
(12) STANDARD PATENT (11) Application No. AU 2012296510 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Mapping in a storage system

(51) International Patent Classification(s)
G06F 3/06 (2006.01) G06F 11/14 (2006.01)

(21) Application No: 2012296510 (22) Date of Filing: 2012.08.16

(87) WIPO No: W013/025864

(30) Priority Data

(31) Number (32) Date (33) Country
13/211,288 2011.08.16 US

(43) Publication Date: 2013.02.21
(44) Accepted Journal Date: 2017.10.26

(71) Applicant(s)
Pure Storage, Inc.

(72) Inventor(s)
Colgrove, John;Hayes, John;Miller, Ethan;Sandvig, Cary

(74) Agent / Attorney
Fisher Adams Kelly Callinans, L 6 175 Eagle St, BRISBANE, QLD, 4000, AU

(56) Related Art
US 2011/0167221 Al
US 2006/0155946 Al
US 7873619 B1
US 2002/0087544 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2013/025864 Al
21 February 2013 (21.02.2013) W I P0 I P CT

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 3/06 (2006.01) G06F 11/14 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2012/051059 DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

16 August 2012 (16.08.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

(26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(30) Priority Data: ZW.
13/211,288 16 August 2011 (16.08.2011) US

(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): PURE kind of regional protection available): ARIPO (BW, GH,

STORAGE, INC. [US/US]; 650 Castro Street, Suite 220, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Mountain View, California 94041 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(72) Inventors; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(75) Inventors/Applicants (for US only): COLGROVE, John EE, ES, F, NL, G, R, H, R, IS, IT, LT, LU, LV,

[US/US]; 722 Vista Grande Ave., Los Altos, California MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

94024 (US). HAYES, John [CA/US]; 800 High School TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

Way, #330, Mountain View, California 94041 (US). ML, MR, NE, SN, TD, TG).

MILLER, Ethan [US/US]; 203 Kalkar Drive, Santa Cruz, Published:
California 95060 (US). SANDVIG, Cary [US/US]; 284 _ with international search report (Art. 21(3))
Donahoe St., Palo Alto, California 94303 (US).

(74) Agent: RANKIN, Rory, D.; Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.C., P.O. Box 398, Austin, Texas
78767-0398 (US).

(54) Title: MAPPING IN A STORAGE SYSTEM

Level "New F"

Level 'F-i" Page "316"
LvKey Pointer

Page "82" 2 398
Level "F' Key Pointer 4 512

Page "23" 2 398 6 246
Key Pointer 4 656 7 423

4 512 e7 423
6 246 9 388 Page"317"
9 814 '- Key Pointer
12 921 Page "83" 9 814

Key Pointer Flatten 1 598
Page"24' 11 598 1 2
Ke-one 130221

KeyPoiter12 543
17 436 13 221

23 508 17 614 Page o1te
- 26 613Key Pointer
-17 436

29 870 Page "84"
------------ Key Pointer 20 90

20 902
23 508

20 922
239894

Page "319"
Key Pointer
26 613
29 870

FIG. 10

(57) Abstract: A system and method for maintaining a mapping table in a data storage subsystem. A data storage subsystem supports
multiple mapping tables. Records within a mapping table are arranged in multiple levels which may be logically ordered by time.
Each level stores pairs of a key value and a pointer value. New records are inserted in a created new (youngest) level. All levels other

f4 than the youngest may be read only. In response to detecting a flattening condition, a data storage controller is configured to identify
a group of two or more adjacent levels of the plurality of levels for flattening which are logically adjacent in time. A new level is ere
ated and one or more records stored within the group are stored in the new level, in response to detecting each of the one or more re
cords stores a unique key among keys stored within the group.

WO 2013/025864 PCT/US2012/051059

TITLE: MAPPING IN A STORAGE SYSTEM

BACKGROUND OF THE INVENTION

5 Field of the Invention

[0001] This invention relates to computer networks and, more particularly, to maintaining a

mapping structure in a storage system.

Description of the Related Art

10 [0002] As computer memory storage and data bandwidth increase, so does the amount and

complexity of data that businesses daily manage. Large-scale distributed storage systems, such

as data centers, typically run many business operations. A datacenter, which also may be

referred to as a server room, is a centralized repository, either physical or virtual, for the storage,

management, and dissemination of data pertaining to one or more businesses. A distributed

15 storage system may be coupled to client computers interconnected by one or more networks. If

any portion of the distributed storage system has poor performance, company operations may be

impaired. A distributed storage system therefore maintains high standards for data availability

and high-performance functionality.

[0003] The distributed storage system comprises physical volumes, which may be hard disks,

20 solid-state devices, storage devices using another storage technology, or partitions of a storage

device. Software applications, such as a logical volume manager or a disk array manager,

provide a means of allocating space on mass-storage arrays. In addition, this software allows a

system administrator to create units of storage groups including logical volumes. Storage

virtualization provides an abstraction (separation) of logical storage from physical storage in

25 order to access logical storage without end-users identifying physical storage.

[0004] To support storage virtualization, a volume manager performs input/output (I/O)

redirection by translating incoming I/O requests using logical addresses from end-users into new

requests using addresses associated with physical locations in the storage devices. As some

storage devices may include additional address translation mechanisms, such as address

30 translation layers which may be used in solid state storage devices, the translation from a logical

address to another address mentioned above may not represent the only or final address

translation. Redirection utilizes metadata stored in one or more mapping tables. In addition,

information stored in one or more mapping tables may be used for storage deduplication and

1

2

mapping virtual sectors at a specific snapshot level to physical locations. The volume

manager may maintain a consistent view of mapping information for the virtualized

storage. However, a supported address space may be limited by a storage capacity

used to maintain a mapping table.

5 [0005] The technology and mechanisms associated with chosen storage disks

determines the methods used by a volume manager. For example, a volume

manager that provides mappings for a granularity level of a hard disk, a hard disk

partition, or a logical unit number (LUN) of an external storage device is limited to
redirecting, locating, removing duplicate data, and so forth, for large chunks of data.

10 One example of another type of storage disk is a Solid-State Disk (SSD). An SSD

may emulate a HDD interface, but an SSD utilizes solid-state memory to store

persistent data rather than electromechanical devices as found in a HDD. For

example, an SSD may comprise banks of Flash memory. Accordingly, a large
supported address space by one or more mapping tables may not be achieved in

15 systems comprising SSDs for storage while utilizing mapping table allocation

algorithms developed for HDDs.

[0006] In view of the above, systems and methods for efficiently performing

storage virtualization for data stored among a plurality of solid-state storage devices

are desired.

20

SUMMARY OF THE INVENTION

[0007] Various embodiments of a computer system and methods for efficiently

managing mapping tables in a data storage system are contemplated.

[0008] The present invention provides a computer system including: a data storage
25 medium; a mapping table organized as a plurality of levels, each level of the plurality

of levels including one or more mapping table entries, where each of the plurality of
entries has a tuple including a key; and a data storage controller coupled to the data
storage medium; wherein in response to detecting a flattening condition, the data
storage controller is configured to: identify a group of two or more levels of the

30 plurality of levels which are logically adjacent in time; create a new level in the
plurality of levels; insert one or more first records stored within the group into the new
level, in response to detecting each of the one or more first records stores a unique
key among keys stored within the group; and utilize a filtering condition to determine

which of the first records are inserted into the new level, wherein the filtering
35 condition includes a validity of a given record as determined by the overlay table.

2556608v1

3

[0009] Also contemplated are embodiments the data storage controller is further
configured to insert one or more second records stored within the group into the new
level, in response to detecting each of the one or more second records corresponds
to two or more records storing a same non-unique key within the group, and is in a

5 younger level of the two or more adjacent levels.

[0010] Also contemplated are embodiments wherein only a youngest level of the
plurality of levels may be updated with new mapping table entries. Additionally,
flattening operations on the mapping table need not be synchronized with such
updates to the mapping table.

10 [0011] These and other embodiments will become apparent upon consideration
of the following description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a generalized block diagram illustrating one embodiment of
15 network architecture.

[0013] FIG. 2 is a generalized block diagram of one embodiment of a mapping
table.

[0014] FIG. 3A is a generalized block diagram of one embodiment of a primary
index used to access a mapping table.

20 [0015] FIG. 3B is a generalized block diagram of another embodiment of a
primary index used to access a mapping table.

[0016] FIG. 4 is a generalized block diagram of another embodiment of a primary
index and mapping table.

[0017] FIG. SA is a generalized flow diagram illustrating one embodiment of a
25 method for performing a read access.

[0018] FIG. 5B is a generalized flow diagram illustrating one embodiment of a
method for performing a write operation.

[0019] FIG. 6 is a generalized block diagram of one embodiment of a multi-node
network with shared mapping tables.

30 [0020] FIG. 7 is a generalized block diagram of one embodiment of a secondary
index used to access a mapping table.

2556608v1

WO 2013/025864 PCT/US2012/051059

[0021] FIG. 8 is a generalized block diagram of one embodiment of a tertiary index accessing

a mapping table.

[0022] FIG. 9 illustrates one embodiment of a method that utilizes overlay tables.

[0023] FIG. 10 is a generalized block diagram of one embodiment of a flattening operation

5 for levels within a mapping table.

[0024] FIG. 11 is a generalized block diagram of another embodiment of a flattening

operation for levels within a mapping table.

[0025] FIG. 12 is a generalized flow diagram illustrating one embodiment of a method for

flattening levels within a mapping table.

10 [0026] FIG. 13 is a generalized flow diagram illustrating one embodiment of a method for

efficiently processing bulk array tasks within a mapping table.

[0027] FIG. 14 is a generalized block diagram illustrating an embodiment of a data layout

architecture within a storage device.

[0028] While the invention is susceptible to various modifications and alternative forms,

15 specific embodiments are shown by way of example in the drawings and are herein described in

detail. It should be understood, however, that drawings and detailed description thereto are not

intended to limit the invention to the particular form disclosed, but on the contrary, the invention

is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the

present invention as defined by the appended claims.

20

DETAILED DESCRIPTION

[00291 In the following description, numerous specific details are set forth to provide a

thorough understanding of the present invention. However, one having ordinary skill in the art

should recognize that the invention might be practiced without these specific details. In some

25 instances, well-known circuits, structures, signals, computer program instruction, and techniques

have not been shown in detail to avoid obscuring the present invention.

[0030] Referring to FIG. 1, a generalized block diagram of one embodiment of a network

architecture 100 is shown. As described further below, one embodiment of network architecture

100 includes client computer systems 1lOa-110b interconnected to one another through a

30 network 180 and to data storage arrays 120a-120b. Network 180 may be coupled to a second

network 190 through a switch 140. Client computer system 1 Oc is coupled to client computer

systems 1 Oa-1 Ob and data storage arrays 120a-120b via network 190. In addition, network 190

may be coupled to the Internet 160 or otherwise outside network through switch 150.

4

WO 2013/025864 PCT/US2012/051059

[0031] It is noted that in alternative embodiments, the number and type of client computers

and servers, switches, networks, data storage arrays, and data storage devices is not limited to

those shown in FIG. 1. At various times one or more clients may operate offline. In addition,

during operation, individual client computer connection types may change as users connect,

5 disconnect, and reconnect to network architecture 100. Further, while the present description

generally discusses network attached storage, the systems and methods described herein may also

be applied to directly attached storage systems and may include a host operating system

configured to perform one or more aspects of the described methods. Numerous such alternatives

are possible and are contemplated. A further description of each of the components shown in

10 FIG. 1 is provided shortly. First, an overview of some of the features provided by the data

storage arrays 120a-120b is described.

