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PATENT APPLICATION FOR

METHODS, SYSTEMS, AND SOFTWARE FOR IDENTIFYING FUNCTIONAL
BIOMOLECULES

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit under 35 U.S.C. § 119(e) of U.S.S.N.
60/360,982, filed March 1, 2002, which is incorporated herein in its entirety.

COPYRIGHT NOTIFICATION
A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

FIELD OF THE INVENTION
The present invention relates to the fields of molecular biology, molecular
evolution, bioinformatics, and digital systems. More specifically, the invention
relates to methods of identifying biomolecule targets with desired properties and
methods for computationally predicting the activity of a biomolecule. Systems,
including digital systems, and system software for performing these methods are also
provided. Methods of the present invention have utility in the optimization of

proteins for industrial and therapeutic use.

BACKGROUND
Protein design has long been known to be a difficult task if for no other reason
than the combinatorial explosion of possible molecules that constitute searchable

sequence space. The protein design problem was recently shown to belong to a class
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of problems known as NP-hard (Pierce, et al. (2002) "Protein Design is NP-hard,"
Prot. Eng. 15(10):779-782), indicating that there is no algorithm known that can solve
such problems in polynomial time. Because of this complexity, many approximate
methods have been used to design better proteins; chief among them is the method of
directed evolution. Directed evolution of proteins is today dominated by various high

throughput screening and recombination formats, often performed iteratively.

Sequence space can be described as a space where all possible protein
neighbors can be obtained by a series of single point mutations. Smith (1970)
"Natural selection and the concept of a protein space," Nature, 225(232):563-4. For
example, a 100 residue long protein would be a 100 dimensional object with 20
possible values, i.e., the 20 naturally occurring amino acids, in each dimension. Each
one of these proteins has a corresponding fitness on some complex landscape.
Models of such "fitness landscapes" were first studied by Sewall Wright ( Wright
(1932) "The roles of mutation, inbreeding, crossbreeding and selection in evolution,"

Proceedings of 6™ International Conference on Genetics, 1:356-366) but have since

been expanded on by others (Eigen, M. (1971) "Self organization of matter and the

evolution of biological macromolecules,” Naturwissenschaften, 58(10):465-523;

Kauffman, S. et al. (1987) "Towards a general theory of adaptive walks on rugged
landscapes," J. Theor. Biol., 128(1):11-45; Kauffman, E.S., et al. (1989) "The NK

model of rugged fitness landscapes and its application to maturation of the immune

response," J. Theor. Biol., 141(2):211-45; Schuster, P., et al. (1994) "Landscapes:

complex optimization problems and biopolymer structures," Comput. Chem.,
18(3):295-324; Govindarajan, S. et al. (1997) "Evolution of model proteins on a
foldability landscape," Proteins, 29(4):461-6). The sequence space of proteins is

immense and is impossible to explore exhaustively. Accordingly, new ways to
efficiently search sequence space to identify functional proteins would be highly

desirable.

SUMMARY
One aspect of the present invention pertains to methods, apparatus, and
software for identifying amino acid residues for variation in a protein variant library.

These residues are then varied in the sequences of protein variants in the library in
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order to affect a desired activity such as stability, catalytic activity, therapeutic
activity, resistance to a pathogen or toxin, toxicity, etc. The method of this aspect
may be described by the following sequence of operations: (a) receiving data
characterizing a training set of a protein variant library; (b) from the data, developing
a sequence activity model that predicts activity as a function of amino acid residue
type and corresponding position in the sequence; and (c) using the sequence activity
model to identify one or more amino acid residues at specific positions in the
systematically varied sequences that are to be varied in order to impact the desired
activity. In this method, the protein variants in the library may have systematically
varied sequences. Further, the data provides activity and sequence information for

each protein variant in the training set.

In some embodiments, the method also includes (d) using the sequence
activity model to identify one or more amino acid residues that are to remain fixed (as

opposed to being varied) in new protein variant library.

The protein variant library may include proteins from various sources. In one
example, the members include naturally occurring proteins such as those encoded by
members of a single gene family. In another example, the members include proteins
obtained by using a recombination-based diversity generation mechanism. ‘Classical
DNA shuffling (i.e., DNA fragmentation-mediated recombination) or synthetic DNA
shuffling (i.e., synthetic oligonucleotide-mediated recombination) may be performed
on nucleic acids encoding all or part of one or more naturally occurring parent
proteins for this purpose. In still another example, the members are obtained by

performing DOE to identify the systematically varied sequences.

Generally, the sequence activity model may be of any form that does a good
job of predicting activity from sequence information. In a preferred embodiment, the
model is a regression model such as a partial least squares model. In another

example, the model is a neural network.

Using the sequence activity model to identify residues for fixing or variation
may involve any of many different possible analytical techniques. In some cases, a
“reference sequence” is used to define the variations. Such sequence may be one
predicted by the model to have a highest value (or one of the highest values) of the

desired activity. In another case, the reference sequence may be that of a member of
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the original protein variant library. From the reference sequence, the method may
select subsequences for effecting the variations. In addition or alternatively, the
sequence activity model ranks residue positions (or specific residues at certain

positions) in order of impact on the desired activity.

One goal of the method may be to generate a new protein variant library. As
part of this process, the method may identify sequences that are to be used for
generating this new library. Such sequences include variations on the residues
identified in (c) above or are precursors used to subsequently introduce such
variations. The sequences may be modified by performing mutagenesis or a
recombination-based diversity generation mechanism to generate the new library of
protein variants. This may form part of a directed evolution procedure. The new

library may also be used in developing a new sequence activity model.

In some embodiments, the method involves selecting one or more members of
the new protein variant library for production. One or more these may then be

synthesized and/or expressed in an expression system.

Yet another aspect of the invention pertains to apparatus and computer
program products including machine-readable media on which are provided program
instructions and/or arrangements of data for implementing the methods and software
systems described above. Frequently, the program instructions are provided as code
for performing certain method operations. Data, if employed to implement features of
this invention, may be provided as data structures, database tables, data objects, or
other appropriate arrangements of specified information. Any of the methods or
systems of this invention may be represented, in whole or in part, as such program

instructions and/or data provided on machine-readable media.

These and other features of the present invention will be described in more
detail below in the detailed description of the invention and in conjunction with the

following figures.
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BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a flow chart depicting a sequence of operations, including
identifying particular residues for variation, that may be used to generate one or more
generations of protein variant libraries.

Figure 2 is a graph that illustrates a convex Pareto front in a plot of a
hypothetical set of data.

Figure 3 is a graph that illustrates a non-convex Pareto front in a plot
of a hypothetical set of data.

Figure 4 is a chart that depicts certain steps performed in one
embodiment of a method of identifying members of a population of biopolymer
sequence variants most suitable for artificial evolution.

Figure 5 is a chart that depicts certain steps performed in one
embodiment of a method of identifying members of a set of biopolymer character
string variants that include multiple improved objectives relative to other members of
the set of biopolymer character string variants.

Figure 6 is a chart that depicts steps performed in one embodiment of a
method of evolving libraries for directed evolution.

Figure 7 is a chart that depicts certain steps performed in an
embodiment of a method of producing a fitter population of character string libraries.

Figure 8 is a chart that shows certain steps performed in an
embodiment of a method of selecting amino acid positions in a polypeptide variant to
artificially evolve.

Figure 9 is a chart that shows certain steps performed in another
embodiment of a method of selecting amino acid positions in a polypeptide variant to
artificially evolve.

Figure 10 is a chart that shows certain steps performed in an
embodiment of a method of identifying amino acids in polypeptides that are important
for a polypeptide sequence-activity relationship.

Figure 11 is a chart that depicts certain steps performed in one
embodiment of a method for efficiently searching sequence space.

Figure 12 is a chart that illustrates certain steps performed in one

embodiment of a method for efficiently searching sequence space.
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Figure 13 is a chart that shows certain steps performed in an
embodiment of a method of predicting character strings that include desired
properties.

Figure 14 schematically illustrates an example organizational tree
according to one embodiment of the invention.

Figure 15 is a chart that depicts certain steps performed in one
embodiment of a method of predicting properties of target polypeptide character
strings.

Figure 16 is a schematic of an example digital device.

DETAILED DISCUSSION OF THE INVENTION

L DEFINITIONS

Before describing the present invention in detail, it is to be understood
that this invention is not limited to particular compositions or systems, which can, of
course vary. It is also to be understood that the terminology used herein is for the
purpose of describing particular embodiments only, and is not intended to be limiting.
As used in this specification and appended claims, the singular forms “a”, “an”, and
“the” include plural referents unless the content and context clearly dictates otherwise.
Thus, for example, reference to “a device” includes a combination of two or more
such devices, and the like. Unless indicated otherwise, an “or” conjunction is
intended to be used in its correct sense as a Boolean logical operator, encompassing
both the selection of features in the alternative (A or B, where the selection of A is
mutually exclusive from B) and the selection of features in conjunction (A or B,

where both A and B are selected).

The following definitions and those included throughout this disclosure

supplement those known to persons of skill in the art.

A “bio-molecule” refers to a molecule that is generally found in a
biological organism. Preferred biological molecules include biological
macromolecules that are typically polymeric in nature being composed of multiple
subunits (i.e., “biopolymers™). Typical bio-molecules include, but are not limited to
molecules that share some structural features with naturally occurring polymers such

as an RNAs (formed from nucleotide subunits), DNAs (formed from nucleotide
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subunits), and polypeptides (formed from amino acid subunits), including, e.g.,
RNAs, RNA analogues, DNAs, DNA analogues, polypeptides, polypeptide
analogues, peptide nucleic acids (PNAs), combinations of RNA and DNA (e.g.,
chimeraplasts), or the like. Bio-molecules also include, e.g., lipids, carbohydrates, or
other organic molecules that are made by one or more genetically encodable

molecules (e.g., one or more enzymes or enzyme pathways) or the like.

The term “nucleic acid” refers to deoxyribonucleotides or
ribonucleotides and polymers (e.g., oligonucleotides, polynucleotides, etc.) thereof in
either single- or double-stranded form. Unless specifically limited, the term
encompasses nucleic acids containing known analogs of natural nucleotides which
have similar binding properties as the reference nucleic acid and are metabolized in a
manner similar to naturally occurring nucleotides. Unless otherwise indicated, a
particular nucleic acid sequence also iinplicitly encompasses conservatively modified
variants thereof (e.g., degenerate codon substitutions) and complementary sequences
and as well as the sequence explicitly indicated. Specifically, degenerate codon
substitutions may be achieved by generating sequences in which the third position of
one or more selected (or all) codons is substituted with mixed-base and/or
deoxyinosine residues (Batzer et al. (1991) Nucleic Acid Res. 19:5081; Ohtsuka et al.
(1985) J. Biol. Chem. 260:2605-2608; Rossolini et al. (1994) Mol. Cell. Probes 8:91-

98). The term nucleic acid is used interchangeably with, e.g., oligonucleotide,

polynucleotide, gene, cDNA, and mRNA encoded by a gene.

A “nucleic acid sequence” refers to the order and identity of the
nucleotides comprising a nucleic acid.

A “polynucleotide” is a polymer of nucleotides (A, C, T, U, G, etc. or
naturally occurring or artificial nucleotide analogues) or a character string
representing a polymer of nucleotides, depending on context. Either the given nucleic
acid or the complementary nucleic acid can be determined from any specified
polynucleotide sequence.

The term “gene” is used broadly to refer to any segment of DNA
associated with a biological function. Thus, genes include coding sequences and
optionally, the regulatory sequences required for their expression. Genes also
optionally include nonexpressed DNA segments that, for example, form recognition

sequences for other proteins. Genes can be obtained from a variety of sources,
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including cloning from a source of interest or synthesizing from known or predicted
sequence information, and may include sequences designed to have desired
parameters.

Two nucleic acids are “recombined” when sequences from each of the
two nucleic acids are combined in a progeny nucleic acid. Two sequences are
“directly” recombined when both of the nucleic acids are substrates for
recombination.

The terms “polypeptide” and “protein” are used interchangeably herein
to refer to a polymer of amino acid residues. Typically, the polymer has at least about
30 amino acid residues, and usually at least about 50 amino acid residues. More
typically, they contain at least about 100 amino acid residues. The terms apply to
amino acid polymers in which one or more amino acid residues are analogs,
derivatives or mimetics of corresponding naturally occurring amino acids, as well as
to naturally occurring amino acid polymers. For example, polypeptides can be
modified or derivatized, e.g., by the addition of carbohydrate residues to form
glycoproteins. The terms “polypeptide,” and “protein” include glycoproteins, as well
as non-glycoproteins.

A “motif” refers to a pattern of subunits in or among biological
molecules. For example, the motif can refer to a subunit pattern of the unencoded
biological molecule or to a subunit pattern of an encoded representation of a

biological molecule.

“Screening” refers to the process in which one or more properties of
one or more bio-molecule is determined. For example, typical screening processes
include those in which one or more properties of one or more members of one or more

libraries is/are determined.

“Selection” refers to the process in which one or more bio-molecules
are identified as having one or more properties of interest. Thus, for example, one can
screen a library to determine one or more properties of one or more library members.
If one or more of the library members is/are identified as possessing a property of
interest, it is selected. Selection can include the isolation of a library member, but this

is not necessary. Further, selection and screening can be, and often are, simultaneous.

The term “covariation” refers to the correlated variation of two or more

variables (e.g., amino acids in a polypeptide, etc.).
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“Genetic algorithms” are processes which mimic evolutionary
processes. Genetic algorithms (GAs) are used in a wide variety of fields to solve
problems which are not fully characterized or too complex to allow full
characterization, but for which some analytical evaluation is available. That is, GAs
are used to solve problems which can be evaluated by some quantifiable measure for
the relative value of a solution (or at least the relative value of one potential solution
in comparison to another). In the context of the present invention, a genetic algorithm
is a process for selecting or manipulating character strings in a computer, typically
where the character string corresponds to one or more biological molecules (e.g.,
nucleic acids, proteins, PNAs, or the like).

“Directed evolution” of “artificial evolution” refers to a process of
artificially changing a character string by artificial selection, recombination, or other
manipulation, i.e., which occurs in a reproductive population in which there are (1)
varieties of individuals, with some varieties being (2) heritable, of which some
varieties (3) differ in fitness (reproductive success determined by outcome of
selection for a predetermined property (desired characteristic). The reproductive
population can be, e.g., a physical population or a virtual population in a computer
system.

“Genetic operators” are user-defined operations, or sets of operations,
each including a set of logical instructions for manipulating character strings. Genetic
operators are applied to cause changes in populations of individuals in order to find
interesting (useful) regions of the search space (populations of individuals with
predetermined desired properties) by predetermined means of selection.
Predetermined (or partially predetermined) means of selection include computational
tools (operators comprising logical steps guided by analysis of information describing
libraries of character strings), and physical tools for analysis of physical properties of
physical objects, which can be built (synthesized) from matter with the purpose of
physically creating a representation of information describing libraries of character
strings. In a preferred embodiment, some or all of the logical operations are
performed in a digital system.

When referring to operations on strings (€.g., recombinations,
hybridizations, elongations, fragmentations, segmentations, insertions, deletions,

transformations, etc.) it will be appreciated that the operation can be performed on the
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encoded representation of a biological molecule or on the “molecule” prior to
encoding so that the encoded representation captures the operation.

A “data structure” refers to the organization and optionally associated
device for the storage of information, typically multiple “pieces” of information. The
data structure can be a simple recordation of the information (e.g., a list) or the data
structure can contain additional information (e.g., annotations) regarding the
information contained therein, can establish relationships between the various
“members” (i.e., information “pieces”) of the data structure, and can provide pointers
or links to resources external to the data structure. The data structure can be
intangible but is rendered tangible when stored or represented in a tangible medium
(e.g., paper, computer readable medium, etc.). The data structure can represent
various information architectures including, but not limited to simple lists, linked lists,
indexed lists, data tables, indexes, hash indices, flat file databases, relational
databases, local databases, distributed databases, thin client databases, and the like. In
preferred embodiments, the data structure provides fields sufficient for the storage of
one or more character strings. The data structure is optionally organized to permit
alignment of the character strings and, optionally, to store information regarding the
alignment and/or string similarities and/or string differences. In one embodiment, this
information is in the form of alignment “scores” (e.g., similarity indices) and/or
alignment maps showing individual subunit (e.g., nucleotide in the case of nucleic
acid) alignments. The term “encoded character string” refers to a representation of a
biological molecule that preserves desired sequence/structural information regarding
that molecule. As noted throughout, non-sequence properties of bio-molecules can be
stored in a data structure and alignments of such non-sequence properties, in a manner

analogous to sequence based alignment can be practiced.

It is generally assumed that two nucleic acids have common ancestry
when they demonstrate sequence similarity. However, the exact level of sequence
similarity necessary to establish homology varies in the art. In general, for purposes
of this disclosure, two nucleic acid sequences are deemed to be homologous when
they share enough sequence identity to permit direct recombination to occur between

the two sequences.

10
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A “phylogenetic family” refers to organisms, nucleic acid sequences,
polypeptides sequences, or the like that share a common evolutionary relationship or
lineage pattern.

A “subsequence” or “fragment” is any portion of an entire sequence of
nucleic acids or amino acids.

A “library” or “population” refers to a collection of at least two
different molecules and/or character strings, such as nucleic acid sequences (e.g.,
genes, oligonucleotides, etc.) or expression products (e.g., enzymes) therefrom. A
library or population generally includes large numbers of different molecules. For
example, a library or population typically includes at least about 100 different
molecules, more typically at least about 1000 different molecules, and often at least
about 10000 or more different molecules.

“Classification And Regression Trees” or “CART” refers to a
classification tree program that uses an exhaustive grid search of all possible
univariate splits to find the splits for a classification tree.

“Systematic variance” refers to different descriptors of an item or set
of items being changed in different combinations.

