发明名称
半导体装置的制造方法，及半导体装置

摘要
本发明的实施方式涉及一种扩展方法，其具有以下工序：准备具有沿着分割预定线形成有改
性部的半导体芯片、芯片焊接膜，及切割带的层叠
体的工序 (I)；在层叠体冷却的状态下将切割带
进行拉伸的工序 (IIA)；将拉伸后的切割带松弛
的工序 (IIB)；以及在层叠体冷却的状态下将切
割带进行拉伸，将半导体芯片及芯片焊接膜沿著
分割预定线分割成芯片，并扩大芯片的间隔的工
序 (IIIC)。
1. 一种扩展方法，其包含以下工序：准备具有沿分割预定线形成有改异性部的半导体晶体、芯片焊接膜、及切割带的层叠体的工序（I）；
在层叠体冷却的状态下将切割带进行拉伸的工序（IIA）；
将拉伸后的切割带松驰的工序（IIB）；以及
在层叠体冷却的状态下将切割带进行拉伸，将半导体晶体及芯片焊接膜沿着分割预定线分割成芯片，扩大芯片的间隔的工序（IIC）。

2. 根据权利要求1所述的扩展方法，其包含以下工序：准备具有沿分割预定线形成有改异性部的半导体晶体、芯片焊接膜、切割带及框的层叠体的工序（Ia）；
向具备能够升降的扩展平台及能够将框固定的固定部件的扩展装置的扩展平台面上供给层叠体的工序（Ib）；
通过固定部件将框固定的工序（Ic）；
在层叠体冷却的状态下使扩展平台上升，将切割带进行拉伸的工序（IIA）；
使上升后的扩展平台下降，将拉伸后的切割带松驰的工序（IIB）；以及
在层叠体冷却的状态下使扩展平台上升，将切割带进行拉伸，将半导体晶体及芯片焊接膜沿着分割预定线分割成芯片，扩大芯片的间隔的工序（IIC）。

3. 根据权利要求1所述的扩展方法，其包含以下工序：准备具有沿分割预定线形成有改异性部的半导体晶体、芯片焊接膜、切割带及框的层叠体的工序（Ia’）；
向具备能够升降的扩展环及能够将框固定的固定部件的扩展装置的扩展环上面供给层叠体的工序（Ib’）；
通过固定部件将框固定的工序（Ic’）；
在层叠体冷却的状态下使扩展环上升，将切割带进行拉伸的工序（IIA’）；
使上升后的扩展环下降，将拉伸后的切割带松驰的工序（IIB’）；以及
在层叠体冷却的状态下使扩展环上升，将切割带进行拉伸，将半导体晶体及芯片焊接膜沿着分割预定线分割成芯片，扩大芯片的间隔的工序（IIC’）。

4. 根据权利要求1所述的扩展方法，其中，切割带的拉伸通过对切割带施加外力来进行，在工序（IIC）中对切割带施加的外力比在工序（IIA）中对切割带施加的外力大。

5. 一种半导体装置的制造方法，其包含以下工序：准备具有沿分割预定线形成有改异性部的半导体晶体、芯片焊接膜、及切割带的层叠体的工序（I）；
将切割带进行拉伸，将半导体晶体及芯片焊接膜沿着分割预定线分割成芯片，扩大芯片的间隔的工序（II）；
将芯片从切割带拾取的工序（III）；以及
将芯片进行芯片焊接而成焊接到被粘物上的工序（IV），
工序（I）及工序（II）通过权利要求1～4中任一项所述的扩展方法来进行。

6. 一种半导体装置，其中具有被粘物和粘接于该被粘物上的芯片的半导体装置，通过权利要求5所述的半导体装置的制造方法来制造。
扩展方法、半导体装置的制造方法及半导体装置

技术领域

[0001] 本发明的实施方式涉及扩展方法、半导体装置的制造方法及半导体装置。

背景技术

[0002] 近年来，半导体芯片向薄膜化及小型化取得惊人的进展。特别是对内置于像存储卡或灵巧卡片那样的 IC 卡中的半导体芯片，例如要求 75 μm 以下的厚度及 10mm×10mm 以下的芯片尺寸。认为随着今后 IC 卡的需求增加，薄膜化及小型化的必要性更进一步提高。

[0003] 半导体芯片通常通过将半导体晶片上背面研磨工序或蚀刻工序等中制成规定的厚度后，在切割工序中将半导体晶片单片化而获得。在切割工序中，通常采用将半导体晶片利用切割刀片切断的刀片切割方式。在刀片切割方式中，有时因切割时产生的切削阻力而在半导体芯片中产生微小的缺损（也称为“崩裂”）。崩裂的产生不仅会损害半导体芯片的外观，而且根据程度连半导体芯片上的电路图案也有可能发生破损，最近作为重要的问题之一被抓住不放。就薄膜化及小型化的半导体芯片而言，所允许的崩裂的水平更加严格。今后，预测由于半导体芯片的薄膜化及小型化不断发展，崩裂的问题会变得更加深刻。

[0004] 作为切割工序中的其他方式，有隐形切割方式。隐形切割方式是特别适合用于将极薄的半导体晶片切断的方式，已知根据隐形切割方式，能够抑制崩裂的产生。隐形切割方式如下进行。

[0005] 若示出一个例子，在隐形切割方式中，首先，使聚焦点对准半导体晶片内部对半导体晶片照射激光，在半导体晶片内部形成由光子吸收产生的脆弱的改性部。若使激光的照射位置沿着将半导体晶片分割成各个半导体芯片的预定的线（也称为“分割预定线”）移动，则能够形成沿着分割预定线的改性部（也称为“切割线”）。接着，在半导体晶片的背面（没有形成电路的一面）粘贴切割带后，将切割带进行拉伸。由此，对半导体晶片给予外部应力，沿着分割预定线将半导体晶片切断，截断成各个半导体芯片，同时半导体芯片的间隔扩大。

[0006] 将切割带进行拉伸的工序通常称为扩展工序。扩展工序无论切割工序是通过刀片切割方式来进行，或者是通过隐形切割方式来进行，均为一般进行的工序。当切割工序通过刀片切割方式来进行时，使用切割刀片将半导体晶片分割成半导体芯片后，为了扩大半导体芯片的间隔而进行扩展工序。此时的扩展工序的主要目的是使半导体芯片的拾取变得容易。此外，当切割工序通过隐形切割方式来进行时，扩展工序如上所述作为用于将形成有切割线的半导体晶片分割成半导体芯片的工序发挥功能。此外，除此以外，扩展工序还作为用于扩大所分割的半导体芯片的间隔的工序发挥功能。适用于扩展工序的方法及装置例如公开于专利文献 1 ～ 3 等中。

[0007] 现有技术文献

[0008] 专利文献

[0009] 专利文献 1：日本特开 2005-109044 号公报
发明内容

发明所要解决的课题

另外，以往，在半导体芯片与支撑部件等被粘物的粘接中主要使用银糊剂。然而，在对薄膜化及小型化的半导体芯片使用银糊剂的情况下，糊剂的溢出、膜厚控制的困难性、起因于半导体芯片的倾斜的引线接合的不良情况及空隙的产生等成为无法忽视的问题。特别是在对于半导体装置也要求半导体芯片的高集成化及支撑部件的小型化的现状下，这些成为大问题。

因此，近年来，在半导体芯片与被粘物的粘接时，逐渐使用膜状的芯片焊接材料片融芯片焊膏。在使用芯片焊膏的情况下，例如在半导体芯片的背面依次粘贴芯片焊膏膜及切割带。之后，在切割工序中通过将半导体芯片与芯片焊膏膜同时切断，得到带芯片焊膏膜的半导体芯片。所得到的半导体芯片能够将芯片焊膏膜粘接于其粘物上。

