Title: CAPSULE FOR THE PREPARATION OF A BEVERAGE BY CENTRIFUGATION

Abstract: Capsule (1) for the preparation of a beverage by centrifugation in a beverage preparation device; the capsule comprising: a generally concave outer wall (2) and a generally concave inner wall (3); each wall having a peripheral portion (4, 5) extending substantially rotationally around a central axis (1) and a bottom portion (6, 7); a lid (18) extending transversely to said central axis (1) and covering said outer and inner walls (2, 3); and forming with said inner cavity an outer cavity (8) having beverage ingredients (9), an outer cavity (10) positioned between the inner and outer walls (2, 3).
Published:

— with international search report (Art. 21(3))
Capsule for the preparation of a beverage by centrifugation

Field:

The present invention relates to a capsule, containing beverage ingredients, for preparing a beverage in a beverage preparation device using the forces of centrifugation.

Background:

Capsules containing beverage ingredients and designed for producing a beverage in a beverage preparation device by supplying liquid in the capsule and by extracting the beverage using the centrifugal forces are known.

The principle consists in preparing a beverage by forcing a liquid (usually water) through the beverage ingredients contained in the capsule using the centrifugal forces obtained when the capsule is rotated in the device at elevated speed. Usually liquid is supplied in the centre of the capsule. The rotation of the capsule in the device creates a centrifugal pressure gradient in the capsule that forces liquid through the ingredients. The beverage is expelled at the periphery of the capsule and usually collected by a collecting assembly of the device.

A capsule for preparing a beverage and a system using centrifugal forces is for example described in WO2008/148650. The single-use capsule comprises: an enclosure containing a predetermined amount of food substance, a plurality of outlet openings of the enclosure for enabling the food liquid to leave the enclosure under the centrifugal forces exerted in the capsule during centrifugation, said outlet openings being arranged at a peripheral portion of wall of the enclosure.

The capsule according to the prior art suffers the drawback that it requires a collecting assembly of the beverage preparation device to collect the centrifuged beverage and guide it properly to the recipient (e.g., cup or mug). Therefore, the beverage necessarily contacts the device which becomes contaminated by food.
contact. This requires the device to be frequently rinsed. Also, the taste of the beverage can be affected by effect of cross-contamination of a beverage dispensed before. Furthermore, the collecting assembly makes the device more cumbersome as it usually surrounds the capsule entirely.

Summary of the invention:

The present invention alleviates these problems by providing a capsule suitable for use in a centrifugal beverage preparation device without the need for an external collecting assembly of the device. As a result, the problems linked to the food contamination can be solved. The design of the device can be greatly simplified.

The invention relates to a capsule for the preparation of a beverage by centrifugation in a beverage preparation device; the capsule comprising:

- a generally concave outer wall and a generally concave inner wall; each wall having a peripheral portion extending substantially revolutionary around a central axis (I) and a bottom portion;
- a lid extending transversally to said central axis (I) and covering said outer and inner walls; and forming with said inner wall an inner cavity containing beverage ingredients,
- an outer cavity positioned between the inner and outer walls, wherein beverage outlets or outlet precursors are positioned on the peripheral portion of the inner wall to enable the beverage to be displaced from the inner cavity to the outer cavity under the effect of centrifugal pressure, said outer cavity thereby collecting the beverage coming from the inner cavity.

The dependent claims further define the invention.

In particular, the bottom portion of the outer wall preferably comprises a beverage outlet enabling the beverage to leave the capsule. The outlet may be open forming communication for liquid between the outer cavity and the external environment. Alternatively, the outlet may comprise a closing means such as a peelable membrane which, after removal, provides communication for liquid between the outer cavity and the external environment.
The beverage outlet is preferably aligned with the central axis of the capsule. The position of the outlet enables a beverage delivery the lowest possible pressure thereby greatly diminishing the effect of liquid dispersion due to the centrifugal forces exerted in the capsule. Preferably, the beverage outlet has a larger transversal dimension of less than 5 mm, more preferably less than 3.5 mm, most preferably between 0.5 and 3.5 mm.

The invention further relates to the use of a capsule as aforementioned for preparing a beverage in a centrifugal beverage preparation device.

