
(19) United States
US 2001 0042094A1

(12) Patent Application Publication (10) Pub. No.: US 2001/0042094A1
MITCHELL et al. (43) Pub. Date: Nov. 15, 2001

(54) METHODS AND APPARATUS FOR
EFFICIENTLY TRANSMITTING
INTERACTIVE APPLICATION DATA
BETWEEN A CLIENT AND A SERVER
USING MARKUP LANGUAGE

(76) Inventors: DAVID C. MITCHELL, OREM, UT
(US); BEN WALTERS, SALT LAKE
CITY, UT (US); DALE MITCHELL,
OREM, UT (US)

Correspondence Address:
TESTA, HURWITZ & THIBEAULT, LLP
HIGH STREET TOWER
125 HIGH STREET
BOSTON, MA 02110 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

User WorkStation 10

Web Browser 12
Application Program

Internet 20

Web Page Request (URL) 122

(21) Appl. No.: 09/391,068

(22) Filed: Sep. 7, 1999

Publication Classification

(51) Int. Cl." ... G06F 15/16
(52) U.S. Cl. .. 709/203

(57) ABSTRACT

A method for efficiently transferring data between a client
and a server includes the Steps of: providing an application
program; providing an application-independent client pro
ceSS effecting a plurality of client States, providing an
application-independent Server process effecting a plurality
of Server States, transferring data from the Server process to
the client process in response to an application program; and
updating at least one client State in response to the trans
ferred data. A related apparatus is also disclosed.

Web Server Computer System 130

User Interface 116

USER

Web Page (HTML) 124

Web Server Application
Program 132

Application Independent Server
Process 134

Application Components 136

Nov. 15, 2001 Sheet 1 of 6 US 2001/0042094A1 Patent Application Publication

I GIRI[15)I H

? ? ? ? ? ? ? ? • ? ? ? ? ? - +

YHOEISÍN

Patent Application Publication Nov. 15, 2001 Sheet 2 of 6 US 2001/0042094A1

FIGURE 2

Operating System 410

Web Server Application 132

Application Programs 420

Application Components 136

Transaction Processor 430

Application Independent Server Process 134
Application Component State 442

Data Relationships 446
User Interface Data 448
Connection Handler 450
Manager Object 452

Meta Object 454
Proxy Object 456

Application Independent Server Process N

US 2001/0042094A1 Patent Application Publication Nov. 15, 2001 Sheet 3 of 6

Patent Application Publication Nov. 15, 2001 Sheet 4 of 6 US 2001/0042094A1

FIGURE 4

Operating System 612

Web Browser Application 112

Application Independent Client Process 114
Description File 310

-User Interface Data 448
-Data Relationships 446

Control Identifiers 618
User Interface Objects 620
Control State 622
Control Objects 624

Patent Application Publication Nov. 15, 2001 Sheet 5 of 6 US 2001/0042094A1

FIGURE 5

710 Developer designs the User Interface and Establishes relationships between U.I. controls and
server components

712 Form a description file representing the U.I. layout and relationships

714. Receive a request from AICP to run the application program

716 Transmit description file to AICP

718 Instantiate a AISP associated with the application program

732 Map controls in client U.I. to server components

Patent Application Publication Nov. 15, 2001 Sheet 6 of 6 US 2001/0042094A1

FIGURE 6

810 Access an initialization file and transmit a request to server to run application program

812 Select description file

814 Interpret description data, construct controls, and layout presentation

816 Transmit a request to server to establish a logical connection to server components

818 Receive initial state information from server and populate controls

820 Display U.I. to user

822 Maintain references to control objects

824 Update control objects with state changes received from the AISP

826 Transmit state changes of control objects to the AISP

US 2001/0042094A1

METHODS AND APPARATUS FOR EFFICIENTLY
TRANSMITTING INTERACTIVE APPLICATION
DATA BETWEEN A CLIENT AND A SERVER

USING MARKUP LANGUAGE

FIELD OF THE INVENTION

0001. The present invention relates to client-server net
WorkS and, in particular, to methods and apparatus for
remotely executing an application and displaying applica
tion output.

BACKGROUND OF THE INVENTION

0002 Contemporary computer networks consist of a
number of computer Systems, called nodes, communicating
with other computer Systems via communication linkS.
Typically, Some of the nodes are client nodes and other
nodes are Server nodes. A client node formulates and deliv
erS queries to a Server node. A user of the client node enters
the queries through a user interface operating on the client
node. The Server node evaluates the queries and delivers
responses to the client node for display on the client user
interface.

