wo 2015/092954 A1 I} 1] A0 00O 0

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

25 June 2015 (25.06.2015)

(10) International Publication Number

WO 2015/092954 A1

WIPOIPCT

(51

eay)

(22)

(25)
(26)
(30)

1

1

(72

International Patent Classification:
GO6F 13/10 (2006.01) GO6F 13/00 (2006.01)
GO6F 9/46 (2006.01) HO4L 12/717 (2013.01)

International Application Number:
PCT/JP2014/005105

International Filing Date:
7 October 2014 (07.10.2014)

Filing Language: English
Publication Language: English
Priority Data:

14/132,135 18 December 2013 (18.12.2013) US
Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard

Road, Armonk, New York, 10504 (US).

Applicant (for MG only): IBM JAPAN, LTD. [JP/IP];
19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo,
1038510 (JP).

Inventors: DECUSATIS, Casimer M.; 2455 South Road,
Poughkeepsie, New York, 12601 (US). KRISH-
NAMURTHY, Rajaram B.; 2455 South Road, Pough-
keepsie, New York, 12601 (US).

(8D

(84)

(74) Agents: UENO, Takeshi et al.; ¢/o Toyosu site, IBM Ja-

pan, Ltd., NBF TOYOSU CANAL FRONT Bldg., 6-52,
Toyosu 5-chome, Koto-ku, Tokyo, 1358511 (JP).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SOFTWARE-DEFINED NETWORKING (SDN) FOR MANAGEMENT OF TRAFFIC BETWEEN VIRTUAL PRO-
CESSORS

12 1}2

1}2
/

}
HOST MACHINE / /
VM VM Vi
110
t1a-1_ [HYPERVISOR
VIRTUAL |~ 118
SWITCH
SDN 116

CONTROLLER

(57) Abstract: An aspect includes receiving, at a soft-
ware-detined networking (SDN) controller, an inquiry from a
virtual switch executing on a host machine. The inquiry in-
cludes a request to identity a tlow of a data packet received at
the virtual switch from a source virtual processor. The source
virtual processor is either a logical partition (LPAR) or a vir-
tual machine (VM) executing under control of a hypervisor
on the host machine. A destination virtual processor associ-
ated with the data packet is determined by the SDN control-
ler. In addition, the SDN controller identifies the flow
between the source virtual processor and the destination vir-
tual processor. The flow includes a least one virtual port in
the virtual switch. The SDN controller instructs the virtual
switch to send the data packet from the source virtual pro-
cessor to the destination virtual processor via the identified
flow.

WO 2015/092954 A1 |IIWAT 00N VT 0RO A A A0 o

Published:
— with international search report (Art. 21(3))

WO 2015/092954 PCT/JP2014/005105

Description

Title of Invention: SOFTWARE-DEFINED NETWORKING (SDN)
FOR MANAGEMENT OF TRAFFIC BETWEEN VIRTUAL

[0001]

[0002]

[0003]

[0004]

PROCESSORS
Technical Field

The present invention relates generally to software-defined networking (SDN), and
more specifically, to using SDN for management of traffic between virtual processors.
Background Art

Information technology (IT) resources, such as computer processors and networks,
are being called upon to support ever greater processing demands, leading to the need
for server footprints of increasing size to accommodate these expanding workloads.
Virtualization provides a way to abstract the components of today's IT resources to
consolidate, integrate, and simplify the required infrastructure and reduce the overall
cost of IT resource ownership.

Server virtualization technology allows for the configuration and deployment of
multiple logical server configurations on a common physical footprint to provide
processing and usage benefits beyond those of the physical configuration. The physical
server's resources are abstracted to accommodate the concurrent deployment of
multiple instances of virtual processors. Each virtual instance, called a logical partition
(LPAR) or virtual machine (VM), is capable of operating a separate operating system
(OS) instance and its associated software stacks as if each instance was deployed on a
separate physical server. This virtual view offers the benefit of not being restricted by
the implementation or configuration of the underlying physical server resources. Each
virtual processor instance provides a subset or superset of the various physical server
resources that may be dedicated or concurrently shared by multiple LPAR or VM ab-
stractions. By using processor virtualization technologies, the system's processors can
be transparently multi-programmed and multi-processed by a virtualization hypervisor
to optimize processor sharing by multiple LPAR or VM instances, thereby increasing
processor utilization.

