(86) Date de dépôt PCT/PCT Filing Date:	2006/01/20
(87) Date publication PCT/PCT Publication Date:	2007/01/04
(85) Entrée phase nationale/National Entry:	2007/12/10
(86) N° demande PCT/PCT Application No.:	US 2006/002105
(87) N° publication PCT/PCT Publication No.:	2007/001490
(30) Priorité/Priority:	2005/06/16 (US11/154,084)
(51) Cl.Int./Int.Cl.	G06F 15/16 (2006.01)
(71) Demandeur/Applicant:	INTERNATIONAL BUSINESS MACHINES CORPORATION, US
(72) Inventeurs/Inventors:	NARAYANASWAMI, CHANDRASEKHAR, US; RAGNUNATH, MANDAYAM THONDANUR, US
(74) Agent:	WANG, PETER

| (54) Titre : | SERVEUR POUR UN ENVIRONNEMENT D'ORDINATEUR PERSONNEL PORTATIF |
| (54) Title: | PORTABLE PERSONAL COMPUTING ENVIRONMENT SERVER |

(57) Abrégé/Abstract:
A portable personal computing environment server comprises an interface for connecting to a host computer. The portable personal computing environment server also comprises a storage device storing a personal computing environment including one or more operating systems for restoring the personal computing environment in the host system.
(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

(10) International Publication Number
WO 2007/001490 A2

(51) International Patent Classification:
G06F 15/16 (2006.01)

(21) International Application Number:
PCT/US2006/002105

(22) International Filing Date: 20 January 2006 (20.01.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/154,084 16 June 2005 (16.06.2005) US

(71) Applicant (for all designated States except US): INTERNATIONAL BUSINESS MACHINES CORPORATION [—US]; New Orchard Road, Armonk, New York 10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only):
NARAYANASWAMI, Chandrasekhar [US/US]; 41 Longmeadow Road, Wilton, Connecticut 06897 (US).

(74) Agent: BUCHENHORNER, Michael, J.; Holland & Knight LLP, Suite 3000, 701 Brickell Avenue, Miami, Florida 33131 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(ii)) for all designations
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PORTABLE PERSONAL COMPUTING ENVIRONMENT SERVER

(57) Abstract: A portable personal computing environment server comprises an interface for connecting to a host computer. The portable personal computing environment server also comprises a storage device storing a personal computing environment including one or more operating systems for restoring the personal computing environment in the host system.
PORTABLE PERSONAL COMPUTING ENVIRONMENT SERVER

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation of United States Patent Application Serial Number 10/795,153, which is herein incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED-RESEARCH OR DEVELOPMENT

[0002] Not Applicable.

INCORPORATION BY REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISC

FIELD OF THE INVENTION

[0004] The invention disclosed broadly relates to the field of information processing systems and more particularly relates to the field of portable personal computing devices.

BACKGROUND OF THE INVENTION

[0005] As computers have become among the most important tools in the current business environment, many users rely on multiple computing devices to perform varied tasks. Some of the current problems that chief information officers and users face include: 1) multiplication of the costs of managing machines (virus protection, security patches, application upgrades); 2) cost of multiple operating system and application licenses; 3) creating disk backups; 4) maintaining machine and disk passwords; 5) difficulty of restoring machines after disk crashes; 6) securing
against network attacks; and 7) user data being scattered across a collection of
machines. There have been several attempts to address these concerns. Users are
primarily concerned with access to information relating to the tasks that they were
performing using their computers. Since some of these tasks are long running, users
desire the ability to suspend partially completed tasks and resume working on these
tasks at a later point in time. For instance, a user may start editing a document at the
office, and would like to continue working on the document at home, or the next day
at a different location. Currently laptop computers help address this requirement.
Users routinely suspend their laptops and resume them later. The suspend-resume
cycle preserves the computation state on the user's laptop, enabling users to quickly
suspend their tasks and resume them later.

