

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

(10) International Publication Number
WO 02/068384 A2

(51) International Patent Classification⁷: C07C 335/08, 335/10, 335/14, A61K 31/17, A61P 29/00

(21) International Application Number: PCT/US02/05021

(22) International Filing Date: 19 February 2002 (19.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/794,874 27 February 2001 (27.02.2001) US

(71) Applicant: ALLERGAN SALES, INC. [US/US]; 2525 Dupont Drive, Irvine, CA 92612 (US).

(72) Inventors: CHOW, Ken; 20 Tidal Surf, Newport Coast, CA 92657 (US). GIL, Daniel, W.; 2541 Point Del Mar, Corona Del Mar, CA 92625 (US). FANG, Wenkui, Ken; 73 Peppermint Tree, Irvine, CA 92618 (US). GARST, Michael, E.; 2627 Raqueta, Newport Beach, CA 92660 (US).

(74) Agents: FISHER, Carlos et al.; Allergan Sales, Inc., 2525 Dupont Drive, Irvine, CA 92612 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/068384 A2

(54) Title: (2-HYDROXY)ETHYL-THIOUREAS USEFUL AS MODULATORS OF ALPHA2B ADRENERGIC RECEPTORS

(57) Abstract: Compounds of formula (i) and of formula (ii), wherein the symbols have the meaning disclosed in the specification, specifically or selectively modulate α_{2B} and/or α_{2C} adrenergic receptors in preference over α_{2A} adrenergic receptors, and as such are useful for alleviating chronic pain and allodynia and have no or only minimal cardiovascular and/or sedatory activity.

1 (2-HYDROXY)ETHYL-THIOUREAS USEFUL AS MODULATORS OF
2 ALPHA2B ADRENERGIC RECEPTORS

4 BACKGROUND OF THE INVENTION

6 1. Field of the Invention

7 The present invention relates to cycloalkyl, cycloalkenyl,
8 cycloalkylmethyl and cycloalkenylmethyl (2-hydroxy)ethylthioureas and their
9 use as specific or selective agonists of α_{2B} adrenergic receptors. More
10 specifically the present invention relates to the above-noted compounds,
11 pharmaceutical compositions containing these compounds as active ingredient
12 for modulating the α_{2B} adrenergic receptors, and even more specifically for
13 utilizing these compounds and pharmaceutical compositions to alleviate
14 chronic pain and allodynia.

15 2. Background Art

16 Human adrenergic receptors are integral membrane proteins which have
17 been classified into two broad classes, the alpha and the beta adrenergic
18 receptors. Both types mediate the action of the peripheral sympathetic nervous
19 system upon binding of catecholamines, norepinephrine and epinephrine.

20 Norepinephrine is produced by adrenergic nerve endings, while
21 epinephrine is produced by the adrenal medulla. The binding affinity of
22 adrenergic receptors for these compounds forms one basis of the classification:
23 alpha receptors tend to bind norepinephrine more strongly than epinephrine
24 and much more strongly than the synthetic compound isoproterenol. The
25 preferred binding affinity of these hormones is reversed for the beta receptors.
26 In many tissues, the functional responses, such as smooth muscle contraction,
27 induced by alpha receptor activation are opposed to responses induced by beta
28 receptor binding.

29 Subsequently, the functional distinction between alpha and beta
30 receptors was further highlighted and refined by the pharmacological

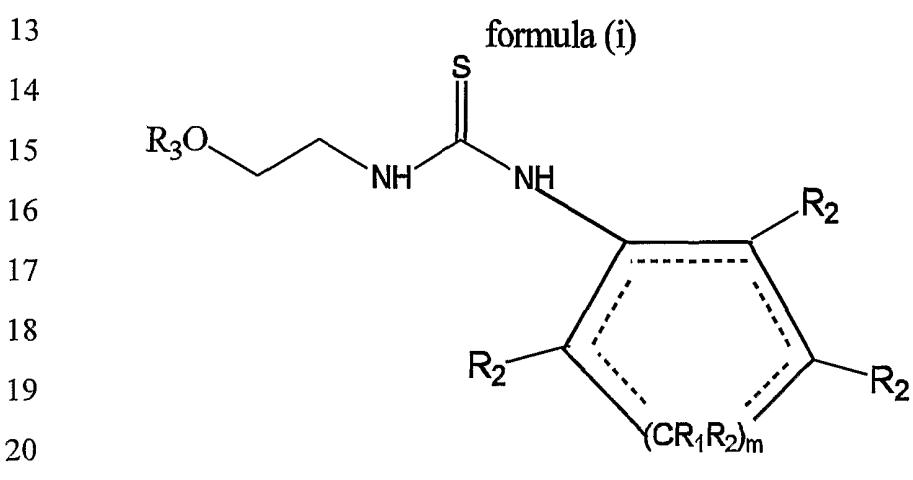
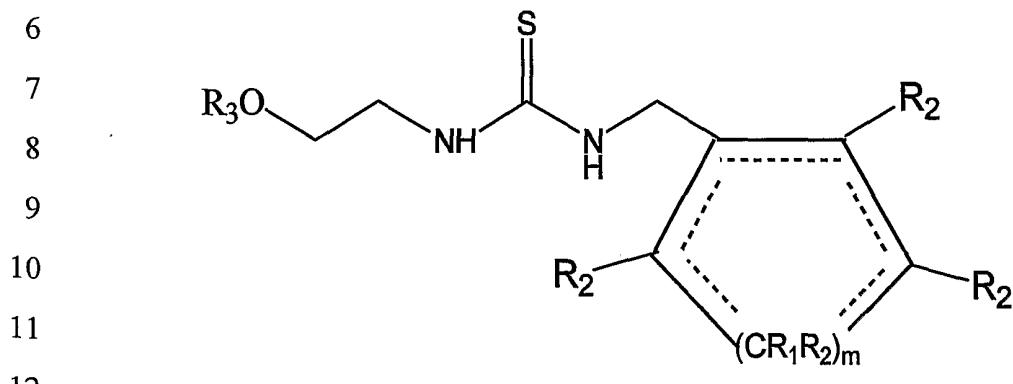
1 characterization of these receptors from various animal and tissue sources. As
2 a result, alpha and beta adrenergic receptors were further subdivided into α_1 ,
3 α_2 , β_1 , and β_2 subtypes. Functional differences between α_1 and α_2 receptors
4 have been recognized, and compounds which exhibit selective binding
5 between these two subtypes have been developed. Thus, in published
6 international patent application WO 92/0073, the selective ability of the R(+)
7 enantiomer of terazosin to selectively bind to adrenergic receptors of the α_1
8 subtype was reported. The α_1/α_2 selectivity of this compound was disclosed
9 as being significant because agonist stimulation of the α_2 receptors was said to
10 inhibit secretion of epinephrine and norepinephrine, while antagonism of the
11 α_2 receptor was said to increase secretion of these hormones. Thus, the use of
12 non-selective alpha-adrenergic blockers, such as phenoxybenzamine and
13 phentolamine, was said to be limited by their α_2 adrenergic receptor mediated
14 induction of increased plasma catecholamine concentration and the attendant
15 physiological sequelae (increased heart rate and smooth muscle contraction).
16 For a further general background on the α -adrenergic receptors, the reader's
17 attention is directed to Robert R. Ruffolo, Jr., α -Adrenoreceptors: Molecular
18 Biology, Biochemistry and Pharmacology, (Progress in Basic and Clinical
19 Pharmacology series, Karger, 1991), wherein the basis of α_1/α_2
20 subclassification, the molecular biology, signal transduction, agonist
21 structure-activity relationships, receptor functions, and therapeutic
22 applications for compounds exhibiting α -adrenergic receptor affinity is
23 explored.

24 The cloning, sequencing and expression of alpha receptor subtypes
25 from animal tissues has led to the subclassification of the α_1 adrenoreceptors
26 into α_{1A} , α_{1B} , and α_{1D} . Similarly, the α_2 adrenoreceptors have also been
27 classified α_{2A} , α_{2B} , and α_{2C} receptors. Each α_2 receptor subtype appears to
28 exhibit its own pharmacological and tissue specificities. Compounds having a

1 degree of specificity for one or more of these subtypes may be more specific
2 therapeutic agents for a given indication than an α_2 receptor pan-agonist (such
3 as the drug clonidine) or a pan-antagonist.

4 Among other indications, such as the treatment of glaucoma,
5 hypertension, sexual dysfunction, and depression, certain compounds having
6 alpha 2 adrenergic receptor agonist activity are known analgesics. However,
7 many compounds having such activity do not provide the activity and
8 specificity desirable when treating disorders modulated by alpha-2
9 adrenoreceptors. For example, many compounds found to be effective agents
10 in the treatment of pain are frequently found to have undesirable side effects,
11 such as causing hypotension and sedation at systemically effective doses.
12 There is a need for new drugs that provide relief from pain without causing
13 these undesirable side effects. Additionally, there is a need for agents which
14 display activity against pain, particularly chronic pain, such as chronic
15 neuropathic and visceral pain.

16 British Patent 1 499 485, published February 1, 1978 describes certain
17 thiocarbamide derivatives; some of these are said to be useful in the treatment
18 of conditions such as hypertension, depression or pain.



19 Certain presently pending applications for patent owned by the the
20 assignee as the present application describe phenylmethyl-
21 (2hydroxy)ethylthioureas which have no significant cardiovascular or sedative
22 effects and are useful for alleviating chronic pain and allodynia.

1 SUMMARY OF THE INVENTION

2

3 The present invention is directed to compounds having **formula (i)** and
4 **formula (ii)**

5

21 formula (ii)

22

23

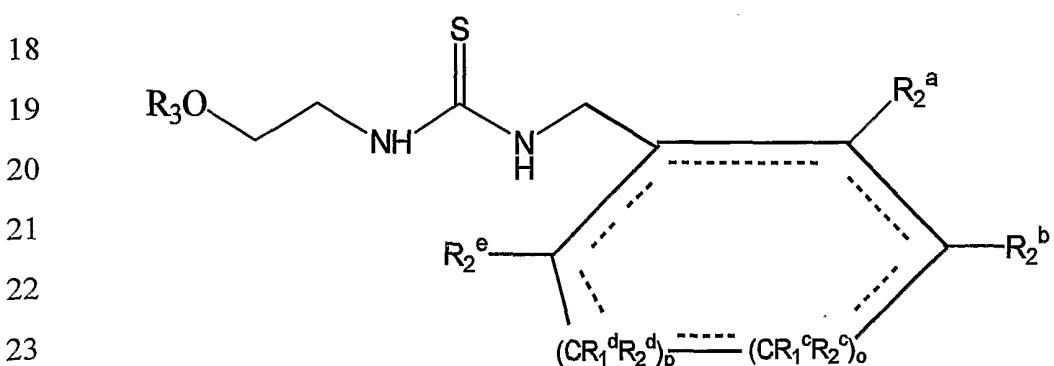
24 wherein the dotted line represents a bond, or absence of a bond with the
25 provisos that only one dotted line represents a bond in the ring of **formula (i)**
26 or of **formula (ii)**;27 \mathbf{R}_1 is H, or is absent when the carbon bearing the \mathbf{R}_1 is double bonded;
28 \mathbf{R}_2 is H, alkyl of 1 to 4 carbons, alkenyl of 2 to 4 carbons, alkynyl of 2
29 to 4 carbons; OH, O-alkyl where the alkyl group has 1 to 4 carbons, OCOR_4

1 where R_4 is alkyl of 1 to 4 carbons, F, Cl, Br or I;
2 m is an integer having the values of 1,2 or 3 with the proviso that when
3 the compound is in accordance with **formula (i)** and m is 2 then the dotted
4 line designated γ represents absence of a bond, and
5 R_3 is H, or R_4CO , with the further provisos that when the compound is
6 in accordance with **formula (ii)** then R_2 is not OH, and when the compound is
7 in accordance with **formula (ii)** and m is 1 then at least one R_2 of the five-
8 membered ring is not H.

9 In a second aspect the present invention is directed to pharmaceutical
10 compositions containing as the active ingredient one or more compounds of
11 **formula (i)** or of **formula (ii)**, the compositions being utilized as
12 medicaments in mammals, including humans, for treatment of diseases and or
13 alleviations of conditions which are responsive to treatment by agonists of α_{2B}
14 adrenergic receptors. The compositions containing the compounds of the
15 invention are primarily, but not exclusively, used for alleviation of chronic
16 pain and/or allodynia. The compounds have the advantageous property that
17 they are specific or selective to α_{2B} and/or α_{2C} adrenergic receptors in
18 preference over α_{2A} adrenergic receptors, and as such have no or only
19 minimal cardiovascular and/or sedatory activity.

20 DETAILED DESCRIPTION OF THE INVENTION

21 A general description of the compounds of the invention is provided in
22 the Summary section of the present application for patent with reference to
23 **formula (i)** and **formula (ii)**. It will be readily apparent to those skilled in the
24 art that some of the compounds depicted in these formulas may exist in *trans*
25 (**E**) and *cis* (**Z**) isomeric forms. Moreover, some of the compounds of the
26 invention may contain one or more asymmetric centers, such that the
27 compounds may exist in enantiomeric as well as in diastereomeric forms.
28 Unless it is specifically noted otherwise, the scope of the present invention
29 includes all *trans* (**E**) and *cis* (**Z**) isomers, enantiomers and diastereomers.


1 Some of the compounds of the invention may form salts with
 2 pharmaceutically acceptable acid or base, and such pharmaceutically
 3 acceptable salts of the compounds of **formula (i)** and **formula (ii)** are also
 4 within the scope of the invention.

5 Referring now to **formulas (i)** and **(ii)**, in most of the preferred
 6 compounds of the invention the symbol **m** represents an integer having the
 7 values 1 or 2; in other words the ring depicted in **formula (i)** and **formula (ii)**
 8 is either 5 or 6 membered. The **R₂** group is preferably hydrogen, alkyl,
 9 chloro or bromo and the **R₃** group is preferably hydrogen, acetyl (CH₃CO-) or
 10 other group subject to hydrolysis under physiological conditions.

11 The presently most preferred compounds of the invention are disclosed
 12 in **Table 1** with reference to **Formula 1**, and in **Table 2** with reference to
 13 **Formula 2**. It should be readily apparent from this disclosure that the
 14 preferred compounds of **Formula 1** are in the scope of the **formula (i)**, and
 15 that the preferred compounds of **Formula 2** are in the scope of **formula (ii)**.

16

17

25 **Formula 1**

26

27

28

1

TABLE 1

2 Compound 3 No.	4 dotted line 5 that represents 6 a double bond	7 R ₂ ^a	8 R ₂ ^b	9 R ₂ ^c	10 R ₁ ^c	11 R ₂ ^d	12 R ₁ ^d	13 o	14 p	15 R ₂ ^e	16 R ₃
19	β	H	ethyl	H	H	H	H	1	1	H	H
20	β	H	methyl	H	H	H	H	1	1	H	H
1	--	H	H	H	H	H	H	1	1	H	H
8	δ	H	H	H	--	H	--	1	1	H	H
10	--	H	H	H	H	H	H	2	1	H	H
3	α	H	H	H	H	H	H	1	1	H	H
4	β	H	H	H	H	H	H	1	1	H	H
9	--	H	H	H	H	--	--	1	0	H	H
42	--	H	H	H	H	H	H	1	1	H	CH ₃ CO
26	β	n-butyl	H	H	H	--	--	1	0	H	H
25	α	n-butyl	H	H	H	--	--	1	0	H	H
27	α	methyl	H	H	H	--	--	1	0	H	H
28	α	H	methyl	H	H	--	--	1	0	H	H
21	β	methyl	H	H	H	H	H	1	1	H	H
22	β	ethyl	H	H	H	H	H	1	1	H	H
11	δ	methyl	H	H	--	H	--	1	1	H	H
23	α	methyl	H	H	H	H	H	1	1	H	H
24	α	ethyl	H	H	H	H	H	1	1	H	H
17	α	Cl	H	H	H	H	H	1	1	H	H
18	α	Br	H	H	H	H	H	1	1	H	H