In traditional IT network architectures there is no centralized network control.
Routing tables located locally in network devices, such as switches, bridges, gateways,
routers, or firewalls, are individually configured to direct network traffic to
neighboring nodes of the network. The network devices may make control decisions
and forward network traffic accordingly. Traditional network architectures are
contrasted with software-defined networking (SDN), where network traffic routing

decisions are centrally controlled and made by a controller that creates tables to define

WO 2015/092954 PCT/JP2014/005105

[0005]

[0006]

[0007]

[0008]

flow paths through the network. The controller decouples control decisions about
where traffic is sent from network devices that forward traffic to a selected destination.
Summary of Invention

Embodiments include methods, systems, and computer program products for
software-defined networking (SDN) for management of traffic between virtual
processors. A method includes receiving, at a SDN controller, an inquiry from a virtual
switch executing on a host machine. The inquiry includes a request to identify a flow
of a data packet received at the virtual switch from a source virtual processor. The
source virtual processor is either a logical partition (LPAR) or a virtual machine (VM)
executing under control of a hypervisor on the host machine. A destination virtual
processor associated with the data packet is determined by the SDN controller. The
SDN controller identifies the flow between the source virtual processor and the des-
tination virtual processor. The flow includes a least one virtual port in the virtual
switch. The SDN controller instructs the virtual switch to send the data packet from the
source virtual processor to the destination virtual processor via the identified flow.

The subject matter which is regarded as embodiments is particularly pointed out and
distinctly claimed in the claims at the conclusion of the specification. The forgoing and
other features, and advantages of the embodiments are apparent from the following
detailed description taken in conjunction with the accompanying drawings in which:
Brief Description of Drawings
[fig. 1]FIG. 1 depicts a system for implementing software-defined networking (SDN)
for management of traffic between virtual processor on a single host machine in ac-
cordance with an embodiment;

[fig.2]FIG. 2 depicts a system for implementing SDN for management of traffic
between virtual processors on multiple host machines in accordance with an em-
bodiment;

[fig.3]FIG. 3 depicts a block diagram of functions performed by a virtual switch in ac-
cordance with an embodiment;

[fig.4]FIG. 4 depicts a block diagram of a SDN controller in accordance with an em-
bodiment; and

[fig.5]FIG. 5 depicts a process flow for performing management of traffic between
virtual processors in accordance with an embodiment.

Detailed Description of Embodiments

Exemplary embodiments relate to centralized software control of distributed logical
partitions (LPARSs) and virtual machines (VMs). An embodiment includes a software-
defined networking (SDN) controller, at the network layer, that is capable of managing

the virtual infrastructure of a network. In particular, the SDN controller can be capable

WO 2015/092954 PCT/JP2014/005105

[0009]

[0010]

[0011]

[0012]

of recognizing LPAR and VM attributes established by a host machine in the network.
In an embodiment, the SDN controller associates one-to-one, one-to-many, or many-
to-one combinations of virtual processors (e.g., LPARs, VMs) and switches as a
unified, distributed LPAR, and can programmatically manage LPAR traffic between
distributed LPARs. This can be performed regardless of whether or not an LPAR is
subsequently moved to another, different host machine in the network and then back to
the original host machine. In order to manage traffic originating ata VM on a
particular host machine, virtual identification tags can be assigned to VMs on that host
machine which allows the SDN controller to manage/control the VMs like LPARs. For
example, traffic may be disallowed from other distributed LPAR partitions in order to
provide full isolation similar to traditional LPARs.

As used herein the term distributed LPAR (logical partition) refers to a subset of a
computer's hardware resources (processor, memory, and storage) which is divided or
virtualized into multiple sets of resources so that each set of resources can be operated
independently with its own operating system instance and its own set of applications.
The number of logical partitions that can be created depends on the system's processor
model and available physical resources. Typically, partitions are used for different
purposes such as database operation or client/server operation or to separate test and
production environments. Each partition can communicate with the other partitions as
if the other partition is in a separate physical machine.

Examples of the types of traffic that can be transmitted between the virtual
processors include, but are not limited to, client/server traffic using Ethernet or similar
packet-based networking protocols.

