发明名称

一种基于蛋白质和多糖复配的可食膜制备方法

摘要

本发明涉及一种基于蛋白质和多糖复配的可食膜制备方法，可食膜配比为多糖质量百分数为1～5%，增塑剂质量百分数为1～3%，乳化剂质量百分数为0.5～2%，蛋白质浓度的1～5%，本发明创造性地利用蛋白与多糖复配并添加乳化剂、增塑剂及细胞通透剂等制备保鲜膜液，形成的保鲜膜型气阻湿性好，透明有光泽，并且能显著提高贮藏期；本发明成膜原料均为可食，因此形成的可食膜安全无毒无污染；操作简单，成本低廉，易于推广应用，具有非常广阔的应用前景。
1. 一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：包括以下步骤：
(1) 将多糖加水溶解，70~90℃水浴至完全糊化；
(2) 在步骤(1)溶液中添加增塑剂和乳化剂；
(3) 冷却至55℃~70℃后，在搅拌的状态下缓慢加入蛋白质；
(4) 在55℃~70℃环境下搅拌1~3h；
(5) 冷却至室温后即得可食膜液。
2. 根据权利要求1所述的一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：在步骤(4)形成的溶液中加入氯化钙。
3. 根据权利要求1所述的一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：所述蛋白质为玉米醇溶蛋白、乳清蛋白、大豆分离蛋白、卵白蛋白、花生蛋白或小麦面筋蛋白，蛋白质的质量百分数为1~5%。
4. 根据权利要求1所述的一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：所述多糖为玉米淀粉、羧甲基纤维素钠及其衍生物壳聚糖、植物胶或黄原胶，所述多糖的质量百分数为1~5%。
5. 根据权利要求4所述的一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：所述植物胶为瓜尔豆胶或刺槐豆胶。
6. 根据权利要求1所述的一种基于蛋白质和多糖复配的可食膜制备方法，其特征在于：所述增塑剂为甘油，所述乳化剂为单甘脂、蔗糖脂肪酸酯或卵磷脂，乳化剂的质量百分数为0.5~2%。
说明书

一种基于蛋白质和多糖复配的可食膜制备方法

技术领域
[0001] 本发明涉及一种基于蛋白质和多糖复配的可食膜制备方法。

背景技术
[0002] 可食膜是指由可食性材料形成的膜，主要通过防止气体、水汽和溶质等的迁移来保证食品的质量，延长食品的货架期。可食膜作为一种新型包装材料，具有绿色环保、生物降解、无毒无害、能够提高食品的保质期和提高食品的质量等优点，近年来国内外对可食膜的研究越来越多。目前国内外研究的成膜基本原料为多糖类、蛋白质类和脂类，各种单一可食材料所成的膜存在不同的优点和缺点，同时使用几种不同种类的成分制成复合可食膜，可以弥补各自功能上的不足。可食复合膜通常是多糖一脂、蛋白质一脂为主，蛋白质和脂类物质形成的保鲜膜透明度差、光泽度低，影响产品的感官质量，而以多糖化合物为成膜基料形成的保鲜膜阻气性和光泽性好，但显示较强的透水性，因而限制了可食膜保鲜技术的应用。

发明内容
[0003] 为了克服现有可食膜的缺陷，本发明涉及一种基于蛋白质和多糖复配的可食膜制备方法，具有工艺操作简便、生产成本低、安全性高、能显著提高贮藏期等优点。
[0004] 本发明具体实施方案为：
一种基于蛋白质和多糖复配的可食膜制备方法，包括以下步骤：
（1）将多糖加水溶解，70～90℃水浴至完全溶化；
（2）在步骤（1）溶液中添加增塑剂和乳化剂；
（3）冷却至55℃至70℃后，在搅拌的状态下缓慢加入蛋白质；
（4）在55℃至70℃环境下搅拌1～3h；
（5）冷却至室温后即得可食膜液。
[0005] 进一步的，在步骤（4）形成的溶液中加入氯化钙。
[0006] 进一步的，所述蛋白质为玉米醇溶蛋白、乳清蛋白、大豆分离蛋白、卵白蛋白、花生蛋白或小麦面筋蛋白，蛋白质的质量百分数为1～5%。
[0007] 进一步的，所述多糖为玉米淀粉、羧甲基纤维素钠及其衍生物壳聚糖、植物胶或黄原胶，所述多糖的质量百分数为1～5%。
[0008] 进一步的，所述植物胶为瓜尔豆胶或刺槐豆胶。
[0009] 进一步的，所述增塑剂为甘油，所述乳化剂为单甘脂、蔗糖脂肪酸酯或卵磷脂，乳化剂的质量百分数为0.5～2%。
[0010] 与现有技术相比，本发明具有以下有益效果：本发明创造性地利用蛋白与多糖复配并添加乳化剂、增塑剂及细胞通透剂等制备保鲜膜液，形成的保鲜膜阻气阻湿性好，透明有光泽，并且能显著提高贮藏期；本发明成膜原料均为可食，因此形成的保鲜膜安全无毒无污染，操作简单，成本低廉，易于推广应用，具有非常广阔的应用前景。
具体实施方式