“Systematically varied data” refers to data produced, derived, or
resulting from different descriptors of an item or set of items being changed in
different combinations. Many different descriptors can be changed at the same time,
but in different combinations. For example, activity data gathered from polypeptides
in which combinations of amino acids have been changed is systematically varied
data.

A “descriptor” refers to something that serves to describe or identify an
item. For example, characters in a character string can be descriptors of amino acids
in a polypeptide being represented by the character string.

A “hyperbox” refers to a selected region in the objective space (e.g.,
sequence space) that includes at least one individual (e.g., a scored bio-molecule or
chracter string representation of the bio-molecule) that lies at least proximate to a
Pareto front in a given set of data.

The terms "sequence" and "character strings" are used interchangeably
herein to refer to the order and identity of amino acid residues in a protein (i.e., a
protein sequence or protein character string) or to the order and identity of nucleotides

in a nucleic acid (i.e., a nucleic acid sequence or nucleic acid character string).

11
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IL. GENERATING IMPROVED PROTEIN VARIANT LIBRARIES

In accordance with the present invention, various methods are provided for
generating new protein variant libraries that can be used to explore protein sequence
and activity space. A feature of many such methods is a procedure for identifying
amino acid residues in a protein sequence that are predicted to impact a desired
activity. As one example, such procedure includes the following operations:

() receiving data characterizing a training set of a protein variants,
wherein the data provides activity and sequence information for each protein variant
in the training set;

(b) from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the
sequence;

()  using the sequence activity model to identify one or more amino acid
residues at specific positions in one or more protein variants that are to be varied in

order to impact the desired activity.

Other methods including slight variations of this method are within the scope

of the present invention as set forth herein.

Figure 1 presents a flow chart showing various operations that may be
performed in the order depicted or in some other order. As shown, a process 01
begins at a block 03 with receipt of data describing a training set comprising residue
sequences for a protein variant library. In other words, the training set data is derived
from a protein variant library. Typically that data will include, for each protein in the
library, a complete or partial residue sequence together with an activity value. In
some cases, multiple types of activities (e.g., rate constant and thermal stability) are

provided together in the training set.

In many embodiments, the individual members of the protein variant library
represent a wide range of sequences and activities. This allows one to generate a
sequence-activity model having applicability over a broad region of sequence space.
Techniques for generating such diverse libraries include systematic variation of
protein sequences and directed evolution techniques. Both of these are described in

more detail elsewhere herein.

12
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Activity data may be obtained by assays or screens appropriately designed to
measure activity magnitudes. Such techniques are well known and are not central to
this invention. The principles for designing appropriate assays or screens are widely
understood. Techniques for obtaining protein sequences are also well known and are
not central to this invention. The activity used with this invention may be protein
stability (e.g., thermal stability). However, many important embodiments consider
other activities such as catalytic activity, resistance to pathogens and/or toxins,

therapeutic activity, toxicity, and the like.

After the training set data has been generated or acquired, the process uses it
to generate a sequence-activity model that predicts activity as a function of sequence
information. See block 05. Such model is an expression, algorithm or other tool that
predicts the relative activity of a particular protein when provided with sequence
information for that protein. In other words, protein sequence information is an input
and activity prediction is an output. For many embodiments of this invention, the
model can also rank the contribution of various residues to activity. Methods of
generating such models (e.g., PLS) will be discussed below, along with the format of
the independent variables (sequence information), the format of the dependent
variable(s) (activity), and the form of the model itself (e.g., a linear first order

expression).

A model generated at block 05 is employed to identify multiple residue
positions (e.g., position 35) or specific residue values (e.g. glutamine at position 35)
that are predicted to impact activity. See block 07. In addition to identifying such
positions, it may “rank” the residue positions or residue values based on their
contributions to activity. For example, the model may predict that glutamine at
position 35 has the most pronounced effect on activity, phenylalanine at position 208
has the second most pronounced effect, and so on. In a specific approach described
below, PLS regression coefficients are employed to rank the importance of specific
residues. In another specific approach, a PLS load matrix is employed to rank the

importance of specific residue positions.

After the process has identified residues that impact activity, some of them are
selected for variation as indicated at a block 09. This is done for the purpose of

exploring sequence space. Residues are selected using any of a number of different
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selection protocols, some of which will be described below. In one example, specific
residues predicted to have the biggest beneficial impact on activity are preserved; in
other words, they are not varied. A certain number of other residues predicted to have
a lesser impact are, however, selected for variation. In another example, the residue
positions found to have the biggest impact on activity are selected, but only if are
found to vary in high performing members of the training set. For example, if the
model predicts that residue position 197 has the biggest impact on activity, but all or
most of the proteins with high activity have leucine at this position, then position 197
would not be selected for variation — in this approach. All proteins in a next
generation library would have leucine at position 197. However, if some “good”
proteins had valine at this position and others had leucine, then the process would

choose to vary the amino acid at this position.

After the residues for variation have been identified, the method next
generates a new variant library having the specified residue variation. See block 11.
Various methodologies are available for this purpose. In one example, an in vitro or
in vivo recombination-based diversity generation mechanism is performed to generate
the new variant library. Such procedures may employ oligonucleotides containing
sequences or subsequences for encoding the proteins of the parental variant library.
Some of the oligonucleotides will be closely related, differing only in the choice of
codons for alternate amino acids selected for variation at 09. The recombination-
based diversity generation mechanism may be performed for one or multiple cycles.
If multiple cycles are used, each involves a screening step to identify which variants
have acceptable performance to be used in a next recombination cycle. This is a form

of directed evolution.

In a different example, a “reference” protein sequence is chosen and the
residues selected at 09 are “toggled” to identify individual members of the variant
library. The new proteins so identified are synthesized by an appropriate technique to
generate the new library. In one example, the reference sequence may be a top-
performing member of the training set or a “best” sequence predicted by a PLS

model.

In another approach, the sequence activity model is used as a “fitness

function” in a genetic algorithm for exploring sequence space. After one or more
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rounds of the genetic algorithm (with each round using the fitness function to select
one or more possible sequences for a genetic operation), a next generatioﬁ library is

identified for use as described in this flow chart.

After the new library has been produced, it is screened for activity, as
indicated in a block 13. Ideally, the new library will present one or more members
with better activity than was observed in the previous library. However, even without
such advantage, the new library can provide beneficial information. Its members may
be employed for generating improved models that account for the effects of the
variations selected in 09, and thereby more accurately predict activity across wider
regions of sequence space. Further, the library may represent a passage in sequence

space from a local maximum toward a global maximum (in activity).

Depending on the goal of process 01, it may be desirable to generate a series
of new protein variant libraries, with each one providing new members of a training
set. The updated training set is then used to generate an improved model. To this
end, process 01 is shown with a decision operation 15, which determines whether yet
another protein variant library should be produced. Various criteria can be used to
make this decision. Examples include the number of protein variant libraries
generated so far, the activity of top proteins from the current library, the magnitude of

activity desired, and the level of improvement observed in recent new libraries.

Assuming that the process is to continue with a new library, the process
returns to operation 05 where a new sequence-activity model is generated from
sequence and activity data obtained for the current protein variant library. In other
words, the sequence and activity data for the current protein variant library serves as
part of the training set for the new model (or it may serve as the entire training set).
Thereafter, operations 07, 09, 11, 13, and 15 are performed as described above, but

with the new model.

At some point, in process 01, this cycle will end and no new library will be
generated. At that point, the process may simply terminate or one or more sequences
from one or more of the libraries may be selected for development and/or

manufacture. See block 17.
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A. CHOOSING PROTEIN VARIANT LIBRARIES

Protein variant libraries are groups of multiple proteins generated by methods
of this invention. Protein variant libraries also provide the data for training sets used
to generate sequence-activity models. The number of proteins included in a protein
variant library depends on the application and the cost.

In one example, the protein variant library is generated from one or more
naturally occurring proteins. In one example, these are protein members encoded by a
single gene family. Other starting points for the library may be used. From these
seed or starting proteins, the library may be generated by various techniques. In one
case, the library is generated by classical DNA shuffling (i.e., DNA fragmentation-
mediated recombination as described in Stemmer (1994) Proc. Natl. Acad. Sci. USA
10747-10751 and WO 95/22625) or synthetic DNA shuffling (i.e., synthetic
oligonucleotide-mediated recombination as described in Ness et al. (2002) Nature
Biotechnology 20:1251-1255 and WO 00/42561) on nucleic acids encoding part or all
of one or more parent proteins. In another case, a single starting sequence is modified
in various ways to generate the library. Preferably, the library is generated by
systematically varying the individual residues. In one example, a design of
experiment (DOE) methodology is employed to identify the systematically varied
sequences. In another example, a “wet lab” procedure such as oligonucleotide-
mediated recombination is used to introduce some level of systematic variation.

As used herein, the term "systematically varied sequences" refers to a set of
sequences in which each residue is seen in multiple contexts. In principle, the level of
systematic variation can be quantified by the degree to which the sequences are
orthogonal from one another (maximally different compared to the mean). In
practice, the process does not depend on having maximally orthogonal sequences,
however, the quality of the model will be improved in direct relation to the
orthogonality of the sequence space tested. In a simple example, a peptide sequence
is systematically varied by identifying two residue positions, each of which can have
one of two different amino acids. A maximally diverse library includes all four
possible sequences. Such maximal systematic variation increases exponentially with
the number of variable positions; e.g., by 2%, when there are 2 options at each of N
residue positions. Those having ordinary skill in the art will readily recognize that

maximal systematic variation, however, is not required by the invention methods.
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Systematic variation provides a mechanism for identifying a relatively small set of
sequences for testing that provides a good sampling of sequence space.

Protein variants having systematically varied sequences can be obtained in a
number of ways using techniques that are well known to those having ordinary skill in
the art. Suitable methods include recombination-based methods that generate variants
based on one or more "parental" polynucleotide sequences. Polynucleotide sequences
can be recombined using a variety of techniques, including, for example, DNAse
digestion of polynucleotides to be recombined followed by ligation and/or PCR
reassembly of the nucleic acids. These methods include those described in, for
example, Stemmer (1994) Proc. Natl. Acad. Sci. USA, 91:10747-10751, U.S. Pat. No.
5,605,793, "Methods for In Vitro Recombination," U.S. Pat. No. 5,811,238, "Methods

for Generating Polynucleotides having Desired Characteristics by Tterative Selection
and Recombinaﬁon," U.S. Pat. No. 5,830,721, "DNA Mutagenesis by Random
Fragmentation and Reassembly," U.S. Pat. No. 5,834,252, "End Complementary
Polymerase Reaction," U.S. Pat. No. 5,837,458, "Methods and Compositions for
Cellular and Metabolic Engineering," "W0/42832, "Recombination of Polynucleotide
Sequences Using Random or Defined Primers," WO 98/27230, "Methods and
Compositions for Polypeptide Engineering," WO 99/29902, "Method for Creating
Polynucleotide and Polypeptide Sequences," and the like.

Synthetic recombination methods are also particularly well suited for
generating protein variant libraries with systematic variation. In synthetic
recombination methods, a plurality of oligonucleotides are synthesized which
collectively encode a plurality of the genes to be recombined. Typically the
oligonucleotides collectively encode sequences derived from homologous parental
genes. For example, homologous genes of interest are aligned using a sequence
alignment program such as BLAST (Atschul, et al., J. Mol. Biol., 215:403-410
(1990). Nucleotides corresponding to amino acid variations between the homologues
are noted. These variations are optionally further restricted to a subset of the total
possible variations based on covariation analysis of the parental sequences, functional
information for the parental sequences, selection of conservative or non-conservative
changes between the parental sequences, or other like criteria. Variations are
optionally further increased to encode additional amino acid diversity at positions
identified by, for example, covariation analysis of the parental sequences, functional

information for the parental sequences, selection of conservative or non-conservative
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changes between the parental sequences, or apparent tolerance of a position for
variation. The result is a degenerate gene sequence encoding a consensus amino acid
sequence derived from the parental gene sequences, with degenerate nucleotides at
positions encoding amino acid variations. Oligonucleotides are designed which
contain the nucleotides required to assemble the diversity present in the degenerate
gene. Details regarding such approaches can be found in, for example, Ness et al.,
(2002) Nature Biotechnology 20:1251-1255, WO 00/42561, "Oligonucleotide
Mediated Nucleic Acid Recombination," WO 00/42560, "Methods for Making
Character Strings, Polynucleotides and Polypeptides having Desired Characteristics,"
WO 01/75767, "In Silico Cross-Over Site Selection," and WO 01/64864, "Single-
Stranded Nucleic Acid Template-Mediated Recombination and Nucleic Acid
Fragment Isolation."

The polynucleotide variant sequences are then transcribed and translated,
either in vitro or in vivo, to create a set or library of protein variant sequences.

The set of systematically varied sequences can also be designed a priori using
design of experiment (DOE) methods to define the sequences in the data set. A
description of DOE methods can be found in Diamond, W.J. (2001) Practical

Experiment Designs: for Engineers and Scientists, John Wiley & Sons and in

“Practical Experimental Design for engineers and scientists” by William J Drummond
(1981)Van Nostrand Reinhold Co New York, “Statistics for experimenters” George
E.P. Box, William G Hunter and J. Stuart Hunter (1978) John Wiley and Sons, New
York, or, e.g., on the world wide web at itl.nist.gov/div898/handbook/. There are
several computational packages available to perform the relevant mathematics,
including MatLab and Statease Design expert. The result is a systematically varied
and orthogonal dispersed data set of sequences that is suitable for building the
sequence activity model of the present invention. DOE-based data sets can be readily
generated using either Plackett-Burman or Fractional Factorial designs. Id.

In engineering or chemical sciences, fractional factorial designs, for example,
are used to define fewer experiments (than in full factorial designs) in which a factor
is varied (toggled) between two or more levels. Optimization techniques are used to
ensure that the experiments chosen are maximally informative in accounting for factor
space variance. The same design approaches (e.g., fractional factorial, D-optimal
design) can be applied in protein engineering to construct fewer sequences where a

given number of positions are toggled between two or more residues. This set of
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sequences would be an optimal description of systematic variance present in the
protein sequence space in question. Once activities for the corresponding molecules
(e.g., polynucleotides can be constructed via gene synthesis in accordance with a
reverse translation of the sequence designs, then expressed as polypeptides) are
measured, a PLS model which tends to be an optimal solution, is developed. It should
be mentioned that when there is no restriction on the number of sequences to be

constructed.

An example of the DOE approach applied to protein engineering includes the
following operations:

1) Identify positions to toggle based on the principles described
earlier (present in parental sequences, level of conservation, etc.)

2) Create a DOE experiment using one of the commonly available
statistical packages by defining the number of factors (variable positions),
the number of levels (choices at each position), and the number of
experiments to run. The information content of the output matrix
(typically consisting of 1s and Os that represent residue choices at each
position) depends directly on the number of experiments to run (the more
the better).

3) Use the output matrix to construct a protein alignment that
codes the 1s and Os back to specific residue choices at each position.

4) Synthesize the genes encoding the proteins represented in the
protein alignment.

5) Test the proteins encoded by the synthesized genes in relevant
assay(s).

6) Build a model on the tested genes/proteins.

7) Follow the steps described before to identify positions of

importance and to build a subsequent library with improved fitness.

For example purposes, consider a protein in which the functionally best
amino acid residues at 20 positions are to be determined, e.g., where there are 2
possible amino acids available at each position. In this case, a resolution IV factorial
design would be appropriate. A resolution IV design is defined as one which is

capable of elucidating the effects of all single variables, with no two-factor effects
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overlapping them. The design would then specify a set of 40 specific amino acid
sequences that would cover the total diversity of 2% (~1 million) possible sequences.
These sequences are then generated by a standard gene synthesis protocol and the
function and fitness of these clones is determined.

An alternative to the above approaches is to employ all available sequences,
e.g., the GenBank® database and other public sources, to provide the protein variant
library. Although this entails massive computational power, current technologies
make the approach feasible. Mapping all available sequences provides an indication

of sequence space regions of interest.

B. GENERATING A SEQUENCE ACTIVITY MODEL & USING
THAT MODEL TO IDENTIFY RESIDUE POSITIONS FOR VARIATION

As indicated above, a sequence-activity model used with the present invention
relates protein sequence information to protein activity. The protein sequence
information used by the model may take many forms. Frequently, it is a complete
sequence of the amino acid residues in a protein; e.g., HGPVFSTGGA .. .. Insome
cases, however, it may be unnecessary to provide the complete amino acid sequence.
For example, it may be sufficient to provide only those residues that are to be varied
in a particular research effort. At later stages in research, for example, many residues
may be fixed and only limited regions of sequence space remain to be explored. In
such situations, it may be convenient to provide sequence activity models that require,
as inputs, only the identification of those residues in the regions of the protein where
the exploration continues. Still further, some models may not require exact identities
of residues at the residue positions, but instead identify one or more physical or
chemical properties that characterize the amino acid at a particular residue position.
For example, the model may require specification of residue positions by bulk,
hydrophobicity, acidity, etc. In some models, combinations of such properties are
employed.

The form of the sequence-activity model can vary widely, so long as it
provides a vehicle for correctly approximating the relative activity of proteins based
on sequence information. Generally, it will treat activity as a dependent variable and
sequence/residue values as independent variables. Examples of the
mathematical/logical form of models include linear and non-linear mathematical

expressions of various orders, neural networks, classification and regression
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trees/graphs, clustering approaches, recursive partitioning, support vector machines,
and the like. In one preferred embodiment, the model form is a linear additive model
in which the products of coefficients and residue values are summed. In another
preferred embodiment, the model form is a non-linear product of various
sequence/residue terms, including certain residue cross-products (which represent
interaction terms between residues).

Models are developed from a training set of activity versus sequence
information to provide the mathematical/logical relationship between activity and
sequence. This relationship is typically validated prior to use for predicting activity of
new sequences or residue importance.

Various techniques for generating models are available. Frequently, such
techniques are optimization or minimization techniques. Specific examples include
partial least squares, various other regression techniques, as well as genetic
programming optimization techniques, neural network techniques, recursive
partitioning, and support vector machine techniques. Generally, the technique should
produce a model that can distinguish residues that have a significant impact on
activity from those that do not. Preferably, the model should also rank individual
residues or residue positions based on their impact on activity.

