LIFE AND DEATH JUDGEMENT SYSTEM FOR GO GAME

Applicant: PANDANET INC., Tokyo (JP)

Inventors: Hiroko TAKI, Tokyo (JP); Tomoya SAEKI, Tokyo (JP); Hiroshi OOMOTO, Tokyo (JP)

Appl. No.: 14/317,124
Filed: Jun. 27, 2014

Related U.S. Application Data
Division of application No. 13/500,675, filed on May 16, 2012, filed as application No. PCT/JP2009/067478 on Oct. 7, 2009.

Publication Classification
Int. Cl. A63F 13/00 (2006.01)

ABSTRACT
Provided is a life and death judgment system for a go game played with a computer, having an input reception unit that receives an input, a life and death judgment processing unit that judges whether judgment subject stones or target stones are alive, and an output processing unit that outputs the result of the life and death judgment. The life and death judgment processing unit tentatively determines the priority of a move at each point when processing life and death judgment in a predetermined judgment realm, judges a point of a move with a high possibility and/or a move with a low possibility of giving a result of the life and death judgment, changes the priority of the point of the move at each tentatively determined point, and undertakes the move of each stone in accordance with the priority after such change, thereby processing the life and death judgment.
Fig. 1

Server 2

Network

Terminal 3a of Player A

Terminal 3b of Player B
Life and Death Judgment System for Go

FIG. 2

Player Terminal (Player A)

Player Terminal (Player B)

Player Terminal 3

Server 2

Input Reception Unit

Output Processing Unit

Life & Death Judgment Processing Unit

FIG. 3

Storage Device

Input Device

Computational Device

Display Device

Communication Device
FIG. 4

Initial Judgment Processing Unit
 210

Second Judgment Processing Unit
 212

Life and Death Judgment Execution Unit
 214

First Judgment Processing Unit
 211

Priority Change-Processing Unit
 213

Priority Memory Unit
 215

Life and Death Judgment Processing Unit 21a
FIG. 5

Start

Create priority of each point of judgment by a given method S100

Determine if a high speed processing is possible S110

Can be judged? NO

YES

Start judging on the current teban by designating target stones S140

Execute judgment processing using priority of S100 S130

Living point? NO

YES

Promote priority of that point and demote priority of other points S160

Start judging on the current teban without designating target stones S170

Living point? NO

YES

Demote priority of each point in judgment realm S190

Promote priority of that point and demote priority of other points S180

Execute judgment processing using updated priority S210

End
White stars (☆) are the judgment object stones (target stones).
Vacant points in the judgment realm subjected to a round robin.
Start judging

Create priority of each point to be judged by a given method S300

Process A S310

Process B S320

Any living points in Process B? S330

YES

NO

Process C S340

Process D S350

Start round robin life and death judgment processing using the priority ranking updated in Process D
FIG. 14

Process A

At points x, y that satisfy
Area[x][y]=1
Board[x][y]=tn^3

Create judgment realm using
Board[x][y] as judgment object
S3100

S3110

NO

All outside-stones in the above realm included in the
judgment object stones of the original judgment?

S3120

YES

Can a judgment be given using the above realm?

YES

To Process B

NO

Stop judging, start processing usual round robin judgment
FIG. 15

Process B

\[x, y \text{ that satisfies } H'[x][y]=1 \]

Group points \(x, y \), substitute grouped \(x, y \) into \(G \)

\(S3200 \)

Substitute points \(E \) of \(G \) into \(E \)

\(S3210 \)

\(S3220 \)

\[E[a][b]=1, \text{ Area}'[a][b]=0 \text{ at any } a, b? \]

\(\text{NO} \)

\(\text{YES} \)

At \(c,d \) that satisfies \(G[c][d]=1 \), set \(H'[c][d]=2 \)

\(S3230 \)

Start round robin judgment, substitute the winning point of move into \(R \)

\(S3240 \)

Return
FIG. 16

Process C

- x, y satisfies $H'(x,y)=2$
 - $H'(x,y)=1$
 - Start round robin judgment, assign winning points of a move in R

Return
FIG. 17

Process D

Substitute Max value of Order[i].v in m

S3500

i=0, i<361

S3510

NO

YES

S3520

H[Order[i].x][Order[i].y]≥1 ?

NO

YES

R[Order[i].x][Order[i].y]=1 ?

NO

YES

Decrease Order[i].v by (m+1)

S3540

Increase Order[i].v by (m+1)

S3530

Sort Order[i] in descending order of element v

S3550

Return
E and O represent vacant points E and vacant points O of the three black stones respectively.
FIG. 23

First Outside Processing Unit 216

Life and Death Judgment Execution Unit 218

Second Outside Processing Unit 217

Life and Death Judgment Processing Unit 21b
FIG. 24

Start

1. Extract closed realm-stone group including judgment object stones S400
2. Closed realm? NO
 - Closed realm? YES
 - Extract points on the outside the closed realm other than points E of closed realm-stone group & vacant points D of fig. 1 line S420
 - All closed realms processed? NO
 - In points extracted in S420, extract all of those common to all closed realm processing S440
 - In points extracted in S420, place opponent's judgment object stones on the remaining points after excluding judgment object stones and vacant points thereof S450
 - In the stones placed in S450, remove those not connected to outside and regards others as outside S460
 - Extract outside-E vacant points in judgment realms S470
 - Place the opponent's stones on points E of each point extracted in S470 where 2 or more outside stones are included with no judgment object stones; regard the point as the outside S480
 - All closed realms processed? YES

3. More than 1 stones places? YES
 - Run a round robin on judgment realm after the processing S500
 - 1 or more living point? NO
 - Return the board to the initial state, process usual round robin line & death judgment S550
 - Living judgment S520
 - End
FIG. 28

(a) Closed realm defined only by black stones

(b) Closed realm defined by black stones and the outside

FIG. 29
The opponent's stones to be newly placed (white stones)
Start

Process A by the first outside processing unit

Process B by the second outside processing unit

Round robin life and death judgment processing using the board after Processes A and B

One or more living points?

YES

NO

Return the board to the initial state; process usual round robin life and death judgment

Determine the points being alive

End
FIG. 48

Process A

Assign R[x][y]=Area(x) and Q[x][y]=Area(y) to all x, y

f=0

x, y that satisfies
Area(x)[y]=1
Board(x)[y]=0

NO

Q[x][y]=1 ?

YES

Extract the closed realm containing x, y, substitute the closed realm in C

Q[x][y]=0

NO

Q[x][y]=1 ?

YES

Assign Q[x][y]=0 to all points that satisfy Q[x][y]=1

Process A2

S6000

S6010

S6020

S6030

S6040

S6050

S6060

S6070

S6080

S6090

f=1?

NO

Return

Process A3
Process A2

Extract points E of C, substitute the points E to E

Extracts points on No. 1 line at point O in C, substitute the points in O

If $C[c][d] \geq 1$ or $E[c][d] \geq 1$ or $O[c][d] \geq 1$, substitute $R[c][d]=0$

Return
Process A3

Assign $R[x][y]=0$ to all points x,y that satisfy $H[x][y] \geq 1$ (S6100)

Assign points E that satisfy $H[x][y] \geq 1$ to $E2$ (S6110)

Assign $R[x][y]=0$ to all points x,y that satisfy $E2[x][y]=1$ (S6120)

Assign $W[x][y]=0$ to all points x,y (S6130)

Assign Board $[x][y]=t \cdot n^3$ $W[x][y]=1$ $Area[x][y]=0$ to all points x,y that satisfy $Board[x][y]=0$, $R[x][y]=1$ (S6140)

Process A4
Process A4

Group all points \(x, y \) that satisfy

\[
\begin{align*}
\text{Board}[x][y] &= x^n + 3 \\
\text{Area}[x][y] &= 0 \\
W[x][y] &= 0,
\end{align*}
\]

substitute the points into G2

To all points \(x, y \) that satisfy \(W[x][y] = 1 \)

\[S6160 \]

\[G2[x][y] = 0? \]

NO

YES

\[S6170 \]

\[
\begin{align*}
\text{Area}[x][y] &= 1 \\
\text{Board}[x][y] &= 0
\end{align*}
\]

Return
Process B

Substitute vacant points E of x, y that satisfy
Board[x][y]=tn^3
Area[x][y]=0
into E1

Assign E1[x][y]=0 to Points x, y that satisfy
Area[x][y]=0

Process B2
FIG. 53

Process B2

At points x, y that satisfy E1[x][y]=1

Substitute points E of points (x, y) into E2

C = 0

At points x’, y’ that satisfy E2[x’][y’]=1

H[x’][y’] ≥ 2?

Area[x’][y’]=0?

C = C - 4

NO

S6260

YES

S6270

Area[x][y]=0?

NO

C = C + 1

S6250

YES

S6240

S6230

C ≥ 2?

S6280

YES

S6290

x, y No. 1 line?

NO

E1[x][y]=0

S6300

Any point satisfies E1[x][y]=1?

YES

Assign Board[x][y]=true and Area[x][y]=0 to the points that satisfy E1[x][y]=1

S6320

Return

S6310

NO

S6320

Process B1
FIG. 54

Realm Division Processing Unit 219
Half Eye Shape Change-Processing Unit 221
Life and Death Judgment Execution Unit 223

0 eye Shape Change-Processing Unit 220
One Eye Shape Change-Processing Unit 222

Life and Death Judgment Processing Unit 21c
FIG. 55

Start

Determine if judgment realm can be divided S700

NO S710

YES S720

Change divided realm R1 into the 0 eye shape

After the shape change, process the round robin life & death judgment on all judgment realms

Winning? S740

NO S760

Winning judgment S750

YES S770

Winning? S780

NO

Recover the original judgment realm; change the shape of divided realm R2 into one eye

Change the divided realm R1 into the half eye shape

Winning? S840

NO

Process usual round robin life & death judgment on all judgment realms

Winning judgment

YES S880

NO

After the shape change, process the round robin life & death judgment on all judgment realms

Winning? S890

NO

Recover the original judgment realm; change the shape of divided realm R2 into one eye

End

S810

S820

S830

S833

S835

S837

S840

S850

S860

S870

S880

S890

S8800

S880
FIG. 56

FIG. 57

FIG. 58
FIG. 59

FIG. 60
FIG. 62

Stones to become a dividing line
FIG. 67

Start

Process D1

S900

NO

S910

Can be divided by method B?

YES

Process A

S920

Winning?

YES

S930

Winning judgment

S940

Process B

S950

Winning?

YES

S960

Winning judgment

S970

Process C

S1000

Winning?

YES

S1010

Winning judgment

S980

NO

Process A'

S1015

Winning?

YES

S1020

Winning judgment

S990

NO

Winning judgment

S1050

Winning?

YES

S1040

Winning judgment

S1025

End

Usual round robin life & death judgment processing.

S1050
Process D2

Group T, substitute grouped T into G1

Substitute H into H1

Assign H1[x][y]=0 to points x, y that satisfy G1[x][y]=1

x, y that satisfies H1[x][y]=1, Group it in H1, substitute it into H2

Assign H1[x][y]=0 to x, y that satisfies H2[x][y]=0

Any x, y satisfies H1[x][y]=1?

NO

Process D1

YES

Dividable judgment, assign H1 to R1, H2 to R2, and dividing line G1 to D

Return
Process A, A'

Assigned to points x, y that satisfy R1[x][y]=1 are Board [x][y]=tn^3 and H[x][y]=0

Process usual round robin life & death judgment

Return
Substitute Board[x][y]=0, H(x)[y]=0 into outside included in R1 and points E in R1.

At two adjacent P1(x1,y1) & P2(x2,y2) where the respective points E are included in D.

Board[x1][y1]=tn*3
Board[x2][y2]=tn*3

Assign Board[x][y]=tn*3 to points E that become points E of P1, P2, etc.

Group D again, and substitute D into D2.

Assign Board[x][y]=tn*3 to vacant points E(x, y) that satisfy D2=1.

If P3(x3,y3) added in *1 and satisfies D2=0, and not included in points E of the points added in *2.

YES

NO

Shape change cannot be made, process usual round robin life & death judgment

Return

Assign Board[x][y]=tn*3 to the obtained points P3

Assign Board[x][y]=tn*3 to points x, y that are vacant points E & Q in groups P1-P3.

Assign Board[x][y]=0 to P3

For B

Assign Board[x][y]=tn*3 to vacant points E that have been added so far.

For C

Assign Board[x][y]=0 to the point E of a point x, y added in *3 but not included in points E in D2

Process usual round robin life & death judgment

Return
E-vacant point count processing unit

Simplified Judgment Processing Unit

Life and death judgment processing unit 21d
FIG. 73

Start

Count the number of vacant points E of judgment object stones

S1400

No. of vacant points E?

1

4 or more

S1410

Offense side loses

S1430

2 or 3

S1440

Offense side wins

S1420

Determine the priority ranking of a move of the offense side

The offense side makes a move in descending order of priority ranking

S1450

In that priority ranking, can the offense side capture on all moves the defense side make?

S1460

Cannot capture

Can capture

Offense side wins

Offense side loses

S1470

S1490

Offense side's all priority ranking for a move ran out?

YES

NO

End

S1480

S1490

1

1
FIG. 105

Start Process (A)

Obtain vacant points E of $H(x,y)$ from Board $x(y)$ and $y(x)$, substitute the vacant points E into $E1(x,y)$

$S1500$

$S1510$

No. of points that satisfies array $E2(x,y)=1$

4 or more

Offense side loses

End

$S1520$

3

Process B

$S1540$

$S1560$

Process D

$S1550$

2

Process C

$S1530$

1

Offense side wins

End
FIG. 106

Process B

x, y that satisfies $E_1[x][y]=1$

$Board[x][y]=tn^3$

Group Board[x][y], substitute it into H2

Obtain vacant points E of H2, substitute the points into E2

Add x, y to Order, Order[i].y is No. of points that satisfies $E_2[x][y]=1$

$Board[x][y]=0$

Sort Order in descending order of element v

To Process D
FIG. 107

Process D

$0 \leq i < 361$

S1650

Can teban tn make a move on x, y in Order[i]?

S1655 Make a move, update Board and H

Process E

S1660 Process E results in winning?

NO

Offense side loses

S1680

End

YES

Offense side wins

S1670

i = i + 1
FIG. 108

Process C

Substitute points E that are not vacant points of H into E2

S1700

x, y satisfies E2[x][y]=1

S1710

Group Board[x][y], substitute it into G

S1720

Substitute vacant points E in G into G2

S1730

How many points a, b satisfy G2[a][b]=1?

1

Add a, b to Order
Order[i].v=5000

S1740

Process C2
Process C2

To \(x, y \) that satisfies \(\mathcal{E}_1[x][y] = 1 \)

\(\text{Board}[x][y] = t \cdot n^3 \) \(\text{S1750} \)

Group \(\text{Board}[x][y] \), substitute it into \(H_2 \)

Substitute vacant points \(E \) of \(H_2 \) into \(E_2 \)

Add \(x, y \) to Order, \(\text{Order}[i][v] = 4000 \)
No. of points that satisfies \(\mathcal{E}_2[x][y] = 1 \)

\(\text{Board}[x][y] = 0 \) \(\text{S1790} \)

Process C3
Process E

Substitute vacant points \(E\) or \(H\) into \(E_1\)

\(S_{1950}\)

\(S_{1960}\)

1. How many points \(x, y\) satisfy \(E_1[x][y]=1\)?

Process G

\(S_{1980}\)

Process F

\(S_{1970}\)

Process H
FIG. 112

Process F

1. Substitute points E that are not vacant points of H into E2 (S2000)
2. At all points x, y that satisfy E2[x][y]=1
3. Group Board[x][y], assign grouped Board [x][y] to G (S2010)
4. Substitute vacant points E in G into G2 (S2020)
5. How many points a, b satisfy G2[x][y]=1? (S2030)
 - 2: Add a, b to Order, Order[i].v=5000 (S2050)
 - Other than 1 or 2: Add a, b to Order, Order[i].v=6000 (S2040)

Process F2
Process F2

At x, y that satisfies E1[x][y]=1

Board[x][y]=\(tn^3\)

Group Board[x][y], substitute grouped Board[x][y] into H2

Substitute vacant points E of H2 into E2

Add x, y to Order, Order[i].v=4000+ No. of points that satisfy E2[x][y]=1

Board[x][y]=0

Process F3
FIG. 115

Process G

S2300

Substitute points E that is not vacant points of H into E2

S2310

x, y that satisfy E2[x][y]=1

S2320

Group Board[x][y], substitute grouped Board[x][y] into G

S2330

Substitute vacant points E of G into G2

S2340

How many points a, b satisfy G2[a][b]=1?

1

Add a, b to Order, Order[i].v=5000

Process H
FIG. 116

Process H

0 \leq i < 361

S2400

Can teban tna make a move on x, y in Order[i]?

NO

YES

Make a move, update Board & H

S2405

Process A

S2410

Process A gives a losing result?

YES

NO

i = i+1

Offense side loses

S2420

Offense side wins

S2430

End
LIFE AND DEATH JUDGEMENT SYSTEM FOR GO GAME

CROSS REFERENCES OF RELATED APPLICATIONS

[0001] This application is a division of U.S. patent application Ser. No. 13/500,675, which is National Stage Entry of International Application No. PCT/JP2009/067478, filed on Oct. 7, 2009. The contents of the above-identified applications are hereby incorporated by reference in their entireties.

TECHNICAL FIELD

[0002] The present invention relates to the life and death judgment system for a Go game played with the use of a computer.

BACKGROUND TECHNOLOGY

[0003] On a computer, a player can play a Go game with a computer or another player via a network. Go is a game in which players compete for the size of one’s territory, and it is important that the player establishes a strategy and makes a move by constantly considering what to do to keep one’s living stones or to kill the opponent’s stone in some situation.

[0004] For instance, if a player can determine that one’s stone is dead in the early stage, the player can abandon said territory and concentrate on another place, which is very efficient as an overall strategy as well. For this reason, in Go, it is very important to determine whether one’s stone or the opponent’s stone is alive or dead. Note that whether a stone is alive or dead is referred to as the “life or death”. Furthermore, the live stones are those that cannot be captured by the opponent’s move or those that, if captured, can create the stones that cannot be captured newly by the opponent; the dead stones are those other than living stones, which can be captured by a move of the opponent.

[0005] Moreover, in addition to the strategy during a Go game, the life and death of stones must be determined also at the endgame; from this viewpoint as well, the life or death of stones is important. For this reason, there is also a problem of questioning partial life or death, which is called Tsumego.

[0006] As such, in Go, it is extremely important to determine the life or death of stones; however, it is not easy to actually determine whether the stone is alive or dead. Particularly, it is difficult for a computer to do it automatically. Therefore, for instance, as shown in the following patent documents and non-patent documents, systems that perform the processing associated with life or death of stones are disclosed.

PRIOR ART DOCUMENTS

Patent Documents

Non-Patent Documents

SUMMARY OF THE INVENTION

Problems the Invention Intends to Solve

[0015] The system described in Patent document 1 performs the processing associated with life and death of stones; however, it is the system in which, as a player designates dead stones, the designation of only one stone enables the player to also designate a group of stones adjacent to said stone as dead stones. Therefore, the designation of one stone by the player enables him to designate a group of stones as dead stones without designating stones around it; hence the processes to designate dead stones by the player can be reduced. Nevertheless, the life and death judgment of stones itself must be made by the player, and it is not the system which can judge the life and death automatically.

[0016] Moreover, the system described in Patent documents 2 can control the stones placed on the board as well as their characteristics. For instance, it can control the connection of the stones placed on the board and the stones constituting a group. Therefore, it can control the stones on the board as well as the alignment thereof, and determine that the stones formed in a simple pattern (i.e. the presence of two eyes represents being alive) are alive. Nevertheless, the system can make a judgment only on a very simple pattern, and cannot withstand the use in an actual game.

[0017] The system described in Patent document 3 can determine whether the stones that have already been placed on the board are strong or weak in the middle of the game. In Go, a stone’s being strong or weak means that, if the outside of a certain stone is surrounded, the stone is weak; if the outside of a certain stone is not surrounded, the stone is strong. In this system, whether said stone is strong or weak is determined by the number of stones of a different color placed around (within four eyes) the certain stone. However, it can only determine whether the stone is strong or weak in terms of Go and does not make the life and death judgment itself.