在将半导体芯片及芯片焊膏膜通过隐形切割方式切断的情况下，在扩展工序中，要求与形成有切割线的半导体芯片一起将芯片焊膏膜切断。通过扩展工序，半导体芯片及芯片焊膏膜被分割成单片化的芯片焊膏膜的半导体芯片（也称为“芯片”）。)

鉴于这样的状况，本发明的实施方式的目的的是提供能够将半导体芯片及芯片焊膏膜良好地切断的扩展方法。此外，本发明的实施方式的目的是提供通过采用上述扩展方法能够高效率地制造半导体装置的半导体装置的制造方法、及由此得到的半导体装置。

用于解决课题的方案

本发明的实施方式涉及一种扩展方法，其包括以下工序：准备具有沿着分割预定线形成有改性部的半导体芯片、芯片焊膏膜、及切割带的层叠体的工序（1）；在层叠体冷却的状态下将切割带进行拉伸的工序（IIA）；将拉伸后的切割带松弛的工序（IIB）；以及在层叠体冷却的状态下将切割带进行拉伸，将半导体芯片及芯片焊膏膜沿着分割预定线分割成芯片，扩展芯片的间隔的工序（IIC）。

此外，本发明的另一实施方式涉及一种半导体装置的制造方法，其包含以下工序：准备具有沿着分割预定线形成有改性部的半导体芯片、芯片焊膏膜、及切割带的层叠体的工序（1）；将切割带进行拉伸，将半导体芯片及芯片焊膏膜沿着分割预定线分割成芯片，并扩展芯片的间隔的工序（1）；将芯片从切割带中取出的工序（III）；以及将芯片进行芯片焊接到被粘物上，通过上述实施方式的扩展方法进行。

本发明的又一实施方式涉及一种半导体装置，其是具有被粘物和粘接于该被粘物上的芯片的半导体装置，通过上述实施方式的半导体装置的制造方法来制造。

本申请的公开内容与2012年12月26日日本特愿2012–282785号中记载的主题相关，它们的公开内容通过引用援引于此。

发明效果

根据本发明的实施方式，可以提供能够将半导体芯片及芯片焊膏膜良好地切断的扩展方法。此外，根据本发明的实施方式，可以提供能够高效率地制造半导体装置的半导体装置的制造方法、及由此得到的半导体装置。
附图说明
[0024] 图 1 是表示扩展方法的一实施方式的简图。
[0025] 图 2 是表示得到沿着分割预定线形成有改性部的半导体晶片的工序的一实施方式的简图。
[0026] 图 3 是表示在半导体晶片上粘贴芯片焊接膜的工序的一实施方式的简图。
[0027] 图 4 是表示在芯片焊接膜上粘贴切削带的工序的一实施方式的简图。
[0028] 图 5 是表示在半导体晶片上粘贴切削芯片焊接一体型片材的工序的一实施方式的简图。
[0029] 图 6A 是表示扩展方法的一实施方式（工序 (Ia) - (IIa)) 的简图。
[0030] 图 6B 是表示扩展方法的一实施方式（工序 (IIb) - (IIc)) 的简图。
[0031] 图 7A 是表示扩展方法的一实施方式（工序 (Ia') - (IIa')) 的简图。
[0032] 图 7B 是表示扩展方法的一实施方式（工序 (IIb') - (IIc')) 的简图。
[0033] 图 8 是表示层叠体的一实施方式的简图。
[0034] 图 9 是表示扩展方法的一实施方式的流程图。
[0035] 图 10 是表示将芯片与切割带组装的工序的一实施方式的简图。
[0036] 图 11 是表示将芯片进行芯片焊接到被粘物上的工序的一实施方式的简图。
[0037] 图 12 是表示半导体装置的一实施方式的简图。
[0038] 图 13 是表示半导体装置的一实施方式的简图。
[0039] 图 14A 是表示用于拉伸量及拉伸率的评价的切割带的一实施方式的简图。
[0040] 图 14B 是表示实施例 1 及比较例 1 中用于评价的切割芯片焊接一体型片材的简图。
[0041] 图 15 是表示实施例 2 中扩展后的半导体晶片的照片。
[0042] 图 16 是表示实施例 3 中扩展后的半导体晶片的照片。
[0043] 图 17 是表示比较例 2 中扩展后的半导体晶片的照片。
[0044] 图 18 是表示以往的扩展方法的一个例子的简图。

具体实施方式
[0045] 以下，利用附图对本发明的实施方式作说明。另外，各图中对同一部件附上同一编号，以下省略重复的说明。
[0046] [第 1 实施方式]
[0047] 第 1 实施方式涉及一种扩展方法，其用于将半导体晶片及芯片焊接膜沿着分割预定线进行切断，分割成芯片，并扩大芯片的间隔。
[0048] 将半导体晶片及芯片焊接膜进行切断时，从芯片焊接膜的断裂性提高的观点出发，通常扩展工序在低温下进行。但是，尽管在低温下进行扩展工序，有时也无法将半导体晶片及芯片焊接膜切断。图 18 是表示以往的扩展方法的一个例子的简图，表示半导体晶片 1 及芯片焊接膜 2 没有被切断的例子。图 18 中，层叠有半导体晶片 1 及芯片焊接膜 2 的切割带 3 通过利用具备冷却机的扩展平台 10 边冷却边压上而被拉伸。
[0049] 本发明的发明人们认为无法将半导体晶片及芯片焊接膜切断的原因之一在于低
温状态下的切割带的拉伸性。认为在低温状态下切割带的拉伸性降低，切割带的拉伸量变得不充分，其结果是，给予半导体晶片及芯片焊接膜的外力变小。因此，本实施方式的扩展方法作为提高处于低温状态的切割带的拉伸性的方法而提供。

【0050】 即，通过在低温下进行扩展工序而使得芯片焊接膜自身的断裂性提高，但另一方面，切割带的拉伸性变低，无法使充分的外力作用于半导体晶片及芯片焊接膜。与此相对，本实施方式是通过简便的方法使处于低温状态的切割带的拉伸性提高，由此能够将半导体晶片及芯片焊接膜良好地切断的扩展方法。

【0051】 第1实施方式涉及一种扩展方法，其具有以下工序：准备具有沿着分割预定线形成有改性部的半导体晶片、芯片焊接膜、及切割带的层叠体的工序（I）；在层叠体冷却的状态下将切割带进行拉伸的工序（I1A）；将拉伸后的切割带松弛的工序（I1B）；以及在层叠体冷却的状态下将切割带进行拉伸，将半导体晶片及芯片焊接膜沿着分割预定线分割成芯片，并扩大芯片的间隔的工序（I1C）。图1是表示第1实施方式的简图。层叠体作为截面图示出。只要没有特别说明，关于第1实施方式的说明在不矛盾的范围内也可以适用于后述的其他实施方式。

【0052】 本实施方式依次具有工序（I）～工序（I1C）。在各工序的前后还可以包含任意的工序，例如将保护片及剥离的工序、搬运工序、清洗或确认的工序等。优选连续地进行工序（I1A）～工序（I1C）。

【0053】 （工序（I））

【0054】 如图1所示的那样，首先，准备具有沿着分割预定线4形成有改性部5的半导体晶片1、芯片焊接膜2及切割带3的层叠体6的（工序（I））。作为得到层叠体6的方法，可以适用以往公知的方法。以下示出得到层叠体6的方法的例子。