In a preferred embodiment of the present invention, the sequence activity
model is a partial least squares (PLS) variable regression model. PLS is an algorithm
that uses X (independent) variable importance regression to build predictive models
based on multicollinearity among variables and their correlation with a Y-score (i.e.,
dependent variable). The X- and Y- scores are selected by PLS so that the
relationship of successive pairs of X and Y scores is as strong as possible. Hand, D.J.,
et al. (2001) Principles of Data Mining (Adaptive Computation and Machine
Learning), Boston, MA, MIT Press. Details of how to derive a final regression
equation using PLS can be found, for example, in Geladi, et al. (1986) "Partial Least-
Squares Regression: a Tutorial," Anal. Chim. Acta, 198:1-17.

In general, a PLS regression model employed in the practice of the present

invention has the following form:

|l
—_

>

i=1 j

CiiXj (1)
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In this expression, y is predicted response, while c;; and x;; are the regression

coefficient and bit value (i.e., residue choice) respectively at position i in the

sequence. There are N residue positions in the sequences of the protein variant library

and each of these may be occupied by one or more residues. At any given position,

there may be j = 1 through M separate residue types. This PLS model assumes a

linear (additive) relationship between the residues at every position. An expanded

version of equation 1 follows:

y=Co+ C11X11 + Ci2X12t ... CimXim + Ca1Xa1 T C2Xpp ... ComXom .. T CNMENM

Data in the form of activity and sequence information is derived from the

initial protein variant library and used to determine the regression coefficients of the

PLS model. The bit values are first identified from an alignment of the protein variant

sequences. Amino acid residue positions are identified from among the protein

variant sequences in which the amino acid residues in those positions differ between

sequences. Amino acid residue information in some or all of these variable residue

positions may be incorporated in the sequence activity model.

Table I contains sequence information in the form of variable residue positions

and residue type for 10 illustrative variant proteins, along with activity values

corresponding to each variant protein. Understand, that these are representative

members of a larger set that is required to generate enough equations to solve for all

the coefficients. Thus, for example, for the illustrative protein variant sequences in

Table I, positions 10, 166, 175, and 340, are variable residue positions and all other

positions, i.e., those not indicated in the Table, contain residues that are identical

between Variants 1-10.

Table I: Illustrative Sequence and Activity Data

Variable Positions: 10 166 175 340
Variant 1 Ala Ser Gly Phe
Variant 2 Asp Phe Val Ala
Variant 3 Lys Leu Gly Ala
Variant 4 Asp Tle Val Phe
Variant 5 Ala e Val Ala
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Variant 6 Asp Ser Gly Phe Y6

Variant 7 Lys Phe Gly Phe 7

Variant 8 Ala Phe Val Ala Vs

Variant 9 Lys Ser Gly Phe Yo

Variant 10 Asp Lenu Val Ala Vio
and so on.

Thus, based on equation 1, a PLS model can be derived from the systematically varied

library in Table I, i.e.,:

Y = Co * €10 Ala X10Ala T C10Asp X10Asp T C10 Lys X10Lys T C1668er X1668er T C166 Phe X166Phe
C166Leu X166Leu T C1661le X1661e T C175Gly X175Gly T €175 Val X175val T C340 Phe X340Phe T

C340 Ala X340Ala 2

The bit values (x variables) can be represented as either 1 or 0 reflecting the
presence or absence of the designated amino acid residue or alternatively, 1 or -1. For
example, using the 1 or 0 designation, X041 Would be "1" for Variant 1 and "0" for
Variant 2. Using the 1 or —1 designation, Xj0a1, would be "1" for Variant 1 and "-1"
for Variant 2. The regression coefficients can thus be derived from PLS equations
based on the sequence activity information for all variants in library. Examples of

such equations for Variants 1-10 (using the 1 or 0 designation for x) follow:

y1 = o+ C10 Ala (1) + C10asp (0) + €10 Lys (0) + cig6ser (1) + €166 Phe (0) + C1661en (0) +
cigste (0) + c17561y (1) + €175 var (0) + €340 phe (1) + C340 ala (0)

2 = ¢ + €10 ata (0) + C1oasp (1) + 10 1ys (0) + Cig6ser (0) + €166 Phe (1) + C166Leu (0) +
cisste (0) + c17561y (0) + 175 var (1) + €340 phe (0) + C340 Ala (1)

3 = Co + €10 ta (0) + C10asp (0) + C1o1ys (1) + Cigoser (0) + C166 phe (0) + C1e61en (1) +
ciestte (0) + 17561y (1) + 175 var (0) + €340 phe (0) + 340 Ala (1)

Y4 = co + 10 a1a (0) + C10asp (1) + C101ys (0) + C1668er (0) + C166 Phe (0) + C1661eu (0) +
cisstie (1) + c17561y (0) + €175 var (1) + €340 phe (1) + C340 Ala (0)

s =co + 10 a1a (1) + Ci0asp (0) + 10 1ys (0) + Cig6ser (0) + C166 Phe (0) + Crg61.0u (0) +
cisstie (1) + 17561y (0) + €175 var (1) + €340 phe (0) + €340 Ala (1)

V6 = Co + €10 ata (0) + C10asp (1) + C1o1ys (0) + cig6ser (1) T €166 Phe (0) + C1661eu (0) +
cisste (0) + 17561y (1) + €175 var (0) + €340 phe (1) + €340 Al (0)

¥7 =co + ¢10 a1a (0) + C1oasp (0) + 10 1ys (1) + C166ser (0) + €166 Phe (1) + Cio61eu (0) +
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cisstte (0) + c17561y (1) + €175 va1 (0) + €340 phe (1) + €340 A1a (0)

yg = o + €10 ata (1) + C10asp (0) + C101ys (0) + C1665er (0) + C166 Pe (1) + C166Len (0) +
cis6tte (0) + 17561y (0) + €175 vat (1) + €340 Phe (0) + €340 Ata (1)

o = o + C10 ata (0) + C10asp (0) + €101y (1) + Crg6ser (1) + C166 phe (0) + CrgLeu (0) +
ciss1e (0) + 17561y (1) + €175 va1 (0) + €340 phe (1) + €340 A1a (0)

Y10 = Co + €10 ata (0) + C1oasp (1) + C1o1ys (0) + Ci665er (0) + 166 phe (0) + Cr66Leu (1) +

cisstte (0) + 17561y (0) + C175vat (1) + €340 Phe (0) + €340 A1a (1)

The complete set of equations can be readily solved using PLS to determine
the value for regression coefficients corresponding to each residue and position of
interest. In this example, the relative magnitude of the regression coefficient
correlates to the relative magnitude of contribution of that particular residue at the
particular position to activity. The regression coefficients may then be ranked or
otherwise categorized to determine which residues are more likely to favorably
contribute to the desired activity. Table II provides illustrative regression coefficient

values corresponding to the systematically varied library exemplified in Table I:

Table 1I: INustrative Rank Ordering of Regression Coefficients

REGRESSION COEFFICIENT VALUE

C166Tle. 62.15
C175Gly 61.89
C10Asp 60.23
C340 Ala 57.45
C10 Ala 50.12
C166 Phe 49.65
C166Leu 49.42
C340 Phe 47.16
C166Ser 45.34
C175 Val 43.65
C10 Lys 40.15

The rank ordered list of regression coefficients can be used to construct a new

library of protein variants that is optimized with respect to a desired activity (i.e.,
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improved fitness). This can be done in various ways. In one case, it is accomplished
by retaining the amino acid residues having coefficients with the highest observed
values. These are the residues indicated by the PLS model to contribute the most to
desired activity. If negative descriptors are employed to identify residues (e.g., 1 for
leucine and —1 for glycine), it becomes necessary to rank residue positions based on
absolute value of the coefficient. Note that in such situations, there is typically only a
single coefficient for each residue. The absolute value of the coefficient magnitude
gives the ranking of the corresponding residue position. Then, it becomes necessary
to consider the signs of the individual residues to determine whether each of them is
detrimental or beneficial in terms of the desired activity.

Residues are generally considered in the order in which they are ranked. For
each residue under consideration, the process determines whether to "toggle" that
residue. The term "toggling" refers to the introduction of multiple amino acid residue
types into a specific position in the sequences of protein variants in the optimized
library. For example, serine may appear in position 166 in one protein variant,
whereas phenylalanine may appear in position 166 in another protein variant in the
same library. Amino acid residues that did not vary between protein variant
sequences in the training set typically remain fixed in the optimized library.

An optimized protein variant library can be designed such that all of the
identified “high” ranking regression coefficient residues are fixed, and the remaining
lower ranking regression coefficient residues are toggled. The rationale for this being
that one should search the local space surrounding the ‘best’ predicted protein. Note
that the starting point “backbone” in which the toggles are introduced may be the best
predicted PLS protein or an already validated ‘best’ protein from a screened library.

In an alternative approach, at least one or more, but not all of the high-ranking
regression coefficient residues identified may be fixed in the optimized library, and
the others toggled. This approach is recommended if it is desired not to drastically
change the context of the other amino acid residues by incorporating too many
changes at one time. Again, the starting point for toggling may be the best set of
residues as predicted by the PLS model or a best validated protein from an existing
library. Or the starting point may be an “average” clone that models well. In this
case, it may be desirable to toggle the residues predicted to be of higher importance.
The rationale for this being that one should explore a larger space in search for

activity hills previously omitted from the sampling. This type of library is typically
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more relevant in early rounds as it generates a more refined picture for subsequent
rounds.

The number of high value regression coefficient residues to retain, and number
of low value regression coefficient residues to toggle, can be varied. Factors to
consider include desired library size and magnitude of difference between regression
coefficients. Typical optimized protein variant libraries of the present invention
contain about 2" protein variants, where N represents the number of positions that are
toggled between two residues. Stated another way, the diversity added by each
additional toggle doubles the size of the library such that 10 toggle positions produces
~ 1,000 clones (1,024), 13 positions ~ 10,000 clones (8,192) and 20 positions
~1,000,000 clones (1,048,576). The appropriate size of library depends on factors
such as cost of screen, ruggedness of landscape, preferred percentage sampling of
space etc.

In practice, one can pursue various subsequent round library strategies at the
same time, with some strategies being more aggressive (fixing more the “beneficial”
residues) and other strategies being more conservative (fixing fewer “beneficial”
residues in the hopes of exploring the space more thoroughly).

Optimized protein variant libraries can be generated using the recombination
methods described herein, or alternatively, by gene synthesis methods, followed by in
vivo or in vitro expression. The optimized protein variant libraries are then screened
for desired activity, and sequenced. As indicated above in the discussion of Figure 1,
the activity and sequence information from the optimized protein variant library can
be employed to generate another sequence activity model from which a further
optimized library can be designed, using the methods described herein. In one
approach, all proteins from this new library are used as part of the dataset.

In varied approaches, a wet-lab validated ‘best’ (or one of the few best)
protein in the optimized library (i.e., a protein with the highest,or one of the few
highest, measured function that still models well, i.e., falls relatively close to the
predicted value in PLS cross validation) may serve as a backbone where various
schemes of changes are incorporated. In this approach, the dataset for the “next
generation” library (and possibly a corresponding PLS model) is obtained by
changing residues in of one or a few of the best proteins from the current optimized
library. In one embodiment, these changes comprise a systematic variation of the

residues in the backbone.
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Multiple other variations on the above approach are within the scope of this

invention. As one example, the xjj variables are representations of the physical or

chemical properties of amino acids — rather than the exact identities of the amino
acids themselves (leucine versus valine versus proline, . . .). Examples of such
properties include lipophilicity, bulk, and electronic properties (e.g., formal charge,
van-der Waals surface area associated a partial charge, etc.). To implement this

approach, the Xjj values representing amino acid residues can be presented in terms of

their properties or principal components constructed from the properties.

Other variations of the above approach involve use of different techniques for
ranking residues or otherwise characterizing them in terms of importance. In the
above approach, the magnitudes of regression coefficients were used to rank residues.
Residues having coefficients with large magnitudes (e.g., 166 Ile) were viewed as
high-ranking residues. This characterization was used to decide whether or not to
vary a particular residue in the generation of a new, optimized library of protein
variants.

PLS and other techniques provide other information, beyond regression
coefficient magnitude, that can be used to rank specific residues or residue positions.
Techniques such as PLS and Principle Component Analysis (PCA) provide
information in the form of principle components or latent vectors. These represent
directions or vectors of maximum variation through multi-dimensional data sets such
as the protein sequence-activity space employed in this invention. These latent
vectors are functions of the various sequence dimensions; i.e., the individual residues
or residue positions that comprise the protein sequences of the variant library used to
construct the training set. A latent vector will therefore comprise a sum of
contributions from each of the residue positions in the training set. Some positions
will contribute more strongly to the direction of the vector. These will be manifest by
relatively large “loads,” i.e., the coefficients used to describe the vector. As a simple
example, a training set may be comprised of tripeptides. The first latent vector will

typically have contributions from all three residues.

Vector 1 = al(residue position 1) + a2(residue position 2) + a3(residue position 3)
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The coefficients, al, a2, and a3, are the loads. Because these reflect the
importance of the corresponding residue positions to variation in the dataset, they can
be used to rank the importance of individual residue positions for purposes of
“toggling” decisions, as described above. Loads, like regression coefficients, may be
used to rank residues at each toggled position. Various parameters describe the
importance of these loads. Some such Variable Importance in Projection (VIP) make
use of a load matrix, which is comprised of the loads for multiple latent vectors taken
from a training set. In Variable Importance for PLS Projection, the importance of the
ith variable (e.g., residue position) is computed by calculating VIP (variable
importance in projection). For a given PLS dimension, a, (VIN),,? is equal to the
squared PLS weight (Wax)” of a variable multiplied by the percent explained
variability in y (dependent variable, e.g., certain function) by that PLS dimension.
(VIN)” is summed over all PLS dimensions (components). VIP is then calculated by
dividing the sum by the total percent variability in y explained by the PLS model and
multiplying by the number of variables in the model. Variables with large VIP, larger
than 1, are the most relevant for correlating with a certain function (y) — and hence
highest ranked for purposes of making toggling decisions.

Other alternatives to the above methodology involve different procedures for
using residue importance (rankings) in determining which residues to toggle. In one
such alternative, higher ranked residue positions are chosen for toggling. The
information needed in this approach includes the sequence of a best protein from the
training set, a PLS predicted best sequence, and a ranking of residues from the PLS
model. The “best” protein is a wet-lab validated “best” clone in the dataset (clone
with the highest measured function that still models well, i.e., falls relatively close to
the predicted value in PLS cross validation). The method compares each residue from
this protein with the corresponding residue from a “best predicted” sequence having
the highest value of the desired activity. This is accomplished using, e.g., the loads
matrix, starting with the residue having the highest load. Alternatively, another
measure of the PLS best predicted sequence such as highest value of regression
coefficient for each position — is used. If the residue with the highest load or
regression coefficient is not present in the ‘best’ clone, the method introduces that
position as a toggle position for the subsequent library. The process is repeated for
various residues, moving through successively lower load values, until the library is

of sufficient size.
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More generally, a sequence predicted by the sequence activity model to have
the highest value (or one of the highest values) of the desired activity may be used
various ways in constructing a next generation library. It may be subject to various
mutagenesis, recombination and/or subsequence selection techniques. Each of these

may be performed in vitro, in vivo, or in silico.

III. IDENTIFICATION OF TARGET BIO-MOLECULES WITH DESIRED
PROPERTIES AND/OR FOR ARTIFICIAL EVOLUTION

A. LIBRARY DESIGN USING PARETO FRONT OPTIMIZATION

FOR MULTIPLE PROPERTIES

The present invention provides methods that utilize Pareto front
optimization to select clones for carrying out future rounds of artificial evolution (e.g.,
DNA shuffling, etc.) in connection with the optimization of multiple polypeptide
properties (i.e., multiple objectives). Pareto front optimization is a multi-objective
evolutionary algorithm that simultaneously improves two or more desired objectives.

To illustrate, Figure 2 provides a graph that illustrates a Pareto front in
a plot of a hypothetical set of data, where function 2 (F2) is plotted as a function of
function 1 (F1). Any optimization problem is optionally cast as a minimization
problem, by, e.g., reversing the sign of the fitness or inverting the fitness. As shown
in Figure 2, for example, the axes represent different objectives to be simultaneously
minimized. The solutions (represented by the numbered data points) that lie on the
Pareto front represent trade-off solutions that are not "dominated" by any other
solution. These non-dominated points are defined by the fact that no other solution
exists in the hypothetical data set that is better (smaller in this case) than all solutions
in both objectives. For example, solution 1 is part of the Pareto front because, even
though solution 2 has a smaller value for objective F2, solution 1 has a smaller value
for objective F1. In contrast, solution 7 is not part of the Pareto front because at least
one solution is better in both objectives.

Figure 4 is a chart that depicts certain steps performed in one embodiment of

the invention method of identifying members of a population of biopolymer sequence
variants most suitable for artificial evolution. The phrase “most suitable for artificial

evolution” refers to those members of the variant population that lie at least proximal
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to a Pareto front, e.g., when the variants are scored (e.g., screened or selected) and
plotted for desired objectives. These variants are generally the most suitable for
artificial evolution, because they are not dominated by other variants (or at least most
other variants) in at least one of the desired objectives.

