(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
08 March 2018 (08.03.2018)

(10) International Publication Number

WO 2018/045361 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2017/049982

(22) International Filing Date:
01 September 2017 (01.09.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/383,289 02 September 2016 (02.09.2016) US
15/694,749 01 September 2017 (01.09.2017) US

(71) Applicant: SYNOPSYS INC. [US/US]; 690 East Middle-
field Road, Mountain View, CA 94043 (US).

(72) Inventor: ERICKSON, Robert, J.; 1371 Aster Lane, Cu-
pertino, CA 95014 (US).

(74) Agent: SZEPESI, Judith; Hiplegal LLP, 20370 Town
Center Lane #155, Cupertino, CA 95014 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: PARTITIONING USING A CORRELATION META-HEURISTIC

Target System

200

/

Definition
210

Iteration

\ 4

! !

¢ ¢ Y

Hierarchical

RTL Netlist Hierarchy Cell Candidate Final Solution
Dissolver g1 Clusterer E4 Solution Generator Generator
202 204 208 206 >
Seed
T | Solution
Seed Solutions
FIG. 2

wo 2018/045361 A1 | 0K 000 T OO

(57) Abstract: A method for partitioning for a hypergraph including a plurality of nodes into a plurality of bins includes assigning
each node of the hypergraph to one of the plurality of bins to generate a candidate solution, and for each pair of nodes in the candidate
solution, calculating a weighted covariance based on the bin assignment of each node of the pairs of nodes in the candidate solution.
The assigning and the calculating are repeated to generate an accumulated weighted covariance for the pairs of nodes, from which a
seed partition of the hypergraph is generated.

[Continued on next page]

WO 2018/045361 A1 {70000 0 R0 OO

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/045361 PCT/US2017/049982

PARTITIONING USING A CORRELATION META-HEURISTIC

BACKGROUND
[0001] A hypergraph is a generalization of a graph in which an edge

can connect any number of vertices. Formally, a hypergraph G=(V, E) is defined
as a set of vertices (or nodes) V and a set of hyperedges (or edges) E, where
each hyperedge is a subset of the vertex set V, and the size or order of a

hyperedge is the cardinality of this subset.

[0002] Hypergraph partitioning is an important problem with extensive
application to many areas, including very large scale integration (VLSI)
integrated circuit design, efficient storage of large databases on disks, and data
mining. The k-way partitioning problem assigns each node of a hypergraph into
one of k bins while attempting to minimize the "cut metric", i.e., the number of
hyperedges that connect nodes assigned to multiple bins. Real world partitioning
problems often have multi-valued cost functions in addition to the edge-cost, and

obey various constraints.

[0003] For an application that partitions integrated circuit designs, the
hypergraph can be thought of as a netlist that represents a design to be
partitioned into k FPGA units of a system for FPGA-based prototyping. In
addition to the cut metric, the application requires attention to the timing of the
system and to the number and configuration of the wires available to

interconnect the FPGA units.

[0004] A common method used for partitioning is the multi-level
partitioning approach developed by Karypis and Kumar for the hMETIS system.
This approach begins by coarsening the hypergraph using connectivity-based
clustering and then repeatedly applying a local search optimization heuristic
(local search) to partition the hypergraph followed by "un-coarsening" the graph.
A common local search optimization heuristic is the Fiduccia-Mattheyses
algorithm.

[0005] The quality of results (QoR) of the multi-level partitioning
approach is sensitive to the quality of the initial solution at the coarsest level of

the hypergraph. Local search can get stuck at local minima. A common approach

WO 2018/045361 PCT/US2017/049982

used to work around this limitation is to run multiple trials of local search, each

with a different seed solution, and to keep the best resulting solution.

[0006] A meta-heuristic implements a strategy to guide the search
process for a complex optimization problem with the goal of efficiently exploring
the solution space to find near-optimal solutions. A partitioning meta-heuristic is
the method of generating seed solutions for local search. Common meta-
heuristic approaches include random solution generation and genetic

optimization.

WO 2018/045361 PCT/US2017/049982

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0007] To easily identify the discussion of any particular element or act,
the most significant digit or digits in a reference number refer to the figure

number in which that element is first introduced.

[0008] FIG. 1is an exemplary high-level block diagram of an EDA
system.

[0009] FIG. 2 is a block diagram of an embodiment of a partitioner

system.

[0010] FIG. 3 is a block diagram of embodiment of a candidate solution

generator.

[0011] FIG. 4 is a block diagram of an embodiment of a correlation

meta-heuristic.
[0012] FIG. 5 illustrates an embodiment of an assignment matrix.
[0013] FIG. 6 illustrates an embodiment of a probability matrix.
[0014] FIG. 7 illustrates an embodiment of a covariance matrix.

[0015] FIG. 8 is a flowchart of an embodiment of a solution generation

process.

[0016] FIG. 9 is a flowchart of partitioning a hypergraph including a
plurality of nodes into a plurality of bins, in accordance with one embodiment.

[0017] FIG. 10 illustrates an embodiment of a correlation meta-heuristic

system.

[0018] FIG. 11 illustrates one embodiment of a computer system.

WO 2018/045361 PCT/US2017/049982

DETAILED DESCRIPTION

[0019] Disclosed herein are embodiments of method of improving
electronic design automation for designing integrated circuits or circuit blocks
using a correlation meta-heuristic that improves the results of initial solution
generation by keeping track of assignments of nodes to bins, and of the
correlation of node assignments between pairs of nodes. After each trial of the
local search algorithm, the assignment and correlation information are updated.
The correlation meta-heuristic uses the accumulated information to generate
effective seed solutions for subsequent iterations. Node pairs that have a history
of being assigned to the same bin are more likely to be assigned to the same bin
in the resulting seed solution. This improves the overall results of the
partitioning. Even if the local search gets stuck in local minima, the process may
optimize pairs of nodes that will improve results if they are assigned to the same

bin. Solutions with lower cost have improved information about correlation.

