

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2079436 C 2001/11/27

(11)(21) 2 079 436

(12) BREVET CANADIEN CANADIAN PATENT

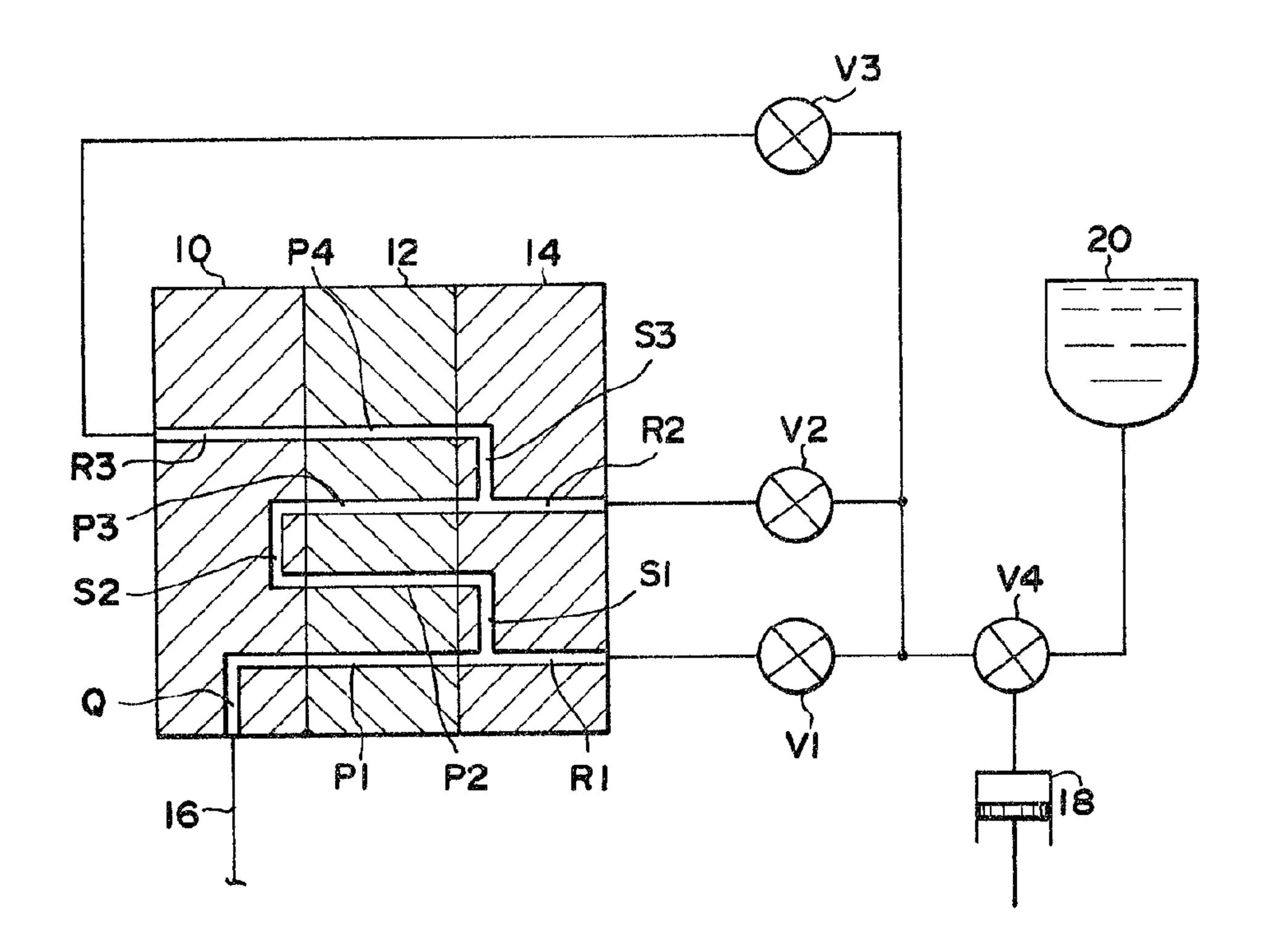
(13) **C**

(22) Date de dépôt/Filing Date: 1992/11/18

(41) Mise à la disp. pub./Open to Public Insp.: 1993/05/21

(45) Date de délivrance/Issue Date: 2001/11/27 (30) Priorité/Priority: 1991/11/20 (3-331283) JP

(51) Cl.Int.⁵/Int.Cl.⁵ F16K 11/00, G01N 35/06


(72) Inventeurs/Inventors: Kuroda, Toshiaki, JP; Demachi, Takashi, JP

(73) Propriétaire/Owner: SYSMEX CORPORATION, JP

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre: ROBINET D'ECHANTILLONNAGE

(54) Title: SAMPLING VALVE

(57) Abrégé/Abstract:

A sampling valve comprises two fixed elements (10), (14), and a movable element (12) held between these fixed elements, in which a flow-in passage (Q) is provided at one fixed element so as to communicate with at least one of metering passages (P1), ..., plural flow-out passages (R1), (R2), ... are provided at the other or one fixed element so as to communicate with different metering passages individually, and relay passages (S1), ... are provided at the one or other fixed element so as to mutually connect the metering passages (P1), (P2), ... in specified combinations. In such constitution, plural sampling routes are formed in the sampling valve. In the sampling valve for aspirating and pushing liquid specimens such as blood in cylindrical shape and taking out quantitatively, only the portion necessary for measurement may be selected and sampled.

ABSTRACT OF THE DISCLOSURE

A sampling valve comprises two fixed elements (10), (14), and a movable element (12) held between these fixed elements, in which a flow-in passage (Q) is provided at one fixed element so as to communicate with at least one of metering passages (Pl), ..., plural flow-out passages (R1), (R2), ... are provided at the other or one fixed element so as to communicate with different metering passages individually, and relay passages (S1), ... are provided at the one or other fixed element so as to mutually connect the metering passages (Pl), (P2), ... in specified combinations. In such constitution, plural sampling routes are formed in the sampling valve. In the sampling valve for aspirating and pushing liquid specimens such as blood in cylindrical shape and taking out quantitatively, only the portion necessary for measurement may be selected and sampled.

SPECIFICATION

TITLE OF THE INVENTION
SAMPLING VALVE

BACKGROUND OF THE INVENTION

The present invention relates to a sampling valve for aspirating and pushing a liquid specimen such as blood in cylindrical shape, and sampling quantitatively, and more particularly to a sampling valve for sampling by selecting only a portion of sample necessary for measurement.

The apparatus for counting blood corpuscles such as erythrocytes, the apparatus for classifying leukocytes, and the apparatus for counting reticulocytes are known well. Besides, the apparatus assembling these plural functions into one (multifunctional apparatus) is also known. The multifunctional apparatus is capable of obtaining measuring results of multiple items by one sampling operation. Depending on the specimen, however, unnecessary items are also measured, and the samples and reagents are spent wastefully.

To eliminate such waste, it requires a function for sampling only a necessary sample for each specimen and taking into the apparatus to analyze (discrete test function). For example, in the field of biochemical

examination, the sampling method is to aspirate a necessary amount of sample from the pipette, and discharge the sample into a reaction vessel. This method is simple in structure, but the precision is poor. In particular, it is a problem when handling a highly viscous sample such as blood.