As shown in A1 of Figure 4, the method includes selecting or
screening the members of the population of biopolymer sequence variants (e.g.,
character string variants, etc.) for two or more desired objectives to produce a multi-
objective fitness data set. Desired objectives typically include, e.g., structural and/or
functional properties, such as any of those described herein. The population of
biopolymer sequence variants can be produced in accordance with the diversity
generating procedures described herein, then screened for activities or other function
(i.e., objectives).” Thereafter, the method includes identifying a Pareto front (e.g.,
substantially convex, substantially non-convex, etc.) in the multi-objective fitness data
set (A2), and selecting members proximal to the Pareto front (A3), thereby identifying
the members of the population of biopolymer sequence variants most suitable for
artificial evolution. In the context of the present invention, the “Pareto front” refers to
biopolymer sequence variants that are non-dominated by other biopolymer sequence
variants in at least one of two or more desired objectives. In some embodiments, the
method further includes evolving the members selected in A3 using artificial
evolution procedures to produce evolved biopolymer sequence variants. Various
artificial evolution procedures that are optionally used to evolve these variants are
described herein. At least one step, and in certain cases all steps, of these artificial
evolution procedures may be performed in silico. These embodiments optionally also
include repeating steps A1-A3 using the evolved biopolymer sequence variants as at
least some of the members of the population of biopolymer sequence variants in a
repeated step Al. Typically, at least one step, and some cases all steps, of the
methods described herein are performed in a digital or web-based system. Digital and
web-based systems are described in greater detail below.

In addition, to provide an optimal set of solutions from which to select,
algorithms should generally attempt to evenly distribute or maximally spread the
solutions in objective space along the Pareto front, because clustered solutions
typically lack sufficient diversity. Accordingly, algorithms are typically designed to
order individual solutions in a population based upon both fitness along each

objective and according to their relative isolation in objective space. This approach
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generally results in a good spread of solutions along the Pareto front, even into non-
convex regions of objective space. Non-convex Pareto fronts are discussed further
below. One approach to selecting solutions based on their relative diversity is the
technique of region-based selection, which is described further in, e.g., Corne et al.,
“PESA-II: Region-based selection in evolutionary multiobjective optimization,” in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), Morgan Kaufmann Publishers, (2001), pp. 283-290. Region-based selection

generally involves partitioning the objective space into hyperboxes and preferentially
selecting solutions from less populated hyperboxes. Other techniques for selecting
solutions (e.g., binary tournament selection, etc.), which are generally known in the
art are optionally utilized in practicing the methods described herein.

One significant advantage of Pareto front optimization is that the
approach does not to reduce the problem at issue to one of single objective
optimization (e.g., by a weighted sum approach or the like), rather the approach
provides a set of optimal solutions from which to select. Although weighted measures
are optionally used to select final solutions, not all solutions will be identified via this
approach, e.g., if the Pareto front is non-convex. Accordingly, a simple weighted sum
of objectives may restrict the ability of an algorithm to find viable solutions in these
instances. The problem posed by non-convexity in the objective space is further
illustrated in Figure 3, which provides a graph that shows a plot of a hypothetical set
of data. As shown and consistent with the definition, the set of solutions (represented
by numbered data points) along the Pareto front are non-dominated. However,
classical weight-based optimization, which is generally known in the art, would not
yield solutions 3 and 4 for any weights on objectives F1 and F2, due to the existence
of superior solutions based on the weighted sum. Furthermore, if an approximately
equal trade-off for both objectives were sought, a whole class of solutions would be
excluded using the classical methods.

Methods of the present invention include various embodiments for
selecting sequence variants that are proximal to the Pareto front. For example, the
methods optionally include applying one or more niching techniques to identify the
members of the population of biopolymer sequence variants most suitable for
artificial evolution. Additional details relating to various niching techniques are
provided in, e.g., Darwen et al. (1997) “Speciation as automatic categorical

modularization,” IEEE Transactions on Evolutionary Computation, 1(2):101-108,
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Darwen et al. (1996), “Every niching method has its niche: fitness sharing and
implicit sharing compared,” Proc. of Parallel Problem Solving from Nature (PPSN)
IV, Vol.1141, Lecture Notes in Computer Science, Springer-Verlag, (1996), pp.398-

407, and Horn et al. (1994) “A niched pareto genetic algorithm for multiobjective

optimization,” In Proceedings of the First IEEE Conference on Evolutionary

Computation, IEEE World Congress on Computational Computation, (1):82-87. In
other embodiments, sequence variants are selected by, e.g., calculating a weighted
sum of the two or more desired objectives for at least some of the members proximal
to the Pareto front, and selecting at least one member that includes a higher weighted
sum than other members proximal to the Pareto front. In still other embodiments,
biopolymer sequence variants are selected by, e.g., ranking the one or more members
according to relative proximity to the Pareto front and relative isolation in sequence
space, and selecting at least one member that ranks higher than other members
proximal to the Pareto front. Region-based selection techniques (described above) are
also optionally used to select members proximal to the Pareto front. To illustrate, one
region-based selection technique includes partitioning sequence space that includes
the population of biopolymer sequence variants into one or more hyperboxes and
selecting the members proximal to the Pareto front from at least one of the
hyperboxes that is less populated than other regions of the sequence space.

To further illustrate, Figure 5 is a chart that depicts certain steps
performed in one embodiment of a method of identifying members of a set of
biopolymer character string variants that include multiple improved objectives
relative to other members of the set of biopolymer character string variants. As
shown, the method includes applying one or more multi-objective evolutionary
algorithms to at least one parental biopolymer character string (€.g., a plurality of
parental biopolymer character strings or the like) to produce the set of biopolymer
character string variants (B1), and selecting or screening the members of the set of
biopolymer character string variants for two or more desired objectives (B2). As
further shown, the method also includes plotting the set of biopolymer character string
variants as a function of the two or more desired objectives to produce a biopolymer
character string variant plot (e.g., as depicted in Figure 2 or 3)(B3), and identifying a
Pareto front (e.g., substantially convex, substantially non-convex, etc.) in the
biopolymer character string variant plot (B4), thereby identifying the members of the

set of biopolymer character string variants that include the multiple improved
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objectives relative to the other members of the set of biopolymer character string
variants. The method is optionally iteratively performed, e.g., repeating steps B1-B4
using at least one member of the set of biopolymer character string variants as a
parental biopolymer character string in a repeated step B1. In some embodiments, the
methods further include synthesizing polynucleotide or polypeptide sequence variants
that correspond to members of the set of biopolymer character string variants
identified in step B4.

In preferred embodiments, members proximal to the Pareto front in a
given analysis are maximally spread apart (e.g., substantially evenly or uniformly
distributed) from one another, e.g., to enhance diversity among identified solutions, as
described above. In other embodiments, the sequence variants proximal to the Pareto
front are substantially unevenly distributed (e.g., randomly or non-uniformly
distributed). In addition, the biopolymer character string variant plots are optionally
presented as, e.g., maximization or minimization plots.

Many different desired objectives are optionally screened or selected
according these methods. To illustrate, each of the two or more desired objectives
typically independently include a physicochemical or functional property. In some
embodiments, the two or more desired objectives include, e.g., constraints, values
detailing distance from achieving constraints, a total number of constraints satisfied,
and/or a relative number of constraints satisfied. Optionally, the two or more desired
objectives include measures of fitness, competing or non-competing objectives, or the
like. Furthermore, the two or more desired objectives are also optionally orthogonal
to one another.

In other aspects, the invention provides systems for identifying
members of a set of biopolymer character string variants that include multiple
improved objectives relative to other members of the set of biopolymer character
string variants. The systems include a computer having a database capable storing the
set of biopolymer character string variants. The systems also include system software
that includes logic instructions for applying multi-objective evolutionary algorithms
to parental biopolymer character strings to produce the set of biopolymer character
string variants, and selecting or screening the members of the set of biopolymer
character string variants for two or more desired objectives. The system software also
includes logic instructions for plotting the set of biopolymer character string variants

as a function of the two or more desired objectives to produce a biopolymer character
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string variant plot, and identifying a Pareto front in the biopolymer character string
variant plot. Systems are described in greater detail below.

The invention also provides a computer program product that includes
a computer readable medium having logic instructions for applying multi-objective
evolutionary algorithms to parental biopolymer character strings to produce a set of
biopolymer character string variants, and selecting or screening the members of the
set of biopolymer character string variants for two or more desired objectives. In
addition, the computer program product includes logic instructions for plotting the set
of biopolymer character string variants as a function of the two or more desired
objectives to produce a biopolymer character string variant plot, and identifying a
Pareto front in the biopolymer character string variant plot to identify the members of
the set of biopolymer character string variants that include multiple improved
objectives relative to other members of the set of biopolymer character string variants.

To assist in selecting clones from a given experiment to further
develop, e.g., via the artificial evolution procedures described herein, systems and
computer program products of the invention generally include logic instructions that
rank clones in terms of, e.g., their proximity to the Pareto front, by their relative
isolation, and/or the like. This provides for extensive diversity along the Pareto front
with the concomitant benefits of such diversity, as described above. Further, the best
clones along the most advanced Pareto front are optionally selected at sampling rates
(e.g., DNA concentrations, etc.) based on their modified fitness values. This allows
clones from less populated areas of objective space to be sampled more often, which
again promotes diversity in subsequent rounds of artificial evolution. A weighted
sum of the activities after evolution is optionally used to select the “best” clone.
However, researchers have found that using a weighted sum of the activities during
evolution results in a single objective optimization with low diversity along the Pareto
front.

In addition, niching techniques (mentioned above) are optionally
applied to select clones for development. For example, in multi-modal single-
objective optimization, research has shown that niching can be beneficial under
certain circumstances. The idea is simply to artificially evolve those individuals in
the population that are similar genotypically and which occupy high fitness areas.
The reasoning is that motifs brought together from different modes in fitness space

may not lead to better function. Indeed, they often lead to noise and disruption. In
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the context of multi-objective optimizations, a simplified toy problem may be
simulated (e.g., using Kaufmann’s NK model, etc.) to determine whether niching
assists or hinders evolution along the Pareto front. See, e.g., Kauffman, The Origins
of Order, Oxford University Press (1993) and Kaufmann and Johnsen, “Co-Evolution
to the Edge of Chaos: Coupled Fitness Landscapes, Poised States, and Co-
Evolutionary Avalanches,” in Langton et al., Artificial Life II: Proceedings of the
Second Artificial Life Workshop, Addison-Wesley (1992), pp. 325-369. In particular,

it may depend on the relative ruggedness of each objective’s fitness space. For
example, motifs that confer, e.g., thermostability may be additive, while motifs that
confer, e.g., activity under different pH conditions may be competitive and attempts to

make large jumps in multi-objective fitness space may lead to high dead rates.

B. IN SILICO EVOLUTION

The present invention includes methods of optimizing library
construction via in silico evolution of libraries using evolutionary search algorithms,
including genetic algorithms and Monte Carlo methods, which are described herein.
These methods maximize the successful in vivo and/or in vitro evolution of essentially
any genetic material, including genes, operons, pathways, promoters, regulatory
elements, genomes, or the like.

More specifically, Figure 6 provides a chart depicting certain steps
performed in a method embodiment for evolving libraries for directed evolution in
which the library (L) is the unit of evolution in the algorithm. Each library is
described by parameters such as sequence diversity, recombination method,
experimental conditions, and/or the like. Additional parameters are described herein.
The parameters are typically changed or otherwise evolve during the evolution
process. As shown in C2, the methods include providing a population of libraries
(e.g., an initial population of libraries (C1)), such as populations of biopolymer
character string variants. The algorithm includes a set of operators (O) that operates
on the unit L to produce a new population of libraries (C3). For example, the
operations include adding and deleting diversity, changing recombination rates and
frequencies, and/or the like. Additional details regarding operators that are optionally
used in these methods are provided herein. In particular, the operator acts on a
population of libraries to create the next generation of the population. As shown in

C4, this next generation is then selected for fitness (F) to produce a fitter population
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of libraries (C5) and this process is iterated (C6). This evolutionary algorithm is
typically stopped when desired characteristics (e.g., levels of fitness) for the libraries
are met. Optionally, the selection process involves designing oligonucleotides using
algorithms for facilitating the identification of data sequences corresponding to
biological polymers and enumerating/simulating the outcome of an experiment
followed by in silico estimation of the activities of the clones. Each library is then
typically characterized by a fitness function that involves determining, e.g., mean
activity of the clones, standard deviation of the activities of the clones, genetic
diversity among clones, experimental simplicity of the library, etc. The activities of
the clones can also be characterized by neural networks, PCA or other prediction tools
or by structural compatibility, dynamics simulation and other biophysical methods
and/or by other techniques described herein.

To further illustrate these aspects of the invention, Figure 7 provides a
chart that shows certain steps performed in an embodiment of a method of producing
a fitter population of character string libraries that utilizes various operators. At least
one step, and in certain cases all steps, of the method is/are typically performed in
silico, e.g., in a digital system described herein. As shown, step D1 includes applying
one or more operators to an initial population of character string libraries to produce
an evolved population of character string libraries. Typically, one or more character
strings in the initial population of character string libraries correspond to one or more
polynucleotides or one or more polypeptides. After assigning a level of fitness (e.g.,
screening or selecting for, e.g., desired structural properties, desired functional
properties, and/or the like) to members of the evolved population of character string
libraries (D2), the method includes selecting members of the evolved population of
character string libraries with higher levels of fitness than other members of the
population to produce a fitter population of character string libraries (D3). The
method further includes repeating steps D1-D3 using the fitter population of character
string libraries as the initial population of character string libraries in a repeated step
D1, e.g., until a desired level of fitness is reached in at least one character string
library.

In certain embodiments, step D1 includes (i) providing sets of
degenerate substrings based upon the initial population of character string libraries
members, (il) recombining the sets of degenerate substrings to produce desired

systematically varied character strings, and (iii) estimating one or more activities of
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the desired systematically varied character strings to produce the evolved population
of character string libraries. In some embodiments, one or more members of the
initial population of character string libraries are defined by an algorithm that takes
one or more parameters, which parameters evolve during step D1. Exemplary
parameters include, e.g., character string diversity, modeled evolution method
utilized, modeled experimental conditions utilized, PCA modeling, PLS modeling,
mutation matrices, relative importance of, e.g., individual character strings or
libraries, scoring systems for some or all parameters utilized, and/or the like. The
initial population of character string libraries generally includes between about two
and about 10’ libraries. In addition, each character string library of the initial
population of character string libraries typically includes between about two and
about 10° members.

Many different operators are optionally used in practicing these
methods. These include, e.g., a mutation of one or more members of the character
string libraries, a multiplication of one or more members of the character string
libraries, a fragmentation of one or more members of the character string libraries, a
crossover between members of the character string libraries, a ligation of one or more
members of the character string libraries or substrings of the one or more members of
the character string libraries, an elitism calculation, a calculation of sequence
homology or sequence similarity of aligned character strings, a recursive use of one or
more genetic operators for evolution of one or more members of the character string
libraries, an application of a randomness operator to one or more members of the
character string libraries, a deletion mutation of one or more members of the character
string libraries, an insertion mutation into one or more members of the character string
libraries, subtraction of one or more members of the character string libraries,
selection of one or more members of the character string libraries with desired
activities, death of one or more members of the character string libraries, or the like.
See e.g., WO 00/42560; WO 01/75767. The operators are generally included as
components of evolutionary search algorithms. Preferred evolutionary search
algorithms include genetic algorithms, Monte Carlo algorithms, and/or the like, which
are also described further herein.

Levels of fitness are typically assigned to each member of the evolved
population of character string libraries using fitness functions. Exemplary fitness

functions optionally include, e.g., determining mean activities of members of each
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character string library, determining standard deviations of activities of members of
each character string library, determining levels of character string diversity among
members of each character string library, modeling an experimental simplicity of each
character string library, determining a level of confidence in measured or predicted
values, and/or the like. In preferred embodiments, the activities of the members are
determined using multivariate analysis techniques and/or biophysical analysis
techniques. For example, multivariate analysis techniques optionally include, e.g.,
neural network training techniques, principal components analyses, partial least
squares analyses, and/or the like. Typical biophysical analysis techniques include one
or more of, e.g., structural compatibility analyses, dynamics simulations,
hydrophobicity analyses, solubility analyses, immunogenicity analyses, binding
assays, enzymatic characterizations, or the like. Multivariate analysis and biophysical
analyses are described further herein.

Members of the fitter population of character string libraries generally
correspond to polynucleotides or polypeptides. Although the steps of these methods
are typically performed in silico (e.g., using a digital system, a web-based system,
etc.), the methods optionally further include synthesizing, e.g., one or more of the
polynucleotides or polypeptides corresponding to one or more members of the fitter
population of character string libraries to produce synthesized polynucleotides or
polypeptides. In addition, the methods also optionally include, e.g., selecting or
screening the synthesized polynucleotides or polypeptides for at least one desired
property to produce screened or selected polynucleotides or polypeptides. Typically,
the synthesized polynucleotides or polypeptides are screened in vitro or in vivo.
Various screening techniques used in practicing these methods are described herein.
The methods optionally further include subjecting the screened or selected
polynucleotides or polypeptides to one or more artificial evolution procedures. At
least one step of the one or more artificial evolution procedures is optionally
performed in silico, e.g., using character string representations of the polynucleotides
or polypeptides.

In another aspect, the invention relates to a system for producing a
fitter population of character string libraries. The system includes (a) at least one
computer that includes a database capable of storing at least one population of
character string libraries, and (b) system software including one or more logic

instructions. The logic instructions are typically for, e.g., (i) applying one or more

38



10

15

20

25

30

WO 03/075129 PCT/US03/06551

operators to an initial population of character string libraries to produce an evolved
population of character string libraries, (ii) assigning a level of fitness to at least one
member of the evolved population of character string libraries, (iii) selecting one or
more members of the evolved population of character string libraries with higher
levels of fitness than other members of the evolved population of character string
libraries to produce the fitter population of character string libraries, and (iv)
repeating steps (i)-(iii) using the fitter population of character string libraries as the
initial population of character string libraries in a repeated step (i). The system
typically further includes a polynucleotide or a polypeptide synthesis device capable
of synthesizing polynucleotides or polypeptides that correspond to members of the
fitter population of character string libraries. Systems are described in greater detail
below.