[0020] In one embodiment, the correlation meta-heuristic system
described is part of one or more electronic design automation (EDA) tools and
used to design, calibrate, and adjust circuit designs, and circuit blocks. An EDA
flow can include multiple steps, and each step can involve using one or more
EDA software tools. Some EDA steps and software tools are described below,
with respect to Figure 1. These examples of EDA steps and software tools are
for illustrative purposes only and are not intended to limit the embodiments to the
forms disclosed.

[0021] To illustrate the EDA flow, consider an EDA system that receives
one or more high level behavioral descriptions of an IC device (e.g., in HDL
languages like VHDL, Verilog, etc.) and translates (“synthesizes”) this high
level design language description into netlists of various levels of abstraction. A
netlist describes the IC design and is composed of nodes (functional elements)
and edges, e.g., connections between nodes. At a higher level of abstraction, a
generic netlist is typically produced based on technology independent primitives.

[0022] The generic netlist can be translated into a lower level
technology-specific netlist based on a technology-specific (characterized) cell
library that has gate-specific models for each cell (functional element). The

models define performance parameters for the cells; e.g., parameters related to

WO 2018/045361 PCT/US2017/049982

the operational behavior of the cells, such as power consumption, delay,
transition time, and noise. The netlist and cell library are typically stored in
computer readable media within the EDA system and are processed and verified

using many well-known techniques.

[0023] Before proceeding further with the description, it may be helpful
to place these processes in context. At a high level, for an application specific
integrated circuit (ASIC), the process starts with the product idea (step E100)
and is realized in an EDA software design process (step E110). When
the design is finalized, it can be taped-out (event E140). After tape out, the
fabrication process (step E150) and packaging and assembly processes (step
E160) occur resulting, ultimately, in finished chips (result E170). For a field
programmable gate array (FPGA), the process starts with the product idea (step
E101) and is realized in an EDA software design process (step E111). When
the design is finalized, the FPGAs may be configured (event E151), applying the
code to the FPGA circuits, resulting, ultimately, in finished chips (result E171).

[0024] The EDA software design process (step E110/E111) is actually
composed of a number of steps E112-E130, shown in linear fashion for
simplicity. In an actual design process, the particular design might have to go
back through steps until certain tests are passed. Similarly, in any
actual design process, these steps may occur in different orders and
combinations. This description is therefore provided by way of context and
general explanation rather than as a specific, or recommended, design flow for a

particular circuit design.

[0025] A brief description of the components steps of

the EDA software design process (step E110) will now be provided:

[0026] System design (step E112): The designers describe the
functionality that they want to implement and can perform what-if planning to
refine functionality, check costs, etc. Hardware-software architecture partitioning
can occur at this stage. Exemplary EDA software products from Synopsys, Inc.
that can be used at this step include Model Architect, Saber, System Studio,

and DesignWare® products.
[0027] Logic design and functional verification (step E114); At this

stage, the VHDL or Verilog code for modules in the system is written and

WO 2018/045361 PCT/US2017/049982

the design is checked for functional accuracy. More specifically, the design is
checked to ensure that it produces the correct outputs. Exemplary EDA software
products from Synopsys, Inc. that can be used at this step include VCS,

VERA, DesignWare®, Magellan, Formality, ESP and LEDA products.

[0028] Synthesis and design for test (step E116): Here, the
VHDL/Verilog is translated into a netlist. The netlist can be optimized for the
target technology. Additionally, the design and implementation of tests to permit
checking of the finished chip occurs. Exemplary EDA software products
from Synopsys, Inc. that can be used at this step include Design Compiler®,
Physical Compiler, Test Compiler, Power Compiler, FPGA Compiler, Tetramax,

and DesignWare® products.
[0029] Design planning (step E118): Here, an overall floorplan for the

chip is constructed and analyzed for timing and top-level routing.
Exemplary EDA software products from Synopsys, Inc. that can be used at this

step include Jupiter and Floorplan Compiler products.

[0030] Netlist verification (step E120): At this step, the netlist is checked
for compliance with timing constraints and for correspondence with the
VHDL/Verilog source code. Exemplary EDA software products from Synopsys,
Inc. that can be used at this step include VCS, VERA, Formality and PrimeTime
products.

[0031] Physical implementation (step E122): The placement
(positioning of circuit elements) and routing (connection of the same) occurs at
this step. Exemplary EDA software products from Synopsys, Inc. that can be

used at this step include the Astro product.

[0032] Analysis and extraction (step E124): At this step, the circuit
function is verified at a transistor level, this in turn permits what-if refinement.
Exemplary EDA software products from Synopsys, Inc. that can be used at this
step include Star RC/XT, Raphael, and Aurora products. For FPGA design, in
one embodiment the process ends here. Because FPGA programming is done
through software, there are no physical configuration, resolution, and mask

design issues.

[0033] For ASICS, next comes the Physical verification (step E126): At

this step various checking functions are performed to ensure correctness for:

6

WO 2018/045361 PCT/US2017/049982

manufacturing, electrical issues, lithographic issues, and circuitry.
Exemplary EDA software products , Inc. that can be used at this step include the
Hercules product.

[0034] Resolution enhancement (step E128): This step involves
geometric manipulations of the layout to improve manufacturability of the design.
Exemplary EDA software products from Synopsys, Inc. that can be used at this
step include iN-Phase, Proteus, and AFGen products.