[0006] However, laptop computers come with a set of disadvantages. Laptop
computers are relatively large and heavy because they contain everything: CPU,
memory, disk storage, as well as the screen, keyboard and pointing device. Laptops
also do not operate for a very long duration of time when powered solely by internal
batteries.

[0007] Given the widespread availability of computers and peripherals such as
keyboards, pointing devices, monitors, and the like, it may not be necessary for a user
to carry all of these items in the form of a laptop computer.

[0008] It would be advantageous to devise a scheme where a user can take
advantage of a widely-deployed installed base of personal computers, to suspend and
resume their tasks at different locations while carrying something that is much
smaller, lighter and less onerous to maintain than a laptop computer.
[0009] The key to suspending and resuming tasks is to find a way by which a user's personal computing environment can be moved from one location to another. A user's personal computing environment consists of the instantaneous state of the applications the user is working on, the configuration of the applications, the operating system on which the applications run and the configuration of the operating system. It is all the more important to be able to move a user's personal computing environment from one place to another in a manner that takes advantage of the widely deployed personal computing infrastructure, in a manner that uses existing systems without trying to force them to change or attempting to replace them with other systems.

[0010] We first consider existing approaches that attempt to transport a user's personal computing environment along with the user. The IBM Meta Pad is a portable device comprising a CPU, memory, disk, a suspend battery, and a docking connector which connects to a docking station which in turn connects to a mouse, keyboard and screen. Users work on their tasks using the Meta Pad and suspend it like they would suspend a laptop and eject the Meta Pad from its dock. The suspend battery maintains the state in the Meta Pad. The Meta Pad eliminates the need to carry the screen, keyboard and the pointing device. An inconvenience of this approach is that a proprietary Meta Pad docking station is needed at each location where the user needs access and it effectively attempts to dislodge the existing installed base of personal computers.

[0011] The Intel Personal server is a device comprising a CPU, memory, disk and Bluetooth or IEEE 802.11 network interface. Such a device can communicate with a standard personal computer, but the main problem with this approach is the use of wireless connections for exchanging all data between the personal computer and Intel Personal Server. Every communication requires HTTP server/soap
connections from an environment to a belt worn server. While this concept has some merit, it requires the environmental personal computer to support standard interfaces as well as applications to deal with the data that is carried on the personal server. The environmental personal computers still need to be administered and managed, and the battery life of the personal server is a serious usability problem. The Intel Personal Server does not enable the user to carry their personal computing environment with them. It only enables them to access some information that is on their Personal Server device at different locations.

Currently Linux operating system distributions exist that contain an entire operating system and applications on a bootable CD/DVD (compact disk/digital video disk) or other read-only media. Users can boot any PC (personal computer) from the CD and create a familiar desktop environment on it. Further they may carry read/write USB (Universal Serial Bus) flash storage with their personal files. In this approach the user's computation state is not preserved as the user moves from one machine to another. Further, the user needs to carry two items, the bootable read-only CD and a R/W storage device for data that is modifiable.

The diskless Sun Java Station/IBM Network computer attempted to solve some of the above problems by using a thin client connected to a fat server by fat pipes. This approach has the drawback that it relies heavily on a browser, the Java OS and Java applications. Slow connectivity, especially from remote locations, remained an issue with such an approach. The approach also took away the personalization aspect by disallowing the user to install any applications. In addition, this approach tried to dislodge and replace the existing personal computer ecosystem.

Internet Suspend/Resume (ISR) from Intel is a technology for transporting personal computing environments over a network. It relies on
suspending and resuming the state of a virtual machine; it stores the suspended state on a distributed file system, from where it can later be retrieved and resumed. An important limitation of the ISR approach is that it requires network connectivity. It would be advantageous to do away with the need for any network connectivity by exploiting portable storage devices. Another limitation of ISR is that it requires that end systems be pre-configured with ISR software. It would be advantageous to have a system that does not require any software to be pre-installed on end systems.