The invention also provides a computer program product that includes
a computer readable medium having one or more logic instructions for (2) applying
one or more operators to an initial population of character string libraries to produce
an evolved population of character string libraries, and (b) assigning a level of fitness
to at least one member of the evolved population of character string libraries. The
computer program product also include logic instructions for (c) selecting one or more
members of the evolved population of character string libraries with higher levels of
fitness than other members of the evolved population of character string libraries to
produce the fitter population of character string libraries, and (d) repeating steps (a)-
(c) using the fitter population of character string libraries as the initial population of

character string libraries in a repeated step (a).

C. MAKING LIBRARIES FROM HEURISTICALLY-DERIVED

MODELS

The following discussion supplements the above described aspect of
the invention presented in Figure 1. It also presents some alternative embodiments
and elaborates on some previously introduced concepts. It does not limit the above
discussion.

As described herein, having access to data sets of systematically varied
sequences with measured activities enables the generation of various models. This
description illustrates how to implement these models in the construction of preferred

libraries. Although other modeling techniques, many of which are described herein,
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are optionally also used to construct/score libraries, PLS models are emphasized in
this section for purposes of clarity. In particular, one alternative to decide on the
sequence space to search involves isolating the loads (e.g., relationships to function)
for each amino acid residue in a given alignment. For example, loads are typically
found stored as a matrix in the model generated by, e.g., any standard PLS modeling
tool and can be retrieved, e.g., from a File_Name.loads matrix.

In overview, the importance for each residue and best, for example, 5%
of residue pairs (defined as cross products in the matrix) is optionally determined
using PLS or the like, and the relative importance is given as load (if one component
is used), regression coefficient, VIP (variable importance for projection), etc.
Optionally, loads are subsequently sorted, e.g., according to numerical value. The
preferred amino acid in each position in the particular protein having two or more
optional amino acids will be determined by the corresponding amino acid having the
highest load, regression coefficient, VIP, etc. A “hero” clone having the theoretically
best sequence (i.e., encodes the amino acid option having the highest load in each
position) is thus determined. Further, for models generating more than one latent
variable, regression coefficients or similar parameters can also be used.

As explained, these approaches may initially include identifying the
wet-lab validated “best” clone in a particular data set, which is typically the clone
with the highest measured function that still models well (i.e., falls relatively close to
the predicted value in PLS cross validation). Each residue in the best clone is
typically compared with those from the loads matrix, e.g., starting with the residue
having the highest load. If the residue with the highest load is not present in the
“best” clone, that position is introduced as a toggle in the subsequent library. In some
embodiments, the residues to toggle are determined by sorting each residue by
increasing VIP and 'omitting those that are well characterized in the model (i.e., exist
in the data set as many instances and are systematically varied). This can most easily
be done by retaining only those that occur as single (and double if the data set is large
enough) instances. A library of two would thus encode the “hero” clone and toggle of
the residue having VIP closest to zero and only present in a single instance in the data
set. A library of 4 (2%) would toggle the two lowest VIP residues with single
instances, etc. These processes are repeated until the library reaches a selected or
sufficient size. Bach added diversity represented by a toggle, doubles the size of the
library such that 10 positions equal approximately 1,000 clones (1,024), 13 positions
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equal approximately 10,000 clones (8,192), 20 positions equal approximately
1,000,000 clones (1,048,576), etc. The appropriate library size depends on factors
such as cost of screen, ruggedness of landscape, preferred percentage sampling of
space, and the like. Optionally, residues having small loads are toggled, e.g., to
search the local space surrounding an already validated “best” clone. An additional
option includes starting with an average clone that models well and toggling the high
loads, e.g., to explore larger space in search for activity hills previously omitted from
the sampling. This type of library is generally more relevant at the early rounds,
because it generates a more refined picture for subsequent rounds. As an additional
filter, one can omit residues that are originally derived from non-natural diversity.
The rationale being that naturally existing diversity has a higher probability of
encoding functionality than does randomly occurring diversity, which may or may not
be true.

To further illustrate, Figure 8 is a chart that shows certain steps
performed in an embodiment of a method of selecting amino acid positions in a
polypeptide variant to artificially evolve, which steps are typically performed in a
digital or web-based system. As shown, the methods include providing a population
of polypeptide variants (E1) and scoring (e.g., in silico) members of the population of
polypeptide variants (e.g., character string variants, etc.) for one or more desired
properties (e.g., structural and/or functional properties) to produce a polypeptide
variant data set (E2). The population of polypeptide variants is generally provided by
one or more artificial evolution procedures. In addition, at least one step (and often
more) of the artificial evolution procedures is typically performed in silico.
Populations of polypeptide variants typically include, e.g., between about two and
about 10° members. In preferred embodiments, members of the population of
polypeptide variants are systematically varied sequences.

The methods further include correlating amino acids in amino acid positions in
the polypeptide variants with the one or more desired properties using the polypeptide
variant data set to produce a loads matrix (e.g., a qualitative matrix (e.g., including
amino acid identities, etc.), a quantitative matrix (e.g., including physicochemical
properties, such as hydrophobicity measures, etc.), a categorical matrix (e.g., whether
amino acids are charged, bulky, etc.), and/or the like), e.g., representing amino acid
contributions to the desired properties (E3). For example, if two polypeptide

sequences are identical except for a single amino acid residue, and the sequences have
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different activities, then all difference in function is typically assumed to correlated
only with that amino acid difference. Accordingly, essentially any way that the
relative importance for a given variable towards a functional parameter Y can be
scored is optionally used in these methods. To illustrate, the matrix is optionally
based on regression-based algorithms, e.g., PLS, regression coefficients, VIP
(Variable Importance for Projection)(one preferred algorithm), MLR (multiple linear
regression), ILS (inverse least square), PCR (principal component regression), and/or
the like. Additional alternatives include basing the loads matrix on pattern-based
algorithms, such as neural networks, CART (classification and regression trees),
MARS (multivariate adaptive regression splines), and/or the like. The methods also
typically include sorting entries in the loads matrix, e.g., according to numerical
value, etc.

As shown in step E4, the methods also include identifying one or more
amino acid differences between at least one member selected from the population of
polypeptide variants and corresponding entries in the loads matrix, thereby selecting
the amino acid positions in the polypeptide variant to artificially evolve (e.g., toggle
with variable amino acid residues). For example, the preferred solution is to pick a
member that is “best” or highest scoring in the preferred function or set of functions
(e.g., as long as it fits the model reasonably well) and pick residues to evolve on that
member. Typically, between about two and about 100 amino acid positions in the
polypeptide variant are selected to artificially evolve. Optionally, all amino acid
positions in a given variant are selected. In certain embodiments, the at least one
member selected from the population of polypeptide variants in E4 includes a highest
scoring member from E2. The methods typically further include artificially evolving
one or more of the amino acid positions selected in E4 to produce an favolved
polypeptide library. In addition, the methods optionally also include repeating E1-E4
using the evolved polypeptide library as the population of polypeptide variants in a
repeated E1. Evolved polypeptide libraries optionally include physical or
computational libraries. Physical libraries typically include, e.g., between about two
and about 10° members. In contrast, computational libraries typically include, e.g.,
between about two and about 10?° members.

As referred to above, in preferred embodiments, loads matrices are
generated from polypeptide variant data sets using various heuristically-derived

modeling techniques, including regression-based algorithms, pattern-based

42



10

15

20

25

30

WO 03/075129 PCT/US03/06551

algorithms, and/or the like. Exemplary regression-based algorithms include, e.g.,
partial least squares regression, multiple linear regression, iverse least squares
regression, principal component regression, variable importance for projection, etc.
Exemplary pattern-based algorithms include, e.g., neural networks, classification and
regression trees, multivariate adaptive regression splines, and/or the like. In certain
preferred embodiments, E3 includes generating a partial least squares model from the
polypeptide variant data set to produce the loads matrix. The partial least squares
model typically generates more than one latent variable. The methods also typically
further include using regression coefficients.

In preferred embodiments, step E4 includes comparing one or more
amino acid positions in the at least one member with one or more corresponding
amino acid positions from the loads matrix to identify at least one amino acid in the
loads matrix that is absent in the member to select the amino acid positions in the
polypeptide variant to artificially evolve. Generally, each amino acid position in the
at least one member is compared with each corresponding amino acid position from
the loads matrix. Selected amino acid positions are optionally artificially evolved by
substituting one or more corresponding amino acids from the loads matrix. In
addition, the member selected from the population of polypeptide variants typically
includes a higher scoring member (e.g., the highest scoring member) of the
polypeptide variant data set than other members of the polypeptide variant data set.
For example, the higher scoring member is typically proximal to a predicted score in a
partial least squares cross validation. The amino acid positions from the loads matrix
that include higher loads are typically compared prior to the amino acid positions
from the loads matrix that include lower loads. Optionally, the amino acid positions
from the loads matrix that include lower loads are compared prior to the amino acid
positions from the loads matrix that include higher loads. In some embodiments, the
member selected from the population of polypeptide variants includes a substantially
average scoring member of the polypeptide variant data set. In these embodiments,
the amino acid positions from the loads matrix that include higher loads are typically
compared prior to the amino acid positions from the loads matrix that include lower
loads.

Figure 9 is a chart that shows certain steps performed in another
embodiment of these methods of selecting amino acid positions in a polypeptide

variant to artificially evolve. As shown, the method includes providing a population
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of polypeptide variants (F1), and scoring members of the population of polypeptide
variants for one or more desired properties to produce a polypeptide variant data set
(F2). In step F3, a partial least squares model is generated from the polypeptide
variant data set, which partial least squares model correlates amino acid positions in
the polypeptide variants with the one or more desired properties to produce a loads
matrix. The methods also include identifying one or more amino acid differences
between at least one member selected from the population of polypeptide variants and
the loads matrix from the partial least squares model, thereby selecting amino acid
positions in the polypeptide variant to artificially evolve (F4).

The invention also provides a system for selecting amino acid positions
in a polypeptide character string variant to artificially evolve. The system includes (a)
a computer that includes a database capable of storing at least one population of
polypeptide character string variants, and (b) system software. The system software
includes one or more logic instructions for (i) providing one or more populations of
polypeptide character string variants, and (ii) scoring members of the one or more
populations of polypeptide character string variants for one or more desired properties
to produce a polypeptide character string variant data set. The software also includes
instructions for (iii) correlating amino acids in amino acid positions in the polypeptide
character string variants with the one or more desired properties using the polypeptide
character string variant data set to produce a loads matrix representing amino acid
contributions to the one or more desired properties, and (iv) identifying one or more
amino acid differences between at least one member selected from the one or more
populations of polypeptide character string variants and corresponding entries in the
loads matrix. Additional details relating to various aspects of the systems of the
present invention are provided below.

In addition, the invention relates to a computer program product for
selecting amino acid positions in a polypeptide character string variant to artificially
evolve. The computer pro grani product includes a computer readable medium having
one or more logic instructions for (a) providing one or more populations of
polypeptide character string variants, and (b) scoring members of the one or more
populations of polypeptide character string variants for one or more desired properties
to produce a polypeptide character string variant data set. The program also includes
instructions for (c) correlating amino acids in the amino acid positions in the

polypeptide character string variants with the one or more desired properties using the
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polypeptide character string variant data set to produce a loads matrix representing
amino acid contributions to the one or more desired properties, and (d) identifying one
or more amino acid differences between at least one member selected from the one or
more populations of polypeptide character string variants and corresponding entries in

the loads matrix.

D. USING CROSS PRODUCTS IN HEURISTICALLY-DERIVED

MODELS FOR SEQUENCE SPACE EXPLORATION

Interactions (e.g., second order, third order, etc.) among amino acid
residues are important for protein sequence-activity (function) relationships (PSAR
(PSFR)). Another aspect of the invention involves calculating cross product terms,
i.e., co-varying residues, among various columns corresponding to amino acid residue
positions in a matrix. A detailed description of covariation phenomena is provided in
the Examples below. The cross product terms are then typically added to the linear
terms, which correspond to amino acid residues, and an expanded X predictor matrix
is generated. Heuristically-derived models are generated with the expanded predictor
matrix to identify important cross terms along with linear terms. This cross product
and linear term information is then typically utilized in the construction of subsequent
libraries. For example, two amino acid residues alone may not be important, e.g., as
manifested by weights of linear terms in PLS modeling, but their cross product term
may be important. Accordingly, the corresponding amino acid positions may be good
candidates for exploration in subsequent rounds of artificial evolution to ensure
optimal sequence space searching.

To further illustrate, Figure 10 is a chart that shows certain steps
performed in an embodiment of a method of identifying amino acids in polypeptides
that are important for a polypeptide sequence-activity relationship. As shown in G1,
the methods include providing an X predictor matrix that includes a data set
corresponding to a set of polypeptide sequence variants in which at least a subset of
the set of polypeptide sequence variants include one or more measured activities. The
set of polypeptide sequence variants typically includes, e.g., a set of systematically
varied polypeptide sequences or the like, e.g., produced by one or more diversity
generating or artificial evolution procedures, such as any of those described herein.
As further shown in G2, the methods also include calculating one or more cross

product terms between or among columns of the X predictor matrix. Each column
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entry corresponds to an amino acid of a polypeptide sequence variant from the set of
polypeptide sequence variants. In addition, the methods also include adding at least
one of the one or more cross product terms calculated in step G2 to one or more linear
terms of the X predictor matrix to produce an expanded X predictor matrix (G3).
Cross product terms identify covarying amino acids in the polypeptides, whereas the
linear terms correspond to amino acids in the polypeptide sequence variants.
Thereafter, the methods include generating a model with the expanded X predictor
matrix to identify important cross product terms and/or linear terms, thereby
identifying the amino acids in the polypeptides that are important for the polypeptide
sequence-activity relationship (G4).

Optionally, the heuristically-derived models are produced using one or
more regression-based algorithms selected from, e.g., a partial least squares
regression, a multiple linear regression, an inverse least squares regression, a principal
component regression, a variable importance for projection, or the like. As an
additional option, the model is produced using one or more pattern-based algorithm
selected from, e.g., a neural network, a classification and regression tree, a
multivariate adaptive regression spline, or the like.

Typically, the important cross product terms and/or linear terms
identified in G4 are used to design one or more polypeptide libraries. As mentioned,
in certain aspects, two or more linear terms individually may include unimportant
terms for the polypeptide sequence-activity relationship. However, cross product
terms calculated from the same two or more linear terms may be identified as
important for the polypeptide sequence-activity relationship. Cross product terms
typically correspond to interactions between or among amino acids in the polypeptide
sequence variants. For example, the interactions include, e.g., secondary or tertiary
interactions, direct interactions, indirect interactions, physicochemical interactions,
interactions due to folding intermediates, translational effects, and/or the like.
Sequence-activity information derived from covariation analysis (i.e., cross product
terms) can be used in a method for characterizing the covariation in a polypeptide
library by:

(a) identifying varying amino acid residues in a character string
population that represents a population of homologous parental polypeptides;

(b)  identifying amino acid residues in the character string

population that covary with one another to produce a parental covariation data set;
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(c)  providing a set of overlapping synthetic oligonucleotides
comprising members that encode one or more covarying amino acid residues
identified in the character string population,

wherein each synthetic oligonucleotides encodes at most one member
of a set of amino acid residues that covary with each other;

(d)  recombining the overlapping synthetic oligonucleotides to
produce a set of recombined polynucleotides that encode progeny of the homologous
parental polypeptides,

(e)  expressing at least a subset of the set of recombined
polynucleotides to produce a set of 'pro geny polypeptides;

® selecting or screening at least a subset of the progeny
polypeptides for a desired property;

(® sequencing one or more progeny polypeptides, or one or more
recombined polynucleotides that encode the one or more progeny polypeptides, that
comprise the desired property to produce a progeny sequence data set;

(h)  identifying one or more pairs of amino acid residues in the
progeny sequence data set that covary with one another to produce a progeny
covariation data set; and

1) identifying differences between the parental and progeny
covariation data sets, thereby characterizing the covariation in the population of
homologous polypeptides.

These aspects of the invention are also embodied in a system for
identifying amino acids in polypeptides that are important for a polypeptide sequence-
activity relationship. The system includes (a) a computer that includes a database
capable of storing at least one population of character string libraries, and (b) system
software. The system software includes one or more logic instructions for (i)
providing an X predictor matrix that includes a data set corresponding to a set of
polypeptide sequence variants in which at least a subset of the set of polypeptide
sequence variants include one or more measured activities, and (ii) calculating one or
more cross product terms between or among columns of the X predictor matrix in
which each column entry corresponds to an amino acid of a polypeptide sequence
variant from the set of polypeptide sequence variants. The software also includes
instructions for (iii) adding at least one of the one or more cross product terms

calculated in step (ii) to one or more linear terms of the X predictor matrix to produce
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an expanded X predictor matrix, and (iv) generating a model with the expanded X
predictor matrix to identify important cross product terms and/or linear terms.
Additional details regarding the systems of the invention are described below.

The invention also provides a computer program product for
identifying amino acids in polypeptides that are important for a polypeptide sequence-
activity relationship. The computer program product includes a computer-readable
medium having one or more logic instructions for (a) providing an X predictor matrix
that includes a data set corresponding to a set of polypeptide sequence variants in
which at least a subset of the set of polypeptide sequence variants include one or more
measured activities, and (b) calculating one or more cross product terms between or
among columns of the X predictor matrix in which each column entry corresponds to
an amino acid of a polypeptide sequence variant from the set of polypeptide sequence
variants. The program also includes instructions for (c) adding at least one of the one
or more cross product terms calculated in (b) to one or more linear terms of the X
predictor matrix to produce an expanded X predictor matrix, and (d) generating a
model with the expanded X predictor matrix to identify important cross product terms

and/or linear terms.

E. PROTEIN VARIANT LIBRARY DESIGN INCORPORATING
EVOLUTIONARY INFORMATION

While it may be desirable to vary amino acid residues in a large number of
positions in a single protein variant library, doing so may lead to a library with a large
number of variants having little or no activity due to deleterious combinations of too
many variable residues. The present invention provides an efficient way of
optimizing a protein variant for a desired activity by making one or more protein
variant libraries that incorporate only certain variable amino acid residue substitutions
from a set of parental polypeptides. The set of variable amino acid residues are
selected for incorporation into a protein variant library based on the evolutionary
context of the variable amino acid residue Those substitutions that represent
evolutionarily conservative substitutions are incorporated into protein variants of the
library.

