PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) --

(51) International Patent Classification © : (11) International Publication Number: WO 98/34365
HO4K 1/00 Al _ _
(43) International Publication Date: 6 August 1998 (06.08.98)
(21) International Application Number: PCT/US98/01215 | (81) Designated States: CA, JP, MX, European patent (AT, BE,
CH, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 22 January 1998 (22.01.98) PT, SE).
(30) Priority Data: Published

60/037,817 5 February 1997 (05.02.97) us
60/047,247 21 May 1997 (21.05.97) Us
08/974,675 19 November 1997 (19.11.97) US

(71) Applicant: AT & T CORP. [US/US]; 32 Avenue of the
Americas, New York, NY 10013-2412 (US).

(72) Inventors: DEVANBU, Premkumar, Thomas; 170 Willow
Avenure Ext., North Plainfield, NJ 07063 (US). STUB-
BLEBINE, Stuart, Gerald; 4 Knox Lane, Lebabon, NJ 08833
(US).

(74) Agents: DWORETSKY, Samuel, H.; AT & T Corp., P.O. Box
4110, Middletown, NJ 07748 (US) et al.

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM AND METHOD FOR PROVIDING SOFTWARE PROPERTY ASSURANCE TO A HOST

(57) Abstract

A system and method for providing assurance to a host executing
a piece of software that the software possesses a particular property. A
certifier determines if a piece of software possesses a particular property
(342), and if it does, it cryptographically signs the software, producing a
signature (343). The software and a certificate that includes the signature
is then distributed to a host (344). The host checks the signature. If
the signature is valid, then the host is provided with assurance that the L .
software possesses the particular property. If the signature is not valid, ’ b

then the host is provided with no such assurance.

' RECEWE ; 34
| SOFTWARE | _
L . i
|
|
Y. .
P T~ T \342
DOES e
SOFTWARE POSSESS > . » RETURN

" _PARTICULAR PROPERTY?~" NO

\\ e

Y (343

' !

SIGN SOFTWARE AND
INCLUDE SIGNATURE
IN CERTIFICATE

!
\
\
|

Y

! SEND SOFTWARE ‘ J
AND CERTIFICATE o/
TO HOST

1344

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
ClI
CM
CN
Ccu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia Sz Swaziland
Azerbaijan GB United Kingdom MC Monaco ™D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar T) Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Tsrael MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Cote d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

WO 98/34365 PCT/US98/01215

10

15

20

25

SYSTEM AND METHOD FOR PROVIDING SOFTWARE PROPERTY ASSURANCE TO A HOST

Cross-~-References to Related Applications

This application claims the benefit of U.S.
Provisional Application Nos. 60/047,247, filed May 21,
1997 and 60/037,817, filed February 5, 1997.

Background of the Invention

The field of the present invention is software
verification and trust, and in particular relates to
providing assurance to a host that a piece of software
possesses a particular property.

The advent of distributed computing has increased the
need for an efficient way to provide assurance to a host
that a piece of software has a property. A piece of
software is a set of instructions adapted to be executed
by a processor on a host. An example of a processor is a
general purpose microprocessor. Another example of a
processor 1is an Application Specific Integrated Circuit
(ASIC). Yet another example of a processor is a Digital
Signal Processor (DSP).

An example of a property of a piece of software is
the identity of the author of the software. Another

example of a property is the identity of the compiler used

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

to generate the piece of software. In certain
applications, it is important to provide assurance to the
host that a piece of software cannot alter the contents of
a file stored on a disk drive of the computer on which the
software 1s executed. This 1s another example of a
property of a piece of software.

In a distributed computing environment, software
(e.g., applets, servlets, CGI bins, etc.) is obtained by
a host from a provider. As used herein, a provider is a
party that provides software that 1is adapted to be
executed by a host. An example of a provider is a software
manufacturer. Another example of a provider is a server
on the World Wide Web connected to the Internet, where the
server acts as a middleman, receiving software from a
gsoftware manufacturer and sending software to hosts to be
executed.

A host is a party that executes software. An example
of a host is a client with a browser that is adapted to
execute Java byte code, the client being adapted to be
connected to the World Wide Web through the Internet. For
example, a client computer (a host) with a browser obtains
a Java applet from a server (a provider) on the World Wide
Web over the Internet. The client executes the software,
hoping that the software will not have any malicious
properties, either intended or accidental, such as
infecting the client with a virus, improperly altering
files stored on the client, or sending private information
stored on the client to another computer connected to the
Internet.