[0018] Moreover, the system described in Patent document 4 performs automatically the life and death judgment of stones in the endgame of Go. This system assumes the endgame, that is, the territory (closed realm) has already been established, and then, carries out nothing but a simplified life and death judgment. Therefore, the life and death judgment cannot be performed in the non-endgame state, that is, while playing, and furthermore, even in the endgame, only the life and death judgment of limited patterns can be made.
As described above, the processing associated with life and death described in each of the above Patent documents does not necessarily provide a superior life and death judgment.

Other than the life and death judgment system described in each of the above-mentioned Patent documents, there is another system in which whether a stone is alive or dead is judged by the use of a computer as described in the non-patent documents. For instance, it is a method in which many patterns of the problem-diagram, correct answer-diagram, and expected failure-diagram are stored in advance, and the judgment is made while matching the stones with them.

In this case, the judgment cannot be made if an unexpected move is made, and it is not very desirable to store many patterns of the problem-diagram, correct answer-diagram, and expected failure-diagram to begin with in light of the memory capacity issue.

Theoretically, the life and death judgment can be made by a round robin. Nevertheless, the life and death judgment is generally said to require O(n!) processes (n is the size of the life and death judgment realm). In addition, in the life and death judgment, the player wants to know quickly the result, that is, whether a stone is alive or dead. However, since a round robin requires the number of processes as mentioned above, under the simple introduction of a round robin, the players often wait for a long time before knowing the result, and inevitably feel stressed.

Means to Solve the Problems

Thus, the present inventors devised the life and death judgment system which can output the result of life and death judgment at a higher speed than the known conventional life and death judgment system.

The first invention is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit comprises a priority memory unit which stores the priority of a move at each point when the processing of life and death judgment is carried out in the predetermined judgment realm, a judgment processing unit which determines whether part or all of the judgment object stones or target stones of the opponent in the judgment region are alive, a priority change-processing unit which changes the priority of a move stored in said priority memory unit in accordance with the result of life and death judgment made by said judgment processing unit for said judgment object stone of the opponent, and a life and death judgment execution unit which carries out the processing of life and death judgment based on the condition set by said judgment processing unit.

The above-mentioned invention can also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment by said life and death judgment processing unit; and said life and death judgment processing unit comprises a priority memory unit that stores the priority of a move at each point when the life and death judgment is carried out in the predetermined judgment realm; a first judgment processing unit which carries out the processing of life and death judgment by using the judgment object stone or target stone of the opponent in the judgment realm as the inside, the original judgment object stone or target stone as the outside, and the opponent’s stone adjacent to said original judgment object stone or target stone as a new target stone; a second judgment processing unit that carries out the processing of life and death judgment by using the judgment object stone or target stone of the target stone in the judgment realm as the inside, and the original judgment object stone or target stone as the outside if said first judgment processing unit determines that no point of move satisfies the predetermined condition; a priority change processing unit which changes priority of the point of move stored in said priority memory unit in response to the result of the life and death judgment made by said first judgment processing unit and said second judgment processing unit on said judgment object stone of the opponent; and a life and death judgment execution unit which carries out the processing of life and death judgment in accordance with said condition set by said first judgment processing unit and second judgment processing unit.

The same technical effects as the first invention can be obtained with the configuration of each of the inventions described above.

The second invention is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment
processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit places a stone of a color which is different from that of the judgment object stone in the predetermined judgment realm in accordance with a given condition, and carries out the processing of life and death judgment after said placement is made on the board.

[0030] In the configuration according to the present invention, the opponent’s stones can be placed appropriately at vacant points in the judgment realm. Accordingly, fewer points become judgment object points when the life and death judgment is processed. Thus, the result of the life and death judgment can be output at a higher speed than the simple processing of the life and death judgment.

[0031] The above-mentioned invention can also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit comprises an outside processing unit which places a stone of a color which is different from said judgment object stone using the outside of said judgment realm as a baseline in the predetermined judgment realm in accordance with a given condition, and a life and death judgment execution unit which carries out the processing of life and death judgment after said placement is made on the board.

[0032] The above-mentioned invention can also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit comprises a first outside processing unit which extracts the closed realm including the judgment object stone or target stone within the predetermined judgment realm, places a stone of a color which is different from that of said judgment object stone at a point which satisfies a given condition outside the closed realm using the outside as a baseline, and regards said newly placed stone as the outside; and a life and death judgment execution unit which carries out the processing of life and death judgment after the processing by said first outside processing is provided to the board.

[0033] The above-mentioned invention may also have the configuration described below. In other words, said life and death judgment processing unit further comprises a second outside processing unit which extracts the outside-E-vacant points within the predetermined judgment realm, places a stone of a color which is different from that of said judgment object stone at a point, among all of the points, which satisfies a given condition by using the outside as a baseline, and regards said newly placed stone as the outside; and said life and death judgment execution unit carries out the processing of life and death judgment after the processing by said first outside processing unit and said second outside processing unit is provided to the board.

[0034] The above-mentioned invention can also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit comprises a second outside processing unit which extracts the outside-E-vacant points within the predetermined judgment realm, places a stone of a color which is different from that of said judgment object stone at a point, among all of the points, which satisfies a given condition by using the outside as a baseline, and regards said newly placed stone as the outside; and a life and death judgment execution unit which carries out the processing of life and death judgment after the processing by said second outside processing unit is provided to the board.

[0035] The same technical effects as the second invention can be obtained with the configuration of each of the inventions described above.

[0036] The third invention is a life and death judgment system for a Go game in which death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit divides the area in the judgment realm by a given method, changes the divided areas into a given eye shape, and carries out the processing of life and death judgment after the eye shape change is made on the board.

[0037] In the configuration according to the present invention, the judgment object realm can be divided, and the divided areas can be changed into a given eye shape. The life and death judgment can be hence accelerated utilizing the characteristic that live stones often have two eyes.

[0038] The above invention can also be configured in the manner as described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment unit comprises a realm division processing unit which divides the area in the judgment realm by a given method, an eye shape change processing unit which changes one of said divided areas into one or more eye shapes selected from 0 eye, half eye or one eye, and a life or death judgment execution unit which carries out the processing of life and death judgment on the areas with and without said shape-change.
[0039] The above invention can also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit comprises a realm division processing unit which divides the area in the judgment realm by a given method, a 0 eye shape-change processing unit which changes one of said divided areas into the 0 eye shape, a half eye shape-change processing unit which changes one of said divided areas into the half eye shape, a one eye shape-change processing unit which changes one of said divided areas into the one eye shape, and a life and death judgment execution unit which carries out the processing of life and death judgment on the areas with and without the shape-change by either said 0 eye shape-change processing unit, half eye shape-change processing unit or one eye shape-change processing unit; and said life and death judgment processing unit further changes said one of the divided areas into the 0 eye shape at said 0 eye shape-change processing unit and carries out the processing of life and death judgment on the area with or without the shape-change by either said 0 eye shape-change processing unit, half eye shape-change processing unit or one eye shape-change processing unit; and said life and death judgment execution unit further changes said one of the divided areas into the half eye shape by said half eye shape-change processing unit and carries out the processing of life and death judgment on the areas with and without the shape-change by said life and death judgment execution unit; if the processing of life and death judgment does not give the winning result, it further changes said one of the divided areas into the one eye shape by said one eye shape-change-processing unit and carries out the processing of life and death judgment on the areas with and without the shape-change; and if the processing of life and death judgment does not give the winning judgment result, it carries out the processing of life and death judgment on the board in the original state.

[0040] The above-described invention may also have the following configuration. In other words, said life and death judgment execution unit further carries out the processing of life and death judgment on the areas with and without the shape-change into the 0 eye shape at said 0 eye shape-change processing unit, and gives the winning judgment result, said life and death judgment processing unit further determines the winning as a whole.

[0041] The above-mentioned invention may also have the configuration described below. That is, if the processing of the life and death judgment by said life and death judgment execution unit is carried out on the areas with and without the shape-change into the half eye shape at said half eye shape-change processing unit and, as a result, the winning judgment result is given, said life and death judgment processing unit returns said shape-changed area to the original state while said divided area which is different from said shape-changed area is changed to the one eye shape by said one eye shape-change processing unit, and carries out the processing of life and death judgment on the areas with and without shape-change at said life and death judgment execution unit; if the processing of life and death judgment gives the winning judgment result, it gives the winning as a whole judgment; and if the winning judgment cannot be made, the processing of life and death judgment is carried out on the board in the original state.

[0042] The above-mentioned invention may also have the configuration described below. That is, if said life and death judgment execution unit carries out the processing of life and death judgment on the areas with and without shape-change into the one eye shape at said one eye shape-change processing unit and the winning judgment result is given, said life and death judgment processing unit returns said shape-changed area to the original state while said divided area which is different from said shape-changed area is changed into the half eye shape by said half eye processing unit, and said life and death judgment execution unit carries out the processing of life and death judgment on the areas with and without shape-change; if the processing of life and death judgment gives the winning judgment result, it gives the winning result as a whole judgment; and if the winning judgment cannot be made, the processing of life and death judgment is carried out on the board in the original state.

[0043] The same technical effects as the third invention can be obtained with the configuration of each of the inventions described above.

[0044] The fourth invention is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit counts the number of E-vacant points of a judgment object stone or target stone, determines the move of the offensive side or defense side based on the number of said E-vacant points, and carries out the processing of life and death judgment based on the determined move.

[0045] In the configuration according to the present invention, a loose ladder move can be used to make the accelerated life and death judgment.

[0046] The above-mentioned invention may also be configured in the manner described below. In other words, it is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment unit comprises an E-vacant point count processing unit which counts the number of E-vacant point of a judgment object stone or target stone, and a life and death judgment execution unit which carries out the processing of life and death judgment by determining the priority of a move of the offense side or defense side based on the number of E-vacant points counted by said E-vacant point, and alternately repeating the moves of the offense side or defense side according to the priority.

[0047] The same technical effects as the fourth invention can be obtained with the configuration of the invention described above.
The fifth invention is a life and death judgment system for a Go game in which life and death of a Go is determined by the use of a computer, wherein said life and death judgment system comprises an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit accepts the designation of target stones as said judgment object stones, carries out the processing of life and death judgment on said received target stones, and gives the loosing judgment if one of said target stones is captured while giving the winning judgment if all target stones remain uncaptured.

Conventionally, in the life and death judgment system for a Go game, the life and death judgment processing is carried out in such a way that, the winning judgment is given if no judgment object stone is captured, and the losing judgment is given if all of them are captured. However, in the state of a game, the stones any of which should not be captured, or all of which must be protected exist. In such a case, the conventional life and death judgment processing system could not cope with the situation. In the configuration according to the present invention, target stones can be set to perform the life and death judgment processing according to the target stone baseline.

The first invention described above can also be configured in such a way that the program of the present invention is downloaded into a computer for execution. In other words, a computer is used as an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit, and said life and death judgment processing unit tentatively determines the priority of a move at each point when the processing of life and death judgment is carried out in a predetermined judgment realm, determines a point of a move with a high possibility and/or a move with a low possibility of giving a result of the life and death judgment, changes the priority of said point of a move with a high possibility and/or a move with a low possibility in said tentatively determined point, and determines life and death by undertaking a move of each stone based on the priority after said change.

The second invention described above can also be configured in such a way that the program of the present invention is downloaded into a computer for execution. In other words, a computer is used as an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit, and said life and death judgment processing unit presents a stone of a color which is different from that of said judgment object stone in the predetermined judgment realm in accordance with a given condition, and carries out the processing of life and death judgment after said placement is made on the board.

The third invention described above can also be configured in such a way that the program of the present invention is downloaded into a computer for execution. In other words, a computer is used as an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit divides the area in the judgment realm by a given method, changes the divided areas into a given shape in the divided area, and carries out the processing of life and death judgment on the state of the board after the shape change.

The fourth invention described above can also be configured in such a way that the program of the present invention is downloaded into a computer for execution. In other words, a computer is used as an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit counts the number of E-vacant points of a judgment object stone or target stone, determines the point of a move of the offense side or defense side based on the number of said E-vacant points, and carries out the processing of life and death judgment based on the determined move.

The fifth invention described above can also be configured in such a way that the program of the present invention is downloaded into a computer for execution. In other words, a computer is used as an input reception unit which receives an input by a player, a life and death judgment processing unit that determines whether the judgment object stone or target stone is alive, and an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and said life and death judgment processing unit counts the number of E-vacant points of a judgment object stone or target stone, determines the point of a move of the offense side or defense side based on the number of said E-vacant points, and carries out the processing of life and death judgment based on the determined move.

Effects of the Invention

The life and death judgment system for a Go game of the present invention can output a result of the life and death judgment faster than that of conventional technology without limiting the state to the endgame or middle of the game.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 This is a schematic diagram showing an example of the system configuration in which a Go game is realized via a network.

FIG. 2 This is a conceptual diagram showing an example of the entire processing functions of the present invention.

FIG. 3 This is a schematic diagram showing an example of the hardware configuration of the server and computer terminals used in the present invention.

FIG. 4 This is a conceptual diagram schematically showing an example of the processing functions of the life and death judgment in Working Example 1.
[0060] FIG. 5 This is a flowchart schematically showing an example of the processing sequence of the life and death judgment processing in Working Example 1.

[0061] FIG. 6 This is an example of the game screen in Working Example 1.

[0062] FIG. 7 This is an example of the editing screen in Working Example 1.

[0063] FIG. 8 This is an example of the editing screen in Working Example 2.

[0064] FIG. 9 This is an example of the state of the board of Working Example 1.

[0065] FIG. 10 This is an example of the state of the board of Working Example 1.

[0066] FIG. 11 This is an example of the state of the board of Working Example 1.

[0067] FIG. 12 This is an example of the screen showing the result obtained in Working Example 1.

[0068] FIG. 13 This is a flowchart in which an example of the entire processing sequence in Working Example 1 is schematically described in detail.

[0069] FIG. 14 This is a flowchart in which an example of the processing sequence of Process A in Working Example 1 is schematically described in detail.

[0070] FIG. 15 This is a flowchart in which an example of the processing sequence of Process B in Working Example 1 is schematically described in detail.

[0071] FIG. 16 This is a flowchart in which an example of the processing sequence of Process C in Working Example 1 is schematically described in detail.

[0072] FIG. 17 This is a flowchart in which an example of the processing sequence of Process D in Working Example 1 is schematically described in detail.

[0073] FIG. 18 This is a diagram showing points E.

[0074] FIG. 19 This is a diagram showing the processing computing points E in a group of stones.

[0075] FIG. 20 This is a diagram showing points O.

[0076] FIG. 21 This is a diagram showing the processing in which points O in a group of stones are obtained.

[0077] FIG. 22 This is a diagram showing an example of vacant points E and vacant points O.

[0078] FIG. 23 This is a conceptual diagram schematically showing an example of the processing functions of the life and death judgment in Working Example 2.

[0079] FIG. 24 This is a flowchart schematically showing an example of the processing sequence of the life and death judgment processing in Working Example 2.

[0080] FIG. 25 This is an example of the game screen in Working Example 2.

[0081] FIG. 26 This is an example of the editing screen in Working Example 2.

[0082] FIG. 27 This is an example of the editing screen in Working Example 2.

[0083] FIG. 28 This is an example of the state of the board of Working Example 2.

[0084] FIG. 29 This is an example of the state of the board of Working Example 2.

[0085] FIG. 30 This is an example of the state of the board of Working Example 2.

[0086] FIG. 31 This is an example of the state of the board of Working Example 2.

[0087] FIG. 32 This is an example of the state of the board of Working Example 2.

[0088] FIG. 33 This is an example of the state of the board of Working Example 2.

[0089] FIG. 34 This is an example of the state of the board of Working Example 2.

[0090] FIG. 35 This is an example of the state of the board of Working Example 2.

[0091] FIG. 36 This is an example of the state of the board of Working Example 2.

[0092] FIG. 37 This is another example of the game screen of Working Example 2.

[0093] FIG. 38 This is another example of the state of the board of Working Example 2.

[0094] FIG. 39 This is another example of the state of the board of Working Example 2.

[0095] FIG. 40 This is another example of the state of the board of Working Example 2.

[0096] FIG. 41 This is another example of the state of the board of Working Example 2.

[0097] FIG. 42 This is another example of the state of the board of Working Example 2.

[0098] FIG. 43 This is another example of the state of the board of Working Example 2.

[0099] FIG. 44 This is another example of the state of the board of Working Example 2.

[0100] FIG. 45 This is another example of the state of the board of Working Example 2.

[0101] FIG. 46 This is another example of the state of the board of Working Example 2.

[0102] FIG. 47 This is a flowchart in which an example of the entire processing sequence in Working Example 2 is schematically described in detail.

[0103] FIG. 48 This is a flowchart in which an example of the processing sequence of Process A2 in Working Example 2 is schematically described in detail.

[0104] FIG. 49 This is a flowchart in which an example of the processing sequence of Process A2 in Working Example 2 is schematically described in detail.

[0105] FIG. 50 This is a flowchart in which an example of the processing sequence of Process A3 in Working Example 2 is schematically described in detail.

[0106] FIG. 51 This is a flowchart in which an example of the processing sequence of Process A4 in Working Example 2 is schematically described in detail.

[0107] FIG. 52 This is a flowchart in which an example of the processing sequence of Process B in Working Example 2 is schematically described in detail.

[0108] FIG. 53 This is a flowchart in which an example of the processing sequence of Process B2 in Working Example 2 is schematically described in detail.

[0109] FIG. 54 This is a conceptual diagram schematically showing an example of the processing functions of the life and death judgment in Working Example 3.

[0110] FIG. 55 This is a flowchart showing an example of the processing sequence in Working Example 3.

[0111] FIG. 56 This is a diagram showing an example of the shape change-processing into the O eye shape.

[0112] FIG. 57 This is a diagram showing an example of the shape change-processing into the half eye shape.

[0113] FIG. 58 This is a diagram showing an example of the shape change-processing into the one eye shape.

[0114] FIG. 59 This is an example of the game screen in Working Example 3.

[0115] FIG. 60 This is an example of the editing screen in Working Example 3.