[0035] Mask data preparation (step E130): This step provides the “tape-
out” data for production of masks for lithographic use to produce finished chips.
Exemplary EDA software products from Synopsys, Inc. that can be used at this
step include the CATS(R) family of products.

[0036] With respect to this application, the correlation meta-heuristic
system may be implemented as part of design planning (E118) for the design of
an FPGA, or ASIC circuit built via an EDA system. In one embodiment, the
meta-heuristic system may be implemented as part of the system design, netlist
verification, or physical implementation of the EDA system. In one embodiment,
the meta-heuristic system may be applicable to solving a traveling salesman
problem, which is used in routing and outside of circuit design. In one
embodiment, the meta-heuristic system may be used for clock tree synthesis,
associating the clocks of a VLSI design to available clock routing resources. Of
course, the use of such a meta-heuristic system may be applicable outside the

circuit design space as well.

[0037] Figure 2 is a block diagram of one embodiment of an overview of
the partitioner system. A partitioner system 200 comprises a hierarchy dissolver
202, a cell clusterer 204, a candidate solution generator 208, and a final solution
generator 206, and a target system definition 210. The input is a hierarchical
register transfer level (RTL) netlist, in one embodiment. The target system
definition 210 may be input to each of the elements 202, 204, 206, 208, to
provide the constraints of the target system. As noted above, the solutions
generated should meet the constraints of the system.

[0038] The hierarchy dissolver 202 receives a hierarchical RTL netlist
or a partially dissolved hierarchy and dissolves the hierarchy into cells. In one

embodiment, the hierarchy dissolver 202 selectively dissolves the hierarchy so

WO 2018/045361 PCT/US2017/049982

that constraints are met. Constraints typically include the capacity limitations of
the circuits. For example for FPGAs no hierarchical block may be of a size that
exceeds the capacity of an FPGA. The dissolve step may also include heuristics

that tend to improve quality of results (QoR).

[0039] The cell clusterer 204 receives the netlist of cells and clusters
the cells. This reduces the complexity of the partitioning problem. The clustering
must satisfy constraints that nodes must remain together. Techniques for
clustering include connectivity-based clustering as described by Karypis and
Kumar, and placement-based clustering. Other techniques for clustering may be

used.

[0040] The initial solution generator 208 receives the netlist of clustered
cells and generates initial solutions. In one embodiment, m initial solutions are
generated, at the coarsest level of clustering. This step uses a partitioning meta-

heuristic and local search.

[0041] The final solution generator 206 receives the initial solutions and
generates a final solution. Although the term “final” is used, the final solution
generator 206 may iterate to determine the ultimate final solution. In some
embodiments, the final solution generator 206 iteratively decomposes clusters
and refines the solution using local search. Optionally, the flow may continue to
the hierarchy dissolver 202 by dissolving additional hierarchy, re-clustering, and
re-running the initial solution heuristics with the intention of improving the final
result. The final solution generator 206 generates an assignment of each cell in
the netlist to one of the k bins in the partitioning system such that all target

system constraints are met.

[0042] Referring to Figure 3, a candidate solution generator 208 in one
embodiment comprises an assignment and correlation history 308, a cost
function 302, a solution generator 310, a meta-heuristic 304, a local search 306,
and a candidate solution control memory structure 312. In one embodiment, the
candidate solution generator 208 is implemented by a processor in a computer
system, which may be a local system, a cloud-based system, or a distributed

system.

[0043] The meta-heuristic 304 comprises the assignment and

correlation history 308 and the solution generator 310, in one embodiment. The

WO 2018/045361 PCT/US2017/049982

meta-heuristic 304 receives the cost information from the cost function 302. The
meta-heuristic 304 generates a seed solution and sends the seed solution to the
local search 306. Common meta-heuristics include random solution generation
and genetic optimization. An improved meta-heuristic utilizes the correlation
between nodes of previous solutions to generate a "good" (meaning acceptably

effective) seed solution..

[0044] In one embodiment, the meta-heuristic 304 receives a candidate
solution from the local search 306. In some embodiments, the meta-heuristic 304

utilizes the candidate solution to generate a new seed solution.

[0045] The local search 306 receives the cost information from the cost
function 302. In one embodiment, local search 306 and meta-heuristic 304 share
a cost function 302. The local search 306 generates the candidate solution from
the seed solution. One local search algorithm that may be used is the
Kernighan-Lin algorithm as refined by Fiduccia and Mattheyses. There are other
algorithms for local search that may be used, including a null search that copies
the seed solution to the candidate solution. In one embodiment, local search
306 sends the candidate solution back to the meta-heuristic 304, for further
iteration and refinement. In one embodiment, local search 306 stores the best
candidate solutions in memory structure 312. In some embodiments, the local
search 306 utilizes the cost function 302 to improve solutions. In some
embodiments, the local search 306 search for a local minima to determine a
candidate solution. The candidate solution control memory structure 312
receives the candidate solution from local search 306 and stores the candidate

solution.

[0046] The most common local search algorithms require a legal
solution, so the seed solutions must satisfy all constraints. In one embodiment,
partitioning meta-heuristic and local search share a cost function (e.g., cost
function 302) which, given a candidate solution, will return a positive real number
(the cost) that measures the "goodness" or quality of the solution. Generally, a

lower cost corresponds to a better solution.

[0047] The output of the candidate solution generator 208 is a set of m

solutions that are passed to the final solution generator 206 of Figure 2.

