
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0202988 A1

Ayub et al.

US 2016O202988A1

(43) Pub. Date: Jul. 14, 2016

(54)

(71)

(72)

(21)

(22)

(63)

PARALLEL, SLCE PROCESSING METHOD
USING ARECIRCULATING LOAD-STORE
QUEUE FOR FAST DEALLOCATION OF
ISSUE QUEUE ENTRIES

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

Inventors: Salma Ayub, Austin, TX (US); Sundeep
Chadha, AUSTIN, TX (US); Robert
Allen Cordes, Austin, TX (US); David
Allen Hrusecky, Cedar Park, TX (US);
Hung Qui Le, Austin, TX (US); Dung
Quoc Nguyen, AUSTIN, TX (US);
Brian William Thompto, Austin, TX
(US)

Appl. No.: 14/724,268

Filed: May 28, 2015

Related U.S. Application Data
Continuation of application No. 14/595,635, filed on
Jan. 13, 2015.

Publication Classification

(51) Int. Cl.
G06F 9/38 (2006.01)
G06F 9/30 (2006.01)
G06F 2/08 (2006.01)

(52) U.S. Cl.
CPC G06F 9/3836 (2013.01); G06F 12/0875

(2013.01); G06F 9/30043 (2013.01); G06F
2212/1021 (2013.01); G06F 22 12/452
(2013.01); G06F 22 12/608 (2013.01)

(57) ABSTRACT
A method of operation of a processor core execution unit
circuit provides efficient use of area and energy by reducing
the per-entry storage requirement of a load-store unit issue
queue. The execution unit circuit includes a recirculation
queue that stores the effective address of the load and store
operations and the values to be stored by the store operations.
A queue control logic controls the recirculation queue and
issue queue so that that after the effective address of a load or
store operation has been computed, the effective address of
the load operation or the store operation is written to the
recirculation queue and the operation is removed from the
issue queue, so that address operands and other values that
were in the issue queue entry no longer require storage. When
a load or store operation is rejected by the cache unit, it is
Subsequently reissued from the recirculation queue.