[0116] FIG. 61 This is an example of the editing screen in Working Example 3.
[0117] FIG. 62 This is an example of the state of the board in Working Example 3.
[0118] FIG. 63 This is an example of the state of the board in Working Example 3.
[0119] FIG. 64 This is an example of the state of the board in Working Example 3.
[0120] FIG. 65 This is an example of the state of the board in Working Example 3.
[0121] FIG. 66 This is an example of the state of the board in Working Example 3.
[0122] FIG. 67 This is a flowchart in which an example of the entire processing sequence in Working Example 3 is schematically described in detail.
[0123] FIG. 68 This is a flowchart in which an example of the processing sequence of Process D1 in Working Example 3 is schematically described in detail.
[0124] FIG. 69 This is a flowchart in which an example of the processing sequence of Process D2 in Working Example 3 is schematically described in detail.
[0125] FIG. 70 This is a flowchart in which an example of the processing sequence of Process A in Working Example 3 is schematically described in detail.
[0126] FIG. 71 This is a flowchart in which an example of the processing sequence of Processes B, C, B', and C' in Working Example 3 is schematically described in detail.
[0127] FIG. 72 This is a conceptual diagram schematically showing an example of the processing functions of the life and death judgment in Working Example 4.
[0128] FIG. 73 This is a flowchart showing an example of the processing sequence of the life and death judgment processing in Working Example 4.
[0129] FIG. 74 This is an example of the playing screen in Working Example 4.
[0130] FIG. 75 This is an example of the editing screen in Working Example 4.
[0131] FIG. 76 This is an example of the editing screen in Working Example 4.
[0132] FIG. 77 This is an example of the state of the board of Working Example 4.
[0133] FIG. 78 This is an example of the state of the board of Working Example 4.
[0134] FIG. 79 This is an example of the state of the board of Working Example 4.
[0135] FIG. 80 This is an example of the state of the board of Working Example 4.
[0136] FIG. 81 This is an example of the state of the board of Working Example 4.
[0137] FIG. 82 This is an example of the state of the board of Working Example 4.
[0138] FIG. 83 This is an example of the state of the board of Working Example 4.
[0139] FIG. 84 This is an example of the state of the board of Working Example 4.
[0140] FIG. 85 This is an example of the state of the board of Working Example 4.
[0141] FIG. 86 This is an example of the state of the board of Working Example 4.
[0142] FIG. 87 This is an example of the state of the board of Working Example 4.
[0143] FIG. 88 This is an example of the state of the board of Working Example 4.
[0144] FIG. 89 This is an example of the state of the board of Working Example 4.
[0145] FIG. 90 This is an example of the state of the board of Working Example 4.
[0146] FIG. 91 This is an example of the state of the board of Working Example 4.
[0147] FIG. 92 This is an example of the state of the board of Working Example 4.
[0148] FIG. 93 This is an example of the state of the board of Working Example 4.
[0149] FIG. 94 This is an example of the state of the board of Working Example 4.
[0150] FIG. 95 This is an example of the state of the board of Working Example 4.
[0151] FIG. 96 This is an example of the state of the board of Working Example 4.
[0152] FIG. 97 This is an example of the state of the board of Working Example 4.
[0153] FIG. 98 This is an example of the state of the board of Working Example 4.
[0154] FIG. 99 This is an example of the state of the board of Working Example 4.
[0155] FIG. 100 This is an example of the state of the board of Working Example 4.
[0156] FIG. 101 This is an example of the state of the board of Working Example 4.
[0157] FIG. 102 This is an example of the state of the board of Working Example 4.
[0158] FIG. 103 This is an example of the state of the board of Working Example 4.
[0159] FIG. 104 This is an example of the state of the board of Working Example 4.
[0160] FIG. 105 This is a flowchart in which an example of the entire (Process A) processing sequence in Working Example 4 is schematically described in detail.
[0161] FIG. 106 This is a flowchart in which an example of the processing sequence of Process B in Working Example 4 is schematically described in detail.
[0162] FIG. 107 This is a flowchart in which an example of the processing sequence of Process D in Working Example 4 is schematically described in detail.
[0163] FIG. 108 This is a flowchart in which an example of the processing sequence of Process C in Working Example 4 is schematically described in detail.
[0164] FIG. 109 This is a flowchart in which an example of the processing sequence of Process C' in Working Example 4 is schematically described in detail.
[0165] FIG. 110 This is a flowchart in which an example of the processing sequence of Process C2 in Working Example 4 is schematically described in detail.
[0166] FIG. 111 This is a flowchart in which an example of the processing sequence of Process E in Working Example 4 is schematically described in detail.
[0167] FIG. 112 This is a flowchart in which an example of the processing sequence of Process F in Working Example 4 is schematically described in detail.
[0168] FIG. 113 This is a flowchart in which an example of the processing sequence of Process F2 in Working Example 4 is schematically described in detail.
[0169] FIG. 114 This is a flowchart in which an example of the processing sequence of Process F3 in Working Example 4 is schematically described in detail.
[0170] FIG. 115 This is a flowchart in which an example of the processing sequence of Process G in Working Example 4 is schematically described in detail.
FIG. 116 This is a flowchart in which an example of the processing sequence of Process I of Working Example 4 is schematically described in detail.

MODE FOR CARRYING OUT THE INVENTION

[0172] Life and death judgment system for a Go game 1 of the present invention (hereinafter simply referred to as the "life and death judgment system 1") can be used for a Go playing system via a network such as the Internet or a Go playing system not via a network. Note that this specification describes the cases in which a playing system is used together with life and death judgment system 1; however, life and death judgment system 1 alone may function as well. The same processing can be performed also in that case.

[0173] An example of the system configuration for a Go playing system via a network having life and death judgment system 1 of the present invention is shown schematically in FIG. 1. In this case, data can be transmitted or received between computer terminals (player terminals 3) used by each player and server 2 which realizes the playing system via a network. This specification demonstrates the case in which the data processing of the playing system and life and death judgment system 1 takes place in the same server 2; however, the processing may also take place in separate servers 2. Moreover, as described above, in addition to the fact that the playing system is realized by server 2, the playing system having life and death judgment system 1 can also be installed in player terminals 3, and by doing so, the processing associated with the present invention may also be carried out without going through a network. Furthermore, life and death judgment system 1 of the present invention may also be incorporated into the playing system as a function thereof to be configured integrally.

[0174] The conceptual diagram of an example of the processing function of life and death judgment system 1 for a Go game of the present invention is schematically shown in FIG. 2. As described above, this specification demonstrates the case in which the playing system for a Go game is configured via a network; the processing is realized by installing each processing function in servers 2, and transmitting and receiving the data via a network between player terminals 3 used by players.

[0175] Moreover, an example of hardware configuration of computer terminals that are server 2 and player terminals 3 is shown schematically in FIG. 3. Server 2 and computer terminals comprise computational device 10 such as CPU which runs the program's computational processing; storage device 11 such as RAM, a hard disk, etc. that store data; display device 12 such as a display (screen); input device 13 such as a keyboard, a pointing device (mouse, ten keys, etc.), etc.; and communication device 14 which transmits and receives the processing result of computational device 10, and the data to be stored in storage device 11 via a network such as the Internet or LAN, etc. Each function (each means) to be realized by server 2 and computer terminals is performed by computational device 10 as it reads out the means for executing the processing (programs, modules, etc.). When the data stored in storage device 11 is used in the processing, each function reads out said data from said storage device 11, and the data read out is utilized as required for the processing in computational device 10. Moreover, functions of computer terminals and server 2 may be allocated dispersedly over multiple computer terminals or servers 2.

[0176] The function of each means of the present invention is only differentiated logically, and may have a physically or actually identical realm.

[0177] Server 2 comprises input reception unit 20, life and death judgment processing unit 21, and output processing unit 22. Although not being illustrated in this specification, identical or different servers 2 have the processing function to realize the Go playing system, where the board data (i.e. the data required for actually playing a Go game by the use of a computer such as what stone is placed on which intersection, a move, etc.) is stored and controlled. When the life and death judgment processing system carries out the processing of life and death judgment, it obtains appropriately the board data, etc. from the playing system to use it in the processing of life and death judgment.

[0178] Input reception unit 20 receives the data required for making the life and death judgment such as a request for the execution of the life and death judgment, data on a move, the data on one's turn to move, the data on judgment object stones and target stones, etc. from player terminals 3. Moreover, output processing unit 22 transmits the processing result obtained by life and death judgment processing unit 21, the data to be displayed on player terminals 3, etc. to player terminals 3.

[0179] When input reception unit 20 receives a request for executing the processing of life and death judgment from layer terminal 3, life and death judgment processing unit 21 acquires the board data from the playing system, and carries out the processing of the life and death judgment in accordance with the data of the board or the board after being edited by the players. At this time, by receiving from player terminals 3 the data to designate a realm in which the life and death judgment processing is performed rather than the data on the entire board, it may acquire the data of the board on said realm to carry out the processing of life and death judgment. Additionally, input reception unit 20 receives other data such as one's turn, the data required for processing the life and death judgment on judgment object stones, target stones, etc. from player terminals 3 and uses them to execute the processing.

[0180] Basically, as in the past, the life and death judgment processing on stones is carried out by placing round robin stones at points where no stone is placed and making judgment on another on them in all patterns; in this way, the processing becomes time consuming. Therefore, life and death judgment processing unit 21 optionally executes one or more processes described later before said round robin processing to achieve the acceleration of the round robin processing. Note that the processing of life and death judgment by life and death judgment processing unit 21 can use the life and death judgment processing program similar to that of the conventional one. Also note that each working example below demonstrates the case in which the life and death judgment is made in a round robin manner; however, the method used in other conventional life and death judgment processing programs can also be used. Furthermore, the round robin based life and death judgment processing may be the one used in the conventional life and death judgment processing program, and it is not always necessary for all vacant points in the judgment realm to undergo the round robin processing. For instance, a method in which, in vacant points in the judgment realm, the processing on part of vacant points is omitted may also be used. For example, there is a method of omitting the processing in which, when multiple moves of the equal value exist, only one move is made. In
other words, life and death judgment execution unit 214 may optionally adopt any method, as long as it can execute the processing of the life and death judgment on the judgment object stones or target stones in the judgment realm. Moreover, the processing of life and death judgment in this specification is the one that utilizes a round robin (or a round robin with the efficiency enhanced processing in which a part of vacant points remain unprocessed); however, the life and death judgment processing can adopt not only a round robin based life and death judgment processing but also any method of processing, as long as the life and death can be determined.

[0181] Note that the computer program described in each of the above-mentioned non-patent documents is an example of conventional life and death judgment processing program, and can be used as needed; however, the present invention is not limited to this.

[0182] Also note that the terms used for describing each working examples described later is described herein. The judgment object stones are the stones that should give a conclusion of life or death and include all stones of one color in the judgment realm. If at least one stone is alive, the life and death judgment results in life; when all stones are captured, the life and death judgment results in death. Additionally, the target stones are part or all of the judgment object stones, and the stones that should give a conclusion of life or death. However, if the target stones are designated and all target stones are alive, the life and death judgment results in life; if at least one target stone is captured, the life and death judgment results in death. Note that players may or may not designate target stones.

[0183] The judgment realm is the area in which a move of a stone can be made upon judgment. A group means a group of adjacent stones (stones positioned vertically and horizontally) of the same color that are connected. The outside means the area in which a move cannot be made upon judgment. A group of stones in this realm is considered to be alive, and one group can never be included in both the judgment realm and the outside.

Working Example 1

[0184] Working example 1 of the high speed processing by the above-mentioned life and death judgment processing unit 21a is described herein. An example of the processing function of life and death judgment processing unit 21a of this working example is shown in a conceptual diagram in FIG. 4. When life and death judgment processing unit 21a of this working example performs the round robin life and death judgment processing, it changes the priority of processing at each point so that a round robin is run from the points with a high possibility of giving the life and death judgment result, and then, the round robin life and death judgment processing is carried out according to the priority.

[0185] The life and death judgment processing unit 21a of this working example comprises initial judgment processing unit 210, first judgment processing unit 211, second judgment processing unit 212, priority change-processing unit 213, life and death judgment execution unit 214, and priority memory unit 215.

[0186] Initial judgment processing unit 210 determines whether the high speed judgment of this working example is possible. In other words, it determines whether the judgment can be made by using part or all of the original judgment object stones in the judgment realm as the outside, and the stone having a color different from that of the original judgment object stone, which is on the inner side from the outside, as the inside. If it is determined that such judgment can be made, stones of a different color which are adjacent to the original judgment object stones are set as target stones.

[0187] If initial judgment processing unit 210 determines that the high speed judgment can be made, first judgment processing unit 211 carries out the processing of life and death judgment by using the stone having a color different from that of the judgment object stone in the judgment realm as the inside, the original judgment object stone as the outside, and the opponent’s stone which is adjacent to the original judgment object stones as the target stone. Note that, regarding target stones, the life and death judgment can be made by using part of the opponent’s stones which are adjacent to the original judgment object stones, or part or all of the opponent’s stones that are in the judgment realm as target stones.

[0188] If no point of a move is determined to be alive (winning) at first judgment processing unit 211, second judgment processing unit 212 carries out the life and death judgment by using the judgment object stone of a color different from that of the judgment object stone in the judgment realm as the inside, and the original judgment object stone as the outside.

[0189] Furthermore, if first judgment processing unit 211 carries out the life and death judgment by using all of the opponent’s stones adjacent to the original judgment object stone as target stones and gives no point of a move being alive (winning), another round of the life and death judgment may be carried out by using part of the opponent’s stones adjacent to the original judgment object stone as target stones, or part or all of the opponent’s stones in the judgment realm as target stones. If no point of a move is determined to be alive (winning) in this life and death judgment processing as well, there can be another configuration in which the processing of the life and death judgment is performed by second judgment processing unit 212.

[0190] If there is a living point of a move at first judgment processing unit 211 and second judgment processing unit 212, priority change-processing unit 213 promotes on that point of a move the priority of each point of a move stored in the priority memory unit 215 described later. Moreover, the priority stored in priority memory unit 215 is denoted for the priority other than the point of a move if there is a living point of a move at first judgment processing unit 211, the points other than the point of a move if there is a living point of move at second judgment processing unit 212, or the points in the judgment realm if there is no living point of move at second processing unit 212.

[0191] Life and death judgment execution unit 214 executes the processing of the life and death judgment on the vacant points in each of the judgment realms according to the condition set in first judgment processing unit 211 and second judgment processing unit 212. The processing of life and death judgment can use the life and death judgment processing program similar to that of the conventional one. Note that each working example below demonstrates the case in which the life and death judgment is made in a round robin manner; however, the method used in other conventional life and death judgment processing programs can also be used. Furthermore, the round robin based life and death judgment processing may be the one used in the conventional life and death judgment processing program, and it is not always necessary for all vacant points in the judgment realm to undergo the
round robin processing. For instance, a method in which, in
vacant points in the judgment realm, the processing on part of
vacant points is omitted may also be used. For example, there
is a method of omitting the processing in which, when multi-
ple moves of the equal value exist, only one move is made.
In other words, life and death judgment execution unit 214
may optionally adopt any method, as long as it can execute
the processing of the life and death judgment on the judgment
object stones or target stones in the judgment realm.
[0192] Priority memory unit 215 stores the priority of pro-
cessing each point of a move.
[0193] An example of the processing of the life and death
judgment processing of this working example is described
herein with reference to the flow chart shown in FIG. 5.
[0194] Players are playing a Go game using player termi-
nals 3 via a network. In this situation, the processing of the Go
game takes place at server 2 which actualizes the playing
system. In the middle of the game, or after the game is over, if
any player presses a given button, etc., displayed on the screen,
an execution request for the life and death judgment process-
ing is transmitted from player terminal 3 to server 2 which
carries out the life and death judgment processing. An
example of the game screen is shown in FIG. 6.
[0195] In the case of the game screen shown in FIG. 6, by
pressing a request button on the screen such as the “Life and
Death Navi” button, etc. for the processing of the life and
death judgment, a request for carrying out the life and death
judgment processing is transmitted from player terminal 3 to
server 2.
[0196] As the request is received by input reception unit 20
of server 2, said board data (e.g. game history data) is
acquired by life and death processing unit 21a from storage
device 11 of the play system. Then, the life and death judg-
ment processing screen containing the board data to player
terminals 3 is transmitted by output processing unit 22 to
player terminals 3. An example of the play screen depicting
this situation is shown in FIG. 7. Note that, in addition to the
board data of the live game, the history data of the past game
stored in a given storage device 11, or the history data of the
game being watched may be acquired by life and death judg-
ment processing unit 21a from storage device 11 of the play
system, and the game history data may be included in the
screen of FIG. 7 and transmitted to player terminals 3.
[0197] Players who carries out the life and death judgment
processing edits the board on the screen showing the life
and death judgment processing of FIG. 7. For instance, players
remove or place a stone by designating the stone being dis-
played. Moreover, players designate the judgment realm by
dragging input device 13 such as a mouse. In this way, players
who want to carry out the life and death judgment processing
edit the board data properly. In this mode, the data on the
stones to be edited, tebun, etc. are properly transmitted from
player terminals 3 to server 2.
[0198] Upon designation of the judgment realm by the
players described above, the stones in the judgment realm that
should give a conclusion are designated as the judgment
object stones. Note that, in the judgment object stones, if
players want to further designate specific stones as the stones
that should give a conclusion (target stones), the specific stones
can be designated as target stones. If at least one stone is
alive, the life and death judgment gives the living result;
when all stones are captured, the life and death judgment
gives the dying result. Note that the designation of target
stones is not essential, and whether target stones are desig-
nated does not make any difference in processing but changes
the baseline of the life or death judgment. Therefore, the
working example below describes the case in which players
do not designate the target stone unless noted otherwise.
[0199] An example of the screen showing the life and death
judgment processing after the edition is shown in FIG. 8. Note
that, in FIG. 8, it is assumed that 13 black stones are the
judgment object stones, and white has the tebun. In Go, the
“tebun” shows not only the color of the stone that makes the
next move but also the fact that the winning or losing (alive or
death) judgment viewed from the tebun is made. Therefore, in
this case, it means that a white stone will make a move next,
and the life or death of 11 black stones will be determined
from the white stone’s view.
[0200] For instance, by pressing the “judgment processing”
on the screen of FIG. 8, the board data after the editing (game
history data, judgment object stone data, etc.), the tebun data,
and a request to start the life and death judgment processing
are transmitted from player terminals 3 to server 2. If the
board data after the editing, the tebun data, and a request to
start the life and death judgment processing are received by
input reception unit 20 of server 2, life and death processing
unit 21a begins to process the life and death judgment upon
reception of the input, namely the board data after the editing.
[0201] The processing of the life and death judgment
begins with the tentative optional setting of the priority of
processing each point (vacant intersection, i.e., vacant point) by
life and death judgment processing unit 21a (S100). The
priority of each tentatively set point here is stored in priority
memory unit 215. The priority of processing each point may
be set by using any method. This priority is the one which
designates the first point to be processed: the priority may be
set by ranking or it may be set in such a way that a point is
added to each vacant point, and the point is processed in
descending order (or ascending order). Note that the priority
of each point is set in the same manner as the past
[0202] Next, initial judgment processing unit 210 of life
and death judgment processing unit 21a determines whether
the high speed judgment of this working example is possible
based on the board data (after the board data is edited) (S110).
In other words, it determines whether the judgment can be
made by using the original judgment object stones in the
judgment realm as the outside, and the stone having a color
different from that of the original judgment object stones,
which is on the inner side from the outside, as the inside. If it
is determined that such judgment can be made, initial judg-
ment processing unit 210 sets stones which are adjacent to the
original judgment object stones as target stones.
[0203] In other words, the board data is in the state of FIG.
8, in which 13 black stones are the original judgment object
stones; therefore, initial judgment processing unit 210 design-
ates the white stones in the judgment realm as the inside,
the black judgment object stones as the outside, and the star
marked white stones as the target stones (the board in this
state is schematically shown in FIG. 9). In the case of FIG. 8,
the black judgment object stones include white stones on the
inside; therefore, it is determined that the high speed judg-
ment of this working example is possible (S120).
[0204] Note that, in the judgment processing of S110, if the
high speed judgment cannot be made due to the absence of the
opponent’s stone in the area of the original judgment object
stones, etc., the processing of this working example is termi-
nated, and the processing of the round robin based life and
death judgment begins as in the past (S130).
Moreover, in the judgment processing of S110, if initial judgment processing unit 210 determines that the high speed judgment is possible as described above, first judgment processing unit 211 performs the processing of life and death judgment on the present teban (i.e. white is the teban here) using the inside of judgment object stones as the judgment realm. This life and death judgment processing applies a round robin only to the judgment realm set in S110 (S140). In other words, as shown in FIG. 10, the judgment on white’s teban begins by regarding the 8 white stones as judgment object stones and target stones. Accordingly, since the points marked with white squares in FIG. 10 are vacant points in the judgment realm, life and death judgment execution unit 214 begins the processing of the round robin based life and death judgment. Note that the round robin life and death judgment processing itself is the same as the conventional one.

By doing so, the situation shown in FIG. 10 can be determined that the white is alive (the white wins) as shown in FIG. 11, and first judgment processing unit 211 determines that the points of a move are the two points marked as A.

As first judgment processing unit 211 determines that the teban stones are alive (winning) (there are points that become alive) (S150), for these points of a move, priority change-processing unit 213 promotes the priority of said points from the tentative priority set in S100 and stored in priority memory unit 215, and demotes the priority of other points (points other than those marked as A in the judgment realm of first judgment processing unit 211) (S160). For instance, it changes the priority ranking of points A determined as the points of a move to the highest (i.e. 1 and 2), moves down the order sequentially, and demotes the priority ranking of the points other than points A in the judgment realm of first judgment processing unit 211. Alternatively, it promotes the priority of points A only by a given ranking (i.e. 10), and demotes the priority of the points other than A in the judgment realm of first judgment processing unit 211 by a given ranking. Furthermore, when priorities are controlled by means of points, given points are added to points A while given points are subtracted from the points other than A in the judgment realm in first judgment processing unit 211. Note that the processing of changing priority is not limited to the above; any processing may be adopted as long as at least the priority order of move is promoted.

By promoting the priority of the point determined to be a point of a move at first judgment processing unit 211 by priority change-processing unit 213, the processing of said point (point A determined to be a point of a move) can be accelerated.