Turning now to FIG. 1, a system for utilizing a SDN controller 116 for managing
traffic between virtual processors is generally shown in accordance with an em-
bodiment. The system includes a host machine 110 that is executing multiple VMs 112
as well as a hypervisor 114 and a virtual switch 118. In an embodiment, the SDN
controller 116 is in communication with the virtual switch 118 via secure link (e.g., an
outband Ethernet link secured via some form of data encryption and/or endpoint au-
thentication and a network connector such as an adapter or network interface card
(NIC). The SDN controller 116 can be dedicated to managing traffic between VMs 112
on the host machine 110 or it can be used to manage traffic for multiple host machines.
Alternatively, the SDN controller 116 can be used to provide control for a SDN
network in addition to managing traffic between VMs. In an embodiment, the SDN
controller 116 is located in the host machine 110 and is executing within the hy-
pervisor 114 and/or within one of the VMs 112.

The host machine 110 can be implemented by any high speed processing device that

supports virtual processors such as, but not limited to: a System Z(R) server, a System

WO 2015/092954 PCT/JP2014/005105

[0013]

[0014]

[0015]

[0016]

[0017]

X(R) BladeCenter(R) , or a hybrid processing device that includes a System Z server
and a System X BladeCenter server coupled to each other. The host machine 110 can
utilize hypervisor functions such as those provided by processor resource/system
manager (PR/SM). Alternatively, the hypervisor 114 can be implemented by the z/VM
software hypervisor.

In an embodiment, the virtual switch 118 is implemented by software that is executed
by the hypervisor 114 to simulate a physical switch, such as an ethernet switch. Only
one virtual switch 118 is shown in FIG. 1, however, other configurations may include
multiple virtual switches 118 that are shared among VMs 112 or dedicated to a
particular VM 112.

The example shown in FIG. 1 uses VMs 112 as an example of virtual processors
executing on the host machine 110. In another embodiment, the virtual processors are
LPARs.

Turning now to FIG. 2, a system for utilizing a SDN controller 216 for managing
traffic between virtual processors that are located on two different host machines 210
is generally shown in accordance with an embodiment. The system includes host
machines 210 that are executing LPARs 212 as well as hypervisors 214 and virtual
switches 218. In an embodiment, the SDN controller 216 is in communication with the
virtual switches 218 via a secure link and a network connector such as an adapter or
network interface card (NIC). The SDN controller 216 can be dedicated to managing
traffic between LPARs 112 on the host machines 110 or it can be used to perform other
functions in a SDN network. In an embodiment, the SDN controller 216 is located in
one of the host machines 210 and executing within one of the hypervisors 214 and/or
within one of the LPARs 212.

The host machines 210 can be implemented by any high speed processing devices
that support virtual processors such as, but not limited to: a System Z server, a System
X BladeCenter, or a hybrid processing device that includes a System Z server and a
System X BladeCenter server coupled together. The host machines 210 can utilize a
PR/SM and/or z/VM software hypervisor. In an embodiment, the host machines 210
are connected together and acting as a single host machine.

Turning now to FIG. 3, a block diagram of a virtual switch, such as virtual switch
118 or 218 that may be implemented by exemplary embodiments is generally shown.
An embodiment of the virtual switch is implemented by software instructions to
provide the functions shown in the blocks of FIG. 3. The virtual switch functions
shown in FIG. 3 include virtual switch logic 302, a secure link interface 304, a flow
table 306, and virtual ports 310a-310n. The virtual switch logic 302 may be im-
plemented in one or more processing circuits, where a computer readable storage

medium is configured to hold instructions for the virtual switch logic 302 as well as

WO 2015/092954 PCT/JP2014/005105

[0018]

[0019]

[0020]

[0021]

various variables and constants to support operation of the virtual switch. The virtual
switch logic 302 forwards network traffic (e.g., packets) between the virtual ports
310a-310n as flows defined by the SDN controller.

The secure link interface 304 connects the virtual switch to the SDN controller. The
secure link interface 304 allows commands and packets to be communicated between
the SDN controller and the virtual switch using a SDN protocol. The secure link
interface 304 can be controlled by executable instructions stored and executed as part
of the virtual switch.

The flow table 306 defines supported connection types associated with particular
addresses, virtual local area networks or virtual ports, for example. A flow may be
defined as all network traffic that matches a particular header format, including use of
wildcards. Each entry 311 in the flow table 306 can include one or more rules 312,
actions 314, and statistics 316 associated with a particular flow. The rules 312 define
each flow and can be determined by packet headers. The actions 314 define how
packets are processed. The statistics 316 track information such as the size of each
flow (e.g., number of bytes), the number of packets for each flow, and time since the
last matching packet of the flow or connection time. Examples of actions include in-
structions for forwarding packets of a flow to one or more specific virtual ports
310a-310n (e.g., unicast or multicast), encapsulating and forwarding packets of a flow
to the SDN controller, and dropping packets of the flow. Entries 311 in the flow table
306 can be added and removed by the SDN controller via the secure link interface 304.
The SDN controller can pre-populate the entries 311 in the flow table 306. Addi-
tionally, the virtual switch can request creation of an entry 311 from the SDN
controller upon receiving a flow without a corresponding entry 311 in the flow table
306.