Processor Core 20

|Cache 54

IBUF 31

SU 30

Instruction
Flow and
Network
Control 57

Patent Application Publication Jul. 14, 2016 Sheet 1 of 6 US 2016/0202988 A1

10A Frocessor

20A 12

10B
Processor

10C
Processor

10D
Processor

16
Storage

Fig. 1

Patent Application Publication Jul. 14, 2016 Sheet 2 of 6 US 2016/0202988 A1

Processor Core 20

Flow and
Network

IBUF 31 Control 57

|Cache 54
Instruction

CLA as as as as a as as as as a -

Dis

36

3

35A

Patent Application Publication Jul. 14, 2016 Sheet 3 of 6 US 2016/0202988 A1

Processor Core 20

BR unit 52 |Cache 54 is a

Dispatch Routing Network Instruction
Flow and
NetWork
Control 57

Segmented execution and Load Store slices

Mode Control/
thread Control
logic 59

Execution Interlock

Thread mode

Completion
unit 58

PMU
56

Cache Slices 46

Patent Application Publication Jul. 14, 2016 Sheet 4 of 6 US 2016/0202988 A1

Receive instruction
from dispatch
routing network 60

SSue FX/VS
instruction to
FX/VS pipeline
62

Compute EA
63

Store EA in DARO
64

Store Store value in

instruction? 65 ERO Fig 4

Remove entry from
issue dueue 67

Issue instruction
from DARO 68

Instruction
rejected? 69

Remove entry from
DARO 70

Patent Application Publication Jul. 14, 2016 Sheet 5 of 6 US 2016/0202988 A1

From Dispatch
Routing Network

Execution
Interlock
Control

Patent Application Publication Jul. 14, 2016 Sheet 6 of 6 US 2016/0202988 A1

39

38

37

LS slice 44

Unalign
Data
84

Cache Slice 46

Unalign Data 41

US 2016/0202988 A1

PARALLEL, SLCE PROCESSING METHOD
USINGA RECIRCULATING LOAD-STORE
QUEUE FOR FAST DEALLOCATION OF

ISSUE QUEUE ENTRIES

0001. The present application is a Continuation of U.S.
patent application Ser. No. 14/595,635, filed on Jan. 13, 2015
and claims priority thereto under 35 U.S.C. S 120. The disclo
sure of the above-referenced parent U.S. patent application is
incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention is related to processing sys
tems and processors, and more specifically to a pipelined
processor core that includes execution slices having a recir
culating load-store queue.
0004 2. Description of Related Art
0005. In present-day processor cores, pipelines are used to
execute multiple hardware threads corresponding to multiple
instruction streams, so that more efficient use of processor
resources can be provided through resource sharing and by
allowing execution to proceed even while one or more hard
ware threads are waiting on an event.
0006. In existing processor cores, and in particular proces
sor cores that are divided into multiple execution slices
instructions are dispatched to the execution slice(s) and are
retained in the issue queue until issued to an execution unit.
Once an issue queue is full, additional operations cannot
typically be dispatched to a slice. Since the issue queue con
tains not only operations, but operands and state/control
information, issue queues are resource-intensive, requiring
significant power and die area to implement.
0007. It would therefore be desirable to provide a method
of operation of a processor core having reduced issue queue
requirements.

BRIEF SUMMARY OF THE INVENTION

0008. The invention is embodied in a method of operation
of a processor core.
0009. The execution unit circuit includes an issue queue
that receives a stream of instructions including functional
operations and load-store operations, and multiple execution
pipelines including a load-store pipeline that computes effec
tive addresses of load operations and store operations, and
issues the load operations and store operations to a cache unit.
The execution unit circuit also includes a recirculation queue
that stores entries corresponding to the load operations and
the store operations and control logic for controlling the issue
queue, the load-store pipeline and the recirculation queue.
The control logic operates so that after the load-store pipeline
has computed the effective address of a load operation or a
store operation, the effective address of the load operation or
the store operation is written to the recirculation queue and
the load operation or the store operation is removed from the
issue queue So that if one of the load operations or store
operations are rejected by the cache unit, they are Subse
quently reissued to the cache unit from the recirculation
queue.
0010. The foregoing and other objectives, features, and
advantages of the invention will be apparent from the follow
ing, more particular, description of the preferred embodiment
of the invention, as illustrated in the accompanying drawings.

Jul. 14, 2016

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

0011. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as a preferred mode of use, further
objectives, and advantages thereof, will best be understood by
reference to the following detailed description of the inven
tion when read in conjunction with the accompanying Fig
ures, wherein like reference numerals indicate like compo
nents, and:
0012 FIG. 1 is a block diagram illustrating a processing
system in which techniques according to an embodiment of
the present invention are practiced.
0013 FIG. 2 is a block diagram illustrating details of a
processor core 20 that can be used to implement processor
cores 20A-20B of FIG. 1.
0014 FIG. 3 is a block diagram illustrating details of
processor core 20.
0015 FIG. 4 is a flowchart illustrating a method of oper
ating processor core 20.
0016 FIG. 5 is a block diagram illustrating details of an
instruction execution slice 42AA that can be used to imple
ment instruction execution slices ESO-ES7 of FIGS. 2-3.
0017 FIG. 6 is a block diagram illustrating details of a
load store slice 44 and a cache slice 46 that can be used to
implement load-store slices LSO-LS7 and cache slices CS0
CST of FIGS. 2-3.

