NONVOLATILE SEMICONDUCTOR MEMORY DEVICE WHICH USES SOME MEMORY BLOCKS IN MULTI-LEVEL MEMORY AS BINARY MEMORY BLOCKS

Abstract: A nonvolatile semiconductor memory device includes a memory cell array, interface, and write circuit. The write circuit can selectively write data in the memory cell array by first write procedures or second write procedures in accordance with a data write command input to the interface. When a data write command by the first write procedures is input from the interface, the write circuit executes the command when flag data has a first value and does not execute the command when the flag data has a second value.
Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
DESCRIPTION

NONVOLATILE SEMICONDUCTOR MEMORY DEVICE WHICH USES SOME MEMORY BLOCKS IN MULTILEVEL MEMORY AS BINARY MEMORY BLOCKS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2003-338545, filed September 29, 2003, the entire contents of which are incorporated herein by reference.

Technical Field

The present invention relates to an electrically re writable nonvolatile semiconductor memory device and, more particularly, to a flash memory which selectively uses, as memory blocks that store binary information, some memory blocks in a memory cell array which stores multilevel information.

Background Art

In many memory systems, a file allocation table (FAT) is necessary. The FAT is a block which stores the position of each file. The FAT must be rewritten every time a write or erase is executed for the memory system. For this purpose, the write speed must be as high as possible in the area where the FAT is written.

In current flash memories, normal memory cells (binary technique) which store 1-bit information in one cell and memory cells which use a multilevel technique
capable of storing 2-bit information (or information of three or more bits) in one cell are known.

In a memory cell using the multilevel technique, for example, the distribution of a threshold voltage V_{th} of the memory cell is changed in four steps, as shown in FIG. 1. Two-bit information is stored by making "01", "00", "10", or "11" correspond to each distribution. When this multilevel technique is employed, the storage capacity can be doubled as compared to the binary technique.

In the flash memory that employs the multilevel technique, the write speed is lower than in the binary technique. As a measure against this, the memory cell array is divided into a plurality of blocks, and the multilevel technique is not used in a block such as a FAT that is frequently write-accessed, i.e., the write using the binary technique is selectively executed, as shown in FIG. 2, in order to increase the write speed. With this arrangement, a high-speed write is implemented by binary technique blocks while ensuring the storage capacity by multilevel technique blocks.

A NAND flash memory uses different write methods for the binary technique and multilevel technique. The binary technique uses a self-boost (SB) method. The multilevel technique uses an erased area self-boost (EASB) method. In both methods, a "0"-write is executed in the same way. A write voltage V_{pgm} (e.g.,
20V) is applied to a selected word line (a control gate CG of a selected cell transistor). An intermediate voltage Vpass (e.g., 10V) is applied to unselected word lines. A bit line BL is set to 0V, and the gate of a select transistor SGD on the bit line side is set to a power supply voltage Vdd to set the select transistor SGD in the conductive state. Accordingly, electrons are injected to the floating gate of the selected cell transistor to increase the threshold voltage.

Conversely, the manner a "1"-write (non-write) is executed changes between the SB method and the EASB method. In the SB method, as shown in FIG. 3, the write voltage Vpgm (20V) is applied to a selected word line. The intermediate voltage Vpass (10V) is applied to unselected word lines. The bit line BL is set to the power supply voltage Vdd, and the gate of the select transistor SGD on the bit line side is set to the power supply voltage Vdd to set the select transistor SGD in the non-conductive state.

In addition, the gate of a select transistor SGS on the common source line side is set to 0V to set the select transistor SGS in the non-conductive state, too. Hence, no electrons are injected into the floating gate of the selected cell transistor so that the threshold voltage maintains the erase state. As described above, in the SB method, the write for the selected cell transistor is executed while setting the cell
transistors series-connected between the select transistors SGD and SGS in the conductive state.

