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(57) Abstract

Three prioritization schemes for determining which of several CPUs receives priority to become bus master of a host bus in
a multiprocessor system, and an arbitration scheme for transferring control from one bus master to another. Each prioritization
scheme prioritizes n elements, where a total of (n/2)x(n-1) priority bits monitors the relative priority between each pair of ele-
ments. An element receives the highest priority when each of the n-1 priority bits associated with that element points to it. In the
arbitration scheme, the current bus master of the host bus determines when transfer of control of the host bus occurs as governed
by one of the prioritization schemes. The arbitration scheme gives EISA bus masters, RAM refresh and DMA greater priority
than CPUs acting as bus masters, and allows a temporary bus master to interrupt the current bus master to perform a write-back
cache intervention cycle. The arbitration scheme also supports address pipelining, bursting, split transactions and reservations of
CPUs aborted when attempting a locked cycle. Address pipelining allows the next bus master to assert its address and status sig-
nals before the beginning of the data transfer phase of the next bus master. Split transactions allow a CPU posting a read to the
EISA bus to arbitrate the host bus to another device without re-arbitrating for the host bus to retrieve the data. The data is assert-
ed on the host bus when it is idle even if the host bus is being controlied by another device.
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Title: PRIORITIZATION OF MICROPROCESSORS IN
MULTIPROCESSOR COMPUTER SYSTEMS

SPECTIFICATION

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to prioritization
and arbitration of multiple elements in a system,
including least recently used and first-in-first-out
prioritization schemes, a reservation scheme for
overriding prioritization and an arbitration scheme
including split transactions and pipelined arbitration
for multiple microprocessors sharing a single host bus.
2. Description of the Related Art

The personal computer industry is evolving quickly
due to the increasing demand for faster and more
powerful computers. Historically, computer systems
have developed as single micrdprocessor, sequential
machines which process one instruction at a time.
However, performance limits are being reached in single
microprocessor computer systems so that a major area of

research in computer system architecture is parallel
processing or multiprocessing. Multiprocessing
involves a computer system which includes multiple
microprocessors that work in parallel on different
problems or different parts of the same problem. The
incorporation of several microprocessors in a computer
system introduces many design problems that are not
preéent in single microprocessor architectures..

One difficulty in multiprocessor computer systems
is that all of the microprocessors often share a single
host bus and only one microprocessor can access or
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control the bus at any given time. Another difficulty
is that many of the microprocessors may request control
of the host bus at the same time. Therefore, some type
of arbitration scheme is necessary to determine which
5 microprocessor will take control of the host bus, when,
and how that microprocessor takes control from the
microprocessor or other device previously having
control.
A complication that is encountered in

10 multiprocessor computer systems is the maintenance of
cache coherency when each microprocessor includes its
own local cache memory. For simplicity, the system
comprising the microprocessor and’its local cache
memory and cache support logic will be referred to as a

15 central processing unit (CPU). Cache memory was
developed in order to bridge the gap between fast
microprocessor cycle times and slow memory access
times. A cache is a small amount of very fast,
relatively expensive, zero wait state memory that is

20 used to store a copy of frequently accessed code and
data from main memory. A CPU can operate out of its
cache and thereby reduce the number of wait states that
must be interposed during memory accesses. When a
microprocessor requests data from the memory and the

25 data resides in the local cache, then a cache "hit"
takes place, and the data from the memory access can be
returned to the microprocessor from the local cache
without incurring wait states. If the data is not in
the cache, then a cache read "miss" takes place, and

30 the memory request is forwarded to the system and the
"data is retrieved from main memory, as would normally
be done if the cache did not exist. On a cache miss,
the data that is retrieved from main memory is provided

to the microprocessor and is also written into the
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cache due to the statistical likelihood that this data
will be requested again by the microprocessor.

The development of cache memory has facilitated
the multiprocessor computer system in that each CPU

5 requires access to the host bus less frequently,
thereby making the computer system more efficient.
CPUs operating out of their local cache in a
multiprocessing environment have a much lower
individual "bus utilization." This reduces system bus

10 bandwidth used by each of the CPUs, making more
bandwidth available for other CPUs and bus masters.
However, each CPU may change the data within its own
local cache, thereby requiring the need to update the
main memory since other CPUs will also be accessing the

15 main memory and would otherwise receive obsolete or
dirty data. Therefore, one difficulty that has been
encountered in multiprocessing architectures is the
maintenance of cache coherency such that when one CPU
alters the data within its local cache, this altered

20 data will be reflected back to the main memory.

In a multiprocessor computer system using a single
bus architecture, system communications take place
through a shared bus, which allows each CPU to monitor
other CPU bus requests by watching or snooping the bus.

25 Each CPU has a cache system which monitors activity on
the shared bus and the activity of its own
microprocessor and decides which block of data to keep
and which to discard in order to reduce bus traffic. A
request by a CPU to modify a memory location that is

30 stored in more than one cache requires bus
communication in order for each copy of the
coriesponding line to be marked invalid or updated to
reflect the new value.

In a write-back scheme, a cache location is

35  updated with the new data on a CPU write hit and main
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memory is generally only updated when the updated data
block must be exchanged with a new data block. The
multiprocessor cache systems which employ a write-back
scheme generally utilize some type of ownership
protocol to maintain cache coherency. In this scheme,
any copy of data in a cache must be identical to (or
actually be) the owner of that location’s data.

The arbitration scheme should include a mechanism
for an "owner" cache to interrupt the current
controller of the single host bus if the current
controller attempts to access data from main memory
that has been modified or altered by the owner cache.
The arbitration scheme therefore, should include a
mechanism for one of the CPUs to temporarily interrupt
the current CPU controlling the host bus, so that CPU
can return as the bus master when the temporary
interruption is over.

A multiprocessor computer system uéually includes
an input/output (I/O0) bus, such as the Industry
Standard Architecture (ISA) bus or the Extended ISA
(EISA) bus, as well as direct memory access (DMA) and
random access memory (RAM) refresh. The EISA bus is
not directly connected to the host bus, but includes an
EISA bus controller (EBC) connected between the host
bus and the EISA bus. The EBC must have access and
control of the host bus occasionally to facilitate
transfers of data between the CPUs and I/O devices,
such as ISA or EISA bus masters which are connected to
the EISA bus, as well as to return data from an I/O
device or other system resource through the host bus to
one of the CPUs of the computer system. Additionally,
bus masters must also have access to the host bus when
a bus master installed on the I/O bus directs an '
activity to the main memory. The DMA and RAM refresh
operations also require access to the host bus. The
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bus masters, DMA and RAM refresh need greater priority
than the CPUs in the multiprocessor system. The
arbiﬁration scheme used in a multiprocessor system must
give greater priority to the DMA, RAM refresh and EISA

5 requests to control the host bus, without disturbing
the relative priorities of the CPUs.

Prioritization schemes can be implemented in
multiprocessor computer systems to prioritize between
several CPUs requesting control of a single host bus at

10 the same time. Also, prioritization schemes are very
useful in establishing which blocks of data within a
cache, or which of the cache "ways", are to be replaced
since a lower priority cache way is less likely to be
used by a CPU. In general, the problem to be solved by

15 a prioritization scheme is how to efficiently
prioritize a plurality of elements. The elements
reside in a system where all elements would have
symmetric access to system resources, such as the host
bus. Prior-art daisy-chaining and round-robin priority

20 schemes had inherent latency and fairness problems when
elements were not installed or not requesting.

Two of the most commonly implemented
prioritization schemes are the first-in-first-out
(FIFO) and least recently used (LRU) priority schemes.

25 In a FIFO scheme, priority is given to that element
which has requested the host bus or system resources
first. A FIFO scheme used to replace cache ways may be
less efficient if a certain cache way is being
frequently used but is replaced since it is the oldest

30 element. FIFO schemes are generally fair when
prioritizing between several CPUs in a multiprocessor
system. The least recently used (LRU) scheme gives
priority to that element that had the highest priority
least recently. It is based on the very reasonable

35 assumption that the least recently used element is the
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one element that should have the highest priority in
the future. The LRU policy avoids giving low priority
to a very active element as occurs in a FIFO scheme.
FIFO prioritizers available in prior art were too

5 large to implement efficiently. The pseudo-LRU
algorithms found in the prior art are inherently
unworthy if implemented in multiprocessor systems,
since they violate the symmetry clause by allowing
higher utilization of elements on less populated

10 branches of the pseudo-LRU tree structure.

SUMMARY OF THE PRESENT INVENTION
There are three prioritization schemes of the

present invention. First, there is the true-LRU

15 structure which could be used on any cache design that
requires that a true-LRU be kept on its cache ways.
The second scheme is a modified true-LRU and the third
is a FIFO scheme. The second and third schemes can be
used in caches or on any prioritizer or arbiter where

20 some of the elements are missing or are not available.
The true-LRU prioritization scheme of the present

invention uses (n/2)x(n-1) priority bits where each
priority bit keeps track of the relative priority
between a corresponding pair of elements of the n

25 elements. There are (n/2)x(n-1) unique pairs where
each of the n elements is paired with every other
element, and each element is associated with n-1
pairings or priority bits. Any time that all n-1
priority bits associated with a particular element

30 point to that element, then that element has the
highest priority, whether priority means that a CPU is
the highest in priority to assume control of the host
bus, or that a cache way is next to be replaced. Also,
each time that an element uses the bus, or a cache way

35 gets used, then each priority bit associated with that
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element is updated to point away from that element.
All priority bits not associated with the element are
unaffected when that element’s associated bits are
updated.

There are n priority equations, one for each of
the n elements, to determine which of the n elements
has the highest priority. Each equation is associated
with one of the n elements and is derived from the n-1
priority bits that are associated with that element.
Each priority equation determines a priority term such
that there are a total n priority terms, one priority
term associated with a corresponding one of the n
elements. Only one of the priority terms is true at
any time such that only one of the elements has the
highest priority.

The modified true-LRU prioritizer of the present
invention uses the same priority bits as defined for
the true-LRU priority scheme. However, the modified
true-LRU includes a request signal for each element.
The priority bit values are each modified resulting in
the same number of modified priority bits, where the
modified priority bits change the relative priority
between a pair of elements to the other element if the
element normally having priority is not requesting and
the other element is requesting priority. An
alternative modifier equation changes the relative
priority to point to the other element if the element
that normally has priority is not requesting priority.
Using either modifier equation, the modified priority
bits are used in the priority equations rather than the
regular priority bits to determine the priority terms.

The last prioritization scheme is a FIFO
priccitizer which is similar to the true-LRU schemes
desc-ibed above. The FIFO prioritization scheme uses
the original priorit~ bits in the priority equations to

PCT/US93/09186
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determine the priority terms where there are n priority
terms, one for each of the n elements. These priority
bits are derived, however, from the same modified
priority bits as described above.

The prioritization schemes described above can be
used in a multiprocessor system to determine which of
several CPUs has the highest priority to assume control
of a host bus in a multiprocessor system. For example,
one of the prioritization schemes could be implemented
at a central location attached to the host bus of a
computer system. The host bus includes request signals
for each of the CPUs so that each CPU can request
control of the host bus and the central prioritizer can
detect these request signals. The host bus also
includes acknowledge signals derived from the priority
terms provided by the central prioritizer so that a CPU
can detect if it has the highest priority as determined
by the prioritizer. Additional logic is required so
that the EISA bus masters or the DMA and RAM refresh
have higher priority than the CPUs such that if the
EISA bus masters or the DMA or RAM refresh request use
of the host bus, they receive priority over the regular
CPUs. An EISA host master (EHM) is included which

~ requests the use of the host bus on behalf of EISA bus

masters or other devices performing DMA or RAM refresh
operations initiated on the EISA bus. The addition of
the EHM, DMA and RAM refresh, however, does not disturb
the relative priorities between the CPUs in the
multiprocessor system.

The arbitration scheme of the present invention is
designed to provide the lowest arbitration latency
possible between bus masters and to maximize the
computer system throughput. The current bus master is
put in control of causing when arbitration is to occur,
thus making it accountable for determining when to

PCT/US93/09186
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transfer ownership while allowing it to keep the host
bus if it really needs it. The prioritization logic,
as described above, is placed into a central location
and determines which CPU becomes the next bus master
once the current bus master releases control of the
host bus.

To facilitate arbitration, the host bus includes a
host bus "busy" signal which governs when arbitration
petween one bus master and the next takes place. The
current bus master asserts the host bus busy signal
while it has control of the host bus. During this time
while the host bus busy signal is asserted,
prioritization arbitration is occurring where the
acknowledge signals are allowed to change. Once the
current bus master is through with the bus, it negates
the host bus busy signal which freezes the acknowledge
signals at that time. 1In general, a CPU or other
potential bus master requiring control of the host bus
asserts its request signal and then monitors its
acknowledge signal so that when its acknowledge signal
is asserted, it has the highest priority. However, it
must wait until the bus is available, during which time
it may lose highest priority to another device. The
prioritizer detects requests as they occur and
determines which of the requesting CPUs has the highest
priority at that time. The next bus master is that
device having the highest priority when the host bus
busy signal is negated. The CPU assumes control of the
host bus as soon as it detects that its acknowledge
signal is asserted and the host bus busy signal is not
asserted, by re-asserting the host bus busy signal and )
assuming control of the host bus.

The arbitration scheme of the present invention
provides for a temporary bus master to interrupt the
current, or "permanent" bus master, in order to perform
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a write-back cache intervention cycle. The owner cache
snoops the host bus for memory reads or writes of a
modified location and if this occurs, it aborts the
permanent host bus master temporarily in order to
write-back the modified line to main memory. The
arbitration scheme of the present invention includes a
back-off mechanism where the host bus includes a back-
off signal which is asserted by the snooping cache to
temporarily abort the operations of the permanent bus
master so that the snooping cache can take control of
the host bus. The temporary bus master may then
proceed to write-back the modified line to main memory.
When the temporary bus master completes its task, it
returns control to the permanent bus master that was
interrupted.

Intermediate priority is given to the EISA bus
masters and the RAM refresh and DMA. The EHM has
priority over the normal CPUs acting as permanent bus
masters so that any time the bus masters, DMA or RAM
refresh request control of the host bus, they receive
control of the host bus once it is available. However,
the temporary bus masters have the highest priority and
can even interrupt the EHM. A temporary bus master
will probably not intervene on a RAM refresh cycle,
however, since refreshes do not cause snoops, and
snoops usually cause interventions.

The arbitration scheme of the present invention
also supports address pipelining, bursting and EISA
read and write posting. Address pipelining allows the
address and status signals on the host bus to be
available before the start of the data transfer phase
of any given cycle. Pipelining is useful for bus
slaves to efficiently transfer data and to reduce the
snoop latency induced by bus masters. Pipelining can
also occur during arbitration between one bus master

g
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and the next. Pipelined arbitration is a way to more
efficiently transfer control of the host bus from one
permanent bus master to the next without any idle data
transfer states. The next bus master can pipeline its
addresses and status signals while the data transfer
for the present bus master is still in the process of
completing. In this manner, the address and status
signals are available to the next bus master while the
data signals are still being accessed by the previous
bus master.

The host bus supports bursting of both memory
reads and writes. In a burst sequence according to the
preferred embodiment, the most data that can be
transferred is 32 bytes. Bursting normally occurs when
a temporary bus master assumes control of the host bus
and then bursts the data by writing back the modified
line to main memory.

A split transaction capability is supported where
both reads and writes to the EISA bus from the host bus
are posted by the EBC. Posting buffers are provided

- petween the EISA bus and the host bus to temporarily

hold data. When a write is posted, the CPU in control
of the host bus can continue its cycle. When a read is
posted, the bus master usually must wait for the data
to return from the EISA bus before continuing. Once an
operation is posted, a retry signal is asserted by the
EBC to prevent further access to the EISA bus. While
that host bus master is waiting for its read data, it
may arbitrate the host bus to another permanent bus
master if another element or device is requesting it.

- If a CPU tries to access the EISA bus while another

master’s access is active on the EISA bus, then the
retry signal forces it to abort and try again later.
If another CPU is reqguesting access to the host bus,
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the aborted CPU arbitrates the bus to the other CPU.
The aborted CPU ends up with the lowest priority.

The CPU waiting for read data posted to the EISA
bus need not re-arbitrate for the host bus to retrieve
the data. The EBC returns the read data when it is
valid on the EISA bus and the host data bus is idle.
Although the device in control of the host bus may
incur some wait states while data from a posted read is
being returned, significant time savings still result
since an arbitration cycle is avoided.

