Title: PROCESS FOR ADDING SUBTITLES TO VIDEO CONTENT

Abstract: Process for adding subtitles to video content. A process for providing subtitles on video content including using an audio track corresponding to the video content and a script corresponding to the audio track to producing timed phonemes of the script. Text synchronisation is then used to align the timed phonemes with the audio track. The timed phonemes are then translated to a bitmap graphic on a subtitle track of the video content.
Process for Adding Subtitles to Video Content

Field of the Invention

The present invention relates to a process for adding subtitles to video content and refers particularly, though not exclusively, to such a process able to be performed using a computer-based system.

Reference to related Applications

Reference is made to our co-pending patent applications filed contemporaneously herewith and titled: "Phoneme Extraction System", "Timed Language Presentation System", "Voice Script System", and "Timed Phoneme and Viseme System", the contents of which are hereby incorporated by reference.

Background to the Invention

Historically subtitles have been added to video content by manually translating either a corresponding audio track or the script, producing the subtitles in the original language (if required), translating the subtitles in the original language into a second language (if required), and then adding all the requires subtitles to the video content frame-by-frame. Subtitles in the original language may be required to allow viewing by the hearing disabled, and where there are different dialects of the one written language (Chinese being a major example).

This is very time consuming and may impact on how fast the video may be released, and the cost of that video. The timing may be important in current affairs broadcasts on television. The video content may be for a motion picture, a television broadcast, streaming video, semi-professional or home video particularly digital video, or portable media including DVD, VCD, and so forth.

Definitions

Throughout this specification a reference to a "machine" (and its grammatical variants) is to be taken as including a reference to one or more of: server, desktop computer, personal computer, laptop computer, notebook computer, tablet computer, and personal digital assistant.

Throughout this specification a reference to a phrase is to be taken as including a reference to a clause.
Summary of the Invention

According to one aspect of the invention there is provided a process for providing subtitles on video content including using an audio track corresponding to the video content and a script corresponding to the audio track to producing timed phonemes of the script. Text synchronisation is then used to align the timed phonemes with the audio track. Finally, the timed phonemes are translated to a bitmap graphic on a subtitle track of the video content.

Between steps (a) and (b) there may be included a further process step of obtaining a machine translation of the phonemes of the script. After the machine translation is obtained, manual correction for slang and idiomatic language may be performed. The translation is into a language as input from a user's machine.

The text synchronisation may be performed by using a punctuation filter to locate the beginnings and ends of sentences. The video content with subtitles may be output in a format as input from a user's machine.

The first process step producing timed phonemes may be conducted using a track reading process. The track reading process may include the steps:

(a) breaking the script into phonemes;
(b) using a speech recognition process on the audio track to produce a processed audio track;
(c) generating a phrase of the script using the phonemes;
(d) conducting a recognition process to recognise the phrase in the processed audio track; and
(e) extracting the phonemes from an output of the recognition process.

The phonemes may be obtained using a text-to-speech process, and the script may be broken into words before the phonemes are obtained. Any unrecognised phrases in the audio track after the recognition process may be subsequently processed in the same manner with reset threshold and accuracy of the speech recognition process. Prior to the speech recognition process, parameters and next phrase logic of the speech recognition process may be set.

The audio track may be analysed to produce a time location for words in the audio track. The speech recognition process on the script may also produce a description of words and phoneme length timings. The description of words, phonemes and phoneme length timings may be further
processed with a timer input to produce a timed word/phoneme list. The timer input may be obtained from the audio track.

The audio track may be part of an audio/video input and the audio/video input may be first converted to be MPEG1/MPEG2 compliant before separating the audio track from the audio/video input.

The timed phonemes may be subjected to further processing to provide a speaker phoneme set. The speech recognition process may also produce marked-up phonemes. The further processing may be a phoneme analysis. The phoneme analysis may be an MPEG 7 word/phoneme analysis using sound spectrum and sound waveforms. The audio track may also be input into an MPEG 7 audio low level descriptors extraction process and an MPEG 7 emotive analysis for extraction of emotion-related descriptors.