Amino acid changes allowed by evolution generally conserve fold and

function of proteins. On relatively short evolutionary timescales, allowed changes
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tend to be context independent, that is, make an “additive” fitness contribution (and
work well with other changes). Essentially infinite sources of homologues on any
desired divergence timescale can be accessed by “allowed” amino acid changes for
that timescale. There is also evidence that subtle perturbations in protein structure can
have a huge impact on function (Kidokoro (1998) “Design of protein function by
physical perturbation method,” Adv. Biophys. 35:121-143, and Shimotohno et al.
(2001) “Demonstration of the importance and usefulness of manipulating non-active-

site residues in protein design,” J. Biochem. (Tokyo) 129:943-948).

The present invention provides methods for searching sequence space
by making evolutionarily conservative substitutions to generate diversity with high
fitness levels. According to the methods, for example, parental sequences are aligned
to determine which residues vary between parental sequences (i.e., are flexible), then
an evolutionary substitution matrix is applied to identify a subset of the variable
residues that represent conservative substitutions. A protein variant library is then
generated that incorporates the conservative subset of variable amino acid residues
into the sequences of the protein variants. Alternatively, other substitution matrices
can be used to identify the subset of variable residues to incorporate into a protein
variant library. Other suitable substitution matrices include those based on
physicochemical properties or other parameters described herein. Optionally, the
methods can be applied to single sequences by applying a user-defined filter or
constraint, such as that cysteine, proline, and glycine residues remain unchanged (i.e.,
are less tolerant to change), and then apply a substitution matrix to the other residues.

Typically, a substitution matrix, such as Dayhoff’s PAM matrices (for various
PAM distances), site dependent matrices, BLOSUM matrices, JTT matrices, simply
binary matrices that capture any amino acid classification, and the like can be used to
create different timescales (see, e.g., Dayhoff and Eck (1968) “A model of
evolutionary change in proteins,” Atlas of Protein Sequence and Structure 3:33-41,

‘and Henikoff and Henikoff (1992) “Amino acid substitution matrices from protein

blocks,” Proc. Nat’l. Acad. Sci. USA 89:10915-10919). Tuning the probability of

transition from one amino acid to another can change the level of conservation. Both
the probability cutoff and the matrix itself are parameters in the model. There are
several other matrices that are also available. These matrices can be structure
dependent, that is, the inside core of a protein has patterns of substitution that may

differ from the external surface of the protein , helices can have different patterns
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from strands, and the like (Koshi and Goldstein (1997) “Mutation matrices and
physical-chemical properties: correlations and implications,” Proteins 27:336-344,
and Koshi and Goldstein (1996) “Correlating structure-dependent mutation matrices
with physical-chemical properties,” Pac. Symp. Biocomput. 48 8-499). A

physicochemical property-based matrix can also be used to select suitable
substitutions. Additional details regarding substitution matrices suitable for use in the

present invention are discussed further in, e.g., Durbin et al., Biological Sequence

Analysis: Probabilistic Models of Proteins and Amino Acids, Cambridge University

Press (1998). In using any of the above matrices, a library of variant polypeptides
that incorporates conservative diversity and/or non-conservative diversity, can be
made. For non-conservative libraries, substitutions that are less likely to happen
under divergent evolution are typically selected.

When structures of the proteins of interest are available,
regions/residues can be identified that will have the desired impact on protein
function. This can be achieved by, e.g., simple modeling of changes in electrostatics
around active sites or changes that lead to modified dynamics in the protein
(Kidokoro, supra). Structural information can also be used to identify
domain/modules that will have the most impact and one can limit their efforts only to
that selected region of the proteins.

Algorithms of the present invention can be used to construct a series of
libraries, for any given gene, with a continuum of median fitness, a continuum of
genetic and phenotypic variance, and a high level of additive genetic variability. The
algorithms are essentially “automatic” in the sense that they are implemented
relatively independent of expert knowledge of the protein.

As an overview of these methods, Figure 11 provides a chart that
depicts certain steps performed in one method embodiment for efficiently searching
sequence space. As shown, the method includes identifying an initial gene or gene
family (i.e., gene of interest)(H1), obtaining sequences of homologues spanning a
desired evolutionary timescale (H2), and evaluating the number and type of amino
acid changes (e.g., with respect to the polypeptide encoded by the initial gene) that are
identified as a function of time/probability (P) (i.e., indicated by timescale or
probability of such mutation to occur in nature; level of conservation) (H3). The
method also includes evaluting potential library diversity as a function of

time/probability (H4), and identifying the number of variable positions at the given
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timescale that results in the desired library size (e.g., based upon the screening
throughput and expected fitness of the new library) (HS). Further, the method include
estimating median fitness and variance of libraries as a function of the timescale from
which the diversity comes (H6), and making a series of libraries covering the desired
median fitness and variance range (H7). .

All of these methods can be implemented for an entire alignment
and/or for a specific user defined set of residues or using structural information to
make libraries of domains (modules, sub-domains, etc.). For diversity generation,
these matrices-based approaches can be used in conjunction with other methods like
PCA, PLS, or the like, where load information (e.g., site entropies) on specific sites of
the protein can attach significance to substitution possibilities. Information from
consensus sequences can be used to restrict or increase diversity in the library.
Ancestral sequence reconstruction methods can reliably identify changes that took
place in the set of proteins very early on in the evolutionary process, and changes that
are adaptive in nature. This can be automatically used in the approaches described
herein to make desired libraries.

These methods typically include various selection stringencies and
libraries sizes. For example, assessments of the “fragility” of a protein are optionally
made by estimations. Such estimations are typically governed by model studies of
protein folding (e.g., already in the literature, etc.), empirical data (e.g., screen about
100-1000 hits per library, etc.), extrapolations from the rate of changes in evolution,
size of library that can be screened, and/or the like. Libraries typically include
between about 10° and about 10'? members, depending upon the particular screening
methods utilized. For example, one should consider the correlation of the screen with
downstream higher complexity screens.

These methods for high efficiency sequence space searches provide
many different advantages. In particular, the general approach becomes more
powerful and refined as data on proteins/folds of interest accumulates. Also, desired
sequence space can be automatically defined from phylogenetic data using a
computer. In addition, phylogenetic information about “safe” steps (e.g.,
conservative residue substitutions ) can be harnessed for subsequent analysis and
development.

In certain aspects, the present invention provides a system for

producing libraries of desired sizes. The system includes (2) at least one computer
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that includes a database capable of storing sets of biopolymer character strings, and
(b) system software. The system software includes one or more logic instructions for:
(i) identifying one or more homologues of at least one initial polypeptide sequence,
(ii) comparing the sequences of the homologue(s) and the initial polypeptide; (iii)
identifying variable amino acid residues, wherein variable amino acid residues differ
with respect to amino acid residue type at corresponding positions in the sequences of
the homologue(s) and the initial polypeptide sequence; (iv) identifying a set of
evolutionarily conserved variable amino acid residues; and (v) generating a library of
protein variants incorporating the set of evolutionarily conserved variable amino acid
residues. The system software also includes instructions for (iv) identifying variable
monomer positions in the at least one initial biopolymer character string from the
selected evolutionary timescale that result in a desired library size, and (v) providing a
series of libraries that comprise a selected median fitness and variance range.

The invention also includes a computer program product for producing
libraries of desired sizes. The computer program product includes a computer
readable medium having one or more logic instructions for: (a) identifying one or
more homologues of at least one initial biopolymer character string from a selected
evolutionary timescale, (b) plotting a number of monomer changes for the at least one
initial biopolymer character string against a time/probability, and (c) plotting potential
library size against the time/probability. The computer program product also includes
instructions for (d) identifying variable monomer positions in the at least one initial
biopolymer character string from the selected evolutionary timescale that result in a
desired library size, and (e) providing a series of libraries that comprise a selected

median fitness and variance range.

IV. SEQUENCE ACTIVITY PREDICTIONS

A. USE OF NEURAL NETWORKS TO IDENTIFY DNA OR
PROTEIN SEQUENCES WITH IMPROVED
CHARACTERISTICS
In the present invention neural networks are used to analyze data

derived from various artificial evolution processes, including DNA shuffling, to

predict sequences that have improved characteristics. In one example, such neural
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networks may be used in genetic algorithms to optimize sequences for further protein
variant libraries. In brief, the methods include using data from each round of; e.g., a
shuffling procedure as a training set for a neural network. Once a neural network has
been trained, character string sequences can be “assayed” in silico using the trained
network. Sequences which the network identifies as having improved characteristics
are then typically added to subsequent rounds of shuffling, or synthesized de novo.
Scoring systems used to rate these newly predicted character string sequences
optionally take into account not only the neural network predicted score, but also a
score of how many derivative character string sequences (e.g., character string
variants of the newly predicted character string sequences) also have a high neural
network score. For example, if character string sequence A was mutated into 1000
character string variants, and each variant was scored according to the network, the
percentage of character string variants that score above a certain cutoff in the neural
network are optionally counted. Further, this data may be combined with the neural
network score of character string sequence A to produce a final score. Such a score
would represent not only what the network predicted for that sequence, but also how
probable that sequence is to mutate into as good or better sequences.

To further illustrate, Figure 13 provides a chart that shows certain steps
performed in an embodiment of a method of predicting character strings that include
desired properties. As shown, the methods include evolving at least one parental
character string (e.g., a plurality of parental character strings, etc.) using at least one
artificial evolution procedure to produce at least one population of artificially evolved
character strings (I1). Artificial evolution procedures carried out on character strings
are typically performed reiteratively to produce multiple populations of artificially
evolved character strings, which multiple populations of artificially evolved character
strings are used to train the neural network. The methods also include selecting or
screening the population of artificially evolved character strings for at least one
desired property (e.g., a phyéical property, a catalytic property, or the like that is
improved property relative to the parental character string) to produce a population of
selected artificially evolved character strings (I2). The methods also include training
a neural network with the population of selected artificially evolved character strings
to produce a trained neural network (I3). Thereafter, the methods include predicting

character strings that include, or are likely to include, the desired property using the
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trained neural network (J4). Additional details relating to neural networks are
provided above.

In certain embodiments, the methods further include repeating steps I1
and I2 using the population of selected artificially evolved character strings in step 12
as the at least one parental character string in a repeated step I1. In these
embodiments, the methods optionally further include using the population of selected
artificially evolved character strings from at least one repeated step I2 to further train
the neural network in step I3. Parental character strings typically corresponds to
polynucleotides or polypeptides. In some embodiments, the methods optionally
further include synthesizing polynucleotides or polypeptides that correspond to the
character strings predicted in step I4. In other embodiments, the methods further
include repeating steps I1-14 using at least one of the character strings predicted in
step 14 as a parental character string in a repeated step I4. Typically, the methods
further include using the trained neural network as a filter to bias library production
toward active library members.

In particular, step I4 typically includes scoring multiple character
strings using a scoring system of the trained neural network to predict the character
strings with the desired property. The scoring system generally ranks scored
character strings. In addition, the scoring system typically accounts for a number of
progeny character strings from each character string that includes a score above a
selected score. For example, the number of progeny character strings typically
include, e.g., between about two and about 10° progeny character strings. Generally,
the scoring system combines each character string score with each corresponding
progeny character string score to produce a final score. The final score provides a
measure of a probability of the character strings mutating into progeny character
strings that are improved relative to the character strings.

The artificial evolution procedures used in step I1 are optionally
performed in silico and accordingly, typically include applying genetic operators to
parental character strings to produce the population of artificially evolved character
strings. Exemplary genetic operators optionally used in these methods include, e.g., a
mutation of the at least one parental character string or substrings of the at least one
parental character string, a multiplication of the at least one parental character string
or substrings of the at least one parental character string, a fragmentation of the at

least one parental character string into substrings, a crossover between parental
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character strings or substrings of the parental character strings, a ligation of parental
character strings or substrings of the parental character strings, an elitism calculation,
a calculation of sequence homology or sequence similarity of an alignment
comprising parental character strings, a recursive use of at least one of the one or
more genetic operators, an application of a randomness operator to the at least one
parental character string or substrings of the at least one parental character string, a
deletion mutation of one or more parental character strings or substrings of the one or
more parental character strings, an insertion mutation into the at least one parental
character string or substrings of the parental character string, a subtraction of parental
character strings with inactive sequences, a selection of parental character strings with
active sequences, a death of parental character strings or substrings of the parental
character strings, or the like.

The invention also provides a computer system for predicting character
strings that include desired properties. The system includes (a) a computer system
that includes a neural network and a database capable of storing character strings, and
(b) system software. The system software includes one or more logic instructions for
(1) evolving at least one parental character string using at least one artificial evolution
procedure to produce at least one population of artificially evolved character strings,
and (ii) selecting or screening the population of artificially evolved character strings
for at least one desired property to produce a population of selected artificially
evolved character strings. The software also includes instructions for (iii) training the
neural network with the population of selected artificially evolved character strings to
produce a trained neural network, and (iv) predicting one or more character strings
that comprise the at least one desired property using the trained neural network.

In another aspect, the invention relates to a computer program product
for predicting character strings that include desired properties. The computer program
product includes a computer readable medium having one or more logic instructions
for (a) evolving at least one parental character string using at least one artificial
evolution procedure to produce at least one population of artificially evolved
character strings, and (b) selecting or screening the population of artificially evolved
character strings for at least one desired property to produce a population of selected
artificially evolved character strings. The product also includes instructions for (c)
training a neural network with the population of selected artificially evolved character

strings to produce a trained neural network, and (d) predicting one or more character
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strings that comprise the at least one desired property using the trained neural

network. Systems and sofiware are described further herein.

B. USE OF PATTERN OR MOTIF FINDING ALGORITHMS TO

ANALYZE SEQUENCE SPACE

There are many computer programs available for searching and finding
and motifs within a group of sequences. Typically, these programs are limited to
characterizing sequences as part of a broad protein family or not. In the present
invention, motif finding programs are used to characterize and predict the activity of
proteins, e.g., artificially evolved proteins. For example, positive sequences (e.g.,
those having a desired level of fitness), negative sequences (e.g., those lacking a
desired level of fitness), and parents are optionally entered into pattern finding
programs separately. However, all types of sequences are optionally entered into the
pattern finding program together, e.g., to increase the sensitivity to finding any
patterns. Due to the generally higher homology of positive sequences, motif finding
programs typically find many motifs or patterns that exist within each sequence
group. Patterns are optionally scored according to a frequency of occurrence in each
group, to a frequency of absence from each sequence group, and/or the like.
Additionally, detected patterns are also optionally entered into another pattern
recognition algorithm such as a neural network. Once pattern recognition and scoring
are complete, hypothetical sequences are scored in order to find additional sequences
that will or are more likely to have the desired activity/property. Further, PCA
analysis is optionally performed on pattern finding results to determine if there are
combinations of motifs or patterns that are predictive of activity, which are then used
to score additional protein sequences. These methods are typically implemented in
web- or other software-based embodiments, and optionally coupled with additional
bioinformatics analysis tools, such as crossover analysis, shuffling analysis, oligo
creation, structural analysis, etc. in order to sell molecular biology kits for shuffling,
selling oligos, or other bioinformatics software or services.

In certain embodiments, search trees are generated, which are, e.g.,
based on a scoring method in order to organize patterns, or groups of patterns in such
a way to permit traversing the tree instead of trying all possible patterns, and
combination of patterns. For example, patterns are optionally scored by how often

they show up in positive/negative sequences. Instead of individual patterns, PCA
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analysis or the like is optionally performed to determine combinations of patterns for
each of the nodes. To illustrate, the results of searching patterns on the positive and
negative sequences are optionally analyzed using PCA. A load cutoff value is
typically used for each principal component and a resulting patterns (e.g., a list of
patterns) would then correspond to the nodes of the tree.

In addition, patterns are optionally scored with a value that relates,
e.g., to relative information content, importance, fitness etc. as well as a value of
predicted activity. These are optionally used again to train neural networks or to build
a decision tree to rank or score hypothetical proteins or other biopolymers. For
example, if the pattern AAA.GAW is found to be the most important, then
hypothetical proteins are typically checked on the basis of whether they have the next
most important pattern in that sub-branch. This process is optionally continued on
with the next most important pattern given, e.g., that the first one was found or not
found, and classify the sequence based on that sequence. The “contains” and “does
not contain” sub-trees may include similar nodes (i.e., patterns), or they may not
depending on how important a particular pattern is given its parent node lineage. To
further illustrate, Figure 14 schematically shows an example organizational tree. In
the example, if a pattern has the three patterns AAA.GAW, AAA.G.W.W, and
GPPW, then its probability of having the desired activity is 60%. Further, it might be
based on the fact that 60% of the positive sequences have these three patterns.

Figure 15 is a chart that depicts certain steps performed in one
embodiment of the methods of predicting properties of target polypeptide character
strings (e.g., at least one hypothetical polypeptide character string, etc.). As shown,
the methods include identifying one or more motifs common to two or more members
of a population of polypeptide character string variants in which at least a subset of
the population of polypeptide character string variants includes the at least one
property (e.g., a functional property, a structural property, and/or the like), to produce
a motif data set (J1). In certain embodiments, a phylogenetic family includes the
polypeptide character string variants. At least one of the one or more motifs typically
includes one or more character substrings. Typically, the at least one target
polypeptide includes a population of target polypeptide character strings. In these
embodiments, the population of target polypeptide character strings is generally
produced by one or more artificial evolution procedures. The methods also include J2

correlating at least one motif from the motif data set with the at least one property to
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produce a motif scoring function, and J3 scoring the at least one target polypeptide
character string using the motif scoring function to predict the at least one property of
the at least one target polypeptide character string. At least one step of these methods
is typically performed in a digital or web-based system. Optionally, the methods
further include synthesizing a polypeptide corresponding to the target polypeptide
character string. An additional option includes subjecting the polypeptide, or a
polynucleotide that encodes the polypeptide, one or more artificial evolution
procedures.