DETAILED DESCRIPTION OF THE INVENTION

0018. The present invention relates to an execution slice
for inclusion in a processor core that manages an internal
issue queue by moving load/store (LS) operation entries to a
recirculation queue once the effective address (EA) of the LS
operation has been computed. The LS operations are issued to
a cache unit and if they are rejected, the LS operations are
Subsequently re-issued from the recirculation queue rather
than from the original issue queue entry. Since the recircula
tion queue entries only require storage for the EA for load
operations and the EA and store value for store operations,
power and area requirements are reduced for a given number
of pending LS issue queue entries in the processor. In con
trast, the issue queue entries are costly in terms of area and
power due to the need to store operands, relative addresses
and other fields such as conditional flags that are not needed
for executing the LS operations once the EA is resolved.
0019 Referring now to FIG. 1, a processing system in
accordance with an embodiment of the present invention is
shown. The depicted processing system includes a number of
processors 10A-10D, each in conformity with an embodi
ment of the present invention. The depicted multi-processing
system is illustrative, and a processing system in accordance
with other embodiments of the present invention include uni
processor Systems having multi-threaded cores. Processors
10A-10D are identical in structure and include cores 20A
20B and a local storage 12, which may be a cache level, or a
level of internal system memory. Processors 10A-10B are
coupled to a main system memory 14, a storage Subsystem 16.
which includes non-removable drives and optical drives, for
reading media such as a CD-ROM 17 forming a computer
program product and containing program instructions imple
menting generally, at least one operating system, associated
applications programs, and optionally a hypervisor for con
trolling multiple operating systems partitions for execution

US 2016/0202988 A1

by processors 10A-10D. The illustrated processing system
also includes input/output (I/O) interfaces and devices 18
Such as mice and keyboards for receiving user input and
graphical displays for displaying information. While the sys
tem of FIG. 1 is used to provide an illustration of a system in
which the processor architecture of the present invention is
implemented, it is understood that the depicted architecture is
not limiting and is intended to provide an example of a Suit
able computer system in which the techniques of the present
invention are applied.
0020 Referring now to FIG. 2, details of an exemplary
processor core 20 that can be used to implement processor
cores 20A-20B of FIG. 1 are illustrated. Processor core 20
includes an instruction cache (ICache) 54 and instruction
buffer (IBUF) 31 that store multiple instruction streams
fetched from cache or system memory and present the
instruction stream(s) via a bus 32 to a plurality of dispatch
queues Disp0-Disp7 within each of two clusters CLA and
CLB. Control logic within processor core 20 controls the
dispatch of instructions from dispatch queues Disp0-Disp7 to
a plurality of instruction execution slices ES0-ES7 via a dis
patch routing network 36 that permits instructions from any
of dispatch queues Disp0-Disp7 to any of instruction execu
tion slices ESO-ES7 in either of clusters CLA and CLB,
although complete cross-point routing, i.e., routing from any
dispatch queue to any slice is not a requirement of the inven
tion. In certain configurations as described below, the dis
patch of instructions from dispatch queues Disp0-Disp3 in
cluster CLA will be restricted to execution slices ESO-ES3 in
cluster CLA, and similarly the dispatch of instructions from
dispatch queues Disp4-Disp7 in cluster CLB will be
restricted to execution slices ES4-ES7. Instruction execution
slices ES0-ES7 perform sequencing and execution of logical,
mathematical and other operations as needed to perform the
execution cycle portion of instruction cycles for instructions
in the instruction streams, and may be identical general
purpose instruction execution slices ES0-ES7, or processor
core 20 may include special-purpose execution slices ES0
ES7. Other special-purpose units such as cryptographic pro
cessors 34A-34B, decimal floating points units (DFU) 33A
33B and separate branch execution units (BRU) 35A-35B
may also be included to free general-purpose execution slices
ES0-ES7 for performing other tasks. Instruction execution
slices ES0-ES7 may include multiple internal pipelines for
executing multiple instructions and/or portions of instruc
tions.