The appended drawings are given as a matter of non-exhaustive illustration of the preferred embodiments

Brief description of the figures:

Fig. 1 is a cross-sectional view of a capsule with ingredients contained therein according to the present invention;

Fig. 2 is a cross-sectional view and exploded view of a capsule according to claim 1;

Fig. 3 is a detailed view of the capsule of Figs. 1 and 2;

Fig. 4 shows a capsule according to Figs. 1 to 3 in a beverage preparation device during the pre-wetting operation of the ingredients contained in the capsule;

Fig. 5 shows the capsule according to Figs 1 to 3 in a beverage preparation device when a gradient of pressure builds up at the beginning of the centrifugation;

Fig. 6 is a detailed view showing the outlets being formed from the outlet precursors by the effect of the centrifugal forces acting at the beginning of the centrifugation;

Fig. 7 shows the capsule according to Figs. 1 to 3 in a beverage preparation device during the centrifugation when beverage is drained out the capsule;

Fig. 8 shows the capsule according to Figs. 1 to 3 in a beverage preparation device in the final step of the centrifugation causing the emptying of the capsule;

Fig. 9 is a detailed view of the capsule of Figs. 1 and 2 according to a first variant;

Fig. 10 is a detailed view of the capsule of Figs. 1 and 2 according to a second variant;

Fig. 11 shows the capsule of the variant of Fig. 10 during the extraction of the beverage by centrifugation.
Detailed description of the figures:

The present invention relates to a capsule for the preparation of a beverage designed for being used in a centrifugal beverage preparation device, such device driving the capsule in rotation at a sufficient rotational speed or speed range to force a liquid supplied in the centre line of the capsule to traverse the beverage ingredients by the effect of the centrifugal forces created on the liquid. The capsule is given a particular design which enables the capsule to collect and dispense the centrifuged beverage without contacting parts of the device itself.

In Figs. 1 to 3, a first mode of the capsule is illustrated. The capsule 1 comprises an outer wall 2 and an inner wall 3. The two walls 2, 3 are generally concave when viewed from the interior of the capsule. The outer wall 2 has a peripheral portion 4 and the inner wall also presents a peripheral portion 5. The two peripheral portions are preferably distant one another, for example, from 0.5 to 10 mm. Both peripheral portions 4, 5 extend substantially revolutionarily around a central axis "I". It should be noted that Fig. 2 shows in cross-section only half of the capsule; the other half being removed for the comprehensiveness. The outer wall 2 extends downwardly by a bottom portion 6. The inner wall as well extends downwardly by a bottom portion 7. As a result, a cavity 8 is formed by the inner wall which contains beverage ingredients 9. In other terms, the inner wall forms a cup-shaped member which is inserted in the outer wall which is formed of a comparatively larger cup-shaped member. As a result of this configuration, an outer collecting cavity 10 is left between the two walls. The collecting cavity preferably extends from the peripheral portions to the bottom walls.

In this first mode, the inner wall comprises outlet precursors 11 which are positioned on the peripheral portion 5 of the inner wall facing the peripheral portion 4 of the outer wall (Fig. 3). The outlet precursors form means enabling to create beverage outlets through the inner wall as a result of the centrifugal pressure exerted on the peripheral portion of the inner wall. The outlet precursors are preferably revolutionarily distributed on the inner wall around axis I. Most preferably, they are positioned at or in the vicinity of the largest radius. Therefore, due to the largest
radius of the inner wall, the centrifugal pressure of liquid is the highest as well enabling the outlets to be created as a result of such pressure. The outlet precursors can be formed by series of premade openings 12 provided in the inner wall and covered by a tearable membrane 13. The membrane 13 may be constituted as a single annular band, as illustrated, which is affixed to the inner wall. The membrane can be partially or fully fixed to the inner wall. Of course, the membrane can be formed by two or more pieces of bands. For example, the membrane can be fixed to the inner wall by an adhesive, by lamination and/or by a sealing technique such as heat or ultrasonic sealing. The band can be fixed to the interior of the inner wall. The structure of the outlet precursors can differ from the illustrated structure. For example, the outlet precursors can be formed of a plurality of pre-weakened or precut areas provided in the inner wall. A pre-weakened area is typically an area in which the thickness of the inner wall is reduced such as along a line or a conjunction of lines thereby enabling a rupture of the area along these line(s) when a pressure of liquid is applied thereon. A precut area refers to an area of the inner wall in which the full thickness of the wall is cut, continuously or discontinuously, to form upon the effect of liquid under pressure, a larger opening such as by deformation, extension, rupture, tearing, or other physical opening conditions implying force or pressure of liquid on the area.