[0015] The Microsoft Remote Desktop provides a solution that just sends the key strokes and events to the host (server) computer. The host computer then sends the graphics over to the remote (client) computer. This is similar to what X11 did for workstations in the 80s and 90s. The session is not resumed where it was left off. This is just a client server approach.

[0016] Xmove is another approach (see Ethan Solomita, James Kempf, and Dan Duchamp, "XMove: A Pseudoserver for X Window Movement," The X Resource, (1):11, pp. 143-170, July 1994) This allows an X window on the remote machine to be moved to another remote machine. The application continues to run on the same server machine. This is done by capturing the state for that particular X Window by introducing a pseudo server in the middle.

[0017] There have been a few implementations of window movement using the toolkit approach. Trestle is a toolkit that can move shell windows from one display to another. XTk is a window toolkit that allows window widgets to move from one server to another. XTk introduces an additional step in widget creation: screen binding. Screen binding binds a widget to a screen without geometrical layout. This allows the widget’s geometry negotiation to account for screen geometry should it be moved. An additional step is also introduced in widget shutdown, to maintain widget structures in case they should be moved to another screen.
In the virtual network computing (VNC) system, server machines supply not only applications and data but also an entire desktop environment that can be accessed from any Internet-connected machine using a simple software NC. Whenever and wherever a VNC desktop is accessed, its state and configuration (right down to the position of the cursor) are exactly the same as when it was last accessed. The technology underlying VNC is a simple remote display protocol. Unlike other remote display protocols such as the X Window System and Citrix’s ICA, the VNC protocol is totally independent of operating system, windowing system, and applications. The VNC system is freely available for download from the ORL Web site at http://www.orl.co.uk/vnc/. It does not require the user to carry any hardware. However, it assumes network connectivity. See T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, "Virtual Network Computing", IEEE Internet Computing, Vol.2 No.1, Jan/Feb 1998 pp 33-38.

Although the foregoing solutions all have their own merits, there is a need for a truly portable solution that can provide a user with his or her work environment in any host environmental computer regardless of its configuration or location.

SUMMARY OF THE INVENTION

The above problems or shortcomings in portable computing environments are solved by using a portable personal computing environment server according to the invention. The portable personal computing environment server can be used in most host computer systems (e.g., PC-compatibles) regardless of their configurations. The portable personal computing environment server comprises the user’s most recent computing state for restoration in the host system.
BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 is a high level block diagram showing an embodiment of a personal computing environment server.

[0022] FIG. 2 is a block diagram showing another embodiment of a personal computing environment server.

[0023] FIG. 3 is a block diagram showing an information processing system according to the first embodiment.

[0024] FIG. 4 is a block diagram showing an information processing system according to the second embodiment.

[0025] FIG. 5 is a block diagram illustrating the content of the storage device of the personal computing environment server.

[0026] FIG. 6 is a block diagram showing the runtime software layering on two different hosts.

[0027] FIG. 7 is a block diagram showing a suspend operation.

[0028] FIGs. 8A, 8B, and 8C are block diagrams showing a resume operation.

[0029] FIG. 9 is a flowchart of a start-up and boot method according to an embodiment of the invention.
FIG. 10 is a flowchart of a suspend method according to another embodiment of the invention.

DETAILED DESCRIPTION

We solve the problems discussed above with an attachable storage device 100 (hereafter called a portable personal computing environment server or portable server) that can be connected to any host personal computer. Referring to FIG.1, there is shown a portable server 100 according to an embodiment of the invention. The portable server comprises a storage device 102 and a USB (universal serial bus) port 104 for coupling to a host system. The storage device 102 with information and software that converts the host personal computer in the environment into a personalized computer, i.e., one that has software and data selected by the guest user and which resumes its computing state from the point it was last suspended. The portable personal computing environment server 100 is preferably a guest system that comprises suitable software to suspend and resume state, and to boot personal computers from a wired connection interface such as a USB (universal serial bus) or Ethernet interface 204 (discussed with respect to FIG. 2). The attached portable personal computing environment server 100 has a small form factor such as the size of a deck of cards but is expected to become even smaller as technology advances.