A CPU may perform a locked cycle where that CPU
has sole access to a memory location or to a device on
the EISA bus. If the EISA bus is busy, however, a
locked retry signal is asserted to prevent the locked
cycle since otherwise a deadlock may occur between the
EISA and host buses. Since a CPU attempting a locked
EISA cycle will be aborted by the EBC even if the
posting buffers are available (empty), and thus the CPU
may be aborted by both the retry and locked retry
signals, it is desirable that the aborted CPU gain the
highest priority when the EISA bus is next available
regardless of which CPU has highest priority at that
time. Thus, the prioritization scheme also includes a
reservation scheme which sets a reservation bit
identifying a CPU which was aborted when attempting a
locked EISA cycle. When the EISA bus becomes
available, the reservation overrides the normal
prioritization and the aborted CPU becomes the next bus

master.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with

the following drawings, in which:
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Figure 1 is a simplified block diagram of a
multiprocessor computer system which uses the
prioritization and arbitration schemes according to the
present invention;

Figure 2 is a simplified block diagram which
illustrates the preferred embodiment of the CPUs of
Figure 1;

Figure 3 is a timing diagram illustrating
arbitration of the host bus from one bus master to
another according to the present invention;

Figure 4 is a timing diagram illustrating a cache
snoop back-off and write-back cycle;

Figure 5 is a timing diagram illustrating
arbitration of the host bus of Figure 1 during a write-
back cycle;

Figure 6A is a timing diagram illustrating a non-
pipelined cycle of the host bus of Figure 1;

Figure 6B is a timing diagram illustrating a non-
pipelined cycle during arbitration of the host bus of
Figure 1;

Figure 7A is a timing diagram illustrating a
pipelined cycle of the host bus of Figure 1;

Figure 7B is a timing diagram illustrating a
pipelined cycle during arbitration of the host bus of
Figure 1;

Figure 8A is a timing diagram illustrating
multiple writes in a non-bursted seguence;

Figure 8B is a timing diagram illustrating
multiple writes in a bursted sequence;

Figures 9A and 9B show state diagrams illustrating
the operation of state machines in the EISA bus
controller of Figure 1 which tracks the host data bus
to perform a split transaction;

Figures 10A-10D show timing diagrams which
jllustrate CPUs forced off the host bus of Figure 1 due
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to posted operations of the EISA bus and locked cycles;

Figure 11 is a schematic diagram illustrating a
true least recently used prioritization scheme
according to the present invention;

Figure 12 is a schematic diagram illustrating a
modified true least recently used prioritization scheme
according to the present invention;

Figures 13A, 13B, 13C, 13D and 13E are schematic
diagrams illustrating a logic implementation of a
modified true least recently used prioritization scheme
according to the present invention; and

Figures 14A and 14B show timing diagrams of CPUs
attempting locked cycles being forced off the host bus
of Figure 1, illustrating reservations being set
overriding normal priority; and

Figure 15 is a schematic diagram illustrating a
first-in-first-out prioritization scheme according to
the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now to Figure 1, a multiprocessor
computer system S is generally shown which uses the
prioritization and arbitration schemes according to the
present invention. Many of the details of a computer
system that are not relevant to the present invention
have been omitted for the purpose of clarity. In the
present embodiment, the computer system S includes four
central processing units (CPUs) 22, 24, 26 and 28 that
are coupled to a host bus 20, although it is
contemplated that the computer S could include up to
sixteen or more CPUs where one or more CPUs would be
included between the CPU 26 and the CPU 28. A memory
controller 30 is coupled to the host bus 20. A memory
array, otherwise referred to as main memory 32,
preferably comprises dynamic random access memory

PCT/US93/09186
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(DRAM) and is coupled to the memory controller 30.
Memory mapper logic 34 is coupled to the host bus 20,
the memory controller 30 and the main array 32. The
memory mapper logic 34 provides memory mapping
functions to facilitate memory accesses in the main
memory 32.

The computer S preferably includes an Extended
Industry Standard Architecture (EISA) bus 36 which
would also include an EISA bus controller (EBC) 38.
EISA is an extension of the Industry Standard
Architecture (ISA), a bus architecture introduced in
the International Business Machines Corp. (IEM) PC/AT
personal computer. The EBC 38 interfaces the host bus
20 to the EISA bus 36, and more particularly controls
cycles initiated on the host bus 20 to the EISA bus 36
and provides various bus cycle translation and
conversion functions to facilitate transfers between
the host bus 20 and the EISA bus 36. The EISA bus 36
could also be another type of bus based on any of the
various bus specifications known in the industry. A
system data buffer 40 is also coupled between the host
bus 20 and the EISA bus 36, and is also coupled to the
data lines of the main memory 32. A logic block
referred to as the central system peripheral (CSP) 42
is coupled between the host bus 20 and the EISA bus 36.
The CSP 42 is also coupled through a MUX bus 44 to a
logic block referred to as the distributed system
peripheral (DSP) 84 (Figure 2) which is preferably
included with each of the CPUs 22-28. The CSP 42
includes various system functions including a direct
memory access (DMA) controller, EISA arbitration
controller, and numerous system board logic functions
such as refresh control, among others.

The EISA bus 36 includes a plurality of EISA slots
48 and 50 for receiving EISA bus master expansion cards
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such as network interface cards or a hard disk
interface cards to name a few examples. The EISA bus
36 is coupled to buffers 52 to a bus referred to as the
X-bus 54. A number of peripheral devices are coupled
to the X-bus 54 including the keyboard controller 46, a
real time clock (RTC) 56, electrically erasable,
programmable, read only memory (EEPROM) 58, a floppy
disk controller 60, and a peripheral controller chip 62
which includes numerous ports and universally
synchronous receiver/transmitters (not shown).

The memory controller 30 is also coupled to the
EISA bus 36 and preferably includes a central
prioritizer 64 which is also connected to the host bus
20, where the prioritizer 64 is preferably part of the
memory controller 30 to provide a convenient
centralized location. The prioritizer 64 could
alternatively be a separate unit. The prioritizer 64
includes logic to monitor the control signals appearing
on the host bus 20 and to determine which of the CPUs
22-28 has control of the host bus 20 as will be
described more fully below. The memory controller 30
also preferably includes an EISA host master (EHM) 66,
which is connected to the host bus 20 and the EISA bus
36 and is responsible for running cycles on the host
bus 20 in response to EISA initiated accesses including
DMA, refresh, and requests by EISA and ISA bus masters.
EISA and ISA bus masters are coupled to the EISA bus 36
either directly as part of the computer system S
although not shown, or through the EISA slots 48 or 50
as part of bus master expansion cards. The EHM 66
requests the host bus 20 for DMA and refresh devices as
well as EISA and ISA bus masters.

Referring now to Figure 2, a block diagram of the
preferred embodiment.of the CPU 22 is shown, although
other configurations are possible for use with the
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present invention. The other CPUs 24, 26 and 28
preferably comprise similar configurations as the CPU
22, although they may be different. The CPU 22
includes a microprocessor 70 which is preferably the
1486 manufactured by Intel, although other
microprocessors are contemplated such as the i386, also
by Intel. The microprocessor 70 is coupled to a
microprocessor bus 72 including control, data and
address bus portions as shown. A second level cache
controller 74, which is preferably the 82495 C5 cache
controller by Intel, is coupled to the control and
address portions of the microprocessor bus 72. A cache
memory 76, preferably comprising 82430 C8 static RAMs
by Intel normally used with the Intel C5 cache
controller, is coupled to the data and address portions
of the microprocessor bus 72. The cache controller 74
connects to the cache memory 76 via various control
lines as shown.

‘ Cache controller interface logic 78 is preferably
coupled to the cache controller 74 through control
lines, and provides the required bus controller
functions to interface the cache system comprising the
cache controller 74 and the cache memory 78 with the
host bus 20. The cache interface logic 78 also
provides the necessary signal interpretation and
translation between the cache controller 74 and the
host bus 20. The address portion of the cache
controller 74 is connected to a transceiver 80 which,
in turn, is connected to the host bus 20. The address
portion of the cache controller 74 is also connected to
the cache interface logic 78. The address lines
coupled between the cache controller 74 and the
transceiver 80 are bi-directional, meaning that the
cache controller 74 - can drive an address through the
transceiver 80 onto the host bus 20 and can also
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receive an address from the host bus 20 through the
transceiver 80 to the address portion of the cache
controller 74. The cache interface logic 78 is
connected to the host bus 20, the transceiver 80, a
cache data buffer 82 and the DSP 84 through control
lines as shown. These control lines from the cache
interface logic 78 are connected to the transceiver 80
and the cache data buffer 82 to allow the cache
interface logic 78 to control the output enables for
both the cache controller 74 and the cache memory 76.
The data portion of the cache memory 76 is connected to
the cache data buffer 82, where the cache data buffer
82 is connected to the host bus 20 through similar data
lines. The cache data buffer 82 is connected to the
DSP 84 via local I/0 address data and control lines.
The DSP 84 is connected through the MUX bus 44 to the
CSP 42. The DSP 84 implements various logic functions
that are closely related to the microprocessor/cache
subsystem, including the interrupt controller, timers
and specific individual processor communication
functions.

The host bus 20 includes address, data, and
control lines as described above, which are shared by
the CPUs 22-28. Only one of the CPUs 22-28 may have
control of the host bus 20 at any given time where that
CPU having control may drive the address and data
signals of the host bus 20, although pipelining and
split transactions, described later, modifies this
somewhat. It is understood that when a CPU, such as
the CPU 22, is referred to as having control of the
host bus 20, the controlling logic may be included
within its respective cache subsystem. In the
preferred embodiment, the cache interface logic 78
comprises the necessary logic to interface with the
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host bus 20 so that the microprocessor 70 is isolated
from the host bus 20.

The interaction between the microprocessor 70 of
the CPU 22 and its cache subsystem will now be
described, it being understood that each of the other
microprocessors in the CPUs 24-28 and their respective
cache subsystems operate in precisely the same or in a
very similar manner. The cache memory 76 is a small
aﬁount of very fast, relatively expensive, zero wait
state memory that is used to store a copy of frequently
accessed code and data from the main memory 32. The
microprocessor 70 can operate out of the cache memory
76 and thereby reduce the number of wait states that
must be interposed during memory accesses. When the
microprocessor 70 requests data from the main memory 32
and the data resides in the cache memory 76, then a
cache read "hit" takes place and the data from the
memory access can be returned to the microprocessor 70
from its associated cache memory 76 without incurring
wait states. This cycle can take place without the use
of the host bus 20. ,

If a cache "miss" occurs, where the microprocessor
70 requires data that is not within its cache memory
76, the CPU 22 uses the host bus 20 to gain access to
the data in the main memory 32. The memory request is
forwarded to the main memory 32 through the host bus
20, as would normally be done if the cache memory 76
were not present. When a miss occurs, the data that is
retrieved from the main memory 32 is provided to the
CPU 22 and is written into the cache memory 76 due to
the statistical likelihood that this data will be
requested again by the microprocessor 70. A

There are several different cache management
schemes known to those skilled in the art that could be
used in conjunction with the prioritization and
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arbitration scheme of the present invention. Although
only one cache management scheme will now be described,
the present invention is not limited to this particular
scheme. In the preferred embodiment, the
multiprocessor cache system employs a write-back scheme
where the multiprocessor system generally utilizes a
modified exclusive ownership protocol to maintain cache
coherency. Ownership is generally acquired through
read and write operations defined in an ownership
protocol. The owner of a location’s data is generally
defined as the cache having the most recent version of
the data originating from a corresponding memory
location of the main memory 32.

More particularly, the computer system S
preferably uses the modified exclusive shared invalid
(MESI) protocol, where each of the cache subsystems of
the CPUs 22-28 may be the exclusive owner of data which
was originally read from the main memory 32. The
microprocessor 70 may modify the data within the cache
memory 76 so that the new data is not the same as the
data in the corresponding memory location in the main
memory 32, or in another cache memory of another CPU
24-28. The CPU 22 is then the exclusive owner of the
data at that particular memory address and is
responsible for maintaining the correctness of the data
provided in any future read operations to that address.
Also, the owner CPU 22 must inform the other CPUs 24-28
having data from the corresponding data address of the
cycle so that the other CPUs 24-28 can determine that
their data is now incorrect, or dirty. If one of the
CPUs 24-28 attempts to access data from the main memory
32 that is dirty, the owner CPU 22 detects this read
request, causes whichever one of the other CPUs 24-28
that is on the host bus 20 to temporarily abort its
access and the owner CPU 22 updates or writes-back the
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owned data to the main memory 32. If the aborted CPU
was attempting a read cycle, it "snarfs" or reads the
data during the write-back cycle while the CPU 22 is
updating main memory 32 rather than waiting until after
5 the write-back cycle. This saves time so that the

aborted CPU need not repeat another cycle. If the
aborted CPU was attempting a write cycle, it repeats
the write cycle after the write-back cycle. This
procedure is followed so that the other CPUs 24-28

10 receive the updated data rather than the obsolete data
from the main memory 32. An owner CPU, therefore,
snoops the host bus 20 so that when another CPU
attempts to read from the owned location within the
main memory 32, the snooping owner CPU will interrupt

15 the read and perform the necessary write-back.

Any time the microprocessor 70 attempts to read
from its cache memory 76 and a miss occurs such that
the CPU 22 needs access to the main memory 32, or when
the CPU 22 needs access to the EISA bus 36 through the

20 host bus 20, the CPU 22 requests access to the host bus
20. One of the other CPUs 24-28 or the EHM 66 may
currently be the bus master where it has control of the
host bus 20, so that the CPU 22 must wait until the
host bus 20 is free. In fact, while one CPU or the EHM

25 66 has control of the host bus 20, other CPUs may
request control of the host bus 20. Recall that the
EHM 66 provides the necessary logic through which DMA
or refresh devices, or EISA and ISA bus masters control
the host bus 20, although the EHM will generally be

30 referred to as the bus master in lieu of these other

- devices when they control the host bus 20. The
prioritizer 64 keeps track of each request and uses a
prioritization scheme to determine which of the CPUs
22-28 or the EHM 66 has the highest priority to be the
35 next bus master of the host bus 20. When the current
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bus master is finished using the host bus 20, it
initiates a transfer cycle in which the present bus
master relinquishes control of the host bus 20 so that
the next bus master can take control. The device
having the highest priority at the initiation of the
transfer cycle is the next bus master. Arbitration
thus determines how and when the next bus master takes
control from the current bus master, and prioritization
determines which one of the CPUs 22-28 or the EHM 66
requesting control of the host bus 20 is the next bus
master.

In the preferred embodiment of the present
invention, the prioritization scheme is centralized
within the prioritizer 64 and monitors the control
signals of the host bus 20 in order to determine which
of the CPUs 22-28 or the EHM 66 is the next bus master.
In a sense, the prioritizer is the "arbiter" between
the CPUs 22-28 and the EHM 66 as that term is used in
the prior art. The arbitration scheme as referred to
herein is a transfer scheme which effectively and
efficiently transfers control of the host bus 20 from

one bus master to the next.

ARBITRATION
The host bus 20 includes address signals HA<31..3>

and byte enable signals HBE<7..0>*, which are similar
to the address and byte enable signals of the Intel
80386 and 80486 microprocessors as is known to those
skilled in the art, except extended to incorporate a 64
bit wide data bus and the resulting 8 single byte wide
data lanes. The asterisk at the end of a signal name
indicates that the signal is true when asserted low.
Several status signals associated with these HA<31..3>
address and HBE<7..0>* byte enable signals also reside
on the host bus 20. For simplification, the HA<31l..3>
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address signals, the HBE<7..0>* byte enable signals as
well as the miscellaneous associated status signals may
generally be referred to as the HA address signals or
host address bus. The 64 bit wide data bus includes

5 data signals HD<63..0>, which may generally be referred
to as the HD data signals or the host data bus.

The host bus 20 includes a regquest signal
HBREQ<n>* for each of the CPUs 22-28, where n
represents an ID number identifying a particular CPU.

10 In Figure 1, for example, if only four CPUs 22-28 are
connected to the host bus 20 so that there are no CPUs
between the CPUs 26 and 28, then the CPUs 22-28 would
have the ID numbers 0, 1, 2 and 3, respectively. The
host bus 20, therefore, would include the request

15 signals HBREQ<O>* for CPU 22, HBREQ<1>* for CPU 24,
HBREQ<2>* for CPU 26 and HBREQ<3>* for CPU 28.

The host bus 20 also includes an acknowledge
signal for each of the CPUs 22-28, refefred to as
HACK<n>* generally, or as HACK<0>*, HACK<l>*, HACK<2>*

20 and HACK<3>* respectively, in the specific embodiment
being illustrated. Only one of the HACK<n>* signals is
asserted at any given time, so that the HACK<n>*
signals determine which of the CPUs 22-28 has the
highest priority. When one of the CPUs 22-28 detects

25 its corresponding HACK<n>* signal asserted low, then
that CPU has the highest priority among the CPUs 22-28
to be the next bus master of the host bus 20. However,
that CPU may not assume control until the current bus
master relinquishes control of the host bus 20.