On the other hand, in the EASB method, as shown in FIG. 4, the write voltage V_{pgm} (20V) is applied to a selected word line to set a word line adjacent to the source line side of the selected word line to 0V. The intermediate voltage V_{pass} (10V) is applied to remaining unselected word lines. The bit line BL is set to the power supply voltage V_{dd}, and the gate of the select transistor SGD on the bit line side is set to the power supply voltage V_{dd} to set the select transistor SGD in the non-conductive state.

In addition, the gate of the select transistor SGS on the common source line side is set to 0V to set the select transistor SGS in the non-conductive state, too. Hence, no electrons are injected to the floating gate of the selected cell transistor so that the threshold voltage maintains the erase state. As described above, in the EASB method, the write for the selected cell transistor is executed while setting the cell transistor on the bit line side of the selected cell transistor in the conductive state, and the cell transistor adjacent to the source line side of the selected cell transistor in the non-conductive state.

This method is necessary for reducing write errors in the write using the multilevel technique.

The cell transistor must be set to a threshold
voltage that is cut off when the control gate voltage is 0V. For this reason, the erase method also changes. To execute the write by the EASB method, the threshold voltage of the cell transistor must not be too low. Hence, an operation (soft-program) must be performed to write the threshold voltage V_{th}, which is distributed by the erase as indicated by the alternate long and two-dashed line in FIG. 5, back to a certain level indicated by the solid line.

As described above, the binary technique and multilevel technique use different write and erase methods. If one memory cell array should include both binary technique blocks and multilevel technique blocks, the binary blocks and multilevel blocks must be discriminated after the erase.

For example, Jpn. Pat. Appln. KOKAI Publication No. 2001-210082 discloses a nonvolatile semiconductor memory device and a data storage system, in which a binary memory cell area and a multilevel memory cell area are separately formed in a memory cell array. In writing data, flag data that identifies the binary area or multilevel area is written for each word line. When the flag data is read out, a binary page or multilevel page can be identified so that a write or read corresponding to the binary technique or multilevel technique can be executed. In the technique disclosed in this prior art, however, the binary
memory cell area and multilevel memory cell area are separately formed in advance. For this reason, the degree of freedom in selection by the user is low.

Jpn. Pat. Appln. KOKAI Publication No. 2001-006374 discloses a semiconductor memory device and system which are selectively operated in a binary or multilevel mode. In the technique disclosed in this prior art, to selectively use a storage area as a binary area or multilevel area for each word line, a binary/multilevel management table is prepared to indicate that a storage area is assigned to the binary area or multilevel area. The user can freely operate the device in the binary or multilevel mode. However, dedicated hardware is necessary for discriminating between the binary blocks and the multilevel blocks, resulting in an increase in chip size.

As described above, for the conventional nonvolatile semiconductor memory devices, if blocks in the memory cell array should be selectively operated in the binary or multilevel mode, the degree of freedom in selection by the user becomes low. If the degree of freedom in block selection should be increased, dedicated hardware is necessary, resulting in an increase in chip size.

Disclosure of Invention

According to one aspect of the present invention, there is provided a nonvolatile semiconductor memory
device comprising a memory cell array constituted by a plurality of memory blocks having electrically rewritable nonvolatile semiconductor memory cells, an interface that communicates with an external device, and a write circuit which writes data in the memory cell array by first write procedures or second write procedures in accordance with a data write command input to the interface, when the data write command by the first write procedures is input from the interface, the write circuit executing the write command when flag data written in a memory cell in a block to be write-accessed by the write command has a first value and not executing the write command when the flag data has a second value.