The portable personal computing environment server 100 works with the already deployed and pervasive collection of personal computers, attaching to them over a fast local connection. Effectively, everything from the standard host personal computer, such as its central processor unit, memory, display, network, except its hard disk drive will be exploited. To be successful, the connection process should be quick and the portable device should be less onerous to maintain than a separate computer system or systems. The ideal solution should be very easy to use and should be able to resume computation at the same state where it was suspended.
[0032] Referring to FIG. 2, there is shown a portable server 200 according to another embodiment of the invention. In this embodiment the portable server 200 comprises a storage device 202 such as a hard disk drive or other suitable storage media and Ethernet interfaces/ports 204 and 206. Ethernet interface 204 connects to the host system and Ethernet interface 206 connects the portable server 200 to a local or wide area network, preferably through a wall port. The portable server 200 also comprises a central processor unit 208 and a power supply 210 using either a battery 212 or alternating current connection 214.

[0033] Referring to FIG. 3, there is shown the portable server 100 coupled with a host system 302. The host system 302 also comprises an I/O subsystem 304 that drives a standard set of peripheral devices such as a keyboards, mouse, and display. The host system 302 comprises a USB port coupled to the portable server 100 and an Ethernet port coupled to an Ethernet local or wide area network through the wall port.

[0034] Referring to FIG. 4, there is shown the portable server 200 coupled with a host system 402. The host system 402 is connected to an I/O subsystem 404 that drives a standard set of peripheral devices such as a keyboards, mouse, and display. The host system 402 comprises a USB port coupled to the portable server and an Ethernet port coupled to an Ethernet local area network.

[0035] Referring to FIG. 5, there is shown the storage device 102 of the portable server 100 which stores all of the information and software required to restore the user's computing state as it existed when a prior session on a different host computer was suspended. The storage device 102 (see FIG. 1) comprises a first-level operating system OS-A 512, a second-level operating system OS-B 514, and a virtual machine layer 502. OS-A 512 includes a boot loader to boot OS-A and drivers for
various hardware devices. OS-B 514 is configured for the virtual machine layer 502. The storage device also stores user data files 504, the user’s suspended computing environment 506, applications and libraries 508 for OS-A 512 to support the VM layer 502 and applications and libraries 510 for OS-B 514 to support the user. The storage device must have sufficient storage capacity to store the operating systems and the user’s computing environment and state.

[0036] Storage of all of the above software and data will require ten or more gigabytes of storage depending on how much of the computing environment and state the user wishes to capture in the storage device. The storage device 104 is preferably non-volatile so that a battery is not required. Even in embodiment 200, the storage device 202 is preferably non-volatile so that the battery or other power supply is not required when the personal computing environment server is not actively being used. Storage device 104 or 202 could be a hard disk drive, non-volatile semiconductor storage such as FLASH memory, a magnetic random access memory, optical storage or other suitable device.

[0037] Referring to FIG. 6 there is shown a block diagram illustrating the runtime software layering on two different hosts. The layering is done so that the user applications 610 interact with the same OS-B layer 608. The software layering model 600 corresponds to a first host machine and the software layering model 601 corresponds to a second host machine. The first and second host machines have different hardware characteristics 602 and 603, respectively. Each layering model has an OS-A 604 that interacts with the respective hardware configurations 602 and 603. Therefore the OS-A layers 604 represent different environments. Therefore, while each OS-A 604 sees and shows different environments, each virtual machine layer 606 presents the same view to the user applications 610 as well as OS-B 608. Each software layering model also comprises a virtual machine layer 606 that
interacts with a different OS-A environment 604 but presents identical embodiments to the OS-B layers 608.