0021. The load-store portion of the instruction execution
cycle, (i.e., the operations performed to maintain cache con
sistency as opposed to internal register reads/writes), is per
formed by a plurality of load-store (LS) slices LSO-LS7.
which manage load and store operations as between instruc
tion execution slices ES0-ES7 and a cache memory formed
by a plurality of cache slices CS0-CS7 which are partitions of
a lowest-order cache memory. Cache slices CS0-CS3 are
assigned to partition CLA and cache slices CS4-CS7 are
assigned to partition CLB in the depicted embodiment and
each of load-store slices LS0-LS7 manages access to a cor
responding one of the cache slices CS0-CS7 via a corre
sponding one of dedicated memory buses 40. In other
embodiments, there may be not be a fixed partitioning of the
cache, and individual cache slices CS0-CS7 or sub-groups of
the entire set of cache slices may be coupled to more than one
of load-store slices LS0-LS7 by implementing memory buses
40 as a shared memory bus or buses. Load-store slices LS0

Jul. 14, 2016

LS7 are coupled to instruction execution slices ES0-ES7 by a
write-back (result) routing network 37 for returning result
data from corresponding cache slices CS0-CS7, such as in
response to load operations. Write-back routing network 37
also provides communications of write-back results between
instruction execution slices ES0-ES7. Further details of the
handling of load/store (LS) operations between instruction
execution slices ES0-ES7, load-store slices LSO-LS7 and
cache Slices CSO-CS7 is described in further detail below
with reference to FIGS. 4-6. An address generating (AGEN)
bus 38 and a store data bus 39 provide communications for
load and store operations to be communicated to load-store
slices LSO-LS7. For example, AGEN bus 38 and store data
bus 39 convey store operations that are eventually written to
one of cache slices CS0-CS7 via one of memory buses 40 or
to a location in a higher-ordered level of the memory hierar
chy to which cache slices CS0-CS7 are coupled via an I/O bus
41, unless the store operation is flushed or invalidated. Load
operations that miss one of cache slices CS0-CS7 after being
issued to the particular cache slice CS0-CS7 by one of load
store slices LS0-LS7 are satisfied over I/O bus 41 by loading
the requested value into the particular cache slice CS0-CS7 or
directly through cache slice CS0-CS7 and memory bus 40 to
the load-store slice LSO-LS7 that issued the request. In the
depicted embodiment, any of load-store slices LSO-LS7 can
be used to perform a load-store operation portion of an
instruction for any of instruction execution slices ES0-ES7.
but that is not a requirement of the invention. Further, in some
embodiments, the determination of which of cache slices
CS0-CS7 will perform a given load-store operation may be
made based upon the operand address of the load-store opera
tion together with the operand width and the assignment of
the addressable byte of the cache to each of cache slices
CSO-CST.

0022. Instruction execution slices ES0-ES7 may issue
internal instructions concurrently to multiple pipelines, e.g.,
an instruction execution slice may simultaneously performan
execution operation and a load/store operation and/or may
execute multiple arithmetic or logical operations using mul
tiple internal pipelines. The internal pipelines may be identi
cal, or may be of discrete types, such as floating-point, Scalar,
load/store, etc. Further, a given execution slice may have
more than one port connection to write-back routing network
37, for example, a port connection may be dedicated to load
store connections to load-store slices LS0-LS7, or may pro
vide the function of AGEN bus 38 and/or data bus 39, while
another port may be used to communicate values to and from
other slices, such as special-purposes slices, or other instruc
tion execution slices. Write-back results are scheduled from
the various internal pipelines of instruction execution slices
ES0-ES7 to write-backport(s) that connect instruction execu
tion slices ES0-ES7 to write-back routing network37. Cache
slices CS0-CS7 are coupled to a next higher-order level of
cache or system memory via I/O bus 41 that may be integrated
within, or external to, processor core 20. While the illustrated
example shows a matching number of load-store slices LS0
LS7 and execution slices ES0-ES7, in practice, a different
number of each type of slice can be provided according to
resource needs for a particular implementation.
0023. Within processor core 20, an instruction sequencer
unit (ISU) 30 includes an instruction flow and network con
trol block 57 that controls dispatch routing network 36, write
back routing network37, AGEN bus 38 and store data bus 39.
Network control block 57 also coordinates the operation of