30 The host bus 20 includes a signal HBUSY* which is
tri-stated and resistively pulled high if not asserted.
A bus master having control of the host bus 20 asserts
the HBUSY* signal low to indicate to all the other
potential bus masters that the host bus 20 is busy and

35 unavailable. Generally, the bus master asserts the
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HBUSY* signal low and maintains control until it is
finished using the host bus 20, at which time it
negates the HBUSY* signal high. During the time that
the HBUSY* signal is asserted low, the HACK<n>* sgignals
5 can change so that the highest priority CPU may also
change. When the HBUSY* signal is negated high,
however, the HACK<n>* signals are preferably frozen and
not allowed to change until the HBUSY* signal is
subsequently asserted low again. The CPU having its
10 corresponding HACK<n>* signal asserted low when the
HBUSY* signal is negated high is the next bus master of
the host bus 20.
The prioritizer 64 detects the assertion of the
request signals HBREQ<n>* on the host bus 20, uses a
15 prioritization scheme to determine which of the CPUs
22-28 has the highest priority to be the next bus
master, and asserts the corresponding HACK<n>*
acknowledge signal. The prioritizer 64 includes logic
which allows it to modify the HACK<n>* acknowledge
20 signals only while the HBUSY* signal is asserted low.
The HACKe<n>* signals, therefore, remain unchanged while
the HBUSY* signal is negated during a transfer of bus
mastership to the device which had its HACK<n>* signal
asserted when the HBUSY* signal was negated. The logic
25 implementation of the prioritizer 64 will be discussed
in detail below in the section entitled
"Prioritization."
The EHM 66 tracks activity on the EISA bus 36 and
the host bus 20 to determine when a DMA or RAM refresh
30 cycle needs to be run on the host bus 20 and if an EISA
or ISA bus master requires access to the host bus 20.
If so, the EHM 66 arbitrates for the DMA, refresh, ISA
or EISA bus master in a similar manner as the CPUs 22-
28. A signal M IO on the EISA bus 36 is asserted high
35 Dby the device in control of the EISA bus 36 if the EISA
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cycle is to memory, such as the main memory 32, and is
asserted low if it is an I/O cycle. A signal HLOCAL¥*
resides on the host bus 20 and is asserted low by the
memory controller 30 if an input/output (I/0) or memory

5 address resides in a slave device local to the host bus
20 and not to the EISA bus 36, and is negated high by
the memory controller 30 if the cycle is to the EISA
bus 36. Two signals EBMODE<1..0> are asserted by the
EBC 38 to the memory controller 30 indicating what type

10 of master currently has control of the EISA bus 36,

which is decoded as follows:

00 - CPU
01 - Refresh
10 - ISA master
15 11 - EISA master or DMA

For example, if the EBMODE<1..0> signals are not equal
to 00 indicating the device is not one of the CPUs 22-
28, and if the M IO signal is asserted high and the
HLOCAL* signal is asserted low, then a device on the

20 EISA bus 36 requires access to the host bus 20.

When the EHM 66 determines that a device operating

a cycle on the EISA bus 36 requires access to the host
bus 20 using the signals described above, it asserts a
request signal referred to as EBREQ* to the prioritizer

25 64. The prioritizer 64 receives the EBREQ* signal and
provides a signal EBHACK* to the EHM 66 to grant access
of the host bus 20 to the device on the EISA bus 36.
The memory controller 30 subsequently asserts a signal
EBRGNT* to inform the EBC 38 that a device on the EISA

30 bus 36 is running the cycle on the host bus 20 so that
the EBC 38 will ignore the cycle and not attempt to run
it. It is noted that cycles initiated on the host bus
20 to the EISA bus 36 by one of the CPUs 22-28 are run
by the EBC 38, whereas cycles initiated on the EISA bus
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36 to the host bus 20 by a device on the EISA bus 36
are run by the EHM 66.

The EHM 66 behaves in a similar fashion as the
CPUs 22-28 in that when it wants control of the host
bus 20, it asserts the EBREQ* signal low, and assumes
control of the host bus 20 when it detects the EBHACK*
signal asserted low at the negation of the HBUSY~*
signal. If the prioritizer 64 detects the assertion of
the EBREQ* signal, it gives the EHM 66 a higher
priority than the CPUs 22-28. As a protective measure,
the EHM 66 may also be the default bus master so that
if none of the CPU HBREQ<n>* request signals are
asserted, the EHM 66 becomes the next bus master. This
situation should normally not occur as will be more
fully described below in the discussion of the
prioritization scheme. The assertion of the EBREQ*
signal by the EHM 66 does not affect the relative
prioriﬁies of the CPUs 22-28 as determined by the
prioritization scheme. After the EHM 66 is finished
using the host bus 20, the highest priority CPU, as
defined by the prioritizer 64 using the prioritization
scheme, becomes the next bus master.

Referring now to Figure 3, a timing diagram is
shown illustrating a transfer of control of the host
bus 20 from the current bus master which is CPU 22, to
the next permanent bus master, the CPU 24. The host
bus 20 is synchronous and includes a clock signal HCLK
which synchronizes most of the signal changes on the
host bus 20 on the rising edge of the HCLK. At a time
TO, the CPU 22 is the permanent bus master and begins
asserting the HA address signals for a particular
cycle. One HCLK period later, at a time T2, the CPU 22
asserts the HBUSY* signal low, indicating that it has
control of the host bus 20. The HBUSY* signal may have

been previously asserted.
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At a time T4, the CPU 24 asserts its regquest
signal HBREQ<l>* low indicating that it needs control
of the host bus 20. The HBREQ<n>* signals are asserted
synchronously and they are detected on the next rising

5 edge of the HCLK sigmal, so that the prioritizer 64
detects the HBREQ<1>* signal at a time T6 which is the
next rising edge of the HCLK signal, and determines
that the CPU 24 has the highest priority among the CPUs
22-28. Therefore, the prioritizer 64 negates the

10 HACK<O>* acknowledge signal high and asserts the
HACK<l>* signal low at a time T8, where the time T8 is
one HCLK period after the time T6. The assertion of
the HACK<1>* signal low indicates that the CPU 24 has
the highest priority and may be the next bus master.

15 The CPU 24 may not assume control of the host bus 20 at
time T8, however, since the CPU 22 is still asserting
the HBUSY* signal low.

At a time T10, the CPU 22 stops driving the HA
address signals and negates the HBUSY* signal high to

20 indicate that the CPU 22 has completed use of the host
bus 20 and is ready to arbitrate. The CPU 22 negates
the HBUSY* signal high for one HCLK period and then, at
a time T12, stops driving the HBUSY* signal so that the
HBUSY* signal remains high due to a pullup resistor.

25 Between the time T10 and a time T14 when the HBUSY*
signal is negated high, the HACK<n>* signals may not
change so that the HACK<n>* signal which is asserted
low at the time T10 indicates the next bus master.
Since at the time T10 the HACK<1l>* signal is asserted

30 low, the CPU 24 is the next bus master.

The CPU 24 detects the negation of the HBUSY*
signal high, and asserts the HA address signals at the
time T12, which is the next rising edge of the HCLK

"signal. Therefore, at the time T12, the CPU 24 becomes

35 the new bus master. The CPU 24 does not assert the
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HBUSY* signal low, however, until the time T14 which is
one HCLK period after the time T12. Once the HBUSY*
signal is asserted low again, the HACK<n>* signals can
change to determine the next bus master after the CPU
24 is finished with the host bus 20.

There essentially is a three level prioritization
hierarchy for the ownership of the host bus 20. The
normal operation of the CPUs 22-28 have the lowest
priority. In general, one of the CPUs 22-28 or the EHM
66 becomes the "permanent" master of the host bus 20,
where that CPU or the EHM 66 takes control of the host
bus 20 until it is through with it. The current
permanent bus master of the host bus 20 determines when
the next arbitration occurs, where it controls the
timing and transfer of ownership of the host bus 20 to
the next permanent bus master. It is understood,
however, that a "permanent" bus master may be
temporafily interrupted to allow a writeback cycle to
be performed by another bus master.

The EHM 66 has intermediate priority. The highest
priority is given to the temporary bus masters which
temporarily interrupt the permanent bus master to
satisfy their write-back protocol. This occurs when
the permanent bus master is attempting to read data
from or write data to the main memory 32 that is owned
by one of the CPUs 22-28. These temporary bus masters
interrupt the permanent bus master, therefore, to
update the main memory 32 so that the permanent bus
master does not attempt to read obsolete data.

As discussed previously, any one of the CPUs 22-28
may own a certain portion of the main memory 32, and
that owner or snooping cache snoops the host bus 20 to
determine whether the permanent bus master is
attempting to read from the location in the main memory
32 that is owned by that cache. The host bus 20
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includes a signal HADS* which is the "start cycle"
indicator as well as an indicator that a new address
has been placed on the host bus 20. The HADS* signal
is bi-directional and is driven by the current
5 (permanent or temporary) bus master, and snooped by the
caches as well as other bus masters and slaves.
Referring to Figure 3 again, the HADS* signal is
asserted low by the CPU 22 at the time TO when the HA
address signals are also being asserted by the CPU 22,
10 the CPU 22 being the current bus master. The CPU 22
asserts the HADS* signal high one HCLK period later at
the time T2, and keeps it high until the time T10 when
the CPU 22 stops asserting the particular HA address
signals. The HADS* signal is then tri-stated and not
15 asserted for one HCLK period. At the time T12, the CPU
24, which is the new bus master, asserts the HADS*
signal low and begins to assert the HA address signals.
In general, the current bus master asserts the HADS*
signal low for one HCLK period at the time it begins
20 driving the HA address signals to indicate the
beginning of a new cycle. This may change if the
addresses are pipelined, which will be discussed below.
The current bus master stops asserting the HADS* signal
at the same time that it stops driving the HA address
25 signals, to allow the next bus master to drive the
HADS* signal one HCLK period thereafter to indicate the
next cycle.
A snooping CPU detects the assertion of the HADS*
signal low and reads the address appearing on the HA
30 address signals. If the snooping CPU owns modified
data at the address appearing on the HA address
signals, it interrupts the permanent bus master to
satisfy the write-back protocol. The CPU seizes
control of the host bus 20 from the permanent bus
35 master and becomes a temporary bus master through a
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mechanism referred to as back-off. The host bus 20
includes an HBOFF* signal which is normally tri-stated
and pulled up. The temporary bus master asserts the
HBOFF* signal low to inform the permanent bus master to
abort its current operation immediately and to stop
driving the host bus 20 so that the temporary bus
master can take control and perform the necessary
write-back. As indicated by the three level
prioritization hierarchy, a temporary bus master can
also abort the EHM 66.

Referring now to Figure 4, a timing diagram is
shown illustrating a cache snoop back-off and write-
back cycle. At a time T20, the CPU 22 asserts the
HADS* signal low and begins driving the HA address
signals. At a time T22, one HCLK period after the time
T20, the CPU 22 asserts the HBUSY* signal low and the
HADS* signal high. The CPU 22 is the permanent bus
master of the host bus 20. For two HCLK periods after
the time T20, snooping caches read the HA address
signals to determine if a back-off cycle is necessary.
The CPU 24 determines that it is the owner of the data
appearing at the address HA, and begins asserting the
HBOFF* signal low at a time T24.

The signal HBOFF* is sampled asserted only at an
HCLK signal rising edge, and so is not sampled asserted
low until a time T26. The CPU 22 samples the HBOFF*
signal asserted low at the time T26 and stops driving
the HA address signals. The CPU 22 also stops driving
the HADS* signal so that it is tri-stated at the time
T26, although the CPU 22 continues to assert the HBUSY~*
signal low to allow it to regain permanent bus
mastership of the host bus 20 after the back-off cycle
is complete, if necessary.

The CPU 24 is now the temporary bus master and
asserts the HADS* signal low at a time T28, which is
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one HCLK period after the time T26 when the HBOFF*
signal was detected asserted low. Also at the time
T28, the temporary bus master CPU 24 begins asserting
the HA address signals to write the entire modified

5 line of memory back to the main memory 32. In the
preferred embodiment a cache line is 32 bytes long. At
time T30, one HCLK period after the time T28, the CPU
24 negates the HADS* signal high, and begins asserting
data on the HD data signals. If the cycle which was

10 aborted was a read cycle, the CPU 22 snarfs the data
while asserted on the HD data signals rather than
waiting until after the write-back cycle to retrieve
the data. Note that the CPU 22 is continually
asserting the HBUSY* signal throughout the write-back

15 cycle of the CPU 24.

At a subsequent time T36, the CPU 24 is finished
with the back-off cycle and asserts the HBOFF* signal
high, and stops driving the HADS* and the HA address
signals. The CPU 22 detects the HBOFF* signal pulled

20 high and one HCLK period after the time T36, at a time
T38, the CPU 22 asserts the HADS* signal low and begins
reasserting the HA address signals to repeat the
interrupted write cycle. If the interrupted cycle was
a read cycle, it need not be repeated since the aborted

25 CPU 22 snarfs the data during the backoff cycle.

Again, the CPU 22 continually asserts the HBUSY* signal
low after the time T22 to regain permanent bus
mastership of the host bus 20 after the temporary back-
off cycle.

30 Arbitration of the host bus 20 may occur during a
back-off cycle. Referring now to Figure 5, a timing
diagram is shown illustrating arbitration during a
back-off cycle. At a time T50, the CPU 22 is driving
the HA address signals. and asserts the HBUSY* signal

35 low indicating that it is the current bus master. The
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CPU 24 asserts the HBOFF* signal at a time T52, but the
HBOFF* signal is not detected until the next rising
edge of the HCLK signal, which occurs at a time T54.
The CPU 22 immediately stops driving the HA address
signals and the HADS* signal at the time T54 in
response to the detection of the HBOFF* signal asserted
low. One HCLK period after the time T54, at a time
T56, the CPU 24 begins its write-back cycle by
asserting the HADS* signal low and the HA address
signals. Meanwhile, the CPU 24 determines that it
needs to have permanent bus mastership of the host bus
20, so it asserts it HBREQ<1l>* signal low (not shown in
Fig. 5). The prioritizer 64 detects the HBREQ<l>*
signal, awards the CPU 24 highest priority, and negates
the HACK<O>* signal high at a time T58. The
prioritizer 64 also begins asserting the HACK<l>*
signal low at the time T58. The HACK<1l>* signal needs
to be low by a time T62 when the HBUSY* signal is
negated high.

The host bus 20 supports address and status signal
pipelining. The purpose of address pipelining is to
make the HA address signals of the next host bus 20
access available before the start of the next data
transfer phase of the cycle. Pipelining is useful for
bus slaves to efficiently transfer data and to reduce
the snoop latency induced by bus masters. The host bus
20 also allows arbitration to take place while the data
transfer cycles are in progress. Pipelined arbitration
is a way to more efficiently transfer control of the
host bus 20 from one permanent bus master to the next
without any idle data transfer states. The new bus
master can pipeline its HA address signals while the
transfer of the data on the HD data signals for the
last bus master is still in the process of completing.
The host bus 20 includes a signal HNA* which is an

PCT/US93/09186
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address and status pipelining mechanism similar to the
NA* signal for the i386 microprocessor by Intel.
Address pipelining can be determined to be in progress
if the HADS* signal is sampled low by a bus slave
during an active transfer cycle.

The pipelining mechanism HNA* signal causes a CPU
to start to pipeline the host bus 20 as soon as it is
able to do so. If an arbitration is requested and HNA*
has been asserted low, then pipelined arbitration may
occur. Pipelined arbitration allows a new bus master
to drive the HA address signals while a previous bus
master is waiting for the end of its bus read or write
data transfer. The bus master is allowed to pipeline
the HA address signals on any HCLK signal rising edge
when or after the HNA* signal is sampled asserted low.
Several bus slaves may drive the HNA* signal, so
normally the HNA* signal is tri-stated ana pulled-up.
When a device wants to initiate pipelining, it asserts
the HNA* signal low for one HCLK period, and then
negates the ENA* signal high.

In Figure 5, the bus slave device asserts the HNA*
signal low at a time T60, and asserts the HNA* signal
high at a time T62, one HCLK period later. The CPU 22
detects the assertion of the HNA* signal at the time
T62, and determines whether it needs the host bus 20
any longer. If the CPU 22 no longer requires control
of the host bus 20, as is the case illustrated in Fig.
5, it negates the HBUSY* signal high at the time Té62 in
response to the detection of the HNA* signal being
asserted low. The CPU 24 stops driving the HA address
signals at the time T62, but is not through with the
host bus 20 until two HCLK periods later, at a time
T66, when it negates the HBOFF* signal high. The
HACK<1l>* signal is not detected low until the time Té64
which is the next rising edge of the HCLK signal.
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Therefore, since the HACK<1>* signal is detected low
and the HBUSY* signal is detected negated high, the CPU
24 is the next bus master of the host bus 20 after the
completion of the write-back cycle.

A new bus master behaves, however, like the
previous permanent bus master would behave if it was
attempting to restart its interrupted cycle, by waiting
for the HBOFF* signal to be negated high before taking
control of the host bus 20 and asserting the HA address
signals. No permanent bus master may drive the HA
address signals while the HBOFF* signal is asserted
low. At the time T66, the CPU 24 begins asserting the
HBUSY* signal low. One HCLK period later, at a time
T68, the CPU 24 detects the HBOFF* signal negated high
and asserts the HADS* signal low and begins driving the
HA address signals.

Referring now to Figures 6A and 6B, two timing
diagrams are shown illustrating non-pipelined cycles
with and without arbitration occurring. In Figures 6A
and 6B at a time T80, the CPU 22 becomes bus master of
the host bus 20 and asserts the HADS* signal low and
begins driving the HA address signals. One HCLK period
later at a time T82, the CPU 22 negates the HADS*
signal high. Also at the time T82, the CPU 22 begins
asserting the HD data signals. In Figure 6A at a time
T86, arbitration of the host bus 20 does not occur so
that the CPU 22 retains control of the host bus 20.
Therefore, at the time T86, the CPU 22 asserts the
HADS* signal low to indicate the start of the next
cycle. The CPU 22 also changes the HA address signals
and stops driving the HD data signals for one HCLK
period. At a time T88, the CPU 22 negates the HADS*
signal high and begins asserting new data on the HD

data signals.
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On the other hand, in Figure 6B, at the time T86
the CPU 22 is finished and thus stops driving the HA
address signals, the HD data signals, and the HADS*
signal. The HADS* signal is tri-stated for one HCLK

5 period. At the time T88, the CPU 24 assumes control of
the host bus 20 and begins driving the HA address
signals and asserts the HADS* signal low. One HCLK
period later, at a time T90, the CPU 24 negates the
HADS* signal high and begins driving the HD data

10 signals. Notice that the HNA* signal remains inactive
and pulled-up since pipelining is not used.