Certain known systems provide the client with
assurance that the software will not act improperly or
maliciously, i.e., that the software has certain
properties that preclude such behavior. However, these
known systems are of limited wusefulness, and can be

expensive and inefficient to implement.

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

One known system for providing assurance relies upon
the software provider to extensively test the software
once the software is received from the software
manufacturer. In one embodiment of this system, a provider
tests the software under many possible conditions. If the
software passes the tests, then the provider agrees to
distribute the software to a host that trusts the
provider.

This known system of provider testing can be
disadvantageously unreliable because most software cannot
be tested under all possible conditions. It is therefor
possible that software that passes all of the tests could
prove to be harmful when it is wused under untested
conditions. Further, if the nature of the tests become
known by an adverse party, malicious features purposely
designed to circumvent the tests could be inserted into
the software. This could prove devastating to the host.

If the ©provider has access to the software
manufacturer's source code, it can be easier for the
provider to test certain properties of the software
statically (without executing the software). But many
software manufacturers are reluctant to release source
code because it discloses valuable intellectual property
(e.g., trade secrets) that is more wvaluable if kept
confidential.

One known system for pro¥viding assurance as to the
properties of source code is implemented in the Java
programming language. Java byte code contains the same
information as Java source code. Byte code is portable
compiled code that is ready to be interpreted on a
platform using a Java interpreter. Java byte code is
verified every time a Java applet is received and before
it is executed. Software is said to be verified when it is
analyzed and determined to possess a particular property.
For example, a piece of goftware can be verified to

possess the property of not writing data to any file

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

stored on a host. A “verifier” is a first piece of software
adapted to be executed by a processor to verify a second
piece of software. Known browsers, such as certain
versions of the Netscape Navigator manufactured by the
Netscape Communications company, include Java verifiers
that verify Java byte code before it is executed.

Java byte code can be verified statically. Byte code
is verified statically when it is analyzed by examining
the code itself, rather than analyzing its behavior when
it is executed. Byte code that i1s verified by examining
its behavior when it is executed is said to be dynamically
verified.

An example of property verified in Java byte code'by
a Java byte code verifier is that a piece of Java byte
code contains no type errors. A static type-inference
analysis 1is carried to ensure, for example, that a
variable A of type char (character) is not used in the
code in such a way as to produce a type error (e.g., type
char variable A is not used in arithmetic expressions with
floating point variables to yield an integer, i.e., a
character string is not added to a real number to yield an
integer). If the Java code is approved by the verifier,
then it provides a reasonable (as yet formally unproven)
basis for the host to conclude the byte code possesses the
property of not giving rise to type errors during
execution.

However, the wverifier can be imperfect, and can
indicate that a piece of Java byte code has a property
when in fact i1t does not, at least under certain
conditiong. Also, analyzing Java byte code every time
before it is executed to determine if it has a property
disadvantageously imposes a significant burden on the
host, especially for analyzing the byte code of large
applets.

Because 1t 1is imperfect, the Java wverifier is

continually under development. As used herein, a “verifier”

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

is a set of wverification instructions adapted to be
executed by a processor to determine 1f a piece of
software (called a “set of subject instructions”, or
“subject set”) possesses a particular property. When a flaw
is found in the verifier, the verifier must be revised and
updated. Distributing the latest version of the Java
verifier ig logistically difficult, because the verifier
resides at every local platform that executes Java code.
For example, the verifier resides in millions of copies of
the Netscape browser manufactured by the Netscape
Communications company, and it is unlikely that every such
browser executes the latest updated version of the Java
verifier. Thus, outdated verifiers are widely used,
providing a diminished level of security by operating with
weaknesses that can be widely known and exploited.

Another approach to providing assurance is provided
by formal verification. Software that is formally verified
is analyzed mathematically to prove that the software has
a property. Formal verification is generally carried out
by the host because the provider remains untrusted. Even
if the host provides trusted formal verification software
to the provider, there is no guarantee that the formal
verification software will not be compromised in some way
at the providers site, and thus improperly analyze
harmful software without detecting its harmful aspects.
Formal verification techniques are also unwieldy, and can
often be impractical to implement for software of any real
complexity.