WO 2018/045361 PCT/US2017/049982

[0048] Referring to Figure 4, the seed solution generator 400 of the
correlation meta-heuristic comprises an assignment and correlation history 308,
a cost function 302, and a solution generator 310. The correlation meta-heuristic
system records a history of node assignments and node correlations and applies
the history information to generate seed solutions. The correlation meta-heuristic

system applies the cost function to assign higher weight to better solutions.

[0049] The assignment and correlation history 308 receives a candidate
solution. The assignment and correlation history 308 sends a request for cost
information to cost function 302 and receives cost information from cost function
302. The assignment and correlation history 308 sends assignment and

correlation history to the solution generator 310.

[0050] The solution generator 310 receives the assignment and
correlation history from the assignment and correlation history 308 and
generates a seed solution. This seed solution may be used to refine a next set
of candidate solutions, or for partitioning.

[0051] Referring to Figure 5, an assignment matrix 500 accumulates the
sum of weighted assignments. Assignments in this context refer to the bins to

which a particular node has been assigned. In some embodiments, the weight is:

{(1/ey

[0052] where cis the cost of the local search solution and x is an
algorithm parameter. In one embodiment, x is an implementation-specific
constant greater than 1.0. A typical value for x is between 4.0 and 8.0. The
value of x impacts the effect that the cost has on the weight. Other functions of
C may be used. Generally, inverse functions are used, because higher weights
are considered better, while lower costs are considered better. Of course, this is
arbitrary and lower weights could be considered preferable, using a standard,
non-inverse function.

[0053] In some embodiments, the assignment matrix 500 is updated
after a local search result is generated. The assignment matrix 500 may be
recorded by the assignment and correlation history 308 in one implementation of
the correlation meta-heuristic system. In one embodiment, for each candidate

solution, the assignment and correlation history 308 updates the assignment

10

WO 2018/045361 PCT/US2017/049982

matrix (AM) for every node in the partitioning problem. If node i is assigned to bin
j, then the value of AMJi,j] is incremented by the weighted assignment, W.

[0054] A covariance matrix (CM) shown in Figure 7, accumulates the
weighted sum of the covariance between all pairs of nodes. The covariance (CV)

for nodes i and j and bin b is calculated as follows, in one embodiment:
[0055] CV(i,j,b) = (A(i,b) — E(i, b))X(A(j,b) — E(j, b))
[0056] where iis the current node, j is the subsequent node, b is the

bin, and E is the expected value of the assignment.

[0057] A(i,b)is 1.0 if node i is assigned to bin b; otherwise it is 0.0.
E(i,b) is the expected value of assigning node i to bin b. Typically this is 1.0/k,
where k is the number of bins.

[0058] For each candidate solution, the assignment and correlation
history 308 updates the covariance matrix (CM) for every node pair; CM[i,j,b] is
incremented by W x CV(i,j,b). The diagonal entries of CM (where i == j) are not
used. The covariance matrix is symmetric. Other implementations may use an n
x n matrix CM2 in which each entry CM2(i,j) is the sum of CM(i,j,b) for all b.
Other implementations may use a sparse matrix in which some entries are not

stored.

[0059] In some embodiments, the covariance matrix 700 is updated

after a local search result.

[0060] In one embodiment, before the solution generation begins, the
assignment and correlation history 308 is initialized with several candidate

solutions in which a randomly generated seed is optimized using local search.

[0061] In one embodiment, the candidate solution generator 208 uses a
"temperature” (T) to control convergence. T is initialized to a high value and
reduced after each solution generation step. The temperature is analogous to the
temperature used to control convergence of a simulated annealing algorithm. At
high temperatures, bin assignment selection is nearly uniformly random. At lower

temperatures, the correlation data is dominant.

[0062] Referring to Figure 6, in one embodiment, a probability matrix
(PM) 600 is generated from an assignment matrix. At the start of each

generation step, the probability matrix is calculated from the history module’s

11

WO 2018/045361 PCT/US2017/049982

assignment matrix. Each entry PM(i,b) represents the expected probability that
node i is assigned to bin b. Each row of PM sums to 1.0. PM may be updated as
described in conjunction with Figure 8.

[0063] Figure 8 is a flowchart of one embodiment of generating a seed
solution. In some embodiments, a node, C, is randomly chosen to be the current
node, at block 804. Other methods may be used to choose the first current node.
A bin is chosen for the current node using weighted random selection with:

sweight (§, k) == robiER) T
[0064] where T is the current temperature, at block 804. The node is
assigned to the bin, at block 808. At block 810, the process determines whether
the nodes have been assigned. In one embodiment, all nodes in the system are
assigned. In another embodiment, a subset of nodes is selected for this
process. The selection may be based on cost, criticality, size, or other factors. If
all the nodes to be assigned have been, the process ends at block 812.

Otherwise, the process continues to block 814.
[0065] The next node, D, is chosen, based on the covariance between

the current node and the next node. The next node is chosen from among all

unassigned nodes using weighted random selection with:
ef.’(ﬁ.‘{{j{i} i

[0066] where cov(C,i) is the sum of cov(c,i,k) over k, at block 814. At

block 816, the probability matrix is adjusted where:

[0067] where a(C,k) =1 ifkis C’s selected bin else 0, and normalize

such that:

[0068] This is repeated until all nodes are assigned. In one
embodiment, the temperature is decreased for the next assignment pass. As
selections use the temperature weighting above:

s At high temperatures, selections are nearly uniform random

selection.

12

WO 2018/045361 PCT/US2017/049982

 Atlow temperatures, selections are highly biased toward best
probability selection.
o A minimum temperature may be set to avoid convergence to

local minima.