24

1

2

3

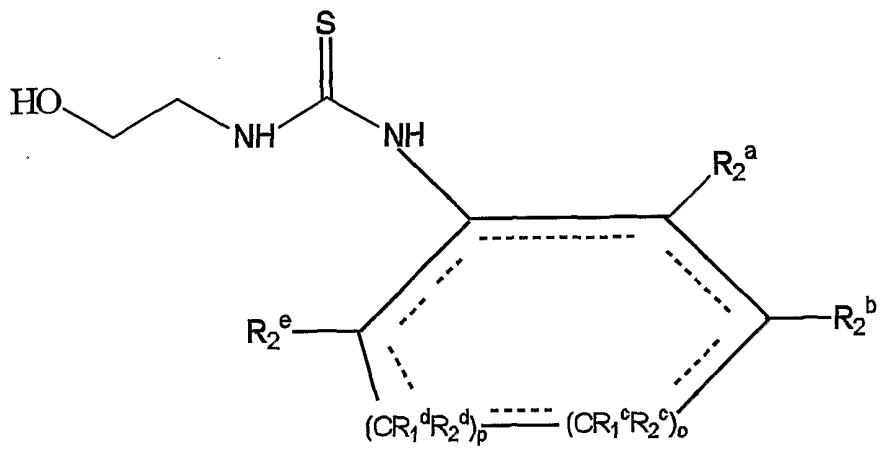
4

5

6

7

8


9

10

11

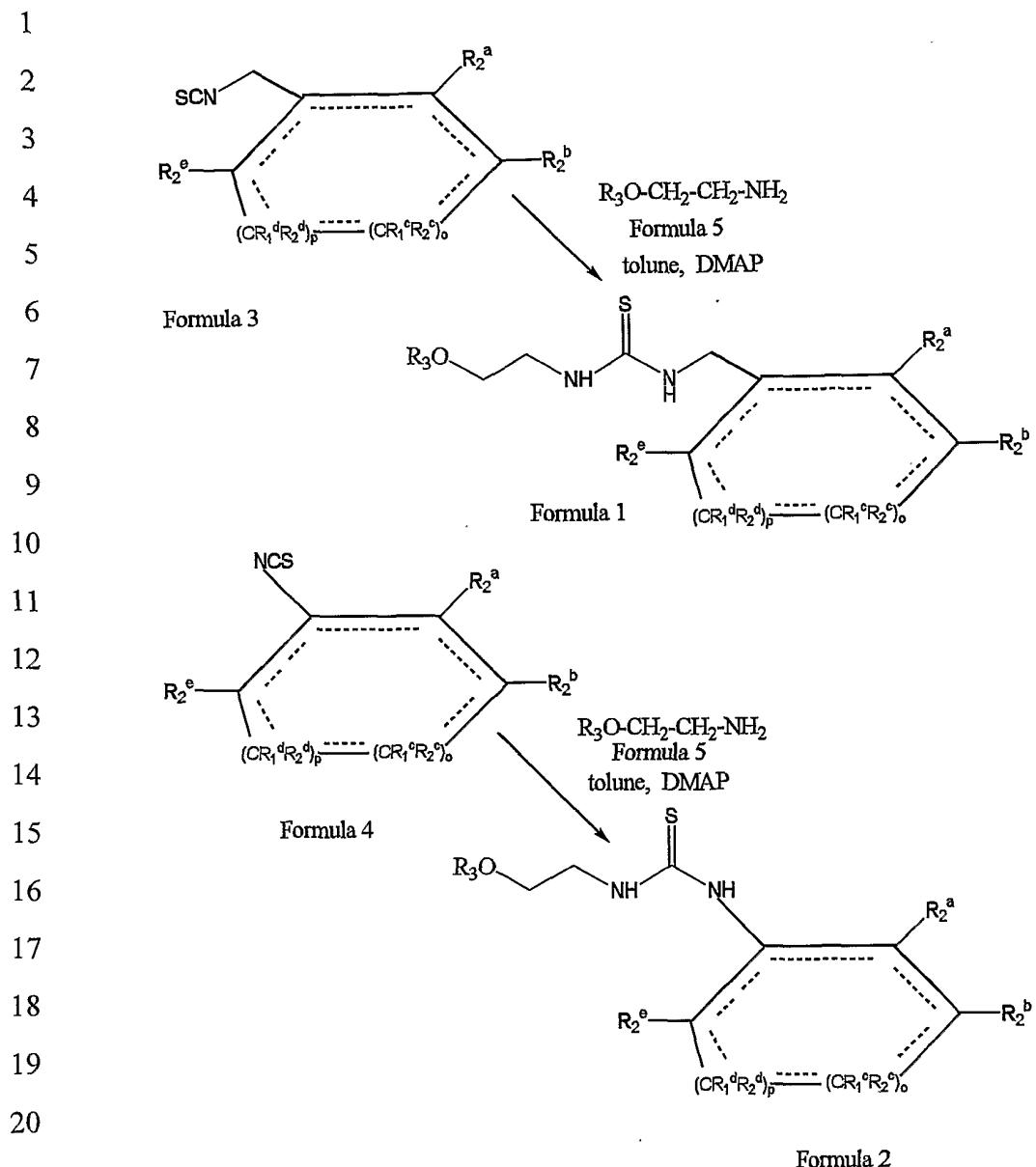
12

13

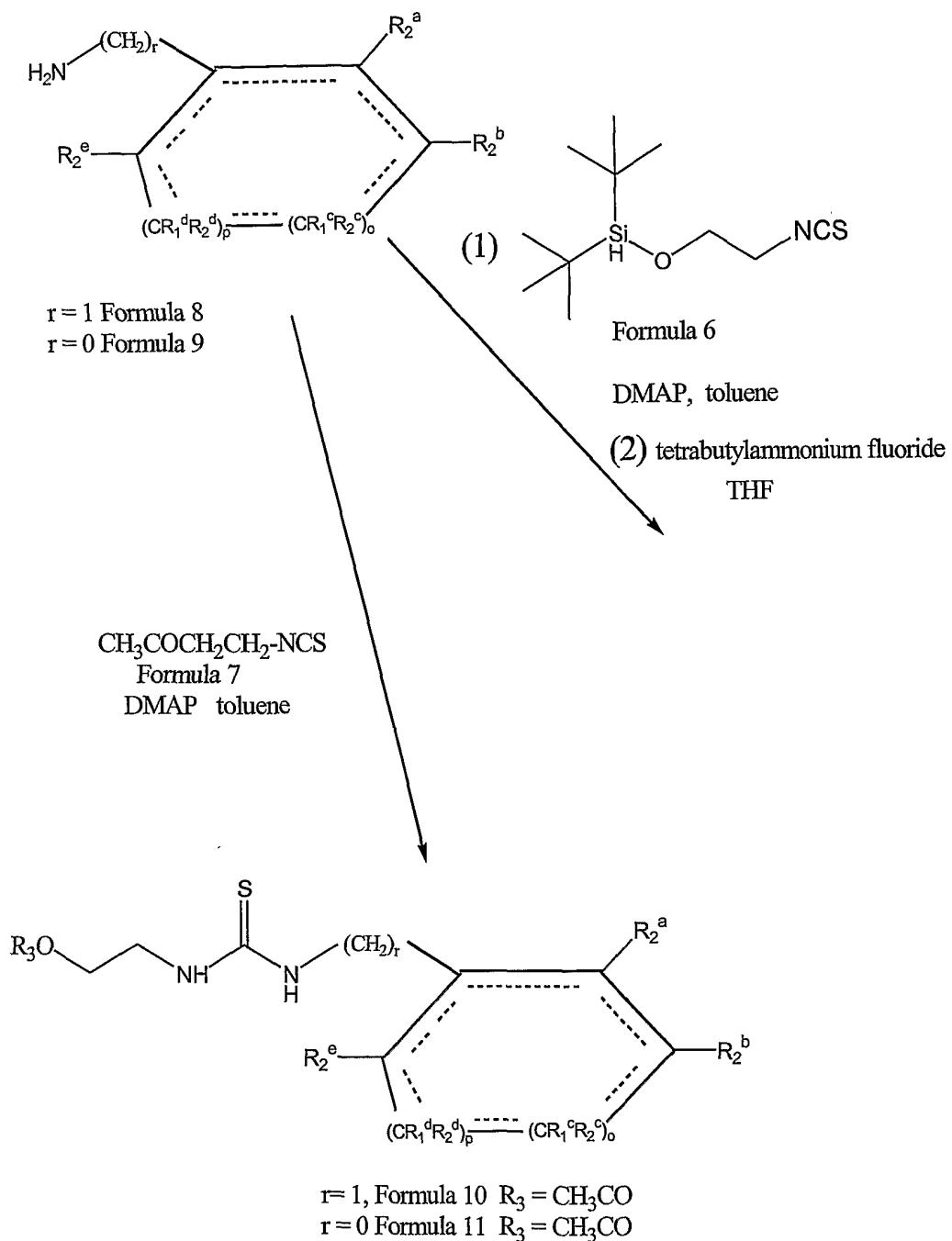
Formula 2

TABLE 2

Compound No.	dotted line that represent a bond	R ₂ ^a	R ₂ ^b	R ₂ ^c	R ₁ ^c	R ₂ ^d	R ₁ ^d	o	p	R ₂ ^e
40	---	H	H	CH ₃	H	H	H	1	1	H
5	---	n-propyl	H	H	H	H	H	1	1	H
41	---	methyl*	H	H	H	H	H	1	1	H
13	β	H	CH ₃	H	H	---	---	1	0	H
14	β	methyl	H	H	H	---	---	1	0	H
12	---	methyl	H	H	H	---	---	1	0	H
16	β	H	methyl	H	H	H	H	1	1	H
33	β	methyl	H	H	H	H	H	1	1	H
34	β	ethyl	H	H	H	H	H	1	1	H
35	β	H	H	H	H	H	H	1	1	H
31	β	methyl	methyl	H	H	H	H	1	1	H
30	β	n-propyl	H	H	H	H	H	1	1	H
29	β	Br	H	H	H	H	H	1	1	H
38	---	H	methyl*	H	H	H	H	1	1	H
39	---	H	methyl**	H	H	H	H	1	1	H
36	---	H	H	ethyl*	H	H	H	1	1	H
2	---	isopropyl*	H	H	H	methyl**	H	1	1	H
6	---	H	H	H	H	H	H	1	1	H
7	---	H	H	OH	H	H	H	1	1	H
15	β	methyl	methyl	H	H	---	---	1	0	H
32	β	H	ethyl	H	H	H	H	1	1	H
37	---	ethyl*	H	H	H	H	H	1	1	H


* *trans* relative to the NH group.

** *cis* relative to the NH group.


1 Generally speaking, the compounds of the invention can be obtained in
2 accordance with reaction of an isothiocyanate intermediate which is in
3 accordance with **Formula 3** or in accordance with **Formula 4**, and an amine
4 intermediate, which is in accordance with **Formula 5** (ethanolamine, or
5 protected ethanolamine, R₃ in **Formula 5** is H or an acyl group such as
6 CH₃CO, or a removable protective group). The reaction of an isothiocyanate
7 intermediate in accordance with **Formula 3** or in accordance with **Formula 4**
8 with an amine in accordance with **Formula 5** is described in detail in the
9 experimental section of this application and is generally referred to as General
10 Procedure A.

11 Alternatively compounds of the invention can be obtained by reaction
12 of a protected isothiocyanate such as of **Formula 6** (*t*-
13 butyldimethylsilyloxyethyl isothiocyanate) or of **Formula 7** (acetic acid 2-
14 isothiocyanato-ethyl ester) with an amine of **Formula 8** or of **Formula 9**,
15 followed by appropriate reactions removing any protecting groups. The
16 reaction of *t*-butyldimethylsilyloxyethyl isothiocyanate (**Formula 6**) with an
17 amine of **Formula 8** or of **Formula 9** is described in detail in the
18 experimental section of this application and is generally referred to as General
19 Procedure B.

20 The reaction between an isothiocyanate and an amine, to provide a
21 thiourea derivative *per se* is well known in the art. Typically such reactions
22 are performed in an aprotic solvent, such as toluene, in the presence of a
23 catalytic amount of base, such as dimethylaminopyridine (DMAP). These
24 reactions are illustrated in **Reaction Scheme 1**, (where the symbols have their
25 previously defined meaning) although it should be understood that variations
26 in the protecting groups used, as well as in the reaction conditions are possible
27 and within the skill of the practicing organic chemist in light of the present
28 disclosure.

REACTION SCHEME 1

REACTION SCHEME 1 (continued)

1

2 The reagent *t*-butyldimethylsilyloxyethyl isothiocyanate (**Formula 6**)
 3 can be obtained as described by *L'abbe et al.* *Tetrahedron* **1992**, *48*, 7505-

1 7518.

2 The reagent acetic acid 2-isothiocyanato-ethyl ester (**Formula 7**) can be
3 obtained as described in the experimental below.

4 The cycloalkyl or cycloalkenyl isothiocyanates of **Formulas 3** and **4**
5 and the cycloalkyl or cycloalkenyl amines of **Formulas 8** and **9** can, generally
6 speaking, be obtained in accordance with the chemical literature, and/or by
7 such modifications of known synthetic procedures which will be readily
8 apparent to those skilled in the art in light of the present disclosure. The
9 reaction schemes incorporated in the experimental section of this application
10 generally illustrate the synthetic schemes which are employed for the
11 synthesis of preferred embodiments of compounds of the invention.

12 **Biological Activity, Modes of Administration**

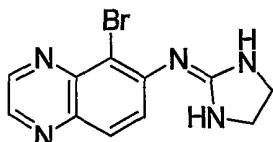
13 The compounds of the invention are agonists of α_2 adrenergic
14 receptors, particularly they tend to be specific or selective agonists of α_{2B}
15 and/or to a lesser extent α_{2C} adrenergic receptors, in preference over α_{2A}
16 adrenergic receptors. The specific or selective α_{2B} and/or to a lesser extent
17 α_{2C} agonist activity of the compounds of the invention is demonstrated in an
18 assay titled Receptor Selection and Amplification technology (RSAT) assay,
19 which is described in the publication by *Messier et. Al.*, 1995, *Pharmacol.*
20 *Toxicol.* **76**, pp. 308 - 311 (incorporated herein by reference) and is also
21 described below. Another reference pertinent to this assay is *Conklin et al.*
22 (1993) *Nature* **363**:274-6, also incorporated herein by reference.

23 **Receptor Selection and Amplification Technology (RSAT) assay**

24 The RSAT assay measures a receptor-mediated loss of contact
25 inhibition that results in selective proliferation of receptor-containing cells in
26 a mixed population of confluent cells. The increase in cell number is assessed
27 with an appropriate transfected marker gene such as β -galactosidase, the
28 activity of which can be easily measured in a 96-well format. Receptors that
29 activate the G protein, G_q , elicit this response. Alpha_2 receptors, which

1 normally couple to G_i, activate the RSAT response when coexpressed with a
2 hybrid G_q protein that has a G_i receptor recognition domain, called G_{q/i5}².

3 NIH-3T3 cells are plated at a density of 2x10⁶ cells in 15 cm dishes
4 and maintained in Dulbecco's modified Eagle's medium supplemented with
5 10% calf serum. One day later, cells are cotransfected by calcium phosphate
6 precipitation with mammalian expression plasmids encoding p-SV- β -
7 galactosidase (5-10 μ g), receptor (1-2 μ g) and G protein (1-2 μ g). 40 μ g
8 salmon sperm DNA may also be included in the transfection mixture. Fresh
9 media is added on the following day and 1-2 days later, cells are harvested
10 and frozen in 50 assay aliquots. Cells are thawed and 100 μ l added to 100 μ l
11 aliquots of various concentrations of drugs in triplicate in 96-well dishes.


12 Incubations continue 72-96 hr at 37°. After washing with phosphate-
13 buffered saline, β -galactosidase enzyme activity is determined by adding 200
14 μ l of the chromogenic substrate (consisting of 3.5 mM o-nitrophenyl- β -D-
15 galactopyranoside and 0.5% nonidet P-40 in phosphate buffered saline),
16 incubating overnight at 30 and measuring optical density at 420 nm. The
17 absorbance is a measure of enzyme activity, which depends on cell number
18 and reflects a receptor-mediated cell proliferation. The EC₅₀ and maximal
19 effect of each drug at each alpha₂ receptor is determined. The efficacy or
20 intrinsic activity is calculated as a ratio of the maximal effect of the drug to
21 the maximal effect of a standard full agonist for each receptor subtype.

22 Brimonidine, also called UK14304, the chemical structure of which is shown
23 below, is used as the standard agonist for the alpha_{2A}, alpha_{2B} and alpha_{2C}
24 receptors.

25

26

27

28 brimonidine

29

1 The results of the RSAT assay with several exemplary compounds of
2 the invention are disclosed in **Table 3**. Each number in the table represents
3 EC₅₀ in nanomolar (nM) concentration whereas the number in parenthesis in
4 the table shows the fraction of activity of the appropriate standard which is
5 attained by the tested compound. NA stands for “not active” at
6 concentrations less than 10 micromolar. As is known EC₅₀ is the
7 concentration at which half of a given compound’s maximal activity is
8 observed. It can be seen from the table that the compounds of the invention
9 are specific or selective agonists of α_{2B} and/or α_{2C} adrenergic receptors, with
10 no agonist like activity or only with insignificant agonist-like activity on α_{2A}
11 receptors.

12 The discovery of compounds, such as the present ones, which have
13 specific or selective activity on α_{2B} adrenergic receptors with no activity or
14 only minimal activity on α_{2A} is in and of itself another significant aspect of the
15 invention, inasmuch as to the best knowledge of the present inventors the
16 ability to bifurcate the activity on these two receptors has not been known in
17 the prior art.

18 Thus, the compounds of the invention are useful for treating conditions
19 and diseases which are responsive to treatment by α_{2B} adrenergic receptor
20 agonists. Such conditions and diseases include, but are not limited to, chronic
21 pain, visceral pain, neuropathic pain, corneal pain, glaucoma, ischemic
22 neuropathies and other neurodegenerative diseases. The lack of substantial
23 activity or total lack of activity of the compounds of the invention at α_{2A}
24 receptors is highly advantageous because the administration of these
25 compounds to mammals does not result in sedation or in significant
26 cardiovascular effects (such as changes in blood pressure or heart rate).

1 TABLE 3
2

3	4	RSAT EC ₅₀ (nM)		
		5	Alpha 2A	Alpha 2B
6	19	NA	55 (0.46)	NA
7	20	NA	37 (0.78)	NA
8	1	NA	204 (0.61)	NA
9	8	NA	17 (0.79)	NA
10	10	NA	355 (0.54)	NA
11	40	NA	57 (0.62)	NA
12	5	NA	216 (0.49)	NA
13	41	NA	27 (0.78)	NA
14	3	NA	877 (0.8)	NA
15	4	NA	66 (0.63)	NA
16	9	NA	441 (0.62)	NA
17	26	NA	816 (0.48)	NA
18	25	NA	>2000 (0.51)	738 (0.69)
19	27	NA	135 (0.75)	1729 (0.3)
	28	NA	544 (0.52)	NA

1	13	NA	111 (0.66)	NA
2	14	NA	97 (0.95)	3000 (0.3)
3	15	515 (0.4)	5 (1.08)	197 (0.4)
4	12	NA	1532 (0.47)	NA
5	21	NA	72 (0.87)	NA
6	22	NA	126 (0.73)	NA
7	11	NA	20 (0.93)	
8	23	NA	125 (0.68)	NA
9	24	NA	772 (0.71)	NA
10	16	NA	58 (0.54)	NA
11	33	NA	12 (0.71)	251 (0.98)
12	32	NA	96 (0.37)	NA
13	34	NA	11 (0.88)	59 (0.62)
14	35	NA	73 (0.58)	630 (0.4)
15	31	NA	6 (0.8)	253 (0.37)
16	30	NA	78 (0.71)	
17	29	NA	90 (0.84)	

1	17	NA	15 (0.63)	
2	18	NA	10 (0.77)	
3	37	14 (0.4)	2 (0.93)	106 (0.4)
4	38	NA	1151 (0.4)	NA
5	39	NA	80 (0.65)	NA
6	36	NA	97 (0.53)	NA
7	2	NA	189 (0.54)	
8	6	NA	311 (0.28)	NA
9	7	NA	>2000 (0.32)	

10

11 The compounds of the invention act and can be used as a highly
 12 effective analgesic, particularly in chronic pain models, with minimal
 13 undesirable side effects, such as sedation and cardiovascular depression,
 14 commonly seen with other agonists of the α_2 receptors.

15 The compounds of the invention may be administered at
 16 pharmaceutically effective dosages. Such dosages are normally the *minimum*
 17 dose necessary to achieve the desired therapeutic effect; in the treatment of
 18 chronic pain, this amount would be roughly that necessary to reduce the
 19 discomfort caused by the pain to tolerable levels. Generally, such doses will
 20 be in the range 1-1000 mg/day; more preferably in the range 10 to 500
 21 mg/day. However, the actual amount of the compound to be administered in
 22 any given case will be determined by a physician taking into account the
 23 relevant circumstances, such as the severity of the pain, the age and weight of
 24 the patient, the patient's general physical condition, the cause of the pain, and

1 the route of administration.

2 The compounds are useful in the treatment of pain in a mammal;
3 particularly a human being. Preferably, the patient will be given the
4 compound orally in any acceptable form, such as a tablet, liquid, capsule,
5 powder and the like. However, other routes may be desirable or necessary,
6 particularly if the patient suffers from nausea. Such other routes may include,
7 without exception, transdermal, parenteral, subcutaneous, intranasal,
8 intrathecal, intramuscular, intravenous, and intrarectal modes of delivery.
9 Additionally, the formulations may be designed to delay release of the active
10 compound over a given period of time, or to carefully control the amount of
11 drug released at a given time during the course of therapy.

12 Another aspect of the invention is drawn to therapeutic compositions
13 comprising the compounds of **Formula (i)** and of **Formula (ii)** and
14 pharmaceutically acceptable salts of these compounds and a pharmaceutically
15 acceptable excipient. Such an excipient may be a carrier or a diluent; this is
16 usually mixed with the active compound, or permitted to dilute or enclose the
17 active compound. If a diluent, the carrier may be solid, semi-solid, or liquid
18 material that acts as a excipient or vehicle for the active compound. The
19 formulations may also include wetting agents, emulsifying agents, preserving
20 agents, sweetening agents, and/or flavoring agents. If used as in an
21 ophthalmic or infusion format, the formulation will usually contain one or
22 more salt to influence the osmotic pressure of the formulation.

23 In another aspect, the invention is directed to methods for the treatment
24 of pain, particularly chronic pain, through the administration of one or more
25 compounds of **Formula (i)** or of **Formula (ii)** or pharmaceutically acceptable
26 salts thereof to a mammal in need thereof. As indicated above, the compound
27 will usually be formulated in a form consistent with the desired mode of
28 delivery.

1 It is known that chronic pain (such as pain from cancer, arthritis, and
2 many neuropathic injuries) and acute pain (such as that pain produced by an
3 immediate mechanical stimulus, such as tissue section, pinch, prick, or crush)
4 are distinct neurological phenomena mediated to a large degree either by
5 different nerve fibers and neuroreceptors or by a rearrangement or alteration
6 of the function of these nerves upon chronic stimulation. Sensation of acute
7 pain is transmitted quite quickly, primarily by afferent nerve fibers termed C
8 fibers, which normally have a high threshold for mechanical, thermal, and
9 chemical stimulation. While the mechanisms of chronic pain are not
10 completely understood, acute tissue injury can give rise within minutes or
11 hours after the initial stimulation to secondary symptoms, including a regional
12 reduction in the magnitude of the stimulus necessary to elicit a pain response.
13 This phenomenon, which typically occurs in a region emanating from (but
14 larger than) the site of the original stimulus, is termed hyperalgesia. The
15 secondary response can give rise to profoundly enhanced sensitivity to
16 mechanical or thermal stimulus.