Motif scoring functions are produced using variations techniques. For
example, step J2 optionally includes scoring the motifs or combinations of the motifs
according frequencies of occurrence in positive polypeptide character string variants
or negative polypeptide character string variants to produce the motif scoring
function. In some embodiments, step J2 includes scoring the motifs, or combinations
of the motifs, with a value relating to relative information content and/or relative
fitness. In other embodiments, step J2 includes scoring the motifs, or combinations of
the motifs, with values relating to relative predictive activity. In still other
embodiments, step J2 includes determining a number of times the one or more motifs
occur in or are absent from the two or more members of the population of polypeptide
character string variants.

In certain embodiments, the population of polypeptide character string
variants includes one or more polypeptide character string variant groups. Each
polypeptide character string variant group optionally includes, e.g., positive
polypeptide character string variants, negative polypeptide character string variants,
and/or parental polypeptide character string variants. The polypeptide character string
variants are typically produced by, or correspond to polypeptides produced by, one or
more artificial evolution procedures. At least one (and typically more than one )step
of the one or more artificial evolution techniques is generally performed in silico.

In preferred embodiments, at least step J1 is performed in at least one
logic device that includes at least one first motif recognition algorithm, which first
motif recognition algorithm identifies the one or more motifs. Typically, each method
step is performed in the at least one logic device. Optionally, the methods further
include producing at least one classification tree (e.g., at least one classification and

regression tree (CART), etc.) to organize the motifs of the motif data set. For
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example, the at least one classification tree typically permits searching the motif data
set without trying all of the motifs or combinations of motifs in the motif data set.

In some embodiments, the methods further include performing
principal component analysis on the motif data set to identify one or more
combinations of motifs that are predictive of the at least one desired property.
Optionally, the methods further include performing a partial least squares analysis on
the motif data set to identify one or more combinations of motifs that are predictive of
the desired property. The one or more identified combinations of motifs are typically
used to further refine the motif scoring function. In addition, the methods optionally
further include producing at least one classification tree (e.g., at least one
classification and regression tree, etc.) to organize the one or more combinations of
motifs. In these embodiments, the one or more combinations of motifs typically
include nodes in the at least one classification tree. Typically, the at least one
classification tree permits searching the motif data set without trying all of the motifs
or combinations of motifs in the motif data set. In certain other embodiments, the
methods further include subjecting the motif data set to at least one second pattern
recognition algorithm, which second pattern recognition algorithm identifies at least
one additional motif common to at least two members of the population of
polypeptide character string variants. For example, the second pattern recognition
algorithm optionally includes a neural network. Neural networks are described
further herein.

The invention also provides a system for predicting at least one
property of at least one target polypeptide character string. The system includes (a) at
least one computer that includes a database capable of storing character strings, and
(b) system software. The system software includes one or more logic instructions for
(i) identifying one or more motifs common to two or more members of a population
of polypeptide character string variants, wherein at least a subset of the population of
polypeptide character string variants comprises the at least one property, to produce a
motif data set. The software also includes instructions for (ii) correlating at least one
motif from the motif data set with the at least one property to produce a motif scoring
function, and (iii) scoring the at least one target polypeptide character string using the
motif scoring function to predict the at least one property of the at least one target

polypeptide character string.
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In addition, the invention also relates to a computer program product
for predicting at least one property of at least one target polypeptide character string.
The computer program product includes a computer readable medium having one or
more logic instructions for (a) identifying one or more motifs common to two or more
members of a population of polypeptide character string variants, wherein at least a
subset of the population of polypeptide character string variants comprises the at least
one property, to produce a motif data set. The computer program product also
includes instructions for (b) correlating at least one motif from the motif data set with
the at least one property to produce a motif scoring function, and (c) scoring the at
least one target polypeptide character string using the motif scoring function to predict

the at least one property of the at least one target polypeptide character string.

C. IN SILICO DIRECTED EVOLUTION WITH FUNCTIONAL

SCREENING USING PCA AND NEURAL NETWORKS

In certain embodiments, at least one member of the set of parental
character strings is obtained from at least one database. In some of these
embodiments, the at least one member includes substantially all character strings
available from the database. Typically, at least one member of the set of parental
character strings is produced by, or corresponds to at least one polynucleotide or at
least one polypeptide produced by, one or more artificial evolution procedures. At
least one step of the artificial evolution procedures is typically performed in silico. In
some embodiments, the set of parental character strings corresponds to a set of
parental polynucleotides or polypeptides.

The invention also provides a system for assigning an activity to a
character string. The system includes (a) at least one computer that includes a
database capable of storing character strings, and (b) system software. The system
software includes one or more logic instructions for (i) selecting a set of parental
character strings for at least one activity to produce a set of selected parental character
strings, and (ii) subjecting the set of selected parental character strings to one or more
artificial evolution procedures to produce a set of evolved character strings. The
system software also includes instructions for (iii) selecting the set of evolved
character strings for the at least one activity to produce a set of selected evolved

character strings, (iv) providing a sequence-activity plot for the set of character string
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variants, and (v) predicting at least one activity of one or more character strings from
the sequence-activity plot.

In addition, the invention provides a computer program product for
predicting character string activities. The computer program product includes a
computer readable medium having one or more logic instructions for (a) selecting a
set of parental character strings for at least one activity to produce a set of selected
parental character strings, and (b) subjecting the set of selected parental character
strings to one or more artificial evolution procedures to produce a set of evolved
character strings. The product also includes instructions for (c) selecting the set of
evolved character strings for the at least one activity to produce a set of selected
evolved character strings, (d) providing a sequence-activity plot for the set of
character string variants, and (e) predicting at least one activity of one or more

character strings from the sequence-activity plot.

V. EXPERIMENTAL TECHNIQUES

A. PROTEIN VARIANT LIBRARIES

Libraries of protein variants can be generated using any of a variety of
methods that are well known to those having ordinary skill in the art. These libraries
are typically prepared by expression, either in vivo or in vitro, of a library of diverse
polynucleotides. Libraries of diverse polynucleotides can be generated by application
of a "diversity generating procedure" to one or more "parental” polynucleotides.

As used herein, the term "diversity generating procedure” refers to a
method that modifies the sequence of a parental polynucleotide, and concomitantly
the polypeptide it encodes, thereby generating a library of polynucleotide variants that
differ from each other with respect to sequence. Diversity generating procedures that
are suitable for use in the practice of the present invention include either mutagenesis
and recombination-based methods, or a combination of both. Expression of the
resulting polynucleotide variant library thus generates a library of polypeptide
variants.

Protein variant libraries employed in the practice of the present
invention may be made in a "blind" fashion, where the protein variant molecules are
generated without prior knowledge of their amino acid sequences (i.e., where the
polynucleotide variant sequences are not known prior to expression into a protein

variant library). Alternatively, the amino acid sequences encoding the protein
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variants may be designed a priori, followed by the step of actually making the
physical molecules using methods known to those having ordinary skill in the art.
These methods include expression of polynucleotides generated by, for example, gene
synthesis via ligation and/or polymerase-mediated oligonucleotide assembly and
mutagenesis of a parental polynucleotide, using methods known in the art. Suitable

methods for designing amino acid sequences of systematically varied protein variants

~ include design of experiment methods (DOE), described in more detail herein.

Polynucleotide mutagenesis is a suitable method for generating the
protein variants employed in the practice of the present invention. Such methods
include, for example, error prone polymerase chain reaction (PCR), site-specific
mutagenesis, cassette-mutagenesis, in vivo mutagenesis methods, and the like. In
error-prone PCR, PCR is performed under conditions where the copying fidelity of
the DNA polymerase is low, such that a high rate of point mutations is obtained along
the entire length of the PCR product. See e.g., Leung et al. (1989) Technique 1:11-15
and Caldwell et al. (1992) PCR Methods Applic. 2:28-33. Site-specific mutations can

be introduced in a polynucleotide sequence of interest using oligonucleotide-directed

mutagenesis. See Reidhaar-Olson et al. (1988) Science, 241:53-57. Similarly,

cassette mutagenesis can be used in a process that replaces a small region of a double
stranded DNA molecule with a synthetic oligonucleotide cassette that differs from the
native sequence. In vivo mutagenesis can be used to generate random mutations in
any cloned DNA of interest by propagating the DNA in a host cell strain prone to
generating mutations, e.g., in a strain of E. coli that carries mutations in one or more
of the DNA repair pathways. These “mutator” strains have a higher random mutation
rate than that of a wild-type parent. Propagating the DNA in one of these strains will
eventually generate random mutations within the DNA. Mutagenesis methods are
generally well known to those having ordinary skill in the art and are extensively
described elsewhere. See e.g., Kramer et al. (1984) Cell 38:879-887; Carter et al.
(1985) Nucl. Acids Res. 13: 4431-4443; Carter (1987) Methods in Enzymol. 154:
382-403; Eghtedarzadeh & Henikoff (1986) Nucl. Acids Res. 14: 5115;Wells et al.
(1986) Phil. Trans. R. Soc. Lond. A 317: 415-423; Nambiar et al. (1984) Science
223: 1299-1301; Sakamar and Khorana (1988) Nucl. Acids Res. 14: 6361-6372;
Wells et al. (1985) Gene 34:315-323; Grundstrém et al. (1985) Nucl. Acids Res. 13:
3305-3316; Mandecki (1986) Proc. Natl. Acad. Sci. USA, 83:7177-7181; Arnold
(1993) Current Opinion in Biotechnology 4:450-455); Anal Biochem. 254(2): 157-
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178; Dale et al. (1996) Methods Mol. Biol. 57:369-374; Smith (1985) Ann. Rev.
Genet. 19:423-462; Botstein & Shortle (1985) Science 229’:1 193-1201; Carter (1986)
Biochem. J. 237:1-7; Kunkel (1987) in Nucleic Acids & Molecular Biology, Eckstein,
F. and Lilley, D.M.J. eds., Springer Verlag, Berlin; Kunkel (1985) Proc. Natl. Acad.
Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154, 367-382; and
Bass et al. (1988) Science 242:240-245; Methods in Enzymol. 100: 468-500 (1983);
Methods in Enzymol. 154: 329-350 (1987); Zoller & Smith (1982) Nucleic Acids
Res. 10:6487-6500; Zoller & Smith (1983) Methods in Enzymol. 100:468-500; and
Zoller & Smith (1987) Methods in Enzymol. 154:329-350); Taylor et al. (1985) Nucl.
Acids Res. 13: 8749-8764; Taylor et al. (1985) Nucl. Acids Res. 13: 8765-8787
(1985); Nakamaye & Eckstein (1986) Nucl. Acids Res. 14: 9679-9698; Sayers et al.
(1988) Nucl. Acids Res. 16:791-802; Sayers et al. (1988) Nucl. Acids Res. 16: 803-
814); Kramer et al. (1984) Nucl. Acids Res. 12: 9441-9456; Kramer & Fritz (1987)
Methods in Enzymol. 154:350-367; Kramer et al. (1988) Nucl. Acids Res. 16: 7207,
and Fritz et al. (1988) Nucl. Acids Res. 16: 6987-6999.

Kits for mutagenesis, library construction and other diversity
generation methods are commercially available. For example, kits are available from,
e.g., Stratagene (e.g., QuickChangeTM site-directed mutagenesis kit; and
Chameleon™ double-stranded, site-directed mutagenesis kit), Bio/Can Scientific,
Bio-Rad (e.g., using the Kunkel method referenced above), Boehringer Mannheim
Corp., Clonetech Laboratories, DNA Technologies, Epicentre Technologies (e.g., 5
prime 3 prime kit); Genpak Inc, Lemargo Inc, Life Technologies (Gibco BRL), New
England Biolabs, Pharmacia Biotech, Promega Corp., Quantum Biotechnologies,
Amersham International plc (e.g., using the Eckstein method referenced above), and
Anglian Biotechnology Ltd. (e.g., using the Carter/Winter method referenced above).

Recombination-based methods are also suitable for generating a
diverse library of polynucleotide variants that can be expressed to generate a protein
variant library. These methods are also referred to as DNA shuffling. In these
methods, polynucleotides are recombined, either in vitro or in vivo, to generate a
library of polynucleotide variants. In recombination-based methods, DNA
fragments, PCR amplicons, and/or synthetic oligonucleotides that collectively
correspond in sequence to some or all of the sequence of one or more parental
polynucleotides are recombined to generate a library of polynucleotide variants of the

parental polynucleotide(s). The recombination process may be mediated by

63



10

15

20

25

30

WO 03/075129 PCT/US03/06551

hybridization of the DNA fragments, PCR amplicons, and/or synthetic
oligonucleotides to each other (e.g., as partially overlapping duplexes), or to a larger
piece of DNA, such as a full length template. Depending on the recombination format
employed, ligase and/or polymerase may be used to facilitate the construction of a full
length polynucleotide. PCR cycling is typically used in formats employing only a
polymerase. These methods are generally known to those having ordinary skill in the
art and are described extensively elsewhere. See e.g., Soong, N. et al. (2000) Nat.
Genet. 25(4):436-439; Stemmer, et al. (1999) Tumor Targeting 4:1-4; Ness et al.
(1999) Nature Biotechnology 17:893-896; Chang et al. (1999) Nature Biotechnology
17:793-797; Minshull and Stemmer (1999) Current Opinion in Chemical Biology
3:284-290; Christians et al. (1999) Nature Biotechnology 17:259-264; Crameri et al.
(1998) Nature 391:288-291; Crameri et al. (1997) Nature Biotechnology 15:436-438;
Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:4504-4509; Patten et al. (1997)
Current Opinion in Biotechnology 8:724-733; Crameri et al. (1996) Nature Medicine
2:100-103; Crameri et al. (1996) Nature Biotechnology 14:315-319; Gates et al.
(1996) Journal of Molecular Biology 255:373-386; Stemmer (1996) In: The
Encyclopedia of Molecular Biology. VCH Publishers, New York. pp.447-457;

Crameri and Stemmer (1995) BioTechniques 18:194-195; Stemmer et al., (1995)
Gene, 164:49-53; Stemmer (1995) “The Evolution of Molecular Computation”
Science 270: 1510; Stemmer (1995) Bio/Technology 13:549-553; Stemmer (1994)
Nature 370:389-391; and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-
10751; Giver and Arnold (1998) Current Opinion in Chemical Biology 2:335-338;
Zhao et al. (1998) Nature Biotechnology 16:258-261; Coco et al. (2001) Nature
Biotechnology 19:354-359; U.S. Pat. Nos. 5,605,793, 5,811,238, 5,830,721,
5,834,252, 5,837,458, WO 95/22625, WO 96/33207, WO 97/20078, WO 97/35966,
WO 99/41402, WO 99/41383, WO 99/41369, WO 99/41368, WO 99/23107,WO
99/21979, WO 98/31837, WO 98/27230, WO 98/27230, WO 00/00632, WO
00/09679, WO 98/42832, WO 99/29902, WO 98/41653, WO 98/41622, and WO
98/42727, WO 00/18906, WO 00/04190, WO 00/42561, WO 00/42559, WO
00/42560, WO 01/23401, WO 00/20573, WO 01/29211, WO 00/46344, and WO
01/29212 .

Parental polynucleotides employed in the recombination processes reference
above may be either wildtype polynucleotides or non-naturally occurring

polynucleotides. In one embodiment of the present invention, protein variants having
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systematically varied sequences are prepared by recombination of two or more
parental polynucleotides followed by expression. In some embodiments, the parental
polynucleotides are members of a single gene family. As used herein, the term "gene
family" refers to a set of genes that encode polypeptides which exhibit the same type,
although not necessarily the same degree, of an activity.

Polynucleic acids can be recombined ir vitro by any of a variety of
techniques , including e.g., DNAse digestion of nucleic acids to be recombined
followed by ligation and/or PCR reassembly of the nucleic acids. For example,
sexual PCR mutagenesis can be used in which random (or pseudo random, or even
non-random) fragmentation of the DNA molecule is followed by recombination,
based on sequence similarity, between DNA molecules with different but related
DNA sequences, in vitro, followed by fixation of the crossover by extension in a
polymerase chain reaction. This process and many process variants is described, e.g.,
in Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751.

Synthetic recombination methods can also be used, in which
oligonucleotides corresponding to targets of interest are chemically synthesized and
reassembled in PCR or ligation reactions which include oligonucleotides that
correspond to more than one parental polynucleotide, thereby generating new
recombined polynucleotides. Oligonucleotides can be made by standard nucleotide
addition methods, or can be made, e.g., by tri-nucleotide synthetic approaches.
Details regarding such approaches are found in the references noted above, e.g., WO
00/42561 by Crameri et al., “Olgonucleotide Mediated Nucleic Acid
Recombination;” WO 01/23401 by Welch et al., “Use of Codon-Varied
Oligonucleotide Synthesis for Synthetic Shuffling;” WO 00/42560 by Selifonov et al.,
“Methods for Making Character Strings, Polynucleotides and Polypeptides Having
Desired Characteristics;” and WO 00/42559 by Selifonov and Stemmer “Methods of
Populating Data Structures for Use in Evolutionary Simulations.”