0003. Usually, the server nodes host a variety of appli
cation programs or processes that can be accessed and
executed by client nodes. When a client node launches an
application program, the execution of that application pro
gram can occur at either the client node or the Server node,
depending upon the computing model followed by the
computer network.
0004. In a client-based computing model, the application
program is packaged and Sent down to, or pre-installed on,
the client node, allowing the client node to run the applica
tion using the resources of the client node. This approach has
several drawbacks. First, the client node must have Sufficient
memory, disk Space, and processing power to effectively
execute the application. A related problem that occurs using
this model is that the number of applications a given client
is able to execute is limited due to client resource con
Straints. Further, applications built this way are complex to
develop and maintain and typically require modification or
"porting for all Supported client computer System types.
Moreover, this technique exacerbates the administration
burden on a network administrator.

0005. In a server-based computing model, the server
node executes the application program, and only the control
information for the client user interface is transmitted acroSS
the computer network to the client node for display. Using
this approach, user interface events must be sent between the
client and the Server in order for the Server application to
process the events. This results in perceived delays of user
interface response. Further, the application program must be
Specifically written, or changed, to Support the user interface
on the client node. This increases the complexity of the
application and prevents this technique from being useful
with off-the-shelf applications.
0006. A refinement of the server-based model is to Sup
plant the device driver to which the application communi
cates in order to Send Screen and device updates back and
forth between the client and the server. This approach avoids
requiring applications to be rewritten. However, this
approach requires device information to be sent between the

Nov. 15, 2001

client and the Server in order to maintain the client display,
again introducing perceived latency into the interface. Fur
ther, Server-side processing requirements are increased in
order to Satisfy resulting device information required for
communication with each connected client.

0007. A recent, further refinement of the server-based
model is to deploy the user interface portion of the appli
cation as a mark-up language document Such as HyperText
Markup Language (HTML) document. However in using
this approach, information Sent from the Server application
to the client begins to “age” immediately. In other words the
information may change on the Server but the client would
not automatically be notified and updated. Further, with this
approach interactivity requires context Switching between
pages even to perform Simple tasks.
0008. The present invention avoids these shortcomings.

SUMMARY OF THE INVENTION

0009. The present invention provides a mechanism by
which the user interface portion of the application can be
delivered to the computer user either on the same machine
on which the application is executing or on another machine
remote from the machine executing the application. The
invention Separates the user interface from the underlying
application enabling the user interactive portion of the
application to be extremely simple. The invention also
permits the user interactive portion to be deployed on a wide
range of client hardware environments without bringing
with it all the required logic for performing the functionality
of a particular application. These features give the user the
effect of directly interacting with whole application even
though the main part of the application is potentially running
Somewhere else.

0010 Thus, the present invention overcomes many of the
problems faced by traditional approaches outlined above.
User interface, event handling and Screen rendering logic
Stay on the client, thus dramatically reducing network traffic
and latency. The entire user interface and how that interface
connects to application components on the Server are Sent as
a pure data description to the client (rather than code). This
description is “interpreted” by the client to render the
graphics user interface (GUI) and connect to the application
(through the transfer of State) running either in the same
process space (same machine) or on the server (remote
machine).
0011 Because the server can communicate with a par
ticular application client with Simply a data description, no
additional code needs to be installed on the client machine.
An application-independent client process (AICP) reads the
description and presents that description to the user as a
typical client user interface. Therefore, the AICP can com
municate with an unlimited number of Server applications
with a new data file description for each program (which can
be cached automatically as required or as Specified by the
client). No application specific administration is required for
executing an AICP-deployed application using this
approach.

0012. With the AICP, no server side processing is
required to either render the user interface portion or handle
the GUI events portion of the application. The server does,
however, coordinate State information being passed to and

US 2001/0042094A1

from the client and Sends that information automatically to
the appropriate application components involved (both cli
ent and server initiated data changes).
0013 Using the AICP, the developer can focus primarily
on the functional or busineSS logic portion of the application
and let the AICP handle all of the user interface rendering,
event handling, and connection of the user interface controls
with the underlying application components. A builder com
ponent allows the developer to layout the user interface
windows as well as create a relationship between the Visual
control and the underlying application Server component
with which it is associated. With the AICP no application
Specific code needs to be sent to the client. Only user
interface controls need be sent if required. Even though there
is no code on the client, the user's experience with the client
application is similar to hand-coded clients found in the
client based mode. In one embodiment the AICP is embed
ded in an HTML browser environment which enables web
deployment within an HTML page without the limitation
associated with HTML.