A host bus "burst" ready signal, referred to as
HBRDY*, may be used to tell the bus master that a
particular burst data transfer is complete. This

15 signal is typically asserted by the EBC 38 or memory
controller 30 when valid read data has been presented
or when write data has been accepted. During cycles
initiaﬁed by one of the CPUs 22-28, the HBRDY* signal
is used to track the cycles. The HBRDY* signal may be

20 driven by multiple sources including slave devices.
Normally, the HBRDY*¥ signal is tri-stated and pulled-
up. When a source asserting the HBRDY* signal low is
done, it must assert the HBRDY* signal high for one-
half HCLK period before tri-stating it. This allows

25 safe sharing of the HBRDY* signal with a minimum of two
HCLK periods between two different sources driving the
HBRDY* signal. The HBRDY* signal is used in
conjunction with another signal HBLAST* or host bus
burst last cycle, in that when both signals are

30 detected asserted low, the data transfer is complete.

In Figure 6A, a signal referred to as HBRDY* +
HBLAST* is shown. The "+" symbol as used in Figures
6A, 6B, 7A and 7B is the logical "OR" operation so that
the HBRDY* and the HBLAST* signals are logically ORed

35 together. The signal HBRDY* + HBLAST* in Figs. 6A, 6B,
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7A and 7B is for illustrative purposes only and shows
the combined effect of the HBRDY* and HBLAST* signals.
At the time T86 when both HBRDY* and HBLAST* are
asserted low, the end of the current data transfer is
complete so that the bus master can sStop driving the HD
data signals and can begin asserting a new address on
the HA address lines. In Figure 6B, the detection of
the HBRDY* and HBLAST* signals asserted low at the time
T86 allows the CPU 22 to stop driving the HA address
and HD data signals so that the CPU 24 can begin
asserting a new address one HCLK period later.
Referring now to Figures 7A and 7B, two timing
diagrams are shown illustrating pipelined cycles with
and without arbitration occurring. In Figure 7A, the
CPU 22 is pipelining its addresses and there is no
arbitration to another bus master. At a time T100, the
CPU 22 asserts the HADS* signal low and begins driving
the HA address signals as usual. The CPU 22 asserts
the HD data signals one HCLK period later at a time
T102. The HNA* pipelining signal is asserted low at a
time T104, although it is not detected until one HCLK
period later at a time T106. At the time T106, the CPU
22 detects the HNA* signal asserted low and places a
new address on the HA address signals and again asserts
the HADS* signal low. The HD data signals remain
asserted until the HBRDY* and HBLAST* signals are

' detected asserted low to indicate the end of the data

cycle, which occurs at a time T110. Also, the HADS*
signal remains asserted low until the time T110 when
the HBRDY* and HBLAST* signals are detected asserted
low. The first cycle is complete at the time T110,
although the second cycle has already started at the
time T106 when the new address appears on the HA
address signals. Note that the HA address signals
during the time period from T100 to T106 corresponds to
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the data appearing on the HD data signals during the
time period from T102 to T110. The new data is
asserted on the HD data signals at a time T112, which
is one HCLK period after the time T110, when the old
5 data is no longer asserted. The HNA* signal is not
asserted again so that the next address is not
pipelined. Therefore, at a time T116 when the HBRDY*
and HBLAST* signals are detected asserted low, the HA
address signals change to the next address and the HD
10 data signals are de-asserted.

Figure 7B illustrates that pipelining may occur
during arbitration where the next bus master can assert
its address before the completion of the current bus
master’s cycle. Again, the CPU 22 asserts the first

15 address on the HA address signals at the time T100.
The HNA* signal is asserted low at the time T104 and
detected at the time T106. The CPU 22 immediately
releases the HA address lines at the time T106 so that
the next bus master, the CPU 24, can assert its address

20 on the HA address lines one HCLK period later at the
time T108. As usual, the CPU 22 releases the HADS*
signal at the time T106 so that the CPU 24 can assert
the HADS* signal low and the new address on the HA
address signal lines at the time T108. The data

25 transfer of the CPU 22 is complete at the time T110
when the HBRDY* and HBLAST* signals are detected
asserted low. The old data is no longer asserted on
the HD data signals after the time T110, so that new
data can be asserted on the HD data signals one HCLK

30 period later at the time T112. The HA address signals
asserted during the time period from T100 to T106
corresponds to the data asserted on the HD data signals
during the time period from T102 to the time T110.
Since the HA address signals are pipelined by the CPU

35 24, they are asserted at the time T108, which is before
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the completion of the previous data cycle by the CPU 22
which occurs at the time T110. Also, when the HADS*
signal is asserted high at the time T110, the new data
can be asserted one HCLK later at the time T11l2. The
second cycle ends at the time T11l6 when the HBRDY* and
HBLAST* signals are detected asserted low. Note that
arbitration does not slow down the host bus 20 during
pipelined cycles.

The host bus 20 also supports bursting of both
memory reads and writes. In a burstable sequence in
the preferred embodiment, the most data that can be
transferred is 32 bytes, aligned to 32 byte boundaries
which also corresponds to the size of a cache line.
Burst sequences are initiated by the HADS* signal being
asserted low to select the initial address to be
accessed. The HBLAST* and HBRDY* signals are used to
control bursting of any memory access cycle, provided
that the source and slave involved in that cycle
support bursting. The signal HBLAST* is asserted by
the permanent or temporary bus masters during non-
burstable signal accesses. If the HBLAST* signal is
low during the first data cycle, then bursting does not
occur. If the HBLAST* signal is high, bursting will
occur as controlled by the HBRDY* signal. An external
system, such as the slave, indicates its preparedness
for a burst by asserting the HBRDY* signal low
indicating that it has presented valid readable data or
that it has accepted written data from the bus master.
Once the HBRDY* signal is asserted low, the next data
transfer in the burst cycle begins. By asserting the
HBRDY* signal low at the end of each data transfer of a
bursted sequence, the master and slave burst the»next
transfer as long as neither the HBOFF* nor the HBLAST¥
signals are asserted low, and the HLOCAL* signal is
asserted low. The end of the bursted sequence is
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indicated when the HBRDY* and HBLAST* signals are both
asserted low. Since the back-off and other abort
mechanisms only interrupt the first transfer of a
burst, there are no cases of restarting a burst in the
middle of a burst sequence.

Referring now to Figures 8A and 8B, two timing
diagrams are shown illustrating multiple writes in non-
bursted and bursted sequences. In Figure 8A at a time
T130, the HADS* signal and the HA address signals are
asserted at the beginning of the cycle as usual. The
HD data signals are asserted and the HBLAST* signal is
low at a time T132. The first data cycle ends and a
new data cycle begins at a time T136, when the HBRDY*
signal is detected asserted low, the HADS* signal is
asserted low, a new address appears on the HA address
signals and the old data is no longer asserted on the
HD data signals. New data is asserted on the HD data
signals at a time T138. The last data cycle ends at a
subsequent time T142. Note that a new address is
asserted on the HA address signals for each new data
asserted on the HD data signals. Also, note that the
HD data signals are asserted for at least two HCLK
periods each.

In Figure 8B, multiple writes are shown using a
bursted sequence. The cycle begins the same as a non-
bursted sequence at the time T130 where the HADS*
signal is asserted low and an address is asserted on
the HA address signals. Also, at the time T132, data
is asserted on the HD data signals and the HBLAST¥
signal is asserted high to indicate the beginning of a
bursted sequence. At the time T134, the HBRDY* signal
is asserted low to indicate the next'data transfer of
the bursted sequence. At the time T136, one HCLK
period after the time T134, new data is asserted on the
HD data signals. The HBLAST* signal is asserted low at
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the time T136 so that the bursted sequence ends one
HCLK period later at a time T138 since the HBRDY*
signal is also asserted low. However, the bursted
sequence could continue for four or even eight HCLK
periods so that a total of 32 bytes or 64 bytes could
be transferred, 8 bytes on each 64 data bit transfer.
At the time T138, the HBRDY* and HBLAST* signals are
detected asserted low, thereby ending the bursted
sequence. Note that although during the first cycle
the data is asserted on the HD data signals for two
HCLK periods, the data is only asserted for one HCLK
period during the second data transfer. In fact,
during each of the subsequent data cycles of a bursted
sequence, the data is asserted for only one HCLK period
until the end of the bursted sequence. Also note that
HA address signals remain the same throughout the
bursted sequence. The address asserted on the HA
address signals identifies only the first address
location in the sequence where the remaining data f£ills
in subsequent address locations according to a
predefined sequence.

Recall that the HLOCAL* is asserted low when an
input/output (I/O) or memory address resides in a
device local to the host bus 20, and is negated high if
the address is on the EISA bus 36. The HLOCAL* signal
can be driven by several sources. The HLOCAL* signal
is sharable since it is tri-stated and pulled high
through an external resistor (not shown), and any
device driving the HLOCAL* signal must never drive the
signal while the HA address signals are not valid. The
device driving the HLOCAL* signal must assert it low
and keep it low until the HNA* signal is asserted or
until the HBRDY* and HBLAST* signals are both asserted.
The HLOCAL* signal is then driven high for the first
half of each HCLK period and then tri-stated.
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Reads and writes to the EISA bus 36 from one of
the CPUs 22-28 controlling the host bus 20 are posted.
This allows split transactions on the host bus 20 where
other host bus masters may access the host bus 20 and
5 complete local cycles while the EISA bus 36 is busy
performing the posted read or write. As described
below, the CPU waiting for the data need not
rearbitrate for the host bus 20 when the data is
returned from the EISA bus 36. For write cycles, the
10 HBRDY* signal is asserted by the EBC 38 as soon as the
write data is latched into the data buffers of the SDB
40 and the CDU in control of the host bus 20 may
proceed with its cycles. For read cycles, the cycle is
split into a read request and a read response
15 transaction. The EBC 38 asserts the HBRDY* signal as
soon as it determines that the cycle is to the EISA bus
36 and there are no other unfinished cycles. The
request portion of the read cycle is finished at this
point and the requesting CPU must wait for the read
20 data before continuing and may arbitrate the host bus
20 if another device is requesting it. If the CPU
detects the HLOCAL* signal negated and the HBRDY*
signal asserted, and if its HACK<n>* signal is negated
indicating another CPU wants the host bus 20, then the
25 requesting CPU will release control of the host bus 20.
An EISA cycle is then initiated on the EISA bus 36
to write data to or read data from the appropriate
device. The EBC 38 also asserts a signal E_RTRY* low
to indicate that the address and status posting buffers
30 within the SDB 40 are full and that all other CPU to
EISA cycles must be aborted and retried later. The EBC
38 negates the E_RTRY* signal when it is ready to post
another cycle to the EISA bus 36. The E_RTRY* signal
resides on the host bus 20. A signal START* residing
35 on the EISA bus 36 is asserted low to indicate the
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beginning of a cycle on the EISA bus 36. An EISA bus
controller asserts the START* signal after the address
becomes valid and negates it after one nominal period
of a clock signal referred to as the BCLK signal which
resides on the EISA bus 36. The BCLK signal is the
EISA bus clock and is essentially generated by dividing
the HCLK signal by four on a 33 MHz host bus 20 or by
three on a 25 MHz host bus 20 so that the frequency is
preferably approximately 8.25 or 8.333 MHz with a
normal duty cycle of approximately 50%. The START*
signal is provided by the EBC 38 when the CPU on the
host bus 20 is addressing an EISA bus slave during DMA,
refresh or ISA bus master cycles. Another signal
residing on the EISA bus 36, referred to as CMD*,
provides timing control on the EISA bus 36 and is
agserted by the EBC 38 when the START* signal is
negated and remains asserted until the end of a nominal
EISA cycle. Thus, a nominal EISA cycle is indicated by
the assertion of the START* signal and the subsequent
negation of the CMD* signal. The START* and CMD*
signals reside on the EISA bus 36. Another signal,
referred to as E_BUSY*, is asserted by the EBC 38 on
the next rising edge of the HCLK after the START*
signal is asserted and is negated at the end of the
entire EISA cycle initiated by a CPU. The E_BUSY*
signal resides on the host bus 20. One or more nominal
EISA cycles may occur during one EISA cycle.

The EBC 38 asserts a signal referred to as HDREQ*
low to request the data portion of the host bus 20 when
it has the read data valid for the CPU that requested
it. The HDREQ* signal is asserted for at least omne
HCLK period and the host data bus must be idle before
the ERC 38 drives the read data on it. Once the host
data bus is idle, the HDREQ* signal is negated high and
the read data is driven on the HD data signals for
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approximately one HCLK cycle. Thus, the assertion of
the HDREQ* signal indicates when posted read data is
valid and latched into the SDB 40. The negation of the
HDREQ* signal indicates that the EBC 38 has determined
that the host data bus is idle and thus available for
the EBC 38 to drive the read data onto the host data
bus from the SDB 40. The CPU that is waiting for the
posted read data detects the HDREQ* signal asserted low
and samples or retrieves the data when the HDREQ*
signal is subsequently negated high. It is significant
to note that the requesting CPU need not, and generally
does not need to be in control of the host bus 20 to
retrieve the data. The requesting CPU need not request
control of the entire host bus 20, but only needs to
retrieve the data when the HDREQ* is negated high
regardless of which bus master is in control of the
host bus 20 at that time.

To implement split transactions, the EBC 38
monitors the host data bus to determine when it is
idle. 1If the host data bus is not idle, the EBC 38
waits for the current cycle to finish before it negates
the HDREQ* signal. In case the current cycle is backed
off by the HBOFF* signal, the EBC 38 waits for the
temporary bus master to finish its cycle before the
data is driven onto the host data bus. The host data
bus is idle if no cycles are running or if a cycle has
just started as indicated by the HADS* signal being
asserted low at the same time that the HDREQ* signal is
also asserted low. The HDREQ* signal has priority in
the latter case so that the current cycle must wait for
the posted read data to be driven on the HD data
signals before the current cycle can continue.

Referring now to Figure 9A, a state diagram is
shown illustrating the operation of a state machine
within the EBC 38, referred to as S1, which tracks the

PCT/US93/09186
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read response operation of a posted read to the EISA
bus 36 and generates the HDREQ* signal. The state
machine S1 has four states where the states are
advanced or changed based on the rising edge of the
HCLK signal. A signal MC_CLEAR is an internal signal
similar to the START* signal, although the MC_CLEAR
signal is synchronized to the HCLK signal and thus is
asserted high at the first rising edge of the HCLK
signal after the START* signal is sampled asserted low.
At reset of the computer system S, the state machine Sl
starts at a state 100, and remains in state 100 while
the MC_CLEAR signal is negated low or while the HW_R
signal is asserted high indicating a write cycle. When
the MC_CLEAR signal is detected asserted high and the
HW R signal is asserted low at the rising edge of the
HCLK signal, the state machine S1 advances to a state
102 indicating a posted read cycle has been initiated
from a CPU to the EISA bus 36.

A signal referred to as DONE is asserted during
the last HCLK period of the last CMD* signal of the
read assembly sequence indicating the completion of the
EISA posted read cycle. Thus, the state machine Sl
remains in state 102 while the DONE signal is negated
low, and advances to a state 104 when the DONE signal
is asserted. 1In state 104, the read data is available
for the CPU waiting for it, so the EBC 38 asserts the
HDREQ* signal low to request the host data bus. A
signal HD_IDLE is generated by another state machine S2
in the EBC 38 (Fig. 9B) which indicates when the host
data bus is idle and available for the read data to be
asserted. The state machine S1 remains in state 104
while the HD_IDLE signal is negated low, and advances
to a state 106 when the HD_IDLE signal is asserted
high. The EBC 38 neéates the HDREQ* signal in state
106 and also drives the read data on the HD data
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signals of the host bus 20. The state machine Sl
remains in state 106 only for one HCLK period, and then
returns back to state 100.
Referring now to Figure 9B, a state diagram is
5 shown illustrating another state machine in the EBC 38,
referred to as S2, which tracks the host data bus and
generates the HD_IDLE signal when the host data bus is
jdle. The state machine S2 has five states, again
advanced by the HCLK signal. At reset of the computer
10 system S, the state machine S2 enters a state 110 and
remains in state 110 while the HADS* signal is negated.
The host data bus is considered idle in state 110 since
the HADS* signal has not yet been asserted low, so that
the HD_IDLE signal is asserted in state 110. If the
15 HADS* signal is asserted and the HDREQ* signal remains
negated, the state machine S2 advances to a state 112,
indicating that a cycle is beginning on the host bus 20
by another CPU or another device. The host data bus is
not idle in state 112 so that the HD_IDLE signal is
20 negated and not asserted in state 112. A signal RTRY
is true if the E_RTRY* signal is asserted low, or if a
signal referred to as LE_RTRY* and a signal referred to
as HLOCK* are both asserted low. The LE RTRY* and
HLOCK* signals will be described more fully below. For
25 now, the LE_RTRY* and HLOCK* signals indicate to the
CPU running the cycle that it must abort the cycle and
try again later if both are asserted low, which is
similar to the effect of the E_RTRY* signal. If the
HLOCAL* and EBGNT* signal are both negated high, and if
30 the RTRY signal is true in state 112, the CPU running
the current cycle aborts the cycle and the state
machine S2 returns back to state 110. Otherwise, the
state machine S2 advances to a state 114 on the next
rising edge of the HCLK signal.
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The HD_IDLE signal is asserted in state 114 if the
HLOCAL* signal is negated high and if the HW_R signal
is asserted low indicating a read cycle to the EISA bus
36. Otherwise, the HD IDLE signal is negated in state
114. The state machine S2 remains in state 114 while a
signal RDY is false, where the RDY signal is defined by
the following eguation:

RDY = ~HBRDY* & ((HLOCAL* + (~HBLAST* & HBOFF*))
Thus, the RDY signal become true at the end of the
current cycle on the host bus 20. If the HADS* signal
is agserted low and the HDREQ* signal is negated high
when RDY becomes true, the state machine S2 returns to
state 112. If the HADS* gignal is negated high when
the RDY signal becomes true in state 114, the state
machine S2 returns to state 110. Otherwise, if the
HADS* and HDREQ* signals are both asserted low when the
RDY signal is true in state 114, the state machine S2
advances to a state 116 where the HD_IDLE signal is
asserted high.

