【发明名称】记忆卡的自动化封装方法

【摘要】
一种记忆卡的自动化封装方法。为提供一种制程简单、工时短、制作成本低廉、可靠度高、利于大量生产、适宜制作高强度及可靠度小型卡封装的信息记录载体的制造方法，提出本发明，它包括输送金属料带；冲压成型第一/二金属壳；分别在第一/二金属壳上射出成形形成第一/二塑胶框；冲压裁切使第一/二金属壳脱离金属料带，以形成与金属料带脱落的第一/二半盒体；熔接第一、二半盒体，以形成包覆内部电路的卡体，完成记忆卡的封装。
权利要求书

1. 一种记忆卡的自动化封装方法，其特征在于它包括如下步骤：
 步骤一
 输送金属料带；
 步骤二
 冲压成型第一/二金属壳；
 步骤三
 形成第一、二塑胶框；分别在第一/二金属壳上射出成型形成第一/二塑胶框；
 步骤五
 下料；冲压裁切以使第一/二金属壳脱离金属料带，以形成与金属料带脱离的第一/二半盒体；
 步骤六
 焊接第一、二半盒体，以形成包覆内部电路的卡体，完成记忆卡的封装。

2. 根据权利要求1所述的记忆卡的自动化封装方法，其特征在于所述的形成第一、二塑胶框的步骤三后，在第一/二金属壳上印刷图样。

3. 根据权利要求1所述的记忆卡的自动化封装方法，其特征在于所述的冲压成型第一/二金属壳步骤二中冲压成型的第一/二金属壳外侧形成多个折片。

4. 根据权利要求3所述的记忆卡的自动化封装方法，其特征在于所述的第一金属壳折片折弯形成垂直折片。

5. 根据权利要求3所述的记忆卡的自动化封装方法，其特征在于所述的第二金属壳折片折弯形成垂直折片及形成弯曲延伸缘。

6. 根据权利要求4所述的记忆卡的自动化封装方法，其特征在于所述的第一塑胶框包覆第一金属壳的垂直折片。

7. 根据权利要求5所述的记忆卡的自动化封装方法，其特征在于所述的
第二塑胶框包覆第二金属壳的垂直折片及弯曲延伸缘。

8. 根据权利要求1所述的记忆卡的自动化封装方法，其特征在于所述的焊接第一、二半盒体的步骤六中结合于第一、二金属壳上的第一、二塑胶框系以超音波焊接。

9. 根据权利要求1所述的记忆卡的自动化封装方法，其特征在于所述的步骤中金属料带的内表面预先涂布有绝缘薄膜。
记忆卡的自动化封装方法

技术领域

本发明属于信息记录载体的制造方法，特别是一种记忆卡的自动化封装方法。

背景技术

可携式消费性数位家电（IA）产品在数位化的时代逐渐走红，小型记忆卡市场前景持续看好。然而，小型记忆卡的封装必须具有足够的机械强度及电气性能，始得以大量产；更特别讲究成本低廉。

目前常见的小型记忆卡具备轻薄短小、低耗电量、高容量、读写速度快，且拥有著作权安全保护功能等特点。因此，小型记忆卡广泛应用于PC、NB、PDA、手机、印表机、数位相机、数位摄像机、数位录音机、MP3等产品，特别是在手机市场，全球一年有4亿多支新手机加入，保守估计有2亿将采用SD（Secure Digital）卡或MMC（Multimedia Card）卡，显示小型记忆卡已成为新兴的明星产业。

犹如卡式装置的封装方法有多种，较早系以黏合方式形成卡体，但此方式的缺点是在黏合部位容易剥落，或者容易使内部组件损坏，用黏合方式生产卡体需花费很多人力作黏合作业，成本较高、良率较低、且达量产规模厂商需花费很多管理、人力及资源成本。

参见英国专利第2295118号、日本专利第1686051号及美国专利第5475919号的另一种改良的方法是利用射出成型把塑胶框直接射出成型在金属壳上，再将第一、二壳体的塑胶框熔接在一起。采用射出成型及超音波熔接的生产方式可以减少人力花费，并且良率较高。然而，此种技术在射出成型时需一一地将金属壳放入模具中，故仍然费时，而且每一片金属壳都是预先成型，难以实现自动化生产。且当运用在制作小型记忆卡体时更面临新的困难，由于其厚度极
薄，封装壳与内部电路之间的绝缘问题是极需克服的重要课题。

进一步的改良方法是利用射出成型形成小型记忆卡的塑胶壳体。然而，此种技术必须结合极困难且昂贵的特殊成型及模具技术。由于塑胶壳体极薄，此种被称为微量进料及薄膜射出成型的技术极难控制进料的稳定性、快速性、变形最低及尺寸稳定的卡体，同时模具的损耗极高。因此，利用射出成型制作小型记忆卡的塑胶壳体，需掌控成型技术、模具、设备及特殊材料等合制程关键技术。在如此昂贵的制程设备及条件下，使用射出成型制作小型记忆卡的塑胶壳体却天生太薄而强度不足，导致容易破裂及毁损，良率及可靠度甚低。