A virtual machine has associated with it a number of virtual I/O interfaces, which
transmit data packets to a virtual switch in the hypervisor in a manner similar to that
used by a physical server connected to a physical switch (but without the need for
cables external to the physical server). Each data packet is to be encapsulated with a
virtual identification tag by the virtual I/O interface; this tag identifies the packet as
coming from a particular virtual machine, and being destined for a particular virtual
switch interface. The tags may contain other optional information such as qualify of
service tags. The virtual switch is aware of these tags. The virtual switch is managed
by the SDN controller, in a similar manner that a physical switch would be managed
by an SDN controller, including functions such as providing flow tables to the switch,
and implementing specific flows based on match-action tables defined in the SDN
controller

Turning now to FIG. 4, a block diagram of a SDN controller such as SDN controller

WO 2015/092954 PCT/JP2014/005105

[0022]

[0023]

[0024]

[0025]

[0026]

116 or 216 is generally shown in accordance with an embodiment. The SDN controller
can be embodied in any type of processing system and is depicted embodied in a
general-purpose computer 401 in FIG. 4. Alternatively, the SDN controller can be im-
plemented as software instructions and stored as part of a hypervisor or located in a
virtual processor.

In an exemplary embodiment, in terms of hardware architecture, as shown in FIG. 4,
the computer 401 includes processing circuitry 405 and memory 410 coupled to a
memory controller 415, and an input/output (I/O) controller 435. The I/O controller
435 can be, for example but not limited to, one or more buses or other wired or
wireless connections, as is known in the art. The I/O controller 435 may have ad-
ditional elements, which are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable communications. Further, the
computer 401 may include address, control, and/or data connections to enable ap-
propriate communications among the aforementioned components.

In an exemplary embodiment, a conventional keyboard 450 and mouse 455 or similar
devices can be coupled to the I/0 controller 435. Alternatively, input may be received
via a touch-sensitive or motion sensitive interface (not depicted). The computer 401
can further include a display controller 425 coupled to a display 430.

The processing circuitry 405 is a hardware device for executing software, particularly
software stored in storage 420, such as cache storage, or memory 410. The processing
circuitry 405 can be any custom made or commercially available computer processor, a
central processing unit (CPU), an auxiliary processor among several processors as-
sociated with the computer 401, a semiconductor-based microprocessor (in the form of
a microchip or chip set), a macro-processor, or generally any device for executing in-
structions.

The memory 410 can include any one or combination of volatile memory elements
(e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and non-
volatile memory elements (e.g., ROM, erasable programmable read only memory
(EPROM), electronically erasable programmable read only memory (EEPROM), flash
memory, programmable read only memory (PROM), tape, compact disc read only
memory (CD-ROM), disk, hard disk drive, diskette, cartridge, cassette or the like, etc.).
Moreover, the memory 410 may incorporate electronic, magnetic, optical, and/or other
types of storage media. Accordingly, the memory 410 is an example of a tangible
computer readable storage medium upon which instructions executable by the
processing circuitry 405 may be embodied as a computer program product. The
memory 410 can have a distributed architecture, where various components are
situated remote from one another, but can be accessed by the processing circuitry 405.

The instructions in memory 410 may include one or more separate programs, each of

WO 2015/092954 PCT/JP2014/005105

[0027]

[0028]

[0029]

which comprises an ordered listing of executable instructions for implementing logical
functions. In the example of FIG. 4, the instructions in the memory 410 include a
suitable operating system (OS) 411, SDN control logic 412, and a flow monitor 413.
The operating system 411 essentially controls the execution of other computer
programs and provides scheduling, input-output control, file and data management,
memory management, and communication control and related services. Although
depicted separately, the SDN control logic 412 and flow monitor 413 can be combined
or further subdivided. When the computer 401 is in operation, the processing circuitry
405 is configured to execute instructions stored within the memory 410, to com-
municate data to and from the memory 410, and to generally control operations of the
computer 401 pursuant to the instructions.