Accordingly, in the blood cell counting apparatus, the specimen is sampled by aspirating and pushing the specimen in cylindrical shape by means of a sampling valve, and taking out quantitatively.

Referring now to Fig. 1 and Fig. 2, the structure and operation of a general sampling valve are briefly described below. Usually, a sampling valve consists of two fixed elements 10, 14 and a movable element 12 enclosed by the fixed elements 10, 14. Fig. 1 and Fig. 2 show two states of the sampling valve. In Fig. 1, the specimen flows in the direction of arrow A, that is, from a pipette 16 to a flow-in passage Q, metering (measuring quantity) passage Pl, and flow-out passage Rl, and fills up the metering passage Pl of the movable element 12 (which is called the first state). As the movable element 12 moves from the first state, it comes to the state in Fig. 2 (which is called the second state), and the specimen filling up the metering passage Pl in the first state is pushed out, and is transferred outside the sampling valve, together with the liquid such as diluent in the direction of arrow B

from the passage T2 to the passage T1.

In the apparatus for sampling a specimen by means of a sampling valve, there has been a keen desire for a sampling valve applicable to discrete test in order to realize such discrete test as mentioned above (for sampling only a necessary portion in each specimen and analyzing).

OBJECT AND SUMMARY OF THE INVENTION

It is hence a primary object of the invention to present a sampling valve applicable to discrete test capable of selecting only a necessary portion of sample required for measurement and sampling quantitatively.

To achieve the above object, the sampling valve of the invention comprises two fixed elements in stationary state, and a movable element held and moving between these fixed elements, having plural sample metering passages disposed in the movable element, and moving the movable element while contacting with the surface of the fixed elements so as to have a first state of filling the metering passages with sample and a second state of pushing out the filling sample in cylindrical shape and transferring outside, which further comprises

a flow-in passage disposed in one fixed element for communicating with at least one metering passage in the first state,

plural flow-out passages disposed in other or one fixed element so as to communicate with mutually different metering passages, and

relay passages disposed in one or other fixed element for mutually connecting the metering passages in specified combination, wherein

at least one relay passage is connected with any one of the flow-in passage, flow-out passages, and other relay passages to form plural sampling routes in the sampling valve, thereby sampling the specimen by selecting a specific metering passage.

In this sampling valve, the passages are disposed so that plural metering passages may be connected in series, or passages are disposed so that plural metering passages may be connected in parallel, or passages are disposed so that plural metering passages may be connected in combination of series and parallel.

Meanwhile, the flow-in passage is the passage serving as the inlet for leading the specimen into the sampling valve from outside as the time of aspirating the specimen, and the flow-out passage is the passage serving as the outlet for sending out the specimen once led into the sampling valve to the outside.

When using the sampling valve of the invention, a pipette is connected to the flow-in passage, and suction

* The second of t

(aspiration) means is connected to flow-out passages. In the first state, the pipette is dipped in the sample Piquid, and the suction means is operated. At this time, an aspiration pressure is applied by selecting only a certain flow-out passage by, for example, a changeover valve. This aspiration pressure reaches the flow-in passage and pipette through the specified passage within the sampling valve, and the sample is aspirated from the pipette. The sample, depending on the connection state of passages in the sampling valve, flows through a certain sampling route, and the metering passage in that sampling route is filled up. In other sampling routes, the sample does not flow and is not determined quantitatively. When an aspiration pressure is applied to other flow-out passage, the other metering passage is filled with sample.

In this way, by applying an aspiration pressure by selecting one of the plural flow-out passages, a different sampling route is selected, that is, a metering passage is selected, so that the sample may be taken out. The passages in the sampling valve may be meanwhile composed in an optimum connection state depending on the purpose.

When the aspiration of the sample is over, the sampling valve falls in the second state, and the sample is pushed out in cylindrical shape, and is transferred to the measuring

part disposed outside of the sampling valve. Successively, the sampling valve returns to the first state, and each passage is cleaned with the cleaning liquid (syringe liquid) from a cleaning liquid tank.

BRIEF DESCRIPTION OF THE DRAWINGS

- Fig. 1 is an explanatory sectional view showing a first state of filling a metering passage with sample in a general conventional sampling valve.
 - Fig. 2 is an explanatory sectional view showing a second state of pushing out and transferring the sample in a general conventional sampling valve.
 - Fig. 3 is an explanatory sectional view showing an embodiment of a sampling valve of the invention.
 - Fig. 4 is an explanatory sectional view showing other embodiment of a sampling valve of the invention.
 - Fig. 5 is an explanatory diagram showing a different embodiment of a sampling valve of the invention.
 - Fig. 6 is a perspective view showing a first state of filling a metering passage with sample in the sampling valve shown in Fig. 3.
 - Fig. 7 is a perspective view showing a second state of pushing out and transferring the sample in the sampling valve shown in Fig. 3.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, some of the preferred embodiments of the invention are described in detail below.

The sampling valve of the invention, as explained by reference to Fig. 3 to Fig. 7, comprises two fixed elements 10, 14 in stationary state, and a movable element 12 held and moving between these fixed elements, having plural sample metering passages Pl, P2, ... disposed in the movable element 12, and moving the movable element 12 while contacting with the surface of the fixed elements 10, 14 so as to have a first state of filling the metering passages with sample and a second state of pushing out the filling sample in cylindrical shape and transferring outside, which further comprises

a flow-in passage Q disposed in one fixed element for communicating with at least one metering passage in the first state,

plural flow-out passages Rl, R2, ... disposed in other or one fixed element so as to communicate with mutually different metering passages, and

relay passages S1, ... disposed in one or other fixed element for mutually connecting the metering passages P1, P2, ... in specified combination, wherein

at least one relay passage is connected with any one of the flow-in passage Q, flow-out passages Rl, R2, ..., and

· •

other relay passage to form plural sampling routes in the sampling valve, thereby sampling the specimen by selecting a specific metering passage.

When using the sampling valve of the invention, a pipette 16 is connected to the flow-in passage Q, and suction (aspiration) means 18 is connected to flow-out passages R1, R2, ... In the first state, the pipette 16 is dipped in the sample liquid, and the suction means 18 is operated. At this time, an aspiration pressure is applied by selecting only a certain flow-out passage by, for example, a changeover valve. This aspiration pressure reaches the flow-in passage Q and pipette 16 through the specified passage within the sampling valve, and the sample is aspirated from the pipette 16. The sample, depending on the connection state of passages in the sampling valve, flows through a certain sampling route, and the metering passage in that sampling route is filled up. In other sampling routes, the sample does not flow and is not measured quantitatively. When an aspiration pressure is applied to other flow-out passage, the other metering passage is filled with sample.

When the aspiration of the sample is over, the sampling valve falls in the second state, and the sample is push out in cylindrical shape, and is transferred to the measuring part disposed outside of the sampling valve. Successively,

the sampling valve returns to the first state, and each passage is cleaned with the cleaning liquid (syringe liquid) from a cleaning liquid tank 20.