In another aspect of the present invention there is provided a computer usable medium comprising a computer program code that is configured to cause one or more processors to execute one or more functions to perform the steps and functions as described above; as well as to a video having subtitles prepared by the above system.

Description of the Drawings

In order that the invention may be readily understood and put into practical effect, there shall now be described by way of non-limitative example, only a preferred embodiment of the present invention, the description being with reference to the accompanying illustrative drawings in which:

Figure 1 is an overall chart of a preferred embodiment of the present invention;
Figure 2 is a flow chart for the Initialising process of Figure 1;
Figure 3 is a flow chart for a preferred process for phoneme extraction;
Figure 4 is a flow chart for a preferred process for timed phoneme extraction.
Figure 5 is a flow chart for audio low level descriptors extraction;
Figure 6 is a flow chart of emotive analysis; and
Figure 7 is a flow chart of word/phoneme analysis.

Description of the Preferred Embodiment
To refer to Figure 1, there is illustrated the overall process, and the initial process steps. At 100 a machine of a user logs on to the relevant web page to initiate the process. However, the process may be performed on a stand-alone machine.

The feature selection is made at 98. It is assumed for the following description that the process is for a new feature and thus the entire process is required.

The audio, video and text files corresponding to the audio files, requiring processing for which subtitles are required are selected. At 96 the server operating the web page performs a track reading process. This is more completely described in relation to Figures 2, 3 and 4 below. The required output language is then sent to the server at 94, and the required output format. Any translation required is then performed at 90, using a machine translation. The translated text at 88 may be checked for idiomatic language, slang expressions, and corrections. The text is then sent for text synchronisation using a punctuation filter so that the script text can match the audio track, particularly at the beginning and ends of sentences. The text can then be customised at 84 so that it is as close as possible to the audio track using normally spoken language. A timed text is then used at 82 to enable the exact timing of the subtitles to be determined. Timing is preferably in milliseconds. As the time location of the subtitles relative to the audio track (and thus the video track) can be determined, and the duration of each phoneme is determined, the exact frame when the subtitles need to appear can be determined, and the duration of the subtitles (in milliseconds or frames) can easily be determined. Therefore, the translated text is translated to bitmap graphics on the subtitle track. As the incoming video stream is in an appropriate MPEG format such as, for example, MPEG 2, it is then converted to the format required and input in step 92 described above. The user’s machine at 74 logs out from the system, and the processing ends at 72.

The first stage of the track reader process is illustrated in more detail in Figure 2. As is shown, each of the following is selected:

(a) the script in text format - 104;
(b) the voice track (audio file) - 105;
(c) the number of words to be recognised at the one time - 106;
(d) the output type and the output parameters. This may be either or both words and phonemes - 107, and
(e) output time units as either or both milliseconds and frames 108.

Upon the five selections being made, at 109 the process is initiated. At 110 a preliminary check is made to ensure all parameters are correct. If not, at 111 an incorrect parameter message is
generated and sent to the user's machine. The five input parameters (a) to (e) can then be reselected, reset or the error corrected. If all parameters are correct, at 112 all data is sent for processing and the input stage of track reading ends.

To now refer to Figure 3, there is illustrated in more detail the process for phoneme extraction 103 of Figure 1.

The process commences with a detailed check at 113 to determine if all parameters are correct. This is a more complete test than that conducted at 110 and is also to ensure the transmission from the sender's machine to the server has been error-free. If there is an error, an error message is generated at 114, sent to the sending machine, and all processing stops.

This script is processed at 115 to break it down into individual words. If there is an error, an error message is generated at 114, sent to the sending machine, and all processing stops.

At 116 the words of the script are broken into phonemes using a text-to-speech engine such as, for example, "SAPI 5.1" as available from Microsoft Corp, or the "Viavoice" as available from IBM Corp. If there is an error, error message is generated at 114, sent to the sending machine, and all processing stops.

A speech recognition engine is used at 117 to analyse the audio/voice track 105. The parameters for the analysis are first set, and the logic for the next phrase of the audio/voice track 105 is also set. A suitable speech recognition engine would be, for example, "SAPI 5.1" as available from Microsoft Corp, or the "Viavoice" as available from IBM Corp.. If at the commencement of the audio track and script, the first phrase of the script is generated from 116. For subsequent processing, the next phrase of the script is generated. At the end of the script, there will be nothing left so the processing is diverted at 119 to the next major processing stage. Otherwise, it proceeds to 120 where the present voice track position is set.