Additionally, in S140, if first judgment processing unit 211 cannot determine that the teban stone is alive (winning) (no point is alive), at second judgment processing unit 212, life and death judgment execution unit 214 begins the round robin based life and death judgment processing in the same manner as S140 without designating the target stones which were designated in S140 (S170).

In other words, in S140, first judgment processing unit 211 makes a judgment by designating all stones that are adjacent to the original judgment object stone as target stones; however, second judgment processing unit 212 does not designate target stones but carries out the round robin based life and death judgment processing in the same manner as S140.

Therefore, in the case of FIG. 10, in S140, the judgment on the teban of white begins by using 8 white stones as the judgment object stones and target stones; however, in S170, the judgment on the teban of white begins by using 8 white stones as the judgment object stones. In this case also, the vacant points that become the object of a round robin remain the same as those of S140.

If second judgment processing unit 212 makes the alive (winning) judgment on the teban stones (there is a point being alive) (S180), for that point of a move, priority change-processing unit 213 promotes the priority of said point from the tentative priority set in S100 and stored in priority memory unit 215, and demotes the priority of other points (S190). Moreover, if second judgment processing unit 212 is unable to determine that a teban stone is alive (winning) (no point is alive), priority change-processing unit 213 demotes the priority of each point in said judgment realm (S200).

By doing the above, a judgment on whether the teban stone is alive is made regarding the stones of the color which are different from that of the original judgment object stones inside the judgment realm as the inside, and the original judgment object stones as the outside; therefore, in light of the judgment result, if there are living points, the priority of said point of a move set tentatively in S100 can be promoted while the priority of other points can be demoted.

After performing the above processing, life and death judgment processing unit 21a carries out the round robin based life and death judgment processing according to the priority of each point changed by first judgment processing unit 211 or second judgment processing unit 212 to be stored in priority memory unit 215.

The points of move (i.e., point A in FIG. 11) determined to be alive by first judgment processing unit 211 or second judgment processing unit 212 are processed sooner than other vacant points even in the round robin-based life and death judgment. These points of move are likely to influence the life and death judgment on the original judgment object stones (the points with a high possibility to give a life or death judgment); therefore, the prioritized processing of these points can increase the possibility of obtaining the result of the judgment on the original judgment object stones quickly.

In other words, in a round robin that is simply introduced, a round robin is carried out according to the priority tentatively set for every point in S100, therefore, players do not know when to expect a result. However, by carrying out the processing at life and death processing unit 21a of this working example, points with a high possibility to give a life or death result are processed sooner, hence the possibility of accelerating the turnaround time of the life or death result is high.

In contrast, priority change-processing unit 213 has already demoted the priority of the points other than the point of a move if first judgment processing unit 211 determines the presence of a living point, the points other than the point of move if second judgment processing unit 212 determines the presence of a living point, or each point in the judgment realm if second judgment processing unit 212 determines the absence of an alive point; therefore, these points are processed after the points with the tentatively set priority are processed. These points are unlikely to influence the life and death judgment on the original judgment object stones (points with the low possibility to give an alive or death judgment); therefore, the demotion of priority can increase the possibility of accelerating the turnaround time of the life or death result of the original judgment object stones.

As life and death judgment processing unit 21a determines the result of the processing the life or death judg-
ment in the manner described above, the processing result is transmitted by output processing unit 22 to player terminals 3. An example of the screen showing the result of the life and death judgment displayed on player terminals 3 is shown in FIG. 12. Players can know the life or death result by looking at the screen like this.

[0218] Next, details of each processing described above is described herein with reference to FIGS. 13 to 17. Note that the data formats and terms used in the description of each working example below are described herein.

[0219] Board data is expressed as Board [x][y] (when 1 ≤ x ≤ 19, 1 ≤ y ≤ 19). If each point on the board is a vacant point, 0 is assigned; if there is a black stone, 1, and if there is a white stone, 2 are assigned.

[0220] The teban is expressed as “tn”. Note that tn ‘3 becomes the color of the opponent’s stone; however, “” expresses the bit computation.

[0221] The judgment object stone is expressed as H [x][y]. Assigned to the judgment object stone is 1, and assigned to the stone that is also a target stone is 2.

[0222] The priority ranking of a point of a move is expressed as Order [i] (when 0 ≤ i ≤ 361), and Order [i] is the y-coordinate of point i) and Order [j] is the x-coordinate of point i. Additionally, Order [i] is a variable (the priority ranking of point i of a move).

[0223] The judgment realm is expressed as Area [x][y] (when 1 ≤ x ≤ 19, 1 ≤ y ≤ 19). Assigned to the point which is the judgment realm is 1, and to the point not in the judgment realm is 0.

[0224] Grouping is the process in which a group of points that are in the same color from the same point and vertically or horizontally adjacent are substituted in an array.

[0225] Point E means a group of points on the vertical or horizontal axis that are adjacent to that stone (with a distance of 1). As shown in FIG. 18, Points E are the points marked as E facing one black stone. Points E in multiple groups of stones are obtained by subtracting the points at which the groups of stones exist from the union of points E of all stones constituting the groups. An example of this is shown in FIG. 19.

[0226] Point O means a group of points adjacent to that stone diagonally (distanced by 1). As shown in FIG. 20, points O are the points marked as O facing one black stone. Points O in a group of stones are obtained by subtracting the points at which the groups of stones exist and the points included in the points E of the groups of stones from the union of points O of all stones constituting the groups. An example of this is shown in FIG. 21.

[0227] Vacant point E means, in points E of the groups of stones, a group of points where no stone is placed. An example of this is shown in FIG. 22.

[0228] First, life and death judgment processing unit 21a reads out the board data and stores in Board [x][y] whether the point is a vacant point, a black stone is placed, or a white stone is placed. Additionally, it stores in the judgment realm Area [x][y] whether the point is the judgment realm. Besides the above, the judgment object stone H[x][y], the judgment realm Area [x][y], and the teban tn, etc. are also set appropriately. Moreover, a round robin begins with the tentative and optional setting of the priority of the processing the vacant point (Board [x][y]=0) (S300). In other words, it tentatively sets the priority in each Order[i]. The priority set for each point here is stored in priority memory unit 215. Note that any method similar to the one mentioned above may be used to process the priority.

[0229] Next, initial judgment processing unit 210 of life and death judgment processing unit 21a executes the processing of the initial judgment (process A) (S310).

[0230] Specifically, first, the process sequence of S3100 to S3120 is repeated for x, y of each point which satisfies the following condition: Area [x][y]=1, Board [x][y]=1,3. In other words, a judgment realm is created by using Board [x][y] as the judgment object (S3100), and whether all stones constituting the outside in the judgment realm set in S3100 are included in the judgment object stones of the original judgment is determined (S3110). If not included, the processing shifts to the next point (x, y). If included, whether a judgment can be given using the realm set in S3100 is determined (S3120), and if it is determined otherwise, the processing shifts to the next point (x, y). If a judgment can be given, the loop is interrupted at that point, and the processing shifts to the one by first judgment processing unit 211. In the case in which Process B is never reached but the loop is terminated, the high speed judgment processing of Working Example 1 cannot be adopted; therefore, the round robin life and death judgment processing based on the tentative priority (the priority set by the use of Order[i]) set in S300 begins.

[0231] As described above, after the initial judgment processing (Process A) is carried out by initial judgment processing unit 210, the first judgment processing (Process B) is processed by first judgment processing unit 211 (S320). Note that the original judgment realm is expressed as the array Area [x][y], the judgment object stone as the array H [x][y], the judgment realm of the inside as the array Area'[x][y], and the judgment object stones as the array H'[x][y]. Thus, each value is substituted into each of the arrays Area'[x][y] and H'[x][y] respectively.

[0232] Specifically, first, in the judgment object realm, the processing of S3200 and S3230 are iterated on each point (each of the judgment object point) (x, y) which satisfies the condition expressed by array H'[x][y]=1. Initially, the above points (x, y) (the points that satisfy the condition expressed as H'[x][y]=1) are grouped (a group of points in the same color that are connected on the vertical or horizontal path are substituted in the array from each point (x, y) and substituted in array G [x][y]|S3200). Then, points E of array G [x][y] are obtained and substituted in array E [x][y]|S3210.

[0233] Then, whether the point (a, b) satisfies array E [a][b] and Area'[a][b]=0 (1 ≤ a, b ≤ 19) is determined (S3220). In other words, whether it is point E, and there is a point outside the judgment realm is determined. If not, process B is terminated at that point.

[0234] If the above point exists in S3220, at the point (c, d) that satisfies G |e|d|=1, H'[c][d]=2 (1 ≤ c, d ≤ 19) is set (S3230). In other words, the stones at the points are set as the target stones.

[0235] After the above processing is carried out at each of the points which satisfy H'[x][y]=1, life and death judgment executing unit 214 carries out the round robin life and death judgment processing at each of the points in the judgment realm Area'[x][y], and living (winning) points of a move are substituted in array R [x][y]|S3240. If there is no living (winning) point of a move, no substitution occurs in array R [x][y]. Note that, assigned to points of a move is 1 in array R [x][y], and assigned to the points other than points of a move is 0.

[0236] As described above, after the first judgment processing (Process B) is carried out by first judgment processing unit 211, whether a point of a move being alive is found in
Process B is determined (S330). If there is a point of move being alive in Process B (if there is a point of a move substituted into array R[x][y]), Process D is carried out by priority change-processing unit 213 described later (S350).

[0237] By carrying out the above processing, the processes corresponding to S110 through S150 shown in FIG. 5 can be executed.

[0238] Moreover, if there is no point of a move being alive in Process B (if there is no point of a move substituted into array R[x][y]) in S330, the second judgment processing (Process C) is carried out by second judgment processing unit 212 (S340).

[0239] Specifically, first, in the judgment object realm, \(P(x,y) = 1 \) is set on each point (target point) \((x, y)\) that satisfies the condition expressed by \(P(x,y) = 2 \) (S3400). That is, the stones to become target points are set as the judgment object stones.

[0240] Then, the processing of the round robin life and death judgment is carried out by life and death judgment execution unit 214 on each point in the judgment object realm area \([x,y]\), and a living (winning) point of a move is substituted into array \(R(x,y) \) (S3410). If no point of a move is alive (winning), no substitution occurs in array \(R(x,y) \).

[0241] As described above, by carrying out the second judgment processing (Process C) at second judgment processing unit 212, the corresponding processing sequence of S170 through S180 as shown in FIG. 5 can be executed. Additionally, after the second judgment processing is carried out at second judgment processing unit 212, or if the presence of a living point is determined in Process B in S330, the priority change-processing (Process D) is executed by priority change-processing unit 213 (S350).

[0242] First, in array Order [i][0:361] showing the priority of a point of a move, the maximum value of Order [i] \(v \) (parameter) is substituted in m (S3500).

[0243] Then, the processes from S3510 through S3540 are repeated from \(i = 0 \), to \(i = 361 \).

[0244] First, if \(P(x,y) = 1 \) Order [i][x][y] is 1 or greater (S3510), whether the point x, y is a point of a move, namely \(R(x,y) = 1 \), is determined (S3520). If it is a point of a move \(R(x,y) = 1 \), Order [i][x][y] is increased only by \(m + 1 \) (S3530). If it is not a point of a move \(R(x,y) = 1 \), Order [i][x][y] is decreased only by \(m + 1 \) (S3540). In other words, for a point of a move, the priority is increased only by a predetermined amount \(m + 1 \); for points other than a point of a move, the priority is decreased only by a predetermined amount \(m + 1 \).

[0245] After all \(i \) undergoes the above processing, Order [i] is sorted in descending order of the element \(v \) (S3550). By doing so, the priority of a point of a move is promoted and the priority of other points is demoted.

[0246] As the processing is carried out by priority change-processing unit 213 in this way, array Order [i] is stored in priority memory unit 215. By executing the above processing, the processes according to S160 and S190 through S200 of FIG. 5 can be executed. Then, at this stage, life and death judgment processing unit 214 carries out the round robin based life and death judgment processing based on the stored priority, thereby processes the point with a high priority, namely, a point of a move sooner. Since a point of a move tends to give a result of the life and death judgment easily, the result of the life and death judgment can be outputted quickly.

[0247] If the result of the life and death judgment is outputted during the processing of the round robin judgment by life and death judgment execution unit 214, output processing unit 22 transmits the process result to player terminals 3. Players can know the life or death result by looking at the screen like this.

[0248] As in this working example, by determining whether the opponent's stones that are in the inside of the judgment realm are alive and setting the priority of a point of a move in a round robin before the round robin based life and death judgment is simply carried out, the life and death judgment processing of the judgment object stones can be achieved at a high speed.

Working Example 2

[0249] Next, Working example 2 in which the high speed processing is carried out by the above-mentioned life and death judgment processing unit 216 is described herein. An example of the processing function of life and death judgment processing unit 216 of this working example is shown in a conceptual diagram in FIG. 23. When life and death judgment processing unit 216 of this working example performs the round robin life and death judgment processing, it changes the priority of processing at each point so that a round robin is run after the number of process object points is reduced, and then, the round robin life and death judgment processing is carried out.

[0250] The life and death judgment processing unit 216 of this working example comprises first outside processing unit 216 and second outside processing unit 217, and life and death judgment execution unit 218.

[0251] First outside processing unit 216 extracts, in the original judgment realm, the closed realm including the judgment object stones, and places a stone having a color different from that of said judgment object stone at a point which satisfies a given condition outside the closed realm, and regards said newly placed stone as the outside. Hence, the number of the object points processed in a round robin is reduced.

[0252] Second outside processing unit 217 reduces the number of points that become the objects of a round robin processing by extracting vacant points E of the outside in the judgment realm, placing a stone of a color which is different from that of the judgment object stone at a point E where two or more stones of the outside are included without including any judgment object stone, and regarding the newly placed stone as the outside.

[0253] Note that, in this specification, the outside is a point at part or the entire area of the non-judgment realm. Preferably, it is a point not in the judgment realm while the judgment realm includes point E or O.

[0254] Life and death judgment execution unit 218 carries out the processing of life and death judgment on the vacant point in the original judgment realm after the board is processed by first outside processing unit 216 and second outside processing unit 217. The processing of life and death judgment can use the life and death judgment processing program similar to that of the conventional one. Note that each working example below demonstrates the case in which the life and death judgment is made in a round robin manner; however, the method used in other conventional life and death judgment processing programs can also be used. Furthermore, the round robin based life and death judgment processing may be the one used in the conventional life and death judgment processing program, and it is not always necessary for all vacant points in the judgment realm to undergo the
round robin processing. For instance, a method in which, in
evакant points in the judgment realm, the processing on part of
vacant points is omitted may also be used. For example, there is
a method of omitting the processing in which, when mul-
tiple moves of the equal value exist, only one move is made.
In other words, life and death judgment execution unit 218
may optionally adopt any method, as long as it can execute the
processing of the life and death judgment on the judgment
object stones or target stones in the judgment realm.
0255] Note that if outside processing unit 216 and second
outside processing unit 217 may carry out two processes
or one of the two processes. Moreover, the processing by first
outside processing unit 216 and second outside processing
unit 217 is one of the examples, and for instance, another
method in which a stone having a color different from that of
the judgment object stone is newly placed by using the out-
side as a baseline, may also be used, as long as the number of
object points processed in a round robin can be reduced.
0256] An example of the processing of the life and death
judgment processing of this working example is described
herein with reference to the flow chart shown in FIG. 24.
0257] Players are playing a Go game using player termi-
nals 3 via a network. In this situation, the processing of the Go
game takes place at server 2 which actualizes the play-
ning system. In the middle of the game or after the game is over, if
any player presses a given button, etc. displayed on the screen,
an execution request for the life and death judgment process-
ing is transmitted from player terminal 3 to server 2 which
carries out the life and death judgment processing. An exam-
ple of the flow chart is shown in FIG. 25.
0258] In the case of the game screen shown in FIG. 25, by
pressing a request button in the screen such as the “Life and
Death Navi” button, etc. for the processing of the life and
death judgment, a request for carrying out the life and death
judgment processing is transmitted from player terminal 3 to
server 2.
0259] As the request is received by input reception unit 20
of server 2, said board data (e.g. game history data) is
acquired by life and death processing unit 21b from storage
device 11 of the play system. Then, the life and death judg-
ment processing screen containing the board data to player
terminals 3 is transmitted by output processing unit 22 to
player terminals 3. An example of the play screen depicting
this situation is shown in FIG. 26. Note that, in addition to
the board data of the live game, the history data of the past game
stored in a given storage device 11, or the history data of the
game being watched may be acquired by life and death judg-
ment processing unit 21b from storage device 11 of the play
system, and the game history data may be included in the
screen of FIG. 26 and transmitted to player terminals 3.
0260] Players who carries out the life and death judgment
processing edits the board on the screen showing the life and
death judgment processing of FIG. 26. For instance, players
remove or place a stone by designating the stone being
displayed. Moreover, players designate the judgment realm by
dragging input device 13 such as a mouse. In this way, players
who want to carry out the life and death judgment processing
edit the board data properly. In this mode, the data on the
stones to be edited, teban, etc. are properly transmitted from
player terminals 3 to server 2.
0261] Upon designation of the judgment realm by the
players described above, the stones in the judgment realm that
should give a conclusion are designated as the judgment
object stones. Note that, in the judgment object stones, if
players want to further designate specific stones as the stones
that should give a conclusion (target stones), the specific
stones can be designated as the target stones. If at least one
stone is alive, the life and death judgment results in life; when
all stones are captured, the life and death judgment results in
death. Note that the designation of target stones is not essen-
tial, and whether the target stones are designated does not
make any difference in processing but changes the baseline of
the life or death judgment. Therefore, the working example
below describes the case in which players do not designate the
target stone unless noted otherwise; however, if target stones
are designated, the process can be achieved by appropriately
interpreting the description “judgment object stone” as the
“target stones”.
0262] An example of the screen showing the life and death
judgment processing after the edition is shown in FIG. 27.
Note that, in FIG. 27, it is assumed that 8 black stones are the
judgment object stones, and black has the teban. Therefore, in
this case, it means that a black stone will make a move next,
and the life or death of 8 black stones will be determined from
the black stone’s view.
0263] For instance, by pressing the “judgment processing”
on the screen of FIG. 27, the board data (game history data,
judgment object stone data, etc.) after the editing, the teban
data, and a request to start the life and death judgment pro-
cessing are transmitted from player terminals 3 to server 2. If
the board data after the editing, the teban data, and a request
to start the life and death judgment processing are received by
input reception unit 20 of server 2, life and death processing
unit 21b begins to process the life and death judgment based on
the received board data inputted after the editing.
0264] First of all, when first outside processing unit 216 of
life and death judgment processing unit 21b begins the round
robin processing, it extracts the game history of the board data
and a group of stones constituting the closed realm including
the judgment object stone (S400). Note that the closed realm
means the area closed by one’s stones alone or by one’s stones
and the outside regardless of the opponent’s stones.
0265] By doing so, in the case of FIG. 27, two groups of the
stones constituting the closed realm can be extracted as
shown in FIG. 28. In FIG. 28(a), the closed realm is defined
only by the black judgment object stones; in FIG. 28(b), the
closed realm is defined by the black judgment object stones
and the edge of the board.
0266] If no closed realm is found in S400 (S410), the
processing by first outside processing unit 216 is terminated,
and the processing at second outside processing unit 217 is
carried out. In other words, the processing goes to S470. On
the other hand, if there are closed realms (S410), in each of
the closed realms, points outside the closed realm, which is nei-
ther the vacant point E of the group of the stones constituting
the closed realm nor the 0 vacant point of No. 1 line, are
extracted (S420). The processing of S420 is carried out on
FIG. 28 to result in FIG. 29. The black squares in FIG. 29
represent the points extracted in S420.
0267] If S420 is carried out for each of the closed realm
extracted in S400 (S430), and if points defined in S420 are
extracted from all of the closed realms, the points common to
all of the closed realms are extracted (S440). In other words,
extracted are the points being the product of the points
extracted from each of the closed realm in S420. This is
schematically depicted in FIG. 30.
0268] Then, among the points extracted in S440, a stone of
a color which is different from that of the judgment object
stone (a white stone in this situation) is placed at the points left after the judgment object stones and vacant points E are excluded (S450). This is schematically depicted in FIG. 31. Note that the stars in FIG. 31 represent the newly placed opponent’s stones. Also note that the opponent’s stones are placed at all of the remaining points; however, they may be placed on part of points, not all of the points.