[0032] In the network architecture 100, each of the data storage arrays 120a-120b may be

used for the sharing of data among different servers and computers, such as client computer

systems 110a-110c. In addition, the data storage arrays 120a-120b may be used for disk

15 mirroring, backup and restore, archival and retrieval of archived data, and data migration from

one storage device to another. In an alternate embodiment, one or more client computer systems

110 a-I1 Oc may be linked to one another through fast local area networks (LANs) in order to

form a cluster. Such clients may share a storage resource, such as a cluster shared volume

residing within one of data storage arrays 120a-120b.

20 [0033] Each of the data storage arrays 120a-120b includes a storage subsystem 170 for data

storage. Storage subsystem 170 may comprise a plurality of storage devices 176a-176m. These

storage devices 176a-176m may provide data storage services to client computer systems 1 I0a

11 0c. Each of the storage devices 176a-176m uses a particular technology and mechanism for

performing data storage. The type of technology and mechanism used within each of the storage

25 devices 176a-176m may at least in part be used to determine the algorithms used for controlling

and scheduling read and write operations to and from each of the storage devices 176a-176m.

For example, the algorithms may locate particular physical locations corresponding to the

operations. In addition, the algorithms may perform input/output (I/O) redirection for the

operations, removal of duplicate data in the storage subsystem 170, and support one or more

30 mapping tables used for address redirection and deduplication.

10034] The logic used in the above algorithms may be included in one or more of a base

operating system (OS) 132, a volume manager 134, within a storage subsystem controller 174,

control logic within each of the storage devices 176a-176m, or otherwise. Additionally, the

5

WO 2013/025864 PCT/US2012/051059

logic, algorithms, and control mechanisms described herein may comprise hardware and/or

software.

[0035] Each of the storage devices 176a-176m may be configured to receive read and write

requests and comprise a plurality of data storage locations, each data storage location being

5 addressable as rows and columns in an array. In one embodiment, the data storage locations

within the storage devices 176a-176m may be arranged into logical, redundant storage containers

or RAID arrays (redundant arrays of inexpensive/independent disks).

[0036] In some embodiments, each of the storage devices 176a-176m may utilize technology

for data storage that is different from a conventional hard disk drive (HDD). For example, one or

10 more of the storage devices 176a-176m may include or be further coupled to storage consisting

of solid-state memory to store persistent data. In other embodiments, one or more of the storage

devices 176a-176m may include or be further coupled to storage using other technologies such as

spin torque transfer technique, magnetoresistive random access memory (MRAM) technique,

shingled disks, memristors, phase change memory, or other storage technologies. These different

15 storage techniques and technologies may lead to differing I/O characteristics between storage

devices.

[0037] In one embodiment, the included solid-state memory comprises solid-state drive (SSD)

technology. The differences in technology and mechanisms between HDD technology and SDD

technology may lead to differences in input/output (I/O) characteristics of the data storage

20 devices 176a-176m. A Solid-State Disk (SSD) may also be referred to as a Solid-State Drive.

Without moving parts or mechanical delays, an SSD may have a lower read access time and

latency than a HDD. However, the write performance of SSDs is generally slower than the read

performance and may be significantly impacted by the availability of free, programmable blocks

within the SSD.

25 [0038] Storage array efficiency may be improved by creating a storage virtualization layer

between user storage and physical locations within storage devices 176a-176m. In one

embodiment, a virtual layer of a volume manager is placed in a device-driver stack of an

operating system (OS), rather than within storage devices or in a network. Many storage arrays

perform storage virtualization at a coarse-grained level to allow storing of virtual-to-physical

30 mapping tables entirely in memory. However, such storage arrays are unable to integrate

features such as data compression, deduplication and copy-on-modify operations. Many file

systems support fine-grained virtual-to-physical mapping tables, but they do not support large

6

WO 2013/025864 PCT/US2012/051059

storage arrays, such as device groups 173a-173m. Rather, a volume manager or a disk array

manager is used to support device groups 173a-173m.

[0039] In one embodiment, one or more mapping tables may be stored in the storage devices

176a-176m, rather than memory, such as RAM 172, memory medium 130 or a cache within

5 processor 122. The storage devices 176a-176 may be SSDs utilizing Flash memory. The low

read access and latency times for SSDs may allow a small number of dependent read operations

to occur while servicing a storage access request from a client computer. The dependent read

operations may be used to access one or more indexes, one or more mapping tables, and user data

during the servicing of the storage access request.

10 [0040] In one example, I/O redirection may be performed by the dependent read operations.

In another example, inline deduplication may be performed by the dependent read operations. In

yet another example, bulk array tasks, such as a large copy, move, or zeroing operation, may be

performed entirely within a mapping table rather than accessing storage locations holding user

data. Such a direct map manipulation may greatly reduce I/O traffic and data movement within

15 the storage devices 176a-176m. The combined time for both servicing the storage access request

and performing the dependent read operations from SSDs may be less than servicing a storage

access request from a spinning HDD.

[0041] In addition, the information within a mapping table may be compressed. A particular

compression algorithm may be chosen to allow identification of individual components, such as a

20 key within a record among multiple records. Therefore, a search for a given key among multiple

compressed records may occur. If a match is found, only the matching record may be

decompressed. Compressing the tuples within records of a mapping table may further enable

fine-grained level mapping. This fine-grained level mapping may allow direct map manipulation

as an alternative to common bulk array tasks. Further details concerning efficient storage

25 virtualization will be discussed below.

[0042] Again, as shown, network architecture 100 includes client computer systems 1 I0a

11 Oc interconnected through networks 180 and 190 to one another and to data storage arrays

120a-120b. Networks 180 and 190 may include a variety of techniques including wireless

connection, direct local area network (LAN) connections, wide area network (WAN) connections

30 such as the Internet, a router, storage area network, Ethernet, and others. Networks 180 and 190

may comprise one or more LANs that may also be wireless. Networks 180 and 190 may further

include remote direct memory access (RDMA) hardware and/or software, transmission control

protocol/internet protocol (TCP/IP) hardware and/or software, router, repeaters, switches, grids,

7

WO 2013/025864 PCT/US2012/051059

and/or others. Protocols such as Fibre Channel, Fibre Channel over Ethernet (FCoE), iSCSI,

and so forth may be used in networks 180 and 190. Switch 140 may utilize a protocol

associated with both networks 180 and 190. The network 190 may interface with a set of

communications protocols used for the Internet 160 such as the Transmission Control Protocol

5 (TCP) and the Internet Protocol (IP), or TCP/IP. Switch 150 may be a TCP/IP switch.

[0043] Client computer systems 1 Oa-1 Oc are representative of any number of stationary or

mobile computers such as desktop personal computers (PCs), servers, server farms, workstations,

laptops, handheld computers, servers, personal digital assistants (PDAs), smart phones, and so

forth. Generally speaking, client computer systems 110 a-I1 Oc include one or more processors

10 comprising one or more processor cores. Each processor core includes circuitry for executing

instructions according to a predefined general-purpose instruction set. For example, the x86

instruction set architecture may be selected. Alternatively, the Alpha®, PowerPC®, SPARC@,

or any other general-purpose instruction set architecture may be selected. The processor cores

may access cache memory subsystems for data and computer program instructions. The cache

15 subsystems may be coupled to a memory hierarchy comprising random access memory (RAM)

and a storage device.

[0044] Each processor core and memory hierarchy within a client computer system may be

connected to a network interface. In addition to hardware components, each of the client

computer systems 110a-110c may include a base operating system (OS) stored within the

20 memory hierarchy. The base OS may be representative of any of a variety of operating systems,

such as, for example, MS-DOS®, MS-WINDOWS®, OS/2@, UNIX®, Linux®, Solaris®,

AIX®, DART, or otherwise. As such, the base OS may be operable to provide various services

to the end-user and provide a software framework operable to support the execution of various

programs. Additionally, each of the client computer systems 110a-110c may include a

25 hypervisor used to support virtual machines (VMs). As is well known to those skilled in the art,

virtualization may be used in desktops and servers to fully or partially decouple software, such as

an OS, from a system's hardware. Virtualization may provide an end-user with an illusion of

multiple OSes running on a same machine each having its own resources and access to logical

storage entities (e.g., LUNs) built upon the storage devices 176a-176m within each of the data

30 storage arrays 120a-120b.

[0045] Each of the data storage arrays 120a-120b may be used for the sharing of data among

different servers, such as the client computer systems 11 0a-1 Oc. Each of the data storage arrays

120a-120b includes a storage subsystem 170 for data storage. Storage subsystem 170 may

8

WO 2013/025864 PCT/US2012/051059

comprise a plurality of storage devices 176a-176m. Each of these storage devices 176a-176m

may be an SSD. A controller 174 may comprise logic for handling received read/write requests.

A random-access memory (RAM) 172 may be used to batch operations, such as received write

requests. In various embodiments, when batching write operations (or other operations) non

5 volatile storage (e.g., NVRAM) may be used.

[0046] The base OS 132, the volume manager 134 (or disk array manager 134), any OS

drivers (not shown) and other software stored in memory medium 130 may provide functionality

providing access to files and the management of these functionalities. The base OS 132 may be a

storage operating system such as NetApp Data ONTAP@ or otherwise. The base OS 132 and the

10 OS drivers may comprise program instructions stored on the memory medium 130 and

executable by processor 122 to perform one or more memory access operations in storage

subsystem 170 that correspond to received requests. The system shown in FIG. 1 may generally

include one or more file servers and/or block servers.

[0047] Each of the data storage arrays 120a-120b may use a network interface 124 to connect

15 to network 180. Similar to client computer systems 1lOa-110c, in one embodiment, the

functionality of network interface 124 may be included on a network adapter card. The

functionality of network interface 124 may be implemented using both hardware and software.

Both a random-access memory (RAM) and a read-only memory (ROM) may be included on a

network card implementation of network interface 124. One or more application specific

20 integrated circuits (ASICs) may be used to provide the functionality of network interface 124.

[0048] In addition to the above, each of the storage controllers 174 within the data storage

arrays 120a-120b may support storage array functions such as snapshots, replication and high

availability. In addition, each of the storage controllers 174 may support a virtual machine

environment that comprises a plurality of volumes with each volume including a plurality of

25 snapshots. In one example, a storage controller 174 may support hundreds of thousands of

volumes, wherein each volume includes thousands of snapshots. In one embodiment, a volume

may be mapped in fixed-size sectors, such as a 4-kilobyte (KB) page within storage devices

176a-176m. In another embodiment, a volume may be mapped in variable-size sectors such as

for write requests. A volume ID, a snapshot ID, and a sector number may be used to identify a

30 given volume.

[0049] An address translation table may comprise a plurality of entries, wherein each entry

holds a virtual-to-physical mapping for a corresponding data component. This mapping table

may be used to map logical read/write requests from each of the client computer systems 110 a

9

WO 2013/025864 PCT/US2012/051059

1 Oc to physical locations in storage devices 176a-176m. A "physical" pointer value may be

read from the mapping table during a lookup operation corresponding to a received read/write

request. This physical pointer value may then be used to locate a physical location within the

storage devices 176a-176m. It is noted the physical pointer value may be used to access another

5 mapping table within a given storage device of the storage devices 176a-176m. Consequently,

one or more levels of indirection may exist between the physical pointer value and a target

storage location.

[0050] In another embodiment, the mapping table may comprise information used to

deduplicate data (deduplication table related information). The information stored in the

10 deduplication table may include mappings between one or more calculated hash values for a

given data component and a physical pointer to a physical location in one of the storage devices

176a-176m holding the given data component. In addition, a length of the given data component

and status information for a corresponding entry may be stored in the deduplication table.