The problem of dealing with an untrusted provider has
been addressed in one known system by having the provider
construct a proof establishing that a piece of software
has a property, and shipping the proof along with the
binary wversion of the software to the host. The binary
program 1is annotated to enable the construction of a
verification condition by the host. If the host can

establish the verification condition, then the host 1is

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

assured that the software has the property. This
advantageously reduces the burden on the host, which must
only check the proof, which can be carried out much more
quickly and easily than having to construct the proof.

Although generally faster than proof construction,
proof checking can still prove to be a substantial task,
depending upon the size of the proof. In the case of
highly mobile code, such as applets and agents, the proof
must be checked for each execution, which can incur
unacceptably high overhead for the host. Also, proof
checkers are installed and executed on the host computer,
and are thus subject to the same logistical problems
(distribution and maintenance of updates) as for the Java
verifier. Also, 1in order for proof checking to be
effective, the full proof and any invariants that
contribute to the proof have to be released by the
provider to the host. The disclosure of invariants can
actually reveal more valuable proprietary information than
the disclosure of source code. Such a disclosure of
invariants can disadvantageously compromise the
confidentiality and therefore the value of certain of the
software manufacturers intellectual property.

Another method of providing assurance in an automated
fashion is the ActiveX model. ActiveX is based upon the
assumption that software built by well-known individuals
or companies can be trusted.” The authenticity of the
software 1is established by an attached cryptographic
signature. If the key of the signature corresponds to a
key in a trusted group, then the software is accepted and
executed without requiring any further static or dynamic
checks. Signature checking is very quick, and adds little
overhead.

However, the trust provided by the ActiveX system is
based only wupon establishing the identity of the
manufacturer and not more. Relying entirely on the

reputation of a manufacturer can be risky. Further, if the

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

cryptographic keys are stolen or misused, signed (and
hence trusted) software could wreak havoc on a host.
Likewise, if a trusted insider with a trusted key builds
malicious software and signs it, the malicious software
will Dbe accepted and run without further checking,
possibly with disastrous results.

Under yet another known system, providers can have
their software tested by a third party that is trusted by
the host. The third party analyzes and then signs software
if the analysis shows the software to possess a property.
The process of analyzing and then signing a piece of
software if the analysis shows the software to possess a
property is termed “certification”. However, the provider
must trust the third party to maintain the confidentiality
of the testing process and of any intellectual property
belonging to the manufacturer. This can make a
manufacturer reluctant to use this known system.

In summary, analyzing software properties locally (at
the host) can be impractical (particularly in distributed
systemsg) because an updated verifier has to be universally
distributed every time a security weakness and/or flaw is
discovered 1in the present version of the verifier.
Formally verifying source code at the host can be
impractical, burdensome, and involve the disclosure of
intellectual property that the software manufacturer would
prefer to keep confidential. Having a third party analyze
the software and sign it reduces the burden placed on the
host and can involve fewer logistical problems, but fails
if the third party breaches its trust, or if cryptographic

keys are mismanaged.

Summary of the Invention

According to one embodiment of the present invention,
a system and method provide assurance to a host that a set
of subject instructions adapted to be executed on a host

processor possess a property.

WO 98/34365 PCT/US98/01215

10

15

20

25

30

In one embodiment, a verification processor executes
a version of a set of verification instructions to
determine if the set of subject instructions possess the
property. If the set of subject instructions possess the
property, then the verification processor
cryptographically signs the set of instructions to produce
signature information, and in one embodiment of the
present invention, distributes the set of instructions
with the signature information. In one embodiment,
information pertaining to the property verified by the
provider can be derived by a host from the set of subject
instructions and the signature data. In another
embodiment, the provider cryptographically signs property
data identifying the property of the set of subject
instructions verified by the provider.

When a host receives the set of subject instructions
and the signature, the host can use the signature to
determine the integrity and the authenticity of the
subject set of instructions, as well as the identity of
the property verified by the provider. If the host cannot
certify the set of subject instructions and the property
data using the signature information, then the host does
not execute the software. If the host can certify the set
of subject instructions and the property data, then the

host may execute the software.

Brief Description of the Drawings

FIG 1 shows a first embodiment of an apparatus in
accordance with the present invention.

FIG 2 shows a second embodiment of an apparatus in
accordance with the present invention.

FIG 3 shows a system-level embodiment of the present
invention.

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

FIG 4 is a flow chart showing an embodiment of the
verifier version management method in accordance with the
present invention.

FIG 5 is a flow chart showing an embodiment of the
software certification method in accordance with the
present invention.

FIG 6 is a flow chart showing an embodiment of the
signature checking method in accordance with the present
invention.