According to another aspect of the present invention, there is provided a nonvolatile semiconductor memory device comprising a memory cell array constituted by a plurality of memory blocks having electrically rewritable nonvolatile semiconductor memory cells, an interface that communicates with an external device, an erase circuit which erases data in the memory cell for each memory block by first erase procedures or second erase procedures in accordance with a data erase command input to the interface, when the data erase command by the first erase procedures is input from the interface, the erase circuit executing an erase of the memory cell in a selected memory block
by using the first erase procedures and writing flag data in some memory cells in the erased memory block, and a write circuit which writes data in each page of each memory block by first write procedures when the erase is executed by using the first erase procedures or by second write procedures when the erase is executed by using the second erase procedures in accordance with a data write command input to the interface, when the data write command by the first write procedures is input from the interface, the write circuit executing the write command when the flag data written in some memory cells in a block to be write-accessed by the write command has a first value and not executing the write command when the flag data has a second value.

Brief Description of Drawings

FIG. 1 is a view showing the threshold voltage distribution of a memory cell using the multilevel technique;

FIG. 2 is a block diagram for explaining a conventional nonvolatile semiconductor memory device using the multilevel technique and binary technique;

FIG. 3 is a sectional view for explaining a write operation by the SB method;

FIG. 4 is a sectional view for explaining a write operation by the EASB method;

FIG. 5 is a view for explaining an erase operation
to execute the write by the EASB method;

FIG. 6 is a block diagram showing the arrangement of a flash memory so as to explain a nonvolatile semiconductor memory device according to the embodiment of the present invention;

FIG. 7 is a circuit diagram showing the structure of the memory cell array shown in FIG. 6;

FIG. 8 is a schematic view showing the structure of each memory block shown in FIG. 7;

FIG. 9A is a flowchart showing erase procedures in the binary mode;

FIG. 9B is a flowchart showing erase procedures in the multilevel mode;

FIG. 10A is a flowchart showing write procedures in the binary mode;

FIG. 10B is a flowchart showing write procedures in the multilevel mode;

FIG. 11 is a flowchart showing procedures for reading out binary flag data to an external device;

FIG. 12A is a flowchart showing other write procedures in the binary mode; and

FIG. 12B is a flowchart showing other write procedures in the multilevel mode.

Best Mode for Carrying Out the Invention

FIGS. 6 to 8 are views for explaining a nonvolatile semiconductor memory device according to the embodiment of the present invention. FIG. 6 is
a block diagram showing the arrangement of a flash memory. FIG. 7 is a circuit diagram showing the structure of the memory cell array shown in FIG. 6. FIG. 8 is a schematic view showing the structure of each memory block shown in FIG. 7. A NAND flash memory is illustrated as an example, and a main part related to switching between the binary mode and the multilevel mode is shown.

A memory cell array 1 is constructed by arraying flash memory cells in a matrix. A column control circuit 2 is arranged adjacent to the memory cell array 1. The column control circuit 2 controls the bit lines of the memory cell array 1 to execute a data erase, data write, or data read for the memory cells. A row control circuit 3 is arranged to select a word line of the memory cell array 1 and apply a voltage necessary for the erase, write, or read to the word line. In addition, a source line control circuit 4 which controls the source line of the memory cell array 1 and a p-well control circuit 5 which controls the p-well in which the memory cell array 1 is formed are arranged.

A data input/output buffer 6 is connected to an external host (not shown) through an I/O line to receive write data, output readout data, and receive address data or command data. The data input/output buffer 6 sends received write data to the column control circuit 2 and receives readout data from the
column control circuit 2. Additionally, to select a memory cell, the data input/output buffer 6 sends external address data to the column control circuit 2 or row control circuit 3 through a state machine 8. Also, the data input/output buffer 6 sends command data from the host to a command interface 7.

Upon receiving a control signal from the host, the command interface 7 determines whether the data input to the data input/output buffer 6 is write data, command data, or address data. If the data is command data, it is transferred to the state machine 8 as a reception command signal.

The state machine 8 manages the entire flash memory. The state machine 8 receives a command input from the host through the command interface 7 and manages the read, write, erase, and data input/output.

As shown in FIG. 7, the memory cell array 1 is divided into a plurality of (1,024) memory blocks BLOCK0 to BLOCK1023. These blocks are minimum units to be selectively used in the binary mode or multilevel mode. Each of the memory blocks BLOCK0 to BLOCK1023 is formed from 8,512 NAND memory units, as indicated by a representative memory block BLOCKi.