The phonemes used come from the script. The phoneme timing, and time location in the audio track of the phoneme come from the audio track. By analysing on a phrase-by-phrase basis from both the script and the audio track, the phonemes can be timed for duration and location with a relatively high degree of accuracy. The overall length of the audio track is known and this will be the overall duration of the script. Therefore, it is possible to estimate an approximate time in the duration of the script where a particular phrase might appear.
Therefore, in process step 121, the current time location is recognised from the audio track as is the current script phrase as appearing on the audio track using speech recognition. By recognising the script phrase on the audio track a "most likely position" for that script phrase can be determined and thus its likely time location on the audio track. Phonemes missing from the script may be obtained from the audio track using the voice properties of the speaker as obtained from the closely matched complete set, or by synthesising the missing phonemes that don't have a close match. Manual intervention may be required to correct errors depending on the subject of the text, number of slang expressions used, and the diction on the audio track.

The word times are then updated in 122 using the results of the recognition process, and the next phrase of the script prepared. The process then loops back to 118 and repeats until there is nothing left in the script.

When there is nothing left, the process is diverted at 119 and passes to a second stage of processing. Here, any unrecognised phrases in the script are re-examined. If there are no unrecognised phrases, the output from 122 is directly to 129 where the timed word/phoneme list is generated.

If there are unrecognised phrases in the script (normally due to the speech recognition engine producing an unusable result for phrase), in 123 the speech recognition engine threshold and accuracy are set. The first (or next for subsequent phrases) phrase of the script is generated. If there are no more unrecognised phrases, at 125 the process is diverted to 129 to generate the timed word/phoneme list.

If there is an unrecognised phrase, the voice track position is set at 126, as before. The recognition process of 121 is re-performed at 127 but with the new thresholds and accuracy. Again, at 128 the recogniser results are used to update the word times, and the next unrecognised phrase prepared. The process loops back to 124.

When all processing has completed, the output is generated at 129 and the process ends.

The recognition process at 121 is further illustrated in Figure 8.

At the beginning 159 of the recognition process audio 167 is input at 163 for processing in accordance with the MPEG 7 sound classification model audio classifier. This extracts and outputs at 171 the timed sound classifications. Sound classifications include non-word sounds
such as, for example, inhalation, laughter, natural sounds, noises, background sounds and noises, music, and so forth.

Audio 166 is input at 117 as described above for speech recognition analysis preferably using the Hidden Markov Method ("HMM") for raw recognition and timing. The output 172 is an aligned raw phoneme list.

The text 165 is input for processing as described above for text-to-speech (phoneme) and the output 173 is a normally timed phonetic text representation.

The audio and text are input at 164 into process 121 as is described above for phrase-segmented, time-assisted, speech recognition. The output 174 is a verified, aligned word/phoneme list.

Outputs 171, 172 and 173 are input to process 168 for initial text alignment for words and the sound classifications. The output 175 from process 168 is estimated word timings and partial phoneme timings. This is also input into 121 for its output 174. The output 175 is also input to process 169, as is output 174, for final text alignment (including some or all of the sound classifications). The output 176 from 169 is a complete timed/word/phoneme list. The recognition process ends at 170.

To now refer to Figure 4, there is shown the overall track reader processing of an audio/video input 8 as received in the machine operating the system of the present invention. At input 8 there is an audio/video input and a script corresponding to the audio track of the audio/video input as a text input in digital form. The audio/video input is preferably in source language. This is process 96 of Figure 1; and steps 104 to 112 of Figure 3.

The audio/video input is split into two processing streams 4, 6. In stream 4 the audio/video 10 is first transcoded at 12 to MPEG1/MPEG2, if not already in the appropriate format. If in the appropriate format, transcoding is not necessary. Audio/video separation takes place and the video is output at 14 and by-passes all subsequent processing at this stage.