The premade openings 12 can be circular or elongated. Elongated openings may be slits formed in the inner wall, for example, slits oriented substantially parallel to the central axis. The premade openings 12 in the inner wall preferably have a diameter or a smaller cross-sectional dimension that is lower than 500 microns, more preferably, lower than 400 microns, most preferably, lower than 300 microns. The smaller cross-sectional dimension refers to the dimension of a non-circular opening such as the width "w" of an elongated slit provided in the inner wall. This critical dimension (i.e., diameter or width) is typically determined in such a manner to be smaller than the average particle size of the beverage ingredients. The particle size can be expressed in volumetric mean diameter \(D_{4,3}\) as known per se. Preferably, the beverage ingredients are roast and ground coffee particles which may have a particle size comprised between 650 and 180 microns. Usually, larger particle sizes, such as between 450 and 650 microns are generally selected for producing a filter-type or other long-type coffee, whereas smaller particle sizes, such as between 180 and 350
microns are generally selected for producing a espresso-type, ristretto or other short-type coffee.

As shown in particular in Fig. 3, a peripheral flange 14 is provided on the capsule. The flange extends outwardly from outer wall, i.e., in a radial direction transverse to the central axis 1. The flange may not extend necessarily strictly perpendicular to the axis 1 but may form a slight angle either downwardly or upwardly. The flange is formed at least partially by an outwardly extending edge 15 of the outer wall. Furthermore, the flange comprises an outwardly extending edge 16 of the inner wall. The edge 16 can be sealed onto the edge 15 of the outer wall. Preferably, the inner radius "Ri" of the edge 16 of the inner wall (to the axis 1) of the inner wall is smaller than the inner radius "R2" of the edge 15 of the outer wall. As a result, the edge 16 of the inner wall has an unsealed portion which extends inwardly to enable maintain a certain distance "d" between the peripheral portions of the inner and outer walls. Furthermore, the outer radius of the edge 15 of the outer wall (to the axis 1) is larger than the outer radius of the edge 16 of the inner wall. The free end of the flange may be provided with a curled portion 17.

A lid 18 is further provided for at least partially closing the outer and inner walls of the capsule. The lid forms a wall transversally oriented to the axis 1. The lid comprises a transversal peripheral portion 19 which is sealed on the flange 14. As preferably shown in Fig. 3, the lid is sealed on the edge 16 of the inner wall. The lid could also be sealed further outwardly on the edge of the outer wall. The lid may be formed of a perforable membrane. Such membrane can made of liquid tight material. More preferably, it is made of packaging material that provides gas barrier properties and also preferably light barrier properties. The outer wall of the capsule may as well be constituted of packaging material(s) that provide gas barrier properties and also preferably light barrier properties. As a result, the membrane before perforation, preferably, the entire capsule is gastight. Furthermore, the internal gas volume of the capsule is filled with gas containing low amount of oxygen or substantially no oxygen. The freshness of the content in the capsule is therefore greatly improved, notably when such content is sensitive to oxygen such as ground coffee. A gastight membrane can be made of aluminium, plastic laminate containing EVOH, laminate of paper and EVOH or combinations thereof. In an alternative, the lid is formed of a wall
which has a central aperture for enabling the liquid supplying means of the beverage preparation device to be inserted through the lid. For example, the lid can be a semi-rigid or rigid plastic wall such as made of PP or PE plastic. As apparent in the figures, the lid of the capsule may form a slight bulged (convex) profile due to the internal pressure of gas (e.g., CO₂ and/or Nitrogen) contained in the inner cavity.

The bottom portion of the outer wall 2 furthermore comprises a beverage outlet 20 enabling the beverage to leave the capsule as will be explained later on. The beverage outlet is preferably positioned in alignment with the central axis I. The positioning of the outlet enables the delivery of the beverage at the lowest possible centrifugal pressure in the capsule. This positioning favours the emptying of the capsule and reduces the velocity of the flow coming out of the capsule.