In this example, each NAND memory unit is constituted by connecting four memory cells (cell transistors) M in series. One terminal of the NAND memory unit is connected to bit lines BL (BLe0 to
BLe4255 and BLo0 to BLo4255) through a select gate S connected to a select gate line SGD. The other terminal of the NAND memory unit is connected to a common source line C-source through the select gate S connected to a select gate line SGS. The control gate of each memory cell M is connected to a word line WL (WL0_i to WL3_i). A data write/read is executed independently for even-numbered bit lines BLe and odd-numbered bit lines BLo counted from 0. Of the 8,512 memory cells connected to one word line WL, 4,256 memory cells are connected to the even-numbered bit lines BLe, for which the data write/read is executed simultaneously. Data of the 4,256 memory cells each storing 1-bit data constitute a unit called a page.

Similarly, 4,256 memory cells connected to the odd-numbered bit lines BLo constitute another page. The data write/read is executed simultaneously for the memory cells in the page.

In each block BLOCK shown in FIG. 7, the access operation such as the write, read, or erase is executed for each page (memory pages 0 to 3), as shown in FIG. 8. Each of memory pages 0 to 3 is formed from, e.g., a 528-byte user area and a 3-byte binary flag data area.

In the binary flag data area, normally, data called a hot count (HC) is stored to count the number of erases. Binary flag data that identifies the
binary mode or multilevel mode is written in part of the hot count. Every time the erase is executed, data is written in the hot count to increment the count value by "1". To execute the write and erase for a multilevel memory device by selectively using the binary technique, the multilevel and binary modes must be discriminated in each memory block. In the multilevel memory device, when the erase is executed upon receiving a signal for the binary mode operation, predetermined flag data is written in the memory cells in the binary flag data area so that the block is recognized as a binary block. To use the block as a multilevel block (MLC Block), the binary flag data is set to "1111" (i.e., the memory cell erased state). To use the block as a binary block (SLC Block), "0000" is written as binary flag data. The 4-bit binary flag data is read out, and the block is identified as a multilevel block or binary block in accordance with the majority theory.

The operation of the NAND flash memory with the above arrangement shown in FIGS. 6 to 8 will be described next with reference to the flowcharts shown in FIGS. 9A, 9B, 10A, 10B, and 11. FIG. 9A shows erase procedures in the binary mode. FIG. 9B shows erase procedures in the multilevel mode. FIG. 10A shows write procedures in the binary mode. FIG. 10B shows write procedures in the multilevel mode. FIG. 11 shows
procedures for reading out binary flag data to
an external device.

When the operation is to be controlled by software
using a controller, binary flag data is read out from
each of the memory blocks BLOCK0 to BLOCK1023 in the
memory cell array 1 at power-on time. Each of the
memory blocks BLOCK0 to BLOCK1023 is recognized in
advance as a block to be accessed in the binary
sequence or a block to be accessed in the multilevel
sequence.

On the basis of the recognition result, the erase
is executed for a memory block to be write-accessed in
the binary mode in accordance with the first procedures
shown in FIG. 9A. In the erase, first, a command "A2h"
that indicates a binary memory block is input from
the host to the state machine 8 through the command
interface 7 (S1). Next, an erase command that
indicates the first erase procedures is input from the
host and set in the state machine 8 (S2). Address data
from the host is received, and an address to select a
memory block to be erased is set in the state machine 8
(S3). The memory block to be erased is erased (without
soft-program) (S4). Subsequently, binary flag data to
identify the binary block and HC data are written in
the memory cells in the binary flag data area (S5).
To write the binary flag data, the HC data write
sequence that is normally executed to count the number
of times of erase is used. In other words, when the erase for the binary memory block is executed, the flag is automatically set by the state machine 8. In this way, the erase operation is ended (S6).