[0269] In the opponent’s stones that are newly placed in S450, the stones that are not connected to the outside are removed. Then, the opponent’s stones placed newly other than the removed stones are regarded as the outside (S460). This is schematically shown in FIGS. 32 and 33.

[0270] First outside processing unit 216 carries out the processing in the manner described above. After the processing by first outside processing unit 216 is terminated, or first outside processing unit 216 determines that there is no closed realm in S400, the processing by second outside processing unit 217 is carried out.

[0271] In other words, second outside processing unit 217 extracts the outside-E-vacant points in the judgment realm (S470). This is schematically shown in FIG. 34. The black squares in FIG. 34 represent the points extracted in S470.

[0272] Then, in each of the E points extracted in S470, whether there is a point where two or more stones of the outside are included without including any judgment object stone is determined. Additionally, if there is such a point, the opponent’s judgment object stone (white stone) is placed at the point, and the point is regarded as the outside (S480). This is schematically shown in FIG. 35.

[0273] If one or more stones are placed in S480, the process sequence of S470 to S480 is carried out again (S490). If no stone is placed, the processing of second outside processing unit 217 is terminated at that point (S490). In the case of FIG. 35, the condition of S480 is not satisfied; therefore, no new stone is placed.

[0274] After the processing by second outside processing unit 217 is terminated in the manner described above, life and death judgment execution unit 218 carries out the round robin processing on the data after the processing of S490 is provided to the board. In the example described above, the processing of the round robin life and death judgment on each point of FIG. 36 is carried out by life and death judgment execution unit 218 (S500).

[0275] Then, the result of the life and death judgment processing determines that one or more points are alive (winning) (S510), the final result as being alive (winning) is determined by the life and death judgment processing (S520).

[0276] On the other hand, as a result of the life and death judgment processing in S500, if no point is determined to be alive (winning) (S510), the board data is returned to the initial state (the state of FIG. 27), and life and death judgment execution unit 218 carries out the normal life and death judgment processing and determines the result as the final result.

[0277] As life and death judgment processing unit 21E determines the result of the life and death processing in a manner as described above, output processing unit 22 transmits the processing result to player terminals 3.

[0278] By carrying out the processing of a round robin in the life and death judgment processing by life and death judgment execution unit 218 after the processing of the type described in this working example is carried out, the number of object points in the judgment realm subjected to a round robin can be reduced. Accordingly, the total time required for a round robin is reduced, which renders a quick computation of the process result.

[0279] The processing on the state of the board after the editing as shown in FIG. 27 is described above; however, now, the board data after the editing is shown in FIG. 37 is assumed next. The processing of Working Example 2 in this case is described herein.

[0280] For instance, by pressing the “judgment processing” on the screen of FIG. 37, the board data (game history data, judgment object stone data, etc.) after the editing, the teban data, and a request to start the life and death judgment processing are transmitted from player terminals 3 to server 2. If the board data after the editing, the teban data, and a request to start the life and death judgment processing are received by input reception unit 20 of server 2, life and death processing unit 21B begins to process the life and death judgment based on the received board data inputted after the editing.

[0281] First of all, first outside processing unit 216 of life and death processing unit 21B begins the round robin processing by extracting the board history data and a group of stones constituting the closed realm including the judgment object stones (S400).

[0282] However, in the case of FIG. 37, a group of stones constituting the closed realm cannot be extracted. Therefore, first outside processing unit 216 terminates the processing and second outside processing unit 217 carries out the processing (S410).

[0283] Then, second outside processing unit 217 extracts the outside-E-vacant points to become the judgment realm (S470). This is schematically shown in FIG. 38. The black squares in FIG. 38 represent the points extracted in S470.

[0284] Then, in each of the points E extracted in S470, whether there is a point where two or more stones of the outside are included without including any judgment object stone is determined. Additionally, if there is such a point, the opponent’s judgment object stone (white stone) is placed at the point, and the point is regarded as the outside (S480). This is schematically shown in FIG. 39. Furthermore, when the processing of S480 is carried out, the opponent’s stones are newly placed in the manner as shown in FIG. 40. Note that, in FIG. 40, the stars represent the opponent’s newly placed stones. Also note that, in this case, the opponent’s stones are placed at all of the determined points; however, they may be placed only at some points, not all of the points.

[0285] As the opponent’s stones are newly placed in S480 (S490), second outside processing unit 217 extracts outside-E-vacant points which are to become the judgment realm (S470). (Note that, in this working example, the iteration processing is carried out when the opponent’s stone is newly placed; however, the iteration processing may not be carried out.) This is schematically shown in FIG. 41. The black squares in FIG. 41 represent the points extracted in S470.

[0286] Then, in each of the points E extracted in S470, whether there is a point where two or more stones of the outside are included without including any judgment object stones is determined. Additionally, if there is such a point, the opponent’s judgment object stone (white stone) is placed at the point, and the point is regarded as the outside (S480). This is schematically shown in FIG. 42. Furthermore, the execution of the processing of S480 causes the opponent’s stones to be newly placed as shown in FIG. 43. Note that, in FIG. 43, the stars represent the newly placed stones of the opponent.
[0287] Since the opponent’s stones are newly placed in S480 (S490), second outside processing unit 217 extracts the outside-E-vacant points in the judgment realm (S470). This is schematically shown in FIG. 44. The black squares in FIG. 44 represent the points extracted in S470.

[0288] Then, in each of the E points extracted in S470, whether there is a point where two or more stones of the outside are included without including any judgment object stone is determined. Additionally, if there is such a point, the opponent’s judgment object stone (white stone) is placed at the point, and the point is regarded as the outside (S480). This is schematically shown in FIG. 45.

[0289] In the state of FIG. 45, no stone is newly placed. Therefore, the processing by second outside processing unit 217 is terminated (S490).

[0290] After the processing by second outside processing unit 217 is terminated in the manner described above, life and death judgment execution unit 218 carries out the round robin processing on the data after the processing of S490 is provided to the board. In the example described above, the processing of the round robin life and death judgment on each point of FIG. 46 is carried out by life and death judgment execution unit 218 (S500).

[0291] Then, if the life and death judgment processing determines that one or more points are alive (winning) (S510), the final judgment as being alive (winning) is given as a result of the life and death judgment processing (S520).

[0292] On the other hand, as a result of the life and death judgment processing in S500, if no point is determined to be alive (winning) (S510), the board data is returned to the initial state (the state of FIG. 27), and life and death judgment execution unit 218 carries out the usual life and death judgment processing (S530) and gives the result as the final judgment.

[0293] If life and death judgment processing unit 21b determines the result of the life and death processing in a manner as described above, output processing unit 22 transmits the processing result to player terminals 3.

[0294] Next, each of the above processing sequence is described in further detail with reference to FIGS. 47 to 53.

[0295] First, life and death judgment processing unit 21b loads the board data and stores in Board [x][y] whether the point is a vacant point, a black stone is placed, or a white stone is placed. Additionally, it stores in the judgment realm Area [x][y] whether the point is the judgment realm. Besides the above, the judgment object stone H[x][y], the judgment realm Area [x][y], and the teban tn, etc. are also set appropriately.

Then, first outside processing unit 216 at life and death judgment processing unit 21b carries out the processing (Process A) (S600).

[0296] In other words, first, R [x][y]=Area [x][y] and Q [x][y]=Area [x][y] are assigned at all of the points expressed by (x, y) (S6000). Then, F=0 as the initial value is assigned to the variable f (S6010).

[0297] Next, first outside processing unit 216 reiterates the processing of S6020 to S6080 at point (x, y) which satisfies the conditions expressed as Area [x][y]=1 and Board [x][y]=0.

[0298] First, whether Q [x][y]=1 is determined (whether it is the judgment realm is determined) (S6020); if not, the processing shifts to the next variable expressed by x, y. On the other hand, if Q [x][y]=1 (if it is the closed realm), the closed realm in which said point (x, y) is included is extracted and substituted into array C [x][y]=S6030. Then, Q [x][y]=0 is substituted (S6040).

[0299] If C [x][y]=1 (S6050), the processing shifts to the next variable x, y. On the other hand, if C [x][y]=1, Q [a][b]=0 is assigned to all points that satisfy the condition expressed as C [a][b]=0 (S6070). Then, Process A2 is carried out (S6070). Note that this processing is the one according to S420 shown in FIG. 24.

[0300] Then, Process A2 is carried out by first outside processing unit 216. In other words, points E of array C [x][y] are extracted and substituted into array E [x][y] (S6073). Additionally, the points of No. 1 line at points O in array C [x][y] are extracted and substituted into array O [x][y] (S6075). Then, if array C [c][d]=1, array E [c][d]=1, or array O [c][d]=1, R [c][d]=0 is substituted. (S6077)

[0301] As first outside processing unit 216 carries out Process A2 in the manner described above, f=1 is assigned to the variable f (S6080). First outside processing unit 216 carries out the above iteration processing at all of the points (x, y) that satisfy the conditions expressed as Area [x][y]=1 and Board [x][y]=0.

[0302] By carrying out the above processing, the corresponding process sequence of S400 to S440 shown in FIG. 24 can be executed.

[0303] After the above iteration processing is terminated, whether f=1 is determined for the variable f (S6090), and if f=1, Process A3 is carried out. If f=1, Process A is terminated, and the next processing, namely Process B is carried out by second outside processing unit 217 (S610).

[0304] In the above-mentioned S6090, if f=1, first outside processing unit 216 subsequently carries out Process A3.

[0305] In other words, R [x][y]=0 is assigned to all of the points expressed by (x, y) that satisfy the condition expressed as array H [x][y]=1 (S6100). Next, the points E that satisfy the condition expressed as array H [x][y]=1 are assigned to array E2 (S6110).

[0306] Array R [x][y]=0 is assigned to all of the points (x, y) that satisfy the condition expressed as array E2 [x][y]=1 (S6120). And array W [x][y]=0 is assigned to all of the points (x, y) (S6130). Then, Board [x][y]=1 at point 3, W [x][y]=1, and Area [x][y]=0 are assigned to all of the points (x, y) that satisfy the conditions expressed as Board [x][y]=0 and R [x][y]=1 (S6140).

[0307] By carrying out the above processing, the corresponding process sequence of S450 shown in FIG. 24 can be executed. Additionally, after the processing of S6140 is terminated, first outside processing unit 216 carries out Process A4.

[0308] First, first outside processing unit 216 groups all of the points (x, y) that satisfy the conditions expressed as Board [x][y]=1t3, Area [x][y]=0, and W [x][y]=0, and substitutes the points into array G2 [x][y]=S6150. Then, the process sequence of S6160 to S6170 are iterated at all of the points (x, y) that satisfy the condition expressed as W [x][y]=1.

[0309] First, whether array G2 [x][y]=0 is determined (S6160), and if array G2 is not 0, the processing shifts to the next point (x, y). If array G2 is 0, Area [x][y]=1 and Board [x][y]=0 are substituted (S6170). Then, the process shifts to the next point (x, y).

[0310] As the above iteration processing is carried out on all points (x, y) that satisfies the condition W [x][y]=1, Process
cess A ends. By carrying out the above processing, the corresponding process sequence of S460 shown in FIG. 24 can be executed.

[0311] If the above processing ends, or f=1 in S6090, Process B is carried out by second outside processing unit 217 (S610).

[0312] First, second outside processing unit 217 substitutes the vacant points E of the points expressed by (x, y) that satisfy the conditions expressed as Board [x][y]=tn3 and Area [x][y]=0 into array E1 [x][y]=S6200. Then, next, array E1 [x][y]=0 is assigned to the points (x, y) that satisfy the condition expressed as Area [x][y]=0 (S6210). By doing the above, the corresponding process sequence of S470 shown in FIG. 24 can be executed.

[0313] Then, next, the iteration process sequence of S6220 to S6300 is carried out on all of the points (x, y) that satisfy the condition expressed as array E1 [x][y]=1.

[0314] First, points E of the points (x, y) are substituted into array E2 [x][y]=S6220, and variable C=0 is substituted (S6230). Then, the iteration process sequence of S6240 to S6270 is carried out on point (x', y') that satisfy the condition expressed as array E2 [x'][y']=1.

[0315] First, whether array H [x'][y']=1 is determined (S6240), and if the condition is satisfied, C is updated by subtracting 4 from the variable C (S6250). That is, C=C-4 is executed. Then, if the condition as expressed as H[x][y]=1 is not satisfied, or S6250 is carried out, whether Area [x'][y']=0 is determined (S6260). If Area [x'][y']=0, C is updated by adding 1 to the variable C (S6270). That is, C=C+1 is executed. If Area [x'][y']=0 or S6270 is carried out, the same processing is carried out on the next point (x', y') which satisfies the condition expressed as array E2 [x'][y']=1.

[0316] After all of the points (x', y') that satisfy the condition expressed as array E2 [x'][y']=1 are processed, whether C=2 is determined (S6280). If C=2, whether points expressed by (x, y) is No. 1 line is determined (S6290). On the other hand, if the condition C=2 is not satisfied, array E1 [x][y]=0 is substituted (S6300). Furthermore, in S6290, if the points expressed by (x, y) constitute No. 1 line, array E1 [x][y]=0 is substituted (S6300).

[0317] If the points expressed by (x, y) do not constitute No. 1 line in S6290, or array E1 [x][y]=0 is substituted in S6300, the same processing as described above is carried out on the next point that satisfies the condition expressed as array E1 [x][y]=1.

[0318] After all of the points (x, y) that satisfy the condition expressed as array E1 [x][y]=1 undergo the processing sequence of S6220 to S6300, whether any points satisfy the condition expressed as array E1 [x][y]=1 is determined (S6310). If no point satisfies array E1 [x][y]=1, the processing by second outside processing unit 217 is terminated, and the round robin life and death judgment processing is carried out on the current state of the board by life and death judgment execution unit 218 (S620).

[0319] On the other hand, if any points satisfy the condition expressed as array E1 [x][y]=1, Board [x][y]=tn3 and Area [x][y]=0 are assigned to the points that satisfy E1 [x][y]=1 (S6320). And the processing sequence returns to Process B, and second outside processing unit 217 carries out the above processing again. In other words, the processing sequence after S620 is carried out.

[0320] By carrying out the above processing, the processing sequence of S480 to S490 of FIG. 24 can be executed.

[0321] Moreover, by executing Process A and Process B in the manner as described above, the initial state of the board is changed to narrow the points in the judgment realm. Life and death judgment execution unit 218 uses the narrowed points in a round robin to execute the life and death judgment processing as in the past (S620).

[0322] Then, if the life and judgment processing results gives one or more living (winning) points (S630), the life and death judgment processing determines the final result as being alive (winning) (S640).

[0323] On the other hand, if the result of the live and death judgment in S620 gives no living (winning) point (S630), the board data is returned to the initial state, and life and death judgment processing execution unit 218 (S650) carries out the life and death judgment processing as usual and determines the result as the final result.

[0324] As life and death judgment processing unit 216 determines the processing result of the life and death judgment, output processing unit 22 transmits the processing result to player terminals 3.

[0325] As in this working example, the number of the judgment object stones processed in a round robin can be reduced by newly placing stones of the same color as that of the outside in the judgment realm using the outside as the baseline before the round robin life and death judgment processing is simply carried out. Furthermore, if the life and death judgment on the narrowed outside gives the living judgment, the life and death judgment on the judgment object stones can be achieved at a high speed.

Working Example 3

[0326] Next, Working Example 3 in which the high speed processing is carried out by life and death judgment processing unit 21c is described herein. An example of the process function of life and death judgment processing unit 21c is conceptually shown in FIG. 34. Life and death judgment processing unit 21c of this example presents the case in which, in the processing of the round robin based life and death judgment, the board in the judgment realm is divided by a given method and changed into each of the eye shapes before the life and death judgment processing is carried out. In other words, the board in the judgment realm is divided by a given method, and one area in the divided realms is changed into the most disadvantageous shape before the processing of the life and death judgment on the entire judgment realm is carried.

[0327] Life and death judgment processing unit 21c of this example comprises realm division processing unit 219, 0 eye shape change-processing unit 220, half eye shape change-processing unit 221, and one eye shape change-processing unit 223.

[0328] Realm division processing unit 219 recursively determines in the judgment realm the connection of the adjacent stones of the same color by using the judgment object stones which are adjacent to the outside, and determines whether the other end is adjacent to the other outside. The board in the judgment realm is divided by determining such connections of the stones.

[0329] 0 eye shape change-processing unit 220 changes the shape of one of the realms determined by realm division processing unit 219 into the 0 eye shape. Specifically, said realm is changed into the 0 shape which is the most disadvantageous shape to said judgment object side. For instance, the shape is changed by placing the opponent’s stones at all of
the points. For instance, as shown in FIG. 56, the same stones as those of the outside are placed at the points adjacent to the dividing line. In FIG. 56, the stars represent the newly placed stones.

[0330] Half eye shape change-processing unit 221 changes the shape of one of the realms determined by realm division processing unit 219 into the half eye shape. Specifically, said realm is changed into the half eye shape which is the most disadvantageous shape to said judgment object side. For instance, in the realm, the shape is changed into the half eye shape so that the two stones of the opponent adjacent to the dividing line can be captured. As shown in FIG. 57, stones are placed so that, for instance, the one eye shape is formed on black’s move while the 0 eye shape is formed on white’s move. The stars in FIG. 57 represent the stones to be newly placed.

[0331] One eye shape change-processing unit 222 changes one of the areas determined by realm division processing unit 219 into one eye. Specifically, said realm is changed into the one eye shape which is the most disadvantageous shape to the judgment object side. For instance, in the realm, the shape is changed into the one eye shape in which two stones of the opponent that are adjacent to the dividing line can be captured. As shown in FIG. 58, for example, stones are placed to form the black one eye shape regardless of black’s move or white’s move. The stars in FIG. 58 represent the stones to be newly placed.

[0332] Note that, in changing the shape into the 0 eye, half eye, or one eye, any change may be made, and any method for processing may be adopted.

[0333] Life and death judgment execution unit 223 carries out the life and death judgment processing on the entire judgment realm after the shapes of the divided realms are changed to eye shape change-processing unit 220, half eye shape change-processing unit 221, or one eye shape change-processing unit 222. Additionally, it carries out the life and death judgment processing on the original judgment realm. This life and death judgment processing can use the life and death judgment processing program similar to that of the conventional one. Also note that each working example below demonstrates the case in which the life and death judgment is made in a round robin manner; however, the method used in other conventional life and death judgment processing programs can also be used. Furthermore, the round robin based life and death judgment processing may be the one used in the conventional life and death judgment processing program, and it is not always necessary for all vacant points in the judgment realm to undergo the round robin processing. For instance, a method in which, in vacant points in the judgment realm, the processing on part of vacant points is omitted may also be used. For example, there is a method of omitting the processing in which, when multiple moves of the equal value exist, only one move is made. In other words, life and death judgment execution unit 223 may optionally adopt any method, as long as it can execute the processing of the life and death judgment on the judgment object stones or target stones in the judgment realm.

[0334] Next, an example of the processing of the life and death judgment of this working example is described herein with reference to the flowchart as shown in FIG. 55.

[0335] Players are playing a Go game using player terminals 3 via a network. In this situation, the processing of the Go game takes place at server 2 which actualizes the playing system. During the game, or after the game is over, if any player presses a given button, etc. displayed on the screen, an execution request for the life and death judgment processing is transmitted from player terminal 3 to server 2 which carries out the life and death judgment processing. An example of the play screen is shown in FIG. 59.

[0336] In the case of the play screen shown in FIG. 59, by pressing a request button in the screen such as the “Life and Death Navi” button, etc. for the processing of the life and death judgment, a request for carrying out the life and death judgment processing is transmitted from player terminal 3 to server 2.

[0337] As the request is received by input reception unit 20 of server 2, said board data (e.g. game history data) is acquired by life and death processing unit 21c from storage device 11 of the play system. Then, the life and death judgment processing screen containing the board data is transmitted by output processing unit 22 to player terminals 3. An example of the play screen depicting this situation is shown in FIG. 60. Note that, in addition to the board data of the live game, the history data of the past game stored in a given storage device 11, or the history data of the game being watched may be acquired by life and death judgment processing unit 21c from storage device 11 of the play system, and the game history data may be included in the screen of FIG. 60 and transmitted to player terminals 3.