[0038] FIG. 7 shows a block diagram of a suspend operation. Once a user wishes to suspend a session on a host computer, he or she causes a suspend instruction to the virtual machine layer 706. In response the operation of user applications 702 and OS-B 704 are suspended by saving their current state in a storage area (e.g., file 712). The virtual machine layer 706 manages the user applications 702 and OS-B 704 during this process. Upon saving the current state, the virtual machine layer 706 and OS-A 708 are shut down because their state does not comprise any information of interest to the user for a subsequent session. The user’s suspended computing environment is then saved in a portable server which is removed for coupling with another host in the subsequent session.

[0039] When the user wishes to resume work at another host, he or she connects the portable server to the second host and commences a resume operation. FIGs. 8A-C show such a resume operation. First, in FIG. 8A the OS-A 802 is booted by the second host machine hardware 800. Second, in FIG. 8B a virtual machine layer 804 is built on top of the OS-A 802. This virtual machine layer 804 acts as an interface between the host machine hardware 800 and the second level operating system OS-B 808 (shown in FIG. 8C). After the virtual machine layer is created, the host system then loads the second operating system OS-B 808 and the user applications from the portable server and then resumes the user’s suspended computing environment 804.

[0040] Referring to FIG 9, there is shown a flow chart illustrating a resume method 900 according to an embodiment of the invention. In step 902 the personal computing environment server (guest) system is attached to the host system. In step
the host system 302 (or 402) is powered on. In step 906 the host system receives an instruction to boot the host system from the system attached thereto. This instruction can take the form of a manual operation performed by the user during the boot process or it can be read from a bootable diskette or CD or it can be read from 5 the Basic Input/Output System (BIOS) (provided that the BIOS was written to support booting from this type of device). In effect by booting from the guest system, the host system will come under the control of the guest system and bypass its own storage device. If the guest system is similar to the embodiment shown in 100, the host system 302 is instructed to boot from USB. If the guest system is similar to the embodiment shown in 200, the host system 402 is instructed to boot from Ethernet. The guest system 200 responds to the network boot request (BOOTP request) and initiates the boot operation of OS-A 512 from storage 202. The CPU 208 is used to manage this process. Step 906 is not required in cases such as where the host system BIOS is configured to boot from a connected personal computing environment server. For example, the first stage operating system is may be a generic OS, such as Knoppix, that is not custom configured to the host OS.

In step 908 the host system retrieves a first stage operating system (OS) and boots into the first stage OS based on the host system configuration. In step 910 a virtual machine environment is created on top of the first stage OS that exports a standard virtual machine interface to the host system. In step 912 the host system retrieves the suspended state corresponding to OS-B and user applications running on OS-B. In step 914 the host system restore the user’s computing environment in the host system. Finally, in step 916 the host system provides additional data and applications from OS-B as required by user. The host system also provides data and applications from OS-A as required by the Virtual Machine layer. In embodiment 200, the CPU 208 is used to recognize such requests and service them. Other network packets that are directed to external network sites are simply forwarded to Ethernet
interface 208. It discovers the host OS configuration at boot time and sets itself up to handle the configuration. Moreover, the second level OS may not be suspended; it may also boot.

Referring to FIG 10, there is shown a flow chart illustrating a suspend method 1000 according to an embodiment of the invention. In step 1002 the host system receives a suspend instruction from its user. In step 1004 the host system initiates a suspend operation on the virtual machine (VM) layer. Then in step 1006 the host saves the environment that corresponds to OS-B and the user applications. In step 1008 the VM layer is shut down. Then in step 1010 the OS-A is shut down. Step 1012 powers off the host system. In step 1014 the user is prompted to detach the guest system. After the guest system is detached the user can restore the physical connections to the host system, if necessary in step 1016.

As mentioned above, not all BIOS versions can boot from a USB device. For a system with such a BIOS, a user may create a diskette with a USB/Firewire driver. The first stage bootloader from the diskette and the rest of the boot process commences from the USB/Firewire disk.

Instead of using a wired Ethernet connection it is also possible to use a wireless local area network (LAN) connection according to IEEE standard 802.11.

