(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau) I 0 00O

(10) International Publication Number

WO 2008/021554 A2

(43) International Publication Date
21 February 2008 (21.02.2008)

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
HOIL 27/108 (2006.01) kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

(21) International Application Number: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
PCT/US2007/018406 ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,

IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(22) International Filing Date: 20 August 2007 (20.08.2007) LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,

(25) Filing Language: English MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,

(26) Publication Language: English TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
7ZM, 7ZW.

(30) Priority Data:

60/838,651 18 August 2006 (18.08.2006) US (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for US only): BOARD OF SUPERVI-
SORS OF LOUISIANA STATE UNIVERSITY AND
AGRICULTURAL AND MECHANICAL COLLEGE
[US/US]; On Behalf of the lLouisiana State University
HealthSciences Center Office Of The Vice Chancellor
ForAcademic Affairs, 433 Bolivar Street, Suite 824, New
Orleans, LA 70112 (US).

(72) Inventors; and Declarations under Rule 4.17:

(75) Inventors/Applicants (for Us only): VAIDYANATHAN, — asto applicant’s entitlement to applyfor and be granted a
Ramachandran [US/US]; 931 Wyatt Drive, Baton Rouge, patent (Rule 4.17(ii))
LA 70810 (US) JORDAN, Matthew, C. [US/US] 201 — asto the applicant’s entitlement to claim the priority ofthe
Water Hill Road, No. 119, Madison, AL 35758 (US). carlier application (Rule 4.17(iii))

(74) Agents: MERONEY, Bernard, F. et al.; Jones, Walker, Published:
Waechter, Poitevent, Carrere & Denegre, LLP, 8555 United — without international search report and to be republished
Plaza Blvd, 5th Floor, Baton Rouge, LA 70809 (US). upon receipt of that report

(54) Title: A CONFIGURABLE DECODER WITH APPLICATIONS IN FPGAS

(57) Abstract: The invention relates to hardware decoders that efficiently expand a small number of input bits to a large number of
output bits, while providing considerable flexibility in selecting the output instances. One main area of application of the invention
o isin pin-limited environments, such as field programmable gates array (FPGA) used with dynamic reconfiguration. The invention
&= includes a mapping unit that is a circuit, possibly in combination with a reconfigurable memory device. The circuit has as input a
& z-bit source word having a value at each bit position and it outputs an n-bit output word, where n > z, where the value of each bit

position of the n-bit output word is based upon the value of a pre-selected hardwired one of the bit positions in the x-bit word, where

the said pre-selected hardwired bit positions is selected by a selector address. The invention may include a second reconfigurable
a memory device that outputs the z-bit source word, based upon an x-bit source address input to the second memory device, where x

< z. The invention may produce the output n-bit, & bits at a time.

7021554 A2 NI 0O A0 O A

WO 2008/021554 PCT/US2007/018406
A Configurable Decoder with Applications in FPGAs

Inventors: Ramachandran Vaidyanathan and Matthew C. Jordan

Funding: This invention was made with government support under grant number CCR-0310916
. awarded by the National Science Foundation. The government has certain rights in the inven-

tion.

Priority Claim: This application claims the priority of U.S. provisional application number
60/838,651 filed on August 18, 2006, and the contents thereof are hereby incorporated by

reference in its entirety.

Field of Invention This invention relates to decoders. Specifically, it relates to mapping
units and configurable decoders based upon mapping units, where each device outputs more

bits than are input to it.

WO 2008/021554 PCT/US2007/018406
1 Background of the Invention

Over time, processor speeds have increased faster than the rate at which information can enter
and exit a chip. In many cases, it was found that increasing processor speed while ignoring the
effects of input/output (I/0) produced little improvement—essentially, if information cannot
get into or out of the chip at a fast enough rate, then increasing CPU speed diminishes in
importance.

Data transfer to and from a chip can be improved by increasing the bit rate and/or the
number of 1/O pins. Since pins cannot be miniaturized to the éame extent as transistors (pins
must be physically strong enough to withstand contact), the rate at which the number of
transistors on a chip has increased far outpaces the rate at which the number of pins on a chip
has increased. For example, in Intel microprocessors, the number of transistors has increased
by a factor of 20,000 in the last 30 years, whereas the number of pins in these chips increased
merely by a factor of 30. Hence, the rate at which a chip can generate and process information
is much larger than the available conduit to convey this information. The restriction imposed
by the unavailability of a sufficient number of pins in a chip is called “pin limitation.”

An example of the magnitude of the problem is presented by reconfigurable architectures,
in particular, integrated circuit chips such as Field Programmable Gate Arrays (FPGAs). An
FPGA is an array of programmable logic elements, all of which must be configured to suit
the application at hand. A typical FPGA structure consists of a two-dimensional array of
configurable logic elements connected by a configurable interconnection network, such as shown
in Figure 1. Figure 1 shows a networked structure, where the configurable logic blocks (CLBs)
are the configurable functional elements, and the switches “S” are the configurable elements
in the interconnection network. Each CLB in an FPGA is sometimes subdivided into smaller
configurable logic elements. For example, the Xilinx Virtex-5 FPGA’s CLBs each contain two
elements known as slices. At the deepest level, the most basic functional element in an FPGA
usually consists of some combination of one or more Look-Up Tables (LUTSs), combinational
logic gates, flip-lops, and other basic logic elements. In the Virtex-5 FPGA, each slice contains
four 64 x 1 LUTs, four flip-flops, an arithmetic and carry chain, and several multiplexers used to
combine the outputs of the LUTs. Often the CLBs in an FPGA are also interspersed with other
functional units, such as small memory blocks, other adder chains, and multipliers. Thus, a CLB
can contain many configurable switches. Notwithstanding variations in FPGA terminology, we
will use the term “CLB” to denote the basic unit represented in Figure 2.

The FPGA’s interconnection network is typically a two-dimensional mesh of configurable

switches. As in a CLB, each switch S represents a large bank of configurable elements. The

WO 2008/021554 PCT/US2007/018406
state of all switches and elements within all CLBs is referred to as a “configuration” of the
FPGA. Because there is a large number of configurable elements in an FPGA (LUTs, flip-flops,
switches, etc.), a single configuration requires a large amount of information. For example,
the Xilinx Virtex-5 FPGA with a 240 x 108 array of CLBs requires in the order of 79 million
bits for a single full configuration. The FPGA’s CLBs are fine-grained functional elements
that are incapable of executing instructions or generating configuration bits internally. Thus,
configuration information must come from outside the chip. A limited amount of configuration
information can be stored in the chip as “contexts;” however, given the limited amount of
memory available on an FPGA for such a purpose, an application may require more contexts
than can be stored on the FPGA. Hence, ih most cases, configuration information must still
come from outside the chip, and the pin limited input can have severe consequences for the
time needed for reconfiguration.

A number of applications benefit from a technique called dynamic reconfiguration, in which
elements of the FPGA chip are reconfigured to alter their interconnections and functionality
while the application is executing on the FPGA. Dynamic reconfiguration has two main bene-
fits. First, a dynamically reconfigurable architecture can reconfigure between various stages of
an application to use its resources efficiently at each stage. That is, it reuses hardware resources
more efficiently across different parts of an algorithm. For example, an algorithm using two mul-
tipliers in Stage 1 and eight adders in Stage 2 can run on dynamically reconfigurable hardware
that configures as two multipliers for Stage 1 and as eight adders for Stage 2. Consequently,
this algorithm will run on hardware that has two multipliers or eight adders, as opposed to a
non-configurable architecture that would need two multipliers and eight adders.

The second benefit of dynamic reconfiguration is a fine tuning of the architecture to exploit
characteristics of a given instance of the problem. For example in matching a sequence to a
given pattern, the internal “comparator” structure can be fine-tuned to the pattern. Further,
this tuning to a problem instance can also produce faster solutions.

Dynamic reconfiguration requires a fast reconfiguration scheme. Because of this, partial
reconfiguration is normally performed where only a portion of the FPGA is reconfigured. Par-
tial configuration involves selecting the portion of the FPGA requiring reconfiguration (the
addresses) and inputting the necessary configuration bits. Due to pin limitation, only a very
coarse selection of addresses is available in a given time increment, resulting in a still substan-
tially large number of FPGA elements being selected for reconfiguration. This implies that
elements that do not need to be reconfigured must be “configured” anyway along with those

that actually require reconfiguration.

WO 2008/021554 PCT/US2007/018406

In partial reconfiguration, the information entering the chip can be classified into two cat-
egories: (a) selection and (b) configuration. The selection information contains the addresses
of the elements that require reconfiguration, while the configuration information contains the
necessary bits to set the state of the targeted elements.

In order to facilitate partial reconfiguration, FPGAs are typically divided into sets of frames,
where a frame is the smallest addressable unit for reconfiguration. In current FPGAs, a frame
is typically one or more columns of CLBs. Currently, partial reconfiguration can only address
and configure a single frame at a time, as a 1-hot decoder is usually employed. If we assume
that each CLB receives the same number of configuration bits, say «, and the number of CLBs
in each frame is the same, say C, then the number of configuration bits needed for each frame
is Ca. If the number of bits needed for selecting a single frame is b, then the total number of

bits B needed to reconfigure a frame is:
B=bt+Coa.

Since the granularity of reconfiguration is at the frame level, every CLB in a frame would
be reconfigured, regardless of whether or not the application required them to be reconfigured.
This can result in a “poorly-focused” selection of elements for reconfiguration, as more elements
than necessary are reconfigured in each iteration. This implies that a large number of bits and a
large time overhead are spent on the reconfiguration of each individual frame. If the granularity
of selection is made finer, i.e., if fewer CLBs are in each frame, then the number of selection bits
needed to address the frames increases by a small amount while the number of configuration bits
for each frame decreases. However since a 1-hot decoder can select only one frame per iteration,
this also increases (on an average) the total number of iterations necessary to reconfigure the
same amount of area in the FPGA. Pin limitation thus creates a severe restriction on the extent

to which an FPGA can be dynamically reconfigured.

1.1 Notation

Before we proceed further, we introduée some notation.
In general, we use the term “word” to mean a set of bits. Different words may have different
numbers of bits. We also use the terms “string” and “signal” synonymously with “word.”
The O(-) notation indicates an upper bound on the “order of” and is used to describe
how the size of the input data affects resources (time, cost etc.) in an algorithm or hardware.
Specifically, for two functions f(n) and g(n) of a variable n, we say that f(n) = O(g(n)) if and

only if, there is positive constant ¢ > 0 and an integer constant ng, such that for all n > ng,

WO 2008/021554 PCT/US2007/018406
we have f(n) < cg(n). The relationship f(n) = O(g(n)) signifies that the “order of” (or
asymptotic complexity of) f(n) is at most that of g(n) or that f(n) increases at most as fast as
g(n). If O(- -) denotes a lower bound on the complexity, then Q(-) and 6(-) indicates an upper
bound on, and the exact complexity, respectively. Specifically, f(n) = Q{g(n)) if and only if
g(n) = O(f(n)). We say f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n).

Parts of the invention will be described in terms of “ordered partitions.” A partition of set A
is a division of the elements of the set into disjoint non-empty subsets (or blocks). A partition 7
with & blocks is called a k-parpition. For example, a 3-partition of the set {8,7,6,5,4,3,2,1,0}
is {{7,6,5,4},{3,2},{1,0}}. Partitions have no imposed order. An ordered k-partition is a k-
partition {Sg, 51, -, Sk-1} with an order (from 0 to k — 1) imposed on the blocks. An ordered
partition will be denoted (ordered list of blocks). For instance, a 2-partition {Sp, S1}, may be
ordered as (Sp, S1) or (S1,Sp), and (Sp, S1) # (S1,S0)-

A useful operation on partitions is the pfoduct of two partitions. Let m; and w3 be two
(unordered) partitions (not necessarily of the same size). Let 7 = {S5, 81, -, Sk} and 7y =

* {Py, P1,- -+, P}, then their product m;m, is a partition {Qp, Q1, - - -, @m} such that for any block
Qn € mymy, elements a, b € @y, if and only if there are blocks S; € 7, and P; € mg, such thata,be
S;NP;. That is, two elements are in the same block of m;m if and only if they are in one block of
71 and in one block of 7. For instance, consider the partitions m = {{7,6,5,4}, {3,2}, {1,0}}
and m = {{7,6},{5,4,3,2}, {1,0}}. Then mym = {{7,6}, {5,4}, {3,2},{1,0}} = mom;.

For any digital circuit, including those considered in this invention, an n-bit output can be
viewed as a subset of an n-element set. Let Z, = {0,1,---,n — 1}. Consider an n-bit signal
A= A(n—1)A(n — 2)--- A(0) (where A(4) is the i*® bit of A; in general, we will consider bit
0 to be the least significant bit or the Isb). If 4 is an n-bit output signal (or word) of a digital
circuit, then it can be viewed as the subset {i € Z, : A(z) = 1} of Z,. The n-bit string A
is called the characteristic string of the above subset. The set {i € Z, : A(i) = 1} is said
to be characterized by A and is sometimes referred to as the characteristic set. For example if
n = 8, then output A = 00001101 corresponds to the subset {0,2,3}. Outputs 00000000 and
11111111 correspond to the empty set, @ and Z,, respectively. (It should be noted that the
convention could be changed to exchange the meanings of 0’s and 1’s. That is, a 0 (resp., 1) in
the characteristic string represents the inclusion (resp., exclusion) of an element of Z, in the
set. All ideas presented in this document apply also to this “active-low” convention.)

Throughout this document, we assume (unless mentioned otherwise) that the base of all
logarithms is 2. Consequently, we will write logn to indicate log,n. We will also use the

notation log® n to denote (logn)®.
g

WO 2008/021554 PCT/US2007/018406
1.2 Prior Art

Prior art methods to address the pin limitation problem include: (1) multiplexing, (2) storing
information within the design, and (3) decoding. Multiplexing refers to combining a large
number of channels into a single channel. This can be accomplished in a variety of ways
depending on the technology. Each method assumes the availability of a very high speed,
high bandwidth channel on which the multiplexing is performed. For example, in the optical
domain, wavelength division multiplexing allows multiple signals of different wavelengths to
travel simultaneously in a single waveguide. Time division multiplexing requires the multiplexed
signal to be much faster than the signals multiplexed. Used blindly, this is largely useless in
the FPGA setting, as it amounts to setting an unreasonably high clocking rate for parts of the
FPGA.

Storing information within the design attempts to alleviate the pin limitation problem by
generating most information needed for execution of an application inside the chip itself (as
opposed to importing it from outside the chip). This requires a more “intelligent” chip. In
an FPGA setting it boils down to an array of coarse grained processing elements rather than
simple functional blocks (CLBs). One example is the use of virtual wires in which each physical
wire corresponding to an I/0O pin is multiplexed among multiple logical wires. The logical wires
are then pipelined at the maximum clocking frequency of the FPGA, in order to utilize the I/O
pin as often as possible. Another example of such a solution is the Self-Reconfigurable Gate
Array. This latter approach is a significant departure from current FPGA architectures.Yet
another approach is to compress the configuration information, thereby reducing the number
of bits sent into the chip.