发明内容

本发明的目的是提供一种制程简单、工时短、制作成本低廉、可靠度高、利于大量生产、适宜制作高强度及可靠度小型卡封装的记忆卡的自动化封装方法。

本发明包括如下步骤：

步骤一
输送金属料带；

步骤二
冲压成型第一 / 二金属壳；

步骤三
形成第一、二塑胶框；分别在第一 / 二金属壳上射出成型形成第一 / 二塑胶框；

步骤五
下料；冲压裁切以使第一 / 二金属壳脱离金属料带，以形成与金属料带脱离的第一 / 二半盒体；

步骤六
熔接第一、二半盒体，以形成包覆内部电路的卡体，完成记忆卡的封装。

其中：
形成第一、二塑胶框的步骤三后，在第一／二金属壳上印刷图样。

冲压成型第一／二金属壳步骤二中冲压成型的第一／二金属壳外侧形成多个折片。

第一金属壳折片折弯形成垂直折片。

第二金属壳折片折弯形成垂直折片及形成弯曲延伸缘。

第一塑胶框包覆第一金属壳的垂直折片。

第二塑胶框包覆第二金属壳的垂直折片及弯曲延伸缘。

熔接第一、二半盒体的步骤六中结合于第一、二金属壳上的第一、二塑胶框系以超音波熔接。

步骤一中金属料带的内表面预先涂布有绝缘薄膜。

由于本发明包括输送金属料带；冲压成型第一／二金属壳；分别在第一／二金属壳上射出成型形成第一／二塑胶框；冲压裁切便使第一／二金属壳脱离金属料带，以形成与金属料带脱离的第一／二半盒体；熔接第一、二半盒体，以形成包覆内部电路的卡体，完成记忆卡的封装。在此制程中第一／二半盒体都是直接在金属料带上加工制成，而金属料带适于在自动化设备上传输，因此，本发明可以达到快速且便宜的目的；第一、二塑胶框系以超音波熔接在一起，缺口从第一、二塑胶框的外侧表面延伸至第一、二金属壳外侧表面；封装结构采用为以不锈钢材料制作的金属壳而并非市售的塑胶壳体，因此，均可提供接地以预防电磁波干扰；不仅制程简单、工时短、制作成本低廉、可靠度高、利于大量生产，而且适宜制作高强度及可靠度小型卡封装，从而达到本发明的目的。

附图说明

图 1、为本发明制成小型记忆卡结构示意图。

图 2、为本发明流程图。

图 3、为本发明步骤一、二示意图。

图 4、为图 3 中 A 部局部放大图。
具体实施方式

如图 1 所示，以本发明制成的小型记忆卡 10 包括以不锈钢材料制作的第一金属壳 12、第二金属壳 14，与第一金属壳 12 结合为一体的第一塑胶框 16、与第二金属壳 14 结合为一体的第二塑胶框 18 及包覆于分别结合第一、二塑胶框 16、18 第一、二金属壳 12、14 之间的内部电路。

第二塑胶框 18 具有多个作为印刷电路板第一资料输出入部位的输出入口连接口 19。

第一、二塑胶框 16、18 系以超音波熔接在一起，缺口 20、22 从第一、二塑胶框 16、18 的外侧表面延伸至第一、二金属壳 12、14 外侧表面。由于小型记忆卡体封装结构采用为以不锈钢材料制作的金属壳而并非习知的塑胶壳体，因此，缺口 20、22 均可提供接地以预防电磁波干扰 (EMI)。

如图 2 所示，本发明包括如下步骤：

步骤一
输送金属料带 30

如图 2、图 3 所示，从卷带 31 拉出为不锈钢材料、厚度≤0.15mm 的金属料带 30；金属料带 30 的内表面预先涂布有为铁氟龙的绝缘薄膜 33，其两侧设有周期性排列以便由输送设备拉动的卡孔 32；

步骤二
冲压成型第一／二金属壳 12／14；
如图 3、图 4、图 5、图 6 所示，输送设备经金属料带 30 上卡孔 32 带动
输送至冲压设备，冲压成型第一/二金属壳 12/14，第一/二金属壳 12/14
具有多个折片 24，第一/二金属壳 12/14 两侧以连接片 34、36 仍连接于金
属料带 30 上，第一/二金属壳 12/14 的折片 24 折弯形成垂直折片 26;

步骤三

形成第一、二塑胶框 16/18

如图 7 所示，在第一/二金属壳 12/14 上射出成型技术直接形成第一/二
塑胶框 16/18，将第一/二塑胶框 16/18 包覆垂直折片 26 并与第一/二
金属壳 12/14 稳固地结合成一体，以形成第一/二半盒体 44/44′，第一
/二塑胶框 16/18 约在 3 秒内冷却;

步骤四

印刷图案

如图 8 所示，选择性地在第一/二金属壳 12/14 的绝缘薄膜 33 上印刷为
商标或其他标示的图样 38;

步骤五

下料

如图 9 所示，冲压裁切以将与第一/二塑胶框 16/18 结合成一体的第一
/二金属壳 12/14 与金属料带 30 之间的连接片 34、36 裁断，以使第一/二
金属壳 12/14 脱离金属料带 30，以形成与金属料带 30 脱离的第一/二半盒
体 44/44′；在此制程中第一/二半盒体 44/44′都是直接在金属料带 30 上
加工制成，而金属料带 30 适于在自动化设备上传输，因此，本发明可以达到
快速且便宜的目的；如图 10 所示，制成的第一半盒体 44 包括第一金属壳 12
及射出成型于第一金属壳 12 上的第一塑胶框 16，并于两侧形成缺口 40、42；
如图 11 所示，制成的第二半盒体 44′包括第二金属壳 14 及射出成型于第二
金属壳 14 上的第二塑胶框 18，其内表面 1402 涂布有为铁氟龙的绝缘用绝缘
薄膜 33，第二金属壳 14 左右两侧及一端具有垂直折片 26，其另一端具有弯曲
延伸缘 28，并令垂直折片 26 及弯曲延伸缘 28 埋入射出成型以结合于第二金属壳 14 上的第二塑胶框 18 内；

步骤六

熔接第一、二半盒体 44、44’

以超音波熔接结合于第一、二金属壳 12、14 上的第一、二塑胶框 16、18 以形成记忆卡体。

亦可于完成超音波熔接第一、二半盒体 44、44’后再将形成的记忆卡体脱离金属料带 30。