[0011] 下面对本发明做进一步详细的说明。
[0012] 一种基于蛋白质和多糖复配的可食膜制备方法，包括以下步骤：
（1）将多糖加水溶解，70-90℃水浴至完全糊化；
（2）在步骤（1）溶液中添加增塑剂和乳化剂；
（3）冷却至55℃～70℃后，在搅拌的状态下缓慢加入蛋白质；
（4）在55℃～70℃环境下搅拌1-3h；
（4）冷却至室温后即得可食膜液。
[0013] 在步骤（4）形成的溶液中可加入氯化钙作为细胞通透剂。
[0014] 进一步的，所述蛋白质为玉米醇溶蛋白、乳清蛋白、大豆分离蛋白、卵白蛋白、花生蛋白或小麦面筋蛋白，蛋白质的质量百分数为1-5%。
[0015] 进一步的，所述多糖为玉米淀粉、羧甲基纤维素钠及其衍生物壳聚糖、植物胶或黄原胶，所述多糖的质量百分数为1-5%。
[0016] 进一步的，所述植物胶为瓜尔豆胶或刺槐豆胶。
[0017] 进一步的，所述增塑剂为甘油，所述乳化剂为单甘酯、蔗糖脂肪酸酯或卵磷脂，乳化剂的质量百分数为0.5-2%。
[0018] 实施例1：
可食保鲜膜液中的多糖为玉米淀粉，蛋白为大豆分离蛋白，乳化剂为蔗糖脂肪酸酯，增塑剂为甘油，细胞通透剂为无水氯化钙。
[0019] 玉米淀粉加水溶解，添加量为5%、80℃水浴至完全糊化，添加2%的甘油和1%的蔗糖脂肪酸酯，然后冷却至60℃后在搅拌的状态下缓慢加入1%的大豆分离蛋白，在58℃水浴下搅拌2h，按照1%的添加量加入无水氯化钙，冷却至室温后得可食保鲜膜液。将新鲜西红柿浸泡在可食膜液中2-5min后取出，迅速冷风风干形成保鲜膜。
[0020] 实施例2：
可食保鲜膜液中的多糖为玉米淀粉，蛋白为大豆分离蛋白，乳化剂为蔗糖脂肪酸酯，增塑剂为甘油，细胞通透剂为无水氯化钙。
[0021] 玉米淀粉加水溶解，添加量为3%，80℃水浴至完全糊化，添加4%的甘油和1%的蔗糖脂肪酸酯，然后冷却至60℃后在搅拌的状态下缓慢加入2%的大豆分离蛋白，在65℃水浴下搅拌2h，按照2%的添加量加入无水氯化钙，冷却至室温后得可食保鲜膜液。将新鲜西红柿浸泡在可食膜液中2-5min后取出，迅速冷风风干形成保鲜膜。
[0022] 实施例3：
可食保鲜膜液中的多糖为玉米淀粉，蛋白为大豆分离蛋白，乳化剂为蔗糖脂肪酸酯，增塑剂为甘油，细胞通透剂为无水氯化钙。
[0023] 玉米淀粉加水溶解，添加量为1%，80℃水浴至完全糊化，添加2%的甘油和1%的蔗糖脂肪酸酯，然后冷却至60℃后在搅拌的状态下缓慢加入5%的大豆分离蛋白，在62℃水浴下搅拌2h，按照0.5%的添加量加入无水氯化钙，冷却至室温后得可食保鲜膜液。将新鲜西红柿浸泡在可食膜液中2-5min后取出，迅速冷风风干形成保鲜膜。
[0024] 本发明可食保鲜膜配方与市售多糖-脂-蛋白质-脂对照组透明度及水蒸气透过
系数对比情况：

<table>
<thead>
<tr>
<th>可食保鲜膜配方</th>
<th>透明度</th>
<th>水蒸气透过系数 (WVP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>透明</td>
<td>0.61</td>
</tr>
<tr>
<td>实施例 2</td>
<td>透明</td>
<td>0.65</td>
</tr>
<tr>
<td>实施例 3</td>
<td>透明</td>
<td>0.68</td>
</tr>
<tr>
<td>多糖 - 脂</td>
<td>透明</td>
<td>1.11</td>
</tr>
<tr>
<td>蛋白质 - 脂</td>
<td>非透明</td>
<td>0.81</td>
</tr>
</tbody>
</table>

以上所述仅为本发明的较佳实施例，凡依本发明申请专利范围所做的均等变化与修饰，皆应属本发明的涵盖范围。