Fig. 3 shows a case in which four metering passages are disposed, and these metering passages P1, P2, P3, P4 are connected in series, and three sampling routes are mutually overlapped in part. More specifically, symbol Q denotes a flow-in passage, S1, S2, S3 are relay passages, R1, R2, R3 are flow-out passages, and the relay passage S1 connects with the flow-out passage R1, and the relay passage S3 connects with the flow-out passage R2.

When a valve VI is open, and valves V2, V3 are closed, by changing over a three-way valve V4 so that aspiration means 18 and valve V1 communicate with each other, the sample flows from pipette 16 through passages Q, P1, R1 (the first sampling route), and is measured quantitatively in the passage P1.

When the valve V2 is open, and the valves V1, V3 are closed, the sample flows from the pipette 16 through passages Q, P1, S1, P2, S2, P3, R2 (the second sampling route), and is measured quantitatively in the passages P1, P2, P3.

When the valve V3 is open, and the valves V1, V2 are closed, the sample flows from the pipette 16 through passages Q, P1, S1, P2, S2, P3, S3, P4, R3 (the third

sampling route), and is measured quantitatively in the passages Pl, P2, P3, P4.

Fig. 4 shows a case in which six metering passages are disposed, and these metering passages Pl, P2, P3, P4, P5, P6 are connected parallel (partly in series, however, in this embodiment), and three sampling routes are in parallel relation. More specifically, symbol Q denotes a flow-in passage, Sl, S2, S3, S4, S5 are relay passages, R1, R2, R3 are flow-out passages, and the relay passages S1, S4 are connected with the flow-in passage Q. Meanwhile, the relay passage S1 may be connected with the flow-in passage S1.

When a valve V1 is open, and valves V2, V3 are closed, by changing over a three-way valve V4 so that aspiration means 18 and valve V1 may communicate with each other, the sample flows from a pipette 16 through passages Q, P1, R1 (the first sampling route), and is measured quantitatively in the passage P1.

When the valve V2 is open, and the valves V1, V3 are closed, the sample flows from the pipette 16 through passages Q, S1, P2, S2, P3, S3, P4, R2 (the second sampling route), and is measured quantitatively in the passages P2, P3, P4.

When the valve V3 is open, and the valves V1, V2 are closed, the sample flows from the pipette 16 through

passages Q, S4, P5, S5, P6, R3 (the third sampling route), and is measured quantitatively in the passages P5, P6.

Fig. 5 shows a case in which three metering passages are disposed, these metering passages P1, P2, P3 are connected in combination of series and parallel, and the three sampling routes are overlapped in part and parallel in part. More specifically, symbol Q denotes a flow-in passage, S1, S2 are relay passages, R1, R2, R3 are flow-out passages, and the relay passages S1, S2 are connected with the flow-out passage R1. Meanwhile, the relay passage S1 may be connected with the flow-out passage S1.

When a valve V1 is open, and valves V2, V3 are closed, by changing over a three-way valve V4 so that aspiration means 18 and valve V1 may communicate with each other, the sample flows from a pipette 16 through passages Q, P1, R1 (the first sampling route), and is measured quantitatively in the passage P1.

When the valve V2 is open, and the valves V1, V3 are closed, the sample flows from the pipette 16 through passages Q, P1, S1, P2, R2 (the second sampling route), and is measured quantitatively in the passages P1, P2.

When the valve V3 is open, and the valves V1, V2 are closed, the sample flows from the pipette 16 through passages Q, P1, S2, P3, R3 (the third sampling route),

and is measured quantitatively in the passages P1, P3.

Referring next to Fig 6 and Fig. 7, the invention is further described below. Fig. 6 and Fig. 7 are respective views of practical examples of the sampling valve shown in Fig. 3. Fig. 6 denotes the first state, and Fig. 7 represents the second state. In both Fig. 6 and Fig. 7, the passages are partly omitted. This is for the ease of understanding of the drawing and explanation. In Fig. 6, transfer passages Tla, Tlb, ..., T4b shown in Fig. 7 are omitted (so are in Figs. 3, 4, 5), and in Fig. 7, the passages Q, Sl, S2, S3, Rl, R2, R3 shown in Fig. 6 are omitted.

Referring first to Fig. 6, the sample aspiration is explained. Fixed elements 10, 14, and movable elements 12 are in disc form. In the center of elements 10, 12, 14, penetration holes 22, 24, 26 are formed, and a shaft (not shown) is passed in the penetration holes 22, 24, 26. At the upper side of the fixed elements 10, 14, notches 28, 30 are provided, in which a support (not shown) for fixing is fitted. The movable element 12 is held between the fixed elements 10, 14 and rotates by a specific angle. The means for keeping the fixed elements 10, 14 in static state and moving the movable element by a specific extent while contacting with the surface of the both fixed elements is known (for example, the Japanese Laid-open

Patent Hei. 1-138421). The mutually contacting surfaces of the elements 10, 12, 14 are planes polished to an extremely high precision.

The movable element 12 is, for example, provided with four passages Pl, P2, P3, P4 for determining (measuring quantitatively) the sample. The metering passages Pl, P2, P3, P4 are passages penetrating through the movable element 12.

At the lower side of the fixed element 10, a pipeshaped pipette 16 is attached. The pipette 16 communicates with a flow-in passage Q in an L-shape opening at the polished surface 10a side of the fixed element 10. Instead of the pipette 16, a fine pipe like a syringe needle may be connected through a tube to form a sample aspiration part. The passage Q communicates with the metering passage Pl. On the polished surface 14a of the fixed element 14, grooveshaped relay passages Sl, S3 are provided, and a loop-shaped relay passage S2 is formed outside of the fixed element 10. The relay passage S1 connects the metering passages P1 and P2, the relay passage S2 connects the metering passages P2 and P3, and the relay passage S3 connects the metering passages P3 and P4. That is, the relay passages S1, S2, S3 connect plural metering passages in series. In the portions of the relay passages S1, S3, flow-out passages R1, R2, penetrating through the fixed element 14 are

provided. In the fixed element 10, a flow-out passage R3 connecting with the metering passage P4 is provided. The flow-out passage R3 is also the passage for penetrating through the fixed element 10.

Numeral 18 is aspiration means, which is, for example, a syringe type capable of generating an aspiration pressure and discharging the cleaning liquid. Numeral 20 is a cleaning liquid (diluent liquid) tank filled with liquid for cleaning (dilution) inside. A three-way valve V4 changes over the aspiration means 18 between the sampling valve side and the cleaning liquid tank side. Two-way valves V1, V2, V3 are disposed between the syringe 18 and flow-out passages R1, R2, R3, and select the route. The cleaning liquid is also used as diluent liquid.

Thus, in the sampling valve, three sampling routes are formed, that is, the first sampling route having the flow-in passage Q as the inlet and flow-out passage Rl as the outlet, the second sampling route having the flow-in passage Q as the inlet and the flow-out passage R2 as the outlet, and the third sampling route having the flow-in passage Q as the inlet and the flow-out passage R3 as the outlet. By opening any one of the valves V1, V2, V3, and closing the others, one of the three sampling routes may be selected.