Decoders are the third means used to address the pin limitation problem. A decoder is
typically a combinational circuit that takes in as input a relatively small number of bits, say
z bits, and outputs a larger number of bits, say n bits, according to some mapping; such a
decoder is called an “z-to-n decoder.” If the z inputs are pins to the chip and the n outputs
are expanded within the chip, a decoder provides the means to deliver a large number of bits
to the interior of the chip. An z-to-n decc;der (that has = input bits) can clearly produce
no more than 2% output sequences, and some prior knowledge must be incorporated in the
decoder to produce a useful expansion to n output bits. Decoders have also been used before
with FPGAs in the context of configuration compression, where dictionary based or statistical
schemes are employed to compress the stream of configuration bits. Our invention when used
in the context of FPGAs has more application in selecting parts of the chip in a more focused

way than conventional decoders do. However in a broader context, the method we propose is a

WO 2008/021554 PCT/US2007/018406
general decoder for any scheme employing fixed size code words, that decode into (larger) fixed
size target words.
As we noted earlier, for any digital circuit, including a decoder, an n-bit output can be
viewed as a subset of the n-element set Z, = {0,1,---,n — 1}. Thus, the set of outputs
produced by an z-to-n decoder can be represented as a set of (at most 2%) subsets of Z,,.

An illustration of 3-t0-8 decoders (with 3 input bits and 8 output bits) is shown in Table 1.

Table 1: Example of 3-to-8 Decoders

DecoderInputs\i So | S 1 So I S3
000 00000001 | 01010101 } 11111111 | 00001101
001 00000010 { 10101010 | 00001111 | 10010010
010 00000100 { 00110011 { 00000011 | 10100010
011 00001000 | 11001100 | 00000001 | 00111101
100 00010000 | 00001111 | 11110000 | 01001110
101 00100000 | 11110000 | 11000000 | 11010001
110 01000000 | 11111111 | 10000000 | 11100001
111 10000000 | 00000000 | 00111100 | 01111110

Sets Sp, 81, S2 and &3 represent different decoders, each producing subsets of Z,. For
instance, Sy corresponds to the set of subsets {{0},{1},{2}, - {7}}. This represents the 3-to-8
one-hot decoder.

Current decoders in FPGAs are fixed decoders, producing a fixed set of subsets (output bit
combinations) over all possible inputs. The fixed decoder that is normally employed in most
applications is the one-hot decoder that accepts a (logy n)-bit input and generates a 1-element
subset of Z, (see set Sy in Table 1). (In subsequent discussion all logarithms will be assumed
to be to base 2, that is, logn = logyn.) In fact, the term “decoder” is usually taken to mean
the one-hot decoder.

A one-hot decoder causes severe problems if, in an array of n elements, some arbitrary
pattern of those elements is needed for reconfiguration. Here, selecting an appropriate subset
can take up to ©(n) iterations. Notwithstanding this inflexibility, one-hot decoders are simple
combinational circuits with a low O(nlogn) gate cost (typically given as the number of gates)
and a low O(logn) propagation delay. The one-hot decoder will usually take multiple cycles
or iterations to set all desired elements to the desired configuration. Thus, reconfiguration is a

time consuming task in current FPGAs and consequently, they fail to fully exploit the power

WO 2008/021554 PCT/US2007/018406

of dynamic reconfiguration demonstrated on theoretical models.

Look-up tables (LUTs) can function as a “configurable decoder.” A 2% x n LUT is simply
a (2%)-entry table, where each entry has n bits. It can produce 2% independently chosen n-bit
patterns that can be selected by an z-bit address. LUTs are highly flexible as the n-bit patterns
chosen for the LUT need no relationship to each other. Unfortunately, this “LUT decoder” is
also costly; the gate cost of such a LUT is O(n2%). For a gate cost of O(nlogn), a LUT decoder
can only produce O(logn) subsets or mappings. To produce the same number of subsets as a
one-hot decoder, the LUT decoder has O(n?) gate cost. Clearly, this does not scale well.

What is needed is a configurable decoder that is an intermediary to the high flexibility, high
cost LUT decoder and the low flexibility, low cost fixed decoder.

2 Summary of the Invention

It is an object of the invention to allow the multicasting of z bits into n bits through hardwired
circuitry where the hardwired route is selected by an input selection word.

It is an object of the invention to provide a device that can be incorporated into an FPGA
device (or any other chip operating in a pin-limited environment) to allow for the expansion
of z bits input, to the FPGA device over z pins, to be expanded intc n bits (where n > z)
internally in the FPGA to allow for an increase in the selection reconfiguration information to
reconfigure the FPGA device.

It is an object of the invention to allow the multicasting of bits into n bits, a bits at a
time, through hardwired circuitry, where the hardwired route is selected by an input selection
word from a reconfigurable memory device.

It is an object of the invention to provide a reconfigurable mapping unit in conjunction with
a second reconfigurable memory unit, where the second memory unit allows for selection of the
2 bits to be input into the reconfigurable mapping unit from z bits, where z < z.

Accordingly, the invention includes a reconfigurable mapping unit that is a circuit, possibly
in combination with a reconfigurable memory device. The circuit has as input an z-bit word
having a value at each bit position, and a selector bit word, input to the circuit. The circuit
outputs an n-bit word, where n > z, where the value of each bit position of the n-bit output
word is based upon the value of a pre-selected hardwired one of the bit positions in the z-bit
word, where said hardwired pre-selected bit positions is selected by the value of the selector
bit word. The invention may include a second reconfigurable memory device that outputs the

2-bit word, based upon an input z-bit word to the second memory device, where = < z. The

WO 2008/021554 PCT/US2007/018406

invention may produce the output n bit, & bits at a time.

3 Brief Description of the Figures

Figure 1 shows the structure of a typical field-programmable gate array (FPGA).
Figure 2 shows a block diagram of the Xilinx Virtex 5 configurable logic block.

Figure 3 shows a block diagram for the function of a fan-in of degree f and width w.
Figure 4 shows a block diagram for the function of a fan-out of degree f and width w.

Figure 5 illustrates the typical implementation of a one-hot decoder though a 4-to-16 one-hot

decoder.
Figure 6 illustrates the typical implementation of a multiplexer through a 4-to-1 multiplexer.
Figure 7 shows the block diagram of a 2% x m LUT.
Figure 8 shows an implementation of a 2* x m LUT.
Figure 9 shows the structure of the shift register SR(z, Z).

Figure 10 shows one way to implement a shift register SR(z, £) that can be used as a serial-

to-parallel and parallel-to-serial converter.
Figure 11 shows a block diagram of a mapping unit MU(z,y,n,).

Figure 12 shows an example with two different multicasts of 4 bits to 8 bits. Each multicast

is further illustrated with different values for the 4-bit source word.
Figure 13 shows the general structure of a mapping unit MU(z,y,n, a).

Figure 14 shows a fixed mapping unit MU(4,1,8,1) that produces the set of subsets Sp and
S of Table 2.

Figure 15 shows a fixed mapping unit MU(4,2,8,1) that produces all three sets of subsets of
Table 2.

Figure 16 shows the butterfly network, configured to illustrate the example permutation used

in the discussion of post-permutation in mapping units.

Figure 17 shows an implementation of a bit-slice mapping unit MU (z,y,n, o).

WO 2008/021554 PCT/US2007/018406

Figure 18 shows the structure of a mapping-unit-based configurable decoder MUB(z, z,y, n,).

Figure 19 illustrates two binary tree reductions of n = 8 elements. For each of these reductions

the corresponding bit patters (subsets) are also shown.

Figure 20 shows the communicating pairs in an ASCEND/DESCEND pattern for n = 8. The

corresponding bit patters (subsets) for each level of communication is also shown.
Figure 21 shows a parallel MU-B decoder that generates the one-hot subsets of Zy.

Figure 22 shows the hardwired partitions used in the two parallel MU-B decoders in an optimal

configuration generating the 1-hot subset of Zj.
Figure 23 shows a parallel O(n)-cost one-hot 4-to-16 fixed decoder; here n = 16.
Figure 24 shows a general structure of a parallel MU-B decoder MUB(z, 2,y,n, o, P).
Figure 25 shows a serial MU-B decoder variant.

Figure 26 shows a conceptual view of a recursive bit-slice mapping unit. In the figure o; =

Qo .. Qg

4 Detailed Description of the Invention

The invention includes a mapping unit, and a configurable decoder that incorporates a mapping
unit. The mapping unit may be an integral or bit-slice mapping unit. The invention includes
configurable decoder variants and methods to construct the partitions required to configure
a mapping unit. We will compare the invention to existing circuits, where the comparison
is in terms of performance parameters (such as circuit delays and circuit costs, as measured
by the number of overall gates in a design). All parameters are expressed in terms of their
asymptotic complexity to avoid minor variations due to technology and other implementation-
specific details. ’

We assume that each instance of a gate has constant fan-in, constant fan-out, unit cost
and unit delay; the fan-in and fan-out are each assumed to be at least 2 and here constant
means independent of problem size. While the cost and delay of some logic gates (such as
XOR) is certainly larger than the size and delay of smaller logic gates (such as NAND in
some technologies), the overall number of gates in the circuit and the depth of the circuit
provide a better measure of the circuit’s costs and delays, rather than factors arising from

choices specific to a technology and implementation. We divide the performance parameters

10

WO 2008/021554 PCT/US2007/018406
into two categories: independent parameters and problem dependent parameters. Independent
parameters are applicable to all circuits, while problem dependent parameters are specific to
decoders. The calculated performance parameters are delay and gate cost. The delay or time
cost of a combinational circuit is the length of the longest path from any input of the circuit
to any output. The gate cost (or simply cost) of a circuit is the number of gates (AND, OR,
NOT) in it. Clearly, the use of other gates such as NAND, XOR, etc. will not alter the gate
cost expressed in asymptotic notation.

Here a decoder is a combinational circuit (with the exception of the bit-slice units later
described), that, in order to achieve a greater degree of flexibility, can be combined with look-
up tables (LUTs), to create a configurable mapping unit or a configurable decoder. While
LUTs could be implemented using sequential elements, for this work, LUTs are functionally
equivalent to combinational memory such as ROMs. Any type of memory could be used for a
LUT.

Recall that any z-to-n decoder (including the mapping unit) takes z bits as input and out-
puts n bits, and the set of subsets generated by the configurable mapping unit decoder are
those tailored in part for the application at hand. Different applications require different sets
of subsets of Z,, and do so with different constraints on speed and cost. The reconfigurable
mapping unit and configurable decoder have a portion of the hardware that can be configured
(off-line) to modify the output bit pattern. This allows one to freely select a portion of the sub-
sets produced by the mapping unit or reconfigurable decoder. Hence, given an understanding of
the problem to be addressed, the mapping unit and/or configurable decoder may be configured
to address the specific problem.

Recall that an z-to-n decoder produces a set S of subsets of Z,. We denote the number of
elements in S by A, that denotes the total number of subsets produced by the decoder. Clearly,
A < 2%, The decoder allows some of the A subsets to be chosen arbitrarily (the independent -
subsets) while other subsets are set by prior choices (the dependent subsets). Let S C &' denote
the portion of subsets that can be produced independently by the decoder. For instance, in a
LUT decoder, all entries are independent, while in a fixed decoder (non-configurable) there are
no independent subsets. We define the following two parameters that are specific to decoders.
Number of independent subsets = A = number of elements in &

Total number of subsets = A; clearly A < A < 2%,

Basic circuit hardware is used as building blocks, in particular fan-in and fan-out circuits,

one-hot decoders, multiplexers, look-up tables (LUTs), shift registers, and modulo-a counters.

A brief explanation of each follows:

11

WO 2008/021554 PCT/US2007/018406
Fan-in and Fan-out: A fan-in operation combines f signals into a single output, while a
fan-out takes a single input signal and generates f output signals. The fan-in and fan-out
operations are as follows:

For integers f,z > 1, let Uy, Uy,---, Uy be f signals, each 2 bits wide. A fan-in operation
of degree f and width z produces a 2-bit output W whose it bit W) = Upg(s) o Uy(3) 0 --- 0
Us-1(i). The operator o is an associative Boolean operation, such as AND, OR, NOR, etc.
Diagrammatically, Figure 3 shows a fan-in operation.

For integers f,z > 1, let U be a z-bit wide signal. A fan-out circuit of degree f and width
z produces f outputs Wy, Wy, -+, Wy_y, each 2z bits wide, where W;(i) = U(i). Diagrammati-
cally, Figure 4 shows a fan-out operation.

Fan-in and fan-out circuits of degree f and width z can be constructed with a gate cost of
O(fz) and a delay of O(log f).

As we noted earlier, all gates are assumed to have a constant fan-in and fan-out of at least
2; that is, the maximum number of inputs to a gate and the maximum number of other gates
driven by the output of a given gate are independent of the problem size. When the fan-out
of a signal in a circuit exceeds the driving capacity of a gate, buffers are inserted into the
design. These additional buffers increase the cost and delay of the circuit. Gates typically have
a fixed number of inputs. Realizing gates with additional inputs boils down to constructing a
tree of gates. Assuming a non-constant fan-in and fan-out ignores the additional gate cost and
delay imposed by these elements; Assuming some constant fan-in and fan-out (rather than a

particular technology dependent constant) will not change the asymptotic costs and delays.

Fixed Decoders—One-Hot Decoders: A z-to-n decoderis a (usually combinational) circuit
that takes z bits of input and produces n bits of output, where z < n. Usually z < n, and
a decoder is used to expand an input from a small (2%)-element domain to an output from a
large (2™)-element set.

Decoders can be divided into two broad classifications: (a) fixed decoders, which are in-
flexible, and (b) configurable decoders, where the set of subsets produced can be changed (or
reconfigured) in some manner (typically off-line). One typical fixed decoder is the one-hot
decoder. '

In a one-hot decoder that operates on an input bit pattern of logn bits and producing an
output bit pattern of n bits, each of the n-bit output patterns ha;s only one active bit (usually
with a value of ‘1), all other bits being inactive (usually ‘0’). Such a decoder is exemplified

by set Sp in Table 1. This decoder, in effect, selects one element at a time. Usually, a one-hot

12

WO 2008/021554 PCT/US2007/018406
decoder also has a select input that allows the output set to be null. The one-hot decoder is
used so often that the term “decoder” in the context of combinational circuits is usually taken
to mean a one-hot décoder. A typical implementation of one-hot decoder is shown for a 4-to-16,
one-hot decoder in Figure 5.

In general, an z-to-2% one-hot decoder has a delay of O(z) and a gate cost of O(z2%).

Multiplexers: A multiplezer or MUX is a combinational circuit that selects data from one
of many inputs and directs it to a single output line. In general, a 2%-to-1 multiplexer (or
a (2%)-input multiplexer) takes 2* data inputs and using z control bits, selects one of the 27
inputs as the output.

An example of a typical implementation of a multiplexer with four inputs is shown in
Figure 6. In this figure, each of the four data inputs, Uy, U1, Uz and Us is selected via an AND
gate and a combination of the two control bits V5 and V7, much like the one-hot decoder.

