
value 512, rather than the pointer value 656 found in the older Level “F-1”. Additionally, the
new Level “New F” includes records with unique key values found between Level “F” and Level
“F-1”. For example, the Level “F-1” includes records with the key and pointer pair of 6 and 246
found in Level “F” and the key and pointer pair of 2 and 398 found in Level “F-1”. As shown,
cach of the pages within the levels is sorted by key value.

[00104] As noted above, in various embodiments an overlay table may be used to modify or
elide tuples corresponding to key values in the underlying mapping table. Such an overlay
table(s) may be managed in a manner similar to that of the mapping tables. For example, an
overlay table may be flattened and adjacent entries merged together to save space. Alternatively,
an overlay table may be managed in a manner different from that used to manage mapping tables.
In some embodiments, an overlay table may contain a single entry that refers to a range of
overlay table keys. In this way, the size of the overlay table can be limited. For example, if the
mapping table contains k valid entries, the overlay table (after flattening) need contain no more
than k+1 entries marking ranges as invalid, corresponding to the gaps between valid entries in the
mapping table. Accordingly, the overlay table may used to identify tuples that may be dropped
from the mapping table in a relatively efficient manner. In addition to the above, while the
previous discussion describes using an overlay table to elide or modify responses to requests
from the mapping table(s), overlay tables may also be used to elide or modify values during
flattening operations of the mapping tables. Accordingly, when a new level is created during a
flattening operation of a mapping table, a key value that might otherwise be inserted into the new
level may be elided. Alternatively, a value may be modified before insertion in the new level.
Such modifications may result in a single record corresponding to a given range of key values in
the mapping table being replaced (in the new level) with multiple records — each corresponding

to a subrange of the original record. Additionally, a record may be replaced with a new record

30

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
that corresponds to a smaller range, or multiple records could be replaced by a single record
whose range covers all ranges of the original records. All such embodiments are contemplated.
[00105] Referring now to FIG. 11, a generalized block diagram of an embodiment of a
flattening operation for levels within a mapping table is shown. As previously discussed, levels
may be time ordered. In the illustrated example, a Level “F” comprising one or more indexes and
corresponding mappings is logically located above older Level “F-1”. Also, Level “F” is located
logically below younger Level “F+1”. Similarly, Level “F-2” is logically located above younger
Level “F-17 and Level “F+2” is logically located below older Level “F+1”. In one example,
levels “F” and “F-1” may be considered for a flattening operation. Bidirectional arrows are used
to illustrate there are records storing same key values across the two contiguous levels.
[00106] As described earlier, a new Level “New F” includes key values corresponding to the
duplicate key values found in Level “F” and Level “F-1”. In addition, the new Level “New F”
includes a pointer value corresponding to the youngest (or younger in this case) record of the
records storing the duplicate key value. Upon completion of the flattening operation, the Level
“F” and the Level “F-1” may not yet be removed from the mapping table. Again, in a node-
based cluster, each node may verify it is ready to utilize the new single level, such as Level “New
F”, and no longer use the two or more levels it replaces (such as Level “F” and Level “F-17).
This verification may be performed prior to the new level becoming the replacement. In one
embodiment, the two or more replaced levels, such as Level “F” and Level “F-17, may be kept in
storage for error recovery, mirroring, or other purposes. In order to maintain the time ordering of
the levels and their mappings, the new flattened level F is logically placed below younger levels
(e.g., level F+1) and above the original levels that it replaces (e.g., level F and level F-1).
[00107] Turning now to FIG. 12, one embodiment of a method 1000 for flattening levels
within a mapping table is shown. The components embodied in the network architecture 100
and the mapping table 340 described above may generally operate in accordance with method
1000. For purposes of discussion, the steps in this embodiment are shown in sequential order.
However, some steps may occur in a different order than shown, some steps may be performed
concurrently, some steps may be combined with other steps, and some steps may be absent in
another embodiment.
[00108] In block 1002, storage space is allocated for a mapping table and corresponding
indexes. In block 1004, one or more conditions are determined for flattening two or more levels
within the mapping table. For example, a cost of repeatedly searching a current number of levels

within the mapping table in response to user requests may be greater than a cost of performing a

31

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

flattening operation. Additionally, a cost may be based on at least one of the current (or
predicted) number of levels in the structure to be flattened, the number of entries in one or more
levels, the number of mapping entries that would be elided or modified, and the load on the
system. Cost may also include a time to perform a corresponding operation, an occupation of one
or more buses, storage space used during a corresponding operation, a number of duplicate
entries in a set of levels has reached some threshold, and so forth. In addition, a count of a
number of records within each level may be used to estimate when a flattening operation
performed on two contiguous levels may produce a new single level with a number of records
equal to twice a number of records within a next previous level. These conditions taken singly or
in any combination, and others, are possible and are contemplated.