[0338] Players who carries out the life and death judgment processing edits the board on the screen showing the life and death judgment processing of FIG. 60. For instance, players remove or place a stone by designating the stone being displayed. Moreover, players designate the judgment realm by dragging input device 13 such as a mouse. In this way, players who want to carry out the life and death judgment processing edit the board data properly. In this mode, the data on the stones to be edited, teban, etc. are properly transmitted from player terminals 3 to server 2.

[0339] Upon designation of the judgment realm by the players described above, the stones in the judgment realm that should give a conclusion are designated as the judgment object stones.

[0340] An example of the screen showing the life and death judgment processing after the edition is shown in FIG. 61. Note that, in FIG. 61, it is assumed that 9 black stones are the judgment object stones, and black has the teban. Therefore, in this case, black stone has the next turn, and the life or death of the 9 black stones will be determined from the black stone’s view.

[0341] For instance, by pressing the “judgment processing” on the screen of FIG. 61, the board data after the editing, the teban data (game history data, judgment object stone data, etc.), and a request to start the life and death judgment processing are transmitted from player terminals 3 to server 2. If the board data after the editing, the teban data, and a request to start the life and death judgment processing are received by input reception unit 20 of server 2, life and death processing unit 21c begins to process the life and death judgment upon reception of the input, namely board data after the editing.

[0342] First, realm division processing unit 219 of life and death judgment processing unit 21c determines whether it can be divided (5700) by extracting the game history of the board before the round robin processing begins, and dividing the judgment realm. In other words, it recursively determines the connection of the adjacent stones of the same color by using the judgment object stones which are adjacent to the outside, and determines whether the other end is adjacent to the other
outside. Furthermore, if the search results in the presence of connected stones, it determines that the judgment realm can be divided. The working example below describes the case in which the original judgment realm is divided into two areas; however, if it can be divided into 3 or more realms, the judgment is made on one of the realms and all of the remaining areas. Moreover, when the judgment is made on the remaining areas, by recursively determining whether the realm can be divided, the same processing as described below can be used in the case in which the realm is divided into 3 or more areas.

0343] If realm division processing unit 219 determines that the original judgment realm cannot be divided in S700 as described above (S710), it terminates the processing as it is, and life and death judgment execution unit 223 carries out the processing of the usual round robin life and death judgment on the state of the original board (S840).

0344] On the other hand, if realm division processing unit 219 determines that the original judgment realm can be divided in S700, (S710), the determined realm is divided into two. This state is schematically shown in FIG. 62. The black stars in FIG. 62 represent the stones that become the dividing line.

0345] Then, the judgment realm is divided into two areas defined by the dividing line as the border. Now, the area above the dividing line is referred to as realm R1, the area below the dividing line is referred to as realm R2. This state is shown in FIG. 63. In addition to the division into the upper and lower sections, any type of division including the division into the right and left sections can be adopted.

0346] As such, after the realm is divided into two areas by realm division processing unit 219, any one of the realms (herein the realm is referred to as R1) can be changed into the 0 eye shape by 0 eye shape change-processing unit 220 (S720). For instance, the stones included in realm R1 are removed, and the same stones as those of the outside (white stones here) are placed at all points that are adjacent to the dividing line. This state is schematically shown in FIG. 64. The white stars represent the newly placed stones.

0347] Then, after the shape change is processed in S720, life and death judgment execution unit 223 carries out the round robin life and death judgment on the state of the board after the shape change (S730). If the life and death judgment processing by life and death judgment execution unit 223 gives the “winning” result (S740), the winning judgment can be made (S750), and the processing is terminated as it is. In the case of FIG. 64, the stones do not live, and the processing shifts to S740.

0348] In other words, if the life and death judgment processing by life and death judgment execution unit 223 in S730 results in the “losing” judgment (S740), then, realm R1 is changed into the half eye shape by half eye shape change-processing unit 221 (S760). For instance, stones included in realm R1 are removed and, at the points created by the removal of the stones, stones are placed to form the half eye shape so that, for instance, the one eye shape is formed on black’s move while the 0 eye shape is formed on white’s move. This state is schematically shown in FIG. 65. Here, the white stars and black stars represent the newly placed stones.

0349] Then, after the shape change-processing is terminated in S760, life and death judgment execution unit 223 carries out the round robin life and death judgment processing on the state of the board after the shape change (S770). If the processing of the life and death judgment by life and death execution processing unit 223 gives the “winning” result (S780), then, the board is returned to the original state, and in the divided realms, the realm which is different from the one processed in S760, namely realm R2 is changed into the one eye shape by one eye shape change-processing unit 222 (S790). For instance, the stones included in realm R2 are removed, and at the points created by the removal of the stones, stones are placed to form the one eye shape, for instance, the black one eye shape, regardless of black’s move or white’s move. This state is schematically shown in FIG. 66. Here, the white stars and black stars represent the newly placed stones.

0350] Then, after the shape change is processed in S790, life and death judgment execution unit 223 carries out the round robin life and death judgment on the state of the board after the shape change (S800). If the life and death judgment processing by life and death judgment execution unit 223 gives the “winning” result (S870), the winning judgment can be made (S880), and the processing is terminated as it is. In the case of FIG. 67, the stones are alive, and the processing is terminated.

0351] On the other hand, in S870, if life and death judgment execution unit 223 gives the “losing” judgment (S870), the processing is terminated as it is, and life and death judgment execution unit 223 carries out the usual processing of the round robin life and death judgment on the original state of the board (S840).

0352] Additionally, in S780, if life and death judgment execution unit 223 determines that realm R1 will not live (S780), then, realm R1 is changed into the one eye shape by one eye shape change-processing unit 222 (S810). For instance, the stones included in realm R1 are removed, and at the points created by the removal of the stones, stones are placed to form the one eye shape, for instance, the black one eye shape, regardless of black’s move or white’s move.

0353] Then, after the shape change-processing is terminated in S810, life and death judgment execution unit 223 carries out the round robin life and death judgment processing on the state of the board after the shape change (S820). The processing of the life and death judgment by life and death execution processing unit 223 gives the “losing” result (S830), then, the board is returned to the original state, and in the divided realms, the realm which is different from the one processed in S810, namely realm R2 is changed into the 0 eye shape by 0 eye shape change-processing unit 220 (S833). Then, after the shape change is processed in S833, life and death judgment execution unit 223 carries out the round robin life and death judgment on the state of the board after the shape change (S835). If the life and death judgment processing by life and death judgment execution unit 223 gives the “winning” result (S837), the winning judgment can be made (S880), and the processing is terminated as it is. On the other hand, if life and death judgment execution unit 223 gives the “losing” judgment in S835 (S837) the processing is terminated as it is, and life and death judgment execution unit 223 carries out the usual processing of the round robin life and death judgment on the original state of the board (S840).

0354] On the other hand, if life and death judgment execution unit 223 gives the “winning” result in S820 (S830), then, the board is returned to the original state, and in the divided realms, the realm which is different from the one that was processed in S810, namely realm R2 is changed into the half eye shape by half eye shape change-processing unit 221 (S850). For instance, the stones included in realm R2 are
removed and, at the points created by the removal of the stones, stones are placed to form the half eye shape so that, for instance, the one eye shape is formed on black’s move while the 0 eye shape is formed on white’s move.

[0355] Then, after the shape change is processed in S_{880}, life and death judgment execution unit 223 carries out the round robin life and death judgment on the state of the board after the shape change (S_{880}). If the life and death judgment processing by life and death judgment execution unit 223 gives the “winning” result (S_{870}), the winning judgment can be made (S_{880}), and the processing is terminated as it is.

[0356] On the other hand, in S_{860}, if life and death judgment execution unit 223 gives the “losing” judgment (S_{870}), the processing is terminated as it is, and life and death judgment execution unit 223 carries out the usual processing of the round robin life and death judgment on the original state of the board (S_{840}).

[0357] As described above, in the processing of the round robin life and death judgment, the board in the judgment realm is divided by a given method and changed into each eye shape before the life and death judgment processing is carried out on the entire judgment realm so that the players can know the result of the life and death judgment processing faster than the processing in which a round robin is simply introduced to the processing of life and death judgment on the judgment realm. This recognizes the fact that the presence of two eyes in the judgment realm dictates living. In other words, in the case in which the judgment realm is divided into two, and one of the divided realms is considered a 0 eye, the other realm, if it is alive, has two eyes; therefore, it can be determined that the judgment object stones are alive as a whole. Additionally, in the case in which one of the realms is considered to have the half eye shape, the other realm, if it is alive, should have the half eye shape; therefore, it can be determined that the judgment object stones are alive as a whole. Furthermore, in the case in which one of the realms is considered to have the one eye shape, and the other realm, if it is alive, should have the half eye shape; therefore, it can be determined that the judgment object stones are alive as a whole.

[0358] As described above, in recognition that living stones often have two eyes, by dividing the board in the judgment realm, changing the divided areas into any of the shapes selected from 0 eye, half eye, or one eye, and carrying out round robin death judgment processing on the state of the board after the shape change, and determining whether the divided realms are alive, the result of the life and death judgment processing can be obtained faster than the processing of life and death judgment on the original board.

[0359] As life and death judgment processing unit 21_c determines the result of the life and death judgment processing in the manner described above, output processing unit 22 transmits the process result to player terminals 3.

[0360] Next, each of the processing described above is described in detail with reference to FIGS. 67 to 71.

[0361] First, life and death judgment processing unit 21_c loads the board data and stores in Board $[x][y]$ whether the point is a vacant point, a black stone is placed, or a white stone is placed. Additionally, it stores in the judgment realm Area $[x][y]$ whether the point is the judgment realm. Besides the above, the judgment object stone $H[x][y]$, the judgment realm Area $[x][y]$, the teban in, etc. are also set appropriately. Then, realm division processing unit 219 at life and death judgment processing unit 21_c divides the judgment realm and determines whether the judgment realm can be divided. In other words, processes D1 and D2 are executed (S_{900}).

[0362] Realm division processing unit 219 assigns array $R[x][y]=1$ to the points that are points E of the outside and that also satisfy the condition expressed as Board $[x][y]=\text{true}$ (S_{1030}). Then, the process sequence of S_{1040} to S_{1090} is iterated at points (x, y) that satisfy the condition expressed as $R[x][y]=1$.

[0363] First, array $T[x][y]=1$ is assigned to the points (x, y) that satisfy the condition expressed as $R[x][y]=1$, and array $T[x][y]=0$ is assigned to other points (S_{1040}). Then, the processing of S_{1050} to S_{1090} is iterated at points (x, y) that satisfy the conditions expressed as Board $[x][y]=\text{true}$ and $T[x][y]=0$ at points E of the points (x, y).

[0364] First, $T[x][y]=1$ is substituted (S_{1050}). Then, whether the outside is included in points E of the points (x, y) is determined (S_{1060}); if the outside is included in points E of the points (x, y), Process D2 described later is carried out. On the other hand, if the outside is not included, whether one point satisfies the condition expressed as $T[a][b]=1$ at points E (a, b) of the points (x', y') is determined (S_{1070}). Note that, here, $(a=x'+1, x'-1, b=0), (b=-y'+1, y'-1, a=0)$. If it is not one point that satisfies $T[a][b]=1$, the $T[x'][y']=0$ is set (S_{1100}). In addition, if only one point satisfies $T[a][b]=1$, whether there is a point that satisfies the conditions expressed as $T[c][d]=0$ and Board $[c][d]=\text{true}$ at points E (c, d) of the points (x', y') is determined (S_{1080}). Note that, here, $(c=x'+1, x'=1, d=0), (d=-y'+1, y'=1, c=0)$. Furthermore, if no point satisfies the condition of S_{1080}, $T[x'][y']=0$ is set (S_{1100}).

[0365] On the other hand, if there is a point that satisfies the conditions expressed as $T[c][d]=0$ and Board $[c][d]=\text{true}$ at point E (c, d) of the points (x', y') (S_{1080}), the points (x', y') are assigned to points (x, y) (S_{1090}). The above processing is carried out at all points (x', y') that satisfy the conditions expressed as Board $[x'][y']=\text{true}$ and $T[x'][y']=0$ at points E of points (x, y). After the processing is carried out at all of the points (x', y'), the next point of the points (x, y) undergoes the processing.

[0366] The above processing is carried out at all of the points (x, y) that satisfy the condition expressed as $R[x][y]=1$. If the process is terminated, it can be determined that the realm cannot be divided (S_{1110}). realm division processing unit 219 terminates the subsequent processes and the usual round robin life and death judgment processing is carried out by life and death judgment execution unit 223 (S_{910}, S_{1020}).

[0367] If the outside is included in points E of the points (x', y') in the above processing in S_{1060}, Process D2 is carried out; therefore, Process D2 is described herein. First, array $T[x][y]$ is grouped and substituted into array G1 $[x][y]$ (S_{1120}). Then, array $H[x][y]$ is substituted into array H1 $[x][y]$ (S_{1130}).

[0368] Next, array H1 $[x][y]=0$ is assigned to the points (x, y) which satisfy the condition expressed as array G1 $[x][y]=1$ (S_{1140}). Then, the points (x, y) that satisfy the condition expressed as array H1 $[x][y]=1$ are taken and grouped in array H1 $[x][y]$, and further substituted into array H2 $[x][y]$ (S_{1150}). Then, H1 $[x][y]=0$ is assigned to the points (x, y) that satisfy the condition expressed as array H2 $[x][y]=1$ (S_{1160}).

[0369] Next, whether a point (x, y) that satisfies the condition expressed as H1 $[x][y]=1$ exists is determined (S_{1170}), and if such point does not exist, the processing returns to Process D1, and $T[x'][y']=0$ is set (S_{1180}). On the other hand, if there are some points (x, y) that satisfy H1 $[x][y]=1$, it is determined that the judgment realm can be divided, and the
dividing line G1 is assigned to array D [k][y] while regarding each of the realms as R1 and R2 (S1180). Additionally, array H1[x][y] is assigned to array R1[x][y] at each point in realm R1, and array H2[x][y] is assigned to array R2[x][y] at each point in realm R2 (S1180) respectively.

[0370] By carrying out the processing described above, the corresponding process sequence of S700 to S710 in FIG. 55 can be achieved.

[0371] Furthermore, as S1180 ends, realm division processing unit 219 can determine that the judgment realm can be divided (S910); therefore, Process A is carried out by 0 eye shape change-processing unit 220 and life and death judgment execution unit 223 (S920).

[0372] First, Board [x][y]=tn 3 and H[x][y]=0 are assigned by 0 eye shape change-processing unit 220 to the points (x, y) that satisfy the condition expressed as R1[x][y]=1 (S1190).

[0373] The above described processing can execute the corresponding process sequence of S720 to S730 in FIG. 55.

[0374] After the shape change to the 0 eye shape is processed by 0 eye shape change-processing unit 220 in the manner described above, if the processing of the life and death judgment carried out by life and death judgment execution unit 223 gives the winning result (S930), the winning judgment can be made as it is (S940); therefore, the processing is terminated.

[0375] On the other hand, if the life and death judgment processing carried out by life and death judgment execution unit 223 gives the losing result (S930), Process B is carried out next by half eye shape change-processing unit 221 and life and death judgment execution unit 223 (S950).

[0376] First, half eye shape change-processing unit 221 assigns Board [x][y]=0 and H[x][y]=0 to the outside points (x, y) included in realm R1 and points E in realm R1 (S1210).

[0377] Then, the process sequence of S1220 to S1260 and S1280 to S1330 are iterated at the points in which points E of each of the two adjacent points P1 (x1, y1) and P2 (x2, y2) are included in array D [x][y] of the dividing line D.

[0378] Next, whether points P3 (x3, y3), that are added in S1230 and satisfies the condition expressed as array D2[x][y]=0 and, at the same time, not included in points E of the points (x, y) added in S1250, exist is determined (S1260). If such points P3 (x3, y3) do not exist, the processing shifts to the next point. Then, after the processing is carried out on all of the points in which the points E of each of the two points P1 and P2 are included in array D [x][y] of the dividing line D, if the condition of S1260 is not satisfied, which is the case in which the shape change cannot be made, the processing is terminated as it is, and the life and death judgment processing is carried out by life and death judgment execution unit 223 (S1270).

[0379] In the judgment of S1260, if some points satisfy the condition, Board [x][y]=tn 3 is assigned to the obtained points P3 (S1280). Then, assigned to the points (x, y) which become the vacant points E and the vacant points O in groups P1 to P3 is Board [x][y]=tn (S1290). Then, Board [x][y]=0 is set at Points P3 (S1300).

[0380] Now, Board [x][y]=tn 3 is assigned to the vacant points E (x, y) of the points that have been added so far (S1310). Here, since Process B is carried out by half eye shape change-processing unit 221, the usual round robin life and death judgment processing is carried out (S1330).

[0381] By carrying out the processing in the manner as described above, the corresponding process sequence of S760 to S770 shown in FIG. 55 can be executed.

[0382] After half eye shape change-processing unit 221 changes the shape into the half eye shape in the manner described above, if life and death judgment execution unit 223 carries out the processing of the life and death judgment and gives the winning result (S960), Process C is executed next by one eye shape change-processing unit 222 and life and death judgment execution unit 223 (S970). On the other hand, if the processing of the life and death judgment gives the losing result (S960), Process C is executed next by one eye shape change-processing unit 222 and life and death judgment execution unit 223 (S1000).

[0383] First, the case in which Process C is executed is described. Note that the flowcharts of Processes B, C, B, and C are basically the same as the one shown in FIG. 71; however, depending on the processing object realm, namely R1 or R2, flowcharts of Processes B and B have some differences. Similarly, depending on the processing object realm, namely R1 or R2, flowcharts of Processes C and C have some differences.

[0384] First, one eye shape change-processing unit 222 assigns the conditions expressed as Board [x][y]=0 and H[x][y]=0 to the outside points (x, y) included in realm R2 and points E in realm R2 (S1210). Then, the process sequences of S1220 to S1260 and S1280 to S1330 are iterated at the points in which the points E of each of the two adjacent points P1 (x1, y1) and P2 (x2, y2) are included in array D [x][y] of the dividing line D.

[0385] Then, Board [x][y]=tn 3 and Board [x][y]=tn 3 are assigned to each of the points P1 and P2 (S1220). Then, Board [x][y]=tn is assigned to the points (x, y) which become points E of points P1 and P2 (S1230).

[0386] Next, whether points P3 (x3, y3), that are added in S1250 and satisfies the condition expressed as array D2 [x][y]=0 and, at the same time, not included in points E of the points (x, y) added in S1250, exist is determined (S1260). If P3 (x3, y3) does not exist, the processing shifts to the next point. Then, after the processing is carried out at all points in which, at the two points, namely P1 and P2, points E of each P1 and P2 are included in array D [x][y] of the dividing line D, and if the condition is not satisfied in S1260, which is the case in which the shape change cannot be made, the processing is terminated as it is, and the life and death judgment processing is carried out by life and death judgment execution unit 223 (S1270).

[0387] In the judgment of S1260, if some points satisfy the condition. Board [x][y]=tn 3 is assigned to the obtained points P3 (S1280). Then, assigned to the points (x, y), which become the vacant points E and the vacant points O of a group
of P1 to P3, is Board \([x][y] = tu\) (S1290). Then, at points P3, Board \([x][y] = 0\) is set (S1300).

[0388] Now, to vacant points \(E (x, y)\) of the points that have been added so far is assigned Board \([x][y] = 3\) (S1310).

Here, Process C' is carried out by one eye shape change-processing unit 222; therefore, next, one point \((x, y)\), which is the point \(E\) of the points added in S1290 but not included in the points \(E\) in array D2 \([x][y]\), is obtained, and Board \([x][y] = 0\) is substituted (S1320). And the usual round robin life and death judgment processing is carried out by life and death judgment execution unit 223 (S1330).

[0389] By carrying out the processing in the manner as described above, the corresponding processing sequence of S790 to S800 shown in FIG. 55 can be executed.