[0069] In some embodiments, only assignments that satisfy all

constraints are allowed.

[0070] Next, D becomes the current node and the algorithm repeats
until all nodes have been assigned.

[0071] Figure 9 illustrates one embodiment of partitioning a hypergraph
including a plurality of nodes into a plurality of bins. At block 920, each node of
the hypergraph is assigned to one of a plurality of bins using a correlation meta-
heuristic. This is done for multiple iterations, to generate a candidate solutions.

At block 930, a local search is performed.

[0072] At block 940, a pair of nodes is selected. In one embodiment,
this selection is made randomly. At block 950, for the selected pair of nodes in
the candidate solution, a weighted covariance is calculated based on the bin
assignment the pair of nodes in the candidate solution. The covariance matrix
entries are incremented for this pair of nodes as well. At block 960, the process
determines whether all pairs have been evaluated. If not, the process returns to
block 940 to select another pair of nodes. The process repeats the assigning
and the calculating a plurality of times, until it is done with the repetition
generating an accumulated weighted covariance for the pairs of nodes. Once all
pairs have been evaluated, the process determines whether the initial solution is
complete. If not, the process returns to block 910 to repeat the flow, generating
new assignments and weighted covariances. If the initial solution is complete,
the process ends, at block 980. The output of this flow is used to generate an
initial partition of the hypergraph, generated using the accumulated weighted
covariance .

[0073] Figure 10 is a block diagram of one embodiment of a correlation
meta-heuristic system 1000. The system 1000 comprises a probability matrix
generator 1002, an initial node selector 1004, a bin selector 1006, a node

assignment controller 1008, a subsequent node selector 1010, a probability

13

WO 2018/045361 PCT/US2017/049982

matrix adjuster 1012, a history module 1014, a cost function 1016, and a

temperature controller 1018.

[0074] The probability matrix generator 1002 receives an assignment
matrix from the history module 1014, generates a probability matrix, and sends

the probability matrix to the initial node selector 1004.

[0075] The initial node selector 1004 receives the probability matrix,
selects an initial node, and sends the initial node to the bin selector 1006. In
some embodiments, the initial node is selected based on assignment
probabilities associated with each node. In one embodiment, the initial node is

selected randomly.

[0076] The bin selector 1006 receives the initial node and adjusted
subsequent nodes, selects a bin for the initial node and the adjusted subsequent

nodes, and sends the bin assignment to the node assignment controller 1008.

[0077] The node assignment controller 1008 receives the bin
assignment and determines whether all nodes are assigned to a bin. If not, the
node assignment controller 1008 instructs node selector 1004 to select a next
node, which will be assigned by bin selector 1006. The subsequent node selector
1010 receives the subsequent node selection control from the node assignment
controller 1008, selects a subsequent node, and send the subsequent node to
the probability matrix adjuster 1012. In some embodiments, the subsequent node

is selected based on a correlation to the current node.

[0078] Once all nodes have been assigned, the node assignment
controller 1008 generates a seed solution. In one embodiment, the node
assignment controller 1008 also sends a temperature update signal to the
temperature controller 1018. The temperature controller 1018 lowers the
temperature, increasing the effect of prior bin assignments, for subsequent
matrix generations.

[0079] The probability matrix adjuster 1012 receives the subsequent
node from the subsequent node selector 1010 and receives a covariance matrix
from the history module 1014. The probability matrix adjuster 1012 adjusts the
probability matrix based on the covariance matrix and sends the adjusted

subsequent node to the bin selector 1006.

14

WO 2018/045361 PCT/US2017/049982

[0080] The history module 1014 receives an initial solution control, an
updated solution control, cost information from the cost function 1016, and a
temperature control from the temperature controller 1018. The history module
1014 sends the assignment matrix to the probability matrix generator 1002. The
updated solution control is received after each local search, with weights based

on the cost of the local search solution.

[0081] The cost function 1016 sends the current cost to the history
module 1014.

[0082] The temperature controller 1018 receives an initial temperature
control and a temperature update control from the node assignment controller
1008. The temperature controller 1018 sends a temperature control to the history
module 1014.

[0083] As shown in Figure 11, a computer system 1100, which is a form
of a data processing system such as computer system 102, includes a bus 1102.
which is coupled to one or more microprocessor 1104. In one embodiment,
computer system 1100 includes one or more of a storage device 1112 (e.qg..
ROM), volatile memory 1108 (e.g.. RAM), and a non-volatile memory 1110 (e.g.,
EEPROM, Flash). The microprocessor 1104 is coupled to cache memory 1106
as shown in the example of Figure 11. Cache memory 1106 may be volatile or

non-volatile memory.

[0084] The bus 1102 interconnects these various components together
and in one embodiment interconnects these components microprocessor 1104,
storage device 1112, volatile memory 1108, and non-volatile memory 1110 to a
display controller and display device 1114. The computer system 1100 may
further include peripheral devices such as input/output (I/0) devices, which may
be mice, keyboards, modems, network interfaces, printers, scanners, video
cameras and other devices which are well known in the art. Typically, the
input/output devices 1118 are coupled to the system through input/output
controllers 1116.

[0085] The volatile memory 1108 is typically implemented as dynamic
RAM (DRAM) which requires power continually in order to refresh or maintain
data in the memory. The non-volatile memory 1110 is typically a magnetic hard

drive, magnetic optical drive, an optical drive, a DVD RAM, a Flash memory, or

15

WO 2018/045361 PCT/US2017/049982

other type of memory system that maintains data even after power is removed
from the system. Typically, the non-volatile memory will also be a random access
memory although this is not required.