0.014. The foregoing and other objects, features and
advantages of the invention will be apparent from the
following more particular description of the embodiments of
the invention, as illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0.015 FIG. 1 is a block diagram of an embodiment of the
System of the invention;
0016 FIG. 2 is a block diagram of an embodiment of the
memory configuration of a Server constructed in accordance
with the invention;
0017 FIG. 3 is an operational block diagram showing an
embodiment of the communications between a server and a
client node constructed in accordance with the invention;
0.018 FIG. 4 is a block diagram of an embodiment of the
memory configuration of a client constructed in accordance
with the invention;
0019 FIG. 5 is a flow diagram of an embodiment of the
operation of the Server constructed in accordance with the
invention; and
0020 FIG. 6 is a flow diagram of an embodiment of the
operation of the client node constructed in accordance with
the invention.

DETAILED DESCRIPTION OF THE
INVENTION

0021 Although the method and apparatus of the present
invention is described in the context of a web server and web
browser process communicating over the Internet, those
skilled in the art will recognize that the present invention can
also be practiced over any other type of network (e.g.,
telephone, cable, LAN, WAN, wireless, fiber), within the
Same physical computer System, or with portions of the
invention (e.g. the application independent client process)
operating in an Internet appliance or cable TV Set-top box.
For those individuals who are not familiar with the Internet,
the world-wide web, web servers, and web browsers, a brief
Overview of these concepts is presented here.
0022 Referring to FIG. 1, a user that wishes to access
information and execute applications on the Internet 120

Nov. 15, 2001

typically has a computer WorkStation 110 that executes an
application program known as a web browser 112. An
application independent client process (AICP) 114, in accor
dance with the present invention, in one embodiment, is
provided as a plug-in to the web browser 112. The user
interacts with the web browser 112 and AICP 114 via a user
interface 116 that in one embodiment includes a data entry
device (e.g., a keyboard) and a visual display device (e.g., a
computer monitor). Under the control of web browser 112,
the user WorkStation 110 Sends a web page request 122 over
the Internet 120. Web page data can be in the form of text,
graphics and other forms of information. Each web server
computer system 130 on the Internet 120 has a known
address (a URL) which the user must supply to the web
browser 112 in order to connect to the appropriate web
server 130. Because web server 130 can contain more than
one web page, the user will also specify in the address which
particular web page 124 he or she wants to view on web
server 130. The web server computer system 130 executes a
Web Server application program 132, monitors requests, and
services requests for which it has responsibility. When a
request specifies web server 130, web server application
program 132 generally accesses a web page 124 correspond
ing to the Specific web page request 122, and transmits the
web page 124 to the user workstation 110. The web page
request 122 also includes, in one embodiment, a request to
execute an application program on the Web Server computer
System 130. An application independent Server process
(AISP) 134 receives information contained in this request
and responds by executing the desired application program
and accessing application components 136 that are needed
by the AICP 114.

0023. In general, a web page contains the primary visual
data displayed on the user interface 116 of the user work
station 110. When the web server 130 receives a web page
request 122, it builds a web page in HTML and transmits it
across the Internet 120 to the requesting web browser 112.
Web browser 112 interprets the HTML and outputs the web
page 124 to the monitor of the user workstation 110. The
web page 124 displayed on the user's Screen may contain
text, graphics, and links (which are addresses of other web
pages). These other web pages (i.e., those represented by
links) may be on the same or on different web servers. The
user can go to these other web pages by clicking on these
links using a mouse or other pointing device. This entire
System of web pages with links to other web pages on other
Servers across the world is known as the “World Wide Web’.

0024. With the present invention, an interactive graphical
user interface is embedded in the web page or may be
brought up as a separate dialog from the web page. In one
embodiment, the AICP is an ActiveX control embedded in
the previously mentioned HTML page. The ActiveX control
interprets XML data that is subsequently downloaded in a
description file (described below) and renders a graphical
user interface. This embedded control is an embodiment of
the AICP.

0025 Referring to FIG. 2, located in memory in the
server system 130 is an operating system 410, a web server
application 132, application programs 420, application com
ponents 136, a transaction processor 430, State information,
object information, and data (not shown), and one or more
instances of an AISP 134.