[00109] In block 1006, the indexes and the mapping table are accessed and updated as data is
stored and new mappings are found. A number of levels within the mapping table increases as
new records are inserted into the mapping table. If a condition for flattening two or more levels
within the mapping table is detected (conditional block 1008), then in block 1010, one or more
groups of levels are identified for flattening. A group of levels may include two or more levels.
In one embodiment, the two or more levels are contiguous levels. Although the lowest levels, or
the oldest levels, may be the best candidates for flattening, a younger group may also be selected.
[00110] In block 1012, for each group a new single level comprising the newest records within
a corresponding group is produced. In the earlier example, the new single Level “New F”
includes the youngest records among the Level “F” and the Level “F+1”. In block 1014, in a
node-based cluster, an acknowledgment may be requested from each node within the cluster to
indicate a respective node is ready to utilize the new levels produced by the flattening operation.
When each node acknowledges that it can utilize the new levels, in block 1016, the current levels
within the identified groups are replaced with the new levels. In other embodiments,
synchronization across nodes is not needed. In such embodiments, some nodes may begin using a
new level prior to other nodes. Further, some nodes may continue to use the original level even
after newly flattened levels are available. For example, a particular node may have original level
data cached and used that in preference to using non-cached data of a newly flattened level.
Numerous such embodiments are possible and are contemplated.

[00111] Turning now to FIG. 13, one embodiment of a method 1100 for efficiently processing
bulk array tasks within a mapping table is shown. Similar to the other described methods, the
components embodied in the network architecture 100 and the mapping table 340 described

above may generally operate in accordance with method 1100. In addition, the steps in this

32

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
embodiment are shown in sequential order. However, some steps may occur in a different order
than shown, some steps may be performed concurrently, some steps may be combined with

other steps, and some steps may be absent in another embodiment.

[00112] Storing the information in a compressed format within the mapping table may enable
fine-grained mapping, which may allow direct manipulation of mapping information within the
mapping table as an alternative to common bulk array tasks. The direct map manipulation may
reduce 1/0 network and bus traffic. As described earlier, Flash memory has a low “seck time”,
which allows a number of dependent read operations to occur in less time than a single operation
from a spinning disk. These dependent reads may be used to perform online fine-grained
mappings to integrate space-saving features like compression and deduplication. In addition,
these dependent read operations may allow the storage controller 174 to perform bulk array tasks
entirely within a mapping table instead of accessing (reading and writing) the user data stored
within the storage devices 176a-176m.

[00113] In block 1102, a large or bulk array task is received. For example, a bulk copy or
move request may correspond to a backup of a dozens or hundreds of virtual machines in
addition to enterprise application data being executed and updated by the virtual machines. The
amount of data associated with the received request associated with a move, branch, clone, or
copy of all of this data may be as large as 16 gigabytes (GB) or larger. If the user data was
accessed to process this request, a lot of processing time may be spent on the request and system
performance decreases. In addition, a virtualized environment typically has less total
input/output (I/O) resources than a physical environment.

[00114] In block 1104, the storage controller 174 may store an indication corresponding to the
received request that relates a range of new keys to a range of old keys, wherein both the ranges
of keys correspond to the received request. For example, if the received request is to copy of
16GB of data, a start key value and an end key value corresponding to the 16GB of data may be
stored. Again, each of the start and the end key values may include a volume ID, a logical or
virtual address within the received request, a snapshot ID, a sector number and so forth. In one
embodiment, this information may be stored separate from the information stored in the indexes,
such as the primary index 310, the secondary index 320, the tertiary index 330, and so forth.
However, this information may be accessed when the indexes are accessed during the processing
of later requests.

[00115] In block 1106, the data storage controller 174 may convey a response to a

corresponding client of the client computer systems 110a-110c indicating completion of the