Next is explained the sample transfer by reference to Fig. 7. From the first state in Fig. 6, the movable element

12 rotates by a specific angle to become the second state in Fig. 7. In the fixed element 10, transfer passages Tla, T2a, T3a, T4a penetrating through the fixed element 10 are provided so as to communicate with the metering passages Pl, P2, P3, P4, respectively. Also in the fixed element 14, transfer passages Tlb, T2b, T3b, T4b penetrating through the fixed element 14 are provided to communicate with the metering passages Pl, P2, P3, P4, similarly. As the diluent liquid discharge means Cl, C2, C3, C4 are put in action, a specific volume of diluent liquid is supplied in the direction of arrow from the transfer passages Tlb, T2b, T3b, T4b of the one side, and the sample determined (measured) quantitatively in the passages Pl, P2, P3, P4 is transferred from the passages Tla, T2a, T3a, T4a into the measuring parts B1, B2, B3, B4 together with the diluent liquid. At this time, the diluent liquid discharge means operates depending on the selected sampling route. That is, when the first sampling route is selected (the sample is determined quantitatively in the passage Pl only), only the diluent liquid discharge means Cl is put in action. When the second sampling route is selected (the sample is determined quantitatively in the passages Pl, P2, P3), the diluent liquid discharge means Cl, C2, C3 are put in action. When the third sampling route is selected (the sample is determined quantitatively in the passages Pl, P2, P3, P4),

all diluent liquid discharge means Cl, C2, C3, C4 are put in action.

Cleaning of the passages is explained next by referring to Fig. 6. From the second state in Fig. 7, the movable element 12 reversely rotates by a specific angle to return to the first state in Fig. 6. In the case of cleaning, too, considering same as in the case of transfer described above, the passages are cleaned according to the selected sampling route. That is, when the first sampling route is selected (the sample is remaining in the passages Q, R1), only the valve V1 is opened and the aspiration means 18 is put in action. In this way, the aspiration means 18 exhibits the functions of both aspiration and cleaning means. When the second sampling route is selected (the sample is remaining in the passages Q, S1, S2, R2), only the valve V2 is opened. When the third sampling route is selected (the sample is remaining in the passages Q, S1, S2, S3, R3), only the valve V3 is opened. In such manner, however, cleaning of passage Sl is insufficient in the first sampling route, cleaning of passages R1, S3 is insufficient in the second sampling route, and cleaning of passages Rl, R2 is insufficient in the third sampling route, and therefore, when the first sampling route is selected, it is desired to open the valve V2 as well as the valve V1, and when the second sampling route or third sampling route is selected, it is desired to open the valves

V1, V2, V3. Besides, when the valves V1, V2, V3 are manipulated in consideration of the sample remainder in each passage, cleaning may be done more effectively within specified time, and at specified flow rate. For example, when the first sampling route is selected, the valves V1, V2 are opened and closed alternately repeatedly (however, the opening time of the valve Vl should be set longer). When the second sampling route or third sampling route is selected, the valves V1, V2, V3 are alternately opened and closed repeatedly (however, the opening time of the valve V2 should be set longer than that of the valves V1, V3 in the case of second sampling route, and the opening time of the valve V3 should be set longer'than that of the valves V1, V2 in the case of third sampling route). As the practical cleaning method, other various manners may be considered and may be properly selected depending on the actual configuration of the apparatus.

Being thus composed, the invention brings about the following effects.

(1) Plural flow-out passages are provided, and each passage in the sampling valve is connected in a desired state, and therefore plural sampling routes may be formed in the sampling valve, so that only a necessary sample may be selected and taken quantitatively without any waste of sample.

(2) Since only the necessary sample is selected and taken quantitatively, only the necessary portion is sampled for each specimen and is analyzed, that is, it is possible to be applied to so-called discrete test.

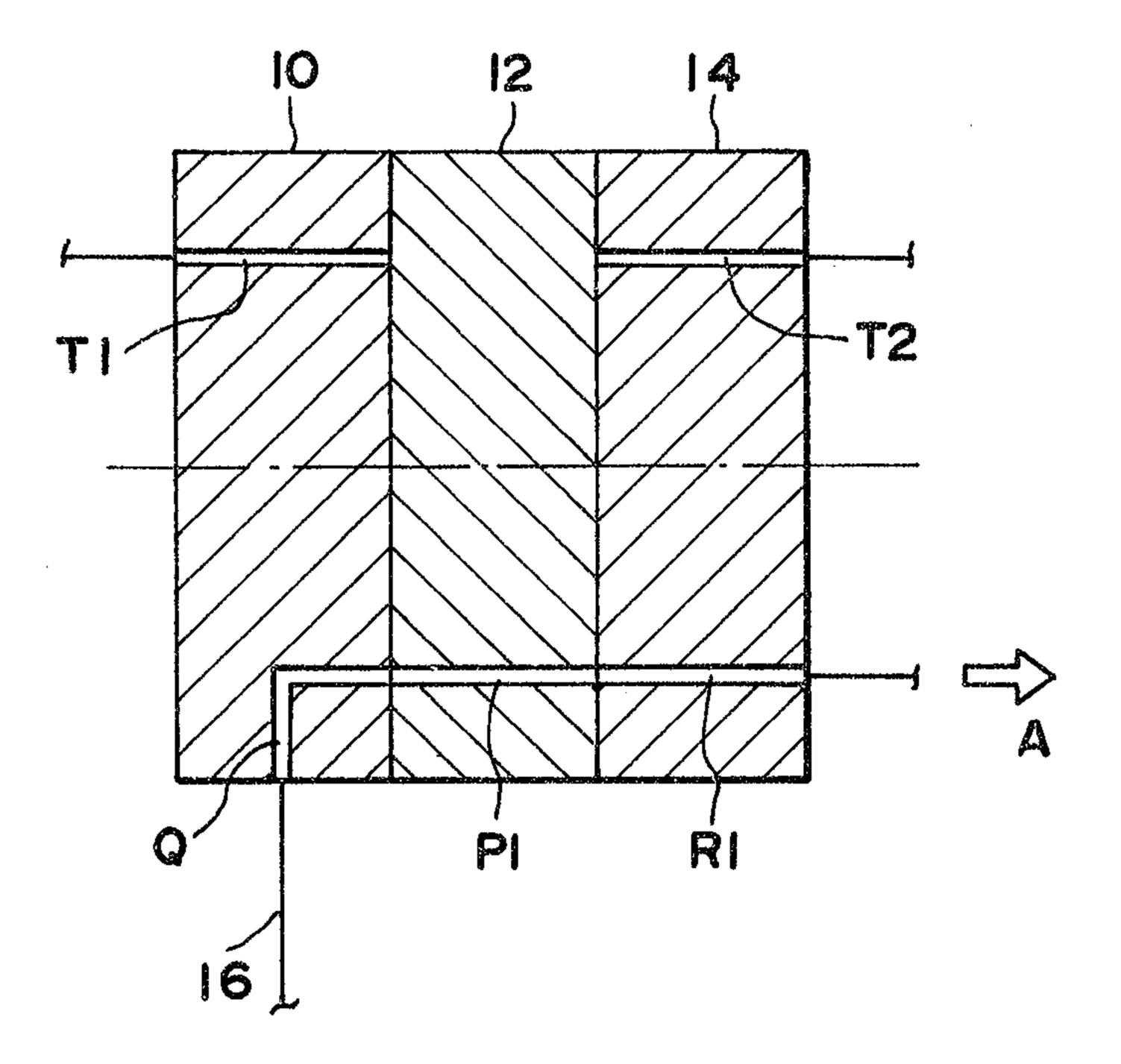
Having described preferred embodiments of the invention with reference to the accompanying drawings, it is to be understood that the invention is not limited to those precise embodiments, and that various changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the invention as defined in the appended claims.