In an exemplary embodiment, the computer 401 can further include a network
interface 460 for coupling to the secure links of a SDN network or a host machine. The
network interface 460 and components of the SDN network can be configured by the
SDN control logic 412 according to flow tables 416. The flow tables 416 can be
populated, or augmented, by virtual processor traffic management logic 418. The
virtual processor traffic management logic 418 can include computer instructions that
are used to identify data packets that are being sent between virtual processors (e.g.,
LPARs, VMs) on a host machine, to determine actions to take for virtual processor
traffic, and/or to aid in initiating a virtual switch for transmitting the data packets.

In an embodiment, the SDN controller receives policy information or configuration
data from an orchestration software such as, but not limited Veritas. The policy in-
formation can input to the SDN controller via an application programming interface
(API) and then be used to determine communication paths between virtual processors.
These communication paths can then be used by the SDN controller to instruct the
virtual switch to set up a virtual port with dedicated links between the virtual
processors having communication paths. In addition, the SDN controller can instruct
the virtual switch to record the virtual ports, links and other pertinent data in the flow
table on the virtual switch. The virtual ports and links can be set up as part of system
initialization and modified during system run time. In addition, virtual ports and links
can be set up in response to a particular data packet being received at the SDN
controller. Alternatively, the configuration data can be manually entered into the SDN
controller.

Turning now to FIG. 5, a process flow for management of traffic between virtual
processors is generally shown. In an embodiment, the process described in FIG. 5 is
performed by a SDN controllers described in FIGs. 1-4. At block 502, a request from a
virtual switch to identify a flow of a data packet is received at the SDN controller. In

an embodiment, the virtual switch received the data packet from a source virtual

WO 2015/092954 PCT/JP2014/005105

[0030]

[0031]

[0032]

processor (e.g. a LPAR or VM) and the virtual switch requires instructions from the
SDN controller on how to process the data packet. In an embodiment, the virtual
switch is executing under control of a hypervisor on a host machine. At block 504, the
SDN controller can determine a destination virtual processor associated with the data
packet, and at block 506, the SDN controller can identify the flow between the source
virtual processor and the destination virtual processor. In an embodiment, the flow
includes at least one virtual port. The SDN controller can use identifier tags assigned to
the virtual processors to identify the flow. At block 506, the SDN controller instructs
that the virtual switch to send the data packet from the source virtual processor to the
destination virtual processor via the identified flow.

Technical effects and benefits include the ability to provide complete isolation
between LPARs and VMs. Further, this approach includes the ability to address a
number of issues with virtual machine management which are not as highly developed
as logical partition implementations. For example, there are different types of virtual
machines, some of which are designed to run a complete operating system and some of
which are designed to run a specific program; our proposed approach facilitates
workload optimization between different types of virtual machines and LPARs.
Further, the virtual machine can implement an instruction set architecture which is
different from that of the physical underlying system and from the LPARs; our
proposed approach facilitates network management that can optimize traffic flows
between different instruction set architectures. Further, when multiple VMs are con-
currently running on the same physical host, each VM may exhibit a varying and
unstable performance (i.e.variable speed of execution), which highly depends on the
workload imposed on the system by other virtual machines, unless proper techniques
are used for temporal isolation among virtual machines; our approach facilitates this
type of temporal isolation.

As will be appreciated by one of average skill in the art, aspects of embodiments may
be embodied as a system, method or computer program product. Accordingly, aspects
of embodiments may take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that may all generally be

"o

referred to herein as, for example, a "circuit,” "module” or "system." Furthermore,
aspects of embodiments may take the form of a computer program product embodied
in one or more computer readable storage device(s) having computer readable program
code embodied thereon.

One or more of the capabilities of embodiments can be implemented in software,
firmware, hardware, or some combination thereof. Further, one or more of the capa-

bilities can be emulated.

WO 2015/092954 PCT/JP2014/005105

[0033]

[0034]

[0035]

[0036]

An embodiment may be a computer program product for enabling processor circuits
to perform elements of the invention, the computer program product comprising a
computer readable storage medium readable by a processing circuit and storing in-
structions for execution by the processing circuit for performing a method.

The computer readable storage medium (or media), being a tangible, non-transitory,
storage medium having instructions recorded thereon for causing a processor circuit to
perform a method. The "computer readable storage medium" being non-transitory at
least because once the instructions are recorded on the medium, the recorded in-
structions can be subsequently read one or more times by the processor circuit at times
that are independent of the time of recording. The "computer readable storage media”
being non-transitory including devices that retain recorded information only while
powered (volatile devices) and devices that retain recorded information independently
of being powered (non-volatile devices). An example, non-exhaustive list of "non-
transitory storage media" includes, but is not limited to, for example: a semi-conductor
storage device comprising, for example, a memory array such as a RAM or a memory
circuit such as latch having instructions recorded thereon; a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions
recorded thereon; an optically readable device such as a CD or DVD having in-
structions recorded thereon; and a magnetic encoded device such as a magnetic tape or
a magnetic disk having instructions recorded thereon.