[0086] While Figure 11 shows that the non-volatile memory is a local
device coupled directly to the rest of the components in the data processing
system, it will be appreciated that the disclosed embodiments may utilize a non-
volatile memory which is remote from the system, such as a network storage
device which is coupled to the data processing system through a network

interface such as a modem or Ethernet interface.

[0087] The bus 1102 may include one or more buses connected to each
other through various bridges, controllers and/or adapters as is well known in the
art. In one embodiment the input/output controllers 1116 includes a USB
(Universal Serial Bus) adapter for controlling USB peripherals. and/or an |IEEE-

1394 bus adapter for controlling IEEE-1394 peripherals.
[0088] It will be apparent from this description that aspects of the

disclosed embodiments may be embodied, at least in part, in software (or
computer-readable instructions). That is, the techniques may be carried out in a
computer system or other data processing system in response to its processor,
such as a microprocessor, executing sequences of instructions contained in a
memory, such as storage device 1112, volatile memory 1108, non-volatile
memory 1110, cache memory 1106 or a remote storage device. In various
embodiments, hardwired circuitry may be used in combination with software
instructions to implement the disclosed embodiments. Thus, the techniques are
not limited to any specific combination of hardware circuitry and software or to
any particular source for the instructions executed by the data processing
system. In addition, throughout this description, various functions and operations
are described as being performed by or caused by software code to simplify
description. However, those skilled in the art will recognize what is meant by
such expressions is that the functions result from execution of the code by a

processor, such as microprocessor 1104.

[0089] A machine readable storage medium can be used to store
software and data which when executed by a data processing system causes the

system to perform various methods of the disclosed embodiments. This

16

WO 2018/045361 PCT/US2017/049982

executable software and data may be stored in various places including for
example storage device 1112, volatile memory 1108, non-volatile memory 1110
and/or cache memory 1106 as shown in Figure 11. Portions of this software

and/or data may be stored in any one of these storage devices.

[0090] Thus, a machine readable storage medium includes any
mechanism that stores any information in a form accessible by a machine (e.g., a
computer, network device, personal digital assistant, manufacturing tool, any
device with a set of one or more processors, etc.). For example, a machine
readable medium includes recordable/non-recordable media (e.g., read only
memory (ROM); random access memory (RAM); magnetic disk storage media;

optical storage media; flash memory devices; etc.).

[0091] The detailed description of embodiments of the invention makes
reference to the accompanying drawings in which like references indicate similar
elements, showing by way of illustration specific embodiments of practicing the
invention. Description of these embodiments is in sufficient detail to enable those
skilled in the art to practice the invention. One skilled in the art understands that
other embodiments may be utilized and that logical, mechanical, electrical,
functional and other changes may be made without departing from the scope of
the present invention. The detailed description is, therefore, not to be taken in a
limiting sense, and the scope of the present invention is defined by the appended
claims. References within the specification to "one embodiment” or "an
embodiment" are intended to indicate that a particular feature, structure, or
characteristic described in connection with the embodiment is included in at least
one embodiment of the present invention. The appearance of the phrase "in one
embodiment” in various places within the specification are not necessarily all
referring to the same embodiment, nor are separate or alternative embodiments
mutually exclusive of other embodiments. Moreover, various features are
described which may be exhibited by some embodiments and not by others.
Similarly, various requirements are described which may be requirements for

some embodiments but not other embodiments.

[0092] Some portions of the detailed description were presented as
procedures, steps, logic blocks, processing, and other symbolic representations

of operations on data bits within a computer memory. These descriptions and

17

WO 2018/045361 PCT/US2017/049982

representations are the means used by those skilled in the data processing arts
to most effectively convey the substance of their work to others skilled in the art.
A procedure, computer executed step, logic block, process, etc., is conceived to

be a self-consistent sequence of steps or instructions leading to a desired result.

[0093] The steps are those requiring physical manipulations of physical
quantities. Usually, though not necessarily, these quantities take the form of
electrical or magnetic signals of a computer readable storage medium and are
capable of being stored, transferred, combined, compared, and otherwise
manipulated in a computer system. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as bits, values, elements,

symbols, characters, terms, numbers, or the like.

[0094] It should be borne in mind, however, that all of these and similar
items are to be associated with the appropriate physical quantities and are
merely convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the following discussions, it is appreciated that -
throughout the present disclosure, discussions utilizing terms such as "sending”
or "receiving" or "displaying” or "calculating” or "determining" or "multiplying" or
"computing” or "identifying" or the like, refer to the action and processes of a
computer system, or similar electronic computing device that manipulates and
transforms data represented as physical (electronic) quantities within the
computer system’s registers and memories and other computer readable media
into other data similarly represented as physical quantities within the computer
system’s memories or registers or other such information storage, transmission

or display devices.

[0095] In the foregoing specification, the disclosed embodiments have
been described with reference to specific exemplary embodiments thereof. It will,
however, be evident that various modifications and changes may be made
thereto without departing from the broader spirit and scope of the invention as
set forth in the appended claims. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

18

WO 2018/045361 PCT/US2017/049982

We Claim:

1. A method for partitioning for a hypergraph including a plurality of nodes
into a plurality of bins, comprising:

assigning each node of the hypergraph to one of a plurality of bins to generate
a candidate solution;

for each pair of nodes in the candidate solution, calculating a weighted
covariance based on the bin assignment of each node of the pairs of nodes in said
candidate solution;

repeating the assigning and the calculating a plurality of times, and generating
an accumulated weighted covariance for the pairs of nodes; and

generating a seed partition of said hypergraph using the accumulated
weighted covariance.