FIG 7 shows a system-level embodiment of the present
invention where a plurality of certifiers certify a piece
of software.

FIG 8 is a flow chart showing an embodiment of the
signature checking method of the present invention where

a plurality of certifiers certify a piece of software.

Detailed Description

One embodiment of an apparatus in accordance with the
present invention is shown in FIG 1. A physically secure
co-processor PSC) 101 is comprised of a processor 102;
memory 103 storing certification instructions 108 adapted
to be executed by the processor 102 to determine if a set
of subject instructions has a particular property, and if
it does, to sign the subject set with a private
cryptographic key 104 also stored in memory 103; and an
interface 105. The memory 103 and interface 105 are
coupled to the processor 102.. A tamper-proof enclosure
107 surrounds the processor 102 and computer readable
memory 103. The interface 105 is disposed to convey
electrical signals through the tamper-proof enclosure 107.

In one embodiment of the present invention, the
tamper-proof enclosure 107 includes a conductive strip
bonded to the interior of the enclosure 107 which, when
electrically interrupted (e.g., from an unauthorized
attempt to open the enclosure 107), erases the contents of

the computer readable memory 103. In another embodiment,

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

10

the memory 103 stores instructions which the processor 102
executes to analyze data received through'the interface
105. When this data conforms to predetermined conditions
(e.g., ten consecutive invalid cryptographic keys are
received by the secure co-processor 101 through the
interface 105), the processor erases the contents of the
memory 103.

In one embodiment of the present invention, the PSC
is a smart card. In another embodiment, the PSC is circuit
pack. In yet another embodiment, the PSC is a component
on a modular hardware card. The PSC can be constructed in
accordance with the disclosure of Secure Coprocessors in
Electronic Commerce Applications, by Bennet Yee and Doug
Tygar, Pfoceedings of the First USENIX Workshop on
Electronic Commerce, New York, New York, July 1995, which
is incorporated herein by reference.

The public and private cryptographic keys disclosed
herein are meant to be used in a public key encryption
system. In a public key encryption system, keys occur in
corresgsponding pairs. One key of the pair is kept
confidential (the “private key”), while the other key of
the pair is shared (the “public key”). If one of the pair
of keys is used to encrypt data, only the other of the
pair can properly decrypt the data.

In one embodiment of the present invention, data is
signed by a certifier wusing a public key encryption
system. As used herein, the term “certifier” means a party
that certifies software in accordance with the present
invention. The certifier signs the data wusing the
certifiers private key. The process of signing a piece of
data produces a signature, which is a piece of information
that can be sent to a host with the original data. The
host can use the signature to ascertain if the data with
which the signature is associated has been certified by a

particular party or member of a group of parties.

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

11

In one embodiment, a signature is produced by
generating a message digest from the data and then
encrypting the message digest wusing the certifiers
private key. A message digest functions much like a
gerial number to uniquely identify the data from which it
is derived. Here, the encrypted message digest 1is the
signature.

The original data and its encrypted message digest
are sent to a host. The host uses the same method used by
the certifier to derive the same message digest from the
data. The host then uses the certifiers public key to
decrypt the encrypted message digest (the signature).
Only the certifiers public key can decrypt the signature
properly. If the decrypted signature from the certifier is
identical to the message digest generated by the host,
then the signature has been determined to be valid by the
host, and the host is assured that the data was certified
by the certifier. If the decrypted signature is not the
same as the message digest generated by the host, then the
signature is determined to be invalid by the host.

Another embodiment of the present invention is shown
in FIG 2. Application Specific Integrated Circuit (ASIC)
201 embodies certification instructions 202 adapted to be
executed by the ASIC 201 to determine if a subject set has
a particular property, and if it doesg, to sign it with a
a private cryptographic key stored in memory 203. In one
embodiment, memory 203 is random access memory (RAM). In
another embodiment, memory 203 is a hard disk drive. A
tamper-proof enclosure 205 surrounds ASIC 201 and memory
203. Interface 206 is disposed to provide an electrical
connection through the tamper-proof enclosure 205.
Interface 206 and memory 203 are coupled to ASIC 201.

In another embodiment of the present invention, the
processor 102 shown in FIG 1 is not surrounded by a
tamper-proof enclosure 107, the processor being

sufficiently trusted (e.g., because it operates in a

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

12

secure environment, etc.) not to require such an enclosure
107.