【0055】 作为半导体晶片，可列举出例如由单晶硅、多晶硅等硅；各种陶瓷；蓝宝石；氮化镓、砷化镓等化合物半导体等构成的晶片。也可以使用除这些以外的半导体晶片。

【0056】 半导体晶片的厚度及尺寸没有特别限定。从降低崩裂的产生的观点出发，半导体晶片的厚度例如优选为25μm以上。此外，从将封装体小型化的观点出发，半导体晶片的厚度例如优选为100μm以下，更优选为75μm以下，进一步优选为50μm以上。从生产率提高的观点出发，半导体晶片的直径例如优选为200mm以上，更优选为300mm以上。

【0057】 所谓“分割预定线”是指将半导体晶片进行分割的预定的线。通过沿着分割预定线将半导体晶片及芯片焊接膜切断，能够获得芯片。所得到的“芯片”包含半导体芯片及粘接于其上的单片化的芯片焊接膜。

【0058】 在半导体晶片中，沿着分割预定线预先形成了改性部。“改性部”优选为通过使聚光点对准半导体晶片内部照射激光而形成的脆弱的改性部。图2是表示在半导体晶片1中沿着分割预定线4形成改性部5的工序的一实施方式的简图。对半导体晶片1的激光照射可以从半导体晶片1的表面、即形成电路的面1a进行，或者，也可以从半导体晶片的背面、即没有形成电路的面1b进行。

【0059】 关于在半导体晶片内形成改性部的方法，可以使用日本特开2002-192370号公报、日本特开2003-338467号公报等中记载的方法。作为可以用于激光照射的装置，可列举出例如激光切割装置“MAAH DI.CING MACHINE”（株式会社东京精密制）、激光切割机“DFL7360”（DISCO Corporation制）等。
以下示出使用激光切割装置“MAOH DICING MACHINE”（株式会社东京精密制）时的条件的一个例子。在以下的条件下使激光照射半导体晶体片的内部，沿着分割预定线从半导体晶体片的表面侧照射激光，可以在半导体晶体片的内部形成改性部。改性部优选为通过多光子吸收使得半导体晶体片内部局部地进行加热熔融而形成的熔融处理区域。

(A) 半导体晶体片：硅晶体（厚度为 75 μm，外径为 12 英寸（300mm））
(B) 激光光源：半导体激光激 光 Nd :YAG 激光

波长：1064nm

激光点截面积：3. 14×10⁻³ cm²

起振形态：Q 开关脉冲

重复频率：100kHz

脉冲宽度：30ns

输出功率：20 μJ/脉冲

激光品质：TEM00

偏振光特性：直线偏振光

(C) 聚光用透镜倍率：50 倍

NA：0.55

相对于激光波长的透射率：60％

(D) 载具半导体晶体片的载具台的移动速度：100mm/秒

分割预定线的间隔没有特别限定。所得到的芯片具有与分割预定线的间隔相应的尺寸。

芯片焊接膜是在将半导体芯片安装到引线框、有机基板等半导体芯片搭载用支撑部件上时，此外将半导体芯片彼此层叠时等使用的粘接膜。芯片焊接膜有助于芯片焊接工序的简化及生产量的提高等。作为芯片焊接膜，可以使用市售品。在层叠体中，芯片焊接膜通常比半导体晶体片大，并且具有圆形或大致圆形的形状。

芯片焊接膜的厚度及尺寸没有特别限定。从防止从半导体晶体剥离的观点出发，芯片焊接膜的直径例如优选为 350mm 以下，更优选为 335mm 以下，进一步优选为 320mm 以下。虽然没有特别限定，但它们的尺寸为特别适合于直径为 300mm 的半导体晶体片的尺寸。

切割带是为了在半导体晶体片的切割工序中保护及固定半导体晶体片，进而之后的工序中保持半导体芯片等而使用的带。作为切割带，可以使用市售品。在层叠体中，切割带通常比芯片焊接膜大，并且具有圆形或大致圆形的形状。

切割带的厚度及尺寸没有特别限定。从操作性及工艺性的观点出发，切割带的厚度例如优选为 70 μm 以上。

芯片焊接膜及切割带还作为两者粘合而成的切割芯片焊接一体型片材的形态而市售。通过使用切割芯片焊接一体型片材，能够同时进行半导体晶体片背面上的芯片焊接膜及切割带的粘贴。切割芯片焊接一体型片材有助于半导体装置的制造工序的缩短、薄型芯片的处理性的提高等。

具有半导体晶体片、芯片焊接膜、及切割带的层叠体通常至少依次具有半导体晶体片、芯片焊接膜、及切割带。层叠体除了具有这些层以外，还可以具有保护半导体晶体片表面的保
护带、支撑切割带的支撑膜等任意的层。此外，芯片焊接膜及切割带可以分别由单层构成，也可以由多层构成。

【0083】从在扩展后容易识别无法切断芯片焊接膜的部分的方面考虑，芯片焊接膜与切割带优选透明性，色调等不同。

【0084】层叠体通过例如在半导体晶片的背面粘贴芯片焊接膜，接着，在芯片焊接膜上粘贴切割带而获得。图 3 是表示在半导体晶片 1 上粘贴芯片焊接膜 2 的工序的一实施方式的简图，图 4 是表示在芯片焊接膜 2 上粘贴切割带 3 的工序的一实施方式的简图。

【0085】对在半导体晶片上粘贴芯片焊接膜时的温度及压力没有特别限制，可以考虑芯片焊接膜的粘接性等而适当决定。

【0086】对在芯片焊接膜上粘贴切割带时的温度及压力也没有特别限制，可以考虑芯片焊接膜及切割带的粘接性、粘合性等而适当决定。

【0087】此外，例如在使用切割芯片焊接一体型片材的情况下，层叠体通过在半导体晶片的背面粘贴切割芯片焊接一体型片材的芯片焊接膜侧的面而获得。图 5 是表示在半导体晶片 1 上粘贴切割芯片焊接一体型片材 8 的工序的一实施方式的简图。

【0088】对在半导体晶片上粘贴切割芯片焊接一体型片材时的温度及压力也没有特别限制。从提高与半导体晶片的密合性的观点出发，粘贴时的温度例如优选为 50℃以上，此外，从切割带的耐热性的观点出发，例如优选为 80℃以下。

【0089】半导体晶片内部的改性部的形成可以于在半导体晶片上粘贴芯片焊接膜之前进行，在半导体晶片上粘贴芯片焊接膜之后进行，或者，在半导体晶片上粘贴芯片焊接膜及切割带或切割芯片焊接一体型片材之后进行。

【0090】在粘贴之前进行改性部的形成的情况下，为了防止由于在粘贴时对半导体晶片施加的应力而导致半导体晶片被切断，优选将半导体晶片支撑后进行粘贴。

【0091】在粘贴之后进行改性部的形成的情况下，通过使用透射激光的芯片焊接膜及切割带或切割芯片焊接一体型片材，也可以从半导体晶片的背面照射激光。

【0092】（工序（IIA））

【0093】接着，在层叠体 6 冷却后的状态下将切割带 3 进行拉伸（工序（IIIA））。所谓“层叠体冷却后的状态”是指层叠体的温度处于比室温低的温度的状态。是否边将层叠体冷却边进行拉伸不成问题。可以在将层叠体预先冷却后将切割带进行拉伸，此外，也可以边将层叠体冷却边将切割带进行拉伸。

【0094】拉伸时的层叠体的温度为比室温（例如 25℃）低的温度。从提高芯片焊接膜的截断性的观点出发，层叠体的温度例如优选为 10℃以下，更优选为 0℃以下，进一步优选为 -5℃以下，特别优选为 -10℃以下。若考虑芯片焊接膜的截断性，则层叠体的温度越低越优选。但是，从确保芯片焊接膜及切割带的实用的机械特性的观点出发，在层叠体的温度例如优选为 -15℃以上。层叠体的温度设为通过测定半导体晶片的表面的温度、或切割带的背面（没有粘贴到芯片焊接膜上的面）的温度而得到的值。