In stream 6, the script undergoes a track reading process at 18. These are process steps 113 to 122 of Figure 3. Also input at 18 is a time input to enable each of the phrases, words and phonemes to be timed for likely duration.
The time input may be in seconds down to a preferred level of three decimal places (i.e. milliseconds). The output from process 18 is timed phonemes. It may also have marked-up phonemes and descriptions of the words. Preferably, all output to 20 is in MPEG 7 representation. In the stage of processing at 20 the phoneme timing are completed in accordance with process steps 123 to 128 of Figure 3 to have a speaker phoneme set that is as complete as possible. The output 30 from process 20 is passed to data storage 22 for storage and to be used later in other processes.

The audio output 32 from process 12, and the outputs from process steps 18, 20, are all passed for three parallel enhancement process steps.

In the first enhancement step 24, the audio output 32 from process 12 is passed for MPEG 7 audio low level descriptors ("LLDs") extraction. LLDs may include such characteristics as the spectrum of the sound, silence, and so forth. The LLD analysis may proceed in parallel to the track reading process 18, or may be subsequent to that process. If subsequent, the output from process 18 may be also input to process 24.

The audio output 32 from process 12 and the result 34 of the track reading process 18 are both input to the second enhancement step 26. In this step MPEG 7 emotive analysis is performed by extracting of the audio using emotion-related descriptors. An emotive analysis based on MPEG 7 LLDs is then performed.

The third enhancement step 28 has as its input the text and phoneme timing output 30 of process 20, the audio output 32 from process 12, and a timer 36. The timer 36 may be in seconds down to a preferred level of three decimal places (i.e. milliseconds) and may start from the commencement of the audio track, or otherwise as prescribed or required. The audio track 32 is combined with the output 30 and the timer 36 and analysed and described into a timed word/phoneme list. The output 30 gives the phonemes and their likely duration. The audio track 32 and the timer 36 give the time location of the phonemes. By matching the timed phonemes and the audio track 32, based on a likely match, a timed word/phoneme list can be prepared. This is output 38 from process 28 and stored in data storage 22 for later use. The outputs 40, 42 from processes 26, 24 respectively are also stored in data storage 22 for subsequent use. The processing ends.

Figure 5 is a flow chart of the audio LLD extraction process 24 of Figure 4. Here, the spectrums, and logarithm of the spectrum, are calculated at 130. Some or all of a large number of low level
descriptors are then determined in either parallel (as shown) or sequentially. These include, but are not limited to:

131 audio spectrum envelope descriptor;
132 audio spectrum centroid descriptor;
133 audio spectrum spread descriptor
134 audio spectrum flatness descriptor;
135 audio spectrum basis descriptor;
136 audio waveform descriptor;
137 audio power descriptor;
138 silence descriptor;
139 audio spectrum projection descriptor;
140 audio fundamental frequency descriptor;
141 audio harmonicity descriptor;
142 audio spectrum flatness type descriptor; log attack time descriptor;
143 harmonic spectral centroid descriptor
144 harmonic spectral deviation descriptor;
145 harmonic spectral spread descriptor;
146 harmonic spectral variation descriptor;
147 spectral centroid descriptor; and
148 temporal centroid descriptor.

The result is then output as is described above.

In Figure 6 is illustrated the process for emotive high level descriptors extraction. This is process step 26 in Figure 4. Here, four different processes are conducted in parallel:

149 the fundamental frequency (pitch change) is measured along each phoneme/word as a function of time;
150 audio amplitude changes detection (loudness change) is measured along each phoneme/word as a function of time;
151 rhythm detection (auto-correlation of the audio power) is measured along each phoneme/word as a function of time; and
152 spectral slope along each phoneme/word is measured along each phoneme/word as a function of time.

The outputs of all four are then combined at 154 to create prosodic descriptors.
The final enhancement process 28 of Figure 4 is illustrated in Figure 7 – the phoneme/word analysis. This may be performed using HLDs. The phoneme segmentation of the audio track 155 and the diphone segmentation of the audio track 156 are combined and at 157 the phoneme and diphone data is extracted and subjected to post-processing. Post-processing may include one or more of normalization of amplitude via peak or RMS methodologies, noise reduction, and frequency filtering (either adaptive or manually set). The phoneme/diphone data descriptors are then encoded and passed for storage as well as for input into the translation process 90.