17 The A afferent fibers (A β and A δ fibers) can be stimulated at a lower
18 threshold than C fibers, and appear to be involved in the sensation of chronic
19 pain. For example, under normal conditions, low threshold stimulation of
20 these fibers (such as a light brush or tickling) is not painful. However, under
21 certain conditions such as those following nerve injury or in the herpes virus-
22 mediated condition known as shingles the application of even such a light
23 touch or the brush of clothing can be very painful. This condition is termed
24 allodynia and appears to be mediated at least in part by A β afferent nerves. C
25 fibers may also be involved in the sensation of chronic pain, but if so it
26 appears clear that persistent firing of the neurons over time brings about some
27 sort of change which now results in the sensation of chronic pain.

28 By "acute pain" is meant immediate, usually high threshold, pain
29 brought about by injury such as a cut, crush, burn, or by chemical stimulation

1 such as that experienced upon exposure to capsaicin, the active ingredient in
2 chili peppers.

3 By "chronic pain" is meant pain other than acute pain, such as, without
4 limitation, neuropathic pain, visceral pain (including that brought about by
5 Crohn's disease and irritable bowel syndrome (IBS)), and referred pain.

6 The following *in vivo* assays can be employed to demonstrate the
7 biological activity of the compounds of the invention.

8 Sedative Activity

9 To test sedation, six male Sprague-Dawley rats are given up to 3 mg/kg
10 of the test compound in a saline or DMSO vehicle by intraperitoneal injection
11 (i.p.). Sedation is graded 30 minutes following administration of the drug by
12 monitoring locomotor skills as follows.

13 The Sprague-Dawley rats are weighed and 1 ml/kg body weight of an
14 appropriate concentration (ie. 3 mg/ml for a final dose of 3 mg/kg) drug
15 solution is injected intraperitoneally. Typically the test compound is
16 formulated in approximately 10 to 50 % DMSO. The results are compared
17 to controls that are injected with 1 ml/kg saline or 10 to 50% DMSO. Rat
18 activity is then determined 30 minutes after injection of the drug solution.

19 Rats are placed in a dark covered chamber and a digicom analyzer (Omnitech
20 Electronic) quantitates their exploratory behavior for a five-minute period.
21 The machine records each time the rat interrupts an array of 32 photoelectric
22 beams in the X and Y orientation.

23 **Compound 40** of the invention was tested in this assay
24 intraperitoneally and up to a dose of 300 μ g/kg, and was found to have no
25 sedative effect.

26 The results in this test with other compounds of the invention are also
27 expected to show that the compounds of the invention are not sedating.

28 Effects on Cardiovascular System

1 To test the effect of the compounds on the cardiovascular system,
2 typically six cynomolgus monkeys are given 500 µg/kg of the test compound
3 by intravenous injection (i.v.). The effects of the compound on the animals'
4 blood pressure and heart rate is measured at time intervals from 30 minutes to
5 six hours following administration of the drug. The peak change from a
6 baseline measurement taken 30 minutes before drug administration is
7 recorded using a blood pressure cuff modified for use on monkeys.

8 Specifically and typically the monkeys are weighed (approximately 4
9 kg) and an appropriate volume (0.1 ml/kg) of a 5 mg/ml solution of the test
10 compound formulated in 10 to 50 % DMSO is injected into the cephalic vein
11 in the animals' arm. Cardiovascular measurements are made with a BP 100S
12 automated sphygmomanometer (Nippon Colin, Japan) at 0.5, 1, 2, 4 and 6
13 hours.

14 The results in this test are expected to show that the compounds of the
15 invention have no or only minimal detectable effect on the cardiovascular
16 system.

17 Alleviation of Acute Pain

18 Models to measure sensitivity to acute pain have typically involved the
19 acute application of thermal stimuli; such a stimulus causes a programmed
20 escape mechanism to remove the affected area from the stimulus. The proper
21 stimulus is thought to involve the activation of high threshold thermoreceptors
22 and C fiber dorsal root ganglion neurons that transmit the pain signal to the
23 spinal cord.

24 The escape response may be "wired" to occur solely through spinal
25 neurons, which receive the afferent input from the stimulated nerve receptors
26 and cause the "escape" neuromuscular response, or may be processed
27 supraspinally – that is, at the level of the brain. A commonly used method to
28 measure nociceptive reflexes involves quantification of the withdrawal or
29 licking of the rodent paw following thermal excitation. See Dirig, D.M. et al.,

1 *J. Neurosci. Methods* 76:183-191 (1997) and Hargreaves, K. et al., *Pain*
2 32:77-88 (1988), hereby incorporated by reference herein.

3 In a variation of this latter model, male Sprague-Dawley rats are tested
4 by being placed on a commercially available thermal stimulus device
5 constructed as described in Hargreaves et al. This device consists of a box
6 containing a glass plate. The nociceptive stimulus is provided by a focused
7 projection bulb that is movable, permitting the stimulus to be applied to the
8 heel of one or both hindpaws of the test animal. A timer is actuated with the
9 light source, and the response latency (defined as the time period between
10 application of the stimulus and an abrupt withdrawal of the hindpaw) is
11 registered by use of a photodiode motion sensor array that turns off the timer
12 and light. Stimulus strength can be controlled by current regulation to the light
13 source. Heating is automatically terminated after 20 seconds to prevent tissue
14 damage.

15 Typically four test animals per group are weighed (approximately 0.3
16 kg) and injected intraperitoneally (i.p.) with 1 ml/kg of the test compound
17 formulated in approximately 10 to 50% dimethylsulfoxide (DMSO) vehicle.
18 Animals typically receive a 0.3 mg/kg and a 3 mg/kg dose of the three
19 compounds. Rats are acclimated to the test chamber for about 15 minutes
20 prior to testing. The paw withdrawal latency is measured at 30, 60 and 120
21 minutes after drug administration. The right and left paws are tested 1 minute
22 apart, and the response latencies for each paw are averaged. Stimulus intensity
23 is sufficient to provide a temperature of 45-50 degrees centigrade to each rat
24 hindpaw.

25 The results in this test are expected to show that the compounds of the
26 invention do not provide analgesic effects in this bioassay of acute pain.

27 Alleviation of Chronic Pain

28 A model for chronic pain (in particular peripheral neuropathy such as
29 causalgia) involves the surgical ligation of the L5 (and optionally the L6)

1 spinal nerves on one side in experimental animals. Rats recovering from the
2 surgery gain weight and display a level of general activity similar to that of
3 normal rats. However, these rats develop abnormalities of the foot, wherein
4 the hindpaw is moderately everted and the toes are held together. More
5 importantly, the hindpaw on the side affected by the surgery appears to
6 become sensitive to pain from low-threshold mechanical stimuli, such as that
7 producing a faint sensation of touch in a human, within about 1 week
8 following surgery. This sensitivity to normally non-painful touch is called
9 "tactile allodynia" and lasts for at least two months. The response includes
10 lifting the affected hindpaw to escape from the stimulus, licking the paw and
11 holding it in the air for many seconds. None of these responses is normally
12 seen in the control group.

13 Rats are anesthetized before surgery. The surgical site is shaved and
14 prepared either with betadine or Novacaine. Incision is made from the
15 thoracic vertebra Xlll down toward the sacrum. Muscle tissue is separated
16 from the spinal vertebra (left side) at the L4 - S2 levels. The L6 vertebra is
17 located and the transverse process is carefully removed with a small rongeur to
18 expose the L4 - L6 spinal nerves. The L5 and L6 spinal nerves are isolated and
19 tightly ligated with 6-0 silk thread. The same procedure is done on the right
20 side as a control, except no ligation of the spinal nerves is performed.
21 A complete hemostasis is confirmed, then the wounds are sutured. A small
22 amount of antibiotic ointment is applied to the incised area, and the rat is
23 transferred to the recovery plastic cage under a regulated heat-temperature
24 lamp. On the day of the experiment, at least seven days after the surgery,
25 typically six rats per test group are administered the test drugs by
26 intraperitoneal (i.p.) injection or oral gavage. For i.p. injection, the
27 compounds are formulated in approximately 10 to 50% DMSO and given in a
28 volume of 1 ml/kg body weight.

29 Tactile allodynia is measured prior to and 30 minutes after drug

1 administration using von Frey hairs that are a series of fine hairs with
2 incremental differences in stiffness. Rats are placed in a plastic cage with a
3 wire mesh bottom and allowed to acclimate for approximately 30 minutes.
4 The von Frey hairs are applied perpendicularly through the mesh to the mid-
5 plantar region of the rats' hindpaw with sufficient force to cause slight
6 buckling and held for 6-8 seconds. The applied force has been calculated to
7 range from 0.41 to 15.1 grams. If the paw is sharply withdrawn, it is
8 considered a positive response. A normal animal will not respond to stimuli
9 in this range, but a surgically ligated paw will be withdrawn in response to a
10 1-2 gram hair. The 50% paw withdrawal threshold is determined using the
11 method of Dixon, W.J., *Ann. Rev. Pharmacol. Toxicol.* 20:441-462 (1980).
12 The post-drug threshold is compared to the pre-drug threshold and the percent
13 reversal of tactile sensitivity is calculated based on a normal threshold of 15.1
14 grams. The results are expressed in per cent (%) MPE, where the MPE value
15 reflects the percentage reversal of pain threshold to that of a normal animal
16 (100 %). Table 4 below indicates results of this test with Compounds **8**, **34**
17 and **40** of the invention, administered i.p., in intrathecal and oral doses. The
18 doses and the observed MPE values (\pm SEM) are shown in the table.

1

2 TABLE 4

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

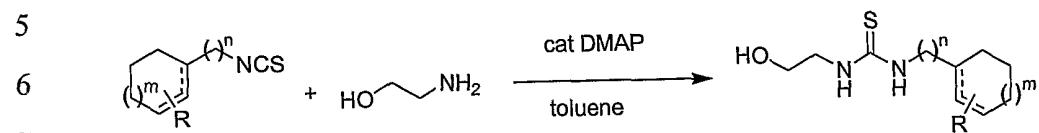
23

24

25

26

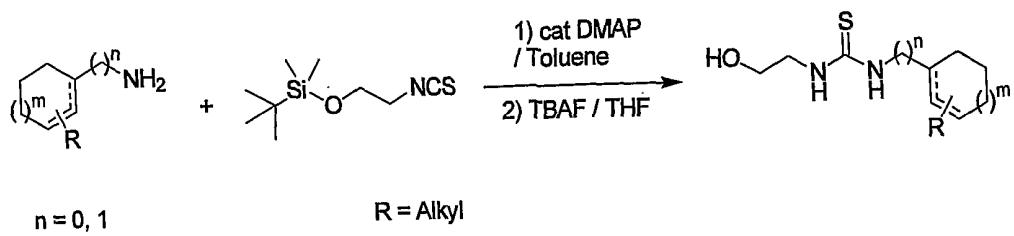
27


%MPE			
IP Doses	Compound 34	Compound 8	Compound 40
10 µg/kg	0.4 ± 1.0	1.5 ± 0.9	0.1 ± 1.8
30 µg/kg	48 ± 6.1	47 ± 8.6	42 ± 9.2
100 µg/kg	66 ± 11	63 ± 9.1	46 ± 7.1
300 µg/kg	96 ± 3.7	56 ± 6.5	77 ± 8.0
1000 µg/kg		52 ± 8.4	83 ± 7.0
3000 µg/kg			90 ± 6.1
Intrathecal Doses			
30 µg		0.02 ± 0.6	
100 µg		1.3 ± 0.6	
300 µg		20 ± 5.1	
Oral Dose			
1000 µg/kg			80 ± 6.1

21

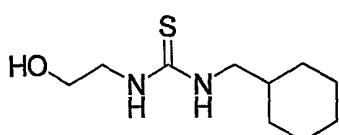
22

The results showed in Table 4 illustrate that these compounds of the invention significantly alleviate allodynic pain, and based on these test and of the compounds ability to activate α_{2B} adrenergic receptors in preference over α_{2A} adrenergic receptors, the compounds of the invention are expected to be useful as analgesics to alleviate allodynia and chronic pain.


1 **General Procedure A** for the Synthesis of Hydroxyethyl Cycloalkanylmethyl
2 or Cycloalkenylmethyl and Cycloalkanyl Thioureas:

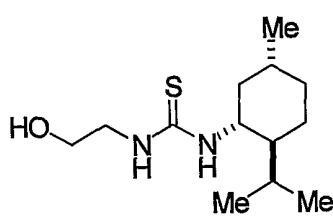
8 $n = 0, 1$ $m = 0, 1, 2$ R = Alkyl

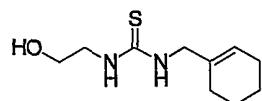
10
11
12 The isothiocyanate (prepared from the corresponding azide according to the
13 procedure described by *L'abbe et al.* *Tetrahedron* **1992**, *48*, 7505-7518, and
14 ethanolamine (2-3 eq) were mixed in toluene, followed by the addition of
15 catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP). The resulting
16 reaction mixture was stirred at room temperature for 14 hours, then
17 concentrated. Chromatography (gradient solvent system, from 50%
18 EtOAc/Hexanes to 10% MeOH/EtOAc) gave the desired product.


1 **General Procedure B** for the Synthesis of Hydroxyethyl Cycloalkylmethyl
 2 or Cycloalkenylmethyl and Cycloalkanyl Thioureas:

3

4 Butyldimethylsilyloxyethyl isothiocyanate (prepared from *t*-
 5 butyldimethylsilyloxyethyl bromide according to the procedure described
 6 *L'abbe et al.* (see above) and substituted cycloalkylmethylamine or
 7 cycloalkenylmethylamine or cycloalkylamine (2-3 eq) were mixed in toluene,
 8 followed by the addition of catalytic amount of DMAP. The resulting
 9 reaction mixture was stirred at room temperature for 14 hours, then
 10 concentrated. Deprotection with tetra-*n*-butylammonium fluoride (TBAF) in
 11 tetrahydrofuran (THF) gave the crude product, which was chromatographed
 12 (gradient solvent system, from 50% EtOAc/Hexanes to 10% MeOH/EtOAc)
 13 to afford the desired product.


14 Proton nuclear magnetic resonance (^1H NMR) spectra were recorded
 15 on a Varian 300 MHz spectrometer in deuterated solvent. Chemical shifts
 16 were reported as δ (delta) values in parts per million (ppm) relative to
 17 tetramethylsilane (TMS) as an internal standard (0.00 ppm) and multiplicities
 18 were reported as s, singlet; d, doublet; t, triplet; q, quartet; br, broad; m,
 19 multiplet. Data were reported in the following format: chemical shift
 20 (multiplicity, coupling constant(s) J in Hertz (Hz) integrated intensity).

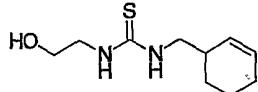

24

1 1-Cyclohexylmethyl-3-(2-hydroxy-ethyl)-thiourea (Compound 1)

2 The title compound was obtained (3.50 g, 81%) from commercially
 3 available cyclohexylmethyl isothiocyanate (3.10 g) and ethanolamine (4.00
 4 mL) according to General Procedure A. Spectroscopic data: ^1H NMR (D_6
 5 DMSO, 300 MHz) δ 7.48 (br s, 1 H), 7.29 (br s, 1 H), 4.73 (br s, 1 H), 3.50-
 6 3.35 (m, 4 H), 3.20 (br s, 2 H), 1.70-1.54 (m, 6 H), 1.45 (br s, 1 H), 1.25-1.06
 7 (m, 4 H), 0.95-0.80 (m, 2 H).

13 1-(2-Hydroxy-ethyl)-3-(1*R*, 2*S*, 5*R*-2-isopropyl-5-methyl-cyclohexyl)-thiourea
 14 **(Compound 2)**

15 The title compound was obtained (1.33 g, 89%) from commercially
 16 available 1*R*, 2*S*, 5*R*-2-isopropyl-5-methyl-cyclohexylamine and *t*-
 17 butyldimethylsilyloxyethyl isothiocyanate (2.00 g) according to General
 18 Procedure B. Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ 7.26 (d,
 19 J = 9.08 Hz, 1 H), 7.14 (br s, 1 H), 4.76 (br s, 1 H), 4.01 (br s, 1 H), 3.45 (m,
 20 4 H), 1.98-1.76 (m, 2 H), 1.71-1.52 (m, 2 H), 1.45-1.28 (m, 2 H), 1.23-0.88
 21 (m, 3 H), 0.85 (d, J = 6.74 Hz, 6 H), 0.73 (d, J = 6.74 Hz, 3 H).


26 1-(Cyclohex-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 3)

27 To a solution of LAH (195 mg, 5.14 mmol, 1 eq) in ether at 0 °C was
 28 added 500 mg (4.7 mmol) of commercially available cyclohex-1-
 29 enecarbonitrile. After 1 hour, the reaction is quenched with water and filtered

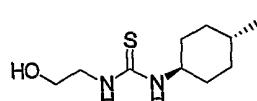
1 through celite. The filtrate was distilled off to give 430 mg (83% yield) of
2 cyclohex-1-enyl-methylamine. Spectroscopic data: ^1H NMR (CDCl₃, 300
3 MHz) δ = 1.52-1.63 (m, 5H), 1.91-2.00 (m, 5H), 3.10 (s, 2H), 5.52 (br s, 1H).
4 The title compound was obtained from cyclohex-1-enyl-methylamine (430
5 mg, 3.87 mmol) and *tert*-butyl(2-isothiocyanato-ethoxy)dimethyl-silane (679
6 mg, 1 eq) according to the General Procedure B. Spectroscopic data: ^1H
7 NMR (D₆ DMSO, 300 MHz) δ = 1.48-1.58 (m, 4H), 1.88 (br s, 2H), 1.95 (br
8 s, 2H), 3.46 (br s, 4H), 3.92 (br s, 2H), 4.74 (br s, 1H), 5.5 (br s, 1H), 7.35 (br
9 s, 1H), 7.50 (br s, 1H).

10

11

12

13

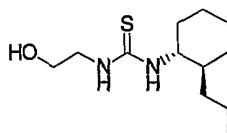

14

15 **1-(Cyclohex-2-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 4)**

16 A solution of commercially available 3-bromo-cyclohexene (2.0 g,
17 12.42 mmol) and CuCN (1.2 g, 1.1 eq) in dimethylformamide was stirred at
18 room temperature overnight. Distillation gave 1.2 g (60% yield) of the desired
19 cyclohex-2-enecarbonitrile. Spectroscopic data: ^1H NMR (CDCl₃, 300 MHz)
20 δ = 1.65-2.11 (m, 6H), 3.21-3.27 (m, 1H), 5.60-5.66 (m, 1H), 5.91-5.97 (m,
21 1H). The nitrile (360 mg, 3.36 mmol) was then added to a solution of LAH (1
22 eq) in ether at 0 °C. After 1 hour, the reaction was quenched with water and
23 filtered through celite. The filtrate was distilled off to give 175 mg (47%
24 yield) of 2-cyclohexene-yl-methyl amine. Spectroscopic data: ^1H NMR (D₆
25 DMSO, 300 MHz) δ = 1.23-1.33 (m, 4H), 1.50-1.57 (m, 2H), 1.72-1.80 (m,
26 2H), 1.96-2.00 (m, 2H), 2.14 (br s, 1H), 5.56-5.59 (m, 1H), 5.75-5.78 (m,
27 1H).

28 The title compound was obtained from 2-cyclohexene-yl-methyl amine (175
29 mg, 1.60 mmol) and *tert*-butyl(2-isothiocyanato-ethoxy)dimethyl-silane (553

1 mg, 1 eq) according to General Procedure B. Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ = 1.18-1.26 (m, 1H), 1.41-1.48 (m, 1H), 1.65-1.70 (m, 2H), 1.94 (br s, 2H), 2.32 (br s, 1H), 3.30 (br s, 1H), 3.43-3.47 (m, 5H), 4.76 (br s, 1H), 5.55 (dd, 1H, J = 10 Hz), 5.69-5.73 (m, 1H), 7.38 (br s, 1H), 7.55 (br s, 1H).