【0095】冷却的方法没有特别限定。可列举出例如使用来自冷却机的冷却风、具备冷却机的冷却平台等的方法。

【0096】切割带的拉伸通过对切割带施加外力来进行，其方法没有特别限定。外力按照切割带沿面方向被拉伸的方式施加。本工序中，通常将切割带沿放射状进行拉伸。
工序 (IA) 中的拉伸的目的通常不是将半导体晶片及芯片焊接膜分割成芯片。但是，有时也部分地沿着分割预测线分割成芯片。或者，还有时半导体晶片被部分地分割，芯片焊接膜没有被分割。

拉伸时间没有特别限制。例如优选为 5 秒以上，此外，优选为 60 秒以下。拉伸时间相当于施加外力的时间。

从提高芯片焊接膜的载断性观点出发，拉伸速度例如优选为 10mm/秒以上，更优选为 50mm/秒以上。此外，从抑制外周部的芯片焊接膜飞散到晶片上的不良情况观点出发，拉伸速度例如优选为 400mm/秒以下，更优选为 200mm/秒以下。

（工序（IB））

在工序（IA）之后，将拉伸后的切割带 3 松驰（工序（IB））。所谓“将切割带松弛”是指减小或除去工序（IA）中对切割带施加的外力。

在将切割带松驰时，层叠体可以是被冷却的状态，也可以是未被冷却的状态。即，切割带的温度可以是比室温低的温度，也可以是室温以上的温度。通常处于被冷却的状态。在工序（IA）～工序（IC）之间不包含其他任意的工序时，从开始将通过工序（IB）而拉伸的切割带松驰的时刻到通过工序（IC）再次开始将切割带进行拉伸的时刻为止的时间成为将切割带松驰的时间。从操作性的观点，或保持通过冷却方法将层叠体冷却的状态的观点出发，此时的松驰时间例如优选为 10 秒以下，更优选为 5 秒以下。此外，从提高芯片焊接膜的载断性观点出发，松驰的时间例如优选为 1 秒以上。

通过将切割带松驰，通常拉伸后的切割带发生收缩。但是，有时也不发生收缩而维持拉伸后的状态。工序（IB）中，切割带可以发生收缩，或者也可以维持拉伸后的状态。

（工序（IC））

之后，在层叠体 6 冷却后的状态下将切割带 3 进行拉伸，将半导体晶片 1 及芯片焊接膜 2 沿着分割预测线 4 分割成芯片 7，并扩大芯片 7 的间隔（工序（IC））。所谓“层叠体被冷却的状态”是指与上述的工序（IA）中的状态同样的状态。此外，与工序（IA）同样地，切割带的拉伸通过对切割带施加外力来进行，其方法没有特别限定。外力按照切割带沿面方向被拉伸的方式施加。本工序中，通常将切割带沿放射状进行拉伸。

在工序（IC）中，通过将切割带进行拉伸，将半导体晶片及芯片焊接膜沿着分割预测线分割成芯片，并扩大芯片的间隔。芯片的间隔（也称为“切口宽度”）没有特别限定，从提高之后的拾取工序中的拾取性的观点出发，例如优选为 10μm 以上，更优选为 30μm 以上，进一步优选为 50μm 以上。

拉伸时间没有特别限制。例如优选为 5 秒以上，此外，优选为 60 秒以下。拉伸时间相当于施加外力的时间。

从提高芯片焊接膜的载断性观点出发，拉伸速度例如优选为 10mm/秒以上，更优选为 50mm/秒以上。此外，从抑制外周部的芯片焊接膜飞散到晶片上的不良情况的观点出发，拉伸速度例如优选为 400mm/秒以下，更优选为 200mm/秒以下。

从提高载断性的观点出发，在工序（IC）中对切割带施加的外力优选比在工序（IA）中对切割带施加的外力大。

也可以反复进行将切割带进行拉伸、松驰这样的工序，即，例如在工序（I）之后，按照工序（IA）→工序（IB）→工序（IC）→工序（IA）→工序（IB）→工序（IC）进行。
工序 (IIA) ～ (IIC) 可以使用市售的扩展装置来进行。作为扩展装置，可列举出例如“MAE300”（株式会社东京精密制）、“Die Separator DDS2300”（DISCO Corporation 制）等。

通过将切割带进行拉伸、松弛、再次拉伸这样的工序，切割带的拉伸性提高，即使在层叠体冷却的状态下切割带也充分进行拉伸，能够良好地进行半导体晶片及芯片焊接膜的分割。

在隐形切割方式中，认为半导体晶片及芯片焊接膜的切断如下进行。首先，在切割带被拉伸时对半导体晶片施加外力，以半导体晶片内部的改性部作为起点沿半导体晶片的厚度方向产生开裂。接着，该开裂到达半导体晶片的表面及背面，进而与半导体晶片密合的芯片焊接膜为止，半导体晶片及芯片焊接膜发生断裂。

若切割带的拉伸性优异，则对半导体晶片施加的外力变大，所以认为能够以高的成品率将半导体晶片及芯片焊接膜切断。

在上述的图 18 中所示的以往的扩展方法中，在为了提高切割带 3 的拉伸性而增大压上切割带 3 的力的情况下，发生所谓的缩颈现象、产生断裂等问题，难以将切割带 3 充分地进行拉伸。

缩颈现象的发生在使用分子间相互作用低的切割带，例如通过聚乙烯 (PE)、聚丙烯 (PP) 等通用塑料系的材料而形成的切割带时变得显著。根据本实施方式，即使是分子间相互作用低的切割带，也能够减少缩颈现象及断裂的发生，提高拉伸性。

例如，根据本实施方式，可以使切割带的拉伸量优选为 1.0mm 以上、更优选为 1.5mm 以上，进一步优选为 2.0mm 以上，特别优选为 3.0mm 以上。但是，从抑制切割带的断裂的观点出发，拉伸量优选为 6.0mm 以下。拉伸量 [mm] 是对通过切割带的中心的直线，利用“（拉伸后的长度 [mm]）－（拉伸前的长度 [mm]）”而求得的值。虽然没有特别限定，但上述范围是特别适合于优选直径为 200mm 以上、更优选直径为 300mm 以上的半导体晶片的切割的值。

拉伸量可以通过以下的方法来测定。图 14A 中示出拉伸前的切割带及拉伸后的切割带的简图（平面图及截面图）。

（1）在拉伸前的切割带 3 的距离 0 的距离为 L_1/2[mm] 的地方作上记号 A（图 14A(1)）。

（2）以中心 0 作为对称的中心，在与记号 A 成为点对称的位置作上记号 B。将 AB 间的距离 L_1[mm] 作为“拉伸前的长度 [mm]”（图 14A(1)）。

（3）通过本实施方式的扩展方法，将切割带 3 进行拉伸。

（4）在拉伸后的切割带 3 中，测定 AB 间的距离 L_2[mm]，作为“拉伸后的长度 [mm]”（图 14A(2)）。

（5）通过“（拉伸后的长度 [mm]）－（拉伸前的长度 [mm]）”，求出拉伸量 [mm]。

优选相对于切割带的任意的一个方向求得的拉伸量落入上述范围内，更优选相对于切割带的 MD 方向及 TD 方向求得的拉伸量的平均值落入上述范围内。

此外，例如，根据本实施方式，可以使实施工序 (IIC) 后的切割带的拉伸率优选为 1.0% 以上，更优选为 1.5% 以上，进一步优选为 2.0% 以上，特别优选为 3.0% 以上。但是，从抑制切割带的断裂的观点出发，拉伸率优选为 3.0% 以下，更优选为 2.0% 以下。拉伸率
说明书