On the other hand, for a memory block to be write-accessed in the multilevel mode, the erase is executed in accordance with the second procedures shown in FIG. 9B. First, an erase command is input from the host through the command interface 7 and set in the state machine 8 (S1). Next, address data is input from the host, and an address to select a memory block to be erased is set in the state machine 8 (S2). After the erase is executed for the selected memory block, soft-program is executed to set a threshold voltage V_{th} at a predetermined level (S3). Subsequently, HC data is written (S4), and the erase operation is ended (S5).

The write operation will be described next. On the basis of the recognition result which indicates that a block should be accessed in the binary sequence or multilevel sequence, for a memory block for which the erase has been executed in accordance with the first erase procedures, binary data is written in accordance with the first write procedures shown in FIG. 10A. More specifically, a command "A2h" that indicates a binary memory block is input from the host through the command interface 7 and set in the state machine 8 (S1). A write command is input from the host
through the command interface 7 and set in the state machine 8 (S2). Address data is input from the host, and an address to select a memory block to be write-accessed is set in the state machine 8 (S3). This address is set for each page of the memory block to be write-accessed. Write data for one page (528 bytes) is input and set (S4). Then, the data is written by the SB method (S5). When all data are written, the write operation is ended (S6). If data to be written remains even after the end of the write in memory page 0, steps S2 to S6 are repeatedly sequentially executed for memory pages 1 to 3. In this data write, error correction is executed by using an ECC technique.

For a memory block for which the erase has been executed in accordance with the second erase procedure, multilevel data is written in accordance with the second write procedures shown in FIG. 10B. First, a multilevel write command is input from the host through the command interface 7 and set in the state machine 8 (S1). Next, address data is input from the host, and an address to select a memory block to be write-accessed is set in the state machine 8 (S2). This address is set for each page of the block to be write-accessed. Write data for one page (528 bytes) is input and set (S3). Then, the data is written by the EASB method (S4). When all data are written, the write operation is ended (S5). If data to be written remains
even after the end of the write in memory page 0, steps S1 to S5 are repeatedly sequentially executed for memory pages 1 to 3. In this data write, error correction is executed by using an ECC technique.

To read out the binary flag data to the external device, as shown in FIG. 11, a read command is input from the host and set in the state machine 8 (S1). Subsequently, a status "74h" is set from the host to the state machine 8 (S2). Accordingly, the data is output through the command interface 7 and data input/output buffer 6 (S3).

In the above embodiment, the binary flag data is read out at power-on time, and the operation is controlled by software using a controller. The same operation as described above can be implemented by hardware.

In this case, after the erase is executed in accordance with the first or second erase procedures shown in FIG. 9A or 9B, the write is executed in accordance with the write procedures shown in the flowchart of FIG. 12A or 12B. More specifically, for a memory block for which the erase has been executed in accordance with the first erase procedures, binary data is written in accordance with the first write procedures shown in FIG. 12A. First, a command "A2h" that indicates a binary memory block is input from the host through the command interface 7 and set in the
state machine 8 (S1). A write command is input from the host through the command interface 7 and set in the state machine 8 (S2). Address data is input from the host, and an address to select a memory block to be write-accessed is set in the state machine 8 (S3). This address is set for each page of the memory block to be write-accessed. Write data for one page (528 bytes) is input and set (S4). Next, the binary flag data of the block is read out (S5) to determine whether the block is a block to be write-accessed in the binary sequence or multilevel sequence (S6). When the readout binary flag data is "0000", the data is written by the SB method (S7). When all data are written, the write operation is ended (S8). If data to be written remains even after the end of the write in memory page 0, steps S2 to S8 are repeatedly sequentially executed for memory pages 1 to 3. When the readout binary flag data is not "0000" ("1111"), the write operation is stopped without executing the write command (S9). At this time, whether the block is a binary block or multilevel block is determined in accordance with a 4-bit majority theory. Accordingly, the binary flag data can be error-corrected.