10 **1-(2-Hydroxy-ethyl)-3-(4-methyl-cyclohexyl)-thiourea (Compound 40)**

11 The title compound was obtained from 2.0 g of commercially available
 12 4-methylcyclohexylamine (17.7 mmol) and *tert*-butyl-(2-isothiocyanato-
 13 ethoxy)dimethyl-silane (3.2 g) according to General Procedure B.
 14 Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ = 0.845 (d, J = 6.84
 15 Hz, 3 H), 0.89-0.97 (m, 2 H), 1.09-1.11 (m, 2 H), 1.26-1.30 (m, 1 H), 1.63-
 16 1.65 (m, 2 H), 1.87-1.89 (m, 2 H), 3.42-3.46 (m, 4 H), 3.86 (br s, 1 H), 4.73
 17 (br s, 1 H), 7.19 (s, 1 H), 7.30 (d, J = 8.30 Hz, 1 H)).

18

19

23 **1-(2-Hydroxy-ethyl)-3-((1R,2R)-2-propyl-cyclohexyl)-thiourea (Compound 5)**

25 The title compound was obtained from (-)-*trans*-2-
 26 propylcyclohexylamine (2.0 g, 14.2 mmol) and *tert*-butyl-(2-isothiocyanato-
 27 ethoxy)dimethyl-silane (2.5 g) according to General Procedure B.
 28 Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ = 0.84 (t, J = 6.89 Hz,
 29 3 H), 0.92-1.48 (m, 8 H), 1.61 (br s, 2 H), 1.77-1.92 (m, 2 H), 3.46 (br s, 5 H),

1 3.86 (br s, 1 H), 4.76 (br s, 1 H), 7.19 (br s, 1H), 7.305 (d, $J = 8.50$ Hz, 1 H).

2

7 The title compound was obtained from 4.34 g (43.76 mmol) of
 8 cyclohexylamine and *tert*-butyl-(2-isothiocyanato-ethoxy)dimethyl-silane (8.4
 9 g) according to General Procedure B. Spectroscopic data: ^1H NMR (D₆
 10 DMSO, 300 MHz) $\delta = 1.09$ -1.16 (m, 3 H), 1.21-1.29 (m 2 H), 1.51-1.53 (m, 1
 11 H), 1.61-1.65 (m, 2 H), 1.80-1.83 (m, 2 H), 3.42-3.46 (m, 4 H), 3.95 (br s, 1
 12 H), 4.73 (br s, 1 H), 7.23 (br s, 1 H), 7.355 (d, $J = 8.30$ Hz, 1 H).

13

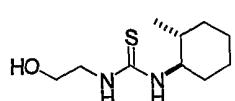
14

15

16

17

18 1-(4-Hydroxy-cyclohexyl)-3-(2-hydroxyethyl)-thiourea (Compound 7)


19 The title compound was obtained from 1.0 g of 4-
 20 hydroxycyclohexylamine (6.60 mmol) and *tert*-butyl-(2-isothiocyanato-
 21 ethoxy)dimethyl-silane (700 mg) according to General Procedure B in CH₂Cl₂
 22 in the presence of triethylamine (TEA) and DMAP as catalyst. Spectroscopic
 23 data: ^1H NMR (D₆ DMSO, 300 MHz) $\delta = 1.08$ -1.25 (m, 4 H), 1.77-1.88 (m, 4
 24 H), 3.36-3.47 (m, 5 H), 3.87 (br s, 1 H), 4.515 (d, $J = 4.39$ Hz, 1 H), 4.75 (br
 25 s, 1 H), 7.24 (br s, 1 H), 7.325 (d, $J = 7.91$ Hz, 1 H).

26

27

28

29

1 1-(2-Methyl-cyclohexyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 41)

2 The title compound was obtained from commercially available 2-
 3 methylcyclohexylamine (5.0 g, 44.24 mmol) and *tert*-butyl-(2-isothiocyanato-
 4 ethoxy)dimethyl-silane (7.8 g, 1 eq) according to General Procedure B. The
 5 relative stereochemistry was confirmed by preparing the thiourea from *cis*-2-
 6 methylcyclohexanol as described in General Procedure D. Spectroscopic
 7 data: ^1H NMR (DMSO) δ = 0.84 (d, 30H, J = 10 Hz), 0.96-1.02 (m, 2H), 1.11-
 8 1.24 (m, 2H), 1.33 (br s, 1H), 1.57-1.71 (m, 3H), 1.90 (br s, 1H), 3.42-3.47 (m,
 9 4H), 3.77 (br s, 1H), 4.75 (br s, 1H), 7.18 (br s, 1H), 7.31 (d, 1H, J = 10 Hz).

10 **General Procedure D** for the synthesis of hydroxyethyl thioureas:

11

12

13

14

15

16

17

18

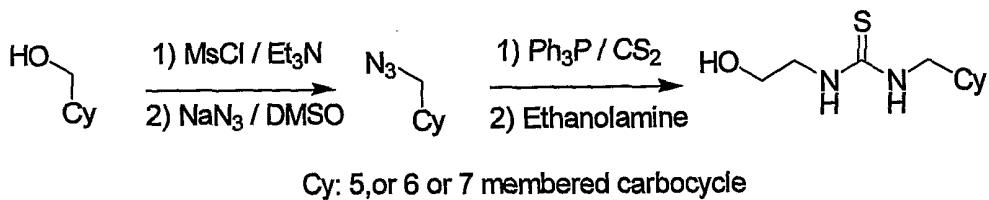
19

20

21

22

23

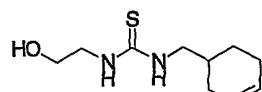

24

25

26

27

28


The alcohol was dissolved in dichloromethane, then cooled to -78 °C.

Triethylamine and mesyl chloride were added. The resulting reaction mixture was allowed to warm to room temperature over 2 hours, then diluted with ether. The organic layer was washed with water and brine, then dried over magnesium sulfate and concentrated to afford the crude mesylate, which was dissolved in DMSO, and treated with sodium azide either at room temperature or at 65 °C depending on the substrate for 14 hours. The reaction mixture was cooled (if necessary) to room temperature and diluted with water. After extraction of the mixture with ether, the combined ether layers were washed with water and brine, then dried over magnesium sulfate and concentrated to yield the crude azide. This crude azide was dissolved in carbon disulfide and treated with triphenylphosphine at room temperature for 6 hours, then refluxed

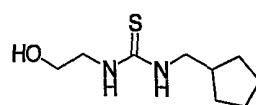
1 for 3 hours. The reaction mixture was concentrated, then diluted with hexane.
2 The solids formed were washed with more hexane, and the combined organic
3 phases were concentrated to give the crude isothiocyanate. The title
4 compound was obtained from this isothiocyanate and ethanolamine according
5 to General Procedure A.

6

7

8

9

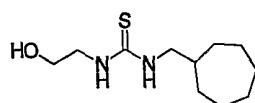

10 1-Cyclohex-3-enylmethyl-3-(2-hydroxyethyl)-thiourea (Compound 8)

11 Sodium borohydride in methanol was added to a solution of
12 commercially available 3-cyclohexene-1-carboxaldehyde in methanol at 0 °C
13 and the resulting reaction mixture was stirred for 30 minutes, then diluted with
14 ethyl acetate. The organic layer was washed with water and then dried over
15 magnesium sulfate and concentrated to give the crude alcohol. The crude
16 alcohol without further purification was converted to the title compound as
17 described in General Procedure D. Spectroscopic data: ^1H NMR (D_6DMSO ,
18 300 MHz) δ 7.55 (br s, 1 H), 7.34 (br s, 1 H), 5.61 (br s, 2 H), 4.76 (br s, 1 H),
19 3.45 (br s, 4 H), 3.30 (br s, 2 H), 2.10-1.92 (m, 3 H), 1.83-1.58 (m, 3 H), 1.25-
20 1.10 (m, 1 H).

21

22

23


24

25 1-Cyclopentylmethyl-3-(2-hydroxyethyl)-thiourea (Compound 9)

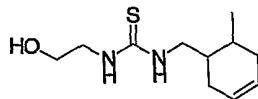
26 The intermediate azidomethylcyclopentane was obtained from
27 commercially available cyclopentanemethanol as described in General
28 Procedure D. Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ 3.18 (d, $J=$
29 10.0 Hz, 2 H), 2.23-2.05 (m, 1 H), 1.87-1.74 (m, 2 H), 1.68-1.55 (m, 4 H),

1 1.30-1.15 (m, 2 H). The azide was then converted into cyclopentylmethyl
2 isothiocyanate, which was reacted with ethanolamine to afford the title
3 compound (12.68 g, 63%) according to General Procedure A. Spectroscopic
4 data: ^1H NMR (D_6 , DMSO, 300 MHz) δ 7.46 (br s, 1 H), 7.31 (br s 1 H), 4.72
5 (br s, 1 H), 3.5-3.38 (m, 4 H), 3.25 (br s, 2 H), 2.03 (quintet, J = 6.4 Hz, 1 H),
6 1.70-1.57 (m, 3 H), 1.55-1.41 (m, 3 H), 1.20-1.10 (m, 2 H).

7

8
9

10


11 **1-Cycloheptylmethyl-3-(2-hydroxyethyl)-thiourea (Compound 10)**

12 Commercially available cycloheptanecarboxylic acid (25 g) was
13 dissolved in methanol (150 ml), then sulfuric acid (2 mL) was added. The
14 resulting reaction mixture was refluxed for 4 hours then neutralized with
15 saturated aqueous sodium bicarbonate solution. The mixture was concentrated
16 and then diluted with ether. The ethereal solution was washed with water and
17 brine, then dried over magnesium sulfate and concentrated to give 26 grams
18 (95%) of the desired methyl ester. 10 grams of this ester was dissolved in
19 THF (100 mL), then cooled to -78 °C. LAH (64.00 mL, 1.0 M in THF) was
20 added, and the resulting reaction was allowed to warm to room temperature
21 over 60 minutes. The reaction was quenched with water and sodium
22 hydroxide. The solids formed were washed with ether, and the combined
23 organic phases were dried over magnesium sulfate and concentrated to give a
24 quantitative yield (8.00 g) of the desired cycloheptanemethanol. The title
25 compound was obtained (9.52 g, 66% based on the intermediate
26 cycloheptanemethanol) from this cycloheptanemethanol according to General
27 Procedure D. Spectroscopic data: ^1H NMR (D_6 , DMSO, 300 MHz) δ 7.46 (br
28 s, 1 H), 7.28 (br s, 1 H), 4.72 (br s, 1 H), 3.51-3.36 (m, 4 H), 3.20 (br s, 2 H),

1 1.72-1.28 (m, 11 H), 1.18-1.03 (m, 2 H).

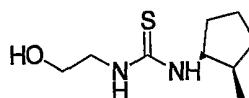
2

3

4

5

6 Synthesis of 1-(2-hydroxy-ethyl)-3-(6-methyl-cyclohex-3-enylmethyl)-
7 thiourea (Compound 11)


8 The title compound was generated from commercially available (6-
9 methyl-cyclohex-3-enyl)-methanol according to General Procedure D.

10 Spectroscopic data: ^1H NMR (DMSO) δ = 0.94 (d, 3H, J = 6.15 Hz), 1.51-2.12
11 (m, 6H), 3.23-3.25 (m, 1H), 3.46-3.50 (m, 4H), 3.62 (br s, 1H), 4.77 (s, 1H),
12 5.55-5.63 (m, 2H), 7.35-7.38 (m, 1H), 7.44-7.48 (m, 1H).

13

14

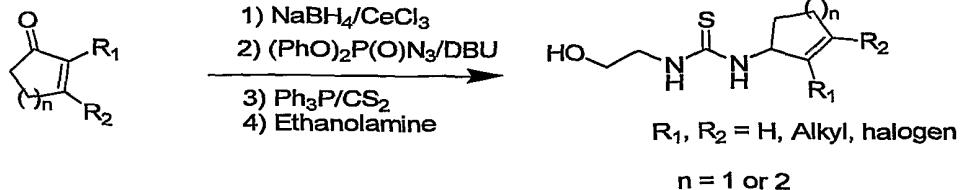
15

16

17 1-(2-Hydroxy-ethyl)-3-(cis-2-methyl-cyclopentyl)-thiourea (Compound 12)

18 The title compound was obtained (10.55g, 49%) from commercially
19 available *trans*-2-methylcyclopentanol according to General Procedure D.

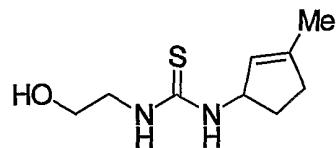
20 Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ 7.35 (s, 1 H), 7.32 (s, 1
21 H), 4.75 (br s, 1 H), 4.49 (br s, 1 H), 3.45 (br s, 4 H), 2.18-1.98 (m, 1 H), 1.91-
22 1.56 (m, 3 H), 1.49-1.34 (m, 2 H), 1.27-1.17 (m, 1 H), 0.79 (d, J = 6.74 Hz, 3
23 H).


24 **General Procedure C** for the preparation of cycloalkyl hydroxyethyl
25 thioureas:

26

27

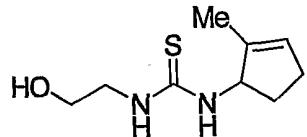
28


29

1 Sodium borohydride (1 eq) was added to a mixture of the respective
2 enone and of cerium trichloride heptahydrate (1 eq) in methanol at 0°C. The
3 resulting reaction mixture was stirred at 0°C for 30 minutes. The reaction
4 mixture was then diluted with water and extracted with ether. The combined
5 organic phases were washed with water and brine, and then dried (MgSO_4) and
6 concentrated to give a crude allylic alcohol, which was dissolved in toluene,
7 and treated with diphenylphosphoryl azide (1.1 eq) and 1,8-
8 diazabicyclo(5.4.0)undec-7-ene (DBU 1.1 eq) for 3 hours at room
9 temperature. Concentration and chromatography gave the allylic azide, which
10 was dissolved in carbon disulphide, and treated with triphenyl phosphine (1.1
11 eq). The reaction mixture was refluxed for 4 hours, then concentrated and
12 diluted with pentane. The solids formed were washed with pentane. The
13 combined pentane layers were concentrated to yield the crude isothiocyanate,
14 which was dissolved immediately in acetonitrile, and treated with
15 ethanolamine (6 mL) and catalytic amount of dimethylaminopyridine for 14
16 hours at room temperature. Concentration, followed by chromatography (50%
17 EtOAc/hexanes to 10% MeOH/EtOAc) afforded the final product.

18

19



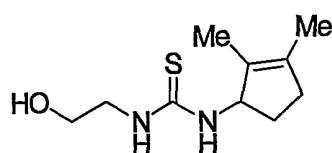
22

23 1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclopent-2-enyl)-thiourea (Compound 13)

24 The title compound was obtained (5.02 g, 40%) from the commercially
25 available 3-methyl-2,3-cyclopenten-1-one (5.00 g) according to General
26 Procedure C. Spectroscopic data: ^1H NMR (D_6DMSO , 300 MHz) δ = 7.45 (d,
27 J = 7.62 Hz, 1 H), 7.22 (br s, 1 H), 5.32 (s, 1 H), 5.12 (br s, 1 H), 4.73 (br s, 1
28 H), 3.44 (br s, 4 H), 2.35-2.04 (m, 3 H), 1.71 (s, 3 H), 1.63-1.46 (m, 1 H).

1

4


5 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclopent-2-enyl)-thiourea (Compound 14)

6 The title compound was obtained (6.21 g, 60%) from commercially
 7 available 2-methyl-2,3-cyclopenten-1-one (5.00 g) according to General
 8 Procedure C. Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ 7.50 (d, J
 9 = 8.21 Hz, 1 H), 7.28 (br s, 1 H), 5.48 (s, 1 H), 5.16 (br s, 1 H), 4.76 (br s, 1
 10 H), 3.46 (br s, 4 H), 2.36-2.07 (m, 3 H), 1.63 (s, 3 H), 1.54-1.33 (m, 1 H).

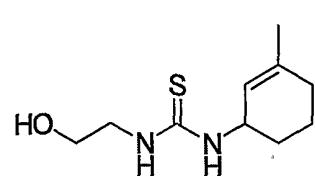
11

12

13

14

15 1-(2,3-Dimethyl-cyclopent-2-enyl)-3-(2-hydroxy-ethyl)-thiourea (Compound
 16 **15)**

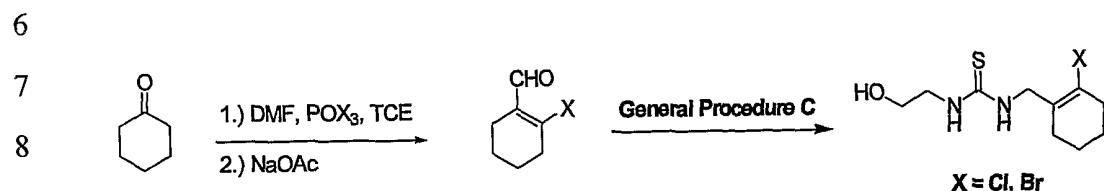

17 The title compound was obtained (2.67 g, 27%) from commercially
 18 available 2,3-dimethyl-2,3-cyclopenten-1-one (5.00 g) according to General
 19 Procedure C. Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ 7.43 (d, J
 20 = 6.74 Hz, 1 H), 7.25 (br s, 1 H), 5.17 (br s, 1 H), 4.76 (br s, 1 H), 3.46 (br s, 4
 21 H), 2.36-1.99 (m, 3 H), 1.62 (s, 3 H), 1.154 (s, 3 H), 1.47-1.22 (m, 1 H).

22

23

24

25



26 1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclohex-2-enyl)-thiourea (Compound 16)

27 The title compound was generated from commercially available 3-
 28 methylcyclohex-2-enone according to General Procedure C. Spectroscopic

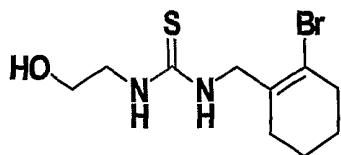
1 data: ^1H NMR (D_6 DMSO, 300 MHz) δ 1.38-1.74 (m, 6H), 1.84-1.90 (m, 2H),
 2 1.98 (s, 1H), 3.45-3.47 (m, 4H), 4.75 (s, 2H), 5.32 (s, 1H), 7.25 (s, 1H), 7.43
 3 (d, 1H, J = 7.91 Hz).

4 **General Procedure E** for the Synthesis of 1-(2-halo-cyclohex-1-enylmethyl)-
 5 3-(2-hydroxy-ethyl)-thiourea:

10

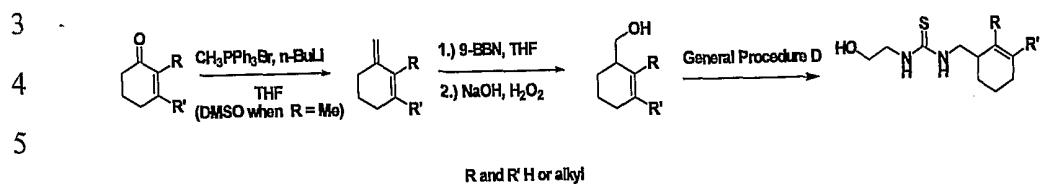
11

12 Phosphorous oxyhalide (4.9 mL, 1 eq) was added dropwise to a
 13 solution of dimethylformamide (6.3 mL, 1.4 eq) in 16 mL of trichloroethylene
 14 at 0 °C. The reaction mixture was allowed to warm to room temperature
 15 slowly, after which commercially available cyclohexanone (6 mL, 58 mmol)
 16 dissolved in 16 mL of trichloroethylene was added dropwise. The mixture
 17 was warmed to 60 °C for 3 hours. It was then cooled to 0 °C and NaOAc (40 g,
 18 8.4 eq) dissolved in 56 mL of water was added slowly. The mixture was
 19 stirred at room temperature overnight and extracted with CH_2Cl_2 . The organic
 20 layer was washed with H_2O (100 mL, 3x), brine and dried over MgSO_4 . The
 21 mixture was then concentrated on the rotary evaporator and treated once more
 22 with NaOAc (400 mg, anhydrous). The NaOAc was filtered and washed with
 23 MeOH. The filtrate was concentrated to give the crude aldehyde, which was
 24 converted to the final thiourea as described in General Procedure C.