[0390] After one eye shape change-processing unit 222 changes the shape into the one eye shape in the manner described above, if life and death judgment execution unit 223 carries out the processing of the life and death judgment and gives the winning result (S980), a win as a whole can be determined (S990), and the processing is terminated as it is. On the other hand, if life and death judgment execution unit 223 carries out the processing of the life and death judgment and gives the losing result (S980), the usual round robin life and death judgment processing is carried out by life and death judgment execution unit 223 (S1020).

[0391] By executing Processes B, C, C', and C" based on the flowchart shown in FIG. 71 in the manner as described above, the result of processing the life and death judgment can be obtained.

[0392] Note that, if Process B in S960 described above gives the losing result, Process C is carried out by next one eye shape change-processing unit 222 and life and death judgment execution unit 223 in the same manner described above (S1000). In other words, based on the flowchart shown in FIG. 71 in which R1 is the processing object realm, the processing similar to Process C' described above is carried out.

[0393] If Process C in S1000 results in, that is, if, after the shape change into one eye is processed by one eye shape change-processing unit 222, the processing of the life and death judgment by life and death judgment execution unit 223 gives a winning result (S1010), a win as a whole can be determined (S990); therefore, the process is terminated as it is. On the other hand, if the execution of the life and death judgment processing gives the losing result (S1010), Process A' is executed by 0 eye shape change-processing unit 220 and life and death judgment execution unit 223 in the manner as described above (S1013).

[0394] Note that Process A' as in the flowchart shown in FIG. 70 is a processing sequence similar to that of Process A; however, the processing object realm of Process A' is R2, not realm R1.

[0395] If Process A' in S1013 results in, that is, if, after the shape change into 0 eye is processed by 0 eye shape change-processing unit 220, and the processing of the life and death judgment by life and death judgment execution unit 223 gives a winning result (S1015), a win as a whole can be determined (S990); therefore, the process is terminated as it is. On the other hand, if the execution of the life and death judgment processing gives the losing result (S1015), the usual round robin life and death judgment processing is carried out by life and death judgment execution unit 223 (S1020).

[0396] As life and death judgment processing unit 21c determines the result of the processing the life or death judgment in the manner described above, the processing result is transmitted by output processing unit 22 to player terminals 3.

[0397] According to this working example in which the board in the judgment realm is divided by a given method, and each eye shape is determined, a simplified judgment can be made by using the characteristic that the living stones often have two eyes.

Working Example 4

[0398] Next, Working Example 4 in which the high speed processing is carried out by life and death judgment processing unit 21d is described herein. An example of the process function of life and death judgment processing unit 21d is conceptually shown in FIG. 72. Life and death judgment processing unit 21d in this example uses a method in which whether a stone is dead is determined easily by limiting the moves and by determining that the stone is alive if there are many vacant points adjacent to the judgment object stones in addition to the normal condition to be alive. Note that, in this specification, this judgment method is referred to as the loose ladder move based judgment method.

[0399] Life and death judgment processing unit 21d of this working example comprises E-vacant point count processing unit 224 and simplified judgment processing unit 225.

[0400] E-vacant point count processing unit 224 counts the number of vacant points \(E\) of the judgment object stones.

[0401] Simplified judgment processing unit 225 determines the priority of a point of a move of the offense side or the defense side by the use of the loose ladder move based on the number of vacant points \(E\) counted by E-vacant point count processing unit 224, and executes the move of the offense side or the defense side based on the priority, and gives the losing result of the offense side if the number of vacant points \(E\) of the judgment object stones of the offense side is 4 or more while giving the winning result of the offense side, if the number of vacant points \(E\) of the judgment object stones of the offense side is 1. Note that the priority judgment on a point of a move based on the number of vacant points \(E\) of the offense side or the defense side is processed in the following manner.

[0402] First, for the offense side, if the number of the vacant points \(E\) of the judgment object stones counted by E-vacant point count processing unit 224 is 4 or more, the loose ladder move cannot be utilized; therefore, the losing judgment of the offense side is made.

[0403] For the offense side, if the number of the vacant points \(E\) of the judgment object stones counted by E-vacant point count processing unit 224 is 3, in the vacant points \(E\), the number of the vacant points \(E\) that are present when the defense side moves on that point is counted, and the priority is determined in descending order of number to make a move.

[0404] For the offense side, if the number of vacant points \(E\) of the judgment object stones counted by E-vacant point count processing unit 224 is 2, a move is made as follows: First, if the number of the vacant points \(E\) of the stones of the offense side that become point \(E\) are counted by E-vacant point count processing unit 224 is 1, a move is made on the vacant point \(E\). Second, in the vacant points \(E\), the number of the vacant points \(E\) that are present when the defense side makes a move on that point is counted by E-vacant point count processing unit 224, and a move is made in descending order of number to make a move. Third, a move is made on the vacant points \(E\). Fourth, a move is made at the vacant point \(E\) of the vacant points \(E\). Fifth, a move is made on the vacant
point O of the vacant points E. Sixth, a move is made on the vacant point E of the vacant points O.

[0405] For the offense side, if the number of the vacant points E of the judgment object stones of the offense side counted by E-vacant point count processing unit 224 is 1, a move is made on that point. At this point, it is determined that the offense side wins the game.

[0406] Next, for the defense side, if the number of the vacant points E of the judgment object stones counted by E-vacant point count processing unit 224 is 2, a move is made in the following manner: First, if the number of the vacant points E of the stones of the offense side that become point E counted by E-vacant point count processing unit 224 is 1, a move is made on that vacant point E. Second, if the number of the vacant points E of the stones of the offense side that become point E counted by E-vacant point count processing unit 224 is 2, a move is made on any one of the vacant points E. Third, in the vacant points E, the number of vacant points E that are present when a move is made on that point is counted by E-vacant point count processing unit 224, and a move is made in descending order of the number to make a move. Fourth, a move is made on the vacant points O. Fifth, a move is made on the vacant points E. Sixth, a move is made on the vacant points O of the vacant points E. Seventh, a move is made on the vacant point E of the vacant points E.

[0407] For the defense side, if the number of the vacant points E of the judgment object stones counted by E-vacant point count processing unit 224 is 1, a move is made in the following manner: First, if one point is given when the number of the vacant points E of the stones of the offense side that become point E is counted by E-vacant point count processing unit 224, a move is made on that vacant point E. Second, a move is made on the vacant points E.

[0408] Simplified judgment processing unit 225 iterates the above processing sequence of the offense side and the defense side alternately until the number of the vacant points E of the offense side reaches 1, 4, or 4 or more.

[0409] Next, an example of the life and death judgment processing of this working example is described herein with reference to the flowchart shown in FIG. 73.

[0410] Players are playing a Go game using player terminals 3 via a network. In this situation, the processing of the Go game takes place at server 2 which actualizes the playing system. During the game, or after the game is over, if any player presses a given button displayed on the screen, the execution request for the life and death judgment processing is transmitted from player terminal 3 to server 2 which carries out the life and death judgment processing. An example of the game screen is shown in FIG. 74.

[0411] In the case of the game screen shown in FIG. 74, by pressing a request button on the screen such as the “Life and Death Navi” button, etc. that requests the processing of the life and death judgment causes a request for carrying out the life and death judgment processing to be transmitted from player terminal 3 to server 2.

[0412] As the request is received by input reception unit 20 of server 2, said board data (e.g. game history data) is acquired by life and death processing unit 21d from storage device 11 of the play system. Then, the life and death judgment processing screen containing the board data to player terminals 3 is transmitted from output processing unit 22 to player terminals 3. An example of the game screen depicting this situation is shown in FIG. 75. Note that, in addition to the board data of the live game, the history data of the past game stored in a given storage device 11, or the history data of the game being watched may be acquired by life and death judgment processing unit 21d from storage device 11 of the play system, and the game history data may be included in the screen of FIG. 75 and transmitted to player terminals 3.

[0413] Players who carry out the life and death judgment processing edits the board on the screen showing the execution of the life and death judgment processing of FIG. 75. For instance, players remove or place a stone by designating the stone being displayed. Moreover, players designate the judgment realm by dragging input device 13 such as a mouse. In this way, players who intend to carry out the life and death judgment processing properly edit the board data. At this time, the editing data on the stones and teban are properly transmitted from player terminals 3 to server 2.

[0414] Upon designation of the judgment realm by the players described above, the stones in the judgment realm that should give a conclusion are designated as the judgment object stones. Additionally, in the judgment object stones, if players want to further designate specific stones as the stones that should give a conclusion (target stones), the specific stones can be designated as the target stones. In the judgment object stones, if at least one stone is alive, the life and death judgment gives the living result; when all stones are captured, the life and death judgment gives the dying result. Note that, in the case in which target stones are designated, if all of the target stones are alive, the life and death judgment gives the living conclusion; if at least one of the target stones are captured, the life and death judgment gives the dying conclusion. Also note that the designation of target stones is not essential, and whether the target stones are designated does not make any difference in processing but changes the baseline of the life or death judgment. Therefore, when target stones are designated, the processing can be provided in such a way that the statement “judgment object stones” is appropriately interpreted as “target stones” to process each of the grouped target stones.

[0415] An example of the screen showing the life and death judgment processing after the edition is shown in FIG. 76. Note that, in FIG. 76, it is assumed that 2 black stones (black stars) are target stones, and white has the teban. Therefore, in this case, it means that a white stone has the next turn, and the life or death of the 2 black stones will be determined from the white stone’s view.

[0416] For instance, by pressing the “judgment processing” on the screen of FIG. 76, the board data after the editing (game history data, judgment object stone data, etc.), the teban data, and a request to start the life and death judgment processing are transmitted from player terminals 3 to server 2. If the board data after the editing, the teban data, and a request to start the life and death judgment processing are received by input reception unit 20 of server 2, life and death processing unit 21d begins to process the life and death judgment upon receipt of the input, namely the board data after the editing.

[0417] First, E-vacant point count processing unit 224 of life and death judgment processing unit 21d counts the number of the vacant points E of the judgment object stones that are target stones (S1400). Now, if the number of the vacant point E is 1 (S1410), simplified judgment processing unit 225 gives a winning judgment of the offense side (S1420), and terminates the processing as it is. Moreover, if the number of the vacant points E is 4 or more (S1410), simplified judgment
processing unit 225 gives a losing judgment of the offense side (S1430) and terminates the processing as it is.

[0418] In the case of FIG. 76, three vacant points E are given as shown in FIG. 77. Therefore, simplified judgment processing unit 225 determines the priority ranking of a move of each of the vacant points E based on the above order (S1440). Here, there are five vacant points E when the defense side makes a move on the vacant point E1, four vacant points E when the defense side makes a move on the vacant point E2, and three vacant points E when the defense side makes a move on the vacant point E3; therefore, the priority ranking of a move is determined in accordance with this priority ranking.

[0419] Thus, simplified judgment processing unit 225 makes a move on the vacant point E1 having the highest priority ranking first (S1450). This is schematically shown in FIG. 78.

[0420] Next, in response to the offense side’s move, the vacant point E1, simplified judgment processing unit 225 determines whether all of the moves the defense side makes allow the offense side to capture the target stones (S1460). If all of the moves the defense side makes allow the offense side to capture the target stones, simplified judgment processing unit 225 terminates the processing at that point, and determines that the offense side wins the game (S1470). On the other hand, if any of the moves the defense side makes prevents the target stones from being captured (S1460), a move is made based on the subsequent priority ranking set in S1450 (S1480, S1450). In other words, a move is made on the vacant point E2 shown in FIG. 77. This is schematically shown in FIG. 79.

[0421] Moreover, in the same manner as described above, in response to the offense side’s move on this vacant point E2, simplified judgment processing unit 225 determines whether all of the moves the defense side makes allow the offense side to capture the target stones (S1460). If all of the moves the defense side makes allow to capture the target stones, simplified judgment processing unit 225 terminates the processing at that point, and determines that the offense side wins the game (S1470). On the other hand, if any of the moves the defense side makes prevents the target stones from being captured (S1460), a move is made based on the subsequent priority ranking set in S1450 (S1480, S1450). In other words, a move is made on the vacant point E3 shown in FIG. 78. This is schematically shown in FIG. 80.

[0422] Furthermore, in the same manner as described above, in response to the offense side’s move on this vacant point E3, simplified judgment processing unit 225 determines whether the offense side can capture the target stones on all of the moves the defense side make allow the offense side to capture the target stones (S1460). If all of the moves the defense side makes allow to capture the target stones, simplified judgment processing unit 225 terminates the processing at that point and determines that the offense side wins the game (S1470). On the other hand, if any one of the moves the defense side makes prevents the target stones from being captured (S1460), a move is made based on the subsequent priority ranking set in S1450 (S1480); however, since a move has exhausted all of the moves having the priority ranking, simplified judgment processing unit 225 determines that the offense side lost the game and terminates the processing (S1490).

[0423] As life and death judgment processing unit 21d determines the processing result of the life or death judgment in the manner described above, the processing result is transmitted to output processing unit 22 to player terminals 3.

[0424] Note that, determining whether all of the moves the defense side makes allow the offense side to capture the target stones requires a method in which the processing is carried out based on the priority ranking in such a way that, when the defense side makes a move on a point based on the number of the vacant points E counted by E-vacant point count processing unit 224, then, the offense side further makes a move on that point based on the number of the vacant points E counted by E-vacant point count processing unit 224. Hence, the processing for the defense side is described herein with reference to the state shown in FIG. 78.

[0425] In the case in which the offense side makes a move in the state shown in FIG. 78, the number of the vacant points E counted by E-vacant point count processing unit 224 is 2. Therefore, the following priority ranking of each point of a move can be determined: First, the point having two vacant points E of the stones of the offense side that become points E; second, the vacant point E; third, the vacant point O; fourth, the vacant point E of the vacant point E; fifth, the vacant point O of the vacant point E; and sixth, the vacant point E of the vacant point O. This is schematically shown in FIG. 81.

[0426] In this case, two vacant points E1 have the highest priority ranking; therefore, for instance, a move is made on the upper vacant point E1. This is schematically shown in FIG. 82.

[0427] Next, if the defense side makes a move in the state shown in FIG. 82, the number of vacant points E counted by E-vacant point count processing unit 224 is 2; therefore, a move is made based on the priority ranking described above. In other words, the following priority ranking of each point can be determined: First, the point having one vacant point E of the stones of the offense side that becomes the point E; second, the vacant point E; third, the vacant point O; fourth, the vacant point E of the vacant point E; fifth, the vacant point O of the vacant point E; and sixth, the vacant point E of the vacant point O. This is schematically shown in FIG. 83.

[0428] Based on the above, the vacant point E1 has the highest priority ranking; therefore, the offense side makes a move on that vacant point E1. This is schematically shown in FIG. 84.

[0429] Next, if the offense side makes a move in the state shown in FIG. 84, the number of vacant points E counted by E-vacant point count processing unit 224 is 2; therefore, a move is made based on the priority ranking of the defense side described above. In other words, the number of the vacant point E is 1, and there is no point having one vacant point E of the stones of the offense side that becomes point E; therefore a move is made by using the remaining vacant points E. This is schematically shown in FIG. 85.

[0430] Accordingly, the defense side makes moves at the points. This is schematically shown in FIG. 86.

[0431] Next, if the offense side makes a move in the state shown in FIG. 86, the number of the vacant points E counted by E-vacant point count processing unit 224 is 2; therefore, a move is made based on the priority ranking described above. Furthermore, the stones of the same color connected to the target stones also undergo the processing as the target stones. In other words, the following priority ranking of each point can be determined: First, the point having three vacant points E when the defense side makes a move that become points E; second, the point having two vacant points E when the defense side makes a move that become points E; third, the
vacant point O; fourth, the vacant points E of the vacant points E; fifth, the vacant points O of the vacant points E; and sixth, the vacant point E of the vacant points O. This is schematically shown in FIG. 87.

[0432] Based on the above, the vacant point E1 has the highest priority ranking; therefore, the offense side makes a move on the vacant point E1. The state in which a move is made by the offense side is schematically shown in FIG. 88.

[0433] Next, when the offense side makes a move in the state shown in FIG. 88, the number of vacant point E counted by E-vacant point count processing unit 224 is 1; therefore, a move is made based on the priority ranking of the defense side described above. In other words, the number of the vacant point E is 1 and, at the same time, there is no point having one vacant point E of the stones of the offense side that becomes point E; therefore, a move is made by using the remaining vacant points E. This is schematically shown in FIG. 89.

[0434] Accordingly, the defense side makes a move at the points. This is schematically shown in FIG. 90.

[0435] Next, when the offense side makes a move in the state shown in FIG. 90, one vacant point E is given by E-vacant point count processing unit 224; therefore, a move is made based on the priority ranking described above. In other words, a move is made on the vacant point E1, and it is determined that the offense side wins. This is schematically shown in FIG. 92.

[0436] By carrying out the above, the defense side’s winning judgment can be made in the manner described above; however, this is the situation shown in FIG. 81 in which two points have the priority ranking of “1”, and a move is made on the upper vacant point E1 (This is shown in FIG. 82). Accordingly, simplified judgment processing unit 225 has not given the offense side’s winning judgment on the other point also having the priority ranking of “1”; therefore, simplified judgment processing unit 225 makes judgment on the case in which a move is made on the other point. In other words, the state of the board is once returned to the state shown in FIG. 81 before a move is made on the other point having the priority ranking of “1”. This is schematically shown in FIG. 93.

[0437] Next, when the defense side makes a move in the state shown in FIG. 93, the number of vacant points E counted by E-vacant point count processing unit 224 is 2; therefore, a move is made based on the priority ranking described above. In other words, the following priority ranking of each point can be determined first, the point having one vacant point E of the stones of the offense side that becomes the point E; second, the point having two vacant points E when the defense side makes a move that become the points E; third, the point having one vacant point E when the defense side makes a move that becomes the points E; fourth, the vacant point O; fifth, the vacant point E of the vacant point E; sixth, the vacant points O of the vacant point E; and seventh, the vacant points E of the vacant points O. This is schematically shown in FIG. 94.

[0438] By doing so, the vacant point E1 has the priority having the highest ranking; therefore, the offense side makes a move on the vacant point E1. The state in which the offense side makes a move is schematically shown in FIG. 95.

[0439] Next, when the offense side makes a move in the state shown in FIG. 95, two vacant points E are given by E-vacant point count processing unit 224; therefore, a move is made based on the priority ranking described above. In other words, the following priority ranking of each point can be determined: First, in points E, the point having two vacant points E when the defense side makes a move; second, the vacant point O; third, the vacant point E of the vacant points E; fourth, the vacant points O of the vacant points E; and fifth, the vacant point E of the vacant points O. This is schematically shown in FIG. 96.

[0440] In the state shown in FIG. 96, there are two points having the priority ranking of “1” (vacant points E1). Now, in the vacant points E1, the defense side makes a move on the upper vacant point E1 first. This is schematically shown in FIG. 97. After the case in which a move is made on the upper vacant point E1 is processed, another move is made on the lower vacant point E1 to undergo a similar judgment.

[0441] Next, when the defense side makes a move on the state shown in FIG. 97, the number of vacant points E counted by E-vacant point count processing unit 224 is 2; therefore, moves are made based on the priority ranking described above. In other words, the following priority ranking of each point can be determined: First, the point having three vacant points E when the defense side makes a move that become the points E; second, the point having two vacant points E when the defense side makes a move that becomes the points E; third, the vacant points O; fourth, the vacant point E of the vacant points E; fifth, the vacant points O of the vacant points E; and sixth, the vacant points E of the vacant points O. This is schematically shown in FIG. 98.

[0442] By doing so, the vacant point E1 has the highest priority ranking; therefore, the offense side makes a move on the vacant point E1. The state in which the offense side makes a move is schematically shown in FIG. 99.

[0443] Next, when the offense side makes a move in the state shown in FIG. 99, the number of vacant points E counted by E-vacant point count processing unit 224 is 1; therefore, moves are made based on the priority ranking described above. In other words, the number of vacant points E is 1, and there is no point having one vacant point E of the stones of the offense side that becomes point E; therefore, a move is made by using the remaining vacant points E. This is schematically shown in FIG. 100.

[0444] Thus, the defense side makes moves at the points. This is schematically shown in FIG. 101.

[0445] Next, when the offense side makes a move in the state shown in FIG. 101, the number of vacant points E counted by E-vacant point count processing unit 224 is 1; therefore, a move is made based on the priority ranking described above. This is schematically shown in FIG. 102. In other words, a move is made on the vacant point E1 and, at the same time, a win of the offense side is determined. This is schematically shown in FIG. 103.