Polynucleotides can also be recombined in vivo, e.g., by allowing
recombination to occur between nucleic acids in cells. Many such in vivo
recombination formats are set forth in the references noted above. Such formats
optionally provide direct recombination between nucleic acids of interest, or provide
recombination between vectors, viruses, plasmids, etc., comprising the nucleic acids
of interest, as well as other formats. Details regarding such procedures are found in

the references cited herein.
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Many methods of accessing natural diversity, e.g., by hybridization of
diverse nucleic acids or nucleic acid fragments to single-stranded templates, followed
by polymerization and/or ligation to regenerate full-length sequences, optionally
followed by degradation of the templates and recovery of the resulting modified
nucleic acids can be similarly used. These methods can be used in physical systems
or can be performed in computer systems according to specific embodiments of the
invention. In one method employing a single-stranded template, the fragment
population derived from the genomic library(ies) is annealed with partial, or, often
approximately full length ssDNA or RNA corresponding to the opposite strand.
Assembly of complex chimeric genes from this population is then mediated by
nuclease-base removal of non-hybridizing fragment ends, polymerization to fill gaps
between such fragments and subsequent single stranded ligation. The parental
polynucleotide strand can be removed by digestion (e.g., if RNA or uracil-
containing), magnetic separation under denaturing conditions (if labeled in a manner
conducive to such separation) and other available separation/purification methods.
Alternatively, the parental strand is optionally co-purified with the chimeric strands
and removed during subsequent screening and processing steps. Additional details
regarding this approach are found, e.g., in “Single-Stranded Nucleic Acid Template-
Mediated Recombination and Nucleic Acid Fragment Isolation” by Affholter, WO
01/64864.

Methods of recombination can also be performed digitally on an
information processing system. For example, algorithms can be used in a computer to
recombine sequence strings that correspond to homologous (or even non-
homologous) bio-molecules. According to specific embodiments of the invention,
after processing in a computer system, the resulting sequence strings can be converted
into nucleic acids by synthesis of nucleic acids which correspond to the recombined
sequences, e.g., in concert with oligonucleotide synthesis/gene reassembly techniques.
This approach can generate random, partially random, or designed variants. Many
details regarding various embodiments of computer enabled recombination, including
the use of various algorithms, operators and the like in computer systems, as well as
combinations of designed nucleic acids and/or proteins (e.g., based on cross-over site
selection) as well as designed, pseudo-random or random recombination methods are
described in WO 00/42560 by Selifonov et al., “Methods for Making Character
Strings, Polynucleotides and Polypeptides Having Desired Characteristics,” WO
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01/75767 by Gustafsson et al., "In Silico Cross-Over Site Selection," and WO
00/42559 by Selifonov and Stemmer “Methods of Populating Data Structures for Use

in Evolutionary Simulations.”

B. DIRECTED EVOLUTION
Directed evolution (or alternatively "artificial evolution") can be

carried out by practicing one or more diversity generating methods in a reiterative
fashion coupled with screening (described in more detail elsewhere herein) to
generate a further set of recombinant nucleic acids. Thus, directed or artificial
evolution can be carried out by repeated cycles of mutagenesis and/or recombination
and screening. For example, mutagenesis and/or recomBination can be carried out on
parental polynucleotides to generate a library of variant polynucleotides that are then
expressed to generate a protein variant library that is screen for a desired activity.
One or more variant proteins may be identified from the protein variant library as
exhibiting improvement in the desired activity. The identified proteins can be reverse
translated to ascertain one or more polynucleotide sequences that encode the
identified protein variants, which in turn can be mutated or recombined ina
subsequent round of diversity generation and screening.

Directed evolution using recombination-based formats of diversity generation
is described extensively in the references cited herein. Directed evolution using
mutagenesis as the basis for diversity generation is also well known in the art. For
example, recursive ensemble mutagenesis is a process in which an algorithm for
protein mutagenesis is used to produce diverse populations of phenotypically related
mutants, members of which differ in amino acid sequence. This method uses a
feedback mechanism to monitor successive rounds of combinatorial cassette
mutagenesis. Examples of this approach are found in Arkin & Youvan (1992) Proc.
Natl. Acad. Sci. USA 89:7811-7815. Similarly, exponential ensemble mutagenesis

can be used for generating combinatorial libraries with a high percentage of unique
and functional mutants. Small groups of residues in a sequence of interest are
randomized in parallel to identify, at each altered position, amino acids which lead to
functional proteins. Examples of such procedures are found in Delegrave & Youvan

(1993) Biotechnology Research 11:1548-1552.

Structure-activity models of the present invention are useful in

optimizing the directed evolution process regardless of the diversity generating
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procedure employed. Information derived from application of the invention models
can be used to more intelligently design libraries made in a directed evolution process.
For example, where it is desired to toggle or fix residues at certain amino acid residue
positions, synthetic oligonucleotides incorporating the codons encoding those desired
amino acid residues can be used in one of the recombination formats referred to
herein to generate a polynucleotide variant library that can then be expressed.
Alternatively, the desired residues can be incorporated using one of the various
mutagenesis methods described herein. In any event, the resulting protein variant
library will thus contain protein variants that incorporate what are believed to be
beneficial residues or potentially beneficial residues. This process can be repeated

until a protein variant having the desired activity is identified.

C. SCREENING/SELECTION FOR ACTIVITY

Polynucleotides generated in connection with methods of the present
invention are optionally cloned into cells for activity screening (or used in in vitro
transcription reactions to make products which are screened). Furthermore, the
nucleic acids can be enriched, sequenced, expressed, amplified in vitro or treated in
any other common recombinant method.

General texts that describe molecular biological techniques useful
herein, including cloning, mutagenesis, library construction, screening assays, cell
culture and the like include Berger and Kimmel, Guide to Molecular Cloning
Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego,
CA (Berger); Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd Ed.),

Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989

(Sambrook) and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds.,

Current Protocols, a joint venture between Greene Publishing Associates, Inc. and
John Wiley & Sons, Inc., New York (supplemented through 2000) (Ausubel)).
Methods of transducing cells, including plant and animal cells, with nucleic acids are
generally available, as are methods of expressing proteins encoded by such nucleic
acids. In addition to Berger, Ausubel and Sambrook, useful general references for

culture of animal cells include Freshney (Culture of Animal Cells, a Manual of Basic

Technique, third edition Wiley- Liss, New York (1994)) and the references cited
therein, Humason (Animal Tissue Techniques, fourth edition W.H. Freeman and
Company (1979)) and Ricciardelli, et al., In Vitro Cell Dev. Biol. 25:1016-1024
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(1989). References for plant cell cloning, culture and regeneration include Payne et
al. (1992) Plant Cell and Tissue Culture in Liquid Systems John Wiley & Sons, Inc.
New York, NY (Payne); and Gamborg and Phillips (eds) (1995) Plant Cell, Tissue

and Organ Culture; Fundamental Methods Springer Lab Manual, Springer-Verlag
(Berlin Heidelberg New York) (Gamborg). A variety of Cell culture media are
described in Atlas and Parks (eds) The Handbook of Microbiological Media (1993)
CRC Press, Boca Raton, FL (Atlas). Additional information for plant cell culture is
found in available commercial literature such as the Life Science Research Cell

Culture Catalogue (1998) from Sigma-Aldrich, Inc (St Louis, MO) (Sigma-LSRCCC)

and, e.g., the Plant Culture Catalogue and supplement (1997) also from
Sigma-Aldrich, Inc (St Louis, MO) (Sigma-PCCS).

Examples of techniques sufficient to direct persons of skill through in
vitro amplification methods, useful e.g., for amplifying oligonucleotide recombined
nucleic acids including polymerase chain reactions (PCR), ligase chain reactions
(LCR), Qp-replicase amplifications and other RNA polymerase mediated techniques
(e.g., NASBA). These techniques are found in Berger, Sambrook, and Ausubel,
supra, as well as in Mullis et al., (1987) U.S. Patent No. 4,683,202; PCR Protocols A
Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego,
CA (1990) (Innis); Arnheim & Levinson (October 1, 1990) C&EN 36-47; The
Journal Of NIH Research (1991) 3, 81-94; Kwoh et al. (1989) Proc. Natl. Acad. Sci.
USA 86, 1173; Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87, 1874; Lomell et
al. (1989) J. Clin. Chem 35, 1826; Landegren et al., (1988) Science 241, 1077-1080;
Van Brunt (1990) Biotechnology 8, 291-294; Wu and Wallace, (1989) Gene 4, 560;
Barringer et al. (1990) Gene 89, 117, and Sooknanan and Malek (1995)
Biotechnology 13: 563-564. Improved methods of cloning in vitro amplified nucleic
acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods of

amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature
369: 684-685 and the references therein, in which PCR amplicons of up to 40kb are
generated. One of skill will appreciate that essentially any RNA can be converted
into a double stranded DNA suitable for restriction digestion, PCR expansion and

sequencing using reverse transcriptase and a polymerase. See, Ausubel, Sambrook

and Berger, all supra.
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In one preferred method, reassembled sequences are checked for
incorporation of family-based recombination oligonucleotides. This can be done by
cloning and sequencing the nucleic acids, and/or by restriction digestion, e.g., as
essentially taught in Sambrook, Berger and Ausubel, supra. In addition, sequences
can be PCR amplified and sequenced directly. Thus, in addition to, e.g., Sambrook,
Berger, Ausubel and Innis (supra), additional PCR sequencing methodologies are also
particularly useful. For example, direct sequencing of PCR generated amplicons by
selectively incorporating boronated nuclease resistant nucleotides into the amplicons
during PCR and digestion of the amplicons with a nuclease to produce sized template
fragments has been performed (Porter et al. (1997) Nucleic Acids Research
25(8):1611-1617). In the methods, four PCR reactions on a template are performed,
in each of which one of the nucleotide triphosphates in the PCR reaction mixture is
partially substituted with a 2’deoxynucleoside 5 ’-[P-borano]-triphosphate. The
boronated nucleotide is stochastically incorporated into PCR products at varying
positions along the PCR amplicon in a nested set of PCR fragments of the template.
An exonuclease that is blocked by incorporated boronated nucleotides is used to
cleave the PCR amplicons. The cleaved amplicons are then separated by size using
polyacrylamide gel electrophoresis, providing the sequence of the amplicon. An
advantage of this method is that it uses fewer biochemical manipulations than
performing standard Sanger-style sequencing of PCR amplicons.

Synthetic genes are amenable to conventional cloning and expression
approaches; thus, properties of the genes and proteins they encode can readily be
examined after their expression in a host cell. Synthetic genes can also be used to
generate polypeptide products by in vitro (cell-free) transcription and translation.
Polynucleotides and polypeptides can thus be examined for their ability to bind a
variety of predetermined ligands, small molecules and ions, or polymeric and
heteropolymeric substances, including other proteins and polypeptide epitopes, as
well as microbial cell walls, viral particles, surfaces and membranes.

For example, many physical methods can be used for detecting
polynucleotides encoding phenotypes associated with catalysis of chemical reactions
by either polynucleotides directly, or by encoded polypeptides. Solely for the purpose
of illustration, and depending on the specifics of particular pre-determined chemical
reactions of interest, these methods may include a multitude of techniques well known

in the art which account for a physical difference between substrate(s) and product(s),
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or for changes in the reaction media associated with chemical reaction (e.g. changes
in electromagnetic emissions, adsorption, dissipation, and fluorescence, whether UV,
visible or infrared (heat)). These methods also can be selected from any combination
of the following: mass-spectrometry; nuclear magnetic resonance; isotopically labeled
materials, partitioning and spectral methods accounting for isotope distribution or
labeled product formation; spectral and chemical methods to detect accompanying
changes in ion or elemental compositions of reaction product(s) (including changes in
pH, inorganic and organic ions and the like). Other methods of physical assays,
suitable for use in the methods herein, can be based on the use of biosensors specific
for reaction product(s), including those comprising antibodies with reporter
properties, or those based on in vivo affinity recognition coupled with expression and
activity of a reporter gene. Enzyme-coupled assays for reaction product detection and
cell life-death-growth selections in vivo can also be used where appropriate.
Regardless of the specific nature of the physical assays, they all are used to select a
desiredactivity, or combination of desired activities, provided or encoded by a
biomolecule of interest.

The specific assay used for the selection will depend on the
application. Many assays for proteins, receptors, ligands and the like are known.
Formats include binding to immobilized components, cell or organismal viability,
production of reporter compositions, and the like.

High throughput assays are particularly suitable for screening libraries
employed in the present invention. In high throughput assays, it is possible to screen
up to several thousand different variants in a single day. For example, each well of a
microtiter plate can be used to run a separate assay, or, if concentration or incubation
time effects are to be observed, every 5-10 wells can test a single variant (e.g., at
different concentrations). Thus, a single standard microtiter plate can assay about 100
(e.g., 96) reactions. If 1536 well plates are used, then a single plate can easily assay
from about 100 to about 1500 different reactions. It is possible to assay several
different plates per day; assay screens for up to about 6,000-20,000 different assays
(i.e., involving different nucleic acids, encoded proteins, concentrations, etc.) is
possible using the integrated systems of the invention. More recently, microfluidic
approaches to reagent manipulation have been developed, e.g., by Caliper
Technologies (Mountain View, CA) which can provide very high throughput

microfluidic assay methods.
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High throughput screening systems are commercially available (see,
e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman
Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These
systems typically automate entire procedures including all sample and reagent
pipetting, liquid dispensing, timed incubations, and final readings of the microplate in
detector(s) appropriate for the assay. These configurable systems provide high
throughput and rapid start up as well as a high degree of flexibility and customization.

The manufacturers of such systems provide detailed protocols for
various high throughput screening assays. Thus, for example, Zymark Corp. provides
technical bulletins describing screening systems for detecting the modulation of gene
transcription, ligand binding, and the like.

A variety of commercially available peripheral equipment and software
is available for digitizing, storing and analyzing a digitized video or digitized optical
or other assay images, e.g., using PC (Intel x86 or pentium chip- compatible DOS™,
082™, WINDOWS™, or WINDOWS NT™ based machines), MACINTOSH™, or
UNIX based (e.g., SUN™ work station) computers.

Systems for analysis typically include a digital computer with software
for directing one or more step of one or more of the methods herein, and, optionally,
also include, e.g., high-throughput liquid control software, image analysis software,
data interpretation software, a robotic liquid control armature for transferring
solutions from a source to a destination operably linked to the digital computer, an
input device (e.g., a computer keyboard) for entering data to the digital computer to
control operations or high throughput liquid transfer by the robotic liquid control
armature and, optionally, an image scanner for digitizing label signals from labeled
assay components. The image scanner can interface with image analysis software to
provide a measurement of probe label intensity. Typically, the probe label intensity
measurement is interpreted by the data interpretation software to show whether the

labeled probe hybridizes to the DNA on the solid support.

Computational hardware and software resources are available that can
be employed in the invention methods described herein (for hardware, any mid-range
priced Unix system (e.g., for Sun Microsystems) or even higher end Macintosh or PCs
will suffice).
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In some embodiments, cells, viral plaques, spores or the like,
comprising in vitro oligonucleotide-mediated recombination products or physical
embodiments of in silico recombined nucleic acids, can be separated on solid media
to produce individual colonies (or plaques). Using an automated colony picker (e.g.,
the Q-bot, Genetix, U.K.), colonies or plaques are identified, picked, and up to 10,000
different mutants inoculated into 96 well microtiter dishes containing two 3 mm glass
balls/well. The Q-bot does not pick an entire colony but rather inserts a pin through
the center of the colony and exits with a small sampling of cells, (or mycelia) and
spores (or viruses in plaque applications). The time the pin is in the colony, the
number of dips to inoculate the culture medium, and the time the pin is in that
medium each effect inoculum size, and each parameter can be controlled and
optimized.

The uniform process of automated colony picking such as the Q-bot
decreases human handling error and increases the rate of establishing cultures
(roughly 10,000/4 hours). These cultures are optionally shaken in a temperature and
humidity controlled incubator. Optional glass balls in the microtiter plates act to
promote uniform aeration of cells and the dispersal of cellular (e.g., mycelial)
fragments similar to the blades of a fermentor. Clones from cultures of interest can be
isolated by limiting dilution. As also described supra, plaques or cells constituting
libraries can also be screened directly for the production of proteins, either by
detecting hybridization, protein activity, protein binding to antibodies, or the like. To
increase the chances of identifying a pool of sufficient size, a prescreen that increases
the number of mutants processed by 10-fold can be used. The goal of the primary
screen is to quickly identify mutants having equal or better product titers than the
parent strain(s) and to move only these mutants forward to liquid cell culture for
subsequent analysis.

One approach to screening diverse libraries is to use a massively
parallel solid-phase procedure to screen cells expressing polynucleotide variants, e. g.,
polynucleotides that encode enzyme variants . Massively parallel solid-phase
screening apparatus using absorption, fluorescence, or FRET are available. See, €. g,
U.S. Pat. No. 5,914,245 to Bylina, et al. (1999); see also, http://www kairos-
scientific.com/; Youvan et al. (1999) “Fluorescence Imaging Micro-

Spectrophotometer (FIMS)” Biotechnology et alia, <www.et-al.com> 1:1-16; Yang et
al. (1998) “High Resolution Imaging Microscope (HIRIM)” Biotechnology et alia,
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<www.et-al.com> 4:1-20; and Youvan et al. (1999) “Calibration of Fluorescence
Resonance Energy Transfer in Microscopy Using Genetically Engineered GFP
Derivatives on Nickel Chelating Beads” posted at www.kairos-scientific.com.
Following screening by these techniques, molecules of interest are typically isolated,
and optionally sequenced using methods that are well known in the art. The
sequence information is then used as set forth herein to design a new protein variant
library .

Similarly, a number of well known robotic systems have also been
developed for solution phase chemistries useful in assay systems. These systems
include automated workstations like the automated synthesis apparatus developed by
Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing
robotic arms (Zymate I, Zymark Corporation, Hopkinton, Mass.; Orca, Beckman
Coulter, Inc. (Fullerton, CA)) which mimic the manual synthetic operations
performed by a scientist. Any of the above devices are suitable for use with the
present invention, e.g., for high-throughput screening of molecules encoded by
nucleic acids evolved as described herein. The nature and implementation of
modifications to these devices (if any) so that they can operate as discussed herein

will be apparent to persons skilled in the relevant art.

VII. DIGITAL APPARATUS AND SYSTEMS

As should be apparent, embodiments of the present invention employ
processes acting under control of instructions and/or data stored in or transferred
through one or more computer systems. Embodiments of the present invention also
relate to apparatus for performing these operations. Such apparatus may be specially
designed and/or constructed for the required purposes, or it may be a general-purpose
computer selectively activated or reconfigured by a computer program and/or data