The present invention also extends to a computer usable medium comprising a computer program code that is configured to cause one or more processors to execute one or more functions to perform the steps and functions described above; as well as to a video having subtitles prepared by the above system.

The translation is preferably conducted using a machine translation. Suitable machine translation engines include Systrans 4.0. The translation may be into any suitable language in any format – using the Roman alphabet, Roman numerals, Arabic numerals, and any regional or national alphabets, scripts and symbols.

Whilst there has been described in the foregoing description a preferred embodiment of the present invention, it will be understood by those skilled in the technology concerned that many variations or modifications in details of design, construction or operation may be made without departing from the present invention.

The present invention extends to all features disclosed both individually, and in all possible permutations and combinations.
The claims:

1. A process for providing subtitles on video content including the steps:
 (a) using an audio track corresponding to the video content and a script corresponding to the audio track to producing timed phonemes of the script;
 (b) using text synchronisation to align the timed phonemes with the audio track; and
 (c) translating the timed phonemes to a bitmap graphic on a subtitle track of the video content.

2. A process as claimed in claim 1, wherein between steps (a) and (b) there is included a further process step of obtaining a machine translation of the phonemes of the script.

3. A process as claimed in claim 2, wherein after the machine translation is obtained, manual correction for slang and idiomatic language is performed.

4. A process as claimed in any one of claims 1 to 3, wherein the text synchronisation is performed by using a punctuation filter to locate the beginnings and ends of sentences.

5. A process as claimed in claim 2 or claim 3, wherein the translation is into a language as input from a user's machine.

6. A process as claimed in any one of claims 1 to 5, wherein the video content with subtitles is output in a format as input from a user's machine.

7. A process as claimed in any one of claims 1 to 6, wherein process step (a) is conducted using a track reading process.

8. A process as claimed in claim 7, wherein the track reading process includes the steps:
 (a) breaking the script into phonemes; using a speech recognition process on the audio track to produce a processed audio track;
 (b) analysing the audio track to produce a time location for words in the audio track;
 (c) generating a phrase of the script using the phonemes;
 (d) conducting a recognition process to recognise the phrase in the processed audio track; and
 (e) extracting the phonemes from an output of the recognition process.
9. A process as claimed in claim 8, wherein the phonemes are obtained using a text-to-speech process.

10. A process as claimed in claim 8 or claim 9, wherein the script is broken into words before the phonemes are obtained.

11. A process as claimed in any one of claims 8 to 10, wherein any unrecognised phrases in the audio track after the recognition process are subsequently processed in the same manner with reset threshold and accuracy of the speech recognition process.

12. A process as claimed in any one of claims 8 to 11, wherein prior to the recognition process, parameters of the speech recognition process and a next phrase logic of the speech recognition process, are set.

13. A process as claimed in any one of claims 8 to 12, wherein the audio track is analysed to produce a time location for words in the audio track;

14. A process as claimed in claim 13, wherein the speech recognition process on the script also produces a description of words and phoneme length timings.

15. A process as claimed in claim 14, wherein the description of words, phonemes and phoneme length timings are further processed with a timer input to produce a timed word/phoneme list.

16. A process as claimed in claim 15, wherein the timer input is obtained from the audio track.

17. A process as claimed in claim 15 or claim 16, wherein the audio track is part of an audio/video input and the audio/video input is first converted to be MPEG1/MPEG2 compliant before separating the audio track from the audio/video input.

18. A process as claimed in any one of claims 14 to 17, wherein the speech recognition process also produces marked-up phonemes.

19. A process as claimed in any one of claims 15 to 18, wherein the further processing is a phoneme analysis.
20. A process as claimed in claim 19, wherein the phoneme analysis is an MPEG 7 word/phoneme analysis using sound spectrum and sound waveforms.

21. A process as claimed in any one of claims 1 to 20, wherein the audio track is also input into an MPEG 7 audio low level descriptors extraction process.