33

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
received request without prior access of user data. Therefore, the storage controller 174 may
process the received request with low or no downtime and with no load on processor 122.
[00116] In block 1108, the storage controller 174 may set a condition, an indication, or a flag,
or buffer update operations, for updating one or more records in the mapping table corresponding
to the new keys replacing the old keys in the mapping table. For both a move request and a copy
request, one or more new records corresponding to the new keys may be inserted in the mapping
table. The keys may be inserted in a created new highest level as described earlier. For a move
request, one or more old records may be removed from the mapping table after a corresponding
new record has been inserted in the mapping table. Either immediately or at a later time, the
records in the mapping table are actually updated.
[00117] For a zeroing or an erase request, an indication may be stored that a range of key
values now corresponds to a series of binary zeroes. Additionally, as discussed above, overlay
tables may be used to identify key values which are not (or no longer) valid. The user data may
not be overwritten. For an erase request, the user data may be overwritten at a later time when
the “freed” storage locations are allocated with new data for subsequent store (write) requests.
For an externally-directed defragmentation request, contiguous addresses may be chosen for
sector reorganization, which may benefit applications executed on a client of the client computer
systems 110a-110c.
[00118] If the storage controller 174 receives a data storage access request corresponding to
one of the new keys (conditional block 1110), and the new key has already been inserted in the
mapping table (conditional block 1112), then in block 1114, the indexes and the mapping table
may be accessed with the new key. For example, either the primary index 310, the secondary
index 320, or the tertiary index 330 may be accessed with the new key. When one or more pages
of the mapping table are identified by the indexes, these identified pages may then be accessed.
In block 1116, the storage access request may be serviced with a physical pointer value found in
the mapping table that is associated with the new key.
[00119] If the storage controller 174 receives a data storage access request corresponding to
one of the new keys (conditional block 1110), and the new key has not already been inserted in
the mapping table (conditional block 1112), then in block 1118, the indexes and the mapping
table may be accessed with a corresponding old key. The storage holding the range of old keys
and the range of new keys may be accessed to determine the corresponding old key value. When

one or more pages of the mapping table are identified by the indexes, these identified pages may

34

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
then be accessed. In block 1120, the storage access request may be serviced with a physical
pointer value found in the mapping table that is associated with the old key.
[00120] Turning now to FIG. 14, a generalized block diagram illustrating an embodiment of a
data layout architecture within a storage device is shown. In one embodiment, the data storage
locations within the storage devices 176a-176m may be arranged into redundant array of
independent devices (RAID) arrays. As shown, different types of data may be stored in the
storage devices 176a-176k according to a data layout architecture. In one embodiment, each of
the storage devices 176a-176k is an SSD. An allocation unit within an SSD may include one or
more erase blocks within an SSD.
[00121] The user data 1230 may be stored within one or more pages included within one or
more of the storage devices 176a-176k. Within each intersection of a RAID stripe and one of the
storage devices 176a-176k, the stored information may be formatted as a series of logical pages.
Each logical page may in turn include a header and a checksum for the data in the page. When a
read is issued it may be for one or more logical pages and the data in each page may be validated
with the checksum. As each logical page may include a page header that contains a checksum for
the page (which may be referred to as a “media” checksum), the actual page size for data may be
smaller than one logical page. In some embodiments, for pages storing inter-device recovery data
1250, such as RAID parity information, the page header may be smaller, so that the parity page
protects the page checksums in the data pages. In other embodiments, the checksum in parity
pages storing inter-device recovery data 1250 may be calculated so that the checksum of the data
page checksums is the same as the checksum of the parity page covering the corresponding data
pages. In such embodiments, the header for a parity page need not be smaller than the header for
a data page.
[00122] The inter-device ECC data 1250 may be parity information generated from one or
more pages on other storage devices holding user data. For example, the inter-device ECC data
1250 may be parity information used in a RAID data layout architecture. Although the stored
information is shown as contiguous logical pages in the storage devices 176a-176k, it is well
known in the art the logical pages may be arranged in a random order, wherein each of the
storage devices 176a-176k is an SSD.
[00123] The intra-device ECC data 1240 may include information used by an intra-device
redundancy scheme. An intra-device redundancy scheme utilizes ECC information, such as
parity information, within a given storage device. This intra-device redundancy scheme and its

ECC information corresponds to a given device and may be maintained within a given device,

35

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

but is distinct from ECC that may be internally generated and maintained by the device itself.
Generally speaking, the internally generated and maintained ECC of the device is invisible to
the system within which the device is included.

[00124] The intra-device ECC data 1240 may also be referred to as intra-device error recovery
data 1240. The intra-device error recovery data 1240 may be used to protect a given storage
device from latent sector errors (LSEs). An LSE is an error that is undetected until the given
sector is accessed. Therefore, any data previously stored in the given sector may be lost. A
single LSE may lead to data loss when encountered during RAID reconstruction after a storage
device failure. The term “sector” typically refers to a basic unit of storage on a HDD, such as a
segment within a given track on the disk. Here, the term “sector” may also refer to a basic unit
of allocation on a SSD. Latent sector errors (LSEs) occur when a given sector or other storage
unit within a storage device is inaccessible. A read or write operation may not be able to
complete for the given sector. In addition, there may be an uncorrectable error-correction code
(ECC) error.

[00125] The intra-device error recovery data 1240 included within a given storage device may
be used to increase data storage reliability within the given storage device. The intra-device error
recovery data 1240 is in addition to other ECC information that may be included within another
storage device, such as parity information utilized in a RAID data layout architecture.