US 2001/0042094A1

0026. The application programs 420 are executed by the
CPU of the server system 130 under the control of operating
System 410. Application programs 420 can be executed
using program data as input, Such as that received from the
AICP 114. Application programs can also output their results
as program data in memory.
0027. The transaction processor 430 is a program that
receives information from the web server application 132
via a common gateway interface (not shown), interprets the
information to determine whether a specific instance of an
AISP134 is required, and launches the instance AISP134 to
further process the request received from the AICP 114.
0028 Referring to FIG. 3, the present invention includes
the AICP 114 and the AISP 134. The AICP 114 renders the
graphical user interface (GUI) that is displayed to the user on
the user interface 116. The AICP 114 also maintains a
relationship between the control objects displayed on the
user interface 116 and the application components 136
maintained on the web server 130. The AISP 134 tracks the
State of the application components 136 along with the
control objects displayed on the user workstation 110 that
require updates of these application components. Whenever
the state changes on either the client (control State) or the
server (component state), the AICP 114 and AISP 134 take
appropriate action based on the data description that defines
the relationship between the GUI controls and the server
application components 136 (hereafter referred to as server
components) they represent.
0029) Referring also to FIG. 4, the relationship 446
between the control objects 624 displayed on the user
interface 116 of the user workstation 110 and the server
components 136 maintained on the web server 130 include
data that describes an explicit relationship between their
respective object interfaces. This data will hereafter be
referred to as a connection. The AICP and AISP contain
logic that can interpret connections that relate a visual
control to an application component.
0.030. For example, a scroll bar control is representative
of a type of control object that can be displayed on the user
interface 116 of the user workstation 110. The Scroll bar
control can be associated with the value of an application
component, Such as the temperature of an industrial process.
AS the Server application detects a temperature change, the
State of the Application Components 136 is changed and
these state changes 330 are forwarded to the client. The
scrollbar is subsequently redrawn by the AICP to reflect the
new value. Likewise, if a Scroll bar is connected to an
Application Component 136 that controls a thermostat, then
when the user interacts with the Scroll bar on the user
interface 116, the state change is transmitted to the Web
Server Application Program 132 which would change the
State of the appropriate Application Component 136 which
would Subsequently Set the thermoStat.
0.031 Although this is a simple example, connections can
form relationships (e.g., data relationships 446 in FIG. 2)
between very complex object types like composite compo
nents (components that contain component references) as
well as component collections (a list of components). Con
trols can be tied (connected) to complex components or a
composite of controls (commonly referred to as a dialog).
The more complex the relationship 446 (FIG. 2) the more
verbose the connection information. However, connection

Nov. 15, 2001

information can be packaged as a named entity, which can
be referred to in another context So that connection reuse is
possible.

0032 A physical connection exists between the AICP 114
and AISP 134. This physical connection can be either
network based (server and client being different nodes on a
network) or memory based (server and client being on the
same computer System). This means that control objects can
be connected to Server components where they both exist on
the same or different physical machines (as well as the same
process on the same machine or different processes on
different machines).
0033. The connection information can be delineated in a
description file in a variety of formats, such as in XML
format as discussed below. The XML data also includes the
GUI layout description (i.e., user interface data 448 in FIG.
2). Whenever a control object 624 is associated to a server
component 136 within a GUI layout (a dialog window), the
connection description is included (in context) with the
layout information. This is the information the AICP 114
uses to run the application and display the results to the user.
Once a dialog is running via the AICP 114, State changes that
occur on either the control objects (control States) or server
components (component State 442, FIG. 2) are packaged
and sent between the AICP 114 and AISP 134. This is a
two-way connection and is asynchronous to minimize inter
active latency.
0034. The description file can be in an XML format,
which is a convenient format for deployment of data over a
network and resembles an attributed file structure, for
example as shown in the Appendix. A number of other
Suitable database formats are also available, Such as flat file,
SQL, OODB, etc. The XML format consists of name, type,
and value pairs, which allow both the AICP 114 and the
AISP 134 to traverse and interpret the information in the
same file format during runtime. The XML file that is
interpreted by the client and AISPs at runtime can be
identical. The data contained in the XML file will be
interpreted differently by the AICP 114 and AISP 134 in
accordance with the different functions that need to be
performed on each side of the connection. Although the
description file is discussed herein as being located on the
same computer systems as the AICP 114 and AISP 134,
those skilled in the art will recognize that the description file
can be located in any networked location that is accessible
by the AICP and AISP.
0035) Referring to FIGS. 2, and 4, the AISP134 performs
the following functions: sends the XML data stream to the
AICP 114, reads the description file 310 (FIG.3) (which can
be transmitted as an XML data stream), responds to requests
from the AICP 114 to attach to server components 136,
maintains a Stateful connection, and tracks context on the
web server 130. Note that multiple AISPs 134 can exist in
the memory of the web server 130 at any given time.
0036). In use, and referring to FIG. 5, a developer first
designs (step 710) the layout of the user interface 116 that
will ultimately be displayed on the user workstation 110 and
in So doing establishes the relationships between the control
objects 624 (FIG. 4) and the server components 136. Once
this information is formulated, it is stored (step 712) in a
description file 310. When the AICP 114 transmits a request
to execute an application program 420 on the Web Server

US 2001/0042094A1

130, the transaction processor 430 (FIG. 2) receives (step
714) the request, instantiates (step 718) an AISP 134 asso
ciated with the application program 420 if an instance is not
already loaded in memory, and launches (step 720) the
application program 420. Once the AICP 114 receives the
description file 310, it transmits a connection request to the
AISP 134. The AISP 134 receives (step 722) the connection
request and loads (step 724) the description file 310 asso
ciated with the requested application program 420 into
Server memory.