FIG 3 shows a system-level embodiment of the present
invention. Administrator 401, software provider 402, and
hosts A 404, B 405 and C 406 are coupled to network 407.
In this embodiment, software certification is performed by
PSC 403 coupled to provider 402. In another embodiment,
certification is performed by the provider 402 itself.

PSC 403 analyzes a subject set to determine if it
possesses a particular property, and if it does, it signs
the subject set. In one embodiment of the present
invention, PSC 403 uses resources (e.g., memory, processor
time, etc.) at the provider 402 to analyze and sign (i.e.,
to certify) the subject set.

In one embodiment, administrator 401 sends a new
authorization message that includes updated certification
instructions and private cryptographic keys to the PSC
403. In one embodiment, administrator 401 also sends an
invalidation message that includes public key invalidation
information, and sends new authentication information that
includes a public cryptographic key to hosts A 404, B 405
and C 406. In other embodiments, an invalidation message
is sent that serves to notify the host that the present
version of the certification instructions is invalid. In
one embodiment, this results in the invalidation of a
symmetric key stored at the host.

In one embodiment of the present invention, if the
subject set has a particular property, then the PSC 403
uses the private key from the administrator 401 to
generate a signature and produce a certificate. A
certificate includes, but need not be limited to, the
signature. In one embodiment of the present invention, the
certificate also includes signed information about the
particular property that the subject set is determined to
possess by the PSC 403. In another embodiment, the
identity of the property is determined by the way in which

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

13

signature is produced. For example, in one embodiment,
the identity of the property is determined by the identity
of the group of keys to which the key used to sign the
subject set belongs. '

In one embodiment, the subject set of instructions is
sent to a host 404. A host 404 can use the public key
received from the administrator 401 to check the signature
in the certificate associated with a subject set of
instructions. If the signature is determined to be valid,
then the host 404 is assured that the subject set has the
property indicated by the certificate. If the signature is
determined not to be wvalid, then no such assurance is
provided to the host 404.

In another embodiment of the present invention,
public and private keys are managed by the provider 402.
In one embodiment, the keys are managed using certificates
embedded in the client, or else are pushed to the client
using “push” technologies. Push technologies allow a first
party to send information to a second party, whereas “pull”’
technologies only permit the second party to receive
information from the first party at the second partys
request. Also, key revocations can be pushed to the client
or pulled from a central vrepository (such as the
administrator 401) when the client starts.

FIG 4 shows a flow chart that illustrates an
embodiment of verifier version management method in
accordance with the present invention.

The administrator determines if the presently-
distributed version of the certification instructions is
outdated, step 301. If the present version outdated, then
the administrator sends an invalidation message to a host,
step 302. In one embodiment, the invalidation message
indicates to a host that the présently distributed public
key N 1is now invalid. 1In another embodiment, the
invalidation message indicates that a symmetric key is

invalid. In the general case, the invalidation message

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

14

carries information to the host that indicates that the a
given version of the certification instructions is now
invalid or outdated. The present invention is meant to
include any invalidation message that functions as such.
Thereafter, hosts will determine that signatures from
certifiers who have used the outdated version of the
certification instructions are invalid.

The administrator then sends a new authorization
message to the certifier, step 303. An authorization
message causes the certifier to use a new or updated
version of certification instructions, and also provides
information on how to generate a certificate signifying
that the new certification instructions have been used to
determine if a subject set possesses a particular
property. In one embodiment, the authorization message
includes a new version of the certification instructions
and a new private key.

New authentication information is also sent to the
host, step 304. Authentication information is used by the
host to authenticate a certificate, i.e., determine if a
certificate is valid. In one embodiment of the present
invention, this new authentication information includes a
new public key to replace a public key invalidated by the
invalidation message. In another embodiment, the
authorization message includes a new symmetric key and a
segment of update instructions adapted to be patched into
the present version of the certification instructions.

FIG 5 i1g a flow chart showing an embodiment of the
certification method in accordance with the present
invention. In one embodiment, the certification process is
performed by a PSC in conjunction with a provider. In
another embodiment, the certification process is performed
by the provider alone. 1In another embodiment, the
certification is performed by a third party that is

neither a provider nor a host. In yet another embodiment,

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

15

the certification process is performed by a plurality of
certifiers.