[00126] Within each storage device, the intra-device error recovery data 1240 may be stored in
one or more pages. As is well known by those skilled in the art, the intra-device error recovery
data 1240 may be obtained by performing a function on chosen bits of information within the
user data 1230. An XOR-based operation may be used to derive parity information to store in
the intra-device error recovery data 1240. Other examples of intra-device redundancy schemes
include single parity check (SPC), maximum distance separable (MDS) erasure codes,
interleaved parity check codes (IPC), hybrid SPC and MDS code (MDS+SPC), and column
diagonal parity (CDP). The schemes vary in terms of delivered reliability and overhead
depending on the manner the data 1240 is computed.

[00127] In addition to the above described error recovery information, the system may be
configured to calculate a checksum value for a region on the device. For example, a checksum
may be calculated when information is written to the device. This checksum is stored by the
system. When the information is read back from the device, the system may calculate the
checksum again and compare it to the value that was stored originally. If the two checksums

differ, the information was not read properly, and the system may use other schemes to recover

36

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059

the data. Examples of checksum functions include cyclical redundancy check (CRC), MDS5, and
SHA-1.

[00128] An erase block within an SSD may comprise several pages. A page may include 4KB
of data storage space. An erase block may include 64 pages, or 256KB. In other embodiments,
an crase block may be as large as 1 megabyte (MB), and include 256 pages. An allocation unit
size may be chosen in a manner to provide both sufficiently large sized units and a relatively low
number of units to reduce overhead tracking of the allocation units. In one embodiment, one or
more state tables may maintain a state of an allocation unit (allocated, free, erased, error), a wear
level, and a count of a number of errors (correctable and/or uncorrectable) that have occurred
within the allocation unit. In one embodiment, an allocation unit is relatively small compared to
the total storage capacity of an SSD. Other amounts of data storage space for pages, erase blocks
and other unit arrangements are possible and contemplated.

[00129] The metadata 1260 may include page header information, RAID stripe identification
information, log data for one or more RAID stripes, and so forth. In various embodiments, the
single metadata page at the beginning of each stripe may be rebuilt from the other stripe headers.
Alternatively, this page could be at a different offset in the parity shard so the data can be
protected by the inter-device parity. In one embodiment, the metadata 1260 may store or be
associated with particular flag values that indicate this data is not to be deduplicated.

[00130] In addition to inter-device parity protection and intra-device parity protection, each of
the pages in storage devices 176a-176k may comprise additional protection such as a checksum
stored within each given page. The checksum (8 byte, 4 byte, or otherwise) may be placed inside
a page after a header and before the corresponding data, which may be compressed. For yet
another level of protection, data location information may be included in a checksum value. The
data in each of the pages may include this information. This information may include both a
virtual address and a physical address. Sector numbers, data chunk and offset numbers, track
numbers, plane numbers, and so forth may be included in this information as well. This mapping
information may also be used to rebuild the address translation mapping table if the content of
the table is lost.

[00131] In one embodiment, each of the pages in the storage devices 176a-176k stores a
particular type of data, such as the data types 1230-1260. Alternatively, pages may store more
than one type of data. The page header may store information identifying the data type for a
corresponding page. In one embodiment, an intra-device redundancy scheme divides a device

into groups of locations for storage of user data. For example, a division may be a group of

37

10

15

20

25

30

WO 2013/025864 PCT/US2012/051059
locations within a device that correspond to a stripe within a RAID layout. In the example
shown, only two stripes, 1270a and 1270b, are shown for ease of illustration.

[00132] In one embodiment, a RAID engine within the storage controller 174 may determine a
level of protection to use for storage devices 176a-176k. For example, a RAID engine may
determine to utilize RAID double parity for the storage devices 176a-176k. The inter-device
redundancy data 1250 may represent the RAID double parity values generated from
corresponding user data. In one embodiment, storage devices 176j and 176k may store the
double parity information. It is understood other levels of RAID parity protection are possible
and contemplated. In addition, in other embodiments, the storage of the double parity
information may rotate between the storage devices rather than be stored within storage devices
176 and 176k for each RAID stripe. The storage of the double parity information is shown to be
stored in storage devices 176j and 176k for ease of illustration and description. Although each of
the storage devices 176a-176k comprises multiple pages, only page 1212 and page 1220 are
labeled for ease of illustration.

[00133] It is noted that the above-described embodiments may comprise software. In such an
embodiment, the program instructions that implement the methods and/or mechanisms may be
conveyed or stored on a computer readable medium. Numerous types of media which are
configured to store program instructions are available and include hard disks, floppy disks, CD-
ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage.

[00134] In various embodiments, one or more portions of the methods and mechanisms
described herein may form part of a cloud-computing environment. In such embodiments,
resources may be provided over the Internet as services according to one or more various models.
Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a
case, the computing equipment is generally owned and operated by the service provider. In the
PaaS model, software tools and underlying equipment used by developers to develop software
solutions may be provided as a service and hosted by the service provider. SaaS typically
includes a service provider licensing software as a service on demand. The service provider may
host the software, or may deploy the software to a customer for a given period of time. Numerous
combinations of the above models are possible and are contemplated.