US 2016/0202988 A1

execution slices ESO-ES7 and load-store slices LSO-LS7 with
the dispatch of instructions from dispatch queues Disp0
Disp7. In particular, instruction flow and network control
block 57 selects between configurations of execution slices
ES0-ES7 and load-store slices LSO-LS7 within processor
core 20 according to one or more mode control signals that
allocate the use of execution slices ES0-ES7 and load-store
slices LS0-LS7 by a single thread in one or more single
threaded (ST) modes, and multiple threads in one or more
multi-threaded (MT) modes, which may be simultaneous
multi-threaded (SMT) modes. For example, in the configura
tion shown in FIG. 2, cluster CLA may be allocated to one or
more hardware threads forming a first thread set in SMT
mode so that dispatch queues Disp0-Disp3 only receive
instructions of instruction streams for the first thread set,
execution slices ES0-ES3 and load-store slices LSO-LS3 only
perform operations for the first thread set and cache slices
CS0-CS3 form a combined cache memory that only contains
values accessed by the first thread set. Similarly, in such an
operating mode, cluster CLB is allocated to a second hard
ware thread set and dispatch queues Disp4-Disp7 only
receive instructions of instruction streams for the second
thread set, execution slices ES4-ES7 and LS slices LS4-LS7
only perform operations for the second thread set and cache
slices CS4-CS7 only contain values accessed by the second
thread set. When communication is not required across clus
ters, write-back routing network 37 can be partitioned by
disabling transceivers or Switches SW connecting the portions
of write-back routing network 37, cluster CLA and cluster
CLB. Separating the portions of write-back routing network
37 provides greater throughput within each cluster and allows
the portions of write-back routing network 37 to provide
separate simultaneous routes for results from execution slices
ES0-ES7 and LS Slices LSO-LS7 for the same number of
wires in write-back routing network 37. Thus, twice as many
transactions can be Supported on the divided write-back rout
ing network 37 when switches sw are open. Other embodi
ments of the invention may sub-divide the sets of dispatch
queues Disp0-Disp7, execution slices ES0-ES7. LS slices
LS0-LS7 and cache slices CS0-CS7, Such that a number of
clusters are formed, each operating on a particular set of
hardware threads. Similarly, the threads within a set may be
further partitioned into Subsets and assigned to particular
ones of dispatch queues Disp0-Disp7, execution slices ES0
ES7, LS slices LSO-LS7 and cache slices CS0-CS7. However,
the partitioning is not required to extend across all of the
resources listed above. For example, clusters CLA and CLB
might be assigned to two different hardware thread sets, and
execution slices ES0-ES2 and LS slices LSO-LS1 assigned to
a first subset of the first hardware thread set, while execution
slice ES3 and LS slices LS2-LS3 are assigned to a second
subject of the first hardware thread set, while cache slices
CS0-CS3 are shared by all threads within the first hardware
thread set. In a particular embodiment according to the above
example, switches may be included to further partition write
back routing network 37 between execution slices ES0-ES7
Such that connections between Sub-groups of execution slices
ES0-ES7 that are assigned to different thread sets are isolated
to increase the number of transactions that can be processed
within each sub-group. The above is an example of the flex
ibility of resource assignment provided by the bus-coupled
slice architecture depicted in FIG. 2, and is not a limitation as
to any particular configurations that might be supported for
mapping sets of threads or individual threads to resources