2. The method of claim 1, further comprising:
accumulating a weighted assignment value for each node; and
generating the seed partition of said hypergraph using the accumulated

weighted assignment value and the accumulated weighted covariance.

3. The method of claim 1, further comprising:

utilizing a cost function to generate weights for the weighted covariance.

4. The method of claim 1, further comprising:
utilizing a local search heuristic to transform one or more seed partitions into

a candidate solution, to iterate the method.

5 The method of claim 4, wherein the seed partition in a final iteration is
utilized for a coarse partitioning of a circuit description into a field programmable gate
array (FPGA).

6. The method of claim 1, wherein generating the seed partition
comprises:
generating a weight for assigning each node of said hypergraph to each bin;

selecting a current node;

19

WO 2018/045361 PCT/US2017/049982

assigning the current node to a particular bin based on an assignment weight
of the node to the bin;
selecting a next node.

7. The method of claim 6, wherein a probability of the assignment of said
node to the bin with the highest assignment weight increases during a plurality of

generations of the seed partition.

8. The method of claim 6, wherein the selecting of the next node is based
on an accumulated weighted covariance between the current node and all other

nodes.

9. The method of claim 6, further comprising:
adjusting the assignment weight of the next node, based on the accumulated

weighted covariance between the current node and the next node.

10. The method of claim 6, further comprising:
utilizing a local search heuristic to transform a seed partition into a candidate

solution.

11. A correlation meta-heuristic system for partitioning for a hypergraph
including a plurality of nodes into a plurality of bins, comprising:

a bin selector to assign each node of the hypergraph to one of a plurality of
bins to generate a candidate solution;

meta-heuristic to, for each pair of nodes in the candidate solution, calculate a
weighted covariance based on the bin assignment of each node of the pairs of nodes
in said candidate solution;

the correlation meta-heuristic system to repeat the assigning and the
calculating a plurality of times, and generate an accumulated weighted covariance
for the pairs of nodes; and

generating a seed partition of said hypergraph using the accumulated

weighted covariance.

12. The system of claim 11, further comprising:

20

WO 2018/045361 PCT/US2017/049982

an assignment and correlation history to accumulate a weighted assignment
value for each node; and

a solution generator to generate the seed partition of said hypergraph using
the accumulated weighted assignment value and the accumulated weighted

covariance.

13. The system of claim 11, further comprising:

a cost function to generate weights for the weighted covariance.

14. The system of claim 11, further comprising:
a local search heuristic to transform one or more seed partitions into a

candidate solution, to iterate the method.

15. The system of claim 14, wherein the seed partition in a final iteration is
utilized for a coarse partitioning of a circuit description into a field programmable gate
array (FPGA).

16. The system of claim 11, wherein generating the seed partition
comprises:

generating a weight for assigning each node of said hypergraph to each bin;

an initial node selector to select a current node;

the bin selector to assign the current node to a particular bin based on an
assignment weight of the node to the bin; and

a subsequent node selector to select a next node.

17. The system of claim 16, wherein a probability of the assignment of said
node to the bin with the highest assignment weight increases during a plurality of

generations of the seed partition.

18. The system of claim 16, wherein the selecting of the next node is
based on an accumulated weighted covariance between the current node and all

other nodes.

19. The system of claim 16, further comprising:

21

WO 2018/045361 PCT/US2017/049982

a matrix adjuster to adjust the assignment weight of the next node, based on

the accumulated weighted covariance between the current node and the next node.

20. The system of claim 16, further comprising:

a local search heuristic to transform a seed partition into a candidate solution.

21. A method to assign a plurality of nodes in a circuit design to field
programmable gate arrays (FPGASs), the method comprising:

assigning each node of the circuit design to one of a plurality of FPGAs to
generate a candidate solution;

for each pair of nodes in the candidate solution, calculating a weighted
covariance based on the assignment of each node of the pairs of nodes in said
candidate solution;

repeating the assigning and the calculating a plurality of times, and generating
an accumulated weighted covariance for the pairs of nodes; and

generating a seed partition using the accumulated weighted covariance;

generating a final partition, the final partition indicating an assigned FPGA for

each of the plurality of nodes.

22

PCT/US2017/049982

WO 2018/045361

'Ol

oLL3 L3 Apiop
ogL3 8cL3 9zL3 velL3 A 02L3 8LL3 1561 Jo} oung ANE|
‘da.d eleq -oueyu3 ((uoljeolylusp noenx3 ((uswsdw({ uoneaiusp Buiuueld ubBise uBIse uBiseq
Msen uolnjosay [eaisAyd 9 sisAjeuy [eaisAyd 1SI1eN ubisaq m_m.mfm_ >M ,mo_m.oqm_ WIS1SAS
=
0913
0¥ L3 oLL3 0013
0/13 Klqwessy 0S1L3 no SIEMIIOS eop| ISy
sdiyp 2 uoneouqe _ade| Vg T
Buibexoed
IE LG13 LLL3 LOL3
sdiyD ‘Byuod alemyos esp| vOd4
. V5dd va3 1onpoud

PCT/US2017/049982

WO 2018/045361

2/11

uonn|os

SUOIIN|0S pass

90¢
lojeJausL)

uonN|oS [euld

80¢
lojeIauan) uonN|oS

sjepipue)

¥0c¢
la1818N|H

11O

!