[00135] Although the embodiments above have been described in considerable detail,

numerous variations and modifications will become apparent to those skilled in the art once the

38

WO 2013/025864 PCT/US2012/051059
above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.

39

19 Sep 2017

2012296510

10

15

20

25

30

35

40

Claims:

1. A computer system including:

a data storage medium;

a mapping table organized as a plurality of levels, each level of the plurality
of levels including one or more mapping table entries, where each of the plurality of
entries has a tuple including a key; and

a data storage controller coupled to the data storage medium;

wherein in response to detecting a flattening condition, the data storage
controller is configured to:

identify a group of two or more levels of the plurality of levels which are
logically adjacent in time;

create a new level in the plurality of levels;

insert one or more first records stored within the group into the new level, in
response to detecting each of the one or more first records stores a unique key
among keys stored within the group; and

utilize a filtering condition to determine which of the first records are inserted
into the new level, wherein the filtering condition includes a validity of a given record
as determined by the overlay table.

2. The computer system as recited in claim 1, wherein the data storage
controller is further configured to replace the group of two or more adjacent levels

with the new level.

3. The computer system as recited in claim 1 or 2, wherein the data storage
controller is further configured to create a new level from fewer than all of the records

in the group of two or more adjacent levels.

4. The computer system as recited in any preceding claim, wherein the
flattening condition is based on at least one of a current or predicted value of: a
number of levels in the mapping table, a number of entries in one or more levels of
the plurality of levels, a number of mapping entries that would be elided or modified
as part of a flattening operation, and a load on the system.

5. The computer system as recited in any preceding claim, wherein the filtering

3358925v1

19 Sep 2017

2012296510

10

15

20

25

30

35

41

condition is based at least in part on a current or predicted number of entries in the

new level.

6. A method for use in a storage system, the method including the steps of:

storing a mapping table organized as a plurality of levels, each level of the
plurality of levels including one or more mapping table entries, where each of the
plurality of entries has a tuple including a key; and

responsive to detecting a flattening condition:

identifying a group of two or more levels of the plurality of levels which are
logically adjacent in time;

creating a new level in the plurality of levels;

inserting one or more first records stored within the group into the new level,
in response to detecting each of the one or more first records stores a unique key
among keys stored within the group and

utilizing a filtering condition to determine which of the first records are
inserted into the new level, wherein the filtering condition includes a validity of a
given record as determined by an overlay table.

7. The method as recited in claim 6, wherein only a youngest level of the
plurality of levels may be updated with new mapping table entries.

8. The method as recited in claim 6, wherein the data storage controller is
further configured to sort records within the new level.

9. The method as recited in claim 6, wherein the mapping table entries within a
level of the plurality of levels are sorted by key.

10. The method as recited in claim 6, further including performing flattening
operations on the mapping table asynchronously with respect to updates to the
mapping table.

11. The method as recited in claim 6, wherein in response to detecting the
flattening condition, the method further includes inserting one or more second
records stored within the group into the new level, in response to detecting each of

the one or more second records:

3358925v1

19 Sep 2017

2012296510

10

15

20

25

30

35

42

corresponds to two or more records storing a same non-unique key within
the group; and is in a youngest level containing a record with the non-unique key of
the group.

12. The method as recited in claim 6, wherein a single record within the
mapping table corresponds to a range of key values.

13. The method as recited in claim 6, wherein at least some of the first and
second records inserted into the new level are modified based on entries in the
overlay table.

14. The method as recited in claim 6, wherein at least some records of the
group are elided from the new level based on entries in the overlay table.

15. The method as recited in claim 12, wherein at least one record
corresponding to a range of key values in the group is replaced in the new level by a
plurality of records corresponding to subranges of the at least one record.

16. The method as recited in claim 12, wherein at least one record in the group
is replaced by a new record in the new level with a range smaller than that of the one
record based on one or more entries in the overlay table.

17. The method as recited in claim 12, wherein a given plurality of records in
the group are replaced by a single record in the new level whose range covers all
ranges covered by the given plurality of records.

18. A non-transitory computer readable storage medium storing program
instruction executable by a processor to:

store a mapping table organized as a plurality of levels, each level of the
plurality of levels including one or more mapping table entries, where each of the
plurality of entries has a tuple including a key; and

responsive to detecting a flattening condition:

identify a group of two or more levels of the plurality of levels which are
logically adjacent in time;

create a new level in the plurality of levels;

3358925v1

19 Sep 2017

2012296510

10

15

43

insert one or more first records stored within the group into the new level, in
response to detecting each of the one or more first records stores a unique key
among keys stored within the group; and

utilize a filtering condition to determine which of the first records are inserted
into the new level, wherein the filtering condition includes a validity of a given record
as determined by an overlay table.