A 2%-to-1 multiplexer can be implemented as a circuit with a gate cost of O(z2%) and a

delay of O(z).

Look-Up Table: A 2% x m LUT is a storage device with m2% storage cells organized as 27
waords, each m bits long; see Figure 7. This LUT has as input z bits to address the 2% locations
and outputs an m-bit word. LUTs have a variety of other applications, such as implementing
small logic functions. A 2% x m LUT can implement any m Boolean functions, each of z
variables, by storing their truth tables. This use of LUTs is quite common for implementing
Boolean functions in FPGAs.

While LUTs can be implemented in a variety of ways, all LUTs require the same two
components: a memory array and a method of addressing a word in the memory array. One
possible method of addressing the LUT is to use an z-t0-2% one-hot decoder. The output of
the one-hot decoder activates a wordline and enables the outputs of the memory storage cells.
Each of the memory storage cell outputs are then fanned-in to form an m-bit output word.
See Figure 8. The implementation shown in this figure is independent of the choice of memory
storage elements. SRAM-based LUTs are perhaps the most common implementation; however,
with minimal modifications, this basic design can easily accommodate other memory cell types.
LUTs composed of sequential elements are also possible, however this would require the use of
a clock. This clock can be independent of any other clock in the system. Regardless of the
implementation chosen, the asymptotic cost of the structure is unchanged; choices in memory
technology only alter the size and access times of the LUT by a constant factor. Thus, we will

consider the LUT to be a combinational element for cost analysis.

13

WO 2008/021554 PCT/US2007/018406
A 2% x m LUT can be implemented as a circuit with a gate cost of O(2%(z + m)) and a

delay of O(z + log m).

Shift Register (Parallel to Serial Converter): Define an a-position shift register of width
Z, denoted by SR(z,Z), as follows. It accepts as input a 2-bit signal, and every clock cycle,
outputs a (Z)-bit slice of that signal. Figure 9 diagrams the operation. The shift register can
also be configured as a parallel-to-serial converter. That is accept Z bits during each cycle,
and output an n-bit word every « cycles. Figure 10 is a circuit implementation of such a shift
register.

An a-position shift register of width £, SR(z, Z) can be realized as a circuit with a gate

cost of O(z) and a constant delay between clock cycles.

Modulo-a Counter: For any a > 1, a modulo-a (or mod-a) counter increments its output
by ‘1’ every clock cycle, returning to ‘0’ after a count of o — 1. Modulo-a counters are well
known in the art.

A modulo-a counter can be realized as a circuit with gate cost O(log®a) and a delay of

O(loglog o).

4.1 The Mapping Unit

The base unit of the invention is the mapping unit, and its features are diagrammed in Figure 11.
The mapping unit MU (z,y,n,a) can be viewed as a type of decoder: it takes in a small number
of bits (z bits) and expands them to a larger number of bits (n bits), where typically z < n.
We will refer to the z-bit input as the source word, the y-bit input as the selector address(or
the selector address word), and the n-bit output as the output word.

The mapping unit accomplishes the expansion of the z-bit source word to the n-bit output
word by “multicasting” the z-bits to n places. A multicast of z bits to n bits (or z places to n
places) is a one-to-many mapping from the z source bits to the n output bits, such that each
output bit is mapped onto from exactly 1 source bit, but each source bit may map to 0, 1 or
more output bits. The multicast operation typically transfers the value of a source bit to the
output bit it is mapped to. Here we will use it in a more general sense in that the output
bit derives its value from the source bit it is mapped from, for example by complementation.
Unless we note otherwise, a multicast transfers the value of each source bit to its corresponding
output bits. (The inclusion of parameters y and « in the mapping unit MU(z,y,n,a) will be

described later).

14

WO 2008/021554 PCT/US2007/018406

As an example, a fixed mapping of 4 to 8 bits can be represented as a 4 to 8 mulficast,
and is diagrammed in Figure 12(a)-(d), where Figure 12(a), (b) represent one fixed multicast
operation while Figure 12(c) and (d) represent a second fixed multicast operation.

As an illustration, consider a multicast of four bits a(3), a(2), a(1), a(0) to 8 bits b(7),
b(6), b(5), b(4), b(3), b(2), b(1), b(0), such that b(0) = a(0), b(1) = b(3) = b(5) = b(7) = a(3),
b(2) = b(6) = a(2) and b(4) = a(1). If @ = 0111, then b = 01010101 (Figure 12(a)). If a = 0011,
then b = 00010001 (Figure 12(b)). A different 4 to 8 mapping of a to b will result in different
outputs. For example, if the mapping is b(0) = a(0}, b(1) = a(l), b(2) = b(3) = a(2) and
b(4) = b(5) = b(6) = b(7) = a(3), then for ¢ = 0111, b = 00001111 (Figure 12(c)), while if
a = 0011, then b = 00000011 (Figure 12(d)). The mapping unit of the invention is broader
than a unit containing one fixed multicasting operation. It uses several fixed multicasts, and the
choice of the multicast operation to be employed is selected by the value' of the y-bit selector
address input to the mapping unit, as shown in Figure 11. Hence, the number of possible
multicasts used in a MU(z,y,n,a) is 2Y.

Another characterization of a multicast is in terms of an ordered partition. Consider a
multicast of bits a{z — 1),a(n — 2),---,a(1),a(0) to bits b(n ~ 1),b(r — 2),---,b(1),5(0). An
ordered z-partition {Sp, S1,- -+, Sz—1) of Zp = {0,1,...,n — 1} represents this multicast if and
only for all bit positions j of a particular block S;, b(j) gets its value from a(4).

For example, the multicasts of Figure 12(a),(b) and (c¢),(d) correspond to the ordered
4-partitions 71 = ({7,5,3,1},{6,2}, {4}, {0}) and 73 = ({7,6,5,4},{3,2},{1},{0}). The or-
dered partition represents the mapping of the source word bits to the output word bits, where
the position of the block in the partition (for instance block {7,5,3,2} is in position 4 of 7})
represents the position of the source word bit (position 4 here), and the value of the block
({7,5,3,2} here) represents the output word bit positions to which the value of the input bit
get mapped or cast into (here a(4) gets mapped to b(7), b(5), b(3) and b(2)). Hence a mapping
unit can be considered a mapping of a 2-bit source word to an n-bit output word, using an

ordered partition selected by the selector address (y bits), or a mapping
M Zzz X Zzy -— Zzn.

In summary, MU (z,y,n, a) accepts as input a 2-bit source word, U, and an ordered partition
7 (one among 2¥) as selected by the y-bit selector address, B, of Figure 11, and produces as
output an n-bit output word (or a subset of Z,). The source word could assume any value
from {0,1}*. The set of 2¥ ordered partitions is fixed (usually hardwired in the mapping unit)

and/or configured into a LUT internal to the mapping unit.

15

WO 2008/021554 PCT/US2007/018406
4.1.1 Different Types of Mapping Units

As described, a mapping unit is a decoder that accepts as input a 2-bit source word u and an
ordered z-partition 7 of an n-element set (specified in terms of a y-bit selector address). It
produces an n-bit output word. Mapping units' can be classified as integral or bit-slice. An
integral mapping unit generates all n output bits simultaneously and (for reasons explained
below) has the parameter o set to 1. A bit-slice mapping unit, on the other hand, generates the
n output bits in o rounds; i.e., 2 bits at a time. One could view the integral mapping unit as a
bit-slice mapping unit with & = 1. Another way to categorize mapping units (both integral and
bit-slice) is in terms of whether they are fixed or configurable (that is, based on whether they
can be configured off-line to alter their behavior). Configurable mapping units can be general or
universal. In informal terms, a universal mapping unit can produce any subset. Fixed mapping

units cannot be universal (unless n is very small or a very high cost can be accepted).

A General Model of a Mapping Unit: A general structure of a mapping unit,
MU(z,y,n,a), is as shown in Figure 13. The n-bit output word comes from a bank of n
multiplexers (MUXs). MUX ¢ (where 0 € i < n) accepts 2¥ data bits as input and uses y;
control bits. Each data input of a MUX is hardwired from one of the z source bits. This
relationship between the source word and MUX inputs is fixed at the time of manufacture
(even for configurable mapping units); although, in principle, some amount of configurability
may be introduced in these connections. Denote the y;-bit control signal of MUX i by B;.
The concatenated control bits (Bg, By, -+, Bn—1) is called the selector word of the mapping
unit. The selector word can be of different sizes and can be generated in a variety of ways in
different types of mapping units. The mapping unit has, embedded in its structure, room for
2¥ different selector words, each corresponding to an ordered partition (or a multicast scheme
from the source word to the output word). These selector words are generated and chosen by
the selector module, using a y-bit selector address. The different selector words can be stored in
a “configuration LUT” and/or expressed by the value of the selector address. For the mapping
unit models we discuss beyond this point, y; = y. This need not be the case, however, in general.
The control bits can be derived in any manner from the y selector address bits, for example, by
directly hardwiring a subset of the y bits to each MUX control. At the other extreme is usling
a LUT for the selection module with wordsize w such that max{y; : 0<i<n}<w< ﬂz: Yi.
Here, some or all of the w bits in each selector word can be used to control a MUX. =
We now describe two main types of mapping units, fixed and configurable. Other types and

variants are described later.

16

WO 2008/021554 PCT/US2007/018406
Fixed Mapping Unit: In the fixed mapping unit (FMU), the y-bit selector address is broad-
cast as the control signal to each MUX. That is, the selector module constructs the selector
word by concatenating n copies of the selector address. Therefore, y; = y. As an example, let
z2=4,y =1, and n = 8. Then there are 2¥ = 2 ordered partitions mapping the 4 source word
bits to the 8 output word bits. Let the mappings be as shown in Figure 12(a),(b) and (c),(d),
which produce the sets of subsets Sp and Sy from Table 2. The resulting FMU is shown in

Table 2: Example sets of subsets of Zg.

Si So Sy S2

SE [11111111 | 11111111 | 10100010
St | 01610101 | 00001111 | 11111101
S% | 00010001 | 00000011 | 01011010
S% | 00000001 | 00000001 | 00000111

Figure 14. Notice that if input signal B = 0, then U(0) is connected to Q(0), U(1) is connected
to @(4), U(2) is connected to Q(2) and Q(6), etc. This matches the configuration shown in
Figure 12(a) and (b). Similarly, if B = 1, then U(0) is connected to Q(0), U(1) is connected
to Q(1) etc. It can be shown that a fixed mapping unit can be realized as a circuit with a gate

costs of O(ny2Y) and a delay of O(y + logn).

Configurable Mapping Unit: When the ordered partitions of a mapping unit are fixed (as
in an FMU), it can be shown that certain subsets cannot be produced. Here, we seek to provide
a means to change the ordered partitions off-line in a configurable mapping unit (or CMU).

In a CMU, the selector module is a 2¥ x ny LUT (called the configuration LUT). Each
ny-bit LUT-line is a selector word containing n MUX control signals, each y bits long. That is,
y; = y. However, unlike the FMU, the values stored in the LUT are completely unconstrained.

It can be shown that a configurable mapping unit, MU (z,y,n, @), can be realized as a circuit
having a gate cost of O(ny2¥) and a delay of O(y + logn).

As an example of the functionality of a configurable mapping unit, consider the fixed map-
ping unit with 2 = 2¥ of Figure 15 which implements all four sets of subsets in Table 2. If a
CMU was used to implement the same set of subsets using the same wiring of the signal U
to the n-multiplexers, then Table 3 shows the contents of the configuration LUT. Note that

the contents specify an ordered partition corresponding to a set of subsets, and not the subset

17

WO 2008/021554 PCT/US2007/018406

Table 3: Configuration LUT words to produce the subsets of Table 2.

selectl;)re agdress ny-bitiflelﬁe%t%r word SSeit
00 00 00 00 00 00 00 00 00 | Sp
01 0101010101010101 | &
10 10101010101010 10 | S
11 1111111111111111 | 83

itself. For example, when b = 00, the LUT word is 00 00 00 00 00 00 00 00 corresponding to the
ordered partition 7 for set So (see Tables 2 and 4). Then with u = 0111, we have the output
word p(u, 7g) = 01010101. Similarly, with u = 0011, we pu(u,) = 00010001. Thus, in this
illustration, the selector address b = 00 corresponds only to the ordered partition 7 for Sp.

There are two important properties of the configurable mapping unit. The first is that from
a perspective outside of the mapping unit, nothing changes between a fixed mapping unit and a
configurable mapping unit; that is, to produce a desired subset S!, the same values are needed
for signals U and B in a configurable mapping unit as they are in a fixed mapping unit. The
second is that each “grouping” of the y control bits (each corresponding to a particular MUX)
in the ny-bit selector words has the same value in an FMU; If this value is v, then each of the
n output bits is derived from the ordered partition 7,. However, this does not have to be the
case in a CMU. For example, a word in the LUT illustrated in Table 3 could have the value 00
01 10 11 00 01 10 11; this is a combination of values of different ordered partitions for different
MUXs. For example, bits 7, 6 and 5 of the 8-bit output word would be derived from 7, 7
and 2, respectively, as 00, 01 and 10 are the binary representations of 0, 1 and 2, respectively.
This would result in multicast with the ordered partition ({7,6,3,1}, {4, 2}, {0}, {5}.

Not all sets of subsets can be generated by the CMU, however, as fixing the multicasts of

the bits of the source word to the MUXs may preclude certain subset considerations.

4.1.2 Hardwiring and Configuring Mapping Units

The main function of the mapping unit is to convert a set of source words into a set of output
words that correspond to a given set S of subsets of Z,. In order to achieve this we consider

two scenarios.

e The mapping unit’s hardwiring has already been fixed. The set of subsets that can be

18

WO 2008/021554 PCT/US2007/018406

produced can be limited by this hardwiring between the source word and the MUX data
inputs. Can a given S be produced by the mapping unit? If S can be produced, then what
are the source words that produce the subsets? For a configurable mapping unit, what are

the contents of the configuration LUT?

e Here we are designing the entire mapping unit, including the hardwired connections. How
can we factor in an expected set of subsets into the design? If no set of subsets is given,

“what hardwired connections provide the flexibility to produce a large number of subsets?

We address with these questions in the subsequent sections.

Constructing Partitions Given a Set of Subsets: As we described earlier, an ordered
partition is an abstract representation of a multicast from the source word to the output word.
It is possible for different source words to use the same ordered partition to generate different
output words (or subsets). Ideally, the 2° source words and 2% (ordered partition) selector
words should produce 22 distinct output words, each of which must be one of interest to us.
This requires a careful selection of ordered partitions and source words.

Here we describe a procedure (called Procedure Part_Gen) that creates partitions (multi-
casts) for a mapping unit MU(z,y,n,a). As a vehicle for explanation, we will also impose an
(arbitrary) order on the partitions we generate. Later we will present a method to order the
partition systematically. Procedure Part_Gen generates one of many possible sets of partitions.
Subsequently, another procedure will outline how one could use Procedure Part.Gen to find a
suitable set of partitions.