[％]是对通过切割带的中心的直线，通过“（拉伸量 [mm]/（拉伸前的长度 [mm]））×100”所得的值。虽然没有特别限定，但上述范围是特别适合于优选直径为 200mm 以上，更优选直径为 300mm 以上的半导体晶片的值。“拉伸量 [mm]”及“拉伸前的长度 [mm]”如上所述。

[0127] 优选相对于切割带的任一方向求得的拉伸率落入上述范围，更优选相对于切割带的 MD 方向及 TD 方向求得的拉伸率的平均值落入上述范围。

[0128] 在测定拉伸及拉伸率时，拉伸前的长度只要按照被切割的半导体晶片的尺寸，即粘贴切割带的半导体晶片的尺寸而适当设定即可。例如，为了拉伸直径 D[mm] 的半导体晶片而使用的切割带优选设 AB 间的距离 L1[mm] 为（D−5）～（D+5）[mm] 测定得到的拉伸量及拉伸率落入上述范围内。若列举出一个例子，在用于直径为 300mm 的半导体晶片的切割带的 L1 = 250mm 的情况下，优选拉伸量及拉伸率落入上述范围内。

[0129] 在切割带的拉伸量及拉伸率的评价中，也可以使用切割芯片焊接一体型片材来代替切割带。若将切割芯片焊接一体型片材在没有层叠半导体晶片的状态下进行扩展，则由于不存在开裂的起点，通常芯片焊接膜在不被切断的情况下与切割带一起被拉伸。即使是芯片焊接膜被拉伸的情况，也可以将切割芯片焊接一体型片材的拉伸量及拉伸率作为切割带的拉伸量及拉伸率适用。

[0130] 本实施方式中，与以往的扩展方法相比，在使工序 (11c) 中施加的外力与以往的扩展方法中施加的外力为相同大小的情况下，还能够将切割带的拉伸量及拉伸率增大至例如 1.5 倍以上，优选 2 倍以上。

[0131] 本实施方式是能够在不使用特殊的装置的情况下、并且在不经由复杂的工序的情况下，通过简便的工序提高市售的切割带的拉伸性的优异的扩展方法。通过本实施方式的扩展方法，能够将半导体晶片及芯片焊接膜良好地切断。

[0132] [第 2 实施方式]

[0133] 第 2 实施方式涉及一种扩展方法，其具有以下工序：准备具有沿着分割预定线形成有反性部的半导体晶片、芯片焊接膜、切割带及框的层叠体的工序 (la)；向具备能够升降的扩展平台以及能够将框固定的固定部件的扩展装置的扩展平台上供给层叠体的工序 (lb)；通过固定部件将框固定的工序 (lc)；在层叠体冷却的状态下使扩展平台上升，将切割带进行拉伸的工序 (lla)；使上升后的扩展平台下降，将拉伸后的切割带松弛的工序 (llb)；及，在层叠体冷却的状态下使扩展平台上升，将切割带进行拉伸，将半导体晶片及芯片焊接膜沿着分割预定线分割成芯片，并扩大芯片的间隔的工序 (llc)。

[0134] 图 6A 及图 6B 是表示扩展方法的实施方式的简图，图 9 是表示扩展方法的实施方式的流程图。本实施方式中，使用具备能够升降的扩展平台以及能够将框固定的固定部件的扩展装置。在不矛盾的范围内，关于第 1 实施方式的说明也适用于本实施方式。

[0135] （工序 (la)）

[0136] 首先，准备具有沿着分割预定线 4 形成有反性部 5 的半导体晶片 1、芯片焊接膜 2、切割带 3 及框 9 的层叠体 6’（工序 (la)、步骤 S1）。本实施方式中的层叠体 6’除了具有沿着分割预定线 4 形成有反性部 5 的半导体晶片 1、芯片焊接膜 2 及切割带 3 以外，还具有框 9。

[0137] 图 8 是表示层叠体 6’的实施方式的平面简图。框 9 粘贴于切割带 3 的层叠半导体晶片 1 及芯片焊接膜 2 的一面。也可以将框 9 粘贴于与切割带 3 的层叠半导体晶片 1 及
芯片焊接膜2的一面相反的面。作为框9,通常使用具有刚性的环状的框。对框9没有特别限制,可列举出例如由不锈钢、铝等金属材料、或聚碳酸酯等树脂材料构成的框。作为框9,可以按照半导体晶片1的尺寸适当选择使用在切割工序中通常使用的以往公知的框。

（工序（l））

接着,向具备能够升降的扩展平台10和能够将框固定在固定件11的扩展装置的扩展平台10上供给层体6'。（工序（1b）、步骤S2）。扩展平台10是具有比半导体晶片1大且比框9小的直径的圆柱状的平台,且能够升降。还可以使扩展平台10在内部或外部具备冷却机（未示图）。固定件11是用于将框9固定在规定的位置的部件,其形状没有特别限定。例如可以制成能够将框9上下夹持的形状。扩展平台10按照其上部表面与供给至扩展装置的层体6'的背面（切割带侧的面）持平,或位于其下部的方式配置。

在供给层体6'时,如图6A中所示的那样,使框9被固定件11支撑。在向扩展平台10上供给层体6'的方式中,根据配置扩展平台10的位置,包含扩展平台10与层叠体6'接触的方式、和不接触的方式。图6A中示出后者。在它们中的任一方式中,按照半导体晶片1位于扩展平台10的径内的方式供给层叠体6'。

（工序（l））

（工序（1c））

向扩展平台10上供给层体6'后,将框9通过固定件11而固定。（工序（1c）、步骤S3）。图6A中,框9通过固定件11而夹入。

（工序（1a））

（工序（1a））

接着,通过在层体6'冷却后的状态下降展平台10上升而压上切割带3，从而将切割带3沿放射状进行拉伸（工序（1a）、步骤S4）。冷却的方法没有特别限定,在扩展平台10具备冷却机（未图示）的情况下,通过层体6'与扩展平台10靠近或接触,从而层叠体6'的温度降低比室温低,层叠体6'变被冷却的状态。

在扩展平台10具备冷却机的情况下,从提高芯片焊接膜的截断性的观点出发,扩展平台10的上部表面的温度例如优选为10℃以下,更优选为0℃以下,进一步优选为-5℃以下,特别优选为-10℃以下。

在市售的扩展装置中设置有能够预先设定扩展平台10的上升量的手段。从提高芯片焊接膜的截断性的观点出发,该手段中的设定值（也称为“上升量的设定值”）例如优选为5mm以上,更优选为7mm以上,进一步优选为10mm以上。此外,从抑制切割带的断裂的观点出发,例如优选为15mm以上。另外,在市售的扩展装置中,通常,在没有向扩展平台10上供给层叠体6'的状态下使扩展平台10上升的情况下,得到与“上升量的设定值”同等的上升量。另外,所谓上升量的设定值是相对于“（扩展平台10的总上升量）（至扩展平台10与层叠体6'的背面接触为止的上升量）”的设定值（图6A的h1,图6B的h2）。

此外,通常,在市售的扩展装置中设置有能够预先设定使扩展平台10上升的速度的手段。从提高芯片焊接膜的截断性的观点出发,该手段中的设定值（也称为“上升速度的设定值”）例如优选为10mm/秒以上,更优选为50mm/秒以上。此外,从抑制外周部的芯片焊接膜飞散到半导体晶片上的不良情况的观点出发,上升速度的设定值例如优选为400mm/秒以下,更优选为200mm/秒以下。另外,在市售的扩展装置中,通常,在没有向扩展平台10上供给层叠体6'的状态下使扩展平台10上升的情况下,得到与“上升速度的设定值”同等的上升速度。
（工序（IIb））