19. The computer readable storage medium as recited in claim 18, wherein in
response to detecting the flattening condition, the program instructions are further
executable by a processor to insert one or more second records stored within the
group into the new level, in response to detecting each of the one or more second
records: corresponds to two or more records storing a same non-unique key within
the group; and is in a youngest level containing a record with the non-unique key of
the group.

20. The computer readable storage medium as recited in claim 18, wherein only

a youngest level of the plurality of levels may be updated with new mapping table

entries.

3358925v1

PCT/US2012/051059

WO 2013/025864

1/16

} "Old

e0cl
Aeany
abelo)g

eleq

vel
BC/] dnoig ao1nsQq aoeLaU|
YJOMIoN
we/sl —
dnouo wo/l q9/1 EQ/L
991Aa(] 92IA8(Q 921A8(92IA8(] 77T
. abeioig abeioig abeioig 1083901
—— q0clt
— — Jabeue Kel
vel va._m_j_umcow 8.l N .vm_\mEj_O> W 6 v
O/l |eqo|s uonesidnpa(¢l |bel01S
NVY — ejeq
V71 19jj0u0)) obelo)g ¢tl SO oseg
0€] wnipsy
0Z1 wayshAsgng obelo)s Aows

0G1 YaIms

061

081
}omieN

}JomioN

B0 waisAs
Jandwon jusln

GOTT wasAs
Jandwon jusln

3011 WalsAg
Jaindwod i)

091 IswiBu|

N 001 2INJO_YDIY HIOMISN

PCT/US2012/051059

WO 2013/025864

2/16

AL
sBuiddepy ugle
jo abeqd sbuiddey
1o abey
MO oLz
w
sbuiddepy wmc_aaomr_\m
10 abed 06. obey
:!: V—O FN
sbuidde|y sbuiddey
1o abed 1o abed

ol
sbuiddey
1o abed 012
sbuiddey
10 abed
«LtH, -
sBuiddepy 0le
J0 abed sBuiddepy
1o abed
H, 0Tz \
sBuiddey sBuiddey
j0 abed jo sbed

¢ Old

«D»
sbuiddey

10 abed

601C
sbuiddey
10 abed

«bn
sbuiddey

10 abed

qol¢
sbuiddey

10 abed

«0»
sbuiddey

10 abed

¥4
sbuiddey

10 abed

NPIoId opleld | 6L | LE
NPIoId oplRId | 8 | L
NPIoId opieId | 8 | vl
NPIoId opield | 6€ | 2

Aoy
NPleld| - - - opleid| g8 | 21
NPIoId PRI | 6 | 2
NPIoId PRI | ¥L | 0
NPIoId PRI | 8 | 0

Aoy

«by [9AST]

«C» [OAS7]

«N, [BAS7]

PCT/US2012/051059

WO 2013/025864

3/16

2T, KoY
L&, oA
‘ 9z, obed

113 F:
uonied
woJi4

Ve Old

-
(e1qeL buiddeyy)
sbuiddey jo saebed o]

snjels € (¥4 JAS
111 F:
uonied
snjels € 8¢ 44
—_ sniels € ce 6l
qcle
uoned snjels € GL 8l
o [eASTT obed Aoy
snjejs € 1% cl
:o:
Honted smeis | € 8, | 9
snjejs € 89 4
ECLE snjels € L 0
uonied [oAS7 obeq Aoy
01¢
Xopu|

Aewnd

:NN: >®x

90¢
Aoy

Aond

¥0¢
lojeisusn)
Aoy

20¢
sindu
Eled
Jo)sanboy

PCT/US2012/051059

WO 2013/025864

4/16

A)Y
‘. [oneT
‘911, ebed

:F:
uonied
woJt

g€ old

-
21607 8bisy 0]

snjels €c 8LE Le
111 F_-
uonied
sniels L 86 6l
_— snjels 8l cee 9l
qolLe
uonied snjels S LL 9l
o [eASTT obed Aoy
sniels Ll (37 ¢l
:o:
Honted smeis| vl | w8 | @
sniels v 9Ll 4
EQLE snjels 44 L 0
uonied [oAS7 obeq Aoy
2%
Xopu|
Aewnd
pojoS