25

1 1-(2-chloro-cyclohex-1-enylmethyl)-3-(2-hydroxy-ethyl)thiourea (Compound
2 **17)**

3 Commercially available cyclohexanone was converted to (2-
4 chlorocyclohex-1-enyl)carboxaldehyde according to General Procedure E.
5 Sodium borohydride/cerium chloride reduction of the above carboxaldehyde,
6 in accordance with the method described in General Procedure C gave the
7 intermediate (2-chlorocyclohex-1-enyl)-methanol in 46% yield, which was
8 characterized : ^1H NMR (CDCl_3 , 300 MHz) δ = 1.61-1.75 (m, 4H), 2.15 (br s,
9 1H), 2.22-2.27 (m, 2H), 2.33-2.37 (m, 2H), 4.24 (br s, 2H). The title
10 compound was obtained from (2-chloro-cyclohex-1-enyl)methanol according
11 to General Procedure C. Spectroscopic data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz)
12 δ = 1.52-1.69 (m, 4H), 2.07-2.11 (m, 2H), 2.28-2.35 (m, 2H), 3.48 (br s, 4H),
13 4.22 (br s, 2H), 4.76 (s, 1H), 7.41 (s, 1H), 7.54 (s, 1H).


14

18 1-(2-Bromo-cyclohex-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea
19 **(Compound 18)**

20 Cyclohexanone (6.0 mL, 58 mmol) and phosphorous oxybromide (5.9
21 mL, 1 eq) were treated as described in General Procedure E to give 1.57 g of
22 the intermediate (2-bromocyclohex-1-enyl)carboxaldehyde. This aldehyde
23 was converted to the title compound according to General Procedure C.
24 Spectroscopic data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ = 1.57-1.67 (m, 4H),
25 2.09-2.11 (m, 2H), 2.45-2.51 (m, 2H), 3.46-3.48 (m, 4H), 4.19 (br s, 2H), 4.77
26 (s, 1H), 7.44 (s, 1H), 7.57 (s, 1H).

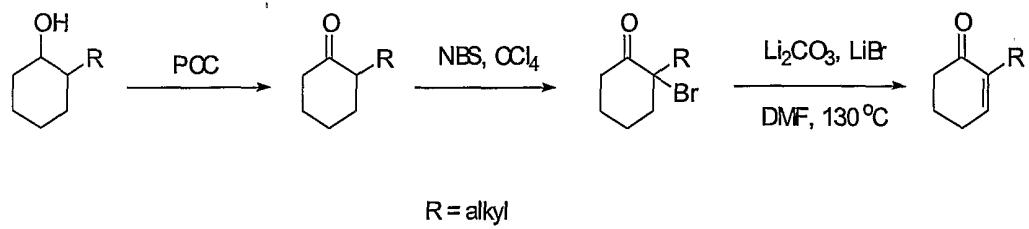
1 **General Procedure F** for the Synthesis of 1-(2-hydroxyethyl)-substituted-
 2 cyclohex-2-enylmethyl)-thioureas:

n-BuLi (1.2 eq) was added slowly to a solution of methyltriphenylphosphonium bromide (1.2 eq) in 25 mL of THF at -78°C . The resulting mixture was stirred for 30 minutes and then allowed to warm to room temperature for 1 hour. The reaction was cooled to -78°C and the respective substituted cyclohex-2-enone (1 eq, some available commercially) dissolved in 10 mL of THF was added slowly. After 30 minutes, the reaction was allowed to slowly warm to room temperature. The reaction was quenched with saturated NH_4Cl and extracted with Et_2O (20 mL 3x). The combined organic extracts were washed with H_2O (20 mL, 3x), brine and dried over MgSO_4 . The mixture was concentrated and the resulting residue purified by column chromatography using CH_2Cl_2 as eluant to give the desired diene. The diene was dissolved in THF, and 9-borabicyclo(3.3.1)nonane (9-BBN, 1 eq) was added slowly at 0°C . After 5 hours 1M NaOH was added slowly to basify the reaction mixture. 500 μL of 30% H_2O_2 was added slowly and the resulting mixture extracted with Et_2O (10 mL 3x). The combined organic extracts were washed with H_2O (5 mL, 3x), brine and dried over MgSO_4 . Purification by column chromatography using CH_2Cl_2 as eluant gave the desired substituted cyclohex-2-enylmethanol, which was then converted to the desired hydroxyethyl thiourea described in General Procedure D. Some of the commercially unavailable starting enones were prepared according to the processes disclosed below.

General Synthesis of C-3 substituted cyclohex-2-enones:

1

2


3

4

5

6 3-Ethyl-cyclohex-2-enone

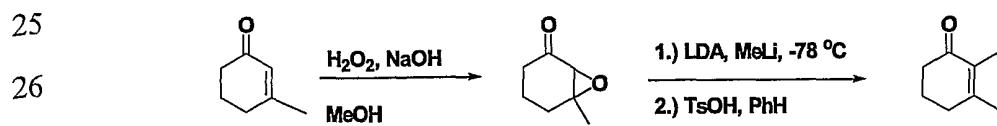
7 Ethyl magnesium chloride (8.6 mL, 1.2 eq) was added dropwise to a
 8 solution of commercially available 3-ethoxy-2-cyclohexenone (2.0 g, 14.3
 9 mmol) in 50 mL THF at 0 °C. After 30 minutes 1M HCl was added and
 10 stirring continued for 1 hour. The mixture was extracted with ether and the
 11 combined organic extracts were washed with H₂O (25 mL, 3x), brine and
 12 dried over MgSO₄. The mixture was then concentrated and the resulting
 13 residue purified by column chromatography using EtOAc/hex (2:1) as eluant
 14 to give a quantitative yield of the title enone. Spectroscopic data: ¹H NMR
 15 (CDCl₃, 300 MHz) δ = 1.11 (t, 3H, J = 7.20 Hz), 1.95-2.04 (m, 2H), 2.21-2.38
 16 (m, 6H), 5.87 (s, 1H).

17 **General Synthesis of C-2 substituted cyclohex-2-enones:**18 2-Ethyl-cyclohexanone

19 Celite (25 g) and pyridinium chlorochromate (PCC, 25 g, 1.5 eq, 0.12
 20 moles) were added consecutively to a solution of commercially available 2-
 21 ethylcyclohexanol (10 g, 78 mmol) in 300 mL CH₂Cl₂. The resulting reaction
 22 mixture was stirred at room temperature for 1 hour after which it was filtered
 23 and concentrated on the rotary evaporator. The residue was purified by
 24 column chromatography using EtOAc/hex (1:2) as eluant to give 7.57 g (77%)

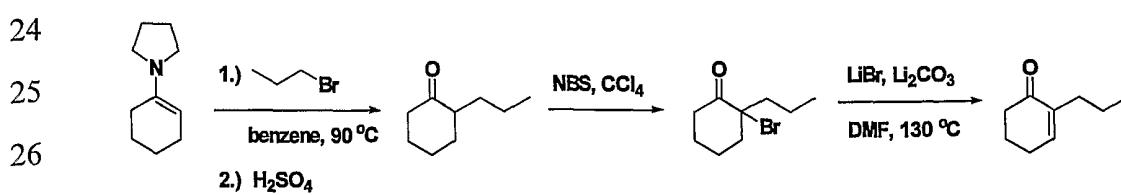
1 of the title ketone. Spectroscopic data: ^1H NMR (CDCl₃, 300 MHz) δ = 0.89
 2 (t, 3H, J = 7.47 Hz), 1.18-1.45 (m, 2H), 1.63-1.89 (m, 4H), 1.99-2.42 (m, 5H).

3 2-Methyl-cyclohex-2-enone


4 Commercially available 2-methylcyclohexanone (10g, 89 mmol) and
 5 N-bromo succinimid (NBS 15.87 g, 1 eq) were refluxed in 200 mL of CCl₄ for
 6 overnight. The resulting reaction mixture was filtered through celite and
 7 concentrated on the rotary evaporator. The residue was dissolved in DMF
 8 (100 mL). Li₂CO₃ (10g, 135 mmol) and LiBr (12.13 g, 140 mole) were
 9 added. The resulting mixture was then heated to 130 °C for 3 hours. After
 10 cooling to room temperature the reaction was extracted with Et₂O (100 mL
 11 3x). The combined organic extracts were washed with H₂O (50 mL, 3x), brine
 12 and dried over MgSO₄. The mixture was concentrated on the rotary
 13 evaporator and the resulting residue was purified by column chromatography
 14 using EtOAc/hex (1:3) as eluant to give 3.77 g (74%) of the title compound.
 15 Spectroscopic data: ^1H NMR (CDCl₃, 300 MHz) δ = 1.76-1.79 (m, 3H), 1.95-
 16 2.03 (m, 2H), 2.30-2.36 (m, 2H), 2.40-2.45 (m, 2H), 6.73-6.77 (m, 1H).

17 2-Ethyl-cyclohex-2-enone

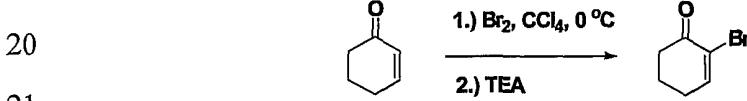
18 Following the procedure utilized for the preparation of 2-methyl-
 19 cyclohex-2-enone 6.6 g (89% yield) of the title compound was obtained from
 20 2-ethylcyclohexanone (7.57 g, 60mmole). Spectroscopic data: ^1H NMR
 21 (CDCl₃, 300 MHz) δ = 1.01 (t, 3H, J = 7.48 Hz), 1.94-2.02 (m, 2H), 2.17-2.25
 22 (m, 2H), 2.32-2.45 (m, 4H), 6.70-6.72 (m, 1H).


23 Synthesis of 2,3-dimethyl-cyclohex-2-enone

24

1 90.78 mmol) in MeOH was cooled to 0 °C. H₂O₂ (27.8 mL, 3 eq) was added
 2 dropwise followed by NaOH (635 µL, 0.035 eq). The resulting mixture was
 3 stirred for 2.5 hours and then quenched with cold saturated NaCl. Extraction
 4 with CH₂Cl₂ followed by concentration and purification by column
 5 chromatography using EtOAc/hex (1:3) gave 7.67 g (67% yield) of the desired
 6 keto epoxide. Spectroscopic data: ¹H NMR (CDCl₃, 300 MHz) δ = 1.46 (s,
 7 3H), 1.62-1.69 (m, 1H), 1.83-2.16 (m, 4H), 2.45-2.53 (m, 1H), 3.07 (s, 1H).
 8 A solution of this keto epoxide (8.91 g, 70 mmol) in 71 mL THF was added to
 9 a solution of lithium diisopropylamine (LDA 56.5 mL, 1.2 eq) in 85 mL of
 10 THF at -78 °C. The reaction mixture was stirred for 30 minutes, and MeLi
 11 (121 mL, 2.4 eq) was added slowly. The temperature was brought up to -23
 12 °C and the reaction was stirred for 2 hours. The reaction was quenched with
 13 saturated NH₄Cl and the resulting solution was extracted with EtOAc. The
 14 combined organic extracts were washed with water, brine, and dried over
 15 MgSO₄. Concentration followed by column chromatography afforded the
 16 alcohol intermediate, which was dissolved in benzene and refluxed with
 17 toluenesulfonic (2.2 g, 11.6 mmol) for 15 minutes. The reaction was diluted
 18 with EtOAc, washed with water, brine, and dried over MgSO₄. Concentration
 19 followed by column chromatography using EtOAc/hex (1:4) as eluant gave
 20 1.17 g (13.5 %) of the title compound. Spectroscopic data: ¹H NMR (CDCl₃,
 21 300 MHz) δ = 1.77 (br s, 3H), 1.89-1.99 (m, 5H), 2.32-2.40 (m, 4H).

22 Synthesis of 2-propylcyclohex-2-enone

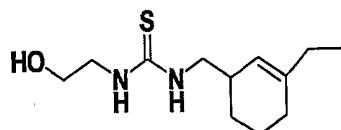


1 90 °C for overnight. Another 4 eq of propyl bromide (36 mL) was added and
2 refluxing was continued for overnight. The reaction mixture was cooled to
3 room temperature. 30 mL of water was added, and the resulting solution
4 refluxed for 1 hour. After cooling to room temperature, 30 mL of 1M H₂SO₄
5 was added and the solution stirred for 10 minutes. The mixture was extracted
6 with ether, and the combined organic extracts were washed with NaHCO₃,
7 H₂O, brine, and dried over MgSO₄. Purification by column chromatography
8 using EtOAc/hex (1:3) as eluant afforded 2.12 g (15.3%) of 2-
9 propylcyclohexanone. Spectroscopic data: ¹H NMR (CDCl₃, 300 MHz) δ =
10 0.90 (t, 3H, *J* = 7.035 Hz), 1.14-1.45 (m, 5H), 1.63-1.88 (m, 4H), 1.99-2.14
11 (m, 2H), 2.23-2.42 (m, 2H).
12 2-propylcyclohexanone was converted to the title compound (1.16 g, 55%
13 yield) following the general procedure described above for the synthesis of 2-
14 substituted cyclohex-2-enones. Spectroscopic data: ¹H NMR (CDCl₃, 300
15 MHz) δ = 0.89 (t, 3H, *J* = 7.325 Hz), 1.35-1.45 (m, 3H), 1.93-2.02 (m, 2H),
16 2.13-2.18 (m, 2H), 2.32-2.38 (m, 3H), 6.70 (t, 1H, *J* = 4.25 Hz).

17 Synthesis of 2-bromocyclohex-2-enone

18

19



22 A solution of Br₂ in CCl₄ (2.7 mL, 101 eq) was added slowly to a
23 solution of commercially available cyclohex-2-enone (5 g, 52 mmol) in CCl₄
24 cooled to 0 °C. The reaction was stirred for 20 minutes, after which a solution
25 of triethylamine (TEA 13 mL, 1.8 eq) in CCl₄ (5mL) was added slowly.
26 Stirring was continued for 2 hours. The resulting mixture was diluted with
27 CH₂Cl₂, washed with H₂O, brine, and dried over MgSO₄. Purification by
28 column chromatography using CH₂Cl₂/hex (1:4) as eluant afforded 6.75 g

1 (74.2%) of the title compound. Spectroscopic data: ^1H NMR (CDCl₃, 300
 2 MHz) δ = 2.04-2.13 (m, 2H), 2.44-2.49 (m, 2H), 2.62-2.66 (m, 2H), 7.43 (t, *J*
 3 = 4.55 Hz, 1H).

4

5

6

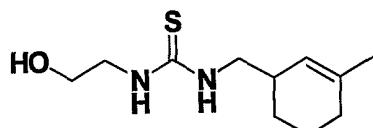
7

8 1-(2-Hydroxy-ethyl)-3-(3-ethyl-cyclohex-2-enylmethyl)-thiourea (Compound
 9 **19)**

10 The title compound was made from 3-ethylcyclohex-2-enone (prepared
 11 previously) according to General Procedure F. The intermediates 3-
 12 methylene-1-ethyl-cyclohexene, (3-ethyl-cyclohex-2-enyl)-methanol, 3-
 13 azidomethyl-1-ethyl-cyclohexene and the isothiocyanate 1-ethyl-3-
 14 isothiocyanatomethyl-cyclohexene were isolated and characterized as follows:

15 3-Methylene-1-ethyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl₃, 300
 16 MHz) δ = 1.04 (t, 3H, *J* = 7.47 Hz), 1.64-1.74 (m, 2H), 1.99-2.10 (m, 4H),
 17 2.26-2.31 (m, 2H), 4.665 (d, 2H, *J* = 8.79 Hz), 5.93 (s, 1H).

18 (3-Ethyl-cyclohex-2-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl₃,
 19 300 MHz) δ = 0.99 (t, 3H, *J* = 7.565 Hz), 1.50-1.60 (m, 2H), 1.71-1.77 (m,
 20 2H), 1.92-1.99 (m, 5H), 2.28 (br s, 1H), 3.505 (d, 2H, *J* = 6.35 Hz), 5.28 (br s,
 21 1H).


22 3-Azidomethyl-1-ethyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl₃,
 23 300 MHz) δ = 0.99 (t, 3H, *J* = 7.475 Hz), 1.50-1.59 (m, 2H), 1.70-1.79 (m,
 24 2H), 1.91-2.00 (m, 4H), 2.35 (br s, 1H), 3.175 (d, 2H, *J* = 6.4 Hz), 5.26 (br s,
 25 1H).

26 1-Ethyl-3-isothiocyanatomethyl-cyclohexene: Spectroscopic data: ^1H NMR
 27 (CDCl₃, 300 MHz) δ = 1.00 (t, 3H, *J* = 7.325 Hz), 1.71-1.84 (m, 3H), 1.93-
 28 2.02 (m, 5H), 2.48 (br s, 1H), 3.385 (d, 2H, *J* = 6.45 Hz), 5.22 (br s, 1H).

1 1-(3-Ethyl-cyclohex-2-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea: Spectroscopic
 2 data: ^1H NMR (D_6 DMSO, 300 MHz) δ = 0.093 (t, 3H, J = 7.5 Hz), 1.17 (t, 2H,
 3 J = 7.5 Hz), 1.38-1.47 (m, 1H), 1.61-1.71 (m, 2H), 1.86-1.93 (m, 3H), 2.29 (br
 4 s, 1H), 3.33 (br s, 2H), 3.43-3.47 (m, 4H), 4.75 (br s, 1H), 5.25 (br s, 1H), 7.37
 5 (br s, 1H), 7.54 (br s, 1H).

6

7

8

9

10 1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclohex-2-enylmethyl)-thiourea
 11 **(Compound 20)**

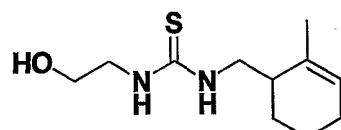
12 The title compound was made from commercially available 3-
 13 methylcyclohex-2-enone according to General Procedure F. The intermediates
 14 3-methylene-1-methyl-cyclohexene, (3-methyl-cyclohex-2-enyl)-methanol,
 15 methanesulfonic acid 3-methyl-cyclohex-2-enylmethyl ester, 3-azidomethyl-1-
 16 methyl-cyclohexene and the isothiocyanate 1-methyl-3-isothiocyanatomethyl-
 17 cyclohexene were isolated and characterized as follows:

18 1-Methyl-3-methylene-cyclohexene: Spectroscopic data: ^1H NMR (CDCl_3 ,
 19 300 MHz) δ = 1.66-1.75 (m, 5H), 2.00-2.04 (m, 2H), 2.25-2.30 (m, 2H), 4.64
 20 (d, 2H), 5.93 (s, 1H).

21 (3-Ethyl-cyclohex-2-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl_3 ,
 22 300 MHz) δ = 1.26-1.90 (m, 10 H), 2.26 (br s, 1H), 3.50 (d, 2H, J = 6.0 Hz),
 23 5.30 (br s, 1H).

24 Methanesulfonic acid 3-ethyl-cyclohex-2-enylmethyl ester: Spectroscopic
 25 data: ^1H NMR (CDCl_3 , 300 MHz) δ = 1.28-1.92 (m, 9H), 2.51 (br s, 1H), 3.01
 26 (s, 3H), 4.045 (d, 2H, J = 9.0 Hz), 5.25 (br s, 1H).

27 3-Azidomethyl-1-ethyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl_3 ,
 28 300 MHz) δ = 1.27-1.83 (m, 7H), 1.97 (br s, 2H), 2.39 (br s, 1H), 3.22-3.24


1 (m, 2H), 5.32 (br s, 1H).

2 1-Ethyl-3-isothiocyanatomethyl-cyclohexene: Spectroscopic data: ^1H NMR
 3 (CDCl₃, 300 MHz) δ = 1.25-1.36 (m, 2H), 1.49-1.85 (m, 5H), 1.90-1.96 (m,
 4 2H), 2.46 (br s, 1H), 3.38 (d, 2H, J = 6.44 Hz), 5.23 (br s, 1H).

5 1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclohex-2-enylmethyl)-thiourea:
 6 Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ = 1.12-1.18 (m, 1H),
 7 1.40-1.46 (m, 1H), 1.62-1.71 (m, 5H), 1.81-1.90 (m, 2H), 2.28 (br s, 1H), 3.26-
 8 3.32 (m, 2H), 3.42-3.47 (m, 4H), 4.76 (br s, 1H), 5.26 (br s, 1H), 7.37 (br s,
 9 1H), 7.53 (br s, 1H).