For a memory block for which the erase has been executed in accordance with the second erase procedure, multilevel data is written in accordance with the second write procedures shown in FIG. 12B. First,
a multilevel write command is input from the host through the command interface 7 and set in the state machine 8 (S1). Next, address data is input from the host, and an address to select a memory block to be write-accessed is set in the state machine 8 (S2). This address is set for each page of the block to be write-accessed. Write data for one page (528 bytes) is input and set (S3). Then, the binary flag data of the block is read out (S4) to recognize whether the block is a block to be write-accessed in the binary sequence or multilevel sequence (S5). When the readout binary flag data is "1111", the data is written by the EASB method (S6). When all data are written, the write operation is ended (S7). If data to be written remains even after the end of the write in memory page 0, steps S1 to S7 are repeatedly sequentially executed for memory pages 1 to 3. When the readout binary flag data is not "1111" ("0000"), the write operation is stopped without executing the write command (S8). As a matter of course, whether the block is a binary block or multilevel block is determined in accordance with the 4-bit majority theory. Accordingly, the binary flag data can be error-corrected.

According to the nonvolatile semiconductor memory device having the above arrangement, the following effects can be obtained.

(1) In the memory cell array formed as a
multilevel memory cell array, a block to be used in the binary mode can be freely selected. For this reason, an arbitrary memory block in the memory cell array can be selectively operated in the binary mode or multilevel mode at a high degree of freedom. In addition, when a block such as a FAT that is to be frequently rewritten is used in the binary mode, the write speed can be greatly increased.

(2) The binary flag data can be placed in any memory page of any memory block and therefore can be placed anywhere in a remaining area. In addition, since the binary flag data is written in the memory block to be used in the binary mode, no dedicated hardware is necessary. Hence, the block can be used in the binary mode without increasing the chip size.

(3) In the erase using the multilevel technique, soft-program is executed after the erase of a cell. Since the threshold voltage of a cell can exceed 0V, the reliability is lower than the binary technique. However, in the erase operation by the binary technique, no soft-program is executed. Hence, a high reliability can be ensured.

(4) For a memory block for which the binary flag is set (a memory block to be accessed in the binary mode), the write using the multilevel technique is rejected and cannot be executed. Accordingly, the write speed and reliability can be ensured for the
memory block.

(5) The binary flag data can be output to the external device through the interface (data input/output buffer 6 and command interface 7). Hence, it can easily be identified from the external device whether a memory block is a binary block or multilevel block.

(6) The binary flag data is written in a plurality of memory cells in each memory cell block. When the binary flag data is read out, error correction is executed in accordance with the majority theory. Hence, any recognition error for the memory block can be prevented.

As described above, in the nonvolatile semiconductor memory device according to this embodiment, when the erase is executed simultaneously with the input of a binary mode command, predetermined flag data is written in predetermined memory cells of a given memory page so that the block is recognized as a binary mode block. The write time of a multilevel NAND flash memory is longer than that of a binary product. However, when some memory blocks are selectively set as binary blocks and write-accessed by the SB method, the write time for the blocks can be shortened.

Especially, when a block such as a FAT that is frequently rewritten is set as a binary mode block, the write speed can be increased. In addition, since
the reliability of the binary mode is higher than that of the multilevel mode, the reliability can also be ensured. Furthermore, when the flag data is written in a plurality of memory cells, and error correction is executed in accordance with the majority theory in reading out the flag data, the reliability can further be increased. Since the flag data can be output to the external device, the block set in the binary mode can easily be confirmed from the external device.

With this arrangement, an arbitrary memory block in the memory cell array can be selectively operated in the binary mode or multilevel mode with a high degree of freedom.

In the above embodiment, a NAND flash memory has been described as an example of a nonvolatile semiconductor memory device. However, the present invention can also be applied to a semiconductor integrated circuit device in which a NAND flash memory and logic circuit are embedded, or a semiconductor integrated circuit device called a SOC in which a system is formed in one chip. The present invention can also be applied to an IC card or memory card in which the nonvolatile semiconductor memory device is mounted on a card-shaped package or various memory systems such as a system using the memory card.