在工序（IIa）之后，使上升的扩展平台10下降，将拉伸后的切割带3松弛（工序（IIb）、步骤S5）。扩展平台10可下降至原来的位置，即与上升之前相同的位置，或者也可下降至上升后的位置与原来的位置之间的任意的位置，任一情况均可以。优选如图6B所示的那样，使扩展平台10下降至原来的位置。

（工序（IIc））

之后，通过在层叠体6’冷却后的状态下使扩展平台10上升，压上切割带3，从而将切割带3沿放性状进行拉伸。由此，将半导体晶片1及芯片焊接膜2沿着分割预定线4分割成芯片7，并扩大芯片的间隔（工序（IIc）、步骤S6）。冷却的方法与上述的工序（IIa）相同。

从提高芯片焊接膜的截断性的观点出发，扩展平台10的上升量的设定值例如优选为5mm以上，更优选为7mm以上，进一步优选为10mm以上。此外，从抑制切割带的断裂的观点出发，例如优选为18mm以下，更优选为15mm以下。

此外，从提高芯片焊接膜的截断性的观点出发，扩展平台10的上升速度的设定值例如优选为10mm/秒以上，更优选为50mm/秒以上。此外，从抑制引入部的芯片焊接膜飞散到晶片上的不良情况的观点出发，上升速度的设定值例如优选为400mm/秒以上，更优选为200mm/秒以下。

虽然没有特别限定，但工序（IIa）及工序（IIc）中的上升量的设定值及上升速度的设定值是特别适合于优选直径为200mm以上，优选直径为300mm以上的半导体晶片的值。上升量的设定值及上升速度的设定值可以考虑半导体晶片的直径、扩展平台的直径、芯片尺寸、切口宽度等而适当决定。

本实施方式中，从提高芯片焊接膜的截断性的观点出发，优选使工序（IIc）中的扩展平台10的上升量的设定值与工序（IIa）中的扩展平台10的上升量的设定值相同或比其大。优选使工序（IIc）中的扩展平台10的上升量的设定值为工序（IIa）中的扩展平台10的上升量的设定值的1.0倍以上、更优选为1.5倍以上、进一步优选为2.0倍以上。

（工序（IIId））

在工序（IIc）之后，还可以具有用于维持切割带3的拉伸后的状态的工序（工序（IIId）、步骤S7）。作为用于维持拉伸后的状态的方法，有例如在不于层9的其它框上粘贴切割带3的方法，使切割带3的半导体晶片1更靠外侧的部位发生热收缩的方法等。热收缩时的切割带的加热温度没有特别限定，但例如为80℃左右。

【第3实施方式】

第3实施方式涉及一种扩展方法，其具有以下工序：准备具有沿着分割预定线形成有改性部的半导体晶片、芯片焊接膜、切割带及层叠体的工序（Ia’）；向具备能够升降的扩展环及能够将框固定的固定部件的扩展装置的扩展环上供给层叠体的工序（Ib’）；通过固定部件将框固定的工序（Ic’）；在层叠体冷却的状态下使扩展环上升，将切割带进行拉伸的工序（Ia”）；使上升后的扩展环下降，将拉伸后的切割带松驰的工序（Iib’）；以及在层叠体冷却的状态下使扩展环上升，将切割带进行拉伸，将半导体晶片及芯片焊接膜沿着分割预定线分割成芯片，并扩大芯片的间隔的工序（IIc’）。

图7A及图7B是表示扩展方法的实施方式的简图。本实施方式中，使用具备能够
升降的扩展环和能够将框固定在的固定部件的扩展装置。在使用能够升降的扩展环来代替能够升降的扩展平台的这点上与第 2 实施方式不同。工序 (Ia') 是与工序 (Ia) 相同的工序。在不矛盾的范围内，关于第 1 及第 2 实施方式的说明也适用于本实施方式，第 2 实施方式中的关于扩展平台的说明也适用于扩展环。

[0161] (工序 (Ib'))

[0162] 本实施方式中，向具备能够升降的扩展环 12 和能够将框固定在的固定部件 11 的扩展装置的扩展环 12 上供给层叠体 6'（工序 (Ib')）。扩展环 12 是具有比半导体晶体片 1 大的内径、并且具有比框 9 小的外径的环，且能够升降。扩展环 12 按照其上部表面与供给至扩展装置的层叠体 6' 的背面（切割带侧的面）持平、或者位于其下的方式配置。

[0163] 在供给层叠体 6' 时，如图 7A 中所示的那样，使框 9 被固定部件 11 支撑。在向扩展环 12 上供给层叠体 6' 的方式中，根据配置扩展环 12 的位置，包含扩展环 12 与层叠体 6' 接触的方式、和不接触的方式。图 7A 中示出前者。在任一方式中，按照半导体晶体片 1 位于扩展环 12 的外径内的方式供给层叠体 6'。

[0164] (工序 (Ic')）

[0165] 向扩展环 12 上供给层叠体后，将框 9 通过固定部件 11 而固定（工序 (Ic)）。图 7A 中，框 9 通过固定部件 11 而夹入。

[0166] (工序 (IIa'))

[0167] 接着，在层叠体 6' 冷却后的状态下使扩展环 12 上升，并压上切割带 3，从而将切割带 3 沿放射状进行拉伸（工序 (IIa')）。冷却的方法没有特别限定，可列举出在扩展环 12 的内侧设置具备冷却机的冷却平台 10'，通过冷却平台 10' 进行冷却的方法。通过层叠体 6' 与冷却平台 10' 靠近或接触，层叠体 6' 的温度变得比室温低，层叠体 6' 变成被冷却的状态。

[0168] 冷却平台 10' 的上部表面的温度优选设定为与第 2 实施方式中的扩展平台 10 的上部表面的温度同样的范围。

[0169] (工序 (IIb'))

[0170] 在工序 (IIa')之后，使上升的扩展环 12 下降，将拉伸后的切割带 3 松弛（工序 (IIb')）。

[0171] (工序 (IIc'))

[0172] 之后，通过在层叠体冷却的状态下使扩展环 12 上升，压上切割带 3，从而将切割带 3 沿放射状进行拉伸。由此，将半导体晶体片 1 及芯片焊接膜 2 沿着分割预定线 4 分割成芯片 7，并扩大芯片的间隔（工序 (IIc')）。冷却的方法与上述的工序 (IIa') 中的方法相同。

[0173] (工序 (IId'))

[0174] 在工序 (IIc') 之后，还可以具有用于维持切割带 3 的拉伸的状态的工序 (工序 (IId'))。

[0175] [第 4 实施方式]

[0176] 第 4 实施方式涉及一种半导体装置的制造方法，其具有以下工序：准备具有沿着分割预定线形成有改性部的半导体晶体片、芯片焊接膜、及切割带的层叠体的工序 (I)；将切割带进行拉伸，将半导体晶体片及芯片焊接膜沿着分割预定线分割成芯片，并扩大芯片的间隔的工序 (II)；将芯片从切割带上拾取的工序 (III)；以及将芯片进行芯片焊接到被粘物
上的工序 (IV)，工序 (I) 及工序 (II) 通过上述任一实施方式的扩展方法来进行。

【0177】本实施方式依次具有工序 (I)～工序 (IV)。在各工序的前后还可以包含任意的工序，例如将保护片材剥离的工序、搬送工序、检查或确认的工序、引线接合工序、模压工序等。工序 (I) 及工序 (II) 如上述的工序 (I)～(IIC)、工序 (Ia)～(IIC)、或工序 (Ia')～(IIC')。