‘payoen

:N: >®x

90¢
Aoy
Aond

¥0¢
lojeisusn)
Aoy

20¢
sindu
Eled
Jo)sanboy

PCT/US2012/051059

WO 2013/025864

5/16

(Pzg602c4x Jo1u10d 10b6ie] - /7, A8)) IIH =

vy Old

.d, sbuiddey
Jo abed

111 F+S—:
sbuiddey

Jo abed

:S—:
sbuiddey

Jo abed

101€ Xapuy|
Aewnd

0c¢ xapu|
Aepuoosg

M, sbuidde
Jo abed

111 F+—|—=
sbuiddely

Jo abed

.H, sbuiddep
Jo abed

201 ¢ Xapuy|
Aewnud

5, sbuiddepy
Jo abed

111 F+m=
sbuiddey

Jo abed

.3, sbuiddep
Jo abed

q01€ Xapu|
Aewnd

L2, o)
28, []oneT

‘ 2¢, sbuiddely Jo sbed

.a, sbuiddep
Jo abed

.1, sbuiddep
Jo abed

.0, sbuidde
Jo abed

EQLE Xapu|
Aewnud

111 F ” —®>®|_

:Nl Z ” —®>®|_

111 FlZ: —®>®|_

:Z ” —®>®|_

0F€ olqel Buiddepy

SSIN
/(S)NH

0¢ce
soldon
Xopu|

WEAR:)Y

90¢
Aoy
Aond

4

¥0€
Jojelsuan)

Aoy

4

20¢
sindu
Eled
Jo)sanboy

WO 2013/025864

6/16

Receive Read Request
500

Generate key
502

!

Query index(es) and cached
mappings
504

Yes

Hit on
cached

mappings?
505

Hit in the
cached index?
506

Access and query page in

508

Return mapping
table entry

510

PCT/US2012/051059

Handle Exception
524

Hit in the
stored indices?
520

the mapping table. »

Return Index Entry
522

Perform Storage Access
512

FIG. 5A

WO 2013/025864 PCT/US2012/051059

7/16

Receive Write Request

530
Generate Hash
540
Create new mapping table entry
532 ,
Access Deduplication
Tables
542

Store new entry in association with
cached index

|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
|
|
|
|
|
|
|
|
:
|
|
|

Hit in the Update dedup
dedup table? table
544 548
Create new dedup
entry
546
S S -

Perform Write to Storage
536

550

Update Stored Index
538

FIG. 5B

WO 2013/025864

PCT/US2012/051059

8/16

9 9ld

SVIE e E/E ¢
o|qe] Buiddepy paseys o|qe] Buiddeyy peseys o|qe] Buiddep paseys [oAST
32IE LT BZIE &N
siqe) Buiddepy peseys olqel buiddepy paseys | slqe] Buiddepy paieys |oneT]
3075 q0Ze ¥0IE N
a|qe Buiddepy paseys , ©|qe Buiddepy peseys o|qe Buiddepy paseys 19AS7]
5%9¢ ayoc 25 i —
alqel olqel olqeL _mv>w._ mm_m_m 1
Buiddey Jep|O Buiddepy Jop|O buiddey Jop|O paJeys
329E TeoE 43 N
a|qe) Buiddep s|qe] Buiddep o|qe | Buiddepy |oAsT
JomaN JomaN JomoN
309€ 9PON d09€ 9PON B0OE 9PON

PCT/US2012/051059

WO 2013/025864

©
N
>

WAL)Y

oL, 9N
.86, 9bed
2Ty 19N
.2€Z, 9bed

-+
21607 8bisy 0]

:o:
uoniJed
woJt

Z Ol

111 F:
uonied

qzee
uonied

:o:
uonied

BZ2E
uonied

Snjels 8l 8.7 "89 ¥4
Snjels €L 09" " " ¢¢ ¥4
Snjels cll le"""0C L¢
Snjels v GL° "0 ¥4
snjels LLL 8L " 19] ¢&¢
snjels 9¢€ vG 8¢ ¢&¢
snjels cee Lle"""91L d¢
snjels L ¢l 0 d¢
obed obuey A8y |oAST

L2, Ao

-

90¢
Aoy
Aond

¥0€
lojeisusn)
Aoy

0ce
Xopu|
Aepuoosg

c0¢
syndu
eled
Jo)sonboy

PCT/US2012/051059

WO 2013/025864

10/16

To Merge Logic

:o:
uoniJed
woJt

-

L2, Ao

- :wm: wmm&
‘L, [oAeT
.2se, obed
81l 19Aa7]

0¢ce
Xopu|
Aes |

8 Old

0cE

xopu| Alepuodsg

‘xapu| A1epuodsg Jo
.0, uonied ssaooy

WAL)Y

wbs snjejs € €601 """ 086
uonied .

snjejs c 796 c8.

snjejs I VAL $89

qcee snjejs 0 89" O¥S
uonied uonleqd abuey As)

«0>» snjeis € 8LG " el

vohiied smels 4 ¥8€ " 20T

snjeig I g6l """ 98

BZEE snjeig 0 8.°"°0
uonied uonnied obuey Asy

ALY

90¢
Aoy
Aend

¥0€
lojeisusn)
Aoy

c0¢
sindu
eled
Js)senboay

WO 2013/025864

11/16
Receive Read Generate key for
Request mapping table
900 908
Generate Key for Retrieve tuple from
1st overlay table mapping table
902 910
Retrieve entry from
1st overlay table
204
Elide Modify Modify tuple usin
entry in entry in Yes valu}:es f?om 1t 9
1% overlay 1% overlay

table? table?