Let S be a set of subsets of Z, that we wish the mapping unit to generate. A given
subset S of Z,, (i.e., a particular n-bit output word having bit positions indexed 0 to n — 1)
induces a 1- or 2-partition 7g, where ng is the l-partition {Z,} if S is empty or § = Z;
otherwise, mg is the 2-partition {S, Z, — S}. The induced partition is not unique for a given S
as g = 7z,-5 = {Zn— 5, 5}. When a subset is represented by an n-bit sequence (as described
earlier), the induced partition creates two blocks, one containing the bit positions that have a
0 value, and the other block containing the bit positions having a 1 value. For instance, if the
subset is represented by the bit stream 10001100, then the induced partition is the 2-partition
{{0,1,4,5,6},{2,3,7}}, while if the input bit stream is 11111111, then the induced partition
is the 1-partition {{0,1,2,3,4,5,6,7}}. The induced partition is not an ordered partition.

Let S = {Sp,51, -, Sk—1} be a set of subsets of Z,, and let each subset S; induce the
partition 7g,. Define the partition induced by S to be the product of the individual induced

partitions, 7g = wg,ms, - 7s,_,. An example will illustrate these ideas. Consider the set of

19

WO 2008/021554 PCT/US2007/018406

subsets of Sp, Sy and Sy (of Zg) in Table 2, where each set of subsets has four elements, i.e
S; = {8}, St, 8%, Si}, for 0 < i < 2. The partitions induced by each element of the set of subsets
is contained in Table 4 (note, there are four induced partitions for each S;, corresponding to its

four elements). Then,

Table 4: Partitions mg: for subsets S;: of Table 2.
)

i
SJ 71'5}) 7l'5;

{{7,6,5.4,3,2,1,0}}

™ SJ’Z

{{6:4,3,2,0},{7,5,1}}

Si | {{7.6,5.4,3,2,1,0}}

5t

{{7,5,3,1},{6,4,2,0}}

{{7,6,5.4},{3,2,1,0}}

{{1},{7,6,5:4,3,2,0}}

54

{{7,6,5.3,2,1},{4,0}}

{{7,6,5,4,3.2},{1,0}}

{{7,5,2,0},{6,4,3,1}}

{{7,6,5,4,3,2,1}{0}}

{{7.,6,5,4,3},{2,1,0}}

Si | {{7,6,5,4,3,2,1},{0}}

ms, = {{7,5,3,1},{6,2}, {4}, {0}}
s, = {{7,6,5,4}, {3,2}, {1}, {0}}
s, = {{7,5},{6,4,3}, {1}, {2,0}}.

The procedure to create a set of z-partitions that generate a given set S of subsets of Zy, is
as follows. It assumes that the subsets of S are ordered in some manner. We indicate this by
the symbol S. At this stage it is not important how the subsets are ordered. We will assume
that the indices of the elements of S reflect their order. This order determines the order in
which the algorithm will consider each subset and does not reflect how the partitions will be
ordered.

Procedure Part_Gen(g , 2); generates partitions for S, each with < z blocks.
1. For each S; € S, compute its induced partition 7g,.

. 2. Starting from g, pick the largest integer £ such that 7g,7s, ... 75, , has < z blocks. Let

MY = TMGMSy +--TSy_y+

3. Starting from mg, pick the largest integer m such that 7s,7s,,, ... 7s,,,._, has < z blocks.

Let) = T8, TSypy - TSppm-1-
4. Repeat this process until all induced partitions g, have been included in some ;.

The partitions mg, 71, - - - are the outputs of Procedure Part_Gen. The basic idea of the pro-
cedure is to “add” subsets in the prescribed order into the current partition until the partition

has too many blocks. Then it starts afresh with the next partition. We will use this notion of

20

WO 2008/021554 PCT/US2007/018406
“adding a subset” to an existing partition later in this discussion. We illustrate the procedure

with the following example.

Let § = SpU 81 U Sy using the sets in Table 2, let 2 = 4, then
§={8,5,59,53,51,53, 53, %, 53,53}

(Note that S}, and S3 are not included as these are repeated elements). The induced partitions

corresponding to each S’; are in Table 4. Then using the Procedure Part_Gen we obtain

mgo T = {{7,5,3,1},{6,4,2,0}}

TS0, " ﬂS?) ’"-Sg = {{7) 5) 3) 1}, {6’ 2}1 {4)0}}
mse o meg sy = {{7,5,3,1},{6,2},{4},{0}} = mo
gl Tl = {{7’6»5’4}’ {3a 2}, {1’0}} = m
Mgz Mg2 = {{7,5},{1},{6.,4,3,2,0}}
7'{'302 'ﬂSf 'W.S'% = {{715}’{2a0}1{614’3}:{1}}
mezmsz gz mez = {{7,6},{2,0},{6,4,3},{1}} = m

As we noted earlier, Procedure Part_Gen does not produce ordered partitions. However, we

order them here to illustrate a few points. Order the partitions as

g = ({7157371}’{672}>{4}7{0}>:
T o= ({7,6,5,4}, {312}1 {170})v
{{7,5},{2,0},{6,4,3}, {1}).

Lo
)
Il

The mapping unit uses these ordered partitions with values of the source words shown in Table 5
to generate each subset of S. Actually, the table illustrates the impact of two different orders
on the partitions and is discussed later. For now, it suffices to observe the first set of 4 rows
that apply to # that includes the subsets of Sp.

We now touch upon a few points about the relationship between ordered partitions, the
source word and the output word (or subset). A subset can be generated in a variety of ways,
as the same z-bit source word applied to different ordered partitions can result in the same
value. In addition, two different source words applied to two differently ordered partitions can
result in the same value.

A subset not in S can also be produced. For example, using the z-bit source word 1010 with
the ordered partition 7y produces the output word 10111010 that corresponds to the subset
{7,5,4,3,1} which is not in S.

21

WO 2008/021554 PCT/US2007/018406

Subsets and their induced partitions may be repeated. For example, subsets Sg and 531 of
the above example are equal, the above procedure ignores repeated subsets and their induced
partitions in generating ordered partitions. However, partitions corresponding to classes of
algorithms or specific applications may benefit from repeating subsets, that is, to include the
repeats.

A partition with fewer than z blocks, such as my, results in “don’t care” values (d) for the
bits not corresponding to any block in the partition. Thus, the subset S1 with source word
d011 may be produced from the source word 0011 or 1011.

In the procedure, a different sequence of considering the induced partitions 7 si can produce a
different set or number of ordered partitions. For example, if the induced partitions were consid-
ered in reverse order, that is, starting with 7525 such that the non-ordered partitions were mp =
Tg3Mg3Ms? €tc., then the resulting ordered partitions would be 7o = ({7, 5}, {2,0}, {6,4,3}, {1}},
71 = ({7,6,5,4},{3,2}, {1}, {0}), and 72 = ({7, 5, 3,1}, {6,2},{4,0}).

The conversion of an unordered partition to an ordered partition can be done in as many z!
ways. Some of these may be more advantageous than others. An ordering that results in com-
mon source words used to produce the subsets of S; and S (corresponding to different ordered
partitions) can be useful when the mapping unit is used as part of a larger design. This is be-
cause the same z-bit source words can be used to produce both §; and Sk. Table 5 demonstrates
two ordered partitions for Sy and S, resulting in two sets of source words for each set. Note
that using ordered partition ({7,5,3,1}, {6, 2}, {4}, {0}) for S and {{7,6,5,4}, {3,2}, {1}, {0})
for S; results in the same set of 4 source words for both sets of subsets. We describe a similar
effect for binary reductions (discussed later).

It can be shown that, if the partitions of the mapping unit MU (z,y,n,a) are not fixed,
then the mapping unit can generate a number of independent subsets A > 2¥ |log z| , provided
2Y log z < 2%. If the partitions are fixed and z 4+ y < n, then it can be proved that the number
of independent subsets is 0.

It can be shown that for integers n,z > 2, and £ = [Z5], there exists a mapping unit that
uses C values from {0,1,..,2% — 1} as source words and ¥ < 9¢ ordered partitions to produce
CY distinct subsets. That is, it is possible to construct a mapping unit with z + y bits of input
(where y < [;251) that produces 2¥(2* — 2) distinct outputs (which is not too far from the

theoretically maximum possible number of 2¥1% = 2v2* distinct outputs).

Checking a Partition for Realizability: Suppose a partition places output word indices

i and j in the same block. Suppose the hardwired connections are such that no bit of the

22

WO 2008/021554 PCT/US2007/018406

Table 5: Two different orderings for the partitions of sets So and S; resulting in different sets

of source words used to produce the subsets in each set.

S} 7 z-bit value needed Q

59| ({7,5,3,1},{6,2}, {4}, {0} 1111 11111111
S? 0111 01010101
59 0011 00010001
59 0001 00000001
S 1 ({4}, 16,2},{7,5,3,1}, {0}) 1111 11111111
59 1101 01010101
59 1001 00010001
59 0001 00000001
S| ({7,86,5,4},{3,2}, {1}, {O}) 1111 11111111
S} 0111 00001111
S3 : 0011 00000011
S 0001 00000001
S} | ({3,2},{0},{7.6,5,4}, (1}) 1111 11111111
S} 1101 00001111
S3 0101 00000011
S} 0100 00000001

source word connects to both MUXs ¢ and j. In this case, we cannot select a source word bit
to multicast to output word bits ¢ and j. That is, the given partition cannot be realized on-the
existing hardwired connections.

Here we present an algorithm that determines whether a given partition can be realized on
a given set of hardwired connections, and if so, the algorithm determines a way to order the
partition so that it can be realized.

For each output word bit position 0 £ j < n, let G; denote the set of source word bits that
have been hardwired to one of the data inputs of the MUX at position j. For example in the
mapping unit of Figure 15, the multiplexers at output position 4 is connected to source word
positions 1, 2 and 3. Similarly output position 5 (resp., 6) is connected to source word positions
0 and 3 (resp., 2 and 3). Thus G4 = {1,2,3}, G5 = {0,3} and Gg = {2,3}. For any subset B

of Z, (representing output positions), define the set Hp to be the set of source word indices

23

WO 2008/021554 PCT/US2007/018406
that are connected to MUXs at every one of the output positions in B. That is,
Hz=()G;
j€B

Call the set Hg, the source set of block B (with respect to the given set of hardwired connec-
tions).

A partition 7 is said to be realizable on a set of hardwired connections between the source
word and MUX inputs if and only if there exists for each output position j, an assignment
of a source word position i;, such that for any two output bit positions 0 < 7,7/ < n in (not

necessarily distinct) blocks B and B’ of m,

(a) i; € Hg and i € Hp:
(b) If B = B’, then i; = i;;; call this common source word position ip.

(c) If B # B, then i; # ij1.

The intuition is that the hardwired connections support a multicast from source word bit ¢; to
output position j. Since ¢; is unique to the block containing j, the multicast is restricted to be
within a block. In fact, the indices i; convert 7 into the ordered partition 7.

Clearly, a given partition may not be realizable on a set of hardwired connections. Is it
possible to check if a given partition = is realizable, and if so, order it accordingly?

Given «, construct a bipartite graph G, = (Z, U, E); that is, the set of nodes includes the
bit positions of the source word and the blocks of w. For any i € Z, and B € m, there is an
edge between ¢ and B if and only if ¢ € Hp.

For any graph, a matching on the graph is a set of edges of the graph such that no two edges
are incident on the same node. A matching is a maximum matching, if no other matching has
more edges than it.

Let the given partition 7 have k blocks. We now show that the 7 is realizable if and only if G
has a matching with k edges. Suppose G, has a matching with &k edges. Clearly, this matching
cannot include an edge that is incident on more than one block. Therefore the matching has
exactly one edge per block. Each edge in a matching matches a block B to a unique source
word bit position in the source set, Hg, of B. This implies that m is realizable and in fact,
the matching gives an order that must be imposed on 7. Conversely, if 7 is realizable, then
it must have a unique source word index ip € Z,, for each block B, such that'ip € Hp.
Since ig € Hp, we have an edge between ig and B in graph G,. Consequently, the unique
correspondence to each block B from a source word position ig constitutes a matching with

k edges. Finally observe that if a k-element matching exists, then it must be a maximum

24

WO 2008/021554 PCT/US2007/018406
matching as no matching can have more edges tha1.1 there are blocks in the partition; this is
because at most one edge in a matching can be incident on each node representing a block.

A simple method to impose a realizable order (if one exists) on an unordered partition is
to find a maximum matching for its graph. If it has k edges (k is the number of blocks in
), then use it as indicated above to order 7. If the matching has less than k edges, then no
k-edgé maximum matching exists and = is not realizable on the set of hardwired connections.
Standard polynomial-time algorithms exist for maximum matchings on a bipartite graph.

Call the above algorithm for imposing a realizable order (if possible) on a partition as

Procedure Realizable.

Constructing Realizable Partitions: Here we outline a strategy that invokes

Procedure Part_Gen and Procedure Realizable to help produce a set of realizable partitions
on the existing hardwired connections. We need to include all sets of S in the set of partitions,
while keeping the number of partitions small. Key to doing this successfully is to order the
elements of § “appropriately.”

Let B be a block of a partition 7. Clearly as B increases in size, Hp tends to decreases in size.
In fact, it is possible for Hp to be empty, in which case the partition is clearly not realizable.
If hardwired connections were random, a good strategy would be to construct partitions whose
blocks have roughly the same size. This could be a guiding principle for the algorithm. If the
hardwired connections follow some pattern, then that information could be used to develop a
heuristic to select partitions with small blocks.

In general, determining an order that results in a realizable z-partition is not easy. In fact
it is possible for the partition ng induced by a single subset S to be unrealizable.

We outline a strategy to construct realizable partitions for a given set of subsets. The
strategy has three phases.

In the first phase we examine different orders for the elements of the given set S (that
is, we consider different &), then call Procedure Part_Gen collecting as many large partitions
(with “nearly” z-blocks) as possible. Between each call to Procedure Part_Gen, we remove the
subsets accounted for so far from §. The orders considered in this phase may be based on some
knowledge of the subsets to be generated.

The second phase is based on the observation that a partition with fewer blocks has a higher
likelihood of being realizable. In this phase we repeat the processing in the first phase, this
time calling Procedure Part_Gen with different values for the second parameter that limits the

number of blocks in a partition. That is, we try to construct a partition with many blocks, but

25

WO 2008/021554 PCT/US2007/018406

will settle for one with few blocks, if necessary.

The third phase is needed for those subsets S; € S for which 7, itself is not realizable. The
third phase splits these subsets S; further with the aim of generating the elements of §; a few
at a time. This is similar to the approach followed by bit-slice mapping units (described later).
In the extreme case if S; is generated one element at a time, the strategy uses the same method
currently followed in one-hot decoders.

The above approach will generate a set of realizable partitions. How small this set will
be will depend on S and the amount of resources (time, memory etc.) that can be devoted
to the algorithm. Although generation of an optimal number of realizable partitions is likely
an intractable problem, many practical algorithms and the subsets they require exhibit a lot
of structure, which makes them amenable to more analytical approaches (as illustrated in
Section 4.3).