In state 116, it is determined if the current
cycle needs to be retried or continued and control of
the host data bus is being transferred to the EBC 38.
Thus, if the HLOCAL* and EBGNT* signals are negated
high and the RTRY signal is true, the current cycle is
aborted and the state machine S2 returns to state 110.
Otherwise, the state machine S2 advances to a state 118
where the read data is driven onto the idle host data
bus. In state 118, a new cycle is in progress, but the
read data for the previous read cycle is being driven
on the HD data signals by the EBC 38. 1In state 118, if
the RTRY signal is true and if the HLOCAL* and EBGNT*
signals are negated, the new cycle is retried and the
state machine S2 returns to state 110. Otherwise, if
the RTRY signal is false, or if either the HLOCAL* or
the EBGNT* signals are asserted in state 118, the cycle
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can continue and the state machine S2 advances to state
114. Reférring back to state 110, if the HADS* and
HDREQ* signals are both asserted low in state 110, the
state machine S2 advances directly to state 118 since
5 the EISA read response transaction takes precedence
over the new cycle if both begin at the same time.
Referring now to Figure 10A, a timing diagram is

shown illustrating posted read and write operations and
the split transaction technique. The BCLK signal can

10 be asserted high for an extended period of time as
required by the system for synchronization to the CPU
in control of the host bus 20. The EBC 38 posts the
cycle to the EISA bus 36 if the HLOCAL* signal is
sampled negated on the second rising edge of the HCLK

15 signal after the HADS* signal is asserted low. A
signal HW_R is provided to the EBC 38 and indicates
whether the cycle is a read or write cycle and is
asserted high during a write cycle and low during a
read cycle. The HW R signal is valid from the leading

20 edge of the HADS* signal until the end of the cycle
when the HBRDY* and HBLAST* signals are both asserted
low or if the HNA* signal is asserted low.

In Figure 10A an EISA posted read cycle, referred

to by the letter A, is initiated by the CPU 22 at a

25 time T150 where the HADS* signal is asserted low. The
time designators are incremented by two to indicate one
HCLK period unless otherwise indicated. The HW_R
signal is also asserted low during the HCLK period
between the time T150 and a time T152 to indicate a

30 read cycle. The HADS* signal is negated high at the
time T152 and the HLOCAL* signal is sampled high at a
time T154 on the second rising edge of the HCLK signal
after the HADS* signal was asserted low indicating a
read cycle to the EISA bus 36. The address signals are

35 asserted during this cycle as described previously and
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are not shown for purposes of simplification. The
cycle is terminated during the following HCLK period
between the time T154 and a time T156 where the HBRDY*
signal is asserted low indicating that the EBC 38 is
finished with the address or read request phase of the
cycle, so that the CPU 22 releases control of the host
bus 20 for use by another host bus master. Meanwhile,
the E_RTRY* signal is asserted low after the time T154
indicating that the SDB 40 posted buffers are full to
prevent another posted cycle to the EISA bus 36. The
EISA cycle is initiated at the time T154 where the
START* signal is asserted low by the EISA bus
controller.

The EISA posted read cycle a comprises two nominal
cycles referred to as Al and A2 where the nominal cycle
A1 is completed at a time T166 when the CMD* signal is
asserted high and the START* signal is again asserted
low indicating the start of the second nominal cycle A2
which is terminated at a time T178 when the CMD* signal
is negated high. The entire EISA cycle is indicated by
the E_BUSY* signal which is asserted low by the EBC 38
at the time T156 to indicate the beginning and is
negated high at the time T178 to indicate the
completion of the EISA cycle. Meanwhile, at the time
T156 another cycle referred to by the letter B is
initiated by the CPU 24 which takes control of the host
bus 20 and asserts the HADS* signal low at a time T156
for one HCLK period. The HLOCAL* signal is asserted
low between the time T158 and a time T160 and the HW_R
signal is asserted high at the time T156 indicating
that cycle B is a local memory write cycle. Data is
placed on the HD data signals at the time T158 and the
HBRDY* signal is asserted low at a time T164 and
asserted high again one HCLK period later at a time
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T166 indicating the completion of the local memory
write cycle B.

A new cycle C is initiated at the time T166 where

the CPU 26 takes control of the host bus 20 and asserts
5 the HADS* signal low and negates it high at a time

T168. The data for the C cycle is asserted on the HD
data signals at the time T168 and the HW_R signal
remains asserted high indicating a write cycle. The
HLOCAL* signal is negated high during the HCLK cycle

i0 between the times T168 and T170 indicating that cycle C
is an EISA posted write cycle to the EISA bus 36. At
the time T170, however, the E_RTRY* signal is detected
low indicating that the EBC 38 is unavailable to post
cycle C. Thus, the CPU 26 is forced to abort its

15 access to the EISA bus 36 and stops asserting the data
on the HD data signals at the time T170.

Data from the posted read cycle is retrieved at a
time T176 and latched into the SDB 40 so that the
E_RTRY* signal is negated high at the time T176. The

20 EISA cycle is completed one HCLK period later at a time
T178 when the CMD* signal is negated high and the
HDREQ* signal is asserted low indicating that the EISA
posted read data is retrieved. A new cycle referred to
by the letter D is initiated on the host bus 20 by the

25 CPU 28 which asserts the HADS* signal low at the time
T178 and negates the HADS* signal at a time T180.

Since the HADS* and HDREQ* signals are asserted at the
same time, the HDREQ* signal has priority so that the
CPU 28 running the D cycle does not assert its data on

30 the HD data signals until after the posted read data of
cycle A is asserted. Thus, the HDREQ* signal is
negated high at the time T180 and the data for the EISA
posted read cycle A is placed on the host bus 20 by the
EBC 38 during the HCLK period between the times T180
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and T182. This data must be sampled by the waiting CPU
28 during this HCLK periocd.

Meanwhile, the HLOCAL* signal remains negated high
at the time T182 and the HW_R signal is also asserted
high indicating that cycle D is an EISA posted write
cycle. One HCLK period after the time T182, at a time
T184, the CPU 28 asserts its data on the HD data
signals and keeps this data asserted for approximately
one HCLK cycle until a time T186. The EBC 38 also
asserts the HBRDY* signal low at the time T184 and
negates it high at a time T186, thus completing the
EISA posted write cycle D on the host bus 20. The
corresponding EISA cycle on the EISA bus 36 is
initiated when the START* signal is asserted low at the
time T184 and the EISA cycle is completed at a time
T196 when the CMD* signal is again negated high.
Meanwhile, a new cycle referred to by the letter E is
initiated on the host data bus 20 at a time T184 where
the CPU 24 takes control of the host bus 20 and asserts
the HADS* signal low and negates it high at the time
T186. The HLOCAL* signal is asserted low at the time
T186 while the HW R signal remains asserted high,
indicating that cycle E is a local memory write cycle.
The CPU 24 running cycle E does not assert its data on
the HD data signals until a time T188 which is one HCLK
period after the data for cycle D is no longer asserted
on the HD data signals.

Referring now to Figure 10B, a similar diagram as
Figure 10A is shown which begins at a time T200 and is
essentially identical up to a time T202 which is
approximately 13 HCLK periods later. 1In this case,
however, cycle D starts one HCLK period earlier so that
the CPU 28 asserts the HADS* signal low at the time
T202 and negates it high at a time T204. Cycle D is
again an EISA posted write cycle which is initiated on
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the host bus 20 one HCLK period before the HDREQ*
signal is asserted low. Thus, the host data bus is not
idle and the CPU 28 operating cycle D asserts its data
on the HD data signals at the time T204. The EISA
5 posted write cycle D completes when the EBC 38 asserts
the HBRDY* signal high at a time T208, at which time
the CPU 28 stops driving its data on the HD data
signals. The HDREQ* signal remains agsserted low by the
EBC 38 until one HCLK period after the HBRDY* signal is
10 negated high, and then is negated high at a time T210
when the SDB 40 asserts the data from the EISA posted
read cycle A on the HD data signals.
Meanwhile, the START* signal is asserted low at
the time T206 initiating the EISA posted write cycle D
15 on the EISA bus 36 which completes at a time T218 when
the CMD* signal is again negated high. Note also that
the BCLK signal is stretched while high between the
times T204 and T210. Meanwhile, a new cycle referred
to by the letter E is initiated on the host bus 20 at a
20 time T210 by the CPU 24. Cycle E is a local memory
write cycle as indicated by the HLOCAL* signal asserted
low at the time T212 while the HW_R signal remains
asserted high. The CPU 24 may not assert its data on
the HD data signals until one HCLK period after the
25 time T212, or at a time T214, since the data from the
posted read cycle A is still being asserted up to the
time T212. The data for the local memory write cycle E
is asserted at the time T214.
Referring now to Figure 10C, another timing
30 diagram is shown demonstrating when the HD data signals
of the host bus 20 are available. Also, Figure 10C
illustrates pipelined operation. An EISA posted read
cycle A by the CPU 22 begins at a time T250 and the
read request portion completes on the host bus 20 at a
35 time T256 when the HBRDY* signal is negated high. The
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EISA bus 36 is busy from the time T254 and completes
its cycle at a time T266 when the E_BUSY* and CMD*
signals are asserted high. The E_RTRY* signal is
asserted low from the time T254 to the time T264. The
HDREQ* signal is asserted low at the time T266 to
initiate the read response portion of the EISA posted
read cycle A. Meanwhile, a local memory read cycle B
is initiated by the CPU 24 at the time T256 but it does
not complete until a time T272 when the HBRDY* signal
is negated high. Also, pursuant to pipelined
operation, another host bus master CPU 26 asserts the
HADS* signal low to begin a new cycle referred to by
the letter C at a time T262, which is an EISA posted
write cycle as indicated by the HLOCAL* signal negated
high and the HW_R signal asserted high.

The EISA posted write cycle C is stalled until the
local memory read cycle B is completed which is 5 HCLK
periods after the time T262. Note that since the HADS*
signal remains asserted low from the time T262 to a
time T272, the CPU 26 is not aborted by the E_RTRY*
signal which was negated high at the time T264. Since
the local memory read cycle B was initiated before the
HDREQ* signal was asserted low, the HD data bus is
considered busy so that the CPU 22 running the EISA
posted read cycle A must wait until the local memory
cycle B completes. At the time T272, the local memory
read cycle B completes when the HBRDY* signal is
negated high so that the HDREQ* signal is negated high
one HCLK period later at a time T274, and the data from
the posted read cycle A is asserted on the HD data
signals from the time T274 to a time T276. The CPU 22
detects the HDREQ* signal asserted high and reads the
data. The CPU 26 running the EISA posted write cycle
C, however, must wait one HCLK period after the time
T276 before asserting the write data for the EISA
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posted write cycle C which occurs at a time T278. The
HBRDY* signal is asserted low by the EBC 38 between the
time T278 and a time T280 which is one HCLK period
later. During this HCLK pericd, a new cycle referred
to by the letter D is also initiated by the CPU 28
gaining control of the host bus 20 which asserts the
HADS* signal low at the time T278 and negates it high
at the time T280.

Meanwhile, the EISA cycle completing the EISA
posted write cycle C begins at the time T272 and ends
approximately at the time T288 when the CMD* and
E_BUSY* signals are negated high. The data for the
local memory read cycle D is not asserted until a time
T282, which is one HCLK cycle after the time T280 when
the CPU 26 stops asserting the HD data signals on the
host data bus. The local memory read cycle D completes
at the time T288 when the HBRDY* signal is negated high
and the data is no longer being asserted on the HD data
signals. Note also that the E_RTRY* signal is asserted
low during the time period between the times T278 to
T286 to prevent a subsequent posted cycle to the EISA
bus 36 until the EISA posted write cycle C completes
its access of the EISA bus 36.

To briefly summarize split transactions, a CPU
posting a read to the EISA bus 36 may arbitrate the
host bus 20 to another device and need not rearbitrate
for the host bus 20 when the read data is available.
Once the data is retrieved, the EBC 38 asserts the
HDREQ* signal to request the host data bus and monitors
the host data bus to determine when it is idle. When
the host data bus is idle, the EBC 38 asserts the data
onto the host data bus and negates the HDREQ* signal.
The waiting CPU monitors the HDREQ* signal and
retrieves the read data when the HDREQ* signal is

negated high after it was asserted low.
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The E_RTRY* signal indicates that the EISA bus 36
may not accept another posted read or write cycle.

When one of the CPUs 22-28 is the bus master while the
E_RTRY* signal is sampled asserted low, that CPU aborts
its cycle, usually negates its HBREQ<n>* signal high,
and arbitrates the host bus 20. After the cycle is
aborted in this manner, it waits for the E_RTRY* signal
to be negated high so that it can re-assert its
HBREQ<n>* signal low and re-try its EISA bus 36 access.
The aborted CPU, however, does not negate its HBREQ<n>*
signal high when the E_RTRY* signal aborts its access
when its HACK<n>* signal is still asserted low. If the
aborted CPU‘s HACK<n>* signal is still asserted low, it
signifies that no other CPU wants the host bus 20 or
that the other CPUs are not connected or available.
When an arbitration gives the host bus 20 back to the
CPU aborted by the E_RTRY* signal, that CPU remains
idle until it either arbitrates again or until the
E_RTRY* signal goes high and allows it to retry its
host bus 20 and EISA bus 36 access.

A CPU in control of the host bus 20 may perform
locked cycles to the main memory 42 or to other memory
locations coupled through the EISA bus 36. A locked
cycle allows a CPU to complete multiple cycles to a
memory location without interruption which is required
in situations such as a read-modify-write where the
read and the write operations must occur consecutively
without interruption. The HLOCK* signal is asserted by
a CPU in control of the host bus 20 when a locked bus
cycle is started.

When the CSP 42 determines that an EISA or ISA bus
master wants control of the EISA bus 36 or that a DMA
or refresh cycle is pending, it asserts a signal DHOLD
high on the rising edge of BCLK. An acknowledge signal
DHLDA is asserted high by the EBC 38 which grants
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control of the EISA bus 49 to the CSP 42 on the HCLK
signal rising edge after the falling edge of the BCLK
signal if the EBC 38 is currently idle. If the EBC 38
is not idle, it must terminate or complete the current
cycle before asserting the DHLDA signal.

The EBC 38 does not post CPU locked cycles to the
EISA bus 49 if a master other than a CPU has control of
the EISA bus 49. A deadlock would otherwise occur if
the EBC 38 is allowed to post a locked cycle while an
EISA bus master has control of the EISA bus 36 since
the EISA bus master may need to access the main memory
32 through the host bus 20 which could not complete
because the host bus 20 is locked waiting for the EISA
bus 36 to be free. For example, if the EBC 38 is
currently running a DMA cycle and a CPU begins a locked
cycle on the host bus 20, the CPU 22 will not
relinquish the host bus 20 to the EBC 38 and the EBC 38
needs to finish the DMA cycle before it can start on
the CPU 22 EISA cycle. The LE_RTRY* signal is used to
prevent this deadlock situation. The EBC 38 asserts
the LE_RTRY* signal after the DHOLD signal is asserted
but before the DHLDA signal is asserted, which prevents
a CPU locked cycle from being posted while an ISA or
EISA bus master has control of the EISA bus 36. After
the LE_RTRY* signal is asserted low, the EBC 38 asserts
the DHLDA signal acknowledging the request from the CsSP
42 and indicates that the EISA bus 36 is available to
run a DMA REFRESH, EISA or ISA bus master cycle.

Once the EISA bus master no longer requires the
EISA bus 36, it negates its request signal and the CSP
42 correspondingly negates the DHOLD signal low. The
EBC 38 detects the DHOLD signal negated and
subsequently negates the LE_RTRY* signal high and then
negates the DHLDA signal low. A CPU which gains
control of the host bus 20 first looks at the E_RTRY*
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and HLOCAL* signals if it is attempting a posted read
or write access to the EISA bus 36, whether locked or
not. If a locked cycle is required to the EISA bus 36
as determined by the HLOCK* signal asserted low, then
the CPU must also look at the LE_RTRY* signal if the
E_RTRY* signal is not asserted low to determine whether
it can gain access of the EISA bus 36 and perform a
locked cycle. If LE_RTRY* is also negated, the CPU may
perform its locked cycle. However, if the LE_RTRY* and
HLOCK* signals are asserted, the CPU must abort its
cycle and try again later. ’

Referring now to Figure 10D, the interaction
between a locked cycle and the LE_RTRY* signal is
shown. At a time T300, the CPU 22 is in control of the
host bus 20 and initiates a cycle referred to by the
letter A by asserting the HADS* signal low and
asserting it high again one HCLK period later at a time
T302. At the time T302, the CPU 22 asserts the HLOCK*
signal low indicating that cycle A is the first nominal
cycle in a locked cycle. The EBC 38 asserts the HBRDY*
signal low at a time T304 and high again at a time T306
indicating the end of cycle A, and the E_RTRY* signal
is asserted low by the EBC 38 at the time T304
indicating that cycle A is a posted read or write
operation to the EISA bus 36. The locked cycle begins
on the EISA bus 36 at the time T304 where the STARTY¥
signal is asserted low. Meanwhile, the DHOLD signal is
asserted high at the time T304 indicating that the CSP
42 is requesting the EBC 38 to run a cycle on the EISA
bus 36. Since the EISA bus 36 is being used to perform
the EISA locked cycle A, the LE_RTRY* and the DHLDA
signals remain negated until after the locked>cycle is
completed. At a time T312, the next nominal cycle in
the locked cycle referred to by the letter B, is
initiated on the host bus 20 and is completed when the
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HBRDY* signal is asserted low at a time T316 and
negated high at a time T318. The HLOCK* signal remains
asserted low until the time T318. The E_RTRY* signal
is negated high at a time T314 because the address
5 posting buffers are again available, and then negated
low at the time T316 because cycle B is going to be
accepted and posted. Meanwhile, the first nominal
cycle A of the locked cycle completes at the time T316
on the EISA bus 36 as indicated by the CMD* signal
10 negated high while the second nominal cycle B is
initiated simultaneously. Cycle B eventually
terminates at a time T328 as indicated by the CMD*
signal negated high. Also, the HLOCK* signal is
negated high at a time T318 indicating that the locked
15 cycle is complete on the host bus 20. The E_RTRY*
signal remains asserted until the time T326, after
which time the EBC 38 is available to post reads and
writes to the EISA bus 36.
After the locked cycles A and B are completed at
20 the time T328, the LE_RTRY* signal is asserted low at a
time T330 and another CPU 24 has control of the host
bus 20 beginning a new cycle C. At a time T332, the
HADS* signal is negated high and the HLOCK* signal
remains negated high indicating that cycle C is not a
25 locked cycle. Note that the E_RTRY* signal is high at
the time T334 so the EISA cycle C is not aborted. The
LE_RTRY* signal is asserted low at the time T334,
although cycle C is not aborted since it is not a
locked cycle. Meanwhile, the DHLDA signal is asserted
30 high at the time T332 after the LE_RTRY* signal is
asserted low. The DHLDA signal asserted high indicates
that the EISA bus 36 is available to run a DMA cycle,
refresh, EISA or ISA bus master cycle on the EISA bus
36 which occurs between the times T332 and T334.
35 Although only shown as one HCLK period between the
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times T332 and T334, this time period could be longer
on the EISA bus 36 and is however long it takes to
complete the DMA, refresh, EISA or ISA cycle and would
normally be much longer than one HCLK period. The CPU

5 24 completes cycle C on the host bus 20 at a time T336
where the HBRDY* signal is negated high.

Eventually, the EISA bus master no longer requires
the EISA bus 36 and negates its request signal, so that
the CSP 42 negates the DHOLD signal low at a time T334

10 and the EBC 38 negates the DHLDA signal low at the time
T338. Cycle C subsequently begins on the EISA bus 36
at a time T340 and ends at a time T352 when the CMD*
signal is negated. Also at the time T340, the DHOLD
signal is asserted high indicating that an EISA or ISA

15 bus master is requesting the EISA bus 36 again.
Meanwhile, a cycle referred to by the letter D is
initiated on the host bus 20 by the CPU 26 at a time
T336 which is also a posted cycle to the EISA bus since
the E_RTRY* signal is negated high at the time T352 and

20 then asserted low at this time to indicate a posted
EISA cycle. Nonetheless, the EISA bus master is
granted the EISA bus 36 when the DHLDA signal is
asserted high at a time T356 which is allowed to
complete before cycle D is started on the EISA bus 36.

25 PRIORITIZATION

Three separate prioritization schemes which could
be used by the prioritizer 64 of Figure 1 will now be
described. Each of the prioritization schemes are
generalized and could be used in systems other than the

30 computer S using the arbitration scheme of the present
invention. For instance, the schemes could be used to
determine the next cache "way" or block of data to be
replaced within that cache. The first two schemes
define a least recently used (LRU) scheme which could

35 be implemented by the prioritizer 64 to determine which
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of the CPUs 22-28 should become the next bus master of
the host bus 20. The EHM 66 also requests control of
the host bus 20, but it has a higher priority than the
CPUs 22-28 and is not part of the prioritization
5 scheme. The prioritization methods concern priority

between otherwise equal elements, such as the CPUs 22-
28. The implemented logic must be supplemented to
allow the EHM 66 to override the prioritization and
take control of the host bus 20, without disturbing the

10 priorities among the CPUs 22-28.

The first scheme is a true-LRU which might be
implemented but would not be practical in the computer
S, although it is ideally suited to replace cache ways
within a cache. The second scheme is a modified true-

15 LRU scheme, very similar to the first, although more
practical for use in the computer S. AS long as one or
more of the installed CPUs 22-28 are requesting
priority in the modified true-LRU scheme, then an
uninstalled CPU would not be awarded priority. The

20 third prioritization scheme is a first-in-first-out
(FIFO) scheme.

In general, the prioritization scheme determines
which of a set of n elements takes priority over all of
the other elements. If used in the prioritizer 64 of

25 the computer S, the elements are the CPUs 22-28, and
the prioritization scheme implemented in the
prioritizer 64 determines which of the CPUs 22-28 is
the next bus master of the host bus 20. The first
variation includes a true-LRU prioritizer where that

30 element which was least recently used gains the highest
priority. The least number of bits required for a
true-LRU scheme is log,(n!) bits, although the present
invention uses (n/2)x(n-1) bits. Each bit is a
priority bit which keeps track of the relative priority

35 Dbetween a unique pair of elements. Each element is
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paired with every other element to create the set of
unique pairs. Since there are n elements, there are
(n/2)x(n-1) unique pairs of the n elements. For
instance, if the number of elements is four, then the
least possible number of bits required for a true-LRU
is five, although the true-LRU of the present invention
uses (4/2)x(4-1) = 6 priority bits, which is only one
more bit than the least possible. If the number of
elements is eight, then the least possible number of
bits to implement a true-LRU is sixteen, although the
present invention uses 28 bits. Since the number of
priority bits grows rapidly with the number of elements
using the present invention, it is preferable that n be
no greater than 16, which would use 120 priority bits.
The first scheme is a true-LRU structure which
could be used on any cache design that requires a true-
LRU to prioritize its cache ways. As described above,
if there are n elements, the true-LRU uses (n/2)x(n-1)
priority bits to keep track of the relative priority
each unigque pair of elements. Using the method of the
present invention, each element is associated with n-1
priority bits since there are n-1 other elements that
an element can be paired with. The true-LRU decodes
(n/2)x(n-1) priority bits to determine which one of the
n elements has the highest priority. Any time that all
n-1 priority bits associated with a particular element
point to that element, then that element has the
highest priority, whether priority means that a CPU is
the highest in priority to assume control of a host
bus, or that a cache way is next to be replaced. Also,
each time that an element uses the bus or a cache way
gets used, then each priority bit associated with that
element is updated to point away from that element.
All priority bits not associated with the element are
unaffected when the element gets used.
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Each element is assigned an ID number from 0 to n-
1, where 0 is the ID number of the first element and n-
1 is the ID number of the last element. Each priority
bit represents the relative priority between a unique
5 pair of elements and includes a subscript which )
comprises two ID numbers such that when the priority
bit equals 0, the element referred to by the first ID
number of the subscript has a higher relative priority
between those two elements, and when the priority bit
10 equals 1, the element referred to by the second ID
number of the subscript has a higher relative priority.
For example, if P, equals 0, then element 0 has a
higher priority than element 1. The priority bits for
an n-element true-LRU are defined as follows:
15 Poy Poz Poz « -+ Pow-1
P2 P13 ... Pi@m-1)

P23 e PZ(n-l)

20
P(n'Z)(n—l)
To determine which of the n elements has priority,
n priority equations are used where each equation
involves n-1 priority bits. The equations are as

25 follows:

LRU WAY0 = ~P;; & ~Pp; & ~Pos & ... ~Pom-1)

LRU WAY1l = Py & ~Py; & ~P;3 & ... ~Pipa

LRU WAY2 = Py, & Py & ~“Py3 & ... ~Pym-yy

LRU_WAYn = Py & Pign & Pown & -
30 Pin-2)(m-1)

where LRU WAYn is the priority term which is true if
then the nth element has the highest priority, n
represents the ID number of the element, the "~" symbol
represents logical negation of that signal and the "&"
35 symbol is the logical "AND" operation. Only one of the
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priority terms is true at any given time such that only
one of the elements has the highest priority. For
example, if the term LRU_WAYO is true, then element 0
will have the highest priority.

For simplification, the priority bits for a 4-
element true-LRU are defined as follows:

Pyy Poz Pos
Py, Py3
P23

The corresponding priority equations and terms for the

4-element true-LRU are:

LRU_WAY0 = ~Py; & ~Pp; & ~Pps
LRU WAY1 = P, & ~Pj; & ~Py
LRU WAY2 = Py & Py, & ~Pp
LRU WAY3 = DPo3 & P3 & Py

Figure 11 shows an implementation of a true-LRU
prioritizer according to the present invention using
four elements. Each of the six priority bits Py -Py;
representing the relative priority of the six possible
unique pairs of the four elements, are determined by
six D-type flip-flops 150, 152, 154, 156, 158 and 160.
The Q outputs of the flip-flops 150-160 are the signals
Poi, Pozs» Poss P12, Pj3, and Py, respectively, which
represent the priority bits Py-P. A signal WAYO_USED
is connected to the D inputs of the flip-flops 150, 152
and 154. A signal WAY1 USED is connected to the D
inputs of the flip-flops 156 and 158, and a signal
WAY2 USED is connected to the D input of the flip-flop
160. A signal WAY3_USED is used to derive signals
UPDATEO3, UPDATE13, and UPDATE23, described below.

A clock signal UPDATEOl is connected to the clock
input of the flip-flop 150. The UPDATEO1 signal is
defined by the equation:

UPDATEO1 = CLK & (WAYO_USED + WAY1l_USED)
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where a clock signal CLK is used to clock the flip-
flops 150-160 depending upon the values of WAYO_USED -
WAY1 _USED. The CLK signal could be the HCLK signal
residing on the host bus 20, or derived therefrom if
the true-LRU scheme is used to implement the
prioritizer 64. The "+" symbol indicates the logic
"OR" operation. In general, if x represents the ID
number of the first element, and y represents the ID
number of the second element, then UPDATExy is defined
by the egquation:

UPDATExy = CLK & (WAYx USED + WAYy USED)
Six signals are thus defined as UPDATEOIL, UPDATEOQ2,
UPDATEO3, UPDATE12, UPDATE13 and UPDATE23 which are
connected the respective clock inputs of the flip-flops
150, 152, 154, 156, 158 and 160.

The P,,-Py; Signals are connected to the three

inputs of a three input NOR gate 162. The output of

_the NOR gate 162 is the LRU_WAYO signal which

represents the LRU_WAYO priority term introduced
previously. The inverted-output of the flip-flop 150
is connected to the first input of another three input
NOR gate 164, and the second and third inputs are
connected to the P, and P,;; signals respectively. The
output of the NOR gate 164 is the LRU_WAY1 signal which
represents the LRU_WAY1l term which is true when element
1 has the highest priority. The P, and Py, signals and
the inverted output of the flip-flop 160 are connected
to the three inputs of a three input AND gate 166,
respectively. The output of the AND gate 166 is the
LRU_WAY2 signal which represents the LRU_WAY2 term
which is true when element 2 has the highest priority.
Py, P12 @and P,y are connected the three inputs of
another three input AND gate 168, respectively. The
output of the AND §ate 168 is the LRU-WAY3 signal which
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represents the LRU_WAY3 term which is true when element
3 has the highest priority.

The WAY0 USED signal is true when the element 0 is
used. Likewise, the WAYl USED, WAY2_USED, and the
WAY3_USED signals are true when the elements 1, 2, and
3 are used, respectively. The specific logic
implementation to derive the WAYn USED signals depends
upon the system in which the true-LRU scheme is being
used, although in general, they should be derived from
the LRU WAYn signals as further detailed below. The
UPDATEO1 signal will clock the flip-flop 150 when CLK
goes high and either element 0 or 1 is used. Any time
the elements x or y are used, the UPDATExXy clock
signals associated with the elements x or y become true
when the CLK signal becomes true. For instance, if
element 0 is used, then WAYO_USED becomes true and
UPDATEO1, UPDATEO2 and UPDATEO3 also become true such
that the flip-flops 150, 152 and 154 are clocked and
the P,,, P,, and P,, signals become true. Note that the
P,;, Po, and Py, priority bits are all of the priority
bits associated with the element 0, and that each one
points away from the element 0 when it is used.
Likewise, if element 1 is used such that WAY1l_USED
becomes true and WAY0 USED is false, then the flip-
flops 156 and 158 are clocked such that P;; and Py
become true, and UPDATEO1l clocks the flip-flop 150 such
that the P, signal becomes false. Again, the relative
priority of element 1 with respect to each other
element points away from the element 1 when it is used.

The P,,-P,; signals represent the priority bits
described above. As each of the elements 0-3 are used,
the flip-flops 150-160 are updated thereby updating the
corresponding priority bit signals Pp-P;. Finally,
the LRU WAYO-LRU WAY3 signals are updated to point to
the next element having the highest priority. Recall
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that only one of the LRU_WAYn signals is true at any
given time, soO that only the corresponding element has
the highest priority at that same given time.
The true-LRU prioritizer of Figure 11 operates as
5 follows. When the element 0 gets used, the WAYO_USED
signal becomes true. Also, the UPDATEO1l, UPDATEO2 and
UPDATEO3 signals, associated with the element 0, clock
the corresponding flip-flops 150, 152 and 154 thereby
updating the priority bit signals Py, Py, and Py to

10 become true and point away from the element 0.

Finally, the LRU_WAYO, LRU_WAY1, LRU_WAY2 and LRU-WAY3
signals are updated to determine which of the other
elements 1-3 has next priority. If the LRU_WAY2 signal
then becomes true, for example, then when element 0 is

15 no longer being used, the element 2 is used next,
causing the WAY2_USED signal to become true. The
WAYO USED and WAYl_USED signals are both false. The
UPDATEO2, UPDATE12 and UPDATE23 clock signals are
clocked, such that the P, and Py signals become false,

20 and the P,; signal becomes true. The operation
continues such that only one of the LRU_WAYO - LRU WAY3
signals is true at any given time, and the
corresponding element is the least recently used
element.

25 The implementation of the prioritizer 64 using the
true-LRU described above is not desirable in certain
instances such as a multiprocessor environment,
however, because it does not include the HBREQ<n>*
signals which are necessary for smooth and efficient

30 operation. For example, when fewer than the maximum
number of elements supported by the true-LRU are either
installed, requesting or available, the true-LRU
prioritizer of Figure 11 is inadequate and requires
modification. For instance, if the prioritizer 64

35 assumes that the four CPUs 22-28 are installed, but the
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CPU 26 is, in fact, not installed, then the true-LRU
would eventually point to the CPU 26 and give it
priority even though it is not connected to the host
bus 20. This situation is undesirable since the

5 computer system S would lock-up. Also, even if all of
the CPUs 22-28 are present, the true-LRU scheme would
be the equivalent of a round-robin scheme. The next
two prioritization schemes described below modify the
true-LRU scheme such that only those elements

10 requesting priority will be awarded the highest
priority. It is noted that the prioritization scheme
of Fig. 10 would be acceptable for use in a cache
memory allocation system where all the elements would
be present and available.

15 Referring now to Figure 12, the modified true-LRU
prioritizer of the present invention using the four
elements 0-3 is shown. It is understood that more than
four elements could be implemented, with only four
elements being used in this example for clarity and

20 simplicity. The same six priority bit signals Py -P;
are defined for the four elements 0-3 as were defined
above. In Figure 12, identical elements will retain
identical reference numerals. The flip-flops 150, 152,
154, 156, 158 and 160 have the same inputs WAYO_USED,

25 WAY1l_USED, WAY2_USED and UPDATEO1l, UPDATEO2, UPDATEQ3,
UPDATE12, UPDATE13 and UPDATE23 as was described
previously in Figure 11. Likewise, the outputs of the
flip-flops 150-160 are the Py, Pozs Poss Pizr Pias P
priority bit signals, respectively. 1In Figure 12,

30 however, only those elements that are available and
that request priority eventually achieve the highest
priority, as long as one of the other installed
elements are requesting priority at any given time. If
none of the installed elements request priority, it is

35 possible that an uninstalled device will gain priority.
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This can be cured by one of several modifications,
described in more detail below.
Each of the elements 0-3 is assigned a separate
request signal HBREQ<n> where n represents the ID
5 number of the element. These HBREQ<n> request signals
are, for example, the inverses of the HBREQ<n>* request
signals residing on the host bus 20.
The modified true-LRU illustrated in Figure 12
includes six modifier logic blocks 170, 172, 174, 176,
10 178 and 180 which are connected to the priority bit
signals P,, - P,;, respectively. Each of the modifier
logic blocks 170-180 are identical and are connected to
a corresponding two of the HBREQ<n> request signals
from each of the elements 0-3. Specifically, the
15 modifier block 170 is connected to the HBREQ<0> and
HBREQ<1l> request signals. Likewise, the modifier block
172 is connected to the HBREQ<O> and HBREQ<2> request
signals, the modifier block 174 is connected to the
HBREQ<O0> and HBREQ<3> request signals, the modifier
20 block 176 is connected to the HBREQ<l> and HBREQ<2>
request signals, the modifier block 178 is connected to
the HBREQ<1> and HBREQ<3> request signals, and the
modifier block 180 is connected to the HBREQ<2> and
HBREQ<3> request signals. Each modifier logic block
25 170-180 performs the following logic equation:
MP,, = P,, & ~HBREQ<x> + Py, & HBREQ<y> + ~P &
~HBREQ<x> & HBREQ<«y>
where, x is the ID number of a first element and y is
the ID number of a second element. For example, MPgy
30 is equal to P, & ~HBREQ<O> + Py & HBREQ<l> + ~Py &
' ~HBREQ<O> & HBREQ<l>. Therefore, the outputs of the
modifier logic blocks 170-180 are the signals MP,,
MP,,, MP,;, MP,,, MP;;, MP,; respectively.
The modified priority signals MP,,-MP,; are similar
35 to the priority signals Py -P,; except that the modified
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priority signals MP,-MP,; change the relative priority
to the other element in each unigue pair when the
element normally having priority is not requesting and
the other element is requesting priority. For example,
if the signal P, is true, such that element 1 has a
higher relative priority than element 0, and element 1
is not requesting (HBREQ<1>=0) and element 0 is
requesting (HBREQ<O0>=1), then MP; will be false,
changing the relative priority to point to the element
0.

The inputs of the three input NOR gate 162 are
connected to the signals MP,,, MP,, and MP,
respectively. The input of an inverter 182 is
connected to the signal MP,, and the output is
connected to the first input of the three input NOR
gate 164. The second and third inputs of the input NOR
gate 164 are connected to the MP;, and MP;; signals,
respectively. Two inputs of the three input AND gate
166 are connected to the MPy,, and MP, signals. The
input of an inverter 184 is connected to the signal
MP,, and its output is connected to the third input of
the AND gate 166. The three inputs of the AND gate 168
are connected to the MP,;, MP,;, and MP,; signals,
respectively. The outputs of the gates 162, 164, 166
and 168 are referred to as HACK<0>, HACK<l>, HACK<2>
and HACK<3>, respectively, which are acknowledge
signals similar to the LRU_WAY0-LRU_WAY3 signals of
Figure 11. Also, these HACK<n> acknowledge signals are
similar to the HACK<n>* acknowledge signals residing on
the host bus 20, the only difference being that the
HACK<n> signals are inverses of the HACK<n>* signals.
Whenever the signal HACK<n> is true,lthen the element n
has the highest priority. For instance, if HACK<0> is
true, then element 0 has the highest priority. Only
one of the HACK<n> signals is true at any time.
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In systems where some of the devices may not be
physically present in the system, it is important that
these uninstalled devices do not become bus masters.
Without certain constraints, the modified true-LRU
method described above would not prevent an uninstalled
element from gaining the highest priority and possibly
locking up the system. For example, assume one of the
four elements is not installed, the modified priority
bits MP,-MP,; will eventually point to the uninstalled
element if during a period of time, none of the
installed elements are requesting priority.

To prevent this undesirable situation, every
installed element must assert its HBREQ<n> signal low
and keep it low to maintain priority at least until
that element detects the negation of its corresponding
HACK<n> signal, which is an indication that another
element m has activated its HBREQ<m> signal and has
gained the highest priority. In Figure 12, for
example, assume element 0 asserts its HBREQ<0> request
signal and HACK<O> is asserted indicating that element
0 has gained highest priority. If element 0 maintains
its HBREQ<O> signal asserted while no other element is
asserting their HBREQ<n> request signals, then the
modified priority bits MP;-MP,; associated with element
0 will all point to element 0 such that the HACK<O0>
signal remains asserted. Element 0 must keep its
HBREQ<O> request signal asserted until the HACK<O0>
signal is negated high. The HACK<O0> signal will be
negated high in response to another element asserting
its HBREQ<n> request signal since the other element
gains priority over element 0. By doing this, priority
will be guaranteed to always go to an installed device,
preventing the computer system S from locking up. If
the modified true-LRU method is used to map around bad
cache ways, then only the good ways keep their reguests
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asserted at all times and the ways with errors never
get allocated.

The 4-element modified true-LRU circuit shown in
Figqure 12 could be used in the prioritizer 64 of Figure
1, if the CPU 28 were the fourth, and last CPU of the
computer system S. The HBREQ<n> request signals and
the HACK<n> acknowledge signals are preferably
converted to negative logic, as described previously,
and reside on the host bus 20 as the HBREQ<n>* request
and HACK<n>* acknowledge signals. Also, the WAYn USED
signals are derived from the HACK<n> signals (or the
HACK<n>* signals) and the HBUSY* signal through
separate logic (not shown).

A more specific example of a modified true-LRU is
shown in Figures 13A-13E which could be implemented in
the prioritizer 64 of Figure 1. Several modifications
of the modified true LRU of Figure 12 are deemed
desirable. The HBREQ<n>* and HACK<ns>* signals are
asserted low and negated high. The modifier bits are
preferably defined by the following equation:

MPxy = ~Pxy & HBREQ<x>* + Pxy & ~HBREQ<y>*
which allows for a more efficient circuit, among other
advantages. If the computer system S has four CPUs 22-
28 as shown in Figure 1, the modifier eguations using

the equation above would be as follows:

MP01 = (~P01 & HBREQ<O>*) + (P01l & ~HBREQ<1>¥)
MP0O2 = (~P02 & HBREQ<O>*) + (P02 & ~HBREQ<2>¥)
MP03 = (~P03 & HBREQ<O>*) + (P03 & ~HBREQ<3>¥)
MP12 = (~P12 & HBREQ<1l>*) + (P12 & ~HBREQ<2>%)
MP13 = (~P13 & HBREQ<1>*) + (P13 & ~HBREQ<3>*)
MP23 = (~P23 & HBREQ<2>*) + (P12 & ~HBREQ<3>%)

The modified priority bits MP01-MP23 defined above
change the relative priority if the element normally
having priority is not requesting. The modified
priority equations defined above are further preferable
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to the modifier equations described previously when
implemented in the computer system S of Figure 1 since
the CPU gaining bus mastership need not maintain its
HBREQ<n>* request signal asserted until it sees its
corresponding HACK<n>* signal negated high. The
modified priority bits defined above allow a CPU to
negate its HBREQ<n>* request signal high as soon as it
detects its HACK<n>* signal asserted low when the
HBUSY* signal is asserted high.

To understand this more clearly, consider the
operation of the modified priority bits described
previously for Figure 12. As soon as the CPU 22 is
designated as the next bus master when the HBUSY*
signal is negated high, the MPO1-MP23 modified priority
bits will change to point away from the CPU 22 even
though none of the other CPUs 24-28 are requesting
access to the host bus 20. This causes the CPU 22
HACK<O>* signal to be negated once the HBUSY* signal is
asserted low by the CPU 22. The assertion of the
HBREQ<O0>* is necessary to force the CPU 22 HACK<O>*
signal low again since no other device is requesting.
The modified priority bits defined immediately above,
however, flip back to give priority to the CPU 22 which
is the next bus master of the host bus 20 when the
HBUSY* signal goes high and none of the other CPUs 24-
28 are asserting their request signals low. In this
manner, the corresponding HACK<n>* signal of the new
CPU bus master remains asserted low as long as no other
CPUs are requesting access to the host bus 20. The CPU
bus master must still, however, maintain control of the
host bus 20 while its HACK<n>* signal is asserted low.

The inclusion of the EHM 66 requires modification

" of the HACK<n>* signals in order for the EHM 66 to have

a higher priority than the CPUs 22-28. A signal EISM
is true when asserted high if the EHM 66 is the current
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bus master of the host bus 20. As usual, the HACK<n>*
and the EBHACK* signals are all true when asserted low.
The HACK<n>* and EBHACK* signals will not change when
the HBUSY* signal is asserted high, and are only
allowed to change when the HBUSY* signal is asserted
low. The HACK<n>* and EBHACK* acknowledge signals are

defined as follows:

HACK<O>* = ~(~MP0l & ~MP02 & ~MPO3 &

((EBREQ* & ~EISM) + (~HBREQ<O>* & EISM)))
HACK<l>* = ~(MPOl1 & ~MP12 & ~MP13 &

( (EBREQ* & ~EISM) + (~HBREQ<1>* & EISM)))
HACK<2>* = ~(MP02 & MP12 & ~MP23 &

( (EBREQ* & ~EISM) + (~HBREQ<«2>* & EISM)))
HACK<3>* = ~(MP03 & MP13 & MP23 &

( (EBREQ* & ~EISM) + (~HBREQ<3>* & EISM)))
EBHACK* = ~((~EBREQ* & ~EISM) + (EISM &

HBREQ<O>* & HBREQ<l>* & HBREQ<2>* & HBREQ<3>*))
Thus, the highest priority CPU will be acknowledged
sfnchronously with the HCLK signal when the HBUSY*
signal is asserted low and the EHM 66 is not requesting
the host bus 20, or when the EHM 66 is currently the
bus master of the host bus 20. The acknowledge
equations above indicate that the EHM 66 does not
disturb the prioritization of the CPUs 22-28 although
it has a higher priority than the CPUs 22-28 unless the
EHM 66 arbitrates while it owns the host bus 20. In
the latter case, the EBREQ* signal is ignored and the
highest priority CPU takes control of the host bus 20.
The EBHACK* equation defined above assures that if none
of the CPUs 22-28 are reguesting, the EHM 66 will
assume control of the host bus 20 as a default. TUnder
normal operation, however, this default condition
should not occur since each of the CPUs 22-28 and the
EHM 66 should maintain control of the bus as long as
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its corresponding HACK<n>* acknowledge signal is
asserted low.

The E_RTRY* signal is asserted low to indicate to
a CPU attempting to access the EISA bus 36 that the
EISA bus 36 is unavailable. The aborted CPU typically
releases control of the host bus 20 and loses the
highest priority.

When the prioritizer 64 detects the LE_RTRY*
signal asserted low by the EBC 38 thereby aborting a
CPU attempting a locked EISA bus 36 cycle, the
prioritizer 64 sets a reservation bit identifying the
aborted CPU. More particularly, the following
condition determines when a reservation is set or
latched while the HBUSY* signal is asserted low:

~LE_RTRY* & EBGNT* & ~HADS* & HADS*_1* &

E_RTRY* & HLOCAL* & ~HLOCK*
where HADS*_1* is the HADS* signal clocked with the
HCLK signal. The EBGNT* signal is asserted low by the
prioritizer 64 when it grants control of the host bus
20 to the EHM 66. The above condition indicates that
if the LE_RTRY* signal is asserted, an EISA or ISA bus
master or DMA is not granted the EISA bus 36, the HADS*
signal is asserted low and then is negated high on the
following HCLK rising edge, the E_RTRY* signal is
negated high and a locked EISA cycle is being
attempted, the CPU attempting the locked EISA cycle is
aborted and a reservation is set. A reservation signal
ELIPO corresponds to the CPU 22, a signal ELIP1
corresponds to the CPU 24, a signal ELIP2 corresponds
to the CPU 26, a signal ELIP3 corresponds to the CPU 28
and a signal ELIP* resides on the host bus 20 and is
asserted low by the EHM 66 when a reservation has been
set. When these above conditions are met, the ELIPn
signals and the ELIP* signal are latched on the next
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rising edge of the HCLK signal according to the

following equations:

ELIP* = 0

ELIPO = POl & P02 & PO3
ELIP1 = ~P01 & P12 & P13
ELIP2 = ~P02 & ~P12 & P23
ELIP3 = ~P03 & ~P13 & ~P23

Only one of the ELIPn signals is asserted high at a
time, and the ELIPn signal that is asserted high
indicates a reservation for the aborted CPU. Note that
the aborted CPU has control of the host bus 20 so that
the priority bits Py -P,; point away from the aborted
CPU so that only the ELIPn signal corresponding to the
aborted CPU is set high.

The prioritizer €4 sets one of the reservation
bits ELIPn high and asserts the ELIP* signal low, which
is detected by the EBC 38. When the EBC 38 detects the
ELIP* signal asserted low, it asserts the E_RTRY*
signal low to prevent a subsequent cycle from being
posted. A second CPU attempting an EISA cycle will be
aborted by the E_RTRY* signal and not the LE_RTRY*
signal, so that a new reservation is not set.
Therefore, only one reservation is set at a time and
does not change until the first aborted CPU attempting
a locked cycle is serviced when the EBC 38 is available
to perform the locked cycle. The aborted CPU
arbitrates the host bus 20 if another device is
requesting the host bus 20. The CPU waits until the
LE_RTRY* signal is negated high before it asserts its
HBREQ<n>* signal low. In this manner, the aborted CPU
will not regain control of the host bus 20 after
arbitration until the EBC 38 and EISA bus 36 are
available to perform the locked cycle.

Note that while one of the ELIPn signals is set
high, operation continues as usual where several other
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of the CPUs may become bus masters while the EBC 38 is
unavailable. Eventually, the prioritizer 64 detects
the LE_RTRY* signal negated high by the EBC 38 when it
is available. When the LE_RTRY* signal is negated high
5 while the ELIP* and the HBUSY* signals are asserted
low, the prioritizer 64 asserts a signal ELIPRST high.
The ELIPRST signal is asserted high only during another
CPUs access, or if the aborted CPU retains the host bus
20 if no other CPU requested access, since the HBUSY*
10 signal is still asserted low. The aborted CPU monitors
the LE_RTRY* signal and when the LE_RTRY* is negated
high, the CPU responds by asserting its HBREQ<«n>*
signal low to request the host bus 20. When the
ELIPRST signal is asserted high and a reservation bit
15 has been set, and when the corresponding aborted CPU
requests access by asserting its HBREQ<n>* signal, the
modified priority bits are updated by the prioritizer
64 accérding to the following alternate equations:
MP01 = ELIP1
20 MPQ2 ELIP2
MP03 = ELIP3
MP12 = ELIP2
MP13 = ELIP3
MP23 = ELIP3
25 The above equations are used instead of the normal
modifier equations defined previously in order to
override the normal prioritization when a reservation
has been set. On the next rising edge of the HCLK
signal, the HACK<n>* signals are updated so that the
30 aborted CPU’s HACK<n>* signal is asserted low to
reflect the reservation. The HACK<n>* signals will
subsequently not change even if new HBREQ<n>* signals
are asserted during the current bus masters access.
The aborted CPU, therefore, will be the next bus master
35 so that it can perform its locked EISA cycle. Note
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that the aborted CPU must still wait for the cycle of
the current bus master to complete before gaining

control of the host bus 20.
When the HBUSY* signal is subsequently negated

high and the ELIPRST signal is high indicating a

" reservation, the ELIPRST and ELIP* signals are defined

by the following equations:
ELIP* = ELIPO & ~HACK<O>* +
ELIP1 & ~HACK<l>* +
ELIP2 & ~HACK<2>* +
ELIP3 & ~HACK<3>*

ELIPRST = ~(ELIPO & ~HACK<O>* +

ELIP1 & ~HACK<l>* +

ELIP2 & ~HACK<2>* +

ELIP3 & ~HACK<3>*)
The above equations show that the reservation is
cleared only if the aborted CPU is the next bus master
of the host bus 20. This is necessary since otherwise
the reservation would be cleared in the interim while
other CPU’s access the host bus 20 and the EBC 38 is
still unavailable. For example, if the CPU 22
attempted a locked cycle and was aborted by the
LE_RTRY* signal, the ELIPO signal is asserted high to
reserve the host bus 20 for the CPU 22 when the EBC 38
and EISA bus 36 are available. The CPU 22 arbitrates
while the ELIPO signal is high and the HACK<O>* signal
is high so that the ELIP* signal remains asserted low
and the ELIPRST signal remains asserted high. When the
LE_RTRY* signal is finally negated high and the host
bus 20 is arbitrated with the CPU 22 being the next bus
master, the ELIPO signal is high and the HACK<O>*
signal is low so that the ELIP* signal is negated high
(reset) and the ELIPRST signal is negated low (reset).

This clears the reservation.
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Referring now to Figures 13A, 13B, 13C, 13D and
13E, a modified true-LRU prioritization scheme
implementing the reservation bits as described above is
shown. Most of the signals defined above are updated

5 at the rising edge of the HCLK signal and are
preferably defined as the Q outputs of D-type flip-
flops. In Figure 13A, the HACK<2>*, ELIPRST, P02, P12,
P23 and ELIP2 signals are defined by the Q outputs of
flip-flops 200, 202, 204, 206, 208 and 210,

10 respectively. In Figure 13B, the HBREQ<3..0>* signals
are the D inputs of flip-flops 214, 218, 212, and 216,
respectively. The Q outputs of the flip-flops 214,
218, 212 and 216 are signals referred to as HBREQl<3>%*,
HBREQ1<2>*, HBREQl<l>* and HBREQl<0>*, respectively.

15 The HBREQl<n>* signals are latched and synchronized
versions of the asynchronous HBREQ<n>* signals. The
EBHACK*, EISM, and HACK<O0>* signals are defined by the
Q outputs of flip-flops 220, 222 and 224, respectively.
In Figure 13C, the P01, ELIPO, ELIP3, HACK<3>* and P03

20 signals are defined by the Q outputs of flip-flops 226,
228, 230, 232 and 234, respectively. In Figure 13D,
the HACK<1l>* signal is defined as the Q output of a
flip-flop 236. In Figure 13E, the P13, ELIPl, and
ELIP* signals are defined by the Q outputs of flip-

25 flops 238, 240, and 242, respectively. A signal RESET
is also shown which is true when asserted low and
negated high during normal operation. When the RESET_
signal is asserted low, the circuit is reset and the
EBC 38 is given control of the host bus 20. Other

30 signal names appearing on the schematics of
Figures 13A-13E are either intermediate nodes or are
not of concern for the purposes of this disclosure.

It has been previously stated that the HACK<n>*
signals will not change when the HBUSY* signal is

35 negated high. Referring again to Figure 13B, an
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example of how this is achieved for the HACK<O>* signal
will now be described. The HBUSY* signal is connected
to one input of a two input OR gate 250. Since the
HBUSY* signal is high, the output of the OR gate 250 is
also high regardless of the status of the other input
of the OR gate 250. The HBUSY* signal is also
connected to the input of an inverter 252, and the
output of the inverter 252 is connected to one input of
a two input OR gate 254. The inverted output of the
flip-flop 224 is connected to the input of an inverter
256, and the output of the inverter 256 is connected to
the other input of the OR gate 254. The output of the
OR gate 254, therefore, is the same as the HACK<O>*
signal ignoring negligible delay through the inverter
256 and the OR gate 254. The outputs of the OR gate
250 and 254 are each connected to the inputs of a two
input NAND gate 258. The output of the NAND gate 258
is connected to one input of a two input NAND gate 260.
The output of a three input OR gate 262 is connected to
the other inmput of the NAND gate 260. One input of the
OR gate 262 is connected to the HBUSY* signal, which is
high, such that the output of the OR gate 262 is high
regardless of its other two inputs. Since the NAND

gates 258 and 260 operate as inverters, the output of

the NAND gate 260 is also the same as the HACK<0>*
signal ignoring negligible delay. The output of the
NAND gate 260 is connected to the D-input of the flip-
flop 224, so that the HACK<O>* signal at the Q output
of the flip-flop 224 remains unchanged while the HBUSY*
signal is high. While the HBUSY* signal is asserted
low, the HACK<n>* signals behave according to the above
stated equations. Similar logic controls the Q outputs
of the flip-flops 220, 236, 200, and 232 such that
while the HBUSY* signal is negated high, the EBHACK*,
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HACK<1l>*, HACK<2>* and HACK<3>* signals remain
unchanged.

Referring now to Figure 14A, a timing diagram is
shown illustrating a reservation being set. At a time
T372, a cycle referred to by the letter A is initiated
by the CPU 22 which is an EISA locked posted read cycle
as indicated by the HLOCAL* signal negated high, the
HW R signal asserted low and the HLOCK* asserted low
after the time T372. The E_RTRY* signal is asserted a
couple of HCLK periods later at a time T376. The EISA
locked read cycle A completes and a corresponding EISA
locked write cycle referred to by the letter B begins
approximately at the time T386 when the HADS* signal is
asserted low by the CPU 22. The HLOCK* signal remains
asserted until the end of cycle B on the host bus 20
and is negated high at a time T392, while the HD data
signals are asserted with cycle B’s write data and then
cycle A’'s read data as previously described in a
similar manner.

Meanwhile, the DHOLD signal is asserted high at a
time T376 indicating that an EISA or ISA bus master or
DMA requires control of the EISA bus 36. Since the
EISA bus 36 is currently busy running the locked cycles
A and B, the DHLDA signal remains negated low until
completion of the locked cycles. Eventually the locked
cycles A and B complete on the host bus 20 at
approximately the time T396 and the LE_RTRY* signal is
subsequently asserted low at a time T398 to allow the
EISA bus master to assume control of the EISA bus 36
and prevent a new locked cycle from being posted.

At a time T400, a new EISA locked read cycle
referred to by the letter C is initiated by the CPU 24.
The E_RTRY* signal is negated high at the time T400 so
that the CPU 24 is not aborted by the E_RTRY* signal at
the time T404. However, since the HLOCK* signal is
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still low at the time T404 and since cycle C is a
locked cycle, the CPU 24 also samples the LE_RTRY*
signal. Since the LE_RTRY* signal is asserted low at
the time T404, the CPU 24 is aborted to prevent the
EISA locked read cycle C from being posted while the
EISA bus 36 is busy. Since the EISA lock read cycle C
is aborted by the LE_RTRY* signal, a reservation is set
by the prioritizer 64, and the prioritizer 64 asserts
the ELIP* signal low at the time T404 which is
subsequently detected by the EBC 38. Approximately one
HCLK period later, the EBC 38 asserts the E_RTRY*
signal low at a time T406 to prevent further posted
cycles to the EISA bus 36. Meanwhile, the DHLDA signal
is asserted high after the time T406 to grant control
of the EISA bus 36 to the EISA bus master. The DHOLD
signal is negated low at the time T408, the LE_RTRY*
signal is negated high at a time T410 and the DHLDA
signal is subsequently negated low at a time T412.

Once the LE_RTRY* signal is detected negated high at
the time T412, the CPU 24 which was aborted by the
LE_RTRY* signal regains the highest priority to take
control of the host bus 20 due to the reservation
described previously, so that it asserts the HADS*
signal low at the time T412. The ELIP* signal is also
negated high to cancel out the reservation. At a time
T414, which is one HCLK period after the time T412, the
E_RTRY* signal is negated high in response to the ELIP*
signal being detected negated high.

Referring now to Figure 14B another diagram is
shown illustrating the CPU 26 aborted by the E_RTRY*
signal while the LE_RTRY* signal is also asserted.
Beginning at a time T430, a posted EISA read cycle
referred to by the letter A is initiated by the CPU 22
and is subsequently terminated at a time T436 two HCLK
periods later when the HBRDY* signal is negated high.
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The E_RTRY* signal is asserted low at a time T434 while
a request for the EISA bus 36 is made by an EISA bus
master when the CSP 42 asserts the DHOLD signal high at
the same time. After the time T436, the LE_RTRY*

5 signal is asserted low by the EBC 38 to prevent a
locked cycle from being initiated after the EISA bus
master gains control of the EISA bus 36. Meanwhile,
the posted read cycle A completes at the time T446 so
that the EISA bus acknowledge signal DHLDA is

10 subsequently asserted high at a time T450 to grant
control of the EISA bus 36 to the requesting EISA bus
master.

Meanwhile, a cycle B is initiated on the host bus
20 by the CPU 24 at a time T444. Once the EISA posted

15 write cycle B is completed on the host bus 20, the CPU
26 gains control of the host bus 20 and asserts the
HADS* signal low at a time T452 which is an EISA locked
read cycle referred to by the letter C. At a time
T456, the CPU 26 detects the E_RTRY* signal asserted

20 low and aborts its cycle. The ELIP* signal is not
asserted since the E_RTRY* signal has priority over the
LE-RTRY* signal. The EISA bus master completes its
EISA cycle approximately by a time T460 and the DHLDA
signal is negated low at a time T462 while the LE_RTRY*

25 signal is negated high. One HCLK periocd later at a
time T464, the START* signal is asserted low to
complete the EISA write cycle B which was previously
posted to the EISA bus 36, and cycle B completes at
approximately the time T478 when the CMD* signal is

30 negated high.

Another prioritizer is shown in Figure 15 which is
a first-in-first-out (FIFO) prioritizer. Again, in
Figure 15, identical elements retain the identical
reference numerals. The modifier logic blocks 170-180
35 are connected in a similar manner as shown in Figure 12
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to the two corresponding HBREQ<n> signals, and also to
the corresponding priority bit signals Py -P,;. The
output signals MP,;-MP,; of the modifier blocks 170-180,
however, are connected directly to the D inputs of the
flip-flops 150-160, respectively. The outputs of the D
flip-flops 150-160 are, again, the priority bit signals
Py;-P,; as shown in Figures 10 and 11. The clock inputs
of the flip-flops 150-160 are connected to the HCLK
signal. The input of the inverter 182 is connected to
the P,; signal and its output is connected to one input
of the three input NOR gate 164. The input of the
inverter 184 is connected to the P,; signal and its
output is connected to one input of the three-input AND
gate 166. The three inputs of the three input NOR gate
162 are connected to the Py, Py, and Py,; signals,
respectively, and its output is the HACK<0> signal.

The other two inputs of the NOR gate 164 are connected
to the'Pn and P,; signals, respectively, and its output
is the HACK<1l> signal. The other two inputs of the AND
gate 166 are connected to the Py, and P, signals, and
its output is the HACK<2> signal. The three inputs of
the three input AND gate 168 are connected to the Py,
P,; and P,; signals, and its output is the HACK<3>
signal.

The modifier blocks 170-180 are preferably the
same as the logic blocks shown in Figure 12. Either of
the modifier equations defined previously could be used
to implement the logic within the logic blocks 170-180.
The second modifier equation is preferable since it
allows for a more efficient electronic circuit
implementation. The FIFO prioritizer shown in Figure
15 works as a regular FIFO such that any time a given
element is used, its priority changes to the lowest
priority. Also, any time that an element does not

request priority, it will not gain priority. For
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instance, if element 0 never requests priority by
asserting the HBREQ<O> signal true, then the HACK<O0>
signal will never become true.
If the FIFO scheme of Figure 15 were used as the
5 prioritizer 64 of Figure 1, it would work similarly as
the modified true-LRU scheme of Figure 12, although
additional logic would not be required to define the
WAYn USED signals and the UPDATExy clock signals. Only
the HCLK signal and the HBREQ<n>* request signals
10 residing on the host bus 20 would be required. When
arbitration occurs, the new bus master would have to be
forced to the bottom of the stack for at least one HCLK
period to allow other masters to get to the top of the
stack if they are also requesting. In other words, the
15 new bus master may not assert its HBREQ<n>* signal for
at least one HCLK period after it loses bus mastership
since otherwise it would remain on top of the FIFO and
never lose bus mastership. If only the current master
is requesting, due to the first come-first-served
20 nature of the prioritizer, the highest priority would
again be given to the current bus master. When this
master does not need the host bus 20 and another bus
master is requesting, then the current master must
negate its HBREQ<n>* signal high to allow lower
25 priority devices to be raised to the highest priority.
This requirement keeps masters from being granted
control of the host bus 20 more than their fair share
of the time.
A brief summary of the preferred embodiment of the
30 present invention will now be presented. Referring
again to the preferred embodiment of the present
invention as shown in Figure 1, the computer system S
includes multiple CPUs 22-28 which are coupled to the
host bus 20. The host bus 20 includes an HBREQ<n>*
35 request signal and an HACK<n>* acknowledge signal for
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each of the CPUs 22-28, as well as the HBUSY* bus busy
signal. A CPU requiring control of the host bus 20
asserts its request signal and assumes control of the
host bus 20 when its HACK<n>* acknowledge signal is
asserted and the HBUSY* signal is negated. The CPU
then asserts the HBUSY* signal and retains control
until it is through using the host bus 20, at which
time it de-asserts the HBUSY* signal so that another
CPU can take control of the host bus 20.

The prioritizer 64 monitors the request signals
and the HBUSY* signal, and provides the HACK<n>*
acknowledge signals. The prioritizer 64 is implemented
with one of the prioritization schemes according to the
present invention. It receives the HBREQ<n>* request
signals and the HBUSY* signal, prioritizes according to
one of the LRU schemes or the FIFO scheme disclosed
herein, and asserts one of the HACK<n>* acknowledge
signals indicating which one of the CPUs 22-28 is the
next bus master of the host bus 20. The current bus
master of the host bus 20 determines when arbitration
occurs where control is transferred to another bus
master as indicated by the HBUSY* signal. When the
current bus master is finished with the host bus 20, it
negates the HBUSY* signal. The prioritizer 64 detects
the negation of the HBUSY* signal and freezes the
HACK<n>* acknowledge signals until the HBUSY* signal is
asserted again.

Pipelining is supported where the next bus master
may initiate its cycle before the current bus master
has completed its cycle. Pipelined rearbitration may
also occur which provides an efficient transfer of
control of the host bus 20 from one bus master to the
next without incurring wait states or idle transfers.

The presence of the EHM 66 does not disturb the
relative priorities of the CPUs 22-28, but requires
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higher priority. The prioritizer 64 gives the EHM 66
higher priority unless one of the CPUs 22-28 is a
temporary bus master performing a write-back cache
intervention cycle. Temporary bus masters are given
5 the highest priority. The CPUs 22-28 may be

implemented to keep their HBREQ<n>* request signals
asserted until it detects its HACK<n>* acknowledge
signal negated or until the CPU arbitrates the host bus
20 to another bus master depending upon which of the

10 modifier equations disclosed above are used.

The E_RTRY* signal prevents a CPU cycle from being

posted if the address posting buffers within the SDB 40
are full. The LE_RTRY* signal allows non-locked cycles
to be posted, but prevents a CPU locked cycle from

15 being posted while the EISA bus 36 is owned by a master
other than a CPU. If a CPU attempts to perform a
locked EISA cycle on the EISA bus 36 when the EBC 38 is
not available, one of the ELIPn reservation bits are
set within the prioritizer 64 to reserve the EISA bus

20 36 and the EBC 38 for the aborted CPU when they are
next available. The prioritizer 64 alsoc asserts the
ELIP* signal to indicate the reservation to the EBC 38,
and the EBC 38 asserts the E_RTRY* signal to prevent a
non-locked cycle from being posted. Once the EISA bus

25 36 is available, the prioritizer 64 grants the host bus
20 to the aborted CPU, overriding normal priority, and
the reservation is cleared.

Split transactions are supported so that a CPU

posting a read to the EISA bus 36 can arbitrate the

30 host bus 20 to another CPU if requesting it. The
waiting CPU need not arbitrate for the host bus 20 when
the data is available since the data is asserted on the
host data bus when idle even though another device has
control of the host bus 20. The waiting CPU reads the



WO 94/08301 PCT/US93/09186

10

86

data when the HDREQ* signal is negated high after
previously being asserted low by the EBC 38.

The foregoing disclosure and description of the
invention are illustrative and explanatory thereof, and
various changes in the size, shape, materials,
components, circuit elements, wiring connections and
contacts, as well as in the details of the illustrated
circuitry and construction may be made without
departing from the spirit of the invention.
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CLAIMS:

1 1. A system for prioritizing a plurality of

2 elements, wherein the least recently used element

3 attains the highest priority, the system comprising:

4 means for providing a plurality of used

5 signals, each said used signal indicating that a

6 corresponding element has been used;

7 a plurality of relative priority storage

8 means, each said relative priority storage means

9 corresponding to a unique pair of said plurality of
10 elements, each said relative priority storage means
11 providing a relative priority signal indicative of the
12 relative priority between said elements of said
13 corresponding unique pair and including an input to
14 indicate said element used signal is to be stored, said
15 stored value indicating the absolute relative priority
16 between said elements of said corresponding unique
17 pair, each of said relative priority storage means

18 receiving said element used signal corresponding to the
19 first element of said unique pair of said plurality of
20 elements for said relative priority storage means;
21 means receiving the plurality of element used
22 signals for providing a signal to a particular relative
23 priority storage means storage indication input when
24 either of said elements corresponding to said unique
25 pair of elements of said particular relative priority
26 storage means has been used; and
27 means receiving all of said relative priority
28 signals for combining said relative priority signals
29 relating to each individual element and indicating that
30 a particular element has the highest priority if all of
31 said relative priority signals for said particular
32 element indicate said particular element has relative
33 priority versus the other element of said unique pair.
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2. The system of claim 1, wherein each said
relative priority storage means comprises a flip-flop.

3. The system of claim 1, wherein each of the

elements provides a signal indicating a use request and
wherein each of said plurality of relative

priority storage means further receives the use request
signals corresponding to the particular elements of
said unique pair and provides an output signal
indicative of said stored value and further includes
means receiving said stored value output signal and
said corresponding use request signals and providing
said relative priority signal for passing said stored
value output signal as said relative priority signal if
said stored value output signal indicates a particular
element and said particular element use request signal
is provided and inverting said stored value output
signal and providing said inverted signal as said
relative priority signal if said stored value output
signal indicates a particular element, said particular
element use request signal is not provided and said

other element use request signal is provided.

4. The system of claim 3,
wherein said means for passing and inverting
further passes said stored value output signal as said
relative priority signal if neither of said use request
signals from said corresponding elements are provided.

5. The system of claim 3,
wherein said means for passing and inverting
further inverts said stored value output signal and
provides said inverted signal as said relative priority
signal if neither of said use request signals from said

corresponding elements are provided.
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6. A system for prioritizing a plurality of
elements, wherein the first requesting element attains
the highest priority, each element providing a signal
indicating a use request, the system comprising:

a plurality of relative priority storage
means, each said relative priority storage means
corresponding to a unique pair of said plurality of
elements, each said relative priority storage means
providing a relative priority signal indicative of the
relative priority between said elements of said unique
pair, each said relative priority between said elements
of said unique pair, each said relative priority
storage means having a storage input;

means receiving all of said relative priority
signals for combining said relative priority signals
relating to each individual element and indicating that
a particular element has the highest priority if all
said relative priority signals for said particular
element indicate said particular element has relative
priority versus the other element of said unique pair;
and

a plurality of means receiving said use
request signals and said relative priority signals,
each means corresponding to a particular said relative
priority storage means, each said means receiving the
use request signals corresponding to the particular
elements in the unique pair of said corresponding
relative priority storage means and the relative
priority signal from said corresponding relative
priority storage means, each means having a relative
requested priority signal which is connected to said
storage input of said corresponding relative priority
storage means, each said means for passing said
relative priority signal as said relative requested
priority signal if said relative priority signal
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indicates a particular element and said particular
element use request signal is provided and inverting
said relative priority signal and providing said
inverted signal as said relative requested priority
signal if said relative priority signal indicates a
particular element, said particular element use request
signal is not provided and said other element use

request signal is provided.

7. The system of claim 6,
wherein said means for passing and inverting
further passes said stored value output signal as said
relative priority signal if neither of said use request
signals from said corresponding elements are provided.

8. The system of claim 6,
wherein said means for passing and inverting
further inverts said stored value output signal and
provides said inverted signal as said relative priority
signal if neither of said use request signals from said

corresponding elements are provided.
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FIG. 6A
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FIG. 7A
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