CLAIMS:

1. A sampling valve comprising two fixed elements in stationary state, and a movable element held and moving between these fixed elements, having plural sample metering passages disposed in the movable element, and moving the movable element while contacting with the surface of the fixed elements so as to have a first state of filling the metering passages with sample and a second state of pushing out the filling sample in cylindrical shape and transferring outside, which further comprises

a flow-in passage disposed in one fixed element for communicating with at least one metering passage in the first state,

plural flow-out passages disposed in other or one fixed element so as to communicate with mutually different metering passages, and


relay passages disposed in one or other fixed element for mutually connecting the metering passages in specified combination, wherein

at least one relay passage is connected with any one of the flow-in passage, flow-out passages, and other relay passages to form plural sampling routes in the sampling

valve, thereby sampling the specimen by selecting a specific metering passage.

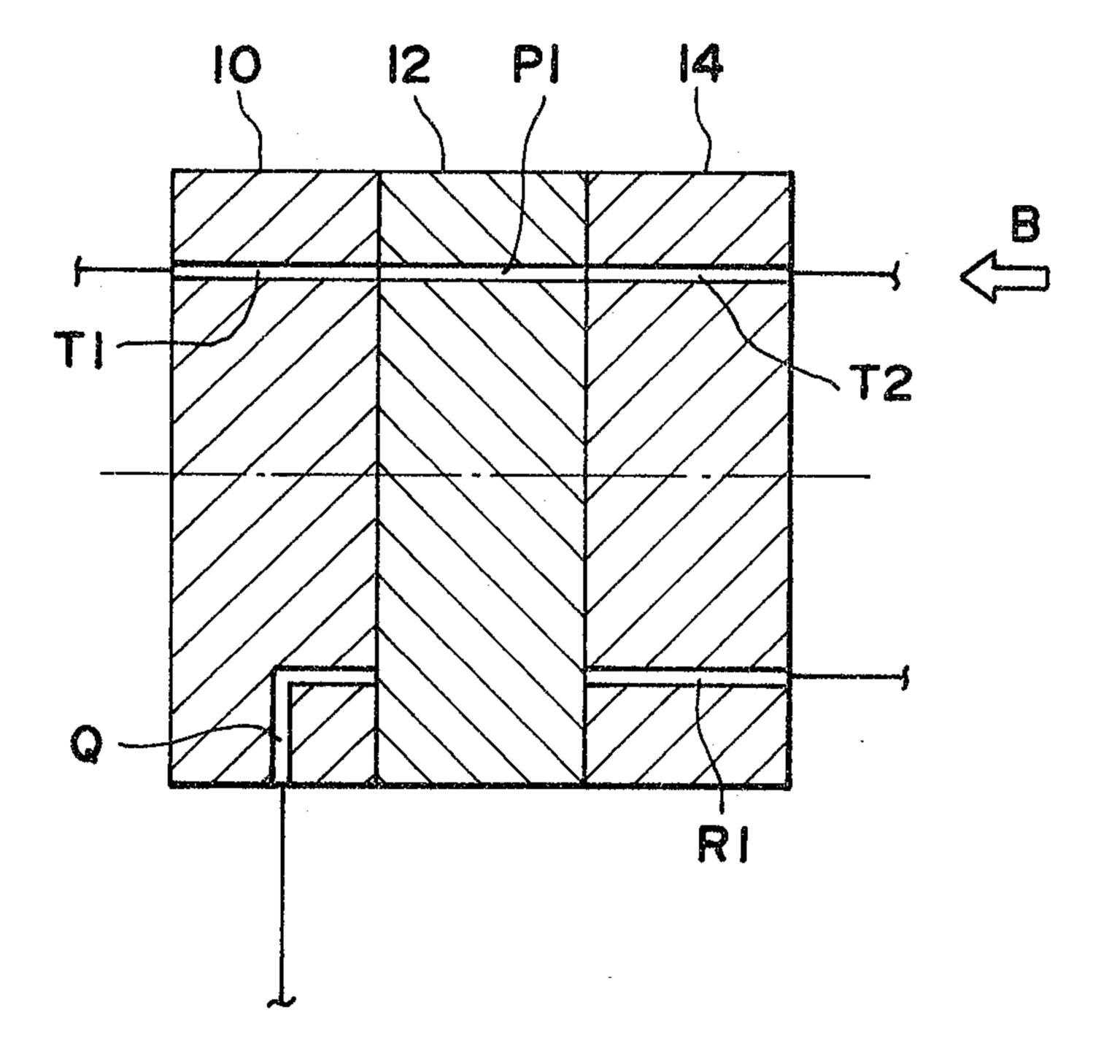

- 2. A sampling valve of claim 1, wherein the relay passages are provided so that plural metering passages may be connected in series.
- 3. A sampling valve of claim 1, wherein the relay passages are provided so that plural metering passages may be connected in parallel.
- 4. A sampling valve of claim 1, wherein the relay passages are provided so that plural metering passages may be connected in combination of series and parallel.