A non-exhaustive list of examples of computer readable storage medium include the
following: a portable computer diskette, a hard disk, a random access memory (RAM),
a read-only memory (ROM), an erasable programmable read-only memory (EPROM
or Flash memory), a portable compact disc read-only memory (CD-ROM). Program
code can be distributed to respective computing/processing devices from an external
computer or external storage device via a network, for example, the Internet, a local
area network, wide area network and/or wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface card in each computing/processing device receives a program from
the network and forwards the program for storage in a computer-readable storage
device within the respective computing/processing device.

Computer program instructions for carrying out operations for aspects of em-
bodiments may be for example assembler code, machine code, microcode or either
source or object code written in any combination of one or more programming
languages, including an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural programming languages, such

as the "C" programming language or similar programming languages. The program

10

WO 2015/092954 PCT/JP2014/005105

[0037]

[0038]

[0039]

[0040]

code may execute entirely on the user's computer, partly on the user's computer, as a
stand-alone software package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer through any type of
network, including a local area network (LAN) or a wide area network (WAN), or the
connection may be made to an external computer (for example, through the Internet
using an Internet Service Provider).

Aspects of embodiments are described below with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems) and computer program
products according to embodiments of the invention. It will be understood that each
block of the flowchart illustrations and/or block diagrams, and combinations of blocks
in the flowchart illustrations and/or block diagrams, can be implemented by computer
program instructions.

These computer program instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions, which execute via the
processor of the computer or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the flowchart and/or block
diagram block or blocks. These computer program instructions may also be stored in a
computer readable storage medium that can direct a computer, other programmable
data processing apparatus, or other devices to function in a particular.

The computer program instructions may also be loaded onto a computer, other pro-
grammable data processing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other devices
to produce a computer implemented process such that the instructions which execute
on the computer or other programmable apparatus provide processes for implementing
the functions/acts specified in the flowchart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate the architecture, func-
tionality, and operation of possible implementations of systems, methods and computer
program products according to various embodiments. In this regard, each block in the
flowchart or block diagrams may represent a module, segment, or portion of code,
which comprises one or more executable instructions for implementing the specified
logical function(s). It should also be noted that, in some alternative implementations,
the functions noted in the block may occur out of the order noted in the figures. For
example, two blocks shown in succession may, in fact, be executed substantially con-
currently, or the blocks may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each block of the block

diagrams and/or flowchart illustration, and combinations of blocks in the block

11

WO 2015/092954 PCT/JP2014/005105

diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts, or combinations

of special purpose hardware and computer instructions.

WO 2015/092954

[Claim 1]

[Claim 2]

[Claim 3]

[Claim 4]

[Claim 5]

[Claim 6]

[Claim 7]

[Claim 8]

12

PCT/JP2014/005105

Claims

A computer-implemented method of software-defined networking
(SDN) for management of traffic between virtual processors, the
method comprising:

receiving, at a SDN controller, an inquiry from a virtual switch
executing on a host machine, the inquiry including a request to identify
a flow of a data packet received at the virtual switch from a source
virtual processor, the source virtual processor one of a logical partition
(LPAR) and a virtual machine (VM) executing under control of a hy-
pervisor on the host machine;

determining, at the SDN controller, a destination virtual processor as-
sociated with the data packet;

identifying, at the SDN controller, the flow between the source virtual
processor and the destination virtual processor, the flow including a
least one virtual port in the virtual switch; and

instructing the virtual switch to send the data packet from the source
virtual processor to the destination virtual processor via the identified
flow.

The method of claim 1, wherein the destination virtual processor is one
of a LPAR and a VM.

The method of claim 1, wherein the destination virtual processor is
executing under control of the hypervisor on the host machine.

The method of claim 1, wherein the source virtual processor and the
destination virtual processor are executing on different host machines
having different architectures.

The method of claim 1, further comprising initializing the virtual
switch to support traffic being sent between the source virtual processor
and the destination virtual processor, the initializing including reserving
the virtual port for data packets being sent between the source virtual
processor and the destination virtual processor.