[0051] Turning now to FIG. 2, a generalized block diagram of one embodiment of a mapping

15 table is shown. As discussed earlier, one or more mapping tables may be used for I/O redirection

or translation, deduplication of duplicate copies of user data, volume snapshot mappings, and so

forth. Mapping tables may be stored in the storage devices 176a-176m. The diagram shown in

FIG. 2 represents a logical representation of one embodiment of the organization and storage of

the mapping table. Each level shown may include mapping table entries corresponding to a

20 different period of time. For example, level "1" may include information older than information

stored in level "2". Similarly, level "2" may include information older than information stored in

level "3". The information stored in the records, pages and levels shown in FIG. 2 may be stored

in a random-access manner within the storage devices 176a-176m. Additionally, copies of

portions or all of a given mapping table entries may be stored in RAM 172, in buffers within

25 controller 174, in memory medium 130, and in one or more caches within or coupled to

processor 122. In various embodiments, a corresponding index may be included in each level

for mappings which are part of the level (as depicted later in FIG. 4). Such an index may include

an identification of mapping table entries and where they are stored (e.g., an identification of the

page) within the level. In other embodiments, the index associated with mapping table entries

30 may be a distinct entity, or entities, which are not logically part of the levels themselves.

[0052] Generally speaking, each mapping table comprises a set of rows and columns. A

single record may be stored in a mapping table as a row. A record may also be referred to as an

entry. In one embodiment, a record stores at least one tuple including a key. Tuples may (or may

10

WO 2013/025864 PCT/US2012/051059

not) also include data fields including data such as a pointer used to identify or locate data

components stored in storage subsystem 170. It is noted that in various embodiments, the

storage subsystem may include storage devices (e.g., SSDs) which have internal mapping

mechanisms. In such embodiments, the pointer in the tuple may not be an actual physical address

5 per se. Rather, the pointer may be a logical address which the storage device maps to a physical

location within the device. Over time, this internal mapping between logical address and physical

location may change. In other embodiments, records in the mapping table may only contain key

fields with no additional associated data fields. Attributes associated with a data component

corresponding to a given record may be stored in columns, or fields, in the table. Status

10 information, such as a valid indicator, a data age, a data size, and so forth, may be stored in

fields, such as FieldO to FieldN shown in FIG. 2. In various embodiments, each column stores

information corresponding to a given type. In some embodiments, compression techniques may

be utilized for selected fields which in some cases may result in fields whose compressed

representation is zero bits in length.

15 [0053] A key is an entity in a mapping table that may distinguish one row of data from

another row. Each row may also be referred to as an entry or a record. A key may be a single

column, or it may consist of a group of columns used to identify a record. In some embodiments,

a key may correspond to a range of values rather than to a single value. A key corresponding to a

range may be represented as a start and end of a range, or as a start and length, or in other ways.

20 The ranges corresponding to keys may overlap with other keys, either ranges or individual

values. In one example, an address translation mapping table may utilize a key comprising a

volume identifier (ID), a logical or virtual address, a snapshot ID, a sector number, and so forth.

A given received read/write storage access request may identify a particular volume, sector and

length. A sector may be a logical block of data stored in a volume. Sectors may have different

25 sizes on different volumes. The address translation mapping table may map a volume in sector

size units.

[0054] A volume identifier (ID) may be used to access a volume table that conveys a volume

ID and a corresponding current snapshot ID. This information along with the received sector

number may be used to access the address translation mapping table. Therefore, in such an

30 embodiment, the key value for accessing the address translation mapping table is the

combination of the volume ID, snapshot ID, and the received sector number. In one

embodiment, the records within the address translation mapping table are sorted by volume ID,

followed by the sector number and then by the snapshot ID. This ordering may group together

11

WO 2013/025864 PCT/US2012/051059

different versions of data components in different snapshots. Therefore, during a lookup for a

storage access read request, a corresponding data component may be found with fewer read

operations to the storage devices 176a- 1 76m.

[0055] The address translation mapping table may convey a physical pointer value that

5 indicates a location within the data storage subsystem 170 storing a data component

corresponding to the received data storage access request. The key value may be compared to

one or more key values stored in the mapping table. In the illustrated example, simpler key

values, such as "0", "2", "12" and so forth, are shown for ease of illustration. The physical

pointer value may be stored in one or more of the fields in a corresponding record.

10 [0056] The physical pointer value may include a segment identifier (ID) and a physical

address identifying the location of storage. A segment may be a basic unit of allocation in each

of the storage devices 176a-176m. A segment may have a redundant array of independent device

(RAID) level and a data type. During allocation, a segment may have one or more of the storage

devices 176a-176m selected for corresponding storage. In one embodiment, a segment may be

15 allocated an equal amount of storage space on each of the one or more selected storage devices of

the storage devices 176a-176m. The data storage access request may correspond to multiple

sectors, which may result in multiple parallel lookups. A write request may be placed in an

NVRAM buffer, such as RAM 172, and a write completion acknowledgment may be sent to a

corresponding client computer of the client computers 1lOa-110c. At a later time, an

20 asynchronous process may flush the buffered write requests to the storage devices 176a-176m.

[0057] In another example, the mapping table shown in FIG. 2 may be a deduplication table.

A deduplication table may utilize a key comprising a hash value determined from a data

component associated with a storage access request. The initial steps of a deduplication

operation may be performed concurrently with other operations, such as a read/write request, a

25 garbage collection operation, a trim operation, and so forth. For a given write request, the data

sent from one of the client computer systems 1 Oa-1 Oc may be a data stream, such as a byte

stream. As is well known to those skilled in the art, a data stream may be divided into a

sequence of fixed-length or variable-length chunks. A chunking algorithm may perform the

dividing of the data stream into discrete data components which may be referred to as "chunks".

30 A chunk may be a sub-file content-addressable unit of data. In various embodiments, a table or

other structure may be used to determine a particular chunking algorithm to use for a given file

type or type of data. . A file's type may be determined by referring to its file name extension,

separate identifying information, the content of the data itself, or otherwise. The resulting

12

WO 2013/025864 PCT/US2012/051059

chunks may then be stored in one of the data storage arrays 120a-120b to allow for sharing of

the chunks. Such chunks may be stored separately or grouped together in various ways.

[0058] In various embodiments, the chunks may be represented by a data structure that allows

reconstruction of a larger data component from its chunks (e.g. a particular file may be

5 reconstructed based on one or more smaller chunks of stored data). A corresponding data

structure may record its corresponding chunks including an associated calculated hash value, a

pointer (physical and/or logical) to its location in one of the data storage arrays 120a-120b, and

its length. For each data component, a deduplication application may be used to calculate a

corresponding hash value. For example, a hash function, such as Message-Digest algorithm 5

10 (MD5), Secure Hash Algorithm (SHA), or otherwise, may be used to calculate a corresponding

hash value. In order to know if a given data component corresponding to a received write

request is already stored in one of the data storage arrays 120a-120b, bits of the calculated hash

value (or a subset of bits of the hash value) for the given data component may be compared to

bits in the hash values of data components stored in one or more of the data storage arrays 120a

15 120b.

[0059] A mapping table may comprise one or more levels as shown in FIG. 2. A mapping

table may comprise 16 to 64 levels, although another number of levels supported within a

mapping table is possible and contemplated. In FIG. 2, three levels labeled Level "1", Level "2"

and Level "N" are shown for ease of illustration. Each level within a mapping table may include

20 one or more partitions. In one embodiment, each partition is a 4 kilo-byte (KB) page. For

example, Level "N" is shown to comprise pages 210a-210g, Level "2" comprises pages 210h

210j and Level "1" comprises pages 210k-210n. It is possible and contemplated other partition

sizes may also be chosen for each of the levels within a mapping table. In addition, it is possible

one or more levels have a single partition, which is the level itself.

25 [0060] In one embodiment, multiple levels within a mapping table are sorted by time. For

example, in FIG. 2, Level "1" may be older than Level "2". Similarly, Level "2" may be older

than Level "N". In one embodiment, when a condition for inserting one or more new records in

the mapping table is detected, a new level may be created. In various embodiments, when a new

level is created the number/designation given to the new level is greater than numbers given to

30 levels that preceded the new level in time. For example, if the most recent level created is

assigned the value 8, then a newly created level may be assigned the value 9. In this manner a

temporal relationship between the levels may be established or determined. As may be

appreciated, numerical values need not be strictly sequential. Additionally, alternative

13

WO 2013/025864 PCT/US2012/051059

embodiments may reverse the numbering scheme such that newer levels have smaller numerical

designations. Further, other embodiments may utilize non-numerical designations to distinguish

between levels. Numerous such embodiments are possible and are contemplated. Each next

older level has a label decremented by one from a label integer value of a previous younger level.

5 A separate table not shown may be used to logically describe the mapping table. For example,

each entry of the separate table may include a given level ID and a list of the page IDs stored

within the given level ID.

[0061] By creating a new highest level for an insertion of new records, the mapping table is

updated by appending the new records. In one embodiment, a single level is created as a new

10 highest level and each of the new records is inserted into the single level. In another

embodiment, the new records may be searched for duplicate keys prior to insertion into the

mapping table. A single level may be created as a new highest level. When a given record

storing a duplicate key is found, each of the records buffered ahead of the given record may be

inserted into the single level. The new records may be buffered in a manner to preserve memory

15 ordering, such as in-order completion of requests. Then another single level may be created and

the remainder of the new records may be inserted into this other single level unless another

record storing a duplicate key is found. If such a record is found, then the steps are repeated.

Existing records within the mapping table storing a same key value as one of the new records are

not edited or overwritten in-place by the insertion of the new records.

20 [0062] Although the sizes of the levels are illustrated as increasing with lower levels being

larger than newer levels, the higher levels may alternate between being larger or smaller than

neighboring levels. The number of newer records to insert into the mapping table may vary over

time and create the fluctuating level sizes. The lower levels may be larger than newer levels due

to flattening of the lower levels. Two or more lower levels may be flattened into a single level

25 when particular conditions are detected. Further details are provided later.

[0063] With no edits in-place for the records stored in the mapping table, newer records

placed in higher levels may override records storing a same key value located in the lower levels.

For example, when the mapping table is accessed by a given key value, one or more levels may

be found to store a record holding a key value matching the given key value. In such a case, the

30 highest level of the one or more levels may be chosen to provide the information stored in its

corresponding record as a result of the access. Further details are provided later. In addition,

further details about the detected conditions for inserting one or more new records into the

mapping table and the storage of information are provided later.

14

WO 2013/025864 PCT/US2012/051059

[0064] In one embodiment, entries within a given page may be sorted by key. For example,

the entries may be sorted in ascending order according to a key included in the entry.

Additionally, in various embodiments, the pages within a level may be sorted according to any

desired sort order. In various embodiments, the pages within a level may also be sorted (e.g.,

5 according to key values or otherwise). In the example of FIG. 2, page 210a of Level N includes

records sorted according to key value in ascending order. In various embodiments, one or more

columns may be used to store key values. In the example of FIG. 2, two columns or fields are

shown in each tuple for storing key values. Utilizing such key values, the records then may be

sorted in a desired order. Sorting may be performed based on any of the key values for a records,

10 or any combination of key values for the record. In the example shown, the first record stores a

key value including 0 and 8 stored in two columns, and the last record stores a key value

including 12 and 33. In this illustrated example, each sorted record in page 210a between the

first and the last record stores a key value between 0 and 12 in the first column and the records

are arranged in a manner to store key values based (at least in part) on the first column in an

15 ascending order from 0 to 12. Similarly, page 210b includes sorted records, wherein the first

record stores key values of 12 and 39 and the last record stores key values of 31 and 19. In this

illustrated example, each sorted record in page 210b between the first and the last record stores a

key value between 12 and 31 in the first column and the records are arranged in a manner to

store key values in an ascending order from 12 to 31.