0037. The description file 310 associated with the
requested application program 420 is loaded in order to
connect the AICP 114 with the appropriate server compo
nents 136. The description file 310 contains sufficient infor
mation with respect to the relationships between control
objects 624 (FIG. 4) and server components 136 to enable
the AISP 134 to manage the server components and the
AICP 114 to manage the control objects.
0038. Upon loading the description file 310, the AISP134
forms (step 726) a manager object 452 for each server
component 136 that will likely be involved in that client/
Server connection. In addition a unique manager object is
created (step 728) for each control that could be instantiated
on the client (referred to as the Meta object 454) as well. The
Meta object 454 stores data such as member information,
dialog information, connection information, object-to-object
connection information, and a reference to a client manager
component in order to effectively connect control objects
624 to server components 136.
0.039 Member information includes the properties, func
tions, and events available on the interface of a control
object. This information is used to tell a connection handler
450 how to communicate with particular control objects (as
well as server components) involved in the connection
during runtime. Dialog information is the GUI layout infor
mation that is used by the AICP 114 to render the user
interface 116 on the user workstation 110. The dialog
information also specifies the type of control object 624 or
server component 136 that will be involved in the connec
tion. Connection information describes how a particular
control object 624 is associated with a particular Server
component 136. Object-to-object connection information
provides a connection description that enables a client to
Server component connection and a Server component to
Server component connection. This allows Server compo
nents to communicate with each other without knowing any
Specific details of the objects they are connected to.
0040. The client manager component provides a standard
interface allowing the AISP 134 to talk to the back end
application program 420. The client manager is a component
interface that must be implemented by the Server application
program 420 in order to initialize the behavior of the AICP
114. The client manager component interface, in one
embodiment, includes 4 functions: ClientCanConnect(),
ClientCanDisconnect(), ClientConnected(), Client Discon
nected(). These functions are called whenever a new AICP
114 wants to connect or disconnect an application program
420 on the web server 130.

0041) When a dialog is created in the AICP 114, the AISP
134 is notified that it must create a physical attachment to the
relevant instance of the server component 136 on the server
130. In order to establish this physical attachment, the AISP

Nov. 15, 2001

134 maps (step 732) the object controls in the user interface
116 to server components 136. The dialog description of the
server component 136 can be found in the Meta object 454.
At this point the AISP 134 obtains the name of the dialog
that is to be created on the AICP 114 and receives access to
an instance of Server component 136. A connection handler
450 is instantiated for each control that requires connection
to a part of the Server component instance. The connection
handler 450 initializes and maintains the connection
between the control object 624 and server component 136.
Only connection handlers 450 that are marked as “run on the
server” would be created at this point. If they were marked
as “run on the client” then the AICP 114 would have already
created one. The connection handler 450 is assigned an
identifier 618 (FIG. 4) that is identical to that provided for
the control object 624 of the AICP 114. This identifier 618
is used to Synchronize the information messages going back
and forth between the AICP 114 and the AISP 134.

0042 Similar to the dialog object described in the AICP
section, the server forms (step 730) a client-side proxy
object 456 that arbitrates messages sent between the client
side of the server connection and the AICP 114. The con
nection handler 450 communicates with this proxy object
456 as if it were the control object 624 itself. The proxy
object 456 transmits a value for the control object 624 to the
AICP 114 which in turn will modify the control object 624
on the user interface 116. In this manner, the proxy object
456 can transmit initial state information to the AICP 114
(step 734) as well as updating the AICP 114 with state
changes 330 of a particular server component 136 on the
server 130 (step 738). Similarly, when the control state 622
of a control object 624 on the AICP 114 changes, the
modified control state is sent to the AISP (using the control
identifier 618 assigned to that particular control object 624)
via the proxy object 456. Once the modified control state had
been received by the proxy object 456, the proxy object 456
notifies the connection handler 450 that the state of the
control object has changed So that the modified State can be
incorporated into the appropriate Server component 136.

0043. Similar to the AICP 114, the AISP 134 maintains
(step 736) the connection for the duration of the dialog.
When the dialog is closed by the user, or via some other
fashion (e.g., a notification by a server component to close
all connected dialogs), the AISP 134 removes and deletes
each of the connection handlers 450 associated with the
connection to the dialog. In addition, the proxy objects 456
used to communicate on behalf of the control objects 624 are
discarded as well.