i

i

1

uoijeJal|

/

00¢

Ole
uoniuyaQ
walsAg 1061

¢ Ol

202 |
JaAj0ssIq «—
AyotelalH - ISIISN 1Y
[E2IU2JEIaIH

WO 2018/045361

304

PCT/US2017/049982

3/11
/ 208
302\
COST FUNCTION
306
SEED I L
META-HEURISTIC
SOLUTION
LOCAL
308 || 30 SEARCH CANDIDATE
SOLUTION
302

FIG. 3

TN
S

CANDIDATE
SOLUTIONCONTROL
MEMORY STRUCTURE

N~

WO 2018/045361

PCT/US2017/049982

411
/400
308 302
CANDIDATE e /
SOLUTION ASSIGNMENT
AND | CosT
CORRELATION [™ FUNCTION
HISTORY
310 SEED
SOLUTION
SOLUTION R
GENERATOR

FIG. 4

WO 2018/045361 PCT/US2017/049982

511

/ 500

n x k Assignment Matrix

FIG. 5

WO 2018/045361 PCT/US2017/049982

6/11

/ 600

n x k Probability Matrix

FIG. 6

WO 2018/045361 PCT/US2017/049982

7711

/ 700

n x n x k Covariance Matrix

FIG. 7

WO 2018/045361 PCT/US2017/049982

8/11

/ 800

GENERATE A PROBABILITY
MATRIXFROM AN ASSIGNMENT
MATRIX

v

SELECT ANODE TO BE THE
CURRENT NODE

v
SELECT A BIN FOR THE NODE OR
NEXT NODE USING WEIGHTED
RANDOM SELECTION

v

ASSIGN THENODE TO THE BIN

802

804

806

NN NN

808

YES

ARE ALL THENODES
ARE ASSIGNED TO A
BIN?

| ENDAND LOWER THE TEMPERATURE

810
812

SELECTED THE NEXT NODE USING
f WEIGHTED RANDOM SELECTION

814

ADJUST THEPROBABILITY
MATRIXBASED ON THE
COVARIANCE BETWEEN

_f THENODE AND THE NEXTNODE

816

FIG. 8

WO 2018/045361

FIG. 9

9/11

Start
900

Seed method
910

__ PTm——

Assign each node to one of a plurality of
bins using correlation meta-heuristic
(multiple iterations)

920

.. e

Perform local search
930

... T

Choose a pair of nodes
940

.. e —

Calculate weighted covariance based on
pair’s assignments, and increment
covariance matrix entries for this pair
950

No . 5
All pairs completed?

960

Yes

No

Initial

solution complete?
970

PCT/US2017/049982

PCT/US2017/049982

WO 2018/045361

10/11

000!

0l "OId

T0MINOD
NOILN0S
(EER
4IT104LNOD YOLITTIS 40LYY4IN39
mamaissy fe—y 0™ 3000w [* XI4LYW
NIg
A 30N ALIIgv804d
_
800 ‘//, N
9001 7001 2001
4019373 300N
ININD3SANS
o_o_\ ﬁ AWEDZA%W
NOILNT
xo_// q3L¥adn
4ILSNraY XI4LY Jnaon 1
ALIIgvE04d MOISH |,
AN T04INOD
ciol NOILN10S
43T104INOD WILIN
JNLYYIdWIL
8101 T04INOD NOILINN4
TANLYYIdNAL 509
TVILINI 9101

WO 2018/045361

PCT/US2017/049982

/ 1100

1110

11/11
1106
CACHE
LI 1108
1104 I / Ve
\ VOLATILE
PROCESSOR STORAGE MEMORY

NONVOLATILE
MEMORY (E.G.,
HARD DRIVE)

I I 102
/ \ 4

|

~T

DISPLAY
CONTROLLER /0

& DISPLAY

/ DEVICE / CONTROLLER(S)

1114 116
I/0 DEVICE(S) (E.G.,
MOUSE, OR KEYBOARD,
OR MODEM, OR

NETWORK INTERFACE,
OR PRINTER, OR

SCANNER, OR VIDEO
/ CAMERA)

18

FIG. 11

>

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2017/049982

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/30; GO6F 17/50;, GO6F 15/173; GO6F 9/455; GOGF 9/45

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: hypergraph, node, bin, candidate solution, weighted covariance, seed pattition

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2015-0007120 A1 (SYNOPSYS, INC.) 01 January 2015 1-21
See paragraphs [0015]-[0018], [0035]-[0082]; and figures 3-7.

A US 2012-0131530 A1 (MICHAEL D. MOFFITT et al.) 24 May 2012 1-21
See paragraphs [0025]-[0038], [0053]; and figures 2-3, 6.

A WO 2007-120879 A2 (MAGMA DESIGN AUTOMATION, INC. et al.) 25 October 2007 1-21
See paragraphs [0038]-[0099]; and figure 1.

A US 2012-0036249 A1 (KARTHIK CHANDRASEKARAN) 09 February 2012 1-21
See paragraphs [0064]-[0081]; and figure 2.

A US 2015-0020038 A1 (MICROSEMI SOC CORPORATION) 15 January 2015 1-21
See paragraphs [0030]-[0033]; and figure 4.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
06 December 2017 (06.12.2017) 07 December 2017 (07.12.2017)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
Korean Intellectual Property Office KIM, Scong Woo
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578 Telephone No. +82-42-481-3348

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2017/049982
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2015-0007120 Al 01/01/2015 US 9208278 B2 08/12/2015
US 2012-0131530 Al 24/05/2012 US 2012-0317527 Al 13/12/2012
US 8327304 B2 04/12/2012
US 8555221 B2 08/10/2013
WO 2007-120879 A2 25/10/2007 US 2007-0245281 Al 18/10/2007
WO 2007-120879 A3 17/04/2008
US 2012-0036249 Al 09/02/2012 US 8812653 B2 19/08/2014
US 2015-0020038 Al 15/01/2015 US 9147025 B2 29/09/2015

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report