A system as discussed above can change the entire computing paradigm. Consider the case of a hospital where electronic access to patient records is becoming more and more common. Each of the doctors can use a device according to the invention to carry his or her own portable personal computing environment server and connect it to different personal computers in the hospital (for example, in the radiology department, a central nursing station, etc.) and be able to securely
access patient data. In another example, a knowledge worker could carry his portable personal computing environment server home, do some work at home and bring it back to work the next morning and connect to his office personal computer and resume where he left off without worry about synchronizing his data. The savings to the user could be significant. Over time, if some of the user’s personal computers become diskless because they only operate in concert with his portable personal computing environment server, then all of the problems such as OS licenses, upgrades, security patches, backups, and the like go away.

Therefore, while there has been described what are presently considered to be the preferred embodiments, it will be understood by those skilled in the art that other modifications can be made within the spirit of the invention.

We claim:
CLAIMS

1. A method on an information processing system, comprising steps of:
 connecting a portable personal computing environment server to a host system;
 retrieving a first level operating system;
 performing a first stage boot procedure using the first level operating system;
 starting a virtual machine on the first level operating system;
 retrieving a computing environment comprising a second level operating system;
 and
 performing a restore process with the computing environment, wherein the
 restore process restores the computing environment inside the virtual machine.

2. The method of claim 1, further comprising retrieving one or more applications
 from the portable personal computing environment server.

3. The method of claim 1, further comprising retrieving one or more data files from
 the portable personal computing environment server.

4. The method of claim 1 wherein the first level operating system is a Linux
 operating system.

5. The method of claim 1 wherein the second level operating system is a
 Windows operating system.

6. The method of claim 1 further comprising an executing an instruction to load a
 first level operating system received from a basic input output system of the host
 system.
7. The method of claim 6 wherein the instruction to load a first level operating system is received from a bootable memory device.

8. The method of claim 6 wherein the instruction to load a first level operating system is received from a manual operation performed by a user.

9. The method of claim 1 wherein the first level operating system is loaded from the portable personal computing environment server.

10. The method of claim 1 wherein at least a portion the first level operating system is loaded from a removable storage device.

11. The method of claim 1 further comprising receiving a request to suspend the computing state and responsive to that request, storing the most current computing state in the portable personal computing environment server before shutting down the host system.

12. The method of claim 1 further comprising requesting the host system to boot from the personal computing environment server.

13. The method of claim 1, further comprising using an existing interface on the host to perform the step of connecting a portable personal computing environment server to a host system.

14. The method of claim 1, further comprising creating a machine independent virtual configuration.
15. The method of claim 1 wherein the step of performing a restore process is done with a suspended computing environment inside a virtual configuration.

16. The method of claim 1 further comprising a step of retrieving a part of the first level operating system from the portable personal computing environment server.
17. A portable personal computing environment server comprising:
 a storage device comprising a personal computing environment comprising one
 or more operating systems for restoring a personal computing environment on a host
 system.

18. The portable personal computing environment server of claim 17, wherein the
 storage device comprises one or more applications programs selected by the user of
 the portable personal computing environment server.

19. The portable personal computing environment server of claim 17 wherein the
 one or more operating systems further comprise a first stage bootloader for booting the
 host computer based on the actual configuration of the host computer.

20. The portable personal computing environment server of claim 17 wherein the
 storage device comprises one or more data files selected by the user of the portable
 personal computing environment server.

21. The portable personal computing environment server of claim 17 wherein the
 storage device comprises a computation state reflecting the latest state of the personal
 computing environment and wherein the portable personal computing environment
 server restores the computation state for presentation by the host computer upon
 booting the host computer.
22. A machine readable medium comprising program instructions for connecting a portable personal computing environment server to a host system; retrieving a first level operating system; performing a first level boot procedure using the first level operating system; starting a virtual machine on the first level operating system; retrieving a computing environment comprising a second level operating system; and performing a restore process with the computing environment, wherein the restore process restores the computing environment inside the virtual machine.