20 [0065] In addition to the above, the pages within Level N are sorted according to a desired

order. In various embodiments, pages within a level may be sorted in a manner that reflects the

order in which entries within a page are sorted. For example, pages within a level may be sorted

according to key values in ascending order. As the first key value in page 21Gb is greater than the

last key value in page 210a, page 21Gb follows page 210a in the sort order. Page 210g would

25 then include entries whose key values are greater than those included in pages 21 Ga-2 10 f (not

shown). In this manner, all entries within a level are sorted according to a common scheme. The

entries are simply subdivided into page, or other, size units. As may be appreciated, other sorting

schemes may be used as desired.

[0066] Referring now to FIG. 3A, a generalized block diagram of one embodiment of a

30 primary index used to access a mapping table is shown. A key generator 304 may receive one or

more requester data inputs 302. In one embodiment, a mapping table is an address translation

directory table. A given received read/write request may identify a particular volume, sector and

length. The key generator 304 may produce a query key value 306 that includes a volume

15

WO 2013/025864 PCT/US2012/051059

identifier (ID), a logical or virtual address, a snapshot ID, and a sector number. Other

combinations are possible and other or additional values may be utilized as well. Different

portions of the query key value 306 may be compared to values stored in columns that may or

may not be contiguous within the mapping table. In the shown example, a key value of "22" is

5 used for ease of illustration.

[0067] As described earlier, both a chunking algorithm and/or a segmenting algorithm

associated with the key generator 304 may receive data 302 corresponding to a storage access

request. These algorithms may produce one or more data components and select a hash function

to calculate a corresponding hash value, or query key value 306, for each data component. The

10 resulting hash value may be used to index the deduplication table.

[0068] A primary index 310, as shown in FIG. 3A, may provide location identifying

information for data stored in the storage devices 176a-176m. For example, referring again to

FIG. 2, a corresponding primary index 310 (or portion thereof) may be logically included in each

of level "1", level "2" and level "N". Again, each level and each corresponding primary index

15 may be physically stored in a random-access manner within the storage devices 176a-176m.

[0069] In one embodiment, the primary index 310 may be divided into partitions, such as

partitions 312a-312b. In one embodiment, the size of the partitions may range from a 4 kilobyte

(KB) page to 256 KB, though other sizes are possible and are contemplated. Each entry of the

primary index 310 may store a key value. In addition, each entry may store a corresponding

20 unique virtual page identifier (ID) and a level ID corresponding to the key value. Each entry

may store corresponding status information such as validity information. When the primary

index 310 is accessed with a query key value, the entries within the index 310 may be searched

for one or more entries which match, or otherwise correspond to, the key value. Information from

the matching entry may then be used to locate and retrieve a mapping which identifies a storage

25 location which is the target of a received read or write request. In other words, the index 310

identifies the locations of mappings. In one embodiment, a hit in the index provides a

corresponding page ID identifying a page within the storage devices 176a-176m storing both the

key value and a corresponding physical pointer value. The page identified by the corresponding

page ID may be searched with the key value to find the physical pointer value.

30 [0070] In the example of FIG. 3A, a received request corresponds to a key "22". This key is

then used to access index 310. A search of the index 310 results on a hit to an entry within

partition 312b. The matching entry in this case include information such as - page 28, and level

3. Based upon this result, the desired mapping for the request is found in a page identified as

16

WO 2013/025864 PCT/US2012/051059

page 28 within level 3 of the mapping tables. Using this information, an access may then be

made to the mapping tables to retrieve the desired mapping. If an access to the primary index

310 requires an access to storage, then at least two storage accesses would be required in order to

obtain a desired mapping. Therefore, in various embodiments as described below, portions of the

5 primary index are cached, or otherwise stored in a relatively fast access memory, in order to

eliminate one access to the storage devices. In various embodiments, the entire primary index for

the mapping tables is cached. In some embodiments, where the primary index has become too

large to cache in its entirety, or is otherwise larger than desired, secondary, tertiary, or other

index portions may be used in the cache to reduce its size. Secondary type indices are discussed

10 below. In addition to the above, in various embodiments mapping pages corresponding to recent

hits are also cached for at least some period of time. In this manner, processes which exhibit

accesses with temporal locality can be serviced more rapidly (i.e., recently accessed locations

will have their mappings cached and readily available).

[0071] Referring now to FIG. 3B, a generalized block diagram of one embodiment of a

15 cached primary index used to access a mapping table is shown. Circuit and logic portions

corresponding to those of FIG. 3A are numbered identically. The cached primary index 314 may

include copies of information stored in each of the primary indexes 310 for the multiple levels in

a mapping table. The primary index 314 may be stored in one or more of RAM 172, buffers

within controller 174, memory medium 130 and caches within processor 122. In one

20 embodiment, the primary index 314 may be sorted by key value, though sorting otherwise is

possible. The primary index 314 may also be divided into partitions, such as partitions 316a

316b. In one embodiment, the size of the partitions 316a-316b may be a same size as the

partitions 3 12a-3 12b within the primary index 310.

[0072] Similar to the primary index 310, each entry of the primary index 314 may store one or

25 more of a key value, a corresponding unique virtual page identifier (ID), a level ID

corresponding to the key value, and status information such as valid information. When the

primary index 314 is accessed with a query key value 306, it may convey a corresponding page

ID identifying a page within the storage devices 176a-176m storing both the key value and a

corresponding pointer value. The page identified by the corresponding page ID may be searched

30 with the key value to find the pointer value. As shown, the primary index 314 may have multiple

records storing a same key value. Therefore, multiple hits may result from the search for a given

key value. In one embodiment, a hit with a highest value of a level ID (or whatever indicator is

used to identify a youngest level or most recent entry) may be chosen. This selection of one hit

17

WO 2013/025864 PCT/US2012/051059

from multiple hits may be performed by merge logic not shown here. A further description of

the merge logic is provided later.

[0073] Turning now to FIG. 4, a generalized block diagram of another embodiment of a

mapping table and primary index used to access the mapping table is shown. Circuit and logic

5 portions corresponding to those of FIG. 3A are numbered identically. Mapping table 340 may

have a similar structure as the mapping table shown in FIG. 2. However, storage of a

corresponding primary index 310 for each level is now shown. A copy of one or more of the

primary index portions 310a-310i may be included in index copies 330 (e.g., cached copies).

Copies 330 may generally correspond to the cached index depicted in FIG. 3B. The information

10 in index copies 330 may be stored in RAM 172, buffers within controller 174, memory medium

130, and caches within processor 122. In the embodiment shown, the information in primary

indexes 3 1Oa-3 I0i may be stored with the pages of mappings in storage devices 176a-176m. Also

shown is a secondary index 320 which may be used to access a primary index, such as primary

index 310i shown in the diagram. Similarly, accessing and updating the mapping table 340 may

15 occur as described earlier.

[0074] Mapping table 340 comprises multiple levels, such as Level "1" to Level "N". In the

illustrated example, each of the levels includes multiple pages. Level "N" is shown to include

pages "0" to "D", Level N-1 includes pages "E" to "G", and so forth. Again, the levels within

the mapping table 310 may be sorted by time. Level "N" may be younger than Level "N-I" and

20 so forth. Mapping table 340 may be accessed by at least a key value. In the illustrated example,

mapping table 340 is accessed by a key value "27" and a page ID "32". For example, in one

embodiment, a level ID "8" may be used to identify a particular level (or "subtable") of the

mapping table 340 to search. Having identified the desired subtable, the page ID may then be

used to identify the desired page within the subtable. Finally, the key may be used to identify the

25 desired entry within the desired page.

[0075] As discussed above, an access to the cached index 330 may result in multiple hits. In

one embodiment, the results of these multiple hits are provided to merge logic 350 which

identifies which hit is used to access the mapping table 340. Merge logic 350 may represent

hardware and/or software which is included within a storage controller. In one embodiment,

30 merge logic 350 is configured to identify a hit which corresponds to a most recent (newest)

mapping. Such an identification could be based upon an identification of a corresponding level

for an entry, or otherwise. In the example shown, a query corresponding to level 8, page 32, key

27 is received. Responsive to the query, page 32 of level 8 is accessed. If the key 27 is found

18

WO 2013/025864 PCT/US2012/051059

within page 32 (a hit), then a corresponding result is returned (e.g., pointer xF3209B24 in the

example shown). If the key 27 is not found within page 32, then a miss indication is returned.

This physical pointer value may be output from the mapping table 340 to service a storage access

request corresponding to the key value "27".

5 [0076] In one embodiment, the mapping table 340 supports inline mappings. For example, a

mapping detected to have a sufficiently small target may be represented without an actual

physical sector storing user data within the storage devices 176a-176m. One example may be a

repeating pattern within the user data. Rather than actually store multiple copies of a repeated

pattern (e.g., a series of zeroes) as user data within the storage devices 176a-176m, a

10 corresponding mapping may have an indication marked in the status information, such as within

one of the fields of fieldO to fieldN in the mapping table, that indicates what data value is to be

returned for a read request. However, there is no actual storage of this user data at a target

location within the storage devices 176a-176m. Additionally, an indication may be stored

within the status information of the primary index 310 and any additional indexes that may be

15 used (not shown here).

[0077] In addition to the above, in various embodiments the storage system may

simultaneously support multiple versions of the data organization, storage schemes, and so on.

For example, as the system hardware and software evolve, new features may be incorporated or

otherwise provided. Data, indexes, and mappings (for example) which are newer may take

20 advantage of these new features. In the example of FIG. 4, new level N may correspond to one

version of the system, while older level N-1 may correspond to a prior version. In order to

accommodate these different versions, metadata may be stored in association with each of the

levels which indicates which version, which features, compression schemes, and so on, are used

by that level. This metadata could be stored as part of the index, the pages themselves, or both.

25 When accesses are made, this metadata then indicates how the data is to be handled properly.

Additionally, new schemes and features can be applied dynamically without the need to quiesce

the system. In this manner, upgrading of the system is more flexible and a rebuild of older data to

reflect newer schemes and approaches is not necessary.

[0078] Turning now to FIG. 5A, one embodiment of a method for servicing a read access is

30 shown. The components embodied in the network architecture 100 and mapping table 340

described above may generally operate in accordance with method 500. For purposes of

discussion, the steps in this embodiment are shown in sequential order. However, some steps

19

WO 2013/025864 PCT/US2012/051059

may occur in a different order than shown, some steps may be performed concurrently, some

steps may be combined with other steps, and some steps may be absent in another embodiment.

[0079] Read and store (write) requests may be conveyed from one of the clients 1 Oa-1 Oc to

one of the data storage arrays 120a-120b. In the example shown, a read request 500 is received,

5 and in block 502 a corresponding query key value may be generated. In some embodiments, the

request itself may include the key which is used to access the index and a "generation" of the key

502 is not required. As described earlier, the query key value may be a virtual address index

comprising a volume ID, a logical address or virtual address associated with a received request, a

snapshot ID, a sector number, and so forth. In embodiments which are used for deduplication,

10 the query key value may be generated using a hash function or other function. Other values are

possible and contemplated for the query key value, which is used to access a mapping table.

[0080] In block 504, the query key value may be used to access one or more cached indexes

to identify one or more portions of a mapping table that may store a mapping that corresponds to

the key value. Additionally, recently used mappings which have been cached may be searched as

15 well. If a hit on the cached mappings is detected (block 505), the cached mapping may be used to

perform the requested access (block 512). If there is no hit on the cached mappings, the a

determination may be made as to whether or not there is a hit on the cached index (block 506). If

so, a result corresponding to the hit is used to identify and access the mapping table (block 508).