10

11

14

15 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-2-enylmethyl)-thiourea

16 **(Compound 21)**

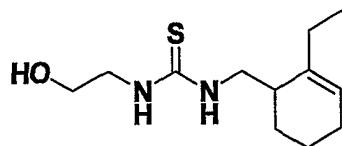
17 The title compound was prepared from 2-methylcyclohex-2-enone
 18 (prepared previously) according to the General Procedure F. The
 19 intermediates (2-methyl-cyclohex-2-enyl)-methanol, methanesulfonic acid 2-
 20 methyl -cyclohex-2-enylmethyl ester, 2-azidomethyl-1-methyl-cyclohexene
 21 and the isothiocyanate 1-methyl-2-isothiocyanatomethyl-cyclohexene were
 22 isolated and characterized as follows:

23 (2-Methyl-cyclohex-2-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl₃,
 24 300 MHz) δ = 1.39-1.98 (m, 10H), 2.16 (br s, 1H), 3.64-3.73 (m, 2H), 5.57
 25 (br s, 1H).

26 Methanesulfonic acid 2-methyl -cyclohex-2-enylmethyl ester: Spectroscopic
 27 data: ^1H NMR (CDCl₃, 300 MHz) δ = 1.55-1.75 (m, 7H), 1.97-2.02 (m, 2H),
 28 2.39 (br s, 1H), 3.02 (s, 3H), 4.11-4.31 (m, 2H), 5.58 (br s, 1H).

1 2-Azidomethyl-1-methyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl₃,
2 300 MHz) δ = 1.49-1.72 (m, 7H), 1.94-2.01 (m, 2H), 2.20 (br s, 1H), 3.22-3.29
3 (m, 1H), 3.43-3.48 (m, 1H), 5.53-5.55 (m, 1H).

4 1-Methyl-2-isothiocyanatomethyl-cyclohexene: Spectroscopic data: ^1H NMR
5 (CDCl₃, 300 MHz) δ = 1.50-1.80 (m, 7H), 1.96-2.02 (m, 2H), 2.33 (br s, 1H),
6 3.54-3.58 (m, 2H), 5.56-5.61 (m, 1H).


7 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-2-enylmethyl)-thiourea:

8 Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ = 1.41-1.62 (m, 4H),
9 1.67 (s, 3H), 1.92 (br s, 2H), 2.19 (br s, 1H), 3.20 (br s, 1H), 3.47 (br s, 4H),
10 3.70 (br s, 1H), 4.79 (s, 1H), 5.44 (s, 1H), 7.41 (s, 1H), 7.48 (s, 1H).

11

12

13

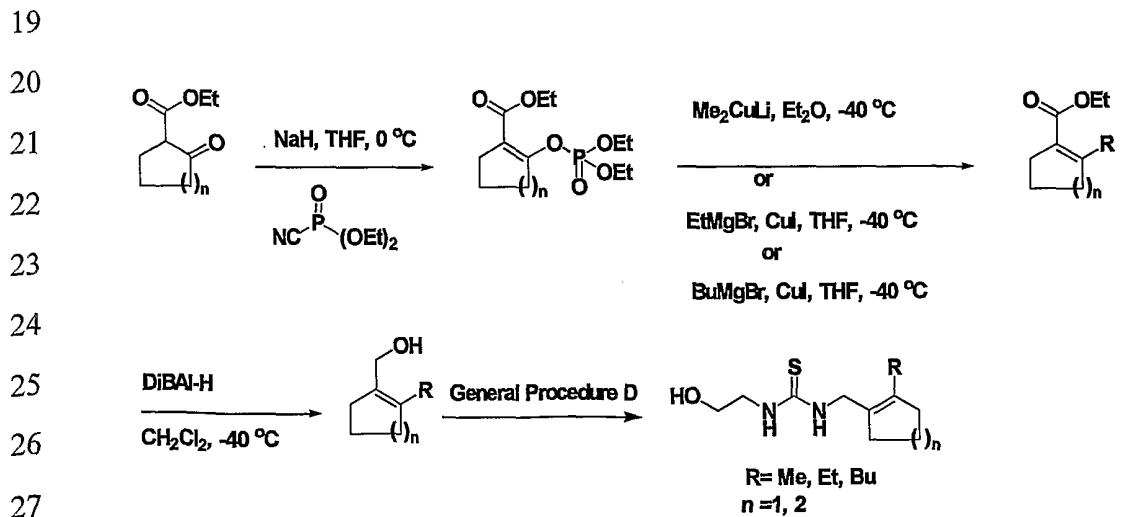
14

15 1-(2-Hydroxy-ethyl)-3-(2-ethyl-cyclohex-2-enylmethyl)-thiourea (Compound
16 22)

17 The title compound was generated from 2-ethylcyclohex-2-enone
18 (prepared previously) according to General Procedure F. The intermediates 1-
19 methyl-3-methylene-cyclohexene, (2-ethyl-cyclohex-2-enyl)-methanol,
20 methanesulfonic acid 2-ethyl -cyclohex-2-enylmethyl ester, 2-azidomethyl-1-
21 ethyl-cyclohexene and the isothiocyanate 1-ethyl-2-isothiocyanatomethyl-
22 cyclohexene were isolated and characterized as follows:

23 1-Ethyl-3-methylene-cyclohexene: Spectroscopic data: ^1H NMR (CDCl₃, 300
24 MHz) δ = 1.06 (t, 3H, *J* = 7.33 Hz), 1.62-1.72 (m, 2H), 2.12-2.25 (m, 4H),
25 2.32-2.37 (m, 2H), 4.74 (s, 1H), 4.91 (s, 1H), 5.67 (br s, 1H).

26 (2-Ethyl-cyclohex-2-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl₃,
27 300 MHz) δ = 1.01 (t, 3H, *J* = 7.33 Hz), 1.50-1.70 (m, 5H), 1.97-2.06 (m, 4H),
28 2.25 (br s, 1H), 3.62-3.67 (m, 2H), 5.56 (br s, 1H).

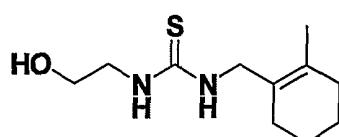

1 Methanesulfonic acid 2-ethyl -cyclohex-2-enylmethyl ester: Spectroscopic
 2 data: ^1H NMR (CDCl_3 , 300 MHz) δ = 1.02 (t, 3H, J = 7.33 Hz), 1.56-1.81 (m,
 3 4H), 1.99-2.06 (m, 4H), 2.49 (br s, 1H), 3.02 (s, 3H), 4.09-4.15 (m, 1H), 4.25-
 4 4.30 (m, 1H), 5.58 (br s, 1H).

5 2-Azidomethyl-1-ethyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl_3 ,
 6 300 MHz) δ = 1.01 (t, 3H, J = 7.33 Hz), 1.52-1.74 (m, 4H), 1.97-2.03 (m, 4H),
 7 2.28 (br s, 1H), 3.19-3.26 (m, 1H), 3.41-3.46 (m, 1H), 5.53-5.54 (m, 1H).

8 1-Ethyl-2-isothiocyanatomethyl-cyclohexene: Spectroscopic data: ^1H NMR
 9 (CDCl_3 , 300 MHz) δ = 1.01 (t, 3H, J = 7.475 Hz), 1.51-1.65 (m, 2H), 1.70-
 10 1.77 (m, 2H), 1.92-2.05 (m, 4H), 2.39-2.43 (m, 1H), 3.51-3.56 (m, 2H), 5.57-
 11 5.60 (m, 1H).

12 1-(2-Hydroxy-ethyl)-3-(2-ethyl-cyclohex-2-enylmethyl)-thiourea:
 13 Spectroscopic data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ = 0.98 (t, 3H, J = 7.33
 14 Hz), 1.43-1.61 (m, 4H), 1.94-2.06 (m, 4H), 2.30 (s, 1H), 3.09-3.19 (m, 1H),
 15 3.47 (br s, 4H), 3.72 (br s, 1H), 4.78 (s, 1H), 5.44 (s, 1H), 7.39 (s, 1H), 7.51
 16 (s, 1H).

17 **General Procedure G** for the synthesis of 1-(2-Hydroxy-ethyl)-3-(2-alkyl-
 18 cycloalk-1-enylmethyl)-thiourea:



30 A solution of NaH (2 eq) in 30 mL THF was cooled to 0 °C. Commercially
 31 available ethyl-2-cyclohexanonecarboxylate dissolved in 10 mL THF was

1 added slowly and the resulting mixture was stirred for 45 minutes. Diethyl
2 cyanophosphonate (1.01 eq) was added, and after 1 hour the reaction was
3 quenched with water. The mixture was extracted with EtOAc (3x 100 mL) and
4 the combined organic extracts were washed with H₂O (25 mL, 3x) and brine
5 and dried over MgSO₄. The mixture was concentrated on the rotary evaporator
6 to give the virtually pure phosphono ester derivative shown in the scheme
7 above. In another reaction vessel, MeLi (2-3 eq) was added dropwise to a
8 suspension of CuI (1 eq) in ether (60 mL) at 0 °C. The resulting solution was
9 immediately cooled to -40 °C, and the phosphono ester prepared previously (1
10 eq) in 20 mL of ether was added. The reaction was stirred for 2 hours at -40
11 °C, after which it was allowed to slowly warm to room temperature. Saturated
12 NH₄Cl containing 10% NH₄OH was added to quench the reaction. Filtration
13 followed by concentration of the filtrate gave a residue which was purified by
14 column chromatography to give the desired unsaturated ester. Di-iso-butyl
15 aluminum hydride (DiBALH-H 2 eq) was added to a solution of the
16 unsaturated ester in CH₂Cl₂ cooled to -40 °C. The resulting reaction mixture
17 was stirred for 2.5 hours and then allowed to slowly come to room
18 temperature. The reaction was quenched with water, filtered through celite
19 and the filtrate concentrated. The residue was purified by column
20 chromatography using EtOAc/hex (1:3) as eluant, to give the desired alcohol,
21 which was converted to the final thiourea using in accordance with General
22 Procedure D.

23

24

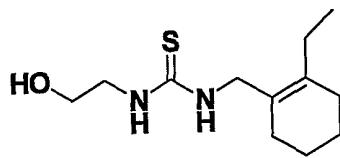
25

26

27 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-1-enylmethyl)-thiourea

28 **(Compound 23)**

1 The title compound was prepared from commercially available ethyl 2-
2 oxocyclohexanecarboxylate according to General Procedure G. The
3 intermediates 2-(diethoxy-phosphoryloxy)-cyclohex-1-enecarboxylic acid
4 ethyl ester, 2-methyl-cyclohex-1-enecarboxylic acid ethyl ester, (2-methyl-
5 cyclohex-1-enyl)-methanol, methanesulfonic acid 2-methyl-cyclohex-1-
6 enylmethyl ester, 1-azidomethyl-2-methyl-cyclohexene and the isothiocyanate
7 1-isothiocyanatomethyl-2-methyl-cyclohexene were isolated and characterized
8 as follows:


9 2-(Diethoxy-phosphoryloxy)-cyclohex-1-enecarboxylic acid ethyl ester:
10 Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ = 1.26-1.38 (m, 9H), 1.59-
11 1.76 (m, 4H), 2.33-2.39 (m, 2H), 2.43-2.49 (m, 2H), 4.13-4.25 (m, 6H).
12 2-Methyl-cyclohex-1-enecarboxylic acid ethyl ester: Spectroscopic data: ^1H
13 NMR (CDCl_3 , 300 MHz) δ = 1.29 (t, 3H, J = 7.18 Hz), 1.58-1.62 (m, 4H), 1.98
14 (s, 3H), 2.11(br s, 2H), 2.26 (br s, 2H), 4.11-4.22 (m, 2H).
15 (2-Methyl-cyclohex-1-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl_3 ,
16 300 MHz) δ = 1.57-1.69 (m, 8H), 1.96 (br s, 2H), 2.10 (br s, 2H), 4.10 (s, 2H).
17 Methanesulfonic acid 2-methyl-cyclohex-1-enylmethyl ester: Spectroscopic
18 data: ^1H NMR (CDCl_3 , 300 MHz) δ = 1.55-1.64 (m, 4H), 1.73 (s, 3H), 2.00 (br
19 s, 2H), 2.12 (br s, 2H), 4.09 (s, 2H).
20 1-Azidomethyl-2-methyl-cyclohexene: Spectroscopic data: ^1H NMR (CDCl_3 ,
21 300 MHz) δ = 1.57-1.65 (m, 4H), 1.71 (s, 3H), 2.02-2.04 (m, 4H), 3.77 (s,
22 2H).
23 1-Isothiocyanatomethyl-2-methyl-cyclohexene: Spectroscopic data: ^1H NMR
24 (CDCl_3 , 300 MHz) δ = 1.55-1.68 (m, 7H), 1.98-2.07 (m, 4H), 4.08 (s, 2H).
25 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-1-enylmethyl)-thiourea:
26 Spectroscopic data: ^1H NMR (D_6DMSO , 300 MHz) δ = 1.51 (br s, 4H), 1.64
27 (s, 3H), 1.91-1.98 (m, 4H), 3.45-3.47 (m, 4H), 3.98 (br s, 2H), 4.76 (s, 1H),
28 7.28 (s, 1H), 7.36 (s, 1H).

1

2

3

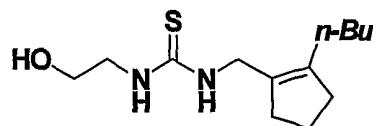
4

5

6 1-(2-Hydroxy-ethyl)-3-(2-ethyl-cyclohex-1-enylmethyl)-thiourea (Compound
 7 **24)**

8 The title compound was prepared from commercially available ethyl 2-
 9 oxocyclohexanecarboxylate according to the General Procedure G. The
 10 intermediates 2-ethyl-cyclohex-1-enecarboxylic acid ethyl ester and (2-ethyl-
 11 cyclohex-1-enyl)-methanol, were isolated and characterized as follows:

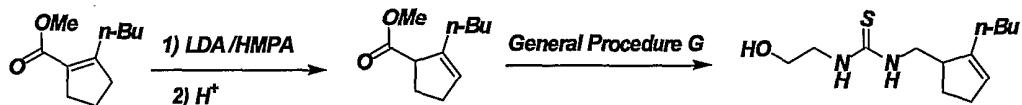
12 2-Ethyl-cyclohex-1-enecarboxylic acid ethyl ester: Spectroscopic data: ^1H
 13 NMR (CDCl_3 , 300 MHz) δ = 0.97-1.07 (m, 2H), 1.22-1.32 (m, 3H), 1.58-1.68
 14 (m, 4H), 2.12-2.36 (m, 7H), 4.09-4.21 (m, 2H).


15 (2-Ethyl-cyclohex-1-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl_3 ,
 16 300 MHz) δ = 0.97 (t, 3H, J = 7.47 Hz), 1.58-1.68 (m, 5H), 2.00-2.11 (m, 5H),
 17 4.09 (m, 2H).

18 1-(2-Hydroxy-ethyl)-3-(2-ethyl-cyclohex-1-enylmethyl)-thiourea:
 19 Spectroscopic data: ^1H NMR (D_6 , DMSO , 300 MHz) δ = 0.93 (t, 3H, J = 7.61
 20 Hz), 1.51-1.53 (m, 4H), 1.95-2.06 (m, 6H), 3.46 (br s, 4H), 3.99 (br s, 2H),
 21 4.74 (s, 1H), 7.34 (br s, 2H).

22

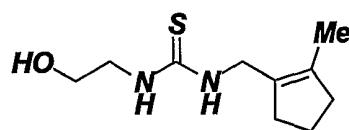
23


24

25

26 1-(2-Butyl-cyclopent-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea
 27 **(Compound 25)**

1 The title compound was prepared from commercially available methyl
 2 2-oxocyclopentanecarboxylate according to General Procedure G. The
 3 intermediates 2-butyl-cyclopent-1-enecarboxylic acid methyl ester and 1-
 4 azidomethyl-2-butyl-cyclopentene were isolated and characterized as follows:
 5 2-Butyl-cyclopent-1-enecarboxylic acid methyl ester: 10 g of the
 6 corresponding phosphono ester gave 2.59 g (40%) of the title compound.
 7 Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ 3.71 (s, 3 H), 2.68-2.57
 8 (m, 4 H), 2.49 (t, J = 7.03 Hz, 2 H), 1.88-1.73 (m, 2 H), 1.49-1.25 (m, 4 H),
 9 0.92 (t, J = 7.33 Hz, 3 H).
 10 1-Azidomethyl-2-butyl-cyclopentene: Spectroscopic data: ^1H NMR (CDCl_3 ,
 11 300MHz) δ 3.83 (s, 2 H), 2.46-2.36 (m, 4 H), 2.12 (t, J = 7.03 Hz, 2 H), 1.90-
 12 1.80 (m, 2 H), 1.43-1.24 (m, 4 H), 0.91 (t, J = 7.33 Hz, 3 H).
 13 1-(2-Butyl-cyclopent-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea: 0.43 g of
 14 the title compound was obtained, 35% based on the isolated intermediate (2-
 15 butyl-cyclopent-1-enyl)-methanol. Spectroscopic data: ^1H NMR (CDCl_3 , 300
 16 MHz) δ 7.39 (br s, 1 H), 7.33 (br s, 1 H), 4.78 (br s, 1 H), 4.06 (br s, 2 H), 3.46
 17 (br s, 4 H), 2.29 (br s, 4 H), 2.09 (t, J = 7.03 Hz, 2 H), 1.72 (quintet, J = 7.03
 18 Hz, 2 H), 1.38-1.17 (m, 4 H), 0.87 (t, J = 7.33 Hz, 3 H).
 19


20
 21
 22 1-(2-Butyl-cyclopent-2-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea
 23 (**Compound 26**)
 24 n-BuLi (1.5 eq) was added to diisopropylamine (1.8 eq) and
 25 hexamethylphosphoramide (HMPA 5 mL) in THF (20 mL) at 0 °C. After 10
 26 minutes, the reaction mixture was cooled to -78 °C, and 2-butyl-cyclopent-1-

1 enecarboxylic acid methyl ester (prepared as described in Genereal Procedure
2 G) was added. The resulting reaction mixture was stirred at -78 °C for 60
3 minutes and then quenched with dilute HCl (2N, 20 mL). The mixture was
4 extracted with ether and the combined ether layers were washed with water,
5 brine, then concentrated. The resulting crude ester was converted to the final
6 thiourea in accordance with General Procedure G.

7 1-(2-Butyl-cyclopent-2-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea: 0.74 g of
8 the title compound was obtained, 60% based on the isolated intermediate (2-
9 butyl-cyclopent-2-enyl)-methanol. Spectroscopic data: ^1H NMR (CDCl₃, 300
10 MHz) δ 7.42 (br s, 1 H), 7.33 (br s, 1 H), 5.38 (br s, 1 H), 3.50-3.35 (m, 4 H),
11 3.10 (br s, 1 H), 2.72 (br s, 1 H), 2.31-1.85 (m, 4 H), 1.80-1.50 (m, 1 H), 1.48-
12 1.20 (m, 3 H), 0.88 (t, J = 7.33 Hz, 3 H).

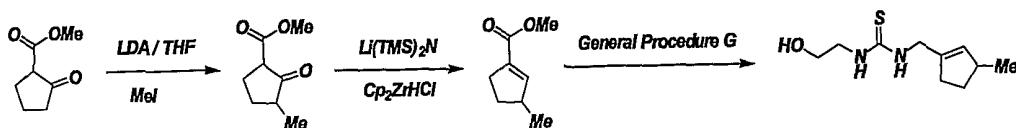
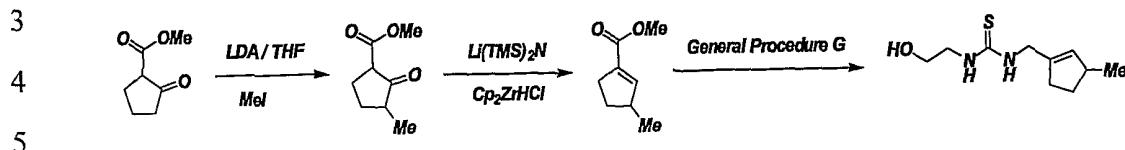
13

14

15

16 1-(2-Methyl-cyclopent-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea

17 **(Compound 27)**



18 The title compound was prepared from methyl 2-
19 oxocyclopentanecarboxylate according to General Procedure G. The
20 intermediate (2-methyl-cyclopent-1-enyl)-methanol was isolated and
21 characterized as follows:

22 (2-Methyl-cyclopent-1-enyl)-methanol: Spectroscopic data: ^1H NMR (CDCl₃,
23 300 MHz) δ 4.19 (s, 2 H), 2.45 (t, J = 6.45 Hz, 2 H), 2.33 (t, J = 7.03 Hz, 2
24 H), 1.81 (quintet, J = 7.62 Hz, 2 H), 1.69 (s, 3 H).