23. The machine readable medium of claim 22 comprising a bootable removable storage device.

24. The machine readable medium of claim 23 comprising a bootable diskette.

25. The machine readable medium of claim 23 comprising a bootable CD ROM.

26. The machine readable medium of claim 23 comprising a removable USB storage device.
FIG. 5

STORAGE DEVICE

502 VM LAYER

504 USER DATA FILES

506 USER'S SUSPENDED COMPUTING ENVIRONMENT

508 APPLICATIONS AND LIBRARIES FOR OS-A TO SUPPORT VM LAYER

510 APPLICATIONS AND LIBRARIES FOR OS-B TO SUPPORT USER

512 OS-A (INCLUDES BOOT LOADER TO BOOT OS-A, AND DRIVERS FOR VARIOUS HW)

514 OS-B (CONFIGURED FOR VM LAYER)
4/B

FIG. 6

```
+-----------------+      +-----------------+
| USER APPLICATIONS |      | USER APPLICATIONS |
+-----------------+      +-----------------+
| OS-B            |      | OS-B            |
| VIRTUAL MACHINE LAYER |      | VIRTUAL MACHINE LAYER |
| OS-A            |      | OS-A            |
| HOST MACHINE 1 HARDWARE |  | HOST MACHINE 2 HARDWARE |
| 610             |      | 610             |
| 608             |      | 608             |
| IDENTICAL ENVIRONMENT |  | IDENTICAL ENVIRONMENT |
| 606             |      | 606             |
| DIFFERENT ENVIRONMENTS |  | DIFFERENT ENVIRONMENTS |
| 604             |      | 604             |
| DIFFERENT HW CHARACTERISTICS |  | DIFFERENT HW CHARACTERISTICS |
| 602             |      | 603             |
```

SUBSTITUTE SHEET (RULE 26)
FIG. 8C

USER'S SUSPENDED COMPUTING ENVIRONMENT

USER APPLICATIONS
OS-B
VIRTUAL MACHINE LAYER
OS-A
HOST MACHINE 2 HARDWARE

SUBSTITUTE SHEET (RULE 26)
FIG. 9

BEGIN

ATTACH PERSONAL COMPUTING ENVIRONMENT SERVER (GUEST) TO HOST SYSTEM

POWER ON HOST SYSTEM

RECEIVE AN INSTRUCTION TO BOOT HOST SYSTEM FROM GUEST SYSTEM

RETRIEVE A FIRST STAGE OPERATING SYSTEM AND BOOT HOST SYSTEM INTO FIRST STAGE OS BASED ON HOST SYSTEM CONFIGURATION

CREATE A VIRTUAL MACHINE ENVIRONMENT ON TOP OF FIRST STAGE OS THAT EXPORTS A STANDARD VIRTUAL MACHINE INTERFACE

RETRIEVE SUSPENDED STATE CORRESPONDING TO OS-B AND USER APPLICATIONS RUNNING ON OS-B

RESTORE USER'S COMPUTING ENVIRONMENT

PROVIDE ADDITIONAL DATA/APPLICATIONS FROM OS-B AS REQUIRED BY USER. ALSO PROVIDE DATA/APPLICATIONS FROM OS-A AS REQUIRED BY VIRTUAL MACHINE LAYER

END

SUBSTITUTE SHEET (RULE 26)
BEGIN

RECEIVE SUSPEND INSTRUCTION FROM USER

INITIATE SUSPEND OPERATION ON VM-LAYER

SAVE ENVIRONMENT CORRESPONDING TO OS-B AND USER APPLICATIONS

SHUTDOWN VM LAYER

SHUTDOWN OS-A

POWER OFF HOST SYSTEM

ASK USER TO DETACH GUEST SYSTEM

USER RESTORES PHYSICAL CABLE (ETHERNET) CONNECTIONS ON HOST SYSTEM IF NECESSARY

END