FIG.I PRIOR ART

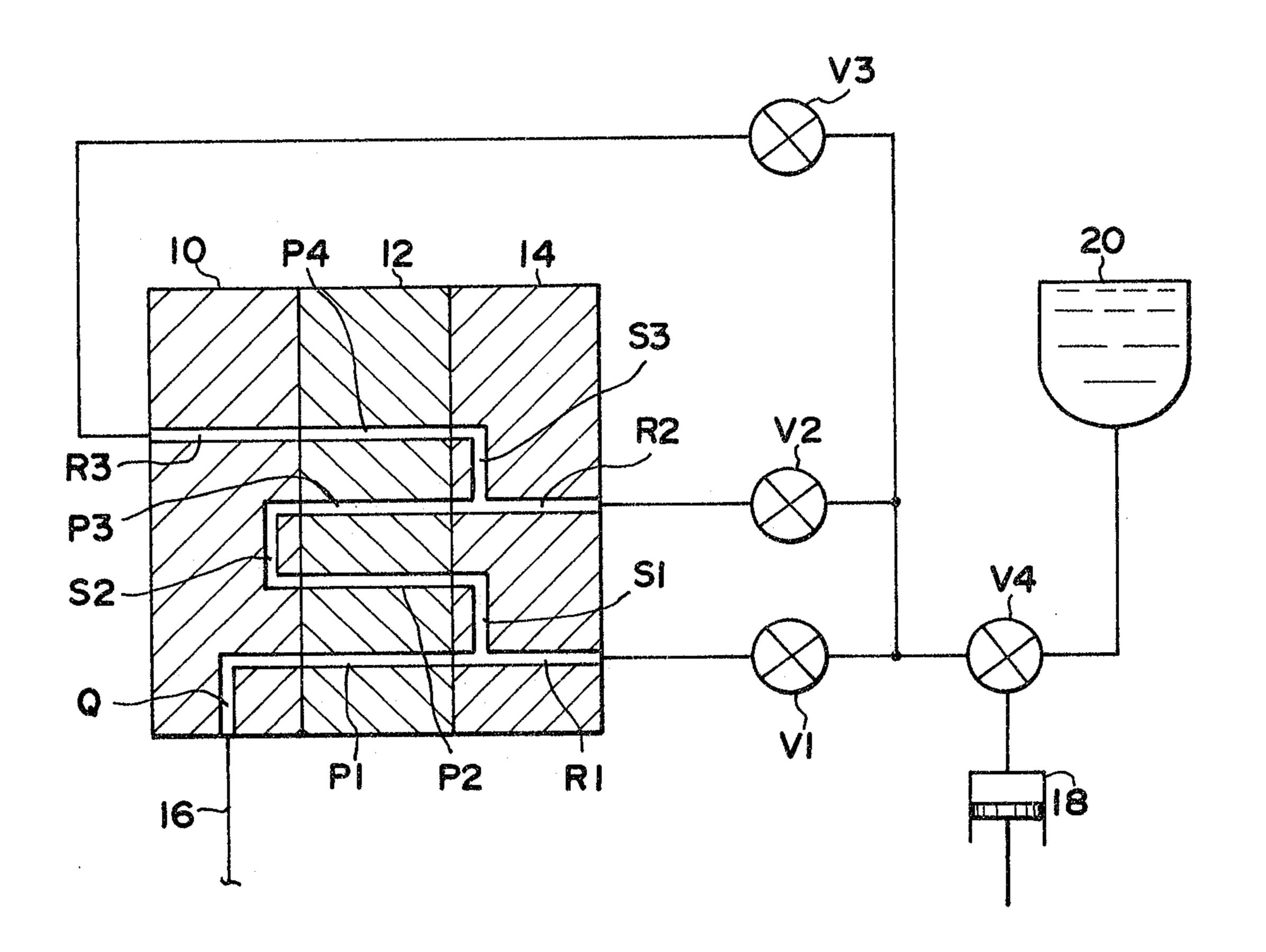

a

FIG.2 PRIOR ART

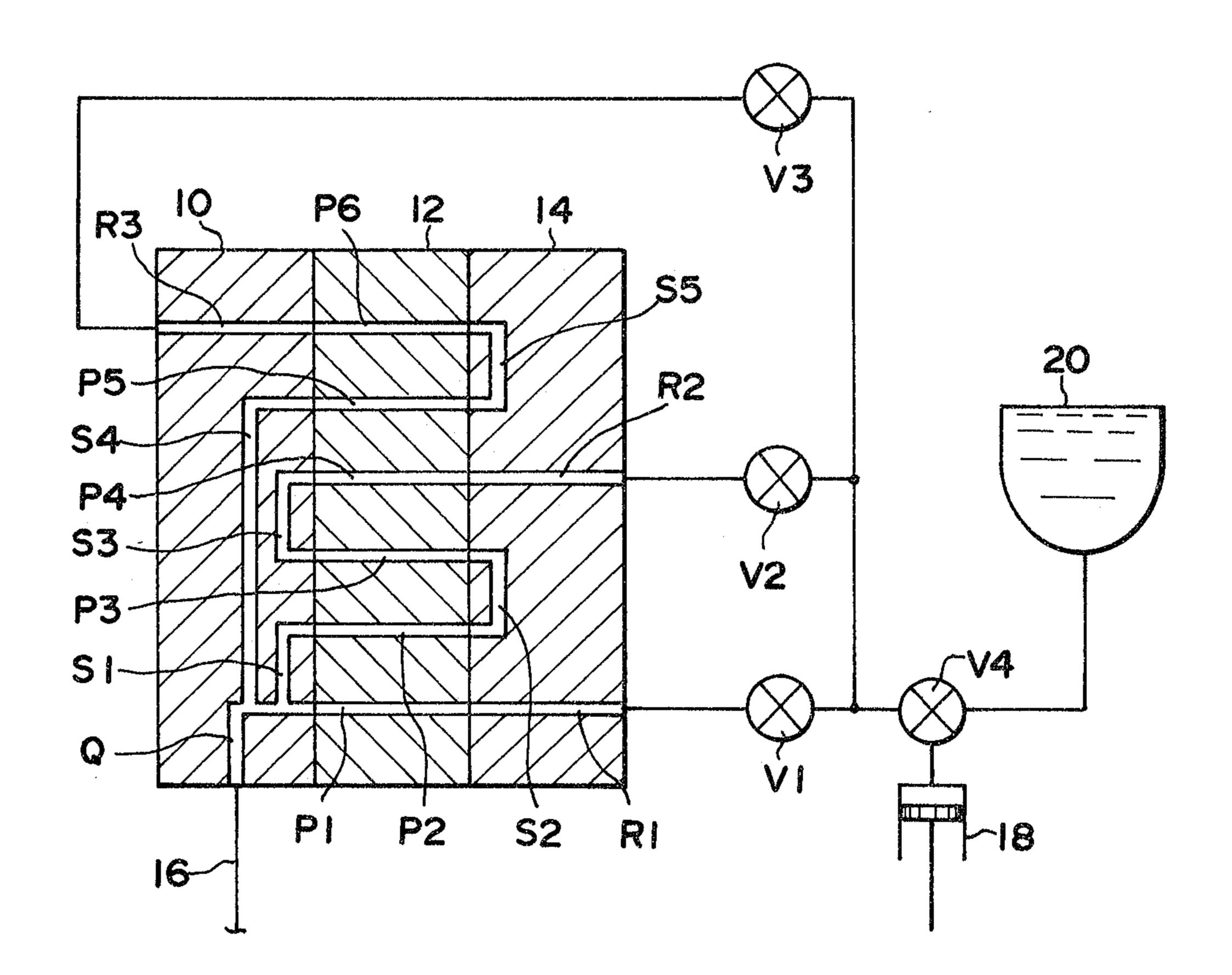

Kirby, Tades, Gale, Baker & Potvin

FIG.3