For example, with the primary index 310, an entry storing the query key value also may store a

20 unique virtual page ID that identifies a single particular page within the mapping table. This

single particular page may store both the query key value and an associated physical pointer

value. In block 508, the identified potion of the mapping table may be accessed and a search

performed using the query key value. The mapping table result may then be returned (block 510)

and used to perform a storage access (block 512) that corresponds to the target location of the

25 original read request.

[0081] In some embodiments, an index query responsive to a read request may result in a

miss. Such a miss could be due to only a portion of the index being cached or an error condition

(e.g., a read access to a non-existent location, address corruption, etc.). In such a case, an access

to the stored index may be performed. If the access to the stored index results in a hit (block

30 520), then a result may be returned (block 522) which is used to access the mapping tables (block

508). On the other hand, if the access to the stored index results in a miss, then an error condition

may be detected. Handling of the error condition may be done in any of a variety of desired

ways. In one embodiment, an exception may be generated (block 524) which is then handled as

20

WO 2013/025864 PCT/US2012/051059

desired. In one embodiment, a portion of the mapping table is returned in block 510. In various

embodiments, this portion is a page which may be a 4KB page, or otherwise. As previously

discussed, the records within a page may be sorted to facilitate faster searches of the content

included therein.

5 [0082] In one embodiment, the mapping table utilizes traditional database systems methods

for information storage in each page. For example, each record (or row or entry) within the

mapping table is stored one right after the other. This approach may be used in row-oriented or

row-store databases and additionally with correlation databases. These types of databases utilize

a value-based storage structure. A value-based storage (VBS) architecture stores a unique data

10 value only once and an auto-generated indexing system maintains the context for all values. In

various embodiments, data may be stored by row and compression may be used on the columns

(fields) within a row. In some embodiments, the techniques used may include storing a base

value and having a smaller field size for the offset and/or having a set of base values, with a

column in a row consisting of a base selector and an offset from that base. In both cases, the

15 compression information may be stored within (e.g., at the start) of the partition.

[0083] In some embodiments, the mapping table utilizes a column-oriented database system

(column-store) method for information storage in each page. Column-stores store each database

table column separately. In addition, attribute values belonging to a same column may be stored

contiguously, compressed, and densely packed. Accordingly, reading a subset of a table's

20 columns, such as within a page, may be performed relatively quickly. Column data may be of

uniform type and may allow storage size optimizations to be used that may not be available in

row-oriented data. Some compression schemes, such as Lempel-Ziv-Welch (LZ) and run-length

encoding (RLE), take advantage of a detected similarity of adjacent data to compress. A

compression algorithm may be chosen that allows individual records within the page to be

25 identified and indexed. Compressing the records within the mapping table may enable fine

grained mapping. In various embodiments, the type of compression used for a particular portion

of data may be stored in association with the data. For example, the type of compression could be

stored in an index, as part of a same page as the compressed data (e.g., in a header of some type),

or otherwise. In this manner, multiple compression techniques and algorithms may be used side

30 by side within the storage system. In addition, in various embodiments the type of compression

used for storing page data may be determined dynamically at the time the data is stored. In one

embodiment, one of a variety of compression techniques may be chosen based at least in part on

the nature and type of data being compressed. In some embodiments, multiple compression

21

WO 2013/025864 PCT/US2012/051059

techniques will be performed and the one exhibiting the best compression will then be selected

for use in compressing the data. Numerous such approaches are possible and are contemplated.

[0084] If there is a match of the query key value 306 found in any of the levels of the

5 mapping table (block 508), then in block 510, one or more indications of a hit may be conveyed

to the merge logic 350. For example, one or more hit indications may be conveyed from levels

"1" to "J" as shown in FIG. 4. The merge logic 350 may choose the highest level, which may

also be the youngest level, of the levels "1" to "J" conveying a hit indication. The chosen level

may provide information stored in a corresponding record as a result of the access.

10 [0085] In block 512, one or more corresponding fields within a matching record of a chosen

page may be read to process a corresponding request. In one embodiment, when the data within

the page is stored in a compressed format, the page is decompressed and a corresponding

physical pointer value is read out. In another embodiment, only the matching record is

decompressed and a corresponding physical pointer value is read out. In one embodiment, a full

15 physical pointer value may be split between the mapping table and a corresponding target

physical location. Therefore, multiple physical locations storing user data may be accessed to

complete a data storage access request.

[0086] Turning now to FIG. 5B, one embodiment of a method corresponding to a received

write request is shown. Responsive to a received write request (block 530), a new mapping table

20 entry corresponding to the request may be created (block 532). In one embodiment, a new

virtual-to-physical address mapping may be added (block 534) to the mapping table that pairs the

virtual address of the write request with the physical location storing the corresponding data

component. In various embodiments, the new mapping may be cached with other new mappings

and added to a new highest level of the mapping table entries. The write operation to persistent

25 storage (block 536) may then be performed. In various embodiments, writing the new mapping

table entry to the mapping tables in persistent storage may not be performed until a later point in

time (block 538) which is deemed more efficient. As previously discussed, in a storage system

using solid state storage devices, writes to storage are much slower than reads from storage.

Accordingly, writes to storage are scheduled in such a way that they minimize impact on overall

30 system performance. In some embodiments, the insertion of new records into the mapping table

may be combined with other larger data updates. Combining the updates in this manner may

provide for more efficient write operations. It is noted that in the method of 5B, as with each of

the methods described herein, operations are described as occurring in a particular order for ease

22

WO 2013/025864 PCT/US2012/051059

of discussion. However, the operations may in fact occur in a different order, and in some cases

various ones of the operations may occur simultaneously. All such embodiments are

contemplated.

[0087] In addition to the above, deduplication mechanisms may be used in some

5 embodiments. FIG. 5B depicts operations 550 which may generally correspond to deduplication

systems and methods. In the example shown, a hash corresponding to a received write request

may be generated (block 540) which is used to access deduplication tables (block 542). If there is

a hit (block 544) in the deduplication tables (i.e., a copy of the data already exists within the

system), then a new entry may be added to the deduplication tables (block 548) to reflect the new

10 write. In such a case, there is no need to write the data itself to storage and the received write

data may be discarded. Alternatively, if there is a miss in the deduplication table, then a new

entry for the new data is created and stored in the deduplication tables (block 546). Additionally,

a write of the data to storage is performed (block 536). Further, a new entry may be created in the

index to reflect the new data (block 538). In some embodiments, if a miss occurs during an inline

15 deduplication operation, no insertion in the deduplication tables is performed at that time. Rather,

during an inline deduplication operation, a query with a hash value may occur for only a portion

of the entire deduplication table (e.g., a cached portion of the deduplication table). If a miss

occurs, a new entry may be created and stored in the cache. Subsequently, during a post

processing deduplication operation, such as an operation occurring during garbage collection, a

20 query with a hash value may occur for the entire deduplication table. A miss may indicate the

hash value is a unique hash value. Therefore, a new entry such as a hash-to-physical-pointer

mapping may be inserted into the deduplication table. Alternatively, if a hit is detected during

post-processing deduplication (i.e., a duplicate is detected), deduplication may be performed to

eliminate one or more of the detected copies.

25 [0088] Referring now to FIG. 6, a generalized block diagram of one embodiment of a multi

node network with shared mapping tables is shown. In the example shown, three nodes 360a

360c are used to form a cluster of mapping nodes. In one embodiment, each of the nodes 360a

360c may be responsible for one or more logical unit numbers (LUNs). In the depicted

embodiment, a number of mapping table levels, level 1-N, are shown. Level 1 may correspond to

30 the oldest level, while level N may correspond to the newest level. For mapping table entries of

LUNs managed by a particular node, that particular node may itself have newer entries stored on

the node itself. For example, node 360a is shown to store mapping subtables 362a and 364a.

These subtables 362a and 362b may correspond to LUNs for which node 360a is generally

23

WO 2013/025864 PCT/US2012/051059

responsible. Similarly, node 360b includes subtables 362b and 364b which may correspond to

LUNs managed by that node, while node 360c includes subtables 362c and 364c which may

correspond to LUNs managed by that node. In such an embodiment, these "newer" level

mapping table entries are maintained only by their corresponding managing nodes and are

5 generally not found on other nodes.

[0089] In contrast to the above discussed relatively newer levels, older levels (i.e., levels N-2

down to level 1) represent mapping table entries which may be shared by all nodes 360a-360c in

the sense that any of the nodes may be storing a copy of those entries. In the example shown,

these older levels 370, 372, and 374 are collectively identified as shared tables 380. Additionally,

10 as previously discussed, in various embodiments these older levels are static - apart from

merging or similar operations which are discussed later. Generally speaking, a static layer is one

which is not subject to modification (i.e., it is "fixed"). Given that such levels are fixed in this

sense, an access to any copy of these lower levels may be made without concern for whether

another of the copies has been, or is being, modified. Consequently, any of the nodes may

15 safely store a copy of the shared tables 380 and service a request to those tables with confidence

the request can be properly serviced. Having copies of the shared tables 380 stored on multiple

nodes 360 may allow use of various load balancing schemes when performing lookups and

otherwise servicing requests.

[0090] In addition to the above, in various embodiments, the levels 380 which may be shared

20 may be organized in a manner which reflects the nodes 360 themselves. For example, node 360a

may be responsible for LUNs 1 and 2, node 360b may be responsible for LUNs 3 and 4, and

node 360c may be responsible for LUNs 5 and 6. In various embodiments, the mapping table

entries may include tuples which themselves identify a corresponding LUN. In such an

embodiment, the shared mapping tables 380 may be sorted according to key value, absolute

25 width or amount of storage space, or otherwise. If a sort of mapping table entries in the levels

380 is based in part on LUN, then entries 370a may correspond to LUNs 1 and 2, entries 370b

may correspond to LUNs 3 and 4, and entries 370c may correspond to LUNs 5 and 6. Such an

organization may speed lookups by a given node for a request targeted to a particular LUN by

effectively reducing the amount of data that needs to be searched, allowing a coordinator to

30 directly select the node responsible for a particular LUN as the target of a request. These and

other organization and sort schemes are possible and are contemplated. In addition, if it is desired

to move responsibility for a LUN from one node to another, the original node mappings for that

24

WO 2013/025864 PCT/US2012/051059

node may be flushed to the shared levels (e.g., and merged). Responsibility for the LUN is then

transferred to the new node which then begins servicing that LUN.

[0091] Referring now to FIG. 7, a generalized block diagram of one embodiment of a

secondary index used to access a mapping table is shown. As described earlier, requester data

5 inputs 302 may be received by a key generator 304, which produces a query key value 306. The

query key value 306 is used to access a mapping table. In some embodiments, the primary index

310 shown in FIG. 3 may be too large (or larger than desired) to store in RAM 172 or memory

medium 130. For example, older levels of the index may grow very large due to merging and

flattening operations described later in FIG. 10 and FIG. 11. Therefore, a secondary index 320

10 may be cached for at least a portion of the primary index instead of the corresponding portion of

the primary index 310. The secondary index 320 may provide a more coarse level of granularity

of location identification of data stored in the storage devices 176a-176m. Therefore, the

secondary index 320 may be smaller than the portion of the primary index 310 to which it

corresponds. Accordingly, the secondary index 320 may be stored in RAM 172 or in memory

15 medium 130.

[0092] In one embodiment, the secondary index 320 is divided into partitions, such as

partitions 322a-322b. Additionally, the secondary index may be organized according to level

with the more recent levels appearing first. In one embodiment, older levels have lower numbers

and younger levels have higher numbers (e.g., a level ID may be incremented with each new

20 level). Each entry of the secondary index 320 may identify a range of key values. For example,

the first entry shown in the example may identify a range of key values from 0 to 12 in level 22.