A certifier receives a piece of software from a
manufacturer or distributor, step 341. The provider uses
a version of the certification instructions to determine
if the subject set possesses a particular property, step
342. If the subject set possesses the property, the
provider signs the subject set to produce a certificate
with a signature, step 343. In one embodiment of the
present invention, the provider also signs a statement
that describes the particular property of the subject set.
In one embodiment, the certificate 1is produced using
private cryptographic key N associated with version N of
the certification instructions.

The provider distributes the software with the
certificate, step 344. In one embodiment, the provider
distributes the software and certificate by sending them
to a host. In another embodiment, the provider distributes
the software and certificate by sending them to an
intermediary. In one embodiment, the subject set is in
binary form. In another embodiment, the subject set is in
source code form.

FIG 6 is a flow chart showing an embodiment of the
signature checking method in accordance with the present
invention. The host receives the subject set (the
software) and the certificate from a provider, step 351.
The host determines if the certificate is valid, step 352.
If the certificate is valid, then the host is assured that
the subject set possesses the property, and can execute
the subject set, step 353. If the certificate 1is not
valid, then the host 1s not so assured, and does not
execute the subject set. In one embodiment, if the host
determines that the certificate is not wvalid, the host
sends a message to the administrator indicating that the

host wag unable to verify a signature, step 354.

WO 98/34365 PCT/US98/01215

10

15

20

25

30

35

16

FIG 7 shows another system-level embodiment of the
present invention that includes a plurality of certifiers.
Certifiers A 701, B 702 and C 703 each certify a subject
set of software and each generates a certificate. The
subject set 1is sent to the host 705 by a provider 704
through the network 706. The certificates generated by
the certifiers 701, 702 and 703 are sent to the host 704
for verification.

FIG 8 is a flow chart showing an embodiment of the
the signature checking method of the present invention
where a first plurality of certifiers are adapted to
certify a piece of software. The host receives a copy of
the subject set (the software) from the provider, step
801. The host then receives a certificate for the subject
set from each of a second plurality of certifiers, step
802. The second plurality can be equal to, or less than,
the first plurality. The host determines if each
certificate is wvalid, step 803. If the number of
certificates determined to be valid is at least equal to
a threshold, then the host can execute the subject set,
step 804. If the number of certificates determined to be
valid i1s less than the threshold, then the host does not
execute the subject set, step 805. In one embodiment, the
threshold is predetermined. In another embodiment, the
threshold is determined on-the-fly by the host to fit the
particular circumstances surrounding a given subject set.
For example, for a subject set obtained from a provider
not well known or trusted by the host, the threshold can
be set to be larger. For a subject set from a more
trusted provider, the threshold can be set to be lower.

The present invention advantageously provides a
substantial performance advantage over the known systems
that verify software at the host prior to each execution.
The advantages of the present invention are achieved in
part by providing the host with assurance that a piece of

software can be trusted to have a particular property by

WO 98/34365 PCT/US98/01215

10

15

20

25

30

17

requiring the host only to check a signature at execution
time, while the substantially more burdensome task of
certifying the software is carried out more centrally by
the provider. This advantageously zreduces the need to
extensively distribute and exhaustively maintain current
software certifiers to a large number of distributed
platforms, as 1s required by systems where the
verification of software is performed by the host at run
time.

In an embodiment of the present invention where the
set of subject instructions is sent in binary form from
the provider to the host, the present invention also
advantageousgly provides software property assurance to the
host "without requiring the manufacturer to disclose
valuable confidential intellectual property, such as
source code or invariants.

In another embodiment of the present invention,
certification instructions stored in a PSC comprise a
proof checker. A manufacturer generates a proof carrying
binary version of its software (e.g., in annotations of
the binary), and reveals the annotations and the proof to
the PSC. The PSC generates the certification condition
from the binary, checks the proof, and signs the binary
together with a statement to the effect that the relevant
security property is established to obtain a certificate.
This advantageously provides agsurance to the client that
the code has the security property without revealing to
the client the ©proof or . the annotations, thus
advantageously protecting valuable intellectual property
of the manufacturer. The logistical advantages of the
present invention pertaining to certifier version control

and key management also apply in this embodiment.

WO 98/34365 PCT/US98/01215

O 00 ~J & wn A W N =

e e T e
w N = O

18

WHAT IS CLAIMED IS:

1. A method for providing assurance to a host that a set
of subject instructions possesses a particular property,
comprising the steps of:

a. determining if the set of subject instructions
possesses the particular property at a
certifier;

b. if the subject set of instructions is determined
to possess the particular property, then:

i. signing the set of subject instructions at
the certifier to obtain a signature;

ii. distributing the set of subject
instructions and a certificate that

includes the signature to the host.