As described above, according to one aspect of this invention, each memory block in the memory cell
array can freely be selected, and data can be written in accordance with the first or second write procedures. The flag data can be placed in any memory page of any memory block and therefore can be placed anywhere in a remaining area. In addition, since the flag data is written in the memory block to be write-accessed or erased, no dedicated hardware is necessary, and any increase in chip size can be prevented. With this arrangement, an arbitrary memory block in the memory cell array can be selectively operated in the binary mode or multilevel mode with a high degree of freedom.

According to the embodiment of the present invention, a nonvolatile semiconductor memory device can be obtained, which can selectively operate an arbitrary memory block in a memory cell array in the binary mode or multilevel mode with a high degree of freedom without increasing the chip size.

Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
C L A I MS

1. A nonvolatile semiconductor memory device comprising:
 a memory cell array constituted by a plurality of memory blocks having electrically rewritable nonvolatile semiconductor memory cells;
 an interface that communicates with an external device; and
 a write circuit which writes data in the memory cell array by first write procedures or second write procedures in accordance with a data write command input to the interface, when the data write command by the first write procedures is input from the interface, the write circuit executing the write command when flag data written in a memory cell in a block to be write-accessed by the write command has a first value and not executing the write command when the flag data has a second value.

2. The device according to claim 1, wherein the first write procedures are procedures for writing binary data in the memory cell, and the second write procedures are procedures for writing multilevel data in the memory cell.

3. The device according to claim 1, wherein the flag data can be output to the external device through the interface.

4. The device according to claim 1, wherein the
flag data is written in a plurality of memory cells in each memory block, and when the flag data is read out, error correction is executed in accordance with a majority theory.

5. A nonvolatile semiconductor memory device comprising:

 a memory cell array constituted by a plurality of memory blocks having electrically rewritable nonvolatile semiconductor memory cells;

 an interface that communicates with an external device;

 an erase circuit which erases data in the memory cells for each memory block by first erase procedures or second erase procedures in accordance with a data erase command input to the interface, when the data erase command by the first erase procedures is input from the interface, the erase circuit executing an erase of the memory cells in a selected memory block by using the first erase procedures and writing flag data in some memory cells in the erased memory block; and

 a write circuit which writes data in each page of each memory block by first write procedures when the erase is executed by using the first erase procedures or by second write procedures when the erase is executed by using the second erase procedures in accordance with a data write command input to the interface, when the data write command by the first
write procedures is input from the interface, the write circuit executing the write command when the flag data written in some memory cells in a block to be write-accessed by the write command has a first value and not executing the write command when the flag data has a second value.

6. The device according to claim 5, wherein the first erase procedures are procedures for erasing the data in the memory cells for a binary data write, and the second erase procedures are procedures for erasing the data in the memory cells for a multilevel data write.

7. The device according to claim 5, wherein the first write procedures are procedures for writing binary data in the memory cells, and the second write procedures are procedures for writing multilevel data in the memory cells.

8. The device according to claim 5, wherein the flag data can be output to the external device through the interface.

9. The device according to claim 5, wherein the flag data is written in a plurality of memory cells in each memory block, and when the flag data is read out, error correction is executed in accordance with a majority theory.
FIG. 1 (PRIOR ART)

Vth

"01"

"00"

"10"

"11"

Distribution frequency

FIG. 2 (PRIOR ART)

1/7

Multilevel technique

Slow Program Time

Multilevel technique

Fast Program Time

Multilevel technique

Slow Program Time

Multilevel technique

Multilevel technique

FIG. 3 (PRIOR ART)

SGS

SB

Vpass=10V

Vpgm=20V

SGD (Non-conductive)

0V

BL = Vdd

FIG. 4 (PRIOR ART)