0044) The AISP 134 uses a component manager (not
shown) to maintain a list of components involved in client
Side connections. The component manager keeps track of all
the dialogs that are actively attached to Server components
for the duration of the dialog. Each time a dialog is created
on an AICP 114, a reference to the dialog is added to the list
maintained by the component manager. This reference iden
tifies all of the Server Side connection handlers, which in turn
reference control proxies involved in a connection. When a
dialog is closed, the AISP134 refers to this list to lookup the
dialog connection information and removes the dialog ref
erence from the list.

0045 Although the AICP 114 and AISP 134 perform
different roles, much of their respective code is identical.

US 2001/0042094A1

The key to making both the AICP and AISP nearly identical
is in providing a Standard object interface that connects
control objects 624 on the AICP 114 and server components
136 on the AISP134. The interpreter logic of the application
independent processes can connect each respective side
(client or server) in exactly the same way (through a
standard object interface). The fact that the control object is
Visual is just a side affect of the implementation of the
object. Therefore, the present invention can be applied to a
number of implementations that do not require a visual
presentation.
0046 Referring again to FIG. 4, the AICP 114 can reside
in the memory of the user workstation 110. The memory also
holds the operating System 612 installed on the user work
station 110 and the web browser application program 112
within which the AICP 114 is launched. The AICP 114
performs the following functions: reads the data description
file 310, renders the user interface 116, attaches connected
controls, maintains a Stateful connection, and tracks the
context on the client.

0047 Referring also to FIG. 6, the AICP 114 is first
installed on the user workstation 110. The most common
installation method is to manually install the AICP 114
through the System install procedure (e.g., in the Microsoft
Windows operating system, using the “Add/Remove Pro
grams” function). Alternatively, the AICP 114 can be auto
matically installed through a web based plug-in protocol.
0.048 Because there is no code on the client that repre
sents the application program 420, the AICP 114 supports a
number of approaches in establishing the initial connection
to the Server Side application program 420. The information
required by the AICP 114 to interact with the application
program 420 includes: the name of the Server process to
execute, the location of the description file 310 on a network
Server, any initial arguments that must be communicated to
the application program 420 when connected, and the cur
rent version of the description file. This information can be
contained in an initialization file that is loaded when the
AICP 114 is launched.

0049. When the AICP 114 is started, it will access (step
810) the initialization file and, using the information con
tained therein, will transmit a request to the server 134 to run
the desired application program 420. AS previously dis
cussed, the transaction processor 430 on the server 130
sends a description file 310 to the AICP 114 which then
compares the version Stamp of the description file received
to that contained in the local memory 610 of the user
workstation 110 (obtained from a prior transaction or during
installation of the AICP 114). The AICP 114 can then
determine (step 812) which version of the description file
310 to load. By default, the AICP 114 only downloads the
description file 310 from the transaction processor 430 if the
version Stamp of the file on the Server is later than a cached
file already resident on the client. The description file 310 is
peculiar to a specific application program 420.
0050. Once downloaded (or loaded locally from a file
cache), the description file 310 provides the AICP 114 with
the dialog description of the application program 420. The
AICP 114 then proceeds to interpret (step 814) the descrip
tion data of that dialog in order to construct the control
objects 624 that exist within the dialog and lay out the
control objects 624 onto the user interface 116 for presen
tation to the user.

Nov. 15, 2001

0051 Meanwhile, the AICP 114 transmits a request (step
816) to the AISP134 to establish a logical connection to the
Server components 136. Upon Successfully connecting to the
server components 136 on the server 130, the AICP 114
receives (step 818) and Subsequently populates the dialog
control objects 624 with control state information 622
corresponding to the Server component State 442.

0.052 State changes for a particular visual context (e.g.,
a dialog) are sent to the AICP 114 as one logical packet for
optimization reasons, although the Structure of the State
change packet is identical regardless if a Single State change
or a plurality of State changes occurred. At this point, the
control objects 624 are actively connected to the server
components 136 So that State changes on either Side are
reflected in the other. Once the control objects 624 reflect the
current Server component State 442, the dialog is then
displayed (step 820) to the user via the user interface 116.
0053 Control objects 624 are associated with the server
components 136 by a reference property that is provided as
part of the description of the control object 624, which is
included in the overall dialog layout description. This ref
erence can be the name assigned to the connection descrip
tion and the type of the associated Server component 136. A
unique control identifier 618 is computed for each of the
control objects 624 that are connected to Server components
136. This control identifier 618 is used to coordinate state
changes 330 with the AISP 134 when connecting to the
appropriate Server component instance that is assigned to
that control object 624. Note that many control objects can
be tied to the same server component 136 Since the AICP
114 and the AISP 134 are largely identical processes, some
of the connections can reside on the client. At times, it is
useful to instantiate the connection logic that binds a client's
control object 624 to a server's application component 136
on either the AICP 114 or the AISP 134. The Selection of
where to instantiate the connection logic depends on the
Volume of information flow coming into each Side of the
connection. For example, if the load is heaviest on the client
Side, then it is better to instantiate the connection handler on
the client. In this way, bandwidth utilization can be tailored
based on the kind of connection and the client and Server
components involved.