2. The method of claim 1, wherein the set of subject
instructions are signed using a private cryptographic key

at the certifier.

3. The method of claim 1, wherein the set of subject
instructions are signed using a symmetric cryptographic

key at the certifier.

4, The method of claim 1, wherein the set of subject

instructions are distributed to the host from a provider.

5. The method of claim 1, wherein the set of subject
instructions are distributed to the host from the
certifier.

6. The method of claim 1, wherein the set of subject

instructions and the certificate that includes the

signature are received together at the host.

WO 98/34365 : PCT/US98/01215

[V, T O FC T NS I

O 00 3 O L A~ W N =

A L AW N

W N =

19

7. The method of claim 1, further comprising the steps
of signing a statement that contains information
pertaining to the particular property possessed by the

subject set and including said signed statement in the

certificate.
8. The method of claim 1, further comprising the steps
of:

C. determining if the present version of

certification instructions used by a certifier
to determine if a subject set of instructions
possesses a particular property is outdated;

d. if the present version of the certification
instructions are determined to be invalid, then

sending a invalidation message to a host.

9. The method of c¢laim 8, wherein the invalidation

message indicates that a public key is invalid.

10. The method of claim 8, further comprising the step of

sending a new authorization message to a host.

11. The method of claim 10, wherein the new authorization

message includes a new public key.

12. The method of claim 10, wherein the new authorization
message includes new certification instructions and
information on how to generate a certificate
signifying that the new certification instructions
have been used to determine that a subject set has a

particular property.

13. The method of c¢laim 1, wherein the particular

property is the identity of the certifier of the set of
subject instructions.

WO 98/34365 PCT/US98/01215

SO O

O 00 3 O W=

O e
AW N = O

20

14. The method of c¢laim 1, wherein the particular
property is the identity of a compiler used to generate

the binary version of the subject set of instructions.

15. The method of c¢laim 1, wherein the particular
property is the identity of the manufacturer of the

subject set of instructions.

16. The method of c¢laim 1, wherein the particular
property is the version of the certification instructions

used to analyze the subject set of instructions.

17. The method of claim 1, further comprising the step of
determining at the host if the signature received in the

certificate is wvalid.

18. The method of claim 17, wherein if it is determined
at the host that the signature is not valid, then sending
an 1invalid signature message to the provider of the

subject set.

19. The method of claim 1, wherein a first plurality of
certifiers determine if the set of subject instructions
possesses a particular property, and wherein a second
plurality of certifiers each send a certificate including
a signature to the host, and further comprising the steps
of:

C. receiving the subject set of instructions at the
host;
d. determining at the host if a threshold number of

signatures is valid;

e. if the threshold number of signatures are valid,
then determining at the host that the subject
set of instructions possesses the particular

property.

WO 98/34365 PCT/US98/01215

—
O O 00 N N W N

oA W N =

O 00 3 N bk W N

— e
— O

21
20. A certifier comprising:
a. a processor;
b. a memory that stores a set of certification

instructions adapted to be executed on said
processor to determine if a set of subject
instructions possesses a particular property,
and if it does, then to sign the subject set of
instructions to obtain a signature;

C. a port adapted to be connected to a network;

said port and memory coupled to said processor.

21. The certifier of claim 20, further comprising a
tamper-proof enclosure surrounding said processor and
memory, and wherein said port comprises an electrical
interface disposed to conduct electrical signals through

said tamper-proof enclosure.

22. A medium that stores instructions adapted to be
executed by a processor to perform the steps of:
a. determining if a set of subject instructions
possesses a particular property;
b. if the subject set of instructions is determined
to possess the particular property, then:
i. signing the set of subject instructions to
obtain a signature;
ii. distributing "the set of subject
instructions and a certificate that

includes the signature.