[0446] By carrying out the above, the defense side’s winning judgment can be made in the manner described above; however, this is the situation shown in FIG. 96 in which, in two points having the priority ranking of “1”, a move is made on the upper vacant point E1 (This is shown in FIG. 97). Accordingly, simplified judgment processing unit 225 has not given the offense side’s winning judgment on the other point also having the priority ranking of “1”; therefore, simplified judgment processing unit 225 makes judgment on the case in which a move is made on the other point. In other words, the state of the board is once returned to the state shown in FIG. 96 before a move is made on the other point having the priority ranking of “1”. This is schematically shown in FIG. 104.
Simplified judgment processing unit 225 iterates the above processing for each of the offense side and the defense side in accordance with the number of vacant points E. Additionally, simplified judgment processing unit 225 allows both the offense side and the defense side to make a move based on the priority ranking in descending order. Accordingly, if the offense side can capture a specific point of a move of the offense side, it is determined that the offense side wins; if there is a move the defense side makes that cannot be captured by all moves of the offense side makes, it is determined that the offense side loses.

By using such processing, particularly, whether a specific stone, namely the target stones on the board can be captured in the endgame situation can be determined at a high speed.

Next, each process described above is described further in detail with reference to FIGS. 105 to 116.

First, life and death judgment processing unit 21f reads out the board data and stores in Board [x][y] whether the point is a vacant point, a black stone is placed, or a white stone is placed. Additionally, it stores in the judgment realm Area [x][y] whether the point is the judgment realm. Besides the above, the judgment object stones H [x][y], the judgment realm Area [x][y], and the teban tn, etc. are also set appropriately. Moreover, E-vacant point count processing unit 224 at life and death judgment processing unit 21f obtains the vacant points E of H[x][y] from Board [x][y] and H [x][y] and substitutes the vacant points E into array E1 [x][y][S1500].

Then, simplified judgment processing unit 225 carries out the corresponding processes from S1520 to S1550 according to the number of points that satisfies the condition expressed as array E1 [x][y]=1 (S1510).

First, if the number of points that satisfies the condition expressed as array E1 [x][y]=1 is 4 or more, simplified judgment processing unit 225 determines a loss of the offense side (S1520) and terminates the processing as is. Additionally, if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 3, simplified judgment processing unit 225 determines a win of the offense side (S1530) and terminates the processing as is.

Furthermore, if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 2, simplified judgment processing unit 225 carries out Process B (S1540), and after Process B is terminated, it further carries out Process D (S1560).

On the other hand, if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 2, simplified judgment processing unit 225 carries out Process C (S1550), and after Process C is terminated, it further carries out Process D (S1560).

Simplified judgment processing unit 225 carries out the processing as described above.

Next, Process B is described herein. Simplified judgment processing unit 225 iterates the processing sequence of S1600 to S1635 at the points (x, y) that satisfy the condition expressed as E1 [x][y]=1.

In other words, first, Board [x][y]=’b’ is assigned to the points (x, y) that satisfy the condition expressed as E1 [x][y]=1 (S1600). Then, array Board [x][y] is grouped and substituted into array H2 [x][y] (S1610). Next, the vacant points E in array H2 [x][y] are obtained and substituted into array E2 [x][y] (S1620). Moreover, the points (x, y) are added to array Order [i] (assigned to array Order [i], x is x, to array Order [i], y is y), and the number of points that satisfies the condition expressed as E2 [x][y]=1 is assigned to Order [i] (S1630). Furthermore, array Board [x][y]=0 is substituted (S1635).

The above processes are carried out on all of the points (x, y) that satisfy the condition expressed as E1 [x][y]=1, and after the process is terminated, array Order is sorted in descending order of the element v (S1640).

Simplified judgment processing unit 225 carries out Process B in the manner described above, and then, carries out Process D.

First, the processing sequence of S1650 to S1660 is iterated from i=0 to i<36.

In other words, whether the teban tn can make a move on points (x, y) in array Order [i] is determined (S1650), and if a move cannot be made, the processing shifts to the next i. On the other hand, if a move can be made, a move is made, and array Board [x][y] and array H [x][y] are updated (S1655). In other words, Board [x][y]=’tn’ is set, and if the opponent’s stone can be captured when a move is made, values of the points of capturing the stone in array Board are also updated appropriately. Additionally, the values of the stones adjacent to the judgment object stones are also updated appropriately using the condition expressed as array H [x][y]=v. Furthermore, if the points can be grouped, array H [x][y] is grouped again. Then, Process E described later is executed, and if Process E gives the winning result (S1660), simplified judgment processing unit 225 determines a win of the offense side (S1670) and terminates the processing. On the other hand, if Process E determines the losing result, the processing shifts to the next i.

The above processing is iterated until i<36, and if the processing is terminated, simplified judgment processing unit 225 determines a loss of the offense side (S1680) and terminates the processing.

Next, Process C in S1550 shown in FIG. 105 is described herein.

Points E that are not the vacant points in H [x][y] are substituted into array E2 [x][y] by simplified judgment processing unit 225 (S1700). Then, the processing sequence of S1710 to S1740 is iterated at all of the points (x, y) that satisfy the condition expressed as E2 [x][y]=1.

In other words, first, array Board [x][y] is grouped and substituted into array G [x][y] (S1710). Next, the vacant points E in array G [x][y] are substituted into array G2 [x][y] (S1720). Then, the number of points (a, b) that satisfy the condition expressed as array G2 [a][b]=1 (S1720) is determined (S1730), and if the number is not one, the processing shifts to the next point (x, y). On the other hand, if the number of points that satisfies the condition expressed as array G2 [x][y]=1 is 1, the point (a, b) is added to array Order [i] (S1730), and if the number is not one, the processing shifts to the next point (x, y). On the other hand, if the number of points that satisfies the condition expressed as array G2 [x][y]=1 is 1, the point (a, b) is added to array Order [i] (assigned to array Order [i], x is a, to array Order [i], y is b), and array Order [i].v=5000 is set (S1740).

The above processes are carried out at all of the points (x, y) that satisfy the condition expressed as E2 [x][y]=1, and after the process is terminated. Process C2 is carried out.

First, the processing sequence of S1750 to S1790 is iterated at all of the points (x, y) that satisfy the condition expressed as E1 [x][y]=1.

In other words, first, Board [x][y]=’b’ is assigned to the points (x, y) that satisfy the condition expressed as E1 [x][y]=1 (S1750). Then, Board [x][y] is grouped and substituted into array H2 [x][y] (S1760). Next, the vacant points E in array H2 are substituted into array E2 [x][y] (S1770). More-
over, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and assigned to Order[i]. v is the value representing the sum of 4000 and the number of points that satisfies the condition expressed as E2 [x][y]=1 (S1780). Furthermore, Board (x)[y]=0 is substituted (S1790).

[0469] The above processing is carried out for all of the points (x, y) that satisfy the condition expressed as E1 [x][y]=1, and as the processing is terminated, Process C3 is carried out.

[0470] First, the vacant points O in array H [x][y] are substituted into array O [x][y](S 1800). Then, vacant points E of the vacant points E in array H [x][y] are substituted into array EE [x][y](S1810). Next, the vacant points O of the vacant points E in array H [x][y] are substituted into array EO [x][y] (S1820), and the vacant points E of the vacant point O in array H [x][y] are substituted into array OE [x][y](S1830).

[0471] Then, the process sequence of S1840 to S1910 is iterated at the points (x, y) until each point x, y reaches from 1 to 19.

[0472] First, whether array O [x][y]=1 is determined (S1840), and if array O [x][y]=1, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=3000 is substituted (S1850). Then, the processing shifts to the next point (x, y). Additionally, if array O [x][y]=1, whether array EE [x][y]=1 is determined (S1860).

[0473] If array EE [x][y]=1, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=2000 is substituted (S1870). Then, the processing shifts to the next point (x, y). Additionally, array EE [x][y]=1, whether array EO [x][y]=1 is determined (S1880).

[0474] If array EO [x][y]=1, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=1000 is substituted (S1890). Then, the processing shifts to the next point (x, y). If array EO [x][y]=1, whether array AE [x][y]=1 is determined (S1900).

[0475] If array OE [x][y]=1, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=0 is substituted (S1910). The processing shifts to the next point (x, y). If array OE [x][y]=1, the processing also shifts to the next point (x, y).

[0476] The above processing sequence is executed until each point x, y reaches from 1 to 19, and array Order is sorted in descending order of the element v after the processing is terminated (S1920). Then, Process D described above is carried out by simplified judgment processing unit 225.

[0477] Next, Process E is described.

[0478] First, in Process E, the vacant points E in array H [x][y] are substituted into array E1 [x][y](S1950). Then, the number of points that satisfies the condition expressed as E1 [x][y]=1 is determined (S1960), and if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 2, Process F described later is carried out by simplified judgment processing unit 225 (S1970). Additionally, if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 1, Process G described later is carried out by simplified judgment processing unit 225 (S1980). Then, after Process F or Process G is terminated, Process H described later is carried out by simplified judgment processing unit 225 (S1990).

[0479] First, Process F, which is executed if the number of points that satisfies the condition expressed as E1 [x][y]=1 is 2, is described.

[0480] In Process F, points E that are not the vacant points in array H [x][y] are substituted into array E2 [x][y](S2000). Then, the process sequence of S2010 to S2050 is iterated at all of the points (x, y) that satisfy the condition expressed as E2 [x][y]=1.

[0481] First, array Board [x][y] is grouped and substituted into array G [x][y](S2010). Then, the vacant points E in array G [x][y] are substituted into array G2 [x][y](S2020).

[0482] Then, the number of the points (a, b) that satisfies the condition expressed as array G2 [a][b]=1 (1≤a, b≤19) is determined (S2030): If the number of points that satisfies the condition expressed as array G2 [a][b]=1 is 1, the point (a, b) is added to array Order[i][assigned to array Order[i][x is a, to array Order[i][y is b] and Order[i]. v=6000 is substituted (S2040). On the other hand, if the number of points that satisfies the condition expressed as array G2 [a][b]=1 is 2, the points (a, b) are added to array Order[i][assigned to array Order[i][x is a, to array Order[i][y is b] and Order[i]. v=5000 is substituted (S2050). If array G2 [a][b] is neither one nor two, or the points (a, b) are added to array Order[i] in S2040 or S2050, the processing shifts to the next point (x, y).

[0483] The above processing is carried out at all of the points that satisfy the condition expressed as array E2 [x][y]=1, and after the processing is terminated, Process F2 is carried out.

[0484] First of all, the process sequence of S2060 to S2100 is iterated at all of the points (x, y) that satisfy the condition expressed as array E1 [x][y]=1.

[0485] Now, Board [x][y]=+b is substituted (S2060), and Board [x][y] is grouped and substituted into array H2 [x][y] (S2070). Then, the vacant points E in array H2 [x][y] are substituted into array E2 [x][y](S2080), and the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y]. Then, the value of the sum of 4000 and the number of points that satisfies the condition expressed as array E2 [x][y]=1 is assigned to array Order[i]. v (S2090). In addition, Board [x][y]=0 is substituted (S2100).

[0486] The above processing is carried out at all of the points (x, y) that satisfy the condition expressed as array E1 [x][y]=1, and after the processing is terminated, Process F3 is carried out.

[0487] First, the vacant points O in array H [x][y] are substituted into array O [x][y](S2110). Then, vacant points E of the vacant points E in array H [x][y] are substituted into array EE [x][y](S2120). Next, vacant points O of the vacant points E in array H [x][y] are substituted into array EO [x][y] (S2130), and vacant points E of the vacant points O in array H [x][y] are substituted into array OE [x][y](S2140).

[0488] Then, the process sequence of S2150 to S2220 is iterated at points (x, y) until each point x, y reaches from 1 to 19.

[0489] First, whether array O [x][y]=1 is determined (S2150), and if so, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=3000 is substituted (S2160). Then, the processing shifts to the next point (x, y). Additionally, if array O [x][y]=1, whether array EE [x][y]=1 is determined (S2170).

[0490] If array EE [x][y]=1, the points (x, y) are added to array Order[i][assigned to array Order[i][x is x, to array Order[i][y is y], and Order[i]. v=2000 is substituted (S2180).
Then, the processing shifts to the next point (x, y). Additionally, if array EE [x][y]=1, whether array EO [x][y]=1 is determined (S2190).

[0491] If array EO [x][y]=1, the points (x, y) are added to array Order [i][assigned to array Order [i].x is x, to array Order [i].y is y], and Order [i].v=1000 is substituted (S2200). Then, the processing shifts to the next point (x, y). If array EO [x][y]=1, whether array OE [x][y]=1 is determined (S2210).

[0492] If array OE [x][y]=1, the points (x, y) are added to array Order [i][assigned to array Order [i].x is x, to array Order [i].y is y], and Order [i].v=0 is substituted (S2220). The processing shifts to the next point (x, y). Even if array OE [x][y]=1, the processing also shifts to the next point (x, y).

[0493] The above processing is executed until each point x, y reaches from 1 to 19, and after the processing is terminated, array Order [i] is sorted in descending order of the element v (S2230). Then, Process H described above is carried out by simplified judgment processing unit 225.

[0494] Furthermore, in S1960 shown in FIG. 111, if the number of the points that satisfies the condition array E1 [x][y]=1 is 1, Process G is carried out; therefore, Process G is described herein.

[0495] Points E that are not the vacant points in array H [x][y] are substituted into array E2 [x][y] by simplified judgment processing unit 225 (S2300). Then, the process sequence of S2310 to S2340 is iterated at all of the points (x, y) that satisfy the condition expressed as E2 [x][y]=1.

[0496] In other words, first, the points (x, y) are grouped (array Board [x][y] is grouped) and substituted into array G [x][y] (S2310). Then, the vacant points E in array G [x][y] are substituted into array G2 [x][y] (S2320). Then, the number of points (a, b) that satisfy the condition expressed as array G2 [a][b]=1 (1σa, b±19) is determined (S2330), and if the number of points (a, b) that satisfies G2 [a][b]=1 is other than one, the processing shifts to the next point (x, y). On the other hand, if the number of points that satisfies the condition expressed as array G2 [x][y]=1 is 1, the point (a, b) is added to array Order [i][assigned to array Order [i].x is a, to array Order [i].y is b] and Order [i].v=5000 is set (S2340).

[0497] The above processes are carried out at all of the points (x, y) that satisfy the condition expressed as E2 [x][y]=1, and after the process is terminated, Process H is carried out.

[0498] First, simplified judgment processing unit 225 iterates the processing sequence of S2400 to S2430 from i=0 to i=361.

[0499] In other words, whether the teban tn can make a move on points (x, y) in array Order [i] is determined (S2400), and if a move cannot be made, the processing shifts to the next i. On the other hand, if a move can be made, a move is made, and array Board [x][y] and array H [x][y] are updated (S2405). In other words, Board [x][y]=a1 is set, and if a move can capture the opponent’s stones, the values of the points of capturing stones in board array are also updated appropriately. Additionally, the stones adjacent to the judgment object stones are also updated appropriately by using the condition expressed as array H [x][y]=1. Furthermore, if the points can be grouped, array H [x][y] is grouped again. Then, Process A (the process shown in FIG. 105 described later is executed: If Process A gives the losing result (S2410), simplified judgment processing unit 225 determines that the offense side lost the game (S2420) and terminates the processing. On the other hand, if Process A does not give the losing result, the processing shifts to the next i.

[0500] The above processing is iterated up to i=361, and if the processing is terminated, simplified judgment processing unit 225 determines a win of the offense side (S2430) and terminates the processing.

[0501] As described above, by carrying out Processes A through H by simplified judgment processing unit 225, the life and death judgment processing of this working example in which a loose ladder move is introduced can be executed.

Working Example 5

[0502] Note that, in Working Examples 1 to 3 above, the processes that utilize the judgment object stones are explained; however, the target stones may also be designated. In this case, life and death judgment processing unit 21d can carry out a round robin life and death judgment processing in such a way that, if all of the target stones are alive, the life and death judgment gives the living result while if at least one of the target stones are captured, the life and death judgment gives the dying result.

[0503] Moreover, in each of the working example described above, the processing in which arrays and variables are used; however, the present invention is not limited to this and any method that is required can be carried out appropriately.

[0504] The function of each means of the present invention is only differentiated logically, and may have a physically or actually identical realm. Needles to say, datafiles may be used in place of a database, and the description of “database” includes datafiles.

INDUSTRIAL APPLICABILITY

[0505] By the use of the life and death judgment processing system 1 for a Go game described above, the result of life and death judgment can be outputted at a higher speed than the conventional life and death judgment system 1 without limiting the applicable situation to the middlegame or the endgame.

DESCRIPTION OF THE REFERENCE SYMBOLS

[0506] 1: Life and death judgment system for a Go game
[0507] 2: Server
[0508] 3: Player terminal
[0509] 10: Computational device
[0510] 11: Storage device
[0511] 12: Display device
[0512] 13: Input device
[0513] 14: Communication device
[0514] 20: Input reception unit
[0515] 21: Life and death judgment processing unit
[0516] 21a, 21b, 21c, 21d: Life and death judgment processing unit
[0517] 22: Output processing unit
[0518] 210: Initial judgment processing unit
[0519] 211: First judgment processing unit
[0520] 212: Second judgment processing unit
[0521] 213: Priority change-processing unit
[0522] 214: Life and death judgment execution unit
[0523] 215: Priority memory unit
[0524] 216: First outside processing unit
[0525] 217: Second outside processing unit
[0526] 218: Life and death judgment execution unit
[0527] 219: Realm division processing unit
[0528] 220: 0 eye shape-change processing unit
[0529] 221: Half eye shape-change processing unit
[0530] 222: One eye shape-change processing unit
[0531] 223: Life and death judgment execution unit
[0532] 224: E-vacant point count processing unit
[0533] 225: Simplified judgment processing unit

1. A life and death judgment system for a Go game characterized in that life and death of a Go is determined by the use of a computer, wherein

said life and death judgment system comprises
an input reception unit which receives an input by a player,
a life and death judgment processing unit that determines
whether the judgment object stone or target stone is alive, and
an output processing unit which outputs the result of life and death judgment made by said life and death judgment processing unit; and

said life and death judgment processing unit
places a stone of a color which is different from that of the judgment object stone in the predetermined judgment realm in accordance with a given condition, and

carries out the processing of life and death judgment after said placement is made on the board.

2. A life and death judgment system for a Go game for determining life and death of a Go by use of a computer, wherein said life and death judgment system comprises;
an input unit configured to receive an input by a player,
a life and death judgment processor configured to determine whether a judgment object stone or target stone is alive,
an output unit configured to output a result of life and death judgment made by said life and death judgment processor; and

wherein said life and death judgment processor is further configured to count a number of E-vacant points of a judgment object stone or target stone, determine a move of an offense side or defense side based on the number of said E-vacant points if the number of E-vacant points is two or more, and implement a life and death judgment based on the determined move.

3. A life and death judgment system for a Go game for determining life and death of a Go by use of a computer, wherein said life and death judgment system comprises;
an input unit configured to receive an input by a player,
a life and death judgment processor configured to determine whether a judgment object stone or target stone is alive,
an output unit configured to output a result of life and death judgment made by said life and death judgment processor; and

wherein

said life and death judgment processor comprises
an processor-executable E-vacant point count processing module which counts a number of E-vacant point of a judgment object stone or target stone, and
a processor-executable life and death judgment execution module which implement a life and death judgment by determining a priority of a move of offense side or defense side based on the number of E-vacant points counted by said E-vacant point if the number of E-vacant points is two or more, and alternately repeating moves of the offense side or defense side according to the priority.

4. A life and death judgment system for a Go game for determining life and death of a Go by use of a computer, wherein said life and death judgment system comprises;
an input unit configured to receive an input by a player,
a life and death judgment processor configured to determine whether a judgment object stone or target stone is alive,
an output unit configured to output a result of life and death judgment made by said life and death judgment processor; and

wherein

said life and death judgment processor is further configured to accept a designation of one or more target stones as said judgment object stones, implement a life and death judgment on said accepted one or more target stones, and determine if one of said target stones is captured or all of said target stones are captured.

* * * * *