The method of claim 1, wherein the identifying is based on con-
figuration data received via an application programming interface
(AP]) at the SDN controller.

The method of claim 1, wherein the source and destination virtual
processors are assigned virtual processor identifier tags that are utilized
by the SDN controller to identify the flow.

A system for software-defined networking (SDN) for management of

WO 2015/092954

[Claim 9]

[Claim 10]

[Claim 11]

[Claim 12]

[Claim 13]

[Claim 14]

[Claim 15]

13
PCT/JP2014/005105

traffic between virtual processors, the system comprising:

a SDN controller, the system configured perform a method comprising:
receiving an inquiry from a virtual switch executing on a host machine,
the inquiry including a request to identify a flow of a data packet
received at the virtual switch from a source virtual processor, the
source virtual processor one of a logical partition (LPAR) and a virtual
machine (VM) executing under control of a hypervisor on the host
machine;

determining a destination virtual processor associated with the data
packet;

identifying the flow between the source virtual processor and the des-
tination virtual processor, the flow including a least one virtual port in
the virtual switch; and

instructing the virtual switch to send the data packet from the source
virtual processor to the destination virtual processor via the identified
flow.

The system of claim 8, wherein the destination virtual processor is one
of a LPAR and a VM.

The system of clam 8, wherein the destination virtual processor is
executing under control of the hypervisor on the host machine.

The system of claim 8, wherein the source virtual processor and the
destination virtual processor are executing on different host machines
having different architectures.

The system of claim 8, wherein the method further comprises ini-
tializing the virtual switch to support traffic being sent between the
source virtual processor and the destination virtual processor, the ini-
tializing including reserving the virtual port for data packets being sent
between the source virtual processor and the destination virtual
processor.

The system of claim 8, wherein the identifying is based on con-
figuration data received via an application programming interface
(AP]) at the SDN controller.

The system of claim 8, wherein the source and destination virtual
processors are assigned virtual processor identifier tags that are utilized
by the SDN controller to identify the flow.

A computer program product for software-defined networking (SDN)
for management of traffic between virtual processors, the computer

program product comprising:

WO 2015/092954

[Claim 16]

[Claim 17]

[Claim 18]

[Claim 19]

[Claim 20]

14
PCT/JP2014/005105

a tangible storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for performing a
method comprising:

receiving an inquiry from a virtual switch executing on a host machine,
the inquiry including a request to identify a flow of a data packet
received at the virtual switch from a source virtual processor, the
source virtual processor one of a logical partition (LPAR) and a virtual
machine (VM) executing under control of a hypervisor on the host
machine;

determining a destination virtual processor associated with the data
packet;

identifying the flow between the source virtual processor and the des-
tination virtual processor, the flow including a least one virtual port in
the virtual switch; and

instructing the virtual switch to send the data packet from the source
virtual processor to the destination virtual processor via the identified
flow.

The computer program product of claim 15, wherein the destination
virtual processor is one of a LPAR and a VM.

The computer program product of claim 15, wherein the destination
virtual processor is executing under control of the hypervisor on the
host machine.

The computer program product of claim 15, wherein the source virtual
processor and the destination virtual processor are executing on
different host machines having different architectures.

The computer program product of claim 15, wherein the method further
comprises initializing the virtual switch to support traffic being sent
between the source virtual processor and the destination virtual
processor, the initializing including reserving the virtual port for data
packets being sent between the source virtual processor and the des-
tination virtual processor.

The computer program product of claim 15, wherein the identifying is
based on configuration data received via an application programming
interface (API) at the SDN controller.

WO 2015/092954

[Fig. 1]

1/5

PCT/JP2014/005105

CONTROLLER

12 12 12
HOST MACHINE / / /
W W WM
HYPERVISOR
™ VIRTUAL 118
SWITCH
SDN _~116

2/5

PCT/JP2014/005105

WO 2015/092954

[Fig. 2]

W~

43 TIOYINOD
NS

81" VLA | yosiAdTdAH

HOLIMS

dvd1

e o o Hyd1

812" TVALYIA |yogiAuadAH|

HOLIMS

gvd1

e o o HYd

WO 2015/092954

[Fig. 3]

3/5

PCT/JP2014/005105

>

306

FLOW
12 34 316
NS \ TABLE ,
™ | RULE | ACTION [STATISTICS
32 34 316
N\ - /
™ | 'RULE | 'ACTION |STATISTICS
304
/
SECURE VIRTUAL |30
LINK IF SWITCH
LOGIC
VIRTUAL VIRTUAL
PORT PORT
/ /
310a 310b