Jul. 14, 2016

such as dispatch queues Disp0-Disp7, execution slices ES0
ES7, LS slices LSO-LS7 and cache slices CS0-CS7.
0024. Referring now to FIG.3, further details of processor
core 20 are illustrated. Processor core 20 includes a branch
execution unit 52 that evaluates branch instructions, and an
instruction fetch unit (IFetch) 53 that controls the fetching of
instructions including the fetching of instructions from
ICache 54. Instruction sequencer unit (ISU) 30 controls the
sequencing of instructions. An input instruction buffer (IB)
51 buffers instructions in order to map the instructions
according to the execution slice resources allocated for the
various threads and any Super-slice configurations that are set.
Another instruction buffer (IBUF) 31 is partitioned to main
tain dispatch queues (Disp0-Disp7 of FIGS. 2-3) and dispatch
routing network 32 couples IBUF 31 to the segmented execu
tion and load-store slices 50, which are coupled to cache
slices 46. Instruction flow and network control block 57 per
forms control of segmented execution and load-store slices
50, cache slices 46 and dispatch routing network 32 to con
figure the slices as illustrated in FIGS. 2-3, according to a
mode control/thread control logic 59. An instruction comple
tion unit 58 is also provided to track completion of instruc
tions sequenced by ISU 30. ISU 30 also contains logic to
control write-back operations by load-store slices LSO-LS7
within segmented execution and load-store slices 50. A power
management unit 56 may also provide for energy conserva
tion by reducing or increasing a number of active slices within
segmented execution and cache slices 50. Although ISU 30
and instruction flow and network control block 57 are shown
as a single unit, control of segmented execution within and
between execution slices ESO-ES7 and load store slices LS0
LS7 may be partitioned among the slices such that each of
execution slices ES0-ES7 and load store slices LSO-LS7 may
control its own execution flow and sequencing while commu
nicating with other slices.
0025 Referring now to FIG. 4, a method of operating
processor core 20 is shown according to an embodiment of
the present invention. An instruction is received at one of
execution slices ES0-ES7 from dispatch routing network 32
(step 60), and if the instruction is not an LS instruction, i.e.,
the instruction is a VS/FX instruction (decision 61), then
FX/VS instruction is issued to the FX/VS pipeline(s) (step
62). If the instruction is an LS instruction (decision 61), the
EA is computed (step 63) and stored in a recirculation queue
(DARQ) (step 64). If the instruction is not a store instruction
(decision 65) the entry is removed from the issued queue (step
67) after the instruction is stored in the DARQ. If the instruc
tion is a store instruction (decision 65), then the store value is
also stored in DARQ (step 66) and after both the store instruc
tion EA and store value are stored in DARQ, the entry is
removed from the issued queue (step 67) and the instruction is
issued from DARQ (step 68). If the instruction is rejected
(decision 69), then step 68 is repeated to subsequently reissue
the rejected instruction. If the instruction is not rejected (deci
sion 69), then the entry is removed from DARQ (step 70).
Until the system is shut down (decision 71), the process of
steps 60-70 is repeated. In alternative methods in accordance
with other embodiments of the invention, step 67 may be
performed only after an attempt to issue the instruction has
been performed, and in another alternative, steps 64 and 66
might only be performed after the instruction has been
rejected once, and other variations that still provide the
advantage of the reduced storage requirements of an entry in
the DARQ vs. and entry in the issue queue.