Figs. 5 to 8 illustrate a preferred method for preparing a beverage from a capsule of the invention. The capsule is provided in a beverage preparation device comprising capsule holding means 21. The capsule holding means may comprise a lower ring-shaped support 22 for holding the flange 14 of the capsule and an upper ring-shaped support 23 for pressing the flange 14 against the lower ring-shaped support 22. The flange is thereby sufficiently pinched between the two supports for allowing the capsule to be driven in rotation along axis "I" while resisting to the torque, related to the weight and mass distribution of the capsule, applied during the next centrifugal operation. The device further comprises liquid supply means 24 for supplying liquid in the capsule through the lid. For this, the liquid supply means 24 comprises a liquid injector 25 connected upstream to a pump 29 and a liquid reservoir (not shown), for example, a hollow needle, and a sealing member 26 such as an O-ring placed at the junction between the injector and the contact surface 27 of the support 23. The device is preferably designed to leave the bottom portion 4 of the outer wall uncovered, in particular, its beverage outlet 20. The liquid injector perforates the lid 18 when the holding means are in engagement with the capsule. The hollow tip 28 of the injector is therefore positioned along the centre line "I" of the capsule and preferably engaged in between ¼ and ¾ of the central depth of the cavity. This enables to dispense liquid in the centre of the mass of ingredients in a relatively homogeneous manner.
The holding means 21 are arranged in the device to be driven in rotation about the central axis "I". In general the holding means are mounted to a frame on bearings and are driven by a rotational motor (not shown). The injector may also be driven in rotation with the holding means or be static with the frame.

In a first step (Fig. 5), liquid is supplied in the inner cavity 8 of the capsule containing the beverage ingredients. Preferably, liquid is supplied until a positive pressure of liquid is reached in the cavity. The pressure may, for instance, be of between 0.3 and 1 bar. For coffee, such pre-wetting time may be beneficial for the quality of the beverage. Therefore, this step may be operated between 1 to 10 seconds, for instance.

In the next step, the capsule starts being rotated by the holding means in the device. During the rotation of the capsule, the liquid supply means carry on supplying liquid in the capsule. The capsule is rotated at elevated rotational speed around axis "I" to force liquid through the beverage ingredients in centrifugal (substantially radial) direction as shown in Fig. 7. The rotational speed can be comprised between 500 and 10000 rpm, preferably between 1000 and 7000 rpm. A gradient of pressure builds up in the capsule that progressively increases from the central axis "I" towards the peripheral portion 5 of the inner wall. The pressure at the central axis is function of the liquid pressure built by pump 29 in the device. Preferably, such pressure is a positive pressure in the range of several millibar to several hundreds of millibar. Preferably, the pressure of supplied liquid in the axis I is of at least 300 mbar, preferably comprised between 300 mbar and 1 bar, most preferably between 300 and 600 mbar. The pressure of liquid is the one that can be measured with a pressure gauge installed at the liquid injector just upstream of the capsule. The gradient of pressure starting from such central pressure and progressively increasing towards the periphery of the cavity is function of the radius in the cavity (from axis I to the inner wall) and the rotational speed in the capsule. Therefore, the speed is controlled by the device to ensure that the pressure of liquid becomes sufficient to create outlets from the outlet precursors. In particular, the outlets 32 are formed by a tearing of the membrane 13 at the location of the openings 12 under the effect of the centrifugal pressure in this location. For example, the pressure may reach a value or values between one to several bars in the peripheral portion of the inner wall. As
outlets are created in the inner wall, the liquid or beverage flows through the inner wall to the collecting cavity 10. As a positive pressure of supplied liquid is maintained in the cavity 8, beverage accumulates progressively in the collecting cavity 10 and finally when the collecting cavity is sufficiently filled with beverage and still a positive pressure is present in the centre of the cavity, beverage drains out through the beverage outlet 20.

Beverage is poured directly into a receptacle such as a cup or mug placed beneath the outlet 20. The outlet preferably extends by a duct of relatively small diameter to reduce the velocity of the dispensed liquid coming out of the capsule. Preferably, the diameter of the outlet is smaller than 5 mm, more preferably it is comprised between 0.5 to 3.5 mm. The duct may also extend beyond the bottom portion of the outer wall a distance of between 0.5 to 10 mm.