【0178】（工序 (III)）

【0179】将半导体晶片1及芯片焊接膜2分割成芯片后，将芯片7从切割带3上拾取（工序 (III)）。图10是表示拾取工序的实施方式的简图。图10中，使用夹爪13及针杆14将芯片7从切割带3上剥离，得到芯片7（半导体芯片7a及粘接于其上的单片化的芯片焊接膜7b）。

【0180】在切割带中使用紫外线固化型粘合剂的情况下，也可以进行工序 (III) 之前对切割带照射紫外线，使紫外线固化型粘合剂固化。由此，切割带与芯片焊接膜的密合力降低，从而能够容易地进行切割带与芯片焊接膜之间的剥离。

【0181】（工序 (IV)）

【0182】接着，将芯片7芯片焊接到被粘物15上（工序 (IV)）。图11是表示芯片焊接工序的实施方式的简图。图11中，使用夹爪13将芯片7按照芯片焊接膜7b与被粘物15接触的方式放置到被粘物15上。将芯片7放置到被粘物15上后，通常，对芯片焊接膜进行加热使其固化。

【0183】根据本实施方式，在不使用特殊的装置的情况下，此外在不经由复杂的工序的情况下，通过简便的工序高效地制造半导体装置。

【0184】[第5实施方式]

【0185】第5实施方式涉及一种半导体装置，其是具有被粘物和粘接于该被粘物上的芯片的半导体装置，通过上述实施方式的半导体装置的制造方法而制造。

【0186】作为被粘物，可列举出半导体芯片搭载用支撑部件、其他半导体芯片等。作为半导体装置的具体例子，可列举出：在半导体芯片搭载用支撑部件上至少搭载了1个半导体芯片，且半导体芯片与半导体芯片搭载用支撑部件介由芯片焊接膜而粘接的半导体装置（图12）；在半导体芯片搭载用支撑部件上至少搭载了2个半导体元件，且半导体芯片搭载用支撑部件与半导体芯片，或2个半导体芯片彼此介由芯片焊接膜而粘接的半导体装置（图13）等。

【0187】作为半导体芯片搭载用支撑部件，可列举出例如42合金引线框、铜引线框等引线框；由聚酰亚胺树脂、环氧树脂等形成的塑料膜；经玻璃无纺布基材强化的聚酰亚胺树脂、环氧树脂等塑料；氧化铝等陶瓷；在表面设置了有机抗蚀剂层的有机基板；带布线的有机基板等。其中，有机基板主要是指通过由玻璃纤维强化的树脂、热塑性树脂及热固化性树脂等有机材料形成的基板。

【0188】图12是表示半导体装置的一实施方式的截面简图。图12中所示的半导体装置21中，半导体芯片7a介由芯片焊接膜7b粘接于半导体芯片搭载用支撑部件22上。半导体芯片7a的连接端子（未图示）介由引线23与外部连接端子（未图示）电连接。进而，半导体芯片7a、引线23等具有被密封材料24密封的构成。

【0189】图13是表示半导体装置的其他实施方式的截面简图。图13中所示的半导体装置
21"是在半导体芯片搭载用支撑部件22上层叠有多个半导体芯片7a的结构的3D封装的半导体装置（Stacked-PKG）。图13中，第一段的半导体芯片7a介由芯片焊接膜7b粘接于半导体芯片搭载用支撑部件22上。在半导体芯片7a上介由芯片焊接膜7b粘接有其他的半导体芯片7a。进而，具有整体通过密封材料24而密封的构成。半导体芯片7a的连接端子（未图示）介由引线23与外部连接端子25电连接。

[0190] 本实施方式的半导体装置是使用市售的芯片焊接膜，通过简便的制造工序高效地制造的半导体装置。

[0191] 以上，参照附图对本发明的实施方式进行说明，但本发明并不限定于以上说明的实施方式。例如，在上述第2及第3实施方式中，记录了通过干燥平台及干燥环上升而将切割带进行拉伸的例子，但也可以通过使能够将捱固定部件下降来将切割带进行拉伸。此外，在能够实施各实施方式的范围内，也可以将以上说明的部件，例如层叠体，扩展平台，扩展环，固定部件的形状及材质等进行变更。

[0192] 实施例

[0193] 接着，基于实施例对本发明进行说明，但本发明并不限定于这些实施例。

[0194] （实施例1）

[0195] 将带剥离基材（聚对苯二甲酸乙二醇酯膜，厚度38μm）的芯片焊接膜（DAF）（含热固化型环氧树脂的粘接剂，厚度20μm，直径335mm）和由基材膜（聚乙烯系膜，厚度80μm，直径370mm）及粘合剂（感压型粘合剂，厚度20μm）构成的切割带（DCT）按照芯片焊接膜与粘合剂接触的方式粘合，得到切割芯片焊接一体型片材。

[0196] [评价]

[0197] 使用所得到的切割芯片焊接一体型片材，评价冷却时的切割带的拉伸性。图14B中表示用于评价的切割芯片焊接一体型片材的平面简图。在切割芯片焊接一体型片材上，将剥离基材剥离后，粘贴环状框（内径350mm）。

[0198] 在从切割芯片焊接一体型片材的中心至基材膜的MD方向（Machine Direction，膜的流动方向）的距离为50mm，75mm，及125mm的地方，使用油性笔作上记号。记号记在各距离对夹着中心的2个地方。2个地方间的距离分别为100mm，150mm，及250mm。将此时的距离作为“拉伸前的长度”。

[0199] 同样地在从中心至基材膜的TD方向（Transverse Direction，膜的宽度方向）的距离为50mm，75mm，及125mm的地方，也使用油性笔作上记号。

[0200] 除了没有层叠半导体芯片以外，按照与图6A及图6B的工序（II1a）～（II1c）所示的方法同样的方法，实施扩展。具体而言，使用具备能够升降并具备冷却机的扩展平台（直径345mm）和能够将环状框固定的固定部件的扩展装置（由立化成株式会社制）将切割带进行拉伸。在将环状框通过固定部件而固定时，使切割芯片焊接一体型片材的中心与扩展平台的中心一致。另外，由于这里没有使用半导体芯片，所以芯片焊接膜在没有被切断的情况下与切割带一起被拉伸。