906 912

overlay table
922

Yes Generate key for 2nd

overlay table
914

Retrieve entry from
2" overlay table
916

lide entry
in 2" overlay
table?
920

Return “no valid
tuple” to requester
218

Modify
entry in

PCT/US2012/051059

No

2" overlay
table?
924

Modify tuple using values
from 2" overlay table

926

FIG. 9

928

Return tuple to
requester

PCT/US2012/051059

WO 2013/025864

12/16

0/8 | 62
€19 | 9z
Jajuiod >®v._

B61¢, obed
80S | €Z
206 @ 0T
c6¥ | 6l
oty | L1
Jajuiod Aoy
.81¢, obed
12z | €1
126 | 2l
86S | LI
78 | 6
Jajuiod >®v._
.1€, obed
ey | L
oz | 9
2ls | v
86E | ¢
JojuIod Aoy
9l¢, obed

«d MOBN, |PADT]

usype|d

0} Old

LWL | 62 w
P68 | €2 w S
206 | 0T AN
€6y | 61 S
louod Aoy AN .
8, obed N Mo e
~. | €19 | 92
Lo | Ll w—ol__ X g05 | €2
122 | €l ST ey | 4L
€VS | ¢l e Buiod Aoy
86S | LI Y e, obed
ouod A9y T~
€8, bed TNz | 2L
\\\\\ % VI8 | 6
ggc | 6 -« -7 wz | 9
eew | L > 2S | ¥
9G9 | v -7 Jo0d Aa)
86 | T £2, 9bed
Bulod Asy oo
.28, 9bed
14, [8AeT]

PCT/US2012/051059

WO 2013/025864

13/16

:Nl“— ” —®>®|_

111 Fl“— ” —®>®|_

:“—: —®>®|_

«d MOBN, |PADT]

111 F +“—: —®>®|_

:N+“—:
[oAeT

b1 Ol

:Nl“—: —®>®|_

—

usjeld

=

N

111 Fl“—: —®>®|_

®

7

R\ X

k4

:“— ” —®>®|_

111 F+“—: —®>®|_

WO 2013/025864 PCT/US2012/051059

14/16
Vo Method 1000

Allocate space to support mapping
table and corresponding indexes.
1002

Determine one or more conditions

for flattening levels of the mapping
table.

1004

|

Access and update both the indexes
and the mapping as new mappings
are found.

1006

etect
one of the
conditions for
flattening?
1008

No >A

Yes

v

|dentify one or more groups of Replace the groups with the new
levels for flattening. levels when each node is ready.

1010 1016

l T

Produce a new level for each group Coordinate with other nodes to use
comprising the newest records in the new levels instead of the
the group. ™ groups.
1012 1014

FIG. 12

WO 2013/025864

Receive a bulk array task.
1102

15/16

PCT/US2012/051059

Store an indication relating a range
of new keys to a range of old keys,
wherein both old and new keys
correspond to the request.
1104

l

A<—No

Receive
an access request
corresponding to a
new key?
1110

already inserted

Convey a response indicating
completion of the request without
prior access of user data.
1106

l

Set a condition for updating one or
more records in the mapping table
corresponding to the new keys
replacing the old keys.

1108

in a mapping
table?
1112

Yes
A

Access the indexes and the
mapping table with the new key.
1114

l

Process the access request with a
pointer corresponding to the new
key.

1116

3

Access the indexes and the
mapping table with an old key
corresponding to the new key.

1118

l

Process the access request with a
pointer corresponding to the old
key.

1120

FIG. 13

WO 2013/025864

Storage

Device

(SD) 176a /SD176b/SD1760/SD1

16/16

PCT/US2012/051059

76d ,SD176i ,SD176] ,SD.176k
[[/

/ Data 1250 Data 1260

Inter-Device %
Error %\\

Recovery

Metadata

FIG. 14

Py SRR N RRRRend M ARReeass M IRERRRes ERIVDT W DCD0s DOE
o s .
Stripe
/ 1270a
/}Qﬁaﬁ@@ KRV W oty M RSy RN] =
RN .
Stripe
/ 1270b
s e
R
R
RSDSDEDNDETRT I ST I DEDRTTN, I SR RO I R I AR
e e
et
ERERTERN N RENTRR I SRR N AR RTINS0 I DO
o s
\ Page
1212
Page
1220
/ Data 1230 / Data 124
Intra-Device
User Data Error Recovery

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