WO 98/34365 PCT/US98/01215

“ |
“ “
“ o m
" w !
" P X | “
“ 1O “
" i T | “
! “wmuN% !
“ V..“R“.nlu.O "
_ x i i E= !
" oio!3hH !
“ s k23 :
" T N “
| =g i EE 0 |
| ! s 7)) o _
: PO lwz -
) [10] -)
" i % “
1 "A" 1
“ 2> !
| 14 “
" o !
" |
" ¢ "
" o |
1 <~ 1
| o |
_ o) _
; n |
1 S t
" L |
! S “
: x "
" Mﬁ/P :
“ -« “
" "
" |

. 1

FIG 1

202 \/

201

P

7
MEMORY
ASIC | e
PRIVATE

CERTIFICATION
INSTRUCTIONS

CRYPTOGRAPHIC KEY |

206

FIG 2

8/¢

S9EPE/R6 OM

SIT10/86S1/LDd

NEW AUTHORIZATION
MESSAGE

PHYSICALLY
SECURE
CO-PROCESSOR

SOFTWARE
PROVIDER

—

B

\ 402

/\401

VERIFICATION
ADMINISTRATOR

NETWORK

/g

407

HOST C

FIG 3

R

2 NEW AUTHENTICATION

406

INVALIDATION
MESSAGE

INFORMATION
404
HOST A)
HOST B

8/¢

S9EPE/86 OM

SIZ10/86S(1/.LOd

WO 98/34365 4/8 PCT/US98/01215

IS 301
PRESENT
VERSION OF THE
CERTIFICATION INSTRUCTIONS

OUTDATED?

7

RETURN

| YES
\ 4
SEND
INVALIDATION MESSAGE 302
TO HOST
\ 4
N 1303
SEND NEW AUTHORIZATION \/
MESSAGE TO CERTIFIER
\
/ 304

INFORMATION
TO HOST N

SEND NEW AUTHENTICATION /

FIG 4

WO 98/34365 PCT/US98/01215
5/8

RECEIVE 341

SOFTWARE \>

SOFTWARE POSSESS
ARTICULAR PROPERTY?

343
SIGN SOFTWARE AND
INCLUDE SIGNATURE
IN CERTIFICATE
344

SEND SOFTWARE
AND CERTIFICATE
TO HOST

FIG 56

WO 98/34365

354/\

\

PCT/US98/01215

A

6/8

251 _
RECEIVE
SOFTWARE AND
CERTIFICATE

352

DO NOT EXECUTE
SOFTWARE

NO

IS
SIGNATURE IN
CERTIFICATE

VALID?

FIG 6

YES

353
| 7

SOFTWARE POSSESSES
PARTICULAR PROPERTY
AND CAN
BE EXECUTED

PCT/US98/01215
7/8

WO 98/34365

1SOH

L 9ld

(

L0

-
VoL J3IAINO™Ud
R EIETIR-E fo)
\,//// \
— c
; €0.L
MYOML3IN V
///, & ‘V\
F/I\ /,// (rtl\.\\\\ - -~
90. |
g ¥3141L¥30

v ¥31411.4¥30 \\

WO 98/34365 8/8 PCT/US98/01215

— ' RECEIVE -
8o1 ~ . | SOFTWARE
. AT HOST

\ 4

RECEIVE A
CERTIFICATE
FROM EACH CERTIFIER

S IS N

| DO NOT No - THE NUMBER OF \\\
' EXECUTE SOFTWARE & . VALID SIGNATURES AT
| | . LEAST EQUAL TO A THRESHOLD .-

| Y NUMBER? o
/ \\ //

805, / S s

|
!
i

804/'/ A l

SOFTWARE CAN ‘
|

BE EXECUTED

FIG 8

INTERNATIONAL SEARCH REPORT Intemational application No.
PCT/US98/01215

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :HO4K 1/00
US CL :380/25, 4, 30
According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 380725, 4, 30, 23, 24

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A E US 5,724,425 A (CHANG, et al.) 03 March 1998, (03/03/98) 1-22

A US 5,422,953 A (FISCHER) 06 June 1995, (06/06/95) 1-22

D Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documenta: T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A document defining the generai state of the art which i3 not considered the principle or theory underlying the invention

to be of particular relevance

. . G "X document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which s when the document is taken alone
cited to establish the publication date of another citation or other . . i . .
special reason (as specified) Y document of particular releyance;‘v.he claimed invention cannot b_e
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“p document published.prior to the interational filing date but later than =g« document member of the same patent family
the priority date claimed
Date of the actual completion of the intemnational search Date of mailing of the intemational search report
05 JUNE 1998 1 0 JUL
Name and mailing address of the ISA/US Authorized officer // / 67
L. , T ST g -
Commissioner of Patents and Trademarks / S A JK’VZ LT 74
Box PCT 5, N
Washington, D.C. 20231 AVID CA
Facsimile No. (703) 305-3230 Telephone No. (703) 305-1836

Form PCT/ISA/210 (second sheet)(July 1992)%

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