We now discuss approaches to hardwire a mapping unit and to configure a configurable

mapping unit.

Configuring a Configurable Mapping Unit: Consider now a set of 2¥ partition 7y (where
0 < k < 2Y), each of which is realizable on a set of hardwired connections. By the definition
of realizability, we have ordered my into an ordered partition 7. Let if be the source word
position associated with output j in some block B € @. This implies that source word bit
i¥ € Gj; that is, source word bit i¥ is connected to some input (say input v¥) of the MUX
corresponding to output j.

The configuration LUT consists of 2¢¥ words, each ny bits long. Denote the k*" word by the
n-tuple (weo, wk,1, -, Wkn-1), where for any 0 < j < n, we have 0 < wg ; < y. Configure the
LUT so that wg ; = 7;9. This will ensure that whenever line & of the LUT (or partition 7) is

addressed, it will activate input 7;? of the MUX (or bit zj‘ of the source word) as required.

Hardwiring a mapping unit: Here we offer approaches to hardwiring a mapping unit (at
manufacture) in a manner that makes some classes of partitions realizable.

For 0 £ £ < 2¥ and 0 < j < n, let my; represent input £ of multiplexer j. The aim is to
assign each of these multiplexer inputs to one of the z source word bits sp, s1,- -, 5,—1.

Map input mg ; to bit sq, where ¢ = (£+2Y7)(mod 2). We called this mapping “overlapped
mapping.” For example, if y = 2, z = 5 and n = 16, then the sequence of source word bit

indices is as follows:

26

WO 2008/021554 PCT/US2007/018406

gource word bits

0123 1234 2340 3401 4012 0123 1234 2340 3401 4012 0123 1234 2340 3401 4012 0123
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

~ J

output bit

With overlapped mapping, a set of ¢ consecutive multiplexers have 2¥ — (¢ — 1) common
source word bits. If @} is a block of an unordered partition, then any of these common source
word bits form Hg and can be used to assign the order of the block as indicated earlier.

As an example with n = 16 and z = 5, consider the partition m = {By, By, B2, B3, B4} =
{{0,1,2,3},{4},{5,6,7}, {8,9,10,11},{12,13,14,15}}. Here Hp, = {3}, Hp, = {0,1,2,4},
Hg, = {2,3}, Hp, = {1} and Hp, = {0}. Assigning source word bits s3, 54, S2, 51, Sp tO
blocks By, By, Ba, B3, By achieves the desired order. In general, this approach works well
when subsets include proximate indices. However, the method is not guaranteed to work under
all situations.

When additional flexibility is needed from the hardwiring, one could use “post-permutation,”
in which overlapped mapping is applied to a permutation of the output and then the outputs
permuted back as required. We illustrate this technique below.

In the earlier example of the section entitled “Hardwiring a mapping unit:,” suppose that
n' = {By, By, By, By, B4} where B = {0,1,2,3}, B} = {4}, B, = {5,6,7}, By = {10,11,12,13}
and Bj = {8,9,14,15}. The corresponding sets Hp; are {3}, {0,1,2,4}, {2,3}, {3}, and {0, 1},
respectively. Clearly, we cannot assign a unique source word bit to each block as H B, = H B, =
{3}; that is, both Bj and Bj have 3 as the only possible source word bit to connect to. If we
use the partition 7 described earlier and permute the outputs so that B; maps to B!, for each
0 < 1 < 4, we get the desired output as shown in Figure 16.

This post permutation can be achieved by a butterfly network whose switches are config-
urable 2-input multiplexers. This network has a O(nlogn) gate cost and O(logn) delay; that
would not significantly alter the cost of the mapping unit in most cases. Also the network can be
configured as needed using standard permutation-routing algorithms for the butterfly network.
It may also be possible to use a butterfly network with fewer than the standard 1+ log n stages
as permutations among proximate outputs may not be required. This would further reduce the
cost of the butterfly network.

However, the butterfly network is a blocking network (that is, certain permutations cannot
be achieved). In principle, other (more expensive) non-blocking permutation networks can be
employed to overcome this problem.

It must be noted that we are mapping an realizable block B’ to a required block B, where

27

WO 2008/021554 PCT/US2007/018406

B and B’ have the same number of elements. If B and B’ each contain m elements, then within
these blocks the elements can be mapped in m! ways. Thus, there may be a lot of room for the
designer to avoid blocking in networks such as the butterfly.

Although this method does not guarantee that the hardwiring would allow every partition
to be realizable, many practical problems that exhibit regularity and structure tend to be more

amenable to analytical approaches and individualized fine-tuning.

4.1.3 Hybrid Mapping Units

In previous sections we described the fixed and configurable mapping units. While configurable
mapping units provide more flexibility, they are more expensive than fixed mapping units. If
the application does not call for such a flexibility, a fixed mapping unit may be preferable. Here
we describe two hybrid mapping units that use elements of both the fixed and variable mapping
units and occupy a middle ground between the flexibility and cost of the fixed and configurable
mapping units.

A fixed mapping unitMU (2, y, n, a) fans-out the y-bit selector address to all n MUXs (shown
as signals Bg, By, -+, Bp-1; here By = By = = B, 1. In contrast, these ny bits of MUX
control come from the configuration LUT in a configurable mapping unit; here y selector ad-
dress bits are used to address at most 2¥ LUT locations, each ny bits long. In this case the
signals By, B, - - -, Bn—] are completely independent of each other. We now describe two hybrid

schemes.

Hybrid Mapping Unit 1: Let Z, be the set of (indices of) MUXs in the mapping unit.
Divide this set into two disjoint subsets F and R (in any convenient manner that may depend
on the application area). Use the y-bit selector address (suitably fanned out) to directly control
all MUXs whose indices are in F; that is for all 1 € F, the value of B; equals the value of
the y-bits input to the mapping unit as in a fixed mapping unit. The remaining MUXs (with
indices in R = Z, — F) receive their control inputs from the control LUT as in a configurable
mapping unit. If R contains { < n elements, then each LUT word has a size of £y bits. The
advantage of this approach is that the LUT need not be as large as in a configurable mapping

unit.

Hybrid Mapping Unit 2: As before, let Z,, represent the set of MUXs in the mapping unit.
For some integer 1 < £ < n, partition Z, into £ blocks; Let this partition be {Rg, R1, -+, Re—1}.

(This partition has nothing to do with the partition of the outputs associated with the multicast

28

WO 2008/021554 PCT/US2007/018406
from the source word bits.) Use a configuration LUT with wordsize €y. If a configuration word
has the form (56,51, N b;_\l), then each MUX with index i € R; receives control input I;; As
before, this reduces the size of the configuration LUT.

The advantage of both hybrids is that they reduce the size of the LUT word to fy < ny. This
reduces the cost of the LUT if its size is kept the same. Alternatively, this can also allow one
to increase the number of words in the LUT for the same cost as in the configurable mapping
unit. An implication of this is that the configuration LUT can now store more partitions (say
9V’ partitions for some 3’ > y) for the same cost as the configurable mapping unit. This would
require ¥’ bits to be input to the configuration LUT. However, only y of these bits would be
used with F and each MUX (regardless of whether it is in F' or R) would still use y control
bits and, consequently, we would still hardwire only 2¥ source word bits to each MUX. This is
needed to keep the collective cost of the n MUXs the same as before.

The hybrid mapping units can be viewed as a generalizations of the fixed and configurable
mapping units. For the first hybrid, when F = Z, (or R = 0), we have the fixed mapping
unit and when R = Z,, (or F = @) we have the configurable mapping unit. The second hybrid
is a generalization of the configurable mapping unit; if £ = n, then we have the standard
configurable mapping unit. When ¢ = 1, then all MUXs received the same control signal as in
the fixed mapping unit, but if a LUT of wordsize y is used, then the y control bits of the MUXs

need not be the same as the y (or y') bits input to the mapping unit.

4.1.4 TUniversal Mapping Unit

A mapping unit MU(z,y,n,a) is universal if and only if it can, under configuration, produce
any set of 2¥log z independent subsets of Z,. It can be shown that a configurable mapping
unit with z = 2¥ is universal. This is because, when z < 2¥, each bit of the source word can
be input to every MUX. Consequently, any partition B has Hg = {0,1,---,z — 1}. Thus a
universal mapping unit MU (2Y,y, n, a) with O(ny2Y) gate cost and O(y + log n) delay exists.

It is not known whether this is the only universal mapping unit.

4.1.5 Bit-Slice Mapping Units

A bit-slice mapping unit generates just part of the output subset (represented by an n-bit word)
at a time. It constructs a subset over a iterations, generating % bits in each iteration. This
allows the mapping unit to exploit repeated patterns, such as these demonstrated in Table 6,
representing two forms of reduction. Notice that to generate 8 words, each 16 bits long, only 6

words, each 4 bits long, need to be generated. For example, the subset S corresponding to word

29

WO 2008/021554 PCT/US2007/018406

Table 6: Subsets with repedted patterns for n = 16 and o = 4.

Subset S Repeated Patterns
1111111111111111 1111
0001000100010001 0001
0000000100000001 0000, 0001
0000000000000001 0000, 0001
0000000011111111 0000, 1111
0000000000001111 0000, 1111
0000000000000011 0000, 0011
0000000000000001 0000, 0001

0001000100010001 can be constructed over 4 iterations using the bit pattern 0001. Overall, this
allows the bit-slice mapping unit to decrease the required gate cost of its internal components
in situations where an increased delay is tolerable.

A possible implementation of MU(z,y,n,a) is shown in Figure 17. A shift register (SR)
acts as a parallel to serial converter and stores the z-bit source words and outputs 2 bits every
@ cycles to the internal mapping unit MU(Z,y,2,1). The (2)-bit output of the mapping unit
is stored in another shift register which parallelizes the (g)-bit words into one n-bit word. A
mod-a counter orchestrates this parallel to serial conversion by triggering a write-in operation
on the input shift register and a write-out on the output shift register every a cycles. This
allows a new source word to be input into the bit-slice mapping unit and an n-bit output ¢
written out every a cycles.

Because the bit-slice mapping unit is a sequential circuit, we modify the definition of de-
lay. For sequential circuits, we assume that the clock delay of the circuit to be the longer of
(a) the longest path between any flip-flop output and any flip-flop input and (b) the longest
path between any circuit input and output. Using this notion of delay, it can be shown
that a bit-slice mapping unit MU(z,y,n,a) can be realized in a circuit with a gate costs
of O (Iog2 a+n (1 + y%)) and a delay of O(a(loglog« + logn + y)), and the number of in-
dependent subsets is A = 20[3 |log £] and the maximum total number of subsets producible is
A = 2¥(2* - 2), provided y < [Z;].

A point that that needs attention is the matter of how partitions play out in the bit-

slice mapping unit. For example, the subsets of Table 6 produced by a fixed mapping unit

30

WO 2008/021554 PCT/US2007/018406

MU(z,y,n,a) with z = 5, 2V = 2 require two ordered partitions
71 = ({15,14,13,11,10,9,7,6, 5,3,2,1}, {12,4}, {8},{0})

and

7?2 = <{15> 147 13> 12) 117 10) 9a 8}1 {7a 6a 57 4}) {37 2}) {l}a {O})

and four, 5-bit source words (11111, 00111, 00011, 00001) to produce the n = 16-bit outputs. In
a bit-slice mapping unit, with [2] = 2, and 2 = 4, two ordered partitions 7] = ({3,2}, {1,0})
and 75 = ({3,2,1}, {0}) (on a smaller 4-element set) and just three, 2-bit source words (00, 01,
and 11) are needed to produce the (2)-bit repeated patterns 0011, 0001, 0000, and 1111. For
the particular subsets of Z,, shown in Table 6, the bit-slice mapping unit shows good savings.
In determining whether or not a bit-slice mapping unit is suitable to a design, a variety of
considerations must be taken into account.

Overall a mapping unit (fixed, configurable, integral or bit-slice} MU(z,y,n,a) has the

following parameters.

{a) delay of O(a{y + logn)),
(b) gate cost of O(n(1 + y%)),
(c) number of independent subsets producible = A = %[log Z], and

(d) maximum number of subsets producible = A = 2¥(2% — 2), provided y < [25].

4.2 A Mapping-Unit-Based Configurable Decoder

A configurable decoder has the same basic functionality as a fixed decoder. An z-to-n config-
urable decoder accepts an z-bit input word and outputs up to 2% outputs, each n bits wide.
Unlike fixed decoders, the output of a configurable decoder is not fixed at manufacture. With
configuration, the n-bit outputs can be changed to a different pattern of bits, thus supplying a
degree of flexibility not present in fixed decoders.

A 2% xn look-up table or LUT may be considered as a type of z-to-n configurable decoder. A
2% xn LUT also takes in an z-bit input word and outputs up to 2* words, each n bit wide, where
the n-bit words are determined by the contents of the LUT’s memory array. Unfortunately,
this “LUT decoder” is expensive, where the gate cost of is O(2%(z + n)). If this decoder was
implemented on the same scale as a log n-to-n one-hot decoder, then z = logn. This results in a
decoder that, while able to produce (after configuration) any of the 2™ subsets of Z,, has a gate
cost of ©(n?). On the other hand, if the LUT decoder were restricted to the same asymptotic

gate cost as the one-hot decoder (thé.t is, ©(n log n)), it would only be able to produce ©(logn)

31

WO 2008/021554 . PCT/US2007/018406
subsets of Z,, (being at most a logn x n LUT). Although the flexibility of the LUT decoder is
desirable, its cost does not scale well and an alternative is needed.

The configurable decoder described here is a circuit that uses a LUT (with a smaller order
of cost), combined with a mapping unit. The mapping units we consider have the same order
of cost as the LUT, and this allows the LUT cost to be kept as small as a fixed decoder
while allowing a large number of n-bit subsets to be produced within the same order of gate
cost as fixed decoders. We call these “mapping-unit-based" configurable decoders (or MU-B
decoders). They take the same forms as the mapping unit itself: be integral or bit-slice, fixed
or configurable. It should be noted that the MU-B decoder is always configurable, as even one
using a fixed mapping unit employs a LUT.

By incorporating a “narrow” output LUT with a mapping unit that expands this narrow
output into a wide n-bit output representing a subset of Z,, a device is obtained that is reduced
in cost (compared to a LUT decoder) but has substantial flexibility. Figure 18 shows a block
diagram of the mapping-unit-based decoder. To put the figure in perspective, z € z < n,
generally. Unlike the LUT decoder solution, this solution expands the z-bit input in stages to
construct the n-bit output.

As Figure 18 shows, the z-to-n MU-B decoder (denoted by MUB(x, 2, y,n, a)) has two main
components, a 2 x z LUT and a mapping unit MU(z,y,n,a). The LUT maps an z-bit input
to a narrow z-bit word. The mapping unit MU(z,y,n, @) accepts this z-bit LUT output as an
input source word u. It also accepts an ordered partition 7 as indirectly selected by the y-bit
selector wordB). The MU(z,y,n,a) then uses the operation p(u,7) to produce an n-bit word
representative of a subset of Z,. Any MU(z,y,n,c) in combination with a 2% x z LUT (or
other type of memory) is considered a type of MU-B decoder, MUB(z, z,y,n,a) as shown in
Figure 18.