US 2016/0202988 A1

0026 Referring now to FIG. 5, an example of an execution
slice (ES) 42AA that can be used to implement instruction
execution slices ES0-ES7 in FIGS. 2-3 is shown. Inputs from
the dispatch queues are received via dispatch routing network
32 by a register array 70 so that operands and the instructions
can be queued in execution reservation stations (ER) 73 of
issue queue 75. Register array 70 is architected to have inde
pendent register sets for independent instruction streams or
where execution slice 42AA is joined in a Super-slice execut
ing multiple portions of an SIMD instruction, while depen
dent register sets that are clones in Super-slices are architected
for instances where the super-slice is executing non-SIMD
instructions. An alias mapper 71 maps the values in register
array 70 to any external references, such as write-back values
exchanged with other slices over write-back routing network
37. A history buffer HB 76 provides restore capability for
register targets of instructions executed by ES 42AA. Regis
ters may be copied or moved between Super-slices using
write-back routing network 37 in response to a mode control
signal, so that the assignment of slices to a set of threads or the
assignment of slices to operate in a joined manner to execute
as a Super-slice together with other execution slices can be
reconfigured. Execution slice 42AA is illustrated alongside
another execution slice 42BB to illustrate an execution inter
lock control that may be provided between pairs of execution
slices within execution slices ESO-ES7 of FIGS. 2-3 to form
a super-slice. The execution interlock control provides for
coordination between execution slices 42AA and 42BB sup
porting execution of a single instruction stream, since other
wise execution slices ES0-ES7 independently manage execu
tion of their corresponding instruction streams.
0027 Execution slice 42AA includes multiple internal
execution pipelines 74A-74C and 72 that support out-of
order and simultaneous execution of instructions for the
instruction stream corresponding to execution slice 42AA.
The instructions executed by execution pipelines 74A-74C
and 72 may be internal instructions implementing portions of
instructions received over dispatch routing network 32, or
may be instructions received directly over dispatch routing
network 32, i.e., the pipelining of the instructions may be
Supported by the instruction stream itself, or the decoding of
instructions may be performed upstream of execution slice
42AA. Execution pipeline 72 is a load-store (LS) pipeline that
executes LS instructions, i.e., computes effective addresses
(EAS) from one or more operands. A recirculation queue
(DARQ) 78 is controlled according to logic as illustrated
above with reference to FIG.4, so execution pipeline 72 does
not have to compute the EA of an instruction stored in DARQ
78, since the entry in DARQ 78 is the EA, along with a store
value for store operations. As described above, once an entry
is present in DARQ 78, the corresponding entry can be
removed from an issue queue 75. DARQ 78 can have a greater
number of entries, freeing storage space in issue queue 75 for
additional FX/VS operations, as well as other LS operations.
FX/VS pipelines 74A-74C may differ in design and function,
or some or all pipelines may be identical, depending on the
types of instructions that will be executed by execution slice
42AA. For example, specific pipelines may be provided for
address computation, Scalar or vector operations, floating
point operations, etc. Multiplexers 77A-77C provide for rout
ing of execution results to/from history buffer 76 and routing
of write-back results to write-back routing network 37, I/O
routing network 39 and AGEN routing network(s) 38 that
may be provided for routing specific data for sharing between

Jul. 14, 2016

slices or operations, or for load and store address and/or data
sent to one or more of load-store slices LSO-LS7. Data,
address and recirculation queue (DARQ) 78 holds execution
results or partial results such as load/store addresses or store
data that are not guaranteed to be accepted immediately by the
next consuming load-store slice LSO-LS7 or execution slice
ES0-ES7. The results or partial results stored in DARQ 78
may need to be sent in a future cycle. Such as to one of
load-store slices LS0-LS7, or to special execution units such
as one of cryptographic processors 34A34B. Data stored in
DARQ 78 may then be multiplexed onto AGEN bus 38 or
store data bus 39 by multiplexers 77B or 77C, respectively.
0028 Referring now to FIG. 6, an example of a load-store
(LS) slice 44 that can be used to implement load-store slices
LS0-LS7 in FIG. 2 is shown. A load/store access queue
(LSAQ) 80 is coupled to AGEN bus 38, and the direct con
nection to AGEN bus 38 and LSAQ 80 is selected by a
multiplexer 81 that provides an input to a cache directory 83
of a data cache 82 in cache slice 46 via memory bus 40. Logic
within LSAQ 80 controls the accepting or rejecting of LS
operations as described above, for example when a flag is set
in directory 83 that will not permit modification of a corre
sponding value in data cache 82 until other operations are
completed. The output of multiplexer 81 also provides an
input to a load reorder queue (LRO) 87 or store reorder queue
(SRO) 88 from either LSAQ 80 or from AGEN bus 38, or to
other execution facilities within load-store slice 44 that are
not shown. Load-store slice 44 may include one or more
instances of a load-store unit that execute load-store opera
tions and other related cache operations. To track execution of
cache operations issued to LS slice 44, LRO 87 and SRQ 88
contain entries for tracking the cache operations for sequen
tial consistency and/or other attributes as required by the
processor architecture. While LS slice 44 may be able to
receive multiple operations per cycle from one or more of
execution slices ES0-ES7 over AGEN bus 38, all of the
accesses may not be concurrently executable in a given
execution cycle due to limitations of LS slice 44. Under such
conditions, LSAQ 80 stores entries corresponding to as yet
un-executed operations. SRO 88 receives data for store opera
tions from store data bus 39, which are paired with operation
information Such as the computed Store address. As opera
tions execute, hazards may be encountered in the load-store
pipe formed by LS slice 44 and cache slice 46, Such as cache
miss, address translation faults, cache read/write conflicts,
missing data, or other faults which require the execution of
such operations to be delayed or retried. In some embodi
ments, LRO 87 and SRQ 88 are configured to re-issue the
operations into the load-store pipeline for execution, provid
ing operation independent of the control and operation of
execution slices ES0-ES7. Such an arrangement frees
resources in execution slices ESO-ES7 as soon as one or more
of load-store slices LS0-LS7 has received the operations and/
or data on which the resource de-allocation is conditioned.
LSAQ 80 may free resources as soon as operations are
executed or once entries for the operations and/or data have
been stored in LRQ 87 or SRQ 88. Control logic within LS
slice 44 communicates with DARQ 78 in the particular execu
tion slice ES0-ES7 issuing the load/store operation(s) to coor
dinate the acceptance of operands, addresses and data. Con
nections to other load-store slices are provided by AGEN bus
38 and by write-back routing network37, which is coupled to
receive data from data cache 82 of cache slice 46 and to
provide data to a data un-alignment block 84 of a another