VIRTUAL
PORT

/

310n

WO 2015/092954

[Fig. 4]

4/5

PCT/JP2014/005105

SECURE
LINKS

164 o4
L \
1050 PROCESSING [—— MEMORY opLy i
@@@{ cReUTRY || FLow || FLow CONTROLLER
o TBLES || HONTOR || SON y
N VEMORY -
STORAGE VRTUAL LOGIC | ¢ONTROLLER
PROCESSOR
40~ NETWORK || TRAFFICMGMT F— >
INTERFACE oGl 0S8 | CONTROLLER
{ /j Jy
. it i v
450
455" 4

WO 2015/092954

[Fig. 5]

5/5

PCT/JP2014/005105

RECEIVE AREQUEST FROM A VIRTUAL SWITCH
TO IDENTIFY AFLOW OF A DATA PACKET FROM
A SOURCE VIRTUAL PROCESSOR

|

DETERMINE A DESTINATION VIRTUAL PROCESSOR
ASSOCIATED WITH THE DATA PACKET

|

IDENTIFY THE FLOW OF THE DATA PACKET
ACROSS A VIRTUAL PORT

|

INSTRUCT THE VIRTUAL SWITCH TO SEND THE DATA
PACKET VIATHE IDENTIFIED FLOW

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2014/005105

A, CLASSIFICATION OF SUBJECT MATTER

Int.Cl. GO6F13/10(2006.01)i, GO€F9/46(2006.01)i, GO6F13/00(2006.01)1,
HO04L12/717(2013.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl. GO6F13/10, GO6FS/46, GO6F13/00, HO4L1l2/717

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Published examined utility model applications of Japan 1922-198¢
Published unexamined utility model applications of Japan 1971-2015
Registered utility model specifications of Japan 1%9%6-2015
Published registered utility model applications of Japan 1%9%4-2015

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Us 2011/0299537 Al (Nakul Pratap SARAIYA, 1-20
Lawrence Mcgoff MATTER, Alok RISHI) 2011.12.08,
paragraphs. [0021] to [0025], [0036];

figs. 1, 3 (No Family)

A EP 2651081 Al (NEC CORPORATION) 2013.10.16, 1-20
paragraphs. [0029], [0031], [0055], [0057],
[0071] to [0074]1; fig. 2 & WO 2012/077603 Al
& US 2013/0254891 Al & CN 103250392 A

& JP 2014-147120 A

A US 2011/0032944 Al (Uri ELZUR, Patricia Ann 6, 13, 20
THALER, Hemal SHAH) 2011.02.10, paragraphs.
[0026], [0027], [0054]; figs. 1, 3B (No Family)

}# Further documents are listed in the continuation of Box C. I} See patent family annex.

* Special categories of cited documents: o “T~ later document published after the international filing date or

“A” document defining the general state of the art which is not priority date and not in conflict with the application but cited to
considered to be of particular relevance understand the principle or theory underlying the invention

«E» ecatlier application or patent but published on or after the inter-

«“X” document of particular relevance; the claimed invention cannot
be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

national filing date
“L” document which may throw doubts on priority claim(s) or which
is cited to establish the publication date of another citation or other

special reason (as specified) «“Y” document of particular relevance; the claimed invention cannot
«0” document referring to an oral disclosure, use, exhibition or other be considered to involve an inventive step when the document is
means combined with one or more other such documents, such

«p» document published prior to the international filing date but later combination being obvious to a person skilled in the art

than the priority date claimed “&” document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
21.01.2015 03.02.2015
Name and mailing address of the ISA/JP Authorized officer 5T|344 9
Japan Patent Office KOBAYASHI, Hidekazu
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan | Telephone No. +81-3-3581-1101 Ext. 3568

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

1, 12 & WO 2011/037148 Al & US 2012/0185856 Al
& CN 102576343 A & JP 2011-070549 A

PCT/JP2014/005105
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A Us 2012/007%478 Al (CISCO TECHNOLOGY, INC.) 7, 14
2012.03.29, paragraph. [0017]; fig. 2
& WO 2012/039792 Al & CN 103141058 A
A EP 2485155 A1 (NEC CORPORATION) 2012.08.08, figs. 4, 11, 18

Form PCT/ISA/210 (continnation of second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - wo-search-report
	Page 23 - wo-search-report