These key values may correspond to key values associated with a first record and a last record

within a given page of the primary index 310. In other words, the entry in the secondary index

may simply store an identification of key 0 and an identification of key 12 to indicate the

25 corresponding page includes entries within that range. Referring again to FIG. 3A, partition 312a

may be a page and the key values of its first record and its last record are 0 and 12, respectively.

Therefore, an entry within the secondary index 320 stores the range 0 to 12 as shown in FIG. 7.

Since remappings are maintained in the levels within the mapping table, a range of key values

may correspond to multiple pages and associated levels. The fields within the secondary index

30 320 may store this information as shown in FIG. 7. Each entry may store one or more

corresponding unique virtual page identifiers (IDs) and associated level IDs corresponding to the

range of key values. Each entry may also store corresponding status information such as validity

information. The list of maintained page IDs and associated level IDs may indicate where a

25

WO 2013/025864 PCT/US2012/051059

given query key value might be stored, but not confirm that the key value is present in that page

and level. The secondary index 320 is smaller than the primary index 310, but also has a coarse

level of granularity of location identification of data stored in the storage devices 176a-176m.

The secondary index 320 may be sufficiently small to store in RAM 172 or in memory medium

5 130.

[0093] When the secondary index 320 is accessed with a query key value 306, it may convey

one or more corresponding page IDs and associated level IDs. These results are then used to

access and retrieve portions of the stored primary index. The one or more identified pages may

then be searched with the query key value to find a physical pointer value. In one embodiment,

10 the level IDs may be used to determine a youngest level of the identified one or more levels that

also store the query key value 306. A record within a corresponding page may then be retrieved

and a physical pointer value may be read for processing a storage access request. In the

illustrated example, the query key value 27 is within the range of keys 16 to 31. The page IDs

and level IDs stored in the corresponding entry are conveyed with the query key value to the

15 mapping table.

[0094] Referring now to FIG. 8, a generalized block diagram of one embodiment of a tertiary

index used to access a mapping table is shown. Circuit and logic portions corresponding to those

of FIG. 4 are numbered identically. As described earlier, the primary index 310 shown in FIG. 3

may be too large to store in RAM 172 or memory medium 130. In addition, as the mapping table

20 340 grows, the secondary index 320 may also become too large to store in these memories.

Therefore, a tertiary index 330 may be accessed prior to the secondary index 320, which may still

be faster than accessing the primary index 310.

[0095] The tertiary index 330 may provide a more coarse level of granularity than the

secondary index 320 of location identification of data stored in the storage devices 176a-176m.

25 Therefore, the tertiary index 330 may be smaller than the portion of the secondary index 320 to

which it corresponds. It is noted that each of the primary index 310, the secondary index 320,

the tertiary index 330, and so forth, may be stored in a compressed format. The compressed

format chosen may be a same compressed format used to store information within the mapping

table 340.

30 [0096] In one embodiment, the tertiary index 330 may include multiple partitions, such as

partitions 332a, 332b and so forth. The tertiary index 330 may be accessed with a query key

value 306. In the illustrated example, a query key value 306 of "27" is found to be between a

range of key values from 0 to 78. A first entry in the tertiary index 330 corresponds to this key

26

WO 2013/025864 PCT/US2012/051059

value range. A column in the tertiary index 330 may indicate which partition to access within

the secondary index 320. In the illustrated example, a key value range of 0 to 78 corresponds to

partition 0 within the secondary index 320.

[0097] It is also noted a filter (not shown) may be accessed to determine if a query key value

5 is not within any one of the indexes 310-330. This filter may be a probabilistic data structure

that determines whether an element is a member of a set. False positives may be possible, but

false negatives may not be possible. One example of such a filter is a Bloom filter. If an access

of such a filter determines a particular value is not in the full index 142, then no query is sent to

the storage. If an access of the filter determines the query key value is in a corresponding index,

10 then it may be unknown whether a corresponding physical pointer value is stored in the storage

devices 176a-176m.

[0098] In addition to the above, in various embodiments one or more overlay tables may be

used to modify or elide tuples provided by the mapping table in response to a query. Such

overlay tables may be used to apply filtering conditions for use in responding to accesses to the

15 mapping table or during flattening operations when a new level is created. In various

embodiments, other hardware and/or software may be used to apply filtering conditions. In some

embodiments, the overlay table may be organized as time ordered levels in a manner similar to

the mapping table described above. In other embodiments, they may be organized differently.

Keys for the overlay table need not match the keys for the underlying mapping table. For

20 example, an overlay table may contain a single entry stating that a particular volume has been

deleted or is otherwise inaccessible (e.g., there is no natural access path to query this tuple), and

that a response to a query corresponding to a tuple that refers to that volume identifier is instead

invalid. In another example, an entry in the overlay table may indicate that a storage location has

been freed, and that any tuple that refers to that storage location is invalid, thus invalidating the

25 result of the lookup rather than the key used by the mapping table. In some embodiments, the

overlay table may modify fields in responses to queries to the underlying mapping table. In some

embodiments, a single key may represent a range of values to efficiently identify multiple values

to which the same operation (eliding or modification) is applied. In this manner, tuples may

(effectively) be "deleted" from the mapping table by creating an "elide" entry in the overlay

30 table and without modifying the mapping table. In this case, the overlay table may include keys

with no associated non-key data fields.

[0099] Turning now to FIG. 9, one embodiment of a method for processing a read request in a

system including mapping and overlay tables is shown. Responsive to a read request being

27

WO 2013/025864 PCT/US2012/051059

received (block 900), a mapping table key (block 908) and first overlay table key (block 902)

corresponding to the request are generated. In this example, access to the overlay and mapping

tables is shown as occurring concurrently. However, in other embodiments, accesses to the tables

may be performed non-concurrently (e.g., sequentially or otherwise separate in time) in any

5 desired order. Using the key generated for the mapping table, a corresponding tuple may be

retrieved from the mapping table (block 910). If the first overlay table contains an "elide" entry

corresponding to the overlay table key (conditional block 906), any tuple found in the mapping

table is deemed invalid and an indication to this effect may be returned to the requester. On the

other hand, if the overlay table contains a "modify" entry corresponding to the overlay table key

10 (conditional block 912), the values in the first overlay table entry may be used to modify one or

more fields in the tuple retrieved from the mapping table (block 922). Once this process is done,

a second overlay table key is generated (block 914) based on the tuple from the mapping table

(whether modified or not) and a second lookup is done in a second overlay table (block 916)

which may or may not be the same table as the first overlay table. If an "elide" entry is found in

15 the second overlay table (conditional block 920), the tuple from the mapping table is deemed

invalid (block 918). If a "modify" entry is found in the second overlay table (conditional block

924), one or more fields of the tuple from the mapping table may be modified (block 926). Such

modification may include dropping a tuple, normalizing a tuple, or otherwise. The modified tuple

may then be returned to the requester. If the second overlay table does not contain a modify entry

20 (conditional block 924), the tuple may be returned to the requester unmodified. In some

embodiments, at least some portions of the overlay table(s) may be cached to provide faster

access to their contents. In various embodiments, a detected elide entry in the first overlay table

may serve to short circuit any other corresponding lookups (e.g., blocks 914, 916, etc.). In other

embodiments, accesses may be performed in parallel and "raced." Numerous such embodiments

25 are possible and are contemplated.

[00100] Turning now to FIG. 10, a generalized block diagram of one embodiment of a

flattening operation for levels within a mapping table is shown. In various embodiments, a

flattening operation may be performed in response to detecting one or more conditions. For

example, over time as the mapping table 340 grows and accumulates levels due to insertions of

30 new records, the cost of searching more levels for a query key value may become undesirably

high. In order to constrain the number of levels to search, multiple levels may be flattened into a

single new level. For example, two or more levels which are logically adjacent or contiguous in

time order may be chosen for a flattening operation. Where two or more records correspond to a

28

WO 2013/025864 PCT/US2012/051059

same key value, the youngest record may be retained while the others are not included in the

new "flattened" level. In such an embodiment, the newly flattened level will return a same result

for a search for a given key value as would be provided by a search of the corresponding multiple

levels. Since the results of searches in the new flattened level do not change as compared to the

5 two or more levels it replaces, the flattening operation need not be synchronized with update

operations to the mapping table. In other words, flattening operations on a table may be

performed asynchronously with respect to updates to the table.

[00101] As previously noted, older levels are fixed in the sense that their mappings are not

modified (i.e., a mapping from A to B remains unchanged). Consequently, modifications to the

10 levels being flattened are not being made (e.g., due to user writes) and synchronization locks of

the levels are not required. Additionally, in a node-based cluster environment where each node

may store a copy of older levels of the index (e.g., as discussed in relation to FIG. 6), flattening

operations may be undertaken on one node without the need to lock corresponding levels in other

nodes. Consequently, processing may continue in all nodes while flattening takes place in an

15 asynchronous manner on any of the nodes. At a later point in time, other nodes may flatten

levels, or use an already flattened level. In one embodiment, the two or more levels which have

been used to form a flattened level may be retained for error recovery, mirroring, or other

purposes. In addition to the above, in various embodiments, records that have been elided may

not be reinserted in to the new level. The above described flattening may, for example, be

20 performed responsive to detecting the number of levels in the mapping table has reached a given

threshold. Alternatively, the flattening may be performed responsive to detecting the size of one

or more levels has exceeded a threshold. Yet another condition that may be considered is the

load on the system. The decision of whether to flatten the levels may consider combinations of

these conditions in addition to considering them individually. The decision of whether to flatten

25 may also consider both the present value for the condition as well as a predicted value for the

condition in the future. Other conditions for which flattening may be performed are possible and

are contemplated.

[00102] In the illustrated example, the records are shown simply as key and pointer pairs. The

pages are shown to include four records for ease of illustration. A level "F" and its next

30 contiguous logical neighbor, level "F-i" may be considered for a flattening operation. Level "F"

may be younger than Level "F-i". Although two levels are shown to be flattened here, it is

possible and contemplated that three or more levels may be chosen for flattening. In the example

shown, Level "F-i" may have records storing a same key value found in Level "F".

29

WO 2013/025864 PCT/US2012/051059

Bidirectional arrows are used to identify the records storing a same key value across the two

contiguous levels.

[00103] The new Level "New F" includes a key corresponding to the duplicate key values

found in Level "F" and Level "F-i". In addition, the new Level "New F" includes a pointer

5 value corresponding to the youngest (or younger in this case) record of the records storing the

duplicate key value. For example, each of Level "F" and Level "F-i" includes a record storing

the key value 4. The younger record is in Level "F" and this record also stores the pointer value

512. Accordingly, the Level "F-i" includes a record storing the key value 4 and also the pointer

value 512, rather than the pointer value 656 found in the older Level "F-i". Additionally, the

10 new Level "New F" includes records with unique key values found between Level "F" and Level

"F-I". For example, the Level "F-I" includes records with the key and pointer pair of 6 and 246

found in Level "F" and the key and pointer pair of 2 and 398 found in Level "F-i". As shown,

each of the pages within the levels is sorted by key value.

[00104] As noted above, in various embodiments an overlay table may be used to modify or

15 elide tuples corresponding to key values in the underlying mapping table. Such an overlay

table(s) may be managed in a manner similar to that of the mapping tables. For example, an

overlay table may be flattened and adjacent entries merged together to save space. Alternatively,

an overlay table may be managed in a manner different from that used to manage mapping tables.

In some embodiments, an overlay table may contain a single entry that refers to a range of

20 overlay table keys. In this way, the size of the overlay table can be limited. For example, if the

mapping table contains k valid entries, the overlay table (after flattening) need contain no more

than k+1 entries marking ranges as invalid, corresponding to the gaps between valid entries in the

mapping table. Accordingly, the overlay table may used to identify tuples that may be dropped

from the mapping table in a relatively efficient manner. In addition to the above, while the

25 previous discussion describes using an overlay table to elide or modify responses to requests

from the mapping table(s), overlay tables may also be used to elide or modify values during

flattening operations of the mapping tables. Accordingly, when a new level is created during a

flattening operation of a mapping table, a key value that might otherwise be inserted into the new

level may be elided. Alternatively, a value may be modified before insertion in the new level.