25 1-(2-Methyl-cyclopent-1-enylmethyl)-3-(2-hydroxy-ethyl)-thiourea:

26 Spectroscopic data: ^1H NMR (CDCl₃, 300 MHz) δ 6.47 (br s, 1 H), 4.03 (br s,

1 2 H), 3.85-3.78 (m, 4 H), 3.68 (br s, 1 H), 2.42-2.29 (m, 3 H), 2.18 (s, 3 H),
 2 1.91-1.72 (m, 4 H).

1 3-Methyl-cyclopent-1-enecarboxylic acid methyl ester: Spectroscopic data: ^1H
 2 NMR (CDCl_3 , 300 MHz) δ 6.66 (br s, 1 H), 3.74 (s, 3 H), 2.98-2.80 (m, 1 H),
 3 2.68-2.45 (m, 2 H), 2.25-2.11 (m, 1 H), 1.54-1.42 (m, 1 H), 1.09 (d, $J = 7.03$
 4 Hz, 3 H).

5 1-Azidomethyl-3-methyl-cyclopentene: Spectroscopic data: ^1H NMR (CDCl_3 ,
 6 300 MHz) δ 5.60 (br s, 1 H), 3.81 (s, 2 H), 2.87-2.73 (m, 1 H), 2.43-2.28 (m, 2
 7 H), 2.24-2.11 (m, 1 H), 1.51-1.39 (m, 1 H), 1.03 (d, $J = 7.03$ Hz, 3 H).

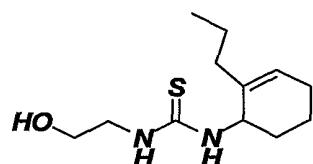
8 1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclopent-1-enylmethyl)-thiourea: 1.12 g
 9 (52%) of the title compound was obtained. The yield was based on
 10 intermediate 3-methyl-cyclopent-1-enecarboxylic acid methyl ester.
 11 Spectroscopic data: ^1H NMR (D_6DMSO , 300 MHz) δ 7.57 (br s, 1 H), 7.43
 12 (br s, 1 H), 5.40 (br s, 1 H), 4.79 (br s, 1 H), 4.06 (br s, 2 H), 3.49-3.37 (m, 4
 13 H), 2.71-2.69 (m, 1 H), 2.35-2.02 (m, 4 H), 0.97 (d, $J = 6.74$ Hz, 3 H).

14

17

18 **1-(2-Bromo-cyclohex-2-enyl)-3-(2-Hydroxy-ethyl)- thiourea (Compound 29)**

19 The title compound was prepared from 2-bromocyclohex-2-enone
 20 (prepared previously) according to General Procedure C. The intermediates 2-
 21 bromo-cyclohex-2-enol, 6-azido-1-bromo-cyclohexene, and the isothiocyanate
 22 1-bromo-6-isothiocyanato-cyclohexene were isolated and characterized as
 23 follows:


24 2-Bromo-cyclohex-2-enol: The crude allylic alcohol was chromatographed
 25 using EtOAc/hex (1:3) as eluant to afford 6.34 g (93%) of pure 2-
 26 bromocyclohex-2-enol. Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ
 27 1.57-1.81 (m, 2H), 1.90-2.21 (m, 4H), 2.40 (br s, 1H), 4.19-4.23 (m, 1H), 6.20
 28 (t, 1H, $J = 4.11$ Hz).

1 6-Azido-1-bromo-cyclohexene: The crude azide was chromatographed to
2 afford 5.36 g of pure 6-azido-1-bromocyclohexene (74% yield).
3 Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ 1.66-1.73 (m, 2H), 1.94-
4 2.21 (m, 4H), 3.99-4.02 (m, 1H), 6.33 (t, 1H, J = 4.1 Hz).
5 1-Bromo-6-isothiocyanato-cyclohexene: 5.10 g (88% yield). Spectroscopic
6 data: ^1H NMR (CDCl_3 , 300 MHz) δ 1.69-1.78 (m, 2H), 1.90-2.20 (m, 4H),
7 4.33-4.37 (m, 1H), 6.27-6.30 (m, 1H).
8 1-(2-Bromo-cyclohex-2-enyl)-3-(2-hydroxy-ethyl)thiourea: Spectroscopic
9 data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ 1.47-1.63 (m, 2H), 1.78-1.81 (m, 2H),
10 1.98-2.15 (m, 2H), 3.48 (br s, 4H), 4.78 (s, 1H), 4.98 (s, 1H), 6.25 (t, 1H, J =
11 3.665 Hz), 7.38 (s, 1H), 7.825 (d, 1H, J = 8.79 Hz).

12

13

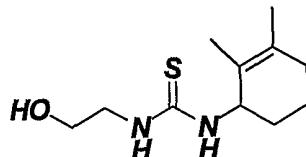
14

15

16

17 1-(2-Hydroxy-ethyl)-3-(2-propyl-cyclohex-2-enyl)- thiourea (Compound 30)

18 The title compound was prepared from 2-propylcyclohex-2-enone
19 (prepared previously) according to General Procedure C. The intermediate 2-
20 propylcyclohex-2-enol was isolated and characterized as follows:

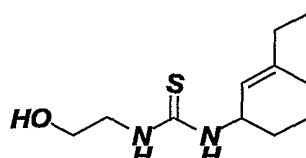

21 2-propylcyclohex-2-enol: Following General Procedure C, 1.16 g (8.39
22 mmol) of the starting 2-propylcyclohex-2-enone afforded 840 mg (71% yield)
23 of the desired enol. Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ 0.91
24 (t, 3H, J = 7.325 Hz), 1.33-1.80 (m, 8H), 1.95-2.05 (m, 3H), 4.06 (br s, 1H),
25 5.54 (br s, 1H).

26 1-(2-Hydroxy-ethyl)-3-(2-propyl-cyclohex-2-enyl)thiourea Spectroscopic
27 data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ 0.82 (t, 3H, J = 7.325 Hz), 1.26-1.66
28 (m, 5H), 1.76-2.03 (m, 5H), 3.47 (br s, 4H), 4.78 (br s, 2H), 5.54 (s, 1H), 7.30

1 (s,1H), 7.485 (d, 1H, *J*= 8.79 Hz).

2

3

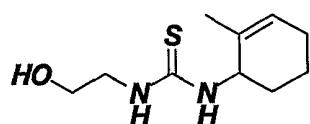


10 **1-(2,3-Dimethyl-cyclohex-2-enyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 31)**

11 The title compound was prepared from 2,3-dimethylcyclohex-2-enone
 12 (prepared previously) according to General Procedure C . The intermediate
 13 2,3-dimethylcyclohex-2-enol was isolated and characterized as follows:
 14 2,3-Dimethylcyclohex-2-enol: 1.58 g (12.74 mmol) of 2,3-dimethylcyclohex-
 15 2-enone afforded 930 mg (58%) of the desired alcohol. Spectroscopic data: ¹H
 16 NMR (CDCl₃, 300 MHz) δ 1.56-1.74 (m, 11H), 1.93 (br s, 2H), 3.95 (br s,
 17 1H).

18 1-(2,3-Dimethyl-cyclohex-2-enyl)-3-(2-hydroxy-ethyl)-thiourea:
 19 Spectroscopic data: ¹H NMR (D₆ DMSO, 300 MHz) δ 1.50-1.66 (m, 10H),
 20 1.90 (br s, 2H), 3.46 (br s, 4H), 4.64 (s, 1H), 4.76 (s, 1H), 7.24 (s, 1H), 7.525
 (d, 1H, *J*= 8.21 Hz).

21


26 **1-(2-Hydroxy-ethyl)-3-(3-ethyl-cyclohex-2-enyl)-thiourea (Compound 32)**

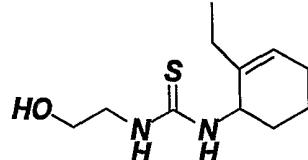
27 The title compound was prepared from 3-ethylcyclohex-2-enone
 28 (prepared previously) according to the General Procedure C. The intermediate
 29 3-ethylcyclohex-2-enol was isolated and characterized as follows:

1 3-Ethylcyclohex-2-enol: Following General Procedure C, 3.91 g (31.5 mmol)
 2 of the starting 3-ethylcyclohex-2-enone afforded 2.61 g (66% yield) of the
 3 desired alcohol. Spectroscopic data: ^1H NMR (CDCl_3) δ = 1.01 (t, 3H, J =
 4 7.475 Hz), 1.54-1.63 (m, 2H), 1.71-1.81 (m, 2H), 1.90-2.02 (m, 5H), 4.19 (br
 5 s, 1H), 5.49 (br s, 1H).

6 1-(2-Hydroxy-ethyl)-3-(3-ethyl-cyclohex-2-enyl)-thiourea: Spectroscopic data:
 7 ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ 0.96 (t, 3H, J = 7.325 Hz), 1.40-1.78 (m,
 8 4H), 1.91-1.99 (m, 4H), 3.46 (br s, 4H), 4.76 (br s, 2H), 5.32 (s, 1H), 7.27 (s,
 9 1H), 7.45 (d, 1H, J = 8.21 Hz).

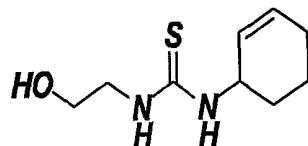
10

13


14 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-2-enyl)-thiourea (Compound 33)

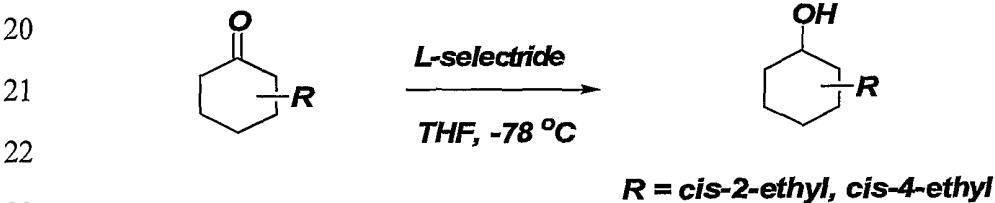
15 The title compound was prepared from 2-methylcyclohex-2-enone
 16 (prepared previously) according to General Procedure C. The intermediate 2-
 17 methylcyclohex-2-enol was isolated and characterized as follows:

18 2-Methylcyclohex-2-enol: Following General Procedure C, 6.65 g (60.4
 19 mmol) of the starting 2-methylcyclohex-2-enone afforded 5.56 g (82% yield)
 20 of the desired alcohol. Spectroscopic data: ^1H NMR (CDCl_3 , 300 MHz) δ
 21 1.54-2.02 (m, 10H), 3.98 (br s, 1H), 5.53 (br s, 1H).


22 1-(2-Hydroxy-ethyl)-3-(2-methyl-cyclohex-2-enyl)-thiourea: Spectroscopic
 23 data: ^1H NMR ($\text{D}_6\text{ DMSO}$, 300 MHz) δ 1.45-1.525 (m, 2H), 1.60-1.65 (m,
 24 5H), 1.90-1.98 (m, 2H), 3.46 (br s, 4H), 4.70 (s, 1H), 4.78 (s, 1H), 5.53 (s,
 25 1H), 7.30 (s, 1H), 7.50 (d, 1H, J = 8.50 Hz).

26

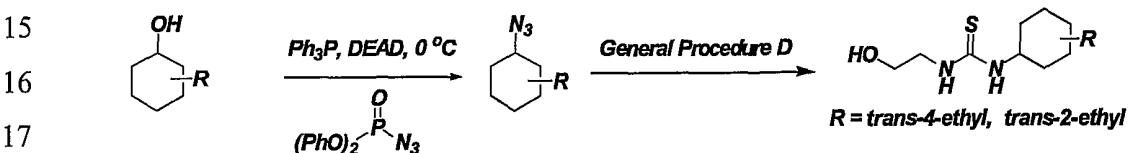
1 1-(2-Hydroxy-ethyl)-3-(2-ethyl-cyclohex-2-enyl)-thiourea (Compound 34)


2 The title compound was prepared from 2-ethylcyclohex-2-enone
 3 (prepared previously) according to General Procedure C. Spectroscopic data:
 4 ^1H NMR (D_6 DMSO, 300 MHz) δ 0.95 (t, 3H, $J = 7.475$ Hz), 1.52-1.66 (m,
 5 4H), 1.91-1.98 (m, 4H), 3.47 (br, s, 4H), 4.79 (br s, 2H), 5.54 (s, 1H), 7.30 (s,
 6 1H), 7.495 (d, 1H, $J = 8.49$ Hz).

12 1-(Cyclohex-2-enyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 35)

13 The title compound was prepared from 2-ethylcyclohex-2-enone
 14 (prepared previously) according to the General Procedure C. Spectroscopic
 15 data: ^1H NMR (D_6 DMSO, 300 MHz) δ 1.43-1.60 (m, 3H), 1.77-1.84 (m, 1H),
 16 1.91-2.04 (m, 2H), 3.46 (br s, 4H), 4.78 (br s, 2H), 5.58-5.61 (m, 1H), 5.78-
 17 5.82 (m, 1H), 7.32 (s, 1H), 7.495 (d, 1H, $J = 7.92$ Hz).

18 **General Procedure H** for the synthesis of cis substituted cyclohexanols:


19

24 The commercially available reagent lithium tri-sec-butylborohydride
 25 (L-Selectride 1.2 eq) was added to a solution of substituted cyclohexanone in
 26 THF at -78 °C. After stirring for 1 hour, the reaction was warmed to 0 °C, and
 27 5N NaOH was added to basify the reaction mixture, followed by 10 mL of
 28 H_2O_2 . The reaction mixture was extracted with Et_2O , and the combined

1 organic extracts were washed with H_2O , brine, and dried over $MgSO_4$.
 2 Purification by column chromatography gave the desired cis alcohol.
 3 cis-2-Ethyl-cyclohexanol: The title compound was obtained as described in
 4 General Procedure H. Chromatography using EtOAc/hex (1:3) as eluant
 5 afforded 1.5 g (20% yield) of the title compound. Spectroscopic data: 1H
 6 NMR ($CDCl_3$, 300 MHz) δ 0.91 (t, 3H, J = 7.035 Hz), 1.17-1.68 (m, 11H),
 7 1.74-1.84 (m, 1H), 3.90 (br s, 1H).
 8 cis-4-Ethylcyclohexanol: Following General Procedure H, 3.0 g (23.77 mmol)
 9 of 4-ethylcyclohexanol afforded 2.13 g (69.6% yield) of the title compound.
 10 Spectroscopic data: 1H NMR ($CDCl_3$, 300 MHz) δ 0.88 (t, 3H, J = 7.18 Hz),
 11 1.16-1.59 (m, 10H), 1.65-1.76 (m, 2H), 3.91-3.96 (m, 1H).
 12 **General Procedure I** for the synthesis of *trans*-substituted cyclohexyl
 13 hydroxyethyl thioureas:

14

18

19 To a solution of the substituted cyclohexanols (prepared as described above in
 20 accordance with General Procedure H) in THF at 0 °C was added
 21 triphenylphosphine (1 eq) followed by commercially available
 22 diethylazodicarboxylate (DEAD 1 eq). The resulting reaction mixture was
 23 stirred overnight. The solvent was evaporated and the residue was extracted
 24 with hexane. The combined extracts were concentrated to give the crude
 25 azide, which was converted to the final thiourea following General Procedure
 26 D.

27

28

1

2

3

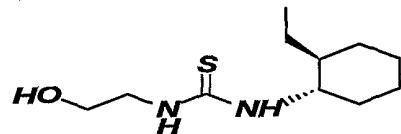
4

5 (trans)-1-(2-Hydroxy-ethyl)-3-(4-ethyl-cyclohexyl)-thiourea (Compound 36)6 The title compound was obtained from *cis*-4-ethylcyclohexanol

7 (prepared in accordance with General Procedure H) according to General

8 Procedure I. Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ = 0.83 (t,9 3H, J = 7.56 Hz), 0.88-0.94 (m 2H), 1.04-1.21 (m, 5H), 1.69-1.72 (m, 2H),

10 1.89-1.91 (m, 2H), 3.41-3.46 (m, 4H), 3.87 (br s, 1H), 4.73 (s, 1H), 7.19 (s,


11 1H), 7.325 (d, 1H, J = 8.30 Hz).

12

13

14

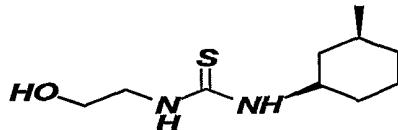
15

16

17

18 1-(trans-2-Ethyl-cyclohexyl)-3-(2-hydroxy-ethyl)-thiourea (Compound 37)19 The title compound was obtained from *cis*-2-ethylcyclohexanol

20 (prepared in accordance with General Procedure H) according to General

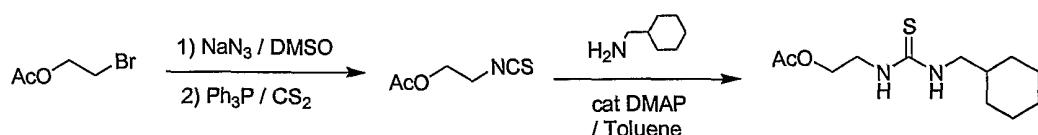

21 Procedure I. Spectroscopic data: ^1H NMR (D_6 DMSO, 300 MHz) δ 0.81 (t,22 3H, J = 7.18 Hz), 0.95-1.24 (m, 6H), 1.46-1.93 (m, 5H), 3.47 (br s, 4H), 3.8923 (br s, 1H), 4.77 (s, 1H), 7.19 (s, 1H), 7.325 (d, 1H, J = 8.5 Hz).

24

25

26

27

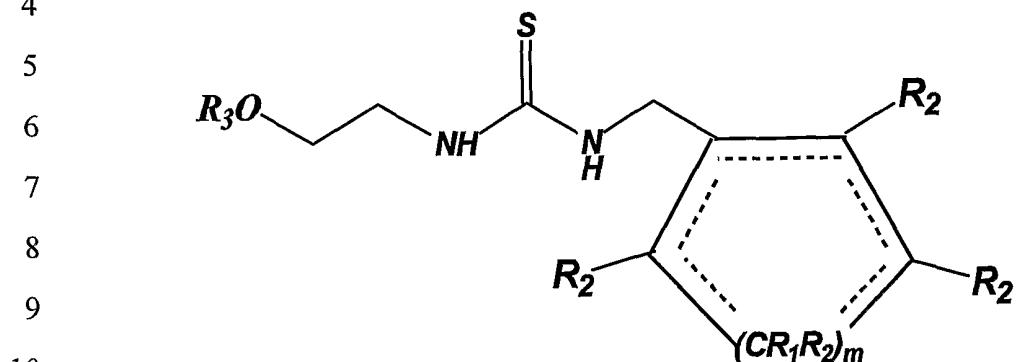

1 cis- and trans-1-(2-hydroxy-ethyl)-3-(3-methyl-cyclohexyl)-thioureas2 **(Compounds 38 and 39)**

3 The title compounds were obtained from the commercially available 3-
 4 methylcyclohexanol (presumably a mixture of *cis* and *trans* isomers)
 5 according to General Procedure I. The isomers were separated using column
 6 chromatography. The structural assignment of isomerism was based on the
 7 synthesis of the *trans* isomer from *cis*-3-methylcyclohexanol using General
 8 Procedure I. Spectroscopic data for both compounds are as follows:

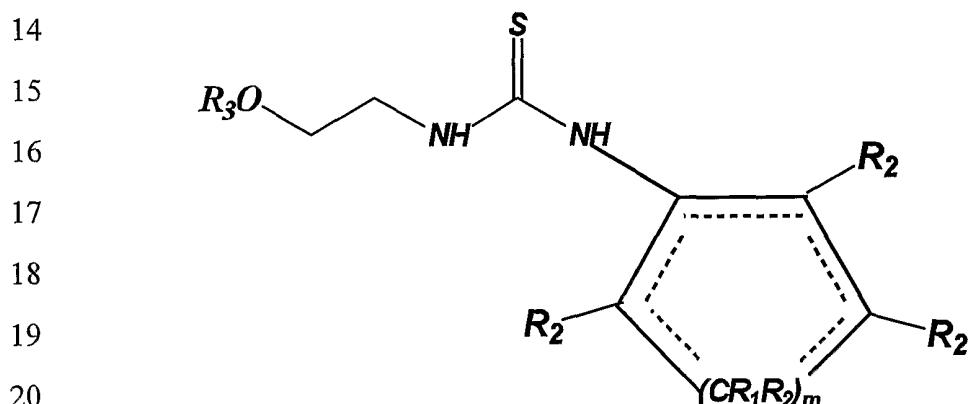
9 (*trans*)-1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclohexyl)-thiourea: ^1H NMR (D_6
 10 DMSO, 300 MHz) δ 0.87 (d, 3H, $J = 5.86$ Hz), 0.95-1.01 (m, 1H), 1.15-1.24
 11 (m, 1H), 1.42-1.63 (m, 7H), 3.46-3.49 (m, 4H), 4.37 (s, 1H), 4.79 (s, 1H), 7.41
 12 (s, 1H), 7.53 (s, 1H).