[0201] 扩展条件如下。

[0202] 工序（II1a）。

[0203] 扩展平台的上升量的设定值为8mm（h1）。

[0204] 扩展平台的上升速度的设定值为100mm/秒。
扩展平台的上部表面的温度为 -10°C
切割芯片焊接一体型片材表面温度为 -10°C
工序 (IIb) ：
将切割带松弛的时间为 1 秒
工序 (IIc) ：
扩展平台的上升量的设定值为 15mm(h0)
扩展平台的上升速度的设定值为 100mm/ 秒
扩展平台的上部表面的温度为 0°C
切割芯片焊接一体型片材表面温度为 0°C
扩展平台的上部表面的温度及切割芯片焊接一体型片材的表面温度是使用激光温度计（A&D Company, Limited 制非接触型放射温度计）测定的值。
在实施工序 (IIc) 后，对 MD 方向及 TD 方向，分别测定上述的夹着切割芯片焊接一体型片材的中心的 2 个地方间的距离（0.5mm 刻度）。将此时的距离作为“拉伸前的长度”。通过“拉伸前的长度”和“拉伸后的长度”，求出切割带的拉伸量及拉伸率。将评价结果示于表 1 中。
拉伸量 [mm] 是对 MD 方向及 TD 方向分别通过“（拉伸后的长度 [mm]）-（拉伸前的长度 [mm]）”求得的值。拉伸量平均值是 MD 方向及 TD 方向的拉伸量的算术平均值。此外，拉伸率 [%] 是对 MD 方向及 TD 方向分别通过“（拉伸量 [mm]）/(拉伸前的长度 [mm]）×100”求得的值。拉伸率平均值是 MD 方向及 TD 方向的拉伸率的算术平均值。
除了变更拉伸方法以外，与实施例 1 同样地评价切割带的拉伸性。比较例 1 中，按照除了没有层叠半导体晶片以外与图 18 的工序 (ii) 所示的方法同样的方法，实施扩展。具体而言，使用具备能够升降且具冷却机能的扩展平台，及能够将环状框固定的固定部件的扩展装置（日立化成株式会社制）将切割带进行拉伸。
扩展条件如下。
工序 (ii) ：
扩展平台的上升量的设定值为 15mm
扩展平台的上升速度的设定值为 100mm/ 秒
扩展平台的上部表面的温度为 0°C
切割芯片焊接一体型片材表面温度为 0°C
[表 1]
[0227] 如表1所示的那样，通过本发明的实施方式的扩展方法，能够增大切割带的拉伸性。
[0228] （实施例2）
[0229] 与实施例1同样地得到切割芯片焊接一体型片材。此外，对硅晶片（厚度50μm，直径300mm）利用激光切割机“DFL7360”（DISCO Corporation制）在上述的激光加工条件下进行加工，得到沿着分割预定线（线间的间隔10mm）形成有改性部的硅晶片。之后，在硅晶片上，按照芯片焊接膜与硅晶片的背面接触的方式粘贴将剥离基材剥离后的切割芯片焊接一体型片材。进而，在切割芯片焊接一体型片材上粘贴环状框（内径350mm），得到图8所
示的层叠体。

[0230] [评价]

[0231] 使用所得到的层叠体，评价半导体晶片及芯片焊接膜的切断性。评价结果示于表 2 中，将半导体晶片的照片示于图 15 中。

[0232] 按照与图 6A 及图 6B 的工序 (IIa) ～ (IIC) 所示的方法同样的方法，实施扩展。具体而言，使用具备能够升降且具备冷却机的扩展平台（直径 330mm）和能够将环状框固定的固定部件的扩展装置“Die Separator DDS2300”（DISCO Corporation 制）将切割带进行拉伸。在将环状框通过固定部件而固定时，使半导体晶片的中心与扩展平台的中心一致。在拉伸后，使切割带的比半导体晶片更靠近外侧的部分发生热收缩（切割带温度 80℃）。

[0233] 扩展条件如下。

[0234] 工序 (IIa)：

[0235] 扩展平台的上升量的设定值为 8mm (h₁)

[0236] 扩展平台的上升速度的设定值为 100mm/秒

[0237] 扩展平台的上表面温度为 -10℃

[0238] 工序 (IIb)：

[0239] 将切割带松弛的时间为 1 秒

[0240] 工序 (IIC)：

[0241] 扩展平台的上升量的设定值为 12mm (h₂)

[0242] 扩展平台的上升速度的设定值为 100mm/秒

[0243] 扩展平台的上表面温度为 -10℃

[0244] 扩展平台的上表面的温度是使用激光温度计（A&D Company, Limited 制“非接触型放射温度计”）设置的值。

[0245] 在实施工序 (IIC) 后，评价半导体晶片及芯片焊接膜的切断率。半导体晶片及芯片焊接膜的切断率 [%] 是通过“(切断线数)/(全部线数)×100”求得的值。其中，“全部线数”是全部的分割预定线的合计数，“切断线数”是贯穿分割预定线的全长，半导体晶片被切断而得到 10 μm 以上的切口宽度的线的合计数。

[0246] (实施例 3)

[0247] 除了变更扩展条件以外，与实施例 2 同样地将切割带进行拉伸，将半导体晶片及芯片焊接膜切割并进行评价。评价结果示于表 2 中，将半导体晶片的照片示于图 16 中。

[0248] 扩展条件如下。

[0249] 工序 (IIa)：

[0250] 扩展平台的上升量的设定值为 8mm (h₁)

[0251] 扩展平台的上升速度的设定值为 100mm/秒

[0252] 扩展平台的上表面温度为 -10℃

[0253] 工序 (IIb)：

[0254] 将切割带松弛的时间为 1 秒

[0255] 工序 (IIC)：

[0256] 扩展平台的上升量的设定值为 15mm (h₂)

[0257] 扩展平台的上升速度的设定值为 100mm/秒
【0258】扩展平台的上部表面温度为-10℃
【0259】（比较例2）
【0260】除了变更拉伸方法以外，与实施例2同样地将切割带横向拉伸，将半导体晶片及
芯片焊接膜切断并进行评价。比较例2中，按照与图18的工序(ii)所示的方法同样的方
法，实施扩展。将评价结果示于表2中，将半导体晶片的照片示于图17中。
【0261】扩展条件如下。
【0262】工序(ii)：
【0263】扩展平台的下降量的设定值为15mm
【0264】扩展平台的上升速度的设定值为100mm/秒
【0265】扩展平台的上部表面温度为-10℃
【0266】[表2]

<table>
<thead>
<tr>
<th>实施例</th>
<th>平台上升量设定值 [mm]</th>
<th>平台表面温度 [℃]</th>
<th>切断率 [%]</th>
<th>实施例</th>
<th>平台上升量设定值 [mm]</th>
<th>平台表面温度 [℃]</th>
<th>切断率 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i)：10</td>
<td>(i)：-10</td>
<td>57</td>
<td></td>
<td>(i)：10</td>
<td>(i)：-10</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>(i)：12</td>
<td>(i)：-10</td>
<td></td>
<td>3</td>
<td>(i)：10</td>
<td>(i)：-10</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(i)：15</td>
<td>(i)：-10</td>
<td></td>
<td></td>
<td>(i)：10</td>
<td>(i)：-10</td>
<td></td>
</tr>
</tbody>
</table>

【0268】如表2所示的那样，通过本发明的实施方式的扩展方法，能够增大半导体晶片及
芯片焊接膜的切断率。通过采用本发明的实施方式的扩展方法，能够将半导体晶片及芯片
焊接膜以良好的成品率切断，能够有效地制造半导体装置。
【0269】符号说明
【0270】1 半导体晶片
【0271】1a 形成电路的一面
【0272】1b 没有形成电路的一面
【0273】2 芯片焊接膜
【0274】3 切割带
[0275] 4 分割预定线
[0276] 5 改性部
[0277] 6, 6’层叠体
[0278] 7 芯片
[0279] 7a 半导体芯片
[0280] 7b 单片化的芯片焊接膜
[0281] 8 切割芯片焊接一体型片材
[0282] 9 框
[0283] 10 扩展平台
[0284] 10’ 冷却平台
[0285] 11 固定部件
[0286] 12 扩展环
[0287] 13 筒夹
[0288] 14 针杆
[0289] 15 被粘物
[0290] 21, 21’半导体装置
[0291] 22 半导体芯片搭载用支撑部件
[0292] 23 引线
[0293] 24 密封材料
[0294] 25 外部连接端子
[0295] 0 芯片焊接膜的中心
[0296] A, B 记号
[0297] L1 拉伸前的长度
[0298] L2 拉伸后的长度
[0299] h1 扩展平台的上升量（工序 (IIa)）
[0300] h2 扩展平台的上升量（工序 (IIc)）
图 8
图9

1. 开始
2. 准备层叠体
 - S1
3. 用固定部件支撑层叠体的框
 - S2
4. 通过固定部件夹入框
 - S3
5. 使扩张平台上升
 - S4
6. 使扩张平台下降
 - S5
7. 使扩张平台上升
 - S6
8. 维持切割带的拉伸后的状态
 - S7
9. 结束
图 14A