30 Such modifications may result in a single record corresponding to a given range of key values in

the mapping table being replaced (in the new level) with multiple records - each corresponding

to a subrange of the original record. Additionally, a record may be replaced with a new record

30

WO 2013/025864 PCT/US2012/051059

that corresponds to a smaller range, or multiple records could be replaced by a single record

whose range covers all ranges of the original records. All such embodiments are contemplated.

[00105] Referring now to FIG. 11, a generalized block diagram of an embodiment of a

flattening operation for levels within a mapping table is shown. As previously discussed, levels

5 may be time ordered. In the illustrated example, a Level "F" comprising one or more indexes and

corresponding mappings is logically located above older Level "F-i". Also, Level "F" is located

logically below younger Level "F+1". Similarly, Level "F-2" is logically located above younger

Level "F-i" and Level "F+2" is logically located below older Level "F+1". In one example,

levels "F" and "F-i" may be considered for a flattening operation. Bidirectional arrows are used

10 to illustrate there are records storing same key values across the two contiguous levels.

[00106] As described earlier, a new Level "New F" includes key values corresponding to the

duplicate key values found in Level "F" and Level "F-i". In addition, the new Level "New F"

includes a pointer value corresponding to the youngest (or younger in this case) record of the

records storing the duplicate key value. Upon completion of the flattening operation, the Level

15 "F" and the Level "F-i" may not yet be removed from the mapping table. Again, in a node

based cluster, each node may verify it is ready to utilize the new single level, such as Level "New

F", and no longer use the two or more levels it replaces (such as Level "F" and Level "F-i").

This verification may be performed prior to the new level becoming the replacement. In one

embodiment, the two or more replaced levels, such as Level "F" and Level "F-I", may be kept in

20 storage for error recovery, mirroring, or other purposes. In order to maintain the time ordering of

the levels and their mappings, the new flattened level F is logically placed below younger levels

(e.g., level F+i) and above the original levels that it replaces (e.g., level F and level F-1).

[00107] Turning now to FIG. 12, one embodiment of a method 1000 for flattening levels

within a mapping table is shown. The components embodied in the network architecture 100

25 and the mapping table 340 described above may generally operate in accordance with method

1000. For purposes of discussion, the steps in this embodiment are shown in sequential order.

However, some steps may occur in a different order than shown, some steps may be performed

concurrently, some steps may be combined with other steps, and some steps may be absent in

another embodiment.

30 [00108] In block 1002, storage space is allocated for a mapping table and corresponding

indexes. In block 1004, one or more conditions are determined for flattening two or more levels

within the mapping table. For example, a cost of repeatedly searching a current number of levels

within the mapping table in response to user requests may be greater than a cost of performing a

31

WO 2013/025864 PCT/US2012/051059

flattening operation. Additionally, a cost may be based on at least one of the current (or

predicted) number of levels in the structure to be flattened, the number of entries in one or more

levels, the number of mapping entries that would be elided or modified, and the load on the

system. Cost may also include a time to perform a corresponding operation, an occupation of one

5 or more buses, storage space used during a corresponding operation, a number of duplicate

entries in a set of levels has reached some threshold, and so forth. In addition, a count of a

number of records within each level may be used to estimate when a flattening operation

performed on two contiguous levels may produce a new single level with a number of records

equal to twice a number of records within a next previous level. These conditions taken singly or

10 in any combination, and others, are possible and are contemplated.

[00109] In block 1006, the indexes and the mapping table are accessed and updated as data is

stored and new mappings are found. A number of levels within the mapping table increases as

new records are inserted into the mapping table. If a condition for flattening two or more levels

within the mapping table is detected (conditional block 1008), then in block 1010, one or more

15 groups of levels are identified for flattening. A group of levels may include two or more levels.

In one embodiment, the two or more levels are contiguous levels. Although the lowest levels, or

the oldest levels, may be the best candidates for flattening, a younger group may also be selected.

[00110] In block 1012, for each group a new single level comprising the newest records within

a corresponding group is produced. In the earlier example, the new single Level "New F"

20 includes the youngest records among the Level "F" and the Level "F+1". In block 1014, in a

node-based cluster, an acknowledgment may be requested from each node within the cluster to

indicate a respective node is ready to utilize the new levels produced by the flattening operation.

When each node acknowledges that it can utilize the new levels, in block 1016, the current levels

within the identified groups are replaced with the new levels. In other embodiments,

25 synchronization across nodes is not needed. In such embodiments, some nodes may begin using a

new level prior to other nodes. Further, some nodes may continue to use the original level even

after newly flattened levels are available. For example, a particular node may have original level

data cached and used that in preference to using non-cached data of a newly flattened level.

Numerous such embodiments are possible and are contemplated.

30 [00111] Turning now to FIG. 13, one embodiment of a method 1100 for efficiently processing

bulk array tasks within a mapping table is shown. Similar to the other described methods, the

components embodied in the network architecture 100 and the mapping table 340 described

above may generally operate in accordance with method 1100. In addition, the steps in this

32

WO 2013/025864 PCT/US2012/051059

embodiment are shown in sequential order. However, some steps may occur in a different order

than shown, some steps may be performed concurrently, some steps may be combined with

other steps, and some steps may be absent in another embodiment.

[00112] Storing the information in a compressed format within the mapping table may enable

5 fine-grained mapping, which may allow direct manipulation of mapping information within the

mapping table as an alternative to common bulk array tasks. The direct map manipulation may

reduce I/O network and bus traffic. As described earlier, Flash memory has a low "seek time",

which allows a number of dependent read operations to occur in less time than a single operation

from a spinning disk. These dependent reads may be used to perform online fine-grained

10 mappings to integrate space-saving features like compression and deduplication. In addition,

these dependent read operations may allow the storage controller 174 to perform bulk array tasks

entirely within a mapping table instead of accessing (reading and writing) the user data stored

within the storage devices 176a- 1 76m.

[00113] In block 1102, a large or bulk array task is received. For example, a bulk copy or

15 move request may correspond to a backup of a dozens or hundreds of virtual machines in

addition to enterprise application data being executed and updated by the virtual machines. The

amount of data associated with the received request associated with a move, branch, clone, or

copy of all of this data may be as large as 16 gigabytes (GB) or larger. If the user data was

accessed to process this request, a lot of processing time may be spent on the request and system

20 performance decreases. In addition, a virtualized environment typically has less total

input/output (I/O) resources than a physical environment.

[00114] In block 1104, the storage controller 174 may store an indication corresponding to the

received request that relates a range of new keys to a range of old keys, wherein both the ranges

of keys correspond to the received request. For example, if the received request is to copy of

25 16GB of data, a start key value and an end key value corresponding to the 16GB of data may be

stored. Again, each of the start and the end key values may include a volume ID, a logical or

virtual address within the received request, a snapshot ID, a sector number and so forth. In one

embodiment, this information may be stored separate from the information stored in the indexes,

such as the primary index 310, the secondary index 320, the tertiary index 330, and so forth.

30 However, this information may be accessed when the indexes are accessed during the processing

of later requests.

[00115] In block 1106, the data storage controller 174 may convey a response to a

corresponding client of the client computer systems 1lOa-110c indicating completion of the

33

WO 2013/025864 PCT/US2012/051059

received request without prior access of user data. Therefore, the storage controller 174 may

process the received request with low or no downtime and with no load on processor 122.

[00116] In block 1108, the storage controller 174 may set a condition, an indication, or a flag,

or buffer update operations, for updating one or more records in the mapping table corresponding

5 to the new keys replacing the old keys in the mapping table. For both a move request and a copy

request, one or more new records corresponding to the new keys may be inserted in the mapping

table. The keys may be inserted in a created new highest level as described earlier. For a move

request, one or more old records may be removed from the mapping table after a corresponding

new record has been inserted in the mapping table. Either immediately or at a later time, the

10 records in the mapping table are actually updated.

[00117] For a zeroing or an erase request, an indication may be stored that a range of key

values now corresponds to a series of binary zeroes. Additionally, as discussed above, overlay

tables may be used to identify key values which are not (or no longer) valid. The user data may

not be overwritten. For an erase request, the user data may be overwritten at a later time when

15 the "freed" storage locations are allocated with new data for subsequent store (write) requests.

For an externally-directed defragmentation request, contiguous addresses may be chosen for

sector reorganization, which may benefit applications executed on a client of the client computer

systems 1I1a-1Oc.

[00118] If the storage controller 174 receives a data storage access request corresponding to

20 one of the new keys (conditional block 1110), and the new key has already been inserted in the

mapping table (conditional block 1112), then in block 1114, the indexes and the mapping table

may be accessed with the new key. For example, either the primary index 310, the secondary

index 320, or the tertiary index 330 may be accessed with the new key. When one or more pages

of the mapping table are identified by the indexes, these identified pages may then be accessed.

25 In block 1116, the storage access request may be serviced with a physical pointer value found in

the mapping table that is associated with the new key.

[00119] If the storage controller 174 receives a data storage access request corresponding to

one of the new keys (conditional block 1110), and the new key has not already been inserted in

the mapping table (conditional block 1112), then in block 1118, the indexes and the mapping

30 table may be accessed with a corresponding old key. The storage holding the range of old keys

and the range of new keys may be accessed to determine the corresponding old key value. When

one or more pages of the mapping table are identified by the indexes, these identified pages may

34

WO 2013/025864 PCT/US2012/051059

then be accessed. In block 1120, the storage access request may be serviced with a physical

pointer value found in the mapping table that is associated with the old key.

[00120] Turning now to FIG. 14, a generalized block diagram illustrating an embodiment of a

data layout architecture within a storage device is shown. In one embodiment, the data storage

5 locations within the storage devices 176a-176m may be arranged into redundant array of

independent devices (RAID) arrays. As shown, different types of data may be stored in the

storage devices 176a-176k according to a data layout architecture. In one embodiment, each of

the storage devices 176a-176k is an SSD. An allocation unit within an SSD may include one or

more erase blocks within an SSD.

10 [00121] The user data 1230 may be stored within one or more pages included within one or

more of the storage devices 176a-176k. Within each intersection of a RAID stripe and one of the

storage devices 176a-176k, the stored information may be formatted as a series of logical pages.

Each logical page may in turn include a header and a checksum for the data in the page. When a

read is issued it may be for one or more logical pages and the data in each page may be validated

15 with the checksum. As each logical page may include a page header that contains a checksum for

the page (which may be referred to as a "media" checksum), the actual page size for data may be

smaller than one logical page. In some embodiments, for pages storing inter-device recovery data

1250, such as RAID parity information, the page header may be smaller, so that the parity page

protects the page checksums in the data pages. In other embodiments, the checksum in parity

20 pages storing inter-device recovery data 1250 may be calculated so that the checksum of the data

page checksums is the same as the checksum of the parity page covering the corresponding data

pages. In such embodiments, the header for a parity page need not be smaller than the header for

a data page.

[00122] The inter-device ECC data 1250 may be parity information generated from one or

25 more pages on other storage devices holding user data. For example, the inter-device ECC data

1250 may be parity information used in a RAID data layout architecture. Although the stored

information is shown as contiguous logical pages in the storage devices 176a-176k, it is well

known in the art the logical pages may be arranged in a random order, wherein each of the

storage devices 176a-176k is an SSD.