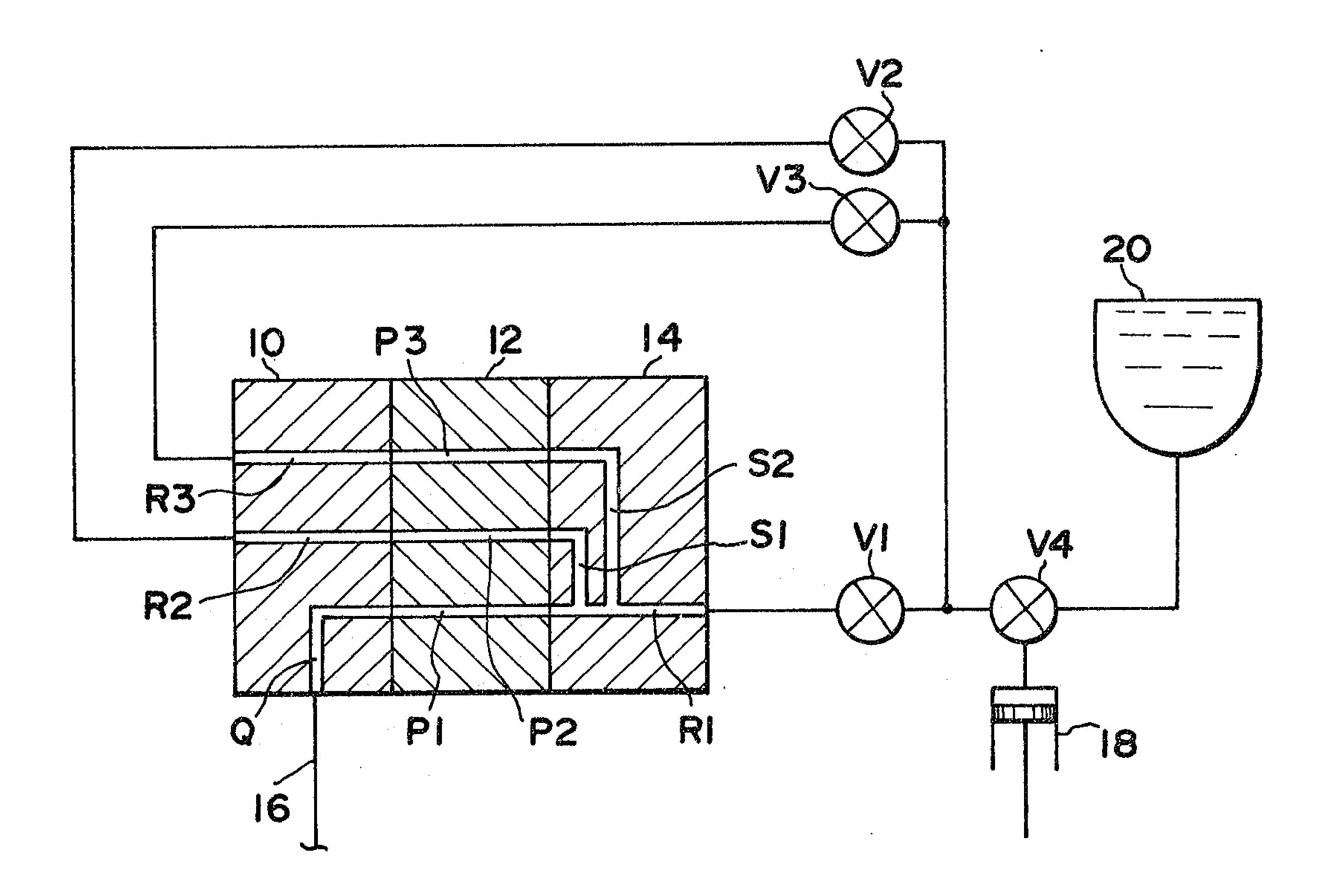
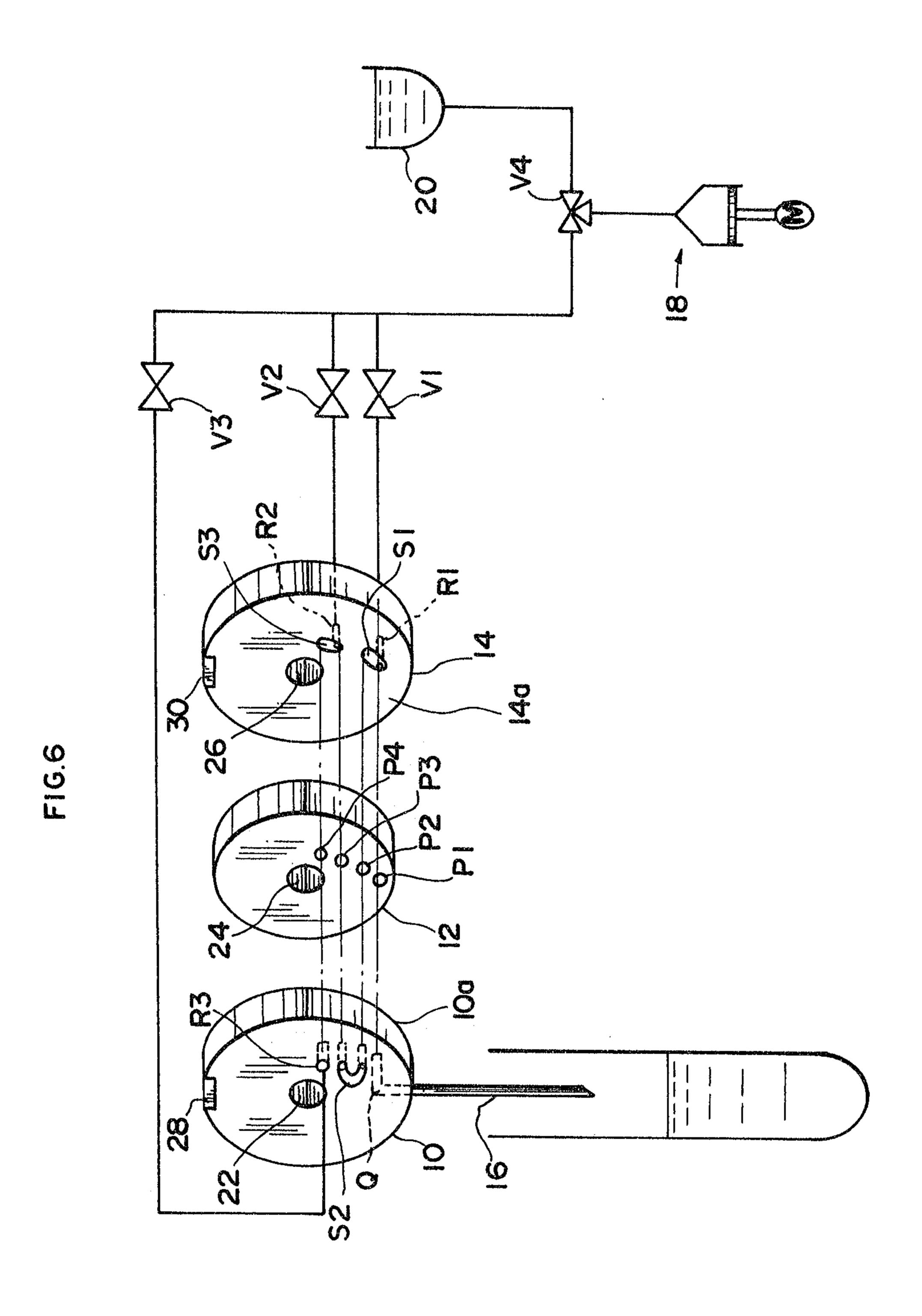
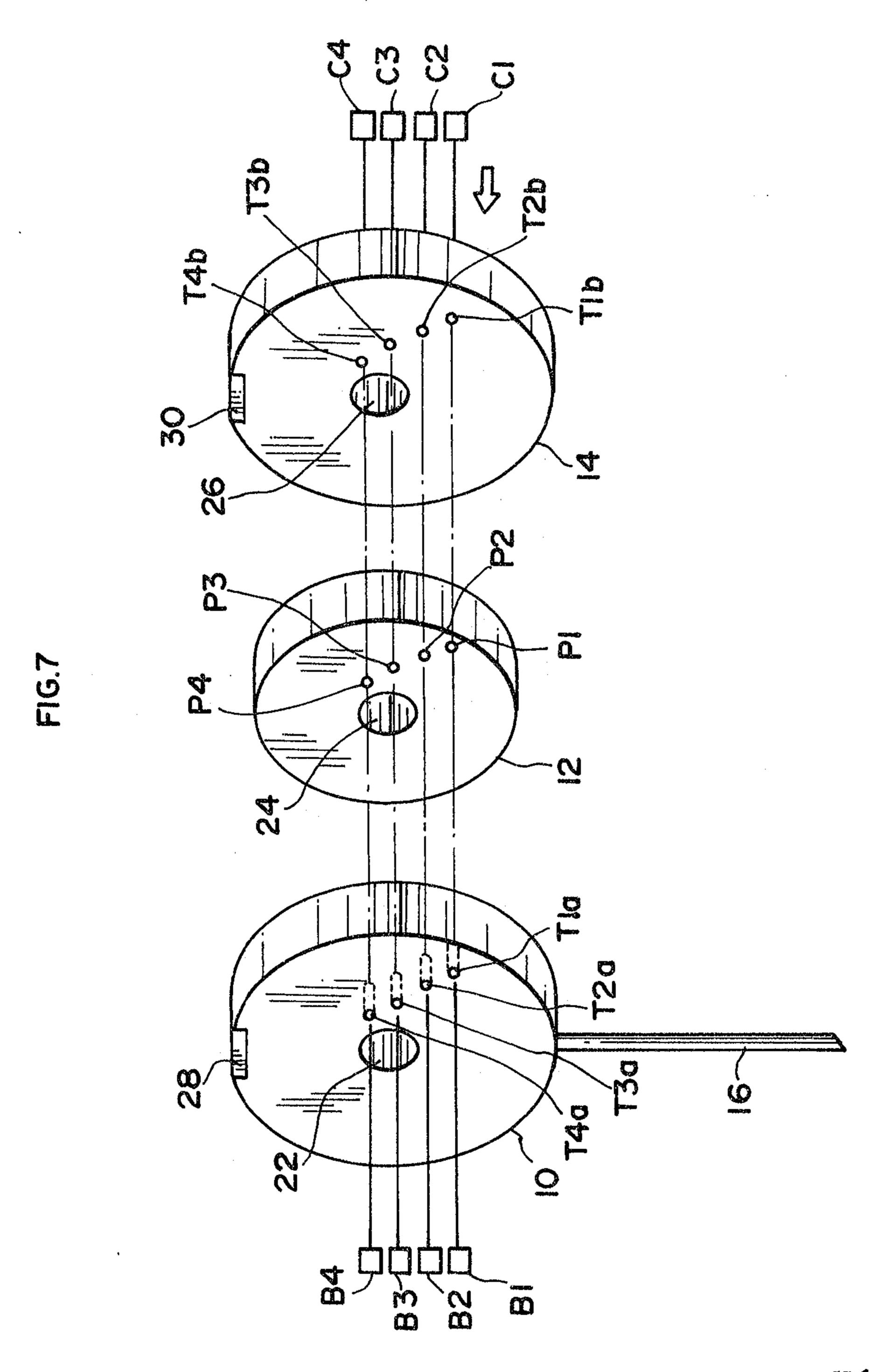
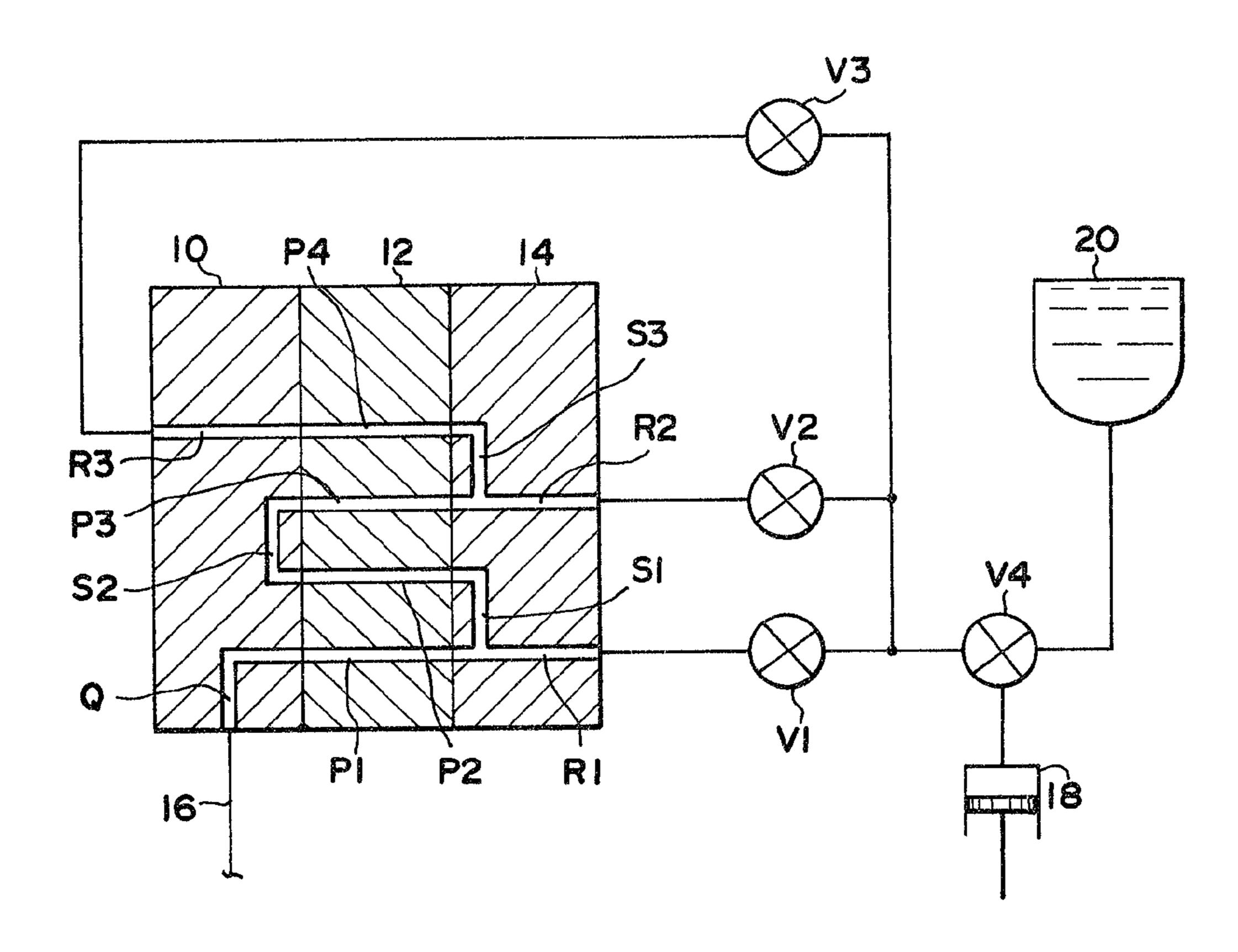

Kirby, Lades, Gale, Baker & Potvin

FIG.4



Kirby, Lades, Gale, Baker & Potvin


FIG.5


Kirby, Eades, Gale, Baker & Potvin

Kirby, Lades, Gole, Baker & Potois

Kirby, Lades, Gale, Baker & Potoin