0054 For as long as a dialog is displayed on a particular
AICP 114, the connection handlers 450 maintain (step 822)
a real time Stateful connection to the associated Server
components 136. The connection handler 450 responds to
state changes 330 on either the client control object 624 or
on its associated Server component 136. The connection
handler 450 is also able to transform the databased on a set
of rules defined by the developer. The connection handler
450 is able to maintain state on each side of the connection
by maintaining (step 822) references to the control objects
624 involved in the connection.

0055. The connection handler 450 also maintains a state
ful connection whenever a member of a complex component
changes. This happens when a property (which is a member
of a complex component which can hold a value of a
particular type or be empty) of a complex control is assigned
a new value (which itself can be a complex or simple
component). When the connection handler 450 detects a
property change, it executes the appropriate connection
transformation. In addition, if a control object 624 was

US 2001/0042094A1

attached to that property it would not be connected to the
new value. The connection handler involved would remove
the reference to the old value and create a reference to the
newly assigned value (of the property). In this manner, the
control objects 624 are updated (step 824) with state changes
330 that are received from the AISP 134 and the State
changes occurring in a control object 624 are transmitted
(step 826) to the AISP134 in order to update the appropriate
server components 136.

0056 A GUI application involves several relationships
that describe the user access to the underlying application.
For example, a dialog can contain a button (which is an
example of a control object), that when selected will popup
another dialog. It is important for the AICP 114 and AISP
134 to actively maintain this context with the server com
ponents 136. A popup dialog usually represents a complex
property member of a complex component. Another popup
Scenario is when the popup dialog provides an argument to
a function that is a member of a complex component. These
data relationships 446 represent application context that is
tracked by the AIP, thereby freeing the developer from
having to explicitly create and maintain them.

0057 The AICP 114 creates a container object for each
dialog that is created on the user workstation 110. This
container object tracks the duration of the dialog with
respect to the server component 136. The container object
detects when the dialog is closed by the user and takes
appropriate action for closing down the connection handlers
450 associated with the control objects 624 within the
dialog. The container object also coordinateS processing of
state change messages that flow between the AICP 114 and
the AISP134. Whenever the container object receives a state
change 330 from the AISP 134, it extracts the control
identifier 618 contained in the message, locates the control
objects 624 associated with that control identifier 618, and
uses the component interface of the control object 624 to
effect the state change directly on the control object 624.
Likewise when the control object 624 changes State, the
container object is notified of the change, packages up the
State change message, and sends it to the AISP 134.

0.058. The container object sends state changes to the
AISP 134 for the parts of the control object's interface in
which the connection handler 450 is interested. The con
nection handler 450 is interested in the control members
delineated in the description file 310 that were used to create
the connection handler 450. The container object that wraps
the dialog also creates an object container for each control
object 624 instantiated within the dialog in order to maintain
its stateful lifetime.

0059 Both the AICP 114 and AISP 134 have container
objects that manage the State of the components to which
they are connected. These containers track the State of the
objects as well as the application context in which these
objects reside. The application context refers to the manner
in which objects are referenced by the AICP 114 and the
AISP 134. For example, when a dialog is connected to a
server component 136, the AICP 114 creates a container for
the dialog and the AISP134 creates a container for the server
component 136. When the user closes the dialog, the client
container detects this action and notifies the Server container.
Each container can then take appropriate action based on the
type of operation. The nature of the containers are hierar

Nov. 15, 2001

chical in that each container can hold other containers based
on the complexity of the objects involved in a particular
connection.

0060. There are two types of client containers-a dialog
container and a control container. The dialog container
manages the life of the dialog and the control container
manages the flow of State information to the individual
control. These containers enable the attachment of the user
interface elements to Server Side objects as well as maintain
the State integrity during the life of the connection.
0061 The dialog container is an object that is created for
each window displayed on the user interface 116. The dialog
container is created in accordance with the XML description
in the description file 310. The dialog container processes
the XML description and creates the dialog layout as well as
the control objects contained within the description. In
addition, the dialog container creates a control container for
any controls that are connected to data on the Server.
Controls that are created for display purposes only do not
need a control container (for example, a label or bitmap
decoration). The dialog container Supports Several functions,
including: rendering the window itself, creating the control
containers as needed, notifying the AISP 134 when the
dialog is closed and deleting Subordinate control container
objects, and closing child dialogs that depend from parent
dialogs as appropriate.