22. A process as claimed in any one of claims 1 to 21, wherein the audio track is also input into an MPEG 7 emotive analysis for extraction of emotion-related descriptors.

23. A process as claimed in claim 21, wherein the low level descriptors are one or more selected from the group consisting of: audio spectrum envelope descriptor, audio spectrum centroid descriptor, audio spectrum spread descriptor, audio spectrum flatness descriptor, audio spectrum basis descriptor, audio waveform descriptor, audio power descriptor, silence descriptor, audio spectrum projection descriptor, audio fundamental frequency descriptor, audio harmonicity descriptor, audio spectrum flatness type descriptor, log attack time descriptor, harmonic spectral centroid descriptor, harmonic spectral deviation descriptor, harmonic spectral spread descriptor, harmonic spectral variation descriptor, spectral centroid descriptor, and temporal centroid descriptor.

24. A process as claimed in claim 22, wherein the emotive analysis is conducted by measuring;
 (a) a fundamental frequency along each phoneme/word as a function of time;
 (b) audio amplitude changes along each phoneme/word as a function of time;
 (c) rhythm detection along each phoneme/word as a function of time; and
 (d) spectral slope along each phoneme/word as a function of time.

25. A process as claimed in claim 20, wherein the word/phoneme analysis is conducted by using high level descriptors to analyze a phoneme segmentation of the audio track and a diphone segmentation of the audio track, combining the results, and extracting the phoneme and diphone data and subjecting the extracted data to post-processing.

26. A video having subtitles prepared by the process of any one of claims 1 to 25.

27. A computer usable medium comprising a computer program code that is configured to cause one or more processors to execute one or more functions to perform the steps and functions as claimed in any one of claims 1 to 25.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>G11B</td>
<td>G11B27/028</td>
</tr>
<tr>
<td></td>
<td>G11B27/10</td>
</tr>
<tr>
<td></td>
<td>G11B27/28</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | G11B |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5 649 060 A (ZADROZNY WLODEK WLODZIMIERZ ET AL) 15 July 1997 (1997-07-15) column 1, line 43 - column 3, line 8 column 3, line 47 - column 10, line 44; figures</td>
<td>1-27</td>
</tr>
<tr>
<td>X</td>
<td>WO 01/95631 A (BRITISH BROADCASTING CORP; WIEWIOREK ADAM GB; KIRBY DAVID GRAHAM) 13 December 2001 (2001-12-13) abstract page 5, line 13 - page 6, line 5 page 7, line 10 - page 8, line 7 page 9, line 23 - page 10, line 6 page 14, line 18 - page 15, line 5 page 17, line 28 - page 15, line 23 page 38, line 5 - page 42, line 21</td>
<td>1-27</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

D. PATENT FAMILY MEMBERS ARE LISTED IN ANNEX

E. DATE OF ACTUAL COMPLETION OF THE INTERNATIONAL SEARCH

7 July 2004

F. DATE OF MAILING OF THE INTERNATIONAL SEARCH REPORT

22/07/2004

G. NAME AND MAILING ADDRESS OF THE ISA

European Patent Office, P.B. 5816 Patentlaan 2 NL - 2280 HV RIJWINK Tel.: (+31-70) 340-2040, Tx: 31 661 eipo nl, Fax: (+31-70) 340-3016

Authorized officer

D'Attilia, M

Form PCT/IB2004/001342 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>the whole document</td>
<td>2-5,11, 12,17, 21-25</td>
</tr>
<tr>
<td>A</td>
<td>"COMPUTER-AIDED DIALOG SYNCHRONIZATION AND SUBTITLE GENERATION FOR VIDEO SYSTEMS", IBM TECHNICAL DISCLOSURE BULLETIN, IBM CORP. NEW YORK, US, VOL. 36, NR. 8, PAGE(S) 119-120 XP000390163 ISSN: 0018-8689 the whole document</td>
<td>1-27</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69422466 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2986345 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7199379 A</td>
</tr>
<tr>
<td>WO 0195631</td>
<td>13-12-2001</td>
<td>CA 2411038 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1295482 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0195631 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2379312 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004093220 A1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5781687</td>
<td>14-07-1998</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>