30 [00123] The intra-device ECC data 1240 may include information used by an intra-device

redundancy scheme. An intra-device redundancy scheme utilizes ECC information, such as

parity information, within a given storage device. This intra-device redundancy scheme and its

ECC information corresponds to a given device and may be maintained within a given device,

35

WO 2013/025864 PCT/US2012/051059

but is distinct from ECC that may be internally generated and maintained by the device itself.

Generally speaking, the internally generated and maintained ECC of the device is invisible to

the system within which the device is included.

[00124] The intra-device ECC data 1240 may also be referred to as intra-device error recovery

5 data 1240. The intra-device error recovery data 1240 may be used to protect a given storage

device from latent sector errors (LSEs). An LSE is an error that is undetected until the given

sector is accessed. Therefore, any data previously stored in the given sector may be lost. A

single LSE may lead to data loss when encountered during RAID reconstruction after a storage

device failure. The term "sector" typically refers to a basic unit of storage on a HDD, such as a

10 segment within a given track on the disk. Here, the term "sector" may also refer to a basic unit

of allocation on a SSD. Latent sector errors (LSEs) occur when a given sector or other storage

unit within a storage device is inaccessible. A read or write operation may not be able to

complete for the given sector. In addition, there may be an uncorrectable error-correction code

(ECC) error.

15 [00125] The intra-device error recovery data 1240 included within a given storage device may

be used to increase data storage reliability within the given storage device. The intra-device error

recovery data 1240 is in addition to other ECC information that may be included within another

storage device, such as parity information utilized in a RAID data layout architecture.

[00126] Within each storage device, the intra-device error recovery data 1240 may be stored in

20 one or more pages. As is well known by those skilled in the art, the intra-device error recovery

data 1240 may be obtained by performing a function on chosen bits of information within the

user data 1230. An XOR-based operation may be used to derive parity information to store in

the intra-device error recovery data 1240. Other examples of intra-device redundancy schemes

include single parity check (SPC), maximum distance separable (MDS) erasure codes,

25 interleaved parity check codes (IPC), hybrid SPC and MDS code (MDS+SPC), and column

diagonal parity (CDP). The schemes vary in terms of delivered reliability and overhead

depending on the manner the data 1240 is computed.

[00127] In addition to the above described error recovery information, the system may be

configured to calculate a checksum value for a region on the device. For example, a checksum

30 may be calculated when information is written to the device. This checksum is stored by the

system. When the information is read back from the device, the system may calculate the

checksum again and compare it to the value that was stored originally. If the two checksums

differ, the information was not read properly, and the system may use other schemes to recover

36

WO 2013/025864 PCT/US2012/051059

the data. Examples of checksum functions include cyclical redundancy check (CRC), MD5, and

SHA-1.

[00128] An erase block within an SSD may comprise several pages. A page may include 4KB

of data storage space. An erase block may include 64 pages, or 256KB. In other embodiments,

5 an erase block may be as large as 1 megabyte (MB), and include 256 pages. An allocation unit

size may be chosen in a manner to provide both sufficiently large sized units and a relatively low

number of units to reduce overhead tracking of the allocation units. In one embodiment, one or

more state tables may maintain a state of an allocation unit (allocated, free, erased, error), a wear

level, and a count of a number of errors (correctable and/or uncorrectable) that have occurred

10 within the allocation unit. In one embodiment, an allocation unit is relatively small compared to

the total storage capacity of an SSD. Other amounts of data storage space for pages, erase blocks

and other unit arrangements are possible and contemplated.

[00129] The metadata 1260 may include page header information, RAID stripe identification

information, log data for one or more RAID stripes, and so forth. In various embodiments, the

15 single metadata page at the beginning of each stripe may be rebuilt from the other stripe headers.

Alternatively, this page could be at a different offset in the parity shard so the data can be

protected by the inter-device parity. In one embodiment, the metadata 1260 may store or be

associated with particular flag values that indicate this data is not to be deduplicated.

[00130] In addition to inter-device parity protection and intra-device parity protection, each of

20 the pages in storage devices 176a-176k may comprise additional protection such as a checksum

stored within each given page. The checksum (8 byte, 4 byte, or otherwise) may be placed inside

a page after a header and before the corresponding data, which may be compressed. For yet

another level of protection, data location information may be included in a checksum value. The

data in each of the pages may include this information. This information may include both a

25 virtual address and a physical address. Sector numbers, data chunk and offset numbers, track

numbers, plane numbers, and so forth may be included in this information as well. This mapping

information may also be used to rebuild the address translation mapping table if the content of

the table is lost.

[00131] In one embodiment, each of the pages in the storage devices 176a-176k stores a

30 particular type of data, such as the data types 1230-1260. Alternatively, pages may store more

than one type of data. The page header may store information identifying the data type for a

corresponding page. In one embodiment, an intra-device redundancy scheme divides a device

into groups of locations for storage of user data. For example, a division may be a group of

37

WO 2013/025864 PCT/US2012/051059

locations within a device that correspond to a stripe within a RAID layout. In the example

shown, only two stripes, 1270a and 1270b, are shown for ease of illustration.

[00132] In one embodiment, a RAID engine within the storage controller 174 may determine a

level of protection to use for storage devices 176a-176k. For example, a RAID engine may

5 determine to utilize RAID double parity for the storage devices 176a-176k. The inter-device

redundancy data 1250 may represent the RAID double parity values generated from

corresponding user data. In one embodiment, storage devices 176j and 176k may store the

double parity information. It is understood other levels of RAID parity protection are possible

and contemplated. In addition, in other embodiments, the storage of the double parity

10 information may rotate between the storage devices rather than be stored within storage devices

176j and 176k for each RAID stripe. The storage of the double parity information is shown to be

stored in storage devices 176j and 176k for ease of illustration and description. Although each of

the storage devices 176a-176k comprises multiple pages, only page 1212 and page 1220 are

labeled for ease of illustration.

15 [00133] It is noted that the above-described embodiments may comprise software. In such an

embodiment, the program instructions that implement the methods and/or mechanisms may be

conveyed or stored on a computer readable medium. Numerous types of media which are

configured to store program instructions are available and include hard disks, floppy disks, CD

ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and

20 various other forms of volatile or non-volatile storage.

[00134] In various embodiments, one or more portions of the methods and mechanisms

described herein may form part of a cloud-computing environment. In such embodiments,

resources may be provided over the Internet as services according to one or more various models.

Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and

25 Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a

case, the computing equipment is generally owned and operated by the service provider. In the

PaaS model, software tools and underlying equipment used by developers to develop software

solutions may be provided as a service and hosted by the service provider. SaaS typically

includes a service provider licensing software as a service on demand. The service provider may

30 host the software, or may deploy the software to a customer for a given period of time. Numerous

combinations of the above models are possible and are contemplated.

[00135] Although the embodiments above have been described in considerable detail,

numerous variations and modifications will become apparent to those skilled in the art once the

38

WO 2013/025864 PCT/US2012/051059

above disclosure is fully appreciated. It is intended that the following claims be interpreted to

embrace all such variations and modifications.

39

40

Claims:

1. A computer system including:

a data storage medium;

5 a mapping table organized as a plurality of levels, each level of the plurality

of levels including one or more mapping table entries, where each of the plurality of

entries has a tuple including a key; and

a data storage controller coupled to the data storage medium;

wherein in response to detecting a flattening condition, the data storage

10 controller is configured to:

identify a group of two or more levels of the plurality of levels which are

logically adjacent in time;

create a new level in the plurality of levels;

insert one or more first records stored within the group into the new level, in

15 response to detecting each of the one or more first records stores a unique key

among keys stored within the group; and

utilize a filtering condition to determine which of the first records are inserted

into the new level, wherein the filtering condition includes a validity of a given record

as determined by the overlay table.

20

2. The computer system as recited in claim 1, wherein the data storage

controller is further configured to replace the group of two or more adjacent levels

with the new level.

25 3. The computer system as recited in claim 1 or 2, wherein the data storage

controller is further configured to create a new level from fewer than all of the records

in the group of two or more adjacent levels.

4. The computer system as recited in any preceding claim, wherein the

30 flattening condition is based on at least one of a current or predicted value of: a

number of levels in the mapping table, a number of entries in one or more levels of

the plurality of levels, a number of mapping entries that would be elided or modified

as part of a flattening operation, and a load on the system.

35 5. The computer system as recited in any preceding claim, wherein the filtering

3358925v1

41

condition is based at least in part on a current or predicted number of entries in the

new level.

6. A method for use in a storage system, the method including the steps of:

5 storing a mapping table organized as a plurality of levels, each level of the

plurality of levels including one or more mapping table entries, where each of the

plurality of entries has a tuple including a key; and

responsive to detecting a flattening condition:

identifying a group of two or more levels of the plurality of levels which are

10 logically adjacent in time;

creating a new level in the plurality of levels;

inserting one or more first records stored within the group into the new level,

in response to detecting each of the one or more first records stores a unique key

among keys stored within the group and

15 utilizing a filtering condition to determine which of the first records are

inserted into the new level, wherein the filtering condition includes a validity of a

given record as determined by an overlay table.

7. The method as recited in claim 6, wherein only a youngest level of the

20 plurality of levels may be updated with new mapping table entries.

8. The method as recited in claim 6, wherein the data storage controller is

further configured to sort records within the new level.

25 9. The method as recited in claim 6, wherein the mapping table entries within a

level of the plurality of levels are sorted by key.

10. The method as recited in claim 6, further including performing flattening

operations on the mapping table asynchronously with respect to updates to the

30 mapping table.

11. The method as recited in claim 6, wherein in response to detecting the

flattening condition, the method further includes inserting one or more second

records stored within the group into the new level, in response to detecting each of

35 the one or more second records:

3358925v1

42

corresponds to two or more records storing a same non-unique key within

the group; and is in a youngest level containing a record with the non-unique key of

the group.

5 12. The method as recited in claim 6, wherein a single record within the

mapping table corresponds to a range of key values.

13. The method as recited in claim 6, wherein at least some of the first and

second records inserted into the new level are modified based on entries in the

10 overlay table.

14. The method as recited in claim 6, wherein at least some records of the

group are elided from the new level based on entries in the overlay table.

15 15. The method as recited in claim 12, wherein at least one record

corresponding to a range of key values in the group is replaced in the new level by a

plurality of records corresponding to subranges of the at least one record.

16. The method as recited in claim 12, wherein at least one record in the group

20 is replaced by a new record in the new level with a range smaller than that of the one

record based on one or more entries in the overlay table.

17. The method as recited in claim 12, wherein a given plurality of records in

the group are replaced by a single record in the new level whose range covers all

25 ranges covered by the given plurality of records.

18. A non-transitory computer readable storage medium storing program

instruction executable by a processor to:

store a mapping table organized as a plurality of levels, each level of the

30 plurality of levels including one or more mapping table entries, where each of the

plurality of entries has a tuple including a key; and

responsive to detecting a flattening condition:

identify a group of two or more levels of the plurality of levels which are

logically adjacent in time;

35 create a new level in the plurality of levels;

3358925v1

43

insert one or more first records stored within the group into the new level, in

response to detecting each of the one or more first records stores a unique key

among keys stored within the group; and

utilize a filtering condition to determine which of the first records are inserted

5 into the new level, wherein the filtering condition includes a validity of a given record

as determined by an overlay table.

19. The computer readable storage medium as recited in claim 18, wherein in

response to detecting the flattening condition, the program instructions are further

10 executable by a processor to insert one or more second records stored within the

group into the new level, in response to detecting each of the one or more second

records: corresponds to two or more records storing a same non-unique key within

the group; and is in a youngest level containing a record with the non-unique key of

the group.

15

20. The computer readable storage medium as recited in claim 18, wherein only

a youngest level of the plurality of levels may be updated with new mapping table

entries.

3358925v1

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