SGS

EASB

Non-conductive

Vpass=10V

Vpgm=20V

SGD (Non-conductive)

0V

BL = Vdd
FIG. 5 (PRIOR ART)

- User Area 528 Byte
- 3 Byte
- Memory page 0
- Memory page 1
- Memory page 2
- Memory page 3

Vth
- 0V
- 0.35V
- 0.80V

Distribution frequency

Soft-Program

FIG. 8

- Binary Flag Data<0:3>
- If “1111” then MLC Block
- If “0000” then SLC Block
- Determine by 4-bit majority
First erase procedures

1. Input Command "A2h" \(\rightarrow \) S1
2. Input Command \(\rightarrow \) S2
3. Input Address \(\rightarrow \) S3
4. Erase Without Soft-Program \(\rightarrow \) S4
5. Program of Binary Flag Data and HC Data \(\rightarrow \) S5
6. Erase End \(\rightarrow \) S6

Second erase procedures

1. Input Command \(\rightarrow \) S1
2. Input Address \(\rightarrow \) S2
3. Erase With Soft-Program \(\rightarrow \) S3
4. Program of HC Data \(\rightarrow \) S4
5. Erase End \(\rightarrow \) S5

FIG. 9A

FIG. 9B
First write procedures

Input Command "A2h" \(\sim S1 \)

Input Command \(\sim S2 \)

Input Address \(\sim S3 \)

Input Data \(\sim S4 \)

Program by Self-Boost \(\sim S5 \)

Program End \(\sim S6 \)

Second write procedures

Input Command \(\sim S1 \)

Input Address \(\sim S2 \)

Input Data \(\sim S3 \)

Program by Erased Area Self-Boost \(\sim S4 \)

Program End \(\sim S5 \)

F I G . 1 0 B

F I G . 1 0 A

Binary flag data output

Read \(\sim S1 \)

Input Command "74h" \(\sim S2 \)

Output Data \(\sim S3 \)

F I G . 1 1
First write procedures:

1. Input Command "A2h" → S1
2. Input Command → S2
3. Input Address → S3
4. Input Data → S4
5. Read Binary Flag Data → S5

 - "0000" → Yes → S9 → Stop Program
 - No → S6

6. Program by Self-Boost → S7

7. Program End → S8

Second write procedures:

1. Input Command → S1
2. Input Address → S2
3. Input Data → S3
4. Read Binary Flag Data → S4

 - "1111" → No → S8 → Stop Program
 - Yes → S6

5. Program by Erased Area Self-Boost → S6

6. Program End → S7
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G01C11/56 G01C16/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 G01C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>paragraph '0040! - paragraph '0047!; figure 1</td>
<td>5-9</td>
</tr>
<tr>
<td>Y</td>
<td>US 6 490 197 B1 (FASOLI LUCA GIOVANNI) 3 December 2002 (2002-12-03)</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>column 3, line 11 - column 7, line 15; figures 2,3</td>
<td>5-9</td>
</tr>
</tbody>
</table>

XX Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
4 January 2005

Date of mailing of the international search report
12/01/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Facs. (+31-70) 340-3016

Authorized officer
Colling, P

Form PCT/ISA/210 (second sheet) January 2004
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | US 2003/007384 A1 (SHIMIZU SHU)
9 January 2003 (2003-01-09)
paragraph ‘0049’!
paragraph ‘0062’! | 1-3, 5-8 |
| A | US 5 982 663 A (PARK JONG-WOOK)
9 November 1999 (1999-11-09)
column 1, line 6 - column 3, line 37 | 1-9 |
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6490197 B1</td>
<td>03-12-2002</td>
<td>EP 1282135 A2</td>
<td>05-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003132690 A</td>
<td>09-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60103397 D1</td>
<td>24-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1292889 A1</td>
<td>19-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0197032 A1</td>
<td>20-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004503891 T</td>
<td>05-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10208490 A</td>
<td>07-08-1998</td>
</tr>
</tbody>
</table>