At the end of the beverage dispensing, as shown in Fig. 8, the supply of liquid may be stopped such as by stopping the pump 29 or closing a valve in the liquid supply line. Consequently, the pressure in the inner cavity 8 of the capsule drops. The residual liquid contained in the inner cavity 8 can thus be transferred to the collecting cavity 10 by maintaining the rotation of the capsule at an elevated rotational speed, e.g., 500 to 10000 rpm. The centrifugation can be maintained until the mass of depleted ingredients (ground coffee) has substantially dried. The rotation is then stopped and the residual liquid is drained through the beverage outlet 20. Therefore, the capsule is emptied from liquid by controlling the supply of liquid in the capsule and the centrifugation of the capsule so that all liquid is moved to the collecting cavity and then drained through the capsule without contacting the device.

A wide range of beverage volume, such as of between 25 to 250 ml, can be delivered depending on the volume of supplied liquid in the capsule. For example, a small coffee of between 25 ml to 40 ml can be dispensed with a weight of about 4 to 7 grams of roast and ground coffee. A larger coffee of between 100 to 250 ml can be dispensed with a weight of about 7 to 15 grams of roast and ground coffee. The rotational speeds can be controlled as a function of the type of beverage to be extracted from the capsule. For example, a large coffee volume may require to be dispensed at higher flow rate to prevent an over-extracted taste, thereby requiring a
higher rotational speed to be controlled by the device. The rotational speed may also be varied during the preparation of the beverage. In particular, the rotational speed may be increased to a higher value for obtaining the perforation of the membrane (i.e., opening the outlets) and then be reduced during the beverage extraction through the beverage outlet.

Of course, the invention can be contemplated without a perforable membrane 13. For instance, the inner wall may already be opened at its peripheral portion by a series of openings. The outlet precursors could also be envisaged differently.

For example, Fig. 9 illustrates a mode in which the outlet precursors 11 are formed by pre-weakened areas 30 in the inner wall 3. Each pre-weakened area is obtained by a localized reduction of the thickness of the inner wall. Such reduction of thickness can be given the shape of a slot or other form.

Fig. 10 illustrates another mode of the capsule of the invention in which the outlet precursors 11 are formed by expandable precut areas 31. As a non limited example, the precut area are formed by a series of revolutionarily distributed slits provided through the inner wall in the peripheral portion. The inner wall may be formed of a relatively deformable material, such as plastic, rubber, textile, paper and any combinations thereof, to enable the slit to open under the effect of the centrifuged liquid. Preferably, a filter material 32 such as a filter band is placed on the inner wall for covering the slits. Fig. 10 shows the expansion of the slits 31 by effect of the pressure of liquid. As a result, the filter material prevents the beverage ingredients from leaving the cavity 8 when the slits expand under the effect of the centrifugal pressure.

Although the invention has been described by way of example, it should be appreciated that variations and modifications may be made without departing from the scope of the invention as defined in the claims. Furthermore, where known equivalents exist to specific features, such equivalents are incorporated as if specifically referred in this specification.
Claims:

1. Capsule (1) for the preparation of a beverage by centrifugation in a beverage preparation device; the capsule comprising:
 - a generally concave outer wall (2) and a generally concave inner wall (3);
 each wall having a peripheral portion (4, 5) extending substantially revolutionary around a central axis (I) and a bottom portion (6, 7);
 - a lid (18) extending transversally to said central axis (I) and covering said outer and inner walls (2, 3); and forming with said inner wall an inner cavity (8) containing beverage ingredients (9),
 - an outer cavity (10) positioned between the inner and outer walls (2, 3), wherein beverage outlets or outlet precursors (11) are positioned on the peripheral portion (5) of the inner wall to enable the beverage to be displaced from the inner cavity (8) to the outer cavity (10) under the effect of centrifugal pressure, said outer cavity (10) thereby collecting the beverage coming from the inner cavity (8).

2. Capsule according to claim 1, wherein the bottom portion (6) of the outer wall (2) comprises a beverage outlet (20) enabling the beverage to leave the capsule.

3. Capsule according to claim 2, wherein the beverage outlet (20) is aligned with the central axis (I).

4. Capsule according to claim 2 or claim 3, wherein the beverage outlet (20) has a larger transversal dimension of less than 5 mm, preferably less than 3.5 mm.