0062) The control container is created for each control
object 624 that is tied to data. The control container com
putes and holds a unique control identifier 618 that is used
to Send messages to the AISP 134 and to access the appro
priate server components 136. When the AISP 134 initially
transmits state data to the AICP 114, the control container
Sets the State on the control object 624 during initialization.
The control container also receives State change messages
during the connection life of the control object 624 and
updates the control object 624 in accordance therewith.
When the state of the control object 624 changes, the control
container detects the change and sends a State change
message to the appropriate server element via the AISP134
(using the control identifier 618 and an identifier of the AISP
instance). It is noteworthy that only the control container
processes the State changes that are involved in a connection
description and that most State changes on the control object
624 do not involve the connection, thus reducing unneces
Sary network traffic.
0063. In addition to the control containers, there are two
kinds of Server containers component containers and mem
ber containers. For as long as the client dialog is open, the
Server component container maintains a reference to the
underlying component instance that the client is connected
to. The member container manages the flow of State infor
mation on the individual member of the component (similar
to function and property). These containers enable the
attachment of the user interface elements to client Side
control objects as well as maintain the State integrity during
the life of the connection.

0064. A component container is created by the AISP134
for each Server component 136 that is connected to a client
dialog. The component container adds a reference count to
the server component 136 so that it will not be lost during
the life of the remote client dialog. For each member of the
Server component 136 that is involved in a connection to a

US 2001/0042094A1

control object 624, a member container object is created
which will be responsible for maintaining the member's
state during the life of the connection. When the dialog is
closed on the client, the component container destroys all the
child member containers that were used to maintain that
dialog's connection on the Server.
0065. A member container is created for each member of
a server component 136 that is involved in a connection to
a control object 624. The member container computes and
Stores a unique control identifier that is used to Send mes
sages to the AICP 114 in order to access the correct control
object 624. The member container also sends initial state
information to the control object 624 during the initialization
of the dialog. Further, the member container receives data
change message from the AICP 114 and updates the appro
priate member of the Server component 136 in accordance
therewith.

0.066 Whenever the state of the component member
changes, the member container detects the change and
Subsequently sends a message, containing the State change
information, to the appropriate control object 624 (using the
control identifier 618 and the server instance identifier). It is
noteworthy that only the member container processes the
State changes that are involved in connection description and
that most of the State changes on the Server are not involved
in a connection, thus reducing unnecessary network traffic.
0067. One of the capabilities of the AIP invention is its
ability to allow multiple AICPs to attach to the same AISP.
The first time that a client requests a connection to a server,
an AISP assigned to the application will be instantiated. The
AISP in turn instantiates the client manager object for that
application. At any time, another client can request to attach
to the same application instance on the Server. Instead of
instantiating another AISP for that application, the same
AISP instance will be used (as well as the client manager
that was created for it). If two clients are then accessing the
Same Server component instance on the Server, they will be
able to interact and access the same State. This allows real
time collaborative access to shared State that is not easily
provided with traditional forms of client deployment.
0068. With collaboration deployment, a list of dialogs
running on a particular client is associated with a client
manager object that resides on the Server. A list of client
managers resides within the AISP (that reflects the current
number of active clients attached to the same Server appli

Nov. 15, 2001

cation). Even though many clients can see the same infor
mation on the Server they do not always have to view exactly
the same components in the same way. The client manager
can direct different clients to have different dialog represen
tations of the same Server components. Also, based on the
client user's navigation through their own dialog instances,
each client user may see dramatically different information
at any given time.
0069. The present invention may be provided as one or
more computer-readable programs embodied on or in one or
more articles of manufacture. The article of manufacture
may be a floppy disk, a hard disk, a CD ROM, a flash
memory card, a PROM, a RAM, a ROM, or a magnetic tape.
In general, the computer-readable programs may be imple
mented in any programming language. Some examples of
languages that can be used include C, C++, or JAVA. The
Software programs may be Stored on or in one or more
articles of manufacture as object code.
0070 While the invention has been particularly shown
and described with reference to Several exemplary embodi
ments thereof, it will be understood by those skilled in the
art that various changes in form and detail may be made
therein without departing from the Spirit and Scope of the
invention.

What is claimed is:
1. A method for transferring data between a client and a

Server, comprising the Steps of
executing, by a server node, an application program that

affects an application component corresponding to a
graphical user interface element;

providing an application-independent client process, Said
application-independent client process (AICP) affect
ing a display of one or more graphical user interface
elements on Said client associated with the application;

providing an application-independent Server process, Said
application-independent Server process transferring
data to Said application-independent client process, Said
transferred data representative of a change to one of the
application components

updating by Said application-independent client process
one of the graphical user interface elements in response
to Said transferred data.

k k k k k