US 2016/0202988 A1

slice. A data formatting unit 85 couples cache slice 44 to
write-back routing network 37 via a buffer 86, so that write
back results can be written through from one execution slice
to the resources of another execution slice. Data cache 82 of
cache slice 46 is also coupled to I/O routing network 41 for
loading values from higher-order cachef system memory and
for flushing or casting-out values from data cache 82. In the
examples given in this disclosure, it is understood that the
instructions dispatched to instruction execution slices ES0
ES7 may be full external instructions or portions of external
instructions, i.e., decoded “internal instructions.” Further, in a
given cycle, the number of internal instructions dispatched to
any of instruction execution slices ES0-ES7 may be greater
than one and not every one of instruction execution slices
ES0-ES7 will necessarily receive an internal instruction in a
given cycle.
0029 While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art that the
foregoing and other changes inform, and details may be made
therein without departing from the spirit and scope of the
invention.
What is claimed is:
1. A method of executing program instructions within a

processor core, the method comprising:
receiving a stream of instructions including functional

operations and load-store operations at an issue queue;
computing effective addresses of load operations and store

operations;
issuing the load operations and store operations to a cache

unit;
storing entries corresponding to the load operations and the

store operations at a recirculation queue;
removing the load operations and store operations from the

issue queue; and

Jul. 14, 2016

Subsequently reissuing one of the load operations or store
operations to the cache unit from the recirculation queue
if the one of the load operations or store operations is
rejected by the cache unit.

2. The method of claim 1, wherein the storing entries stores
only the effective address of the load operations or store
operations and for store operations, the value to be stored by
the store operation.

3. The method of claim 2, further comprising:
removing load operations from the issue queue once the

effective address is written to the recirculation queue:
and

removing Store operations from the issue queue once the
effective address and the values to be stored by the store
operations are written to the recirculation queue.

4. The method of claim 1, further comprising:
removing load operations from the issue queue once the

effective address is written to the recirculation queue:
and

issuing the store operations and the values to be stored by
the store operations to the cache unit before removing
the store data from the issue queue.

5. The method of claim 1, wherein the issuing issues the
load and store operations to the cache unit in the same pro
cessor cycle as the storing entries stores the effective address
of the load or store operation in the recirculation queue.

6. The method of claim 1, wherein the cache unit is imple
mented as a plurality of cache slices to which the load and
store operations may be routed via a bus, and wherein the
reissuing of the load operations or the store operations is
directed to a different cache slice than another cache slice that
has previously rejected the load operations or the store opera
tions.