The flexibility of the MU-B decoder depends on the LUT and the value of z, the size of
the source word. While 2 larger than a low-degree polynomial in n does not yield significant
benefits and increases the LUT cost, a small z (such as z = logn) severely limits the number of
independent subsets that can be generated by the mapping unit. Without the LUT, z has to
be this small to address the pin limitation problem. Thus the role of the LUT is to start from
a small number of input bits and expand it to z bits, trading the value of z off with the number
of locations in the LUT. This provides room for constructing the MU-B decoder to particular
specifications.

The next example illustrates a MU-B decoder with a bit-slice mapping unit. Consider the
sets So = {53, 59,59, 59} and &) = {S§, S}, 53, 53} shown in Table 7. Let S = S U S; and let

32

WO 2008/021554 PCT/US2007/018406

Table 7: Set § = Sy U ;.

S} geQ zeU
s¢ | 1111111111111 | 11111
59 1 0101010101010101 | 01111
59 | 0001000100010001 | 00111
59 | 0000000100000001 | 00011
S9 | 0000000000000001 | 00001
S | 1111111111111111 | 11111
51| 0000000011111111 | 01111
S} | 0000000000001111 | 00111
S3 | 0000000000000011 | 00011
S3 | 0000000000000001 | 00001

z =5 and 2¥ = 2. It is easy to verify that the ordered partitions for sets Sp, S1 are
7 = ({15,13,11,9,7,5, 3,1}, {14, 10,6, 2}, {12,4}, {8}, {0})

and

71 = {{15,14,13,12,11,10,9, 8}, {7,6, 5,4}, {3, 2}, {1}, {0}),

respectively. Then MUB(z, z,y,n,1) fixed mapping unit would require 16 multiplexers with 2
inputs each and a 5 x 5 LUT to hold the values of the source words (note that this is due to an
intelligent ordering; in general the LUT could be as large as a 10 x 5).

Now assume that, a = logn = 4. Then in each iteration, the decoder must produce the
Z = 4 bit words from the [£] = 2 bit words shown in Table 8.

For these Z2-bit words, three partitions are needed,
e = ({3,2},{1,0}),
P = {{3,1},{2,0}),
ﬁgs = ({3,2,1}, {O})
Since the original fixed mapping unit had values of z = 5 and 2¥ = 2, the number of inputs to
each multiplexer in the internal mapping unit of the bit-slice mapping unit would increase by

one (from 2 to 3). However, the number of multiplexers would decrease from n = 16 to 2 = 4.

This would imply a reduction in cost by a factor of % =~ 2.67.

33

WO 2008/021554 PCT/US2007/018406

Table 8: Source and output words for S.

" S} | [2]-bit input word | Z-bit word produced
53 11 1111
57 01 0101
53 01 0001
53 00, 01 0000, 0001
53 00, 01 0000, 0001
54 11 1111
S 00, 11 0000, 1111
S3 00, 11 - 0000, 1111
53 00, 01 0000, 0011
Si 00, 01 0000, 0001

Regardless, the LUT must still supply a z-bit word to the bit-slice mapping unit (which in
this case may increase to a 6-bit word based on the rounding up of [i]) Thus, the implemen-
tation depends on the allowable costs, the number of z-bit source words and the corresponding
size of the LUT, and the subsets that must be produced. Further, the ordering of the partitions
can determine not only the size of the LUT in the MU-B decoder (and thus also the values of
its parameters), but also dictate the subsets that can be produced.

It can be shown that: for any a > 1, a mapping-unit-based configurable decoder
MUB(z, z,y,n,) has a delay of O(z + log z + a(y + logn)) and a gate cost of
o (21(:5 +2)+n (1 + yi—y)), further, MUB(z, z,y,n, &) can produce at least
A = min {2”:, % ll—°§—ZJ} independent sets. Finally it can be shown that if 2% < 2% — 2, and
y < [%1 — 1), then a MUB(z, z,y,n,a) can be built that produces 2**¥ distinct subsets of
Zn.

Finally, to properly compare a LUT decoder with MUB(z, z,y,n, a), the following can be
shown:

A Let P be a LUT decoder, and let C be the proposed mapping-unit-based configurable de-
coder, each producing subsets of Z,. If both decoders have a gate cost G, such that G = Q(n)

and G is polynomially bounded in n, then for constant o > 0,

(a) When G = ©(nlog”n), then C can produce a factor of © (ﬁﬁ:g_n) more independent

subsets then P, and can produce a factor of © (%E;T?) more dependent subsets, where

34

WO 2008/021554 PCT/US2007/018406
Oe < 1.

(b) When G = n!*?, then C would produce the same order of independent subsets as P and

is capable of producing up to © (g (TT%_)) dependent subsets, for any 0 < € < 1.

og” n

The above results indicate that with comparable cost for the LUT decoder and the proposed
mapping-unit-based configurable decoder, the MU-B decoder is more flexible, generating more
subsets than the LUT decoder.

4.3 Particular Instances of the MU-B Decoder

Many applications and algorithmic paradigms display standard patterns of resource use. Here

we examine three cases: (1) Binary Reduction, (2) one-hot and (3) Ascend/Descend.

Binary Reduction (in general, a total order of subsets): Consider the binary tree
reductions (or simply binary reductions), shown in Figure 19. In each reduction, the number of
resources is reduced by a factor of two in each level of the tree; Figure 19(a) and (b) illustrate
this for two particular reductions. The bit patterns representing these reductions are also
shown, where a bit has a value of ‘1’ if it survives the reduction at a particular level in the tree
and a value of ‘0’ if it does not. In general, we denote the subset of Z, used during iteration z
of a binary reduction (where 0 < ¢ < logn) by ;.

In discussing binary reduction, we consider a more general case involving a set S of totally
ordered subéets. Let S = {S0,51, -+, Sk-1} be a set of k subsets of Z, such that Sop D §) D
-+ D Sk_y; that is, the elements of S are totally ordered by the “proper superset of relation.
For each 0 € i < k, let 7g, denote the partition induced by S;. It can be shown that

{S0,51 — S0, 82 = 51,7+, Sk—1 — Sk-2,Zn — Sk-1}, if Sg-1 = Zn
T=MGy TG, TGy, =
{S0, 51 — S0,52 = S, -+, Sk—1 — Sk-2}, if Sk-1 C Z,

For binary reduction, &k = 1 + logn = log2n in the above notation and Siogn = Zn.
Therefore,

7 = {S0,51 — 50,82 — 51, , Stogn — Stogn-1}
has log 2n blocks.

Consider the two binary reductions of Figure 19(a) and (b). The ordering results in the
subsets shown in Table 9.

The first reduction pattern has subsets S§ = {0}, SY = {0,4}, S9 = {0,2,4,6} and S =
{0,1,2,3,4,5,6,7}. This results in the partition 7% = {{7,5,3,1}, {6,2}, {4}, {0}}. Similarly,
the second reduction pattern produces the partition 7! = {{7,6,5,4}, {3,2}, {1}, {0}}.

35

WO 2008/021554 PCT/US2007/018406

Table 9: Two binary tree based reduction patterns

S§ | n-bit pattern Si | n-bit pattern
S9| 00000001 S9 1 00000001
S8 00010001 St 00000011
S% | 01010101 S% | 00001111
S§ | 11111111 S3 | 11111111
A binary reduction corresponding to a partition m = {So, S1—S0, S2—S1,* -, Stogn—Slogn-1}

can be implemented on MUB(loglog2n,log2n,1,n,a). A MUB(loglog2n,log2n,y,n,a) can
implement 2¥ different binary reductions. Since corresponding subsets in different binary re-
ductions still have the same number of elements, the same set of log2n source words can be
used for all reductions; different ordered partitions need to be used, however.

The reduction corresponding to the unordered partition 7% = {{7,5,3, 1}, {6, 2}, {4}, {0}}
can be ordered so that the blocks (in the order shown) correspond to source words bits 3, 2,
1, 0 (where 0 is the least significant bit or Isb). Thus, the output set (represented as an n-bit
word with bit 0 as the Isb) produced by source word ss, s2, 1, 50 and the ordered partition is
s3,S2, 83, 51,53, 82, 83, 0. To produce the sets 59,57, 52, SY the source words are 0001, 0011,
0111, 1111, respectively. If we now order 7' = {{7,6,5,4},{3,2}, {1}, {0}} so that the blocks
(in the order shown) correspond to source word bits 3,2,1,0, then it is easy to verify that the

same source words 0001, 0011, 0111, 1111 produce sets S3, S, S4, S3, respectively.

One-Hot Decoders: A set of one-hot subsets is a set of subsets of Z,,, each represented by
an n-bit output word with each output word having only one active bit {usually with a value
of ‘1’), all other bits being inactive (usually ‘0’). (The ideas we present also apply to decoders
using an active-low logic where a ‘0’ represents inclusion of an element of Z, in the subset
and ‘1’ represents exclusion of the element from the subset.) Table 10 shows an example for
active-high logic.

The structure of the partition induced by a set of one-hot subsets is a particular case
of a set of disjoint subsets, that we now describe. Let S = {Sp, S1, -+, Sk-1} be a set of

subsets of Z,, that are pairwise disjoint; that is, for any 0 < 4,5 < k, §;nNS; = 0. Let

36

WO 2008/021554 PCT/US2007/018406

Table 10: A set of 1-hot subsets of Z;4

S; n-bit value ”
S {0 00 00O0OO0O0OOOO0OO0O0O0TO01
5.0 0000 0O0GOO0O0D0O0O0 1 0
S50 00 00O OO O0O0DOUOODOUO0OTI1 0O
S3/0 00000 O O0OOOUO0OOT10O00O
S4/0 00 00 O0O0O0ODO0OOT11O0O0TUO0O0
Ss/0 00 00OOO0OOUOT10O0GO0TO00O0
S0 00000 0OO0O0OT1UO0UO0UO0O0TO0 0
S10 0000 OO O0O100UO0UO0TUO0TO0O
S3/0 0000 O0OO0OT1O0UO0UO0ODO0O0O0O0O0O
S0 000 0CODT1O0O0UO0O0OO0O0O0O0 O
Sp{0 00 001 0 0O0O0O0O0OGO0OO0DO0O
$52140 00 01 00 00 O0O0OUOOO0 O
S2{0 001 000 00O0O0O0TO0O0TUO0O0
S3(0 01 0 0 OO 00 O0O0O0OUOUO0OO0OQ
S4l0 1. 0 0 00 0O0O0O0O0O0O0O0C D0 O
Sis{1 00 0 0 OO OOOODOO OO0 O

Sk =2Znp—(SguUS1U---USk_1). It can be shown that the partition induced by the sets in’'S is
{SOaSI)"')Sk—l}v lfSkzw

{S(J)Sl)‘ . ‘aSk—hSk}u if Sk 75 0

Thus if the given set § has & disjoint subsets, then the partition induced by S has at most k+1
blocks. For the one-hot set of subsets, k = n and the induced partition is {{0},{1},---,{n-1}}.
Moreover, because the subsets are disjoint, the product of any k partitions ng, induced by a set
of k one-hot subsets results in a partition with at least k& blocks. Thus if we were to construct
z-block partitions, we will need © (’;‘) partitions to capture a set of one-hot subsets. This would
require y = O (log 2) = O(logn), as z is of substantially smaller order than n. This would make
the gate cost of the MU-B decoder {1 ('—’z—lz‘isl‘), which is too high to be of practical value.
Thus, the 1-hot sets are easy to produce in a conventional fixed decoder, they present a

difficult embodiment for the MU-B decoder described so far. One method of producing the 1-

37

WO 2008/021554 PCT/US2007/018406

hot subsets in a MU-B decoder is to use a LUT with 2° = n rows (or x = logn). A LUT contains
a 1-hot address decoder, and since a configuraBle decoder MUB(logn, 2,y,n,) contains a n x z
LUT, a simple switch allowing the output of the LUT’s address decoder to be the output of
the configurable decoder automatically allows the configurable decoder to produce the 1-hot
subset. Also, the parallel decoder described subsequently teaches a simple way to construct a

one-hot decoder out of MU-B decoders.

Ascend/Descend: Communication patterns can also induce subsets. For example, if a node
can either send or receive in a given communication, but not both simultaneously, then for
the ASCEND/DESCEND communication patterns shown in Figure 20 for n = 8, the subsets
generated are as indicated in the box in the figure. (The ASCEND/DESCEND communication
patterns are also called normalized hypercube communication patterns).

The subsets of the Ascend/Descend class of communications are more difficult than those of
the binary reduction for a mapping unit to produce. This is because the product of all induced
partitions of the 2logn subsets of the Ascend/Descend class of communications results in an
n-partition of Z,, as in the one-hot case; again as z <« n, this cannot be represented by a single
z-partition. However, the partitions induced by ASCEND/DESCEND subsets can be combined
more effectively.

For the next discussion, we recognize that ASCEND/DESCEND subsets are in comple-
mentary pairs that induce the same partition. In fact each level of the ASCEND/DESCEND
algorithm has one complementary pair; that is, there one induced partition per level of the
algorithm. For the moment, we consider just a set of logn ASCEND/DESCEND sets (one per
level). It is easy to show that the product any k partitions induced by k of ASCEND/DESCEND
sets has 2% blocks, each of size 2.

2

Thus, one method of generating ASCEND /DESCEND subsets is to use ll—"(g—: z-partitions,
each with 2log z source words (where z is a power of 2, say z = 2F).

For example, the partition for the first level of communications is my = {{7,5,3,1},{6,4,2,0}}.
Taken for log z such levels, this results in a single z-partition that with 2 log z source words can
produce 2log z of the different 2logn subsets. For example, consider z = 4. Then, logz = 2,
which implies that two levels can be represented by a single partition. If a partition represents
levels one and two, then this results in the partition = = {{7,3}, {6, 2}, {5,1}, {4, 0}}.

Taken for all 2logn subsets, this results in a total of 11%55—: such partitions, and a total of
2log z source words. Table 11 illustrates a possible ordering of the partitions and source words

for the ASCEND/DESCEND sets shown in Figure 20.

38

WO 2008/021554 PCT/US2007/018406

Table 11: Partitions and source words generated for ASCEND/DESCEND subsets for n = 8

and z =14
S; 7 Source words | output word
So | ({7,3},16,2},{5,1},{4,0}) 1010 10101010
S 0101 01010101
Sy 1100 11001100
Ss 0011 00110011
S4 ({7,6,5,4},{3,2,1,0}) dd10 11110000
Ss ddo1 00001111

d denotes a don't care value

4.4 Parallel Configurable Decoders

Decoders can be structured in a parallel configuration utilizing a merge operation (such as an
associative Boolean operation) to combine the outputs of two or more decoders. A parallel
embodiment using MU-B decoders will be denoted MUB(z, z,y, n, a, P) where the parameter
P denotes the number of configurable decoders connected in parallel. Although we present ex-
amples in which a parallel configurable decoder uses multiple instances of configurable decoders

of the same size and type, they could, in principle, be all different.