5. Capsule according to any one of the preceding claims 2 to 4, wherein the beverage outlets or outlet precursors (11) are positioned closer to lid (18) than to the beverage outlet (20) of the outer wall.
6. Capsule according to any one of the preceding claims, wherein the beverage outlets or outlet precursors (11) are formed of openings (12) evenly and revolutionarily distributed on the inner wall (3) around the axis (I).

7. Capsule according to any one of the preceding claims, wherein the outlet precursors (11) are formed by premade openings (12) covered by a tearable membrane.

8. Capsule according to any one of the preceding claims 6 or 7, wherein each opening (12) has a diameter or a smaller cross-sectional dimension lower than 500 microns.

9. Capsule according to any one of the preceding claims 6 to 8, wherein the openings (12) are circular or form elongated slots.

10. Capsule according to any one of the preceding claims 1 to 5, wherein the outlet precursors (11) are formed of a plurality pre-weakened or precut areas.

11. Capsule according to claim 10, wherein the pre-weakened or precut areas are evenly and revolutionarily distributed on the inner wall around the axis (I).

12. Capsule according to any one of the preceding claims, wherein it comprises a peripheral flange (14) for enabling the capsule to be firmly held by a rotating assembly of the beverage preparation device when driven in rotation around its central axis (I).

13. Capsule according to claim 12, wherein the flange (14) is formed by, at least, an outwardly extending edge (15) of the outer wall (2).

14. Capsule according to claim 13, wherein the inner wall (3) is sealed onto the outwardly extending edge (15) of the outer wall.

15. Capsule according to any one of the preceding claims, wherein the lid (18) is formed by a perforable liquid-tight membrane.
16. Use of a capsule according to any one of the preceding claims for preparing a beverage in a centrifugal beverage preparation device.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) and/or both national classification and IPC

INV. A47J31/22 B65D85/804

ADD.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A47J B65D

ADD.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/148650 AI (NESTEC SA [CH]; YOAKIM ALFRED [CH]; DENISART JEAN-PAUL [CH]; RYSER ANTD) 11 December 2008 (2008-12-11) page 9, paragraph 11 - page 20, paragraph 1; figures -------</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>WO 2011/023711 AI (NESTEC SA [CH]; YOAKIM ALFRED [CH]; DENISART JEAN-PAUL [CH]; RYSER ANTD) 3 March 2011 (2011-03-03) page 9, paragraph 6 - page 17, paragraph 1; figures -------</td>
<td>1-16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search

13 May 2013

Date of mailing of the international search report

23/05/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

De Terlizzi, Mari no

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>wo 2008148650 A l</td>
<td>11-12-2008</td>
<td>AR 066859 Al</td>
<td>16-09-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 540480 T</td>
<td>15-01-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2008258709 Al</td>
<td>11-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2688378 Al</td>
<td>11-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101687591 A</td>
<td>31-03-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2152607 T3</td>
<td>23-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2152607 Al</td>
<td>17-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2378858 T3</td>
<td>18-04-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1138553 Al</td>
<td>06-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010530257 A</td>
<td>09-09-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100017505 A</td>
<td>16-02-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2152607 E</td>
<td>03-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2009149202 A</td>
<td>20-07-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 200911649 A</td>
<td>16-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010178392 Al</td>
<td>15-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2008148650 Al</td>
<td>11-12-2008</td>
</tr>
<tr>
<td>wo 2011023711 A l</td>
<td>03-03-2011</td>
<td>AR 079594 Al</td>
<td>08-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010288568 Al</td>
<td>23-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2769423 Al</td>
<td>03-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102595983 A</td>
<td>18-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2470053 Al</td>
<td>04-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013502954 A</td>
<td>31-01-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012171334 Al</td>
<td>05-07-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011023711 Al</td>
<td>03-03-2011</td>
</tr>
<tr>
<td>us 2011151075 A l</td>
<td>23-06-2011</td>
<td>CA 2784752 Al</td>
<td>23-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102753062 A</td>
<td>24-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2512305 Al</td>
<td>24-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20120112583 A</td>
<td>11-10-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011151075 Al</td>
<td>23-06-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2011075638 Al</td>
<td>23-06-2011</td>
</tr>
</tbody>
</table>