13 (*cis*)-1-(2-Hydroxy-ethyl)-3-(3-methyl-cyclohexyl)-thiourea: ^1H NMR (D_6
 14 DMSO, 300 MHz) δ 0.72-0.83 (m, 2H), 0.87 (d, 3H, $J = 6.45$ Hz), 0.95-1.0
 15 (m, 1H), 1.22-1.29 (m, 1H), 1.38-1.42 (m, 1H), 1.56-1.65 (m, 1H), 1.61-1.71
 16 (m, 1H), 1.86-1.90 (m, 2H), 3.45-3.47 (m, 4H), 3.92 (br s, 1H), 4.76 (s, 1H),
 17 7.21 (s, 1H), 7.33 (d, 1H, $J = 7.91$ Hz).

18


19 Acetic acid 2-(3-cyclohexylmethyl-thioureido)-ethyl ester (Compound 42)

20 Acetic acid 2-bromo-ethyl ester (15.00 g, 89.81 mmol) and sodium
 21 azide (11.68 g, 179.63 mmol) was mixed in DMSO (200 mL) at room
 22 temperature and the resulting reaction mixture was stirred at the same
 23 temperature for 14 hours, then diluted with water. The mixture was extracted
 24 with ether, and the combined organic phases were washed with water and
 25 brine, then dried over magnesium sulfate and concentrated to give quantitative


1 yield of the desired azide. Spectroscopic data: ^1H NMR (CDCl₃, 300 MHz) δ
2 4.23 (t, J = 5.50 Hz, 2 H), 3.46 (t, J = 5.50 Hz, 2 H), 2.10 (s, 3 H).
3 3g of this azide was then mixed with triphenylphosphine (1 eq) in carbon
4 disulfide and the mixture was stirred at room temperature for 14 hours. After
5 concentration, the reaction mixture was diluted with pentane. The solids
6 formed were washed with more pentane, and the combined pentane layers
7 were concentrated to afford the desired isothiocyanate. This isothiocyanate
8 was then mixed with cyclohexanemethylamine (5.00 mL, 38.47 mmol) in
9 toluene, followed by the addition of catalytic amount of DMAP (~ 20 mg).
10 The resulting reaction mixture was stirred at room temperature for 14 hours,
11 then concentrated. Chromatography (gradient solvent system, from 50%
12 EtOAc/Hexanes to 10% MeOH/EtOAc) gave 3.02 g (57%) of the desired
13 product. Spectroscopic data: ^1H NMR (D₆ DMSO, 300 MHz) δ 7.45 (br s, 1
14 H), 7.35 (t, J = 4.50 Hz, 1 H), 4.08 (t, J = 5.40 Hz, 2 H), 3.64 (br s, 2 H), 3.20
15 (br s, 2 H), 2.00 (s, 3 H).

WHAT IS CLAIMED IS:

2 1. A compound in accordance with **formula (i)** or **formula (ii)**

formula (i)

formula (ii)

25 wherein the dotted line represents a bond, or absence of a bond with the
26 provisos that only one dotted line represents a bond in the ring of **formula (i)**
27 or of **formula (ii)** :

28 R_1 is H, or is absent when the carbon bearing the R_1 is double bonded;

1 \mathbf{R}_2 is H, alkyl of 1 to 4 carbons, alkenyl of 2 to 4 carbons, alkynyl of 2
2 to 4 carbons; OH, O-alkyl where the alkyl group has 1 to 4 carbons, OCOR₄
3 where \mathbf{R}_4 is alkyl of 1 to 4 carbons, F, Cl, Br or I;

4 \mathbf{m} is an integer having the values of 1,2 or 3 with the proviso that when
5 the compound is in accordance with **formula (i)** and \mathbf{m} is 2 then the dotted
6 line designated γ represents absence of a bond, and

7 \mathbf{R}_3 is H, or \mathbf{R}_4 CO, with the further provisos that when the compound is
8 in accordance with **formula (ii)** then \mathbf{R}_2 is not OH, and when the compound is
9 in accordance with **formula (ii)** and \mathbf{m} is 1 then at least one \mathbf{R}_2 of the five-
10 membered ring is not H.

11 2. A compound in accordance with Claim 1 where \mathbf{m} is 1.

12 3. A compound in accordance with Claim 2 having the structure in
13 accordance with **formula (i)**.

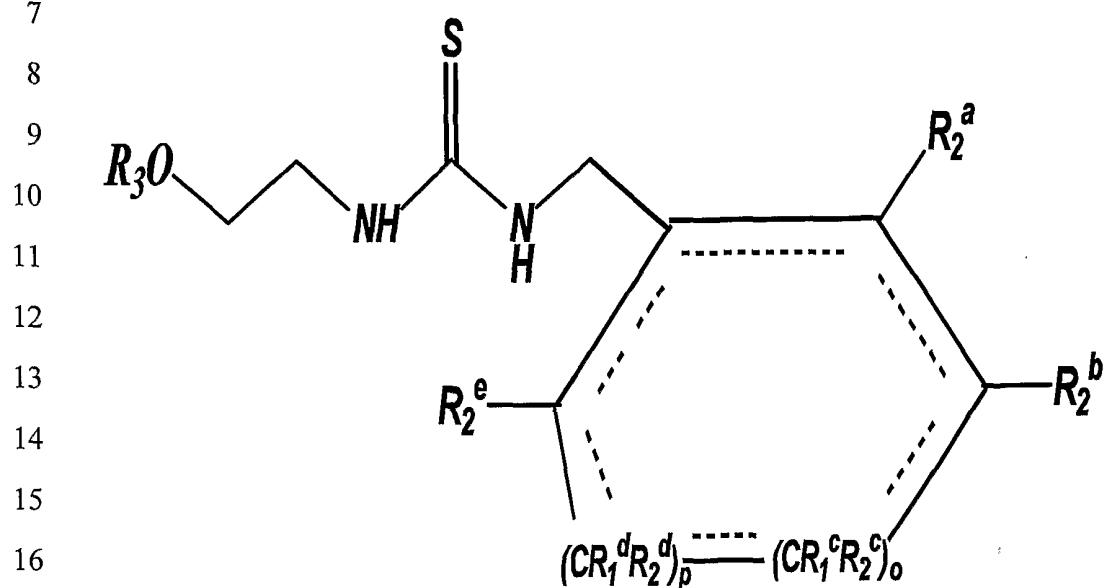
14 4. A compound in accordance with Claim 3 wherein \mathbf{R}_2 is H, alkyl of 1
15 to 4 carbons, Cl, or Br.

16 5. A compound in accordance with Claim 2 having the structure in
17 accordance with **formula (ii)**.

18 6. A compound in accordance with Claim 5 wherein \mathbf{R}_2 is H, alkyl of 1
19 to 4 carbons, Cl, or Br.

20 7. A compound in accordance with Claim 1 where \mathbf{m} is 2.

21 8. A compound in accordance with Claim 7 having the structure in
22 accordance with **formula (i)**.


23 9. A compound in accordance with Claim 8 wherein \mathbf{R}_2 is H, alkyl of 1
24 to 4 carbons, Cl, or Br.

25 10. A compound in accordance with Claim 7 having the structure in
26 accordance with **formula (ii)**.

27 11. A compound in accordance with Claim 10 wherein \mathbf{R}_2 is H, alkyl
28 of 1 to 4 carbons, Cl, or Br.

1 **12.** A pharmaceutical composition for treating such diseases or
 2 conditions of a mammal which are responsive to treatment by agonists of α_{2B}
 3 or α_{2C} adrenergic receptors, the composition containing an effective amount
 4 of one or more compounds in accordance with Claim 1 and a
 5 pharmaceutically acceptable excipient.

6 **13.** A compound of the formula

18 wherein each dotted line represents a bond, or the absence of a bond, with the
 19 proviso that only one dotted line represents a bond;

20 **R1^c** is H or does not exist when the adjacent carbon is double bonded;

21 **R1^d** is H or does not exist when the adjacent carbon is double bonded or
 22 when p is 0;

23 **R2^a** is H, alkyl of 1 to 4 carbons, F, Cl, Br or I;

24 **R2^b** is H or alkyl of 1 to 4 carbons;

25 **R2^c** is H or alkyl of 1 to 4 carbons;

26 **R2^d** is H or does not exist when p is 0;

27 **R2^e** is H or alkyl of 1 to 4 carbons.

28 **R3** is H or COCH₃; o is an integer having the values 1 or 2, and

29 p is an integer having the values 0 or 1.

1 14. A compound in accordance with Claim 13 where o is 1 and p is 1.

2 15. A compound in accordance with Claim 14 where the dotted line β
3 represents a double bond.

4 16. A compound in accordance with Claim 16 selected from the group
5 consisting of compounds where:

6 (1) R_2^a is H, R_2^b is ethyl, R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;
7 (2) R_2^a is H, R_2^b is methyl and R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;
8 (3) R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;
9 (4) R_2^a is methyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H, and
10 (4) R_2^a is ethyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H.

11 17. A compound in accordance with Claim 14 where no dotted line
12 represents a bond.

13 18. A compound in accordance with Claim 17 selected from the groups
14 consisting of compounds where:

15 (1) R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H, and
16 (2) R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d and R_2^e are H and R_3 is CH_3CO .

17 19. A compound in accordance with Claim 14 where the dotted line δ
18 represents a double bond.

19 20. A compound in accordance with Claim 19 selected from the groups
20 consisting of compounds where:

21 (1) R_2^a , R_2^b , R_2^c , R_2^d , R_2^e and R_3 are H, and
22 (2) R_2^a is methyl and R_2^b , R_2^c , R_2^d , R_2^e and R_3 are H.

23 21. A compound in accordance with Claim 14 where the dotted line α
24 represents a double bond.

25 22. A compound in accordance with Claim 21 selected from the groups
26 consisting of compounds where:

27 (1) R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;
28 (2) R_2^a is methyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;
29 (3) R_2^a is methyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;

1 (4) R_2^a is Cl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H, and
2 (2) R_2^a is Br and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H.

3 23. A compound in accordance with Claim 14 where the dotted line γ
4 represents a double bond.

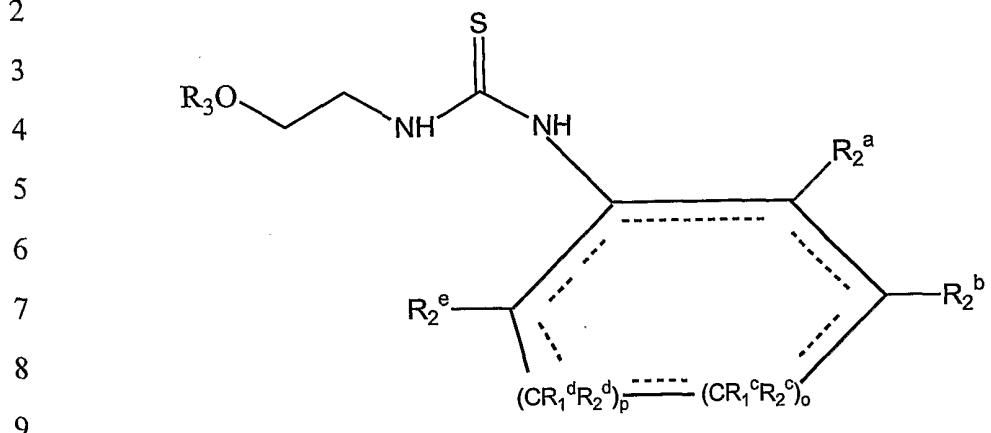
5 24. A compound in accordance with Claim 13 where o is 2 and p is 1.

6 25. A compound in accordance with Claim 24 where no dotted line
7 represents a bond and R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H.

8 26. A compound in accordance with Claim 13 where o is 1 and p is 0.

9 27. A compound in accordance with Claim 26 where no dotted line
10 represents a bond and R_2^a , R_2^b , R_2^c , R_1^c , R_2^e and R_3 are H.

11 28. A compound in accordance with Claim 26 where the dotted line β
12 represents a double bond.


13 29. A compound in accordance with Claim 28 where R_2^a is *n*-butyl,
14 and R_2^b , R_2^c , R_1^c , R_2^e and R_3 are H.

15 30. A compound in accordance with Claim 26 where the dotted line α
16 represents a double bond.

17 31. A compound in accordance with Claim 30 selected from the groups
18 consisting of compounds where:

19 (1) R_2^a is *n*-butyl, and R_2^b , R_2^c , R_1^c , R_2^e and R_3 are H;
20 (2) R_2^a is methyl and R_2^b , R_2^c , R_1^c , R_2^e and R_3 are H, and
21 (3) R_2^a is H, R_2^b is methyl and R_2^c , R_1^c , R_2^e and R_3 are H.

1 32. A compound of the formula

12 R₁^c is H or does not exist when the adjacent carbon is double bonded;

13 R₁^d is H or does not exist when the adjacent carbon is double bonded

14 or when p is 0;

15 R₂^a is H, alkyl of 1 to 4 carbons, F, Cl, Br or I;

16 R₂^b is H or alkyl of 1 to 4 carbons;

17 R₂^c is H or alkyl of 1 to 4 carbons;

18 R₂^d is H or does not exist when p is 0;

19 R₂^e is H or alkyl of 1 to 4 carbons.

20 R₃ is H or COCH₃; o is an integer having the values 1 or 2, and

21 p is an integer having the values 0 or 1.

22 33. A compound in accordance with Claim 32 where o is 1 and p is 1.

23 34. A compound in accordance with Claim 33 where no dotted line

24 represents a bond.

25 35. A compound in accordance with Claim 34 selected from the

26 groups consisting of compounds where:

1 (1) R_2^a and R_2^b are H, R_2^c is methyl and R_1^c , R_2^d , R_1^d , R_2^e and R_3
 2 are H;

3 (2) R_2^a is *n*-propyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;

4 (3) R_2^a is H, R_2^b is methyl, and R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3
 5 are H, said compound being an *E* (*trans*) isomer;

6 (4) R_2^a is H, R_2^b is methyl, and R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3
 7 are H, said compound being a *Z* (*cis*) isomer;

8 (5) R_2^a is methyl, and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H,
 9 said compound being a *Z* (*cis*) isomer;

10 (6) R_2^a and R_2^b are H, R_2^c is ethyl and R_1^c , R_2^d , R_1^d , R_2^e and R_3
 11 are H, said compound being an *E* (*trans*) isomer;

12 (7) R_2^a is *iso*-propyl, R_2^b , R_2^c , R_1^c are H, R_2^d is methyl and R_1^d ,
 13 R_2^e and R_3 are H;

14 (8) R_2^a , R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;

15 (9) R_2^a and R_2^b are H, R_2^c is OH, and R_1^c , R_2^d , R_1^d , R_2^e and R_3
 16 are H, and

17 (10) R_2^a is ethyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H,
 18 said compound being an *E* (*trans*) isomer.

19 36. A compound in accordance with Claim 33 where the dotted line β
 20 represents a bond.

21 37. A compound in accordance with Claim 36 selected from the
 22 groups consisting of compounds where:

23 (1) R_2^a is H, R_2^b is methyl and R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are
 24 H;

25 (2) R_2^a is methyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;

26 (3) R_2^a is ethyl and R_2^b , R_2^c , R_1^c , R_2^d , R_1^d , R_2^e and R_3 are H;

1 (4) $R_2^a, R_2^b, R_2^c, R_1^c, R_2^d, R_1^d, R_2^e$ and R_3 are H;

2 (5) R_2^a and R_2^b are methyl and $R_2^c, R_1^c, R_2^d, R_1^d, R_2^e$ and R_3 are

3 H;

4 (6) R_2^a is *n*-propyl and $R_2^b, R_2^c, R_1^c, R_2^d, R_1^d, R_2^e$ and R_3 are H;

5 (7) R_2^a is Br, and $R_2^b, R_2^c, R_1^c, R_2^d, R_1^d, R_2^e$ and R_3 are H, and

6 (8) R_2^a is H, R_2^b is ethyl and $R_2^c, R_1^c, R_2^d, R_1^d, R_2^e$ and R_3 are H.

7 38. A compound in accordance with Claim 32 where o is 1 and p is 0.

8 39. A compound in accordance with Claim 38 where no dotted line

9 represents a bond.

10 40. A compound in accordance with Claim 39 where R_2^a is methyl and

11 $R_2^b, R_2^c, R_1^c, R_2^e$ and R_3 are H.

12 41. A compound in accordance with Claim 38 where the dotted line β

13 represents a bond.

14 42. A compound in accordance with Claim 41 selected from the

15 groups consisting of compounds where:

16 (1) R_2^a is H, R_2^b is methyl, R_2^c, R_1^c, R_2^e and R_3 are H;

17 (2) R_2^a is methyl and $R_2^b, R_2^c, R_1^c, R_2^e$ and R_3 are H, and

18 (3) R_2^a and R_2^b are methyl and R_2^c, R_1^c, R_2^e and R_3 are H.

19 43. A method of activating α_{2B} or α_{2C} adrenergic receptors in a

20 mammal in need of such activation by administering to the mammal a

21 pharmaceutical composition containing a therapeutically effective dose of a

22 compound that has α_{2B} or α_{2C} adrenergic receptor agonist activity and has no

23 significant α_{2A} agonist activity.

24 44. A method in accordance with Claim 43 where the pharmaceutical

25 composition is administered to the mammal to alleviate pain.

26 45. A method in accordance with Claim 43 where the pharmaceutical

27 composition is administered to the mammal to alleviate chronic pain.

1 46. A method in accordance with Claim 43 where the pharmaceutical
2 composition is administered to the mammal to alleviate allodynia.

3 47. A method in accordance with Claim 43 where the pharmaceutical
4 composition is administered orally.

5 48. A method in accordance with Claim 43 where the pharmaceutical
6 composition is administered intraperitoneally.

7 49. A method in accordance with Claim 43 where the compound has
8 the formula defined in Claim 1.

9 50. A method in accordance with Claim 49 where the pharmaceutical
10 composition is administered to the mammal to alleviate pain.

11 51. A method in accordance with Claim 49 where the pharmaceutical
12 composition is administered to the mammal to alleviate chronic pain.

13 52. A method in accordance with Claim 49 where the pharmaceutical
14 composition is administered to the mammal to alleviate allodynia.

15 53. A method in accordance with Claim 49 where the pharmaceutical
16 composition is administered orally.

17 54. A method in accordance with Claim 49 where the pharmaceutical
18 composition is administered intraperitoneally.