4.4.1 Parallel, Configurable One-Hot Decoder

A parallel configurable decoder can produce sets of subsets of Z,, not easily produced by the
configurable decoders previously presented. The following example demonstrates the use of
parallel decoders to produce the one-hot decoder.

Consider two subsets So, Sy of Z,. Assume that an integer m divides n, or n = km for
some integer k. Then Z, = {0,1, --,m—1,m,m+1, -, 2m—1,2m,---,im—1,--- (i+1)m—

Lo,(k=1)m, - km—1} For0<i<mand 0<j < 2, let
gio={t+mf:0< L <k}

and let
g1 ={im+£:0< €< m}.

Clearly, g;0 and g;) are subsets of Z,. Table 12 illustrates the subsets for n = 20 and m = 4.

39

WO 2008/021554 PCT/US2007/018406

Table 12: Subsets g;o and ¢;; for n = 20 and m = 4

gi0 A n-bit word

@o|0 00100010001 00O0T10G00 1
@0]0 01 0001000100071 00TG0T10
420/0 1 0 0 01 0001000100010 0
gsp{1 0 0010001000710 0O01000
;1 n-bit word

1[0 0 00 00O0O0O0O0GO0OOO0O0O0T1 1 11
@10 0 00000O0O0O0O0GOTI1I1T1T71000 0
@110 000000011 1100000000
%110 0 0 01 1 1 10000G0GOGO0O0O0O0O00
1|1 11100000 0O0O0GO0O0O0O0D0O0O0 0

Let Sop = {gip : 0 < i< m}and &) = {gj1 : 0 < j < Z}. Subsets So and S induce
partitions 7o = {g;0: 0 <4 < m} and m = {g;,1 : 0 < j < 1}, respectively.

For z = k = I two z-partitions of n can generate these subsets. Put differently, each
subset of &y and S; can be independently generated by different MU-B decoders, each using
just one partition. Note that ¢;0 Ngj1 = {jm + i}, and it can be shown that for each z € Z,,
there exists unique values 0 < i < mand 0 £ j < r’?{ such that z € g;0 N g;1, and hence
S={goNng1:0<i<mand0<j< %} is the set of one-hot subsets. A simple method to
generate the one-hot subsets using parallel decoders is shown in Figure 21.

If m = /n, then both m and 2 form feasible values for the input for a mapping unit; that
is, z = m = 2. Note that a y-bit selector address is not needed as only one ordered partition is
used; that is, y = 0. (However, the y-bit input would allow additional subsets to be generated
from additional partitions.) Thus, for the MU-B decoders 29 = logm = log y/n = log & = z,
and zp = m = +/n = ﬁ = 21, and yg = y1 = 0; also ng = n1 = n. Both MU-B decoders use a
single partition, hardwired into their respective mapping units, as shown in Figures 22(a) and
{b).

The cost of each MU-B decoder is the cost of a /nxy/n LUT with a MUB(3 logn, v/n,0,7,0,1)
which is ©(n). Clearly, increasing yo and y; to any constant will increase the number of subsets

produced without altering the ©(n) gate cost.

40

WO 2008/021554 PCT/US2007/018406
Two smaller log+/n-to-y/n 1-hot decoders arranged as shown in this example will also
produce a larger logn to n 1-hot decoder with O(n) cost (this is elaborated upon further
below). However, the MU-B decoder approach offers room for additional partitions and hence

additional subsets (within the same asymptotic cost) and considerably higher flexibility.

4.4.2 Parallel Fixed One-Hot Decoder

If the application calls for just a fixed one-hot decoder, a MU-B decoder could be much too
expensive. Here the ideas presented for a parallel MU-B decoder are adapted to a fixed one-hot
decoder. Let Dy and D; be two instances of a %log n-to-/n one-hot decoder (see Figure 23 for
an example with n = 4). Assume that %]ogn is an integer. For i = 0,1, let the outputs of D;
be pjv, where 0 < j < /n. That is, if the input to D; (expressed as a binary number) is j, then
p;- = 1 (or active); otherwise, p§ = 0 (or inactive). Fan each of these sets of outputs to n-bit

positions q} as follows. For 0 < j < y/nand 0 <k < n,

g = p?, where £ = L/LHJ
g = pi, where m =k mod /n

These outputs are the same as those illustrated in Table 12. Therefore, the log n-to-n one-hot

decoder outputs r, (where 0 < k < n can be obtained as
7k = gi AND g;.

Figure 23 illustrates this. Since a conventional logn-to-n one-hot decoder has O(logn) delay
and O(nlogn) gate cost, decoders D; each has O(logn) delay and O(y/nlogn) gate cost. Each
of the 2¢/n fan-outs is of degree v/n, so this has O(logn) delay and O(y/ny/n) = O(n) gate
cost. The last step of ANDing the two set of n bits clear las constant delay and O(n) gate cost.
{Note if an active-low convention is adopted for the decoder, the above AND gates would be
replaced by OR gates.)

Overall, this implementation of a one-hot decoder has O(logn) delay and O(n) gate cost.
Compared to the conventional implementation of a one-hot decoder exemplified in Figure 5, our
design has comparable delay, but a lower order of cost. In fact, since n outputs are required,

this asymptotic gate cost cannot be improved upon.

4.4.3 General Structure of a Parallel Mapping-Unit-Based Configurable Decoder

In general, a P-element parallel configurable decoder MUB(z, z, y, 1, a, P) is shown in Figure 24.

As shown, P decoders “receive” all z+y input bits. In use, each decoder CD; , where 0 < i < P,

41

WO 2008/021554 PCT/US2007/018406
selects a portion z; and y; of the input bit streams z and y, respectively, as the input and
selection information.

Two decoders, say MUB; and MUB; may use the same input bit(s) or share some common

input bit(s) for their LUTs. Therefore, z; < z and Pz—l z; > z, as each input bit is assumed to
| P-1 =0
be used at least once. Similarly, y; < y and Z Yi 2 Y-
The merge unit could perform functions irz?lging from set operations (where n; = n, for all
1) to simply rearranging bits (when Pil n; = n). The (optional) control allows the merge unit
i=0

to select from a range of options.

Clearly, each MUB; can produce its own independent set of n;-bit outputs. The manner
in which these outputs combine depends on the merge unit. For example, let each MUB;
produce an n-bit output (that is, a subset of Z,;) and let S; be the independent set of subsets
produced by MUB,. Let the merge operations be o, an associative set operation with identity
So. Intersection, Union, and Ex-OR represent such an operation with Z,, @, and @, respectively,
as identities. If each MUB; produces a set of subsets §; that includes S,, then the whole parallel

P-1
MU-B decoder produces an independent set that includes U S

Let MUB; have a delay of D; and a gate cost of Gj. szo Dyr and Gy are the delay and
gate cost of the merge unit, then the delay D and gate cost G of the parallel MU-B decoder
MUB(z, z,y,n,a, P) are

D = max(D;) + Dp + O(log P).
P-1
G= <Z Gi> +Gu +O(P(z +)).
=0

If the merge unit uses simple associative set operations (such as Union, Intersection, Ex-OR)

that correspond to bit-wise logical operations, then Dy = O(log P) and Gy = O(nP). Since

z 4+ y < n, the overall cost and delay for this structure is

D = max(D;) + O(log P).
P-1
G = (Z G,) + nP.
i=0

4.5 Other Decoder Variants

The other variants of the MU-B decoder include a serial MU-B decoder and one based on a
recursive bit-slice mapping unit. These variants are not preferred as they did not provide any

additional benefit over the designs included by a stand alone mapping-unit-based decoder.

42

WO 2008/021554 PCT/US2007/018406

A serial MU-B decoder is shown in Figure 25. Two or more mapping units are cascaded
to construct the subsets of Z,. Note that the independent subsets produced by the second
mapping unit are dependent on what is provided to it, that is, the range of values of 2z, which
is in turn dependent on the number of independent subsets produced by the first mapping unit.
Thus, since the first mapping unit in Figure 25 can produce 2¥°(log zp) independent subsets,
where z is a relatively small value, a single LUT can usually subsume both the LUT and the
first mapping unit in the serial variant, and be within the gate cost of the second mapping
unit and provide more independent subsets. In a recursive bit-slice mapping unit, illustrated
in Figure 26, where two or more bit slice mapping units are nested within one another, such
that an input’to the first bit-slice mapping unit is broken down by a factor of ag then broken
down further by a factor ofa, and so on, until it reaches the lowest level mapping unit. It is
then reconstructed to an n-bit output. However, this reconstruction requires a large number of
shift registers and multiple clocks, and the linear reduction of cost does not provide additional

benefit from that of a single bit-slice mapping unit.

4.6 Applications for MU-B Decoders

Besides FPGAs and other reconfigurable computing platforms, applications of the MU-B de-
coder include sensor networks and external power controllers. Typical sensor networks consist
of a collection of small sensor nodes (motes) that communicate to a base station through a
distributed wireless network. Because the range of individual nodes is small, outlying nodes
must relay their data to the base station through closer nodes. A large amount of power is
eXpended during the receiving and transmission of data. Because of this, data must be com-
pressed or encoded in some fashion so as to conserve power. This situation is similar to the pin
limitation problem, wherein a large amount of data must be compressed in some fashion to pass
through a small number of I/O pins. A decoder-based solution to the pin limitation problem
could easily be applied to sensor networks, as the decoder itself would require no significant
changes to the architecture of the sensor and would act as a method of compression for the
data. A configurable decoder (and a reverse encoder) can serve to reduce the number of bits
transmitted between sensor nodes without requiring a drastic redesign of the sensor nodes.
Power management and low-power operation have become driving factors in many applica-
tions (for instance, the design of embedded systems). An external power controller can reduce
the clock frequency of a chip such that the overall power consumed by the chip is reduced.
Used indiscriminately, this method can unnecessarily hurt the performance of the chip, as not

all parts of the chip may require a reduction in power. A “smart” power controller could select

43

WO 2008/021554 PCT/US2007/018406
portions of a chip for reductions in power, reducing the performance of only those portions
that are not necessary for the chip’s current execution. Thus, the overall power draw of the
chip would be reduced without drastically affecting the performance. However, this ability is
hampered by the large number of 1/O pins that would be necessary for such addressing. A
decoder-based solution that would allow efficient addressing of portions of a chip through a
small number of I/O pins would directly address this problem. As the configurable decoder
works to select a subset, this selection can be used by a smart agent that observes data from a
collection of chips and issues commands to selectively power-down portions of these chips. A
sharp focused selection (such as that afforded by the configurable decoder) could be useful in

this environment.

44

WO 2008/021554 : PCT/US2007/018406

Claims

1. A configurable mapping unit comprising a circuit in combination with a reconfigurable
first memory device, where the circuit has as input an 2-bit source word having a binary
value at each z-bit position, and an input selector word from said first memory device,
said selector word having a value, and said circuit outputs an n-bit output word having
a binary value at each n-bit position, where each n-bit position is hardwire connectable
to a subset of said 2-bit positions (the “Mapping Subsets”), where n > z, where the
binary value of each bit position of said n-bit output word is set as the binary value, or
the complemented binary value, of a selected one of said 2-bit positions in its Mapping
Subset (the “Selected Map Bit”), where for a first non-null subset of said n-bit output

words bit positions, said Selected Map Bits are chosen by the value of said selector word.

2. The configurable mapping unit of claim 1 wherein said selector word from said first mem-

ory device is chosen by a y-bit selector address word input to said first memory device.

3. The configurable mapping unit of claim 2 wherein said first memory device comprises a

look up table (LUT).

4. The configurable mapping unit of claim 2 wherein selector address word contains y-bits

and said first memory device comprises 2Y entries, each ny bits long.

5. The configurable mapping unit of claim 1 where said first non-null subset of said n-bit

output words bit positions includes all n-bit positions.

6. The configurable mapping unit of claim 2, wherein a second disjoint pre-selected nonempty
subset of bit positions of said n-bit output words Selected Map Bits are chosen by said

value of said selector address word.

7. The configurable mapping unit according to claim 1 wherein said circuit further comprises
n multiplexers, one for each bit position of said n-bit output word, and said z-bit positions
are hardwire connectable to said n-bit positions through said multiplexers, as specified in

said Mapping Subsets.

8. A mapping unit comprising a circuit, where said circuit has as input an z-bit source word
having a binary value at each 2-bit position, and as input a selector address word, and
said circuit outputs an n-bit output word where n > z, where said circuit has a selectable
fixed number of hardwired multicasts of said z-bit positions to said n-bit positions, where

said input selector address word selects one of said multicasts, thereby assigning to each

45

WO 2008/021554 PCT/US2007/018406
n-bit position, the value, or the complemented value, of the z-bit position multicasted to

said n-bit position.

9. A configurable mapping unit (“CMU”) according to claim 8 further having a second
memory device having as input an z-bit input word, said second memory device outputting

said z-bit source word.

10. A configurable mapping unit (“CMU”) comprising a circuit and an associated reconfig-
urable first memory device, where said circuit has as input an z-bit source word, having
a binary value at each z-bit position, and as input a selector word, and said first memory
device has a input a selector address word, where said circuit outputs an n-bit signal
where n > z, where said circuit has a selectable fixed number of hardwire multicasts of
said z-bit positions to said n-bit positions, where said input selector address word selects a
selector word from said first memory device, and said value of said selector word chooses,
for a fixed subset of said n-bit output word bit positions, one of said multicasts, thereby
assigning to each n-bit position in said fixed subset the value, or the complemented value,

of the z-bit position multicast to said n-bit position.

11. A mapping-unit-based configurable decoder (a “MU-B Configurable Decoder”) comprising
the configurable mapping unit of claim 1 and further comprising a reconfigurable second
memory device, said second memory device receiving as input an z-bit input word and

outputting said z-bit source word, where z < z.

12. A configurable mapping unit comprising a circuit in combination with a first memory
device, where the circuit has as input an z-bit source word having a binary value at each
z-bit position, and a selector word input from said first memory device, and said circuit
outputs an n-bit word, where n > 2, where each n-bit position is hardwire connectable to
an associated fixed subset of z-bit positions, where said value of said selector word selects,

for a non-empty subset {a;} of said n-bit positions,

a corresponding position in said 2-bit source word for each a; from that a;’s
associated fixed subset of z-bit positions,
and said circuit assigns, to each a; of the n-bit output word, the binary value

(or the complementary value) of the corresponding 2-bit position

where said selector word is selected by a selector address word input to said first memory

device.

46

WO 2008/021554 PCT/US2007/018406
13. A MU-B Configurable Decoder comprising a configurable mapping unit according to
claim 12 and further having a second reconfigurable memory device, with a z-bit word as

input, said second memory device outputting said z-bit source word.

14. A bit-slice mapping unit comprising & circuit where the circuit has as input an z-bit source
word having a binary value at each bit position, and an input selector address word, and
said circuit forms an (g—)-bit word, 2 being an integer and « is an integer > 2, where
n > z, where each (Z)-bit position is hardwire connectable to an associated fixed subset of
z-bit positions, where said binary value of each bit position of said (Z)-bit word is based
upon said binary value of a selected one of the z-bit positions in said (£)-bit positions
associated fixed subset, where said value of said selector address word selects said 2-bit

positions.

15. The bit slice mapping unit of claim 14 wherein said mapping unit periodically forms
» words from said z-bit source word periodically, and stores a selected number of said

formed g— words.

16. The bit sliced mapping unit of claim 14 wherein said mapping unit stores o of said 2

words, and combines said o stored 2 words into an n-bit output word.

17. A bit slice mapping unit according to claim 15, wherein said periodical formation of said

(2)-bit word is initiated by a clock cycle.

18. A method of hardwiring a configurable mapping unit of claim 7, where each n multiplexers
have a series of input ports myg; (“mg;" represents the 2 input port of multiplexer j
, where £ = 0,---,2¥ —1and j = 0,---,n — 1), and where said method comprising
the step of wiring each input bit position p to multiplexers input ports my ;, where p =

(! + 2Yj)(mod z) for all j and n.

19. A method of constructing an ordered partition to create a set of desired output n bit
output words {A4—1,.., Ao} from a set of desired input z-bit source words (Il¢-1,---, Ip)

comprising the steps of :

(a) ordering said set of output words {Ag}

(b) for each said output word element Ay, form its induced partition 74, and assign

variables p_start «— 0, and s.start «— 0

(c) save the partition Tp_start = TA, et T As_siarcs1 TAe_staresz * * * TA, Where £ is the largest

integer such that mp_gqr¢ has less than or equal to z blocks,

47

WO 2008/021554 PCT/US2007/018406
(d) Set variables p_start «— p_start + 1 and s_start «— £+ 1.
(e) If said induced partition of any output word A has not been considered in step (c),

then go to step (c)

20. The configurable mapping unit of claim 6 wherein said second memory device comprises

a LUT of 2* entries, each z bits long.

21. A parallel MU-B configurable decoder comprising a plurality of MU-B configurable de-

coders {P;} according to claim 11,

each said P, MU-B configurable decoder (“Pi”) has a z¢-bit source word, output from
said Pi’'s associated said second memory device, where said Py’s associated second mem-
ory device has an z,-bit input word, and a yg-bit selector address word input to said
Py’s associated said first memory device, where said Py’s associated first memory device

outputs a Py selector word, and each Py outputs a ng-bit output word,

where said parallel MU-B configurable decoder combines said set of output words {ns}

into an n-bit output word.

22. A parallel CMU decoder comprising a plurality {M;} of CMUs according to claim 9,

where each said My CMU has a z;-bit source word, and a yi-bit selector address word,
and where each My’s associated second memory device has an zx-bit input word, and

each M’s MU-B configurable decoder outputs an ng-bit oﬁtput word,

where said parallel MU-B configurable decoder combines said set of output words into an

n-bit output word.

23. The parallel MU-B configurable decoder of claim 21 where y; = yo = y, 2zt = 2 and

n=ng=nmn

24. The parallel MU-B configurable decoder of claim 21 where said Py input word is the same

word for all k, and said Py selector word is the same word for all k.

25. A binary reduction decoder (“BR. decoder”) comprising a MU-B configurable decoder
according to claim 9, where y > 1, z = log(2n),z = loglog(2n), where said set of possible
n-bit output words is {Ax} for a preset configuration of said MU-B decoder, each said n-
bit output word having a characteristic set CAg, and said set of characteristic sets { CAx}
having at least one subset {Sk}, for k = 0 to logn, such that Sigon C Siogan)-1 C -+ C
S1C S .

48

WO 2008/021554 PCT/US2007/018406
26. The parallel MU-B configurable decoder according to claim 21 wherein a subset of said set

of output words {n,} are combined into an n-bit output word using Boolean functions.

27. An integrated circuit having z’ input pins, and internal portions of said integrated circuit
being addressable by n-bit words, where n > 2, said integrated chip incorporating at
least one MU-B configurable decoder according to claim 11 having an n-bit output word,
wherein said n-bit output word specifies an addressable location internal to said integrated

chip.

28. A universal configurable mapping unit decoder comprising the configurable mapping unit
of claim 1 wherein said Mapping Subsets is all n-bit positions of said output word for each

input 2z-bit position.

29. A parallel MU-B configurable decoder according to claim 21, having a first and a second
MU-B .decoders, each outputting an output word n; and ny of n bits, having z; and z;
as input words, z) being logm bits long and 3 being log - bits long, where m = % for
some integer k, and source words z) and z3, respectively, where z; is m-bits long and 22
is = bits long, where said selector word is of length y > 1, where each said output word
has a characteristic set, where { CN} is the set of characteristic sets of said output words
{N3}, and where {CN3} is the set of characteristic sets of output words, where {CN;}
has a subset {¢;3 : 0 < i < m}, where and ¢;; = {t +mf : 0 £ £ < k} and where
{CN2} has a subset g;» : 0 < j< 2}, where and gjo = {jm+£ : 0<£<m}.

30. A parallel decoder circuit comprising a first decoder D; and a second decoder D5, said D,
decoder receiving a log m-bit input word and outputting n; bits where n; > logm, and
decoder Dj receiving a (log %)-bit input word and outputting na-bits, where ng > log -+
and m = Z, for some integer k, where said n; bits are formed from a hardwired multicast
of said z; bits, and said ng bits are formed from a hardwired multicast of said z» bits,
said output n; bits and said output ng bits being combined into an n-bit length output

word.

31. A parallel decoder circuit according to the claim 30 where said first decoder D; comprises
a log(m)-to-m 1-hot decoder circuit and said m- output bits being input to a first fanout
circuit and fanned out to n Boolean gates, n > m, said n gates receiving at most one bit
per gate from said first fanout circuit,
and where said second decoder D, comprises a log =-to-~ 1-hot decoder circuit and

said > output bits of said second decoder D; input to a second fanout circuit and fanned

49

WO 2008/021554 PCT/US2007/018406
out to said n Boolean gates, n > 2, said n gates receiving at most one bit per gate from

said second fanout circuit, and said n outputs of said n Boolean gates being combined to

form an n-bit word.

32. A method of checking if a given k-block partition is realizable on a set of said hardwired
connections of a mapping unit according to claim 1, and if the said partition 7 is realizable,

to order it accordingly, comprising the steps of:

(a) generating the bipartite graph of the said hardwired connections and the said par-
tition w, whose nodes are said 2-bit source word positions and the k blocks of said
partition 7 said partition 7

(b) Find a maximum matching on the graph, if one exists

(c) if the said maximum matching exists and its size is k, then order the said partition

7 by assigning to each block its matching source node position.

33. A method of constructing a set of realizable ordered partitions on a set of said hardwired
connections of a mapping unit according to claim 1, given a desired set of output words

{A;}, comprising the steps of:

(a) applying the method of claim 19 using different orders of the said set of output words
{A;} in step (a) of claim 19, saving realizable output partitions, ordering the said
realizable partitions, and removing from {4;} all output words encompassed by the
said realizable partitions.

(b) iteratively applying step (a) with the allowed partition sixe in claim 19 decreasing
from z — 1 down to 2.

(c) breaking each remaining said output words into smaller sets, until their induced
partitions are realizable, saving the said realizable partitions, and ordering said

realizable partitions.

50

WO 2008/021554 PCT/US2007/018406

1721
Figures
CLB {«— S [«—> CLB (e S |«—={ CLB
i 1
n]]
B Y 1 Y \
S | - S | - S |~ - S = | S
[1] 1 1
r \ Y
Y Y
CLB {=—| S f«——>| CLB |<—>{S |=—> CLB
| Iy

w
A
Y
»
A
Y
»
A
Y
7
\
]
»

CLB (<=—> S [=— CLB

A

Y

w
A

Y
O
r
w

Figure 1: A typical FPGA structure.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

2/21
CcouT couT
A]
- ~! Slice(1) | |
Switch ‘ !
Matrix . k
-«———=1 Slice(1)
CIN CIN

Figure 2: Xilinx Virtex 5 configurable logic block (CLB).

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

3/21
Up Z >
Uy Z - .
o} w
Z
Uf—1 7 >

Figure 3: Fan-in of degree f and width w.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

4/21

Y W,
z
- W

Z
= W

Figure 4: Fan-out of degree f and width w.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554

U(0)

5/21

)

ﬂ

u(1)

u(2)

U(3)

Q1 iy 10101 10100 100 Q0 ¢y Q0

enable

Q1€

Q

[0

Q

e

Joooo0o00ooo0OOd

W(12)

W(13)

W(14)

W(15)

PCT/US2007/018406

Figure 5: A typical implementation of a 4-to-16 decoder.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

6/21
ty T\
-—-———-C___/
; /4
U2 ~
) —
)

vy v

Figure 6: A typical implementation of a 4-to-1 multiplexer.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

7/21
z
U -
ZZX m m4 -
- LUT
enable o

Figure 7: Structure of a 2% x m LUT.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406
8/21
- width = m M Arr
....................................... > emo a
fan—out . 4 4
i:::::?__-“-» A
"‘:‘—-"'"-l_—'—""""" ““““““ >’ i
| l G
i H i .
| { { .
b] [t [.
..:_.._._-_-...r.-_—> . res ’ :
— . i :
z 1-hot i ----- -"‘r“““;: ------ > [: . rowsg 2t
Decoder ' 0 ¥ :
:(:t :n
Il !‘ l’
1: !: 11 N
. X g oo
enable ————> ?::?"“:L’""> :: ::
—)<tu NI
M) T T
o o
‘4..|| |--|| '--qll
¥y W y
OR (8)

fan—in

Wim-1) Wim-2)

Figure 8: An implementation of a 2* x m LUT.

SUBSTITUTE SHEET (RULE 26)

WO

WO 2008/021554

9/21
SR(z. %
Z (Z> o)
U 7
write - >
clock >>

PCT/US2007/018406

Figure 9: Structure of an SR(z, £).

SUBSTITUTE SHEET (RULE 26)

\ Riw

WO 2008/021554 PCT/US2007/018406

10/21

o, %-bit registers

e m e e P e - >
Wi W, W
3 : ;
&—bit register Z_bit register| ... % _bit register
a-1 a-2 0
clock JAN /\ A
A A]
Tz Tz z
o . o o
serialize ‘
~1 K 1 —N J% 0
&l é’} éz/ &
shift in
F4
U

Figure 10: Implementation of an SR(z, £).

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

11/21
U L MUz, 1) /”/ 0
B v

Figure 11: Block diagram of an MU(z,y,n, a).

0 1 1 1 -0 0 1 1
o t o 1 o 1 o0 1 6o o0 o 1 o0 o0 0 I

(a) (b)
0 1 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1
(b) (d)

Figure 12: Multicast of 4 bits to 8 bits, for two different multicast schemes,

each with different values.

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/018406

WO 2008/021554

12/21

MUXs

Selector Module

selector address BoB1 B; Bn—1

Figure 13: General structure of a mapping unit MU(z,y,n, a).

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

13/21
U(0)
u(1)
u(2)
UQ3)
N
0(0)
e
™N
o
~
MIN
0@)
-1 |
— N\
003)
e
MIN
0(4)
1
o(5)
—A
N
| 06
- |
} o)

Figure 14: A fixed mapping unit MU(4,1,8,1) that produces Sy and Sy of
Table 2.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

14/21

u(0)
u(l)
U(2)
u)

o0

LK

o)

7

Q)

o03)

o)

> Q(%)

7

> Q(6)

)—4 ¢

Figure 15: A fixed mapping unit MU(4,2,8,1) that produces all sets of
subsets of Table 2.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

15/21

61 2 3 4 85 8 7 8 9 10 1t 12 13 14 15
ofo¥ojolofofofoofofofofolofoJo

N D o Ry R : :, d :j:‘b):()
22 IZ0E()

6 1+ 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 16: An example showing a permutation on the butterfly.

SR(a, %) SR(ct, %)

Qlew
N Qs
=

v 2 MU&.y 2D

¥ write~in write—out

Mod-a
Counter

en

clk 'T

Figure 17: An implementation of a bit-slice mapping unit MU (z,y,n, a).

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

16/21

U z - Mapping n
LUT | Unit - Q

N =

Figure 18: Structure of a mapping-unit-based configurable decoder

MUB(z,z,y,n,a).

0 Corresponding n-bit
0 (% patterns
E 00000001
0 2 4 6 00010001
01010101
[REEESEES!
0 1 2 3 4 5 6 7

¢ O Corresponding n-bit
0 (m patterns
00000001
0 1 2 3 00000011
Cé é 00001111
. 11111111
0 1 2 3 4 5 6 7

(b)

Figure 19: Two binary tree reductions of n = 8 elements

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

17/21

0 a o e o o e a Corresponding n-bit

patterns

10101010

0& Qo o& ’o o

’ l , ‘ _ 11001100

(o) om oje (7) 00110011
P |

< 11110000
00001111

Figure 20: ASCEND/DESCEND communication pairs for n = 8

1 . Qo
ogm
& MUB(logm,m,0,n, a)
Ag
ﬂ ———
log & n

| Bm MUB(log £, £, 0,7, a) L

1

@1

Figure 21: A parallel MU-B decoder that generates the one-hot subsets of
Zn,

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

18/21

</
Q
</
o\

U
<2

Hardwired partition for Sq

A

Hardwired partition for &

Figure 22: Hardwired partitions in the parallel MU-B decoder generating
the 1-hot subset of Z,

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

19/21
| q? |

r - o

D~

q ,r- %

e

‘ ""'F- ¥y

Pg E— ’0‘0"”. Y5
0 D, ‘ 00'0”’0‘_-)
i Q00 G
’0.0“"*- ty

| ':’W‘“‘O--

— 0 "
Fo p, — “Q‘“‘"‘- "
| 1 ‘ “‘:“h- r.
1 o\ “‘ 10
\“L- T4
' ““- 12
‘“- "3
L- Fig
” 15

Figure 23: A parallel O(n)-cost one-hot 4-to-16 decoder; here n = 16.

SUBSTITUTE SHEET (RULE 26)

WO 2008/021554 PCT/US2007/018406

20/21
Zo
T A ()
A;& ° MUB(z,2,y,n, @)
Yo/ Q
Y B
B ° ,
MUB,
o3 Q
Ai T . n
" MUB(z, z,y,n,a) o Merge Unit *“7[——*
B; t
MUB;
Ip-y
Ap_ np-a
Ypo1 ' MUB(z,z,y,n,«a)
B Qp-1
MUBp_,
control
(optional)
Figure 24: A parallel MU-B decoder MUB(z, z,y,n,a, P).
A
T . 20 Z1 n
‘—74“* LUT MU (2o, yo, 21, @) MU (z1,y1,7,) —74‘_‘
Q
By o
By 13

Figure 25: A serial MU-B decoder variant

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/018406

WO 2008/021554

21721

lllllllllllllllllllll

llllllllllllllll

lllllllllll

llllllllllll

llllllllllllllll

lllllllllllllll

-

clock 1

IIIIIIIIIIIIIIIIIIIII

llllll

Figure 26: A conceptual view of a recursive bit-slice mapping unit. Note

N6 7 N

that Q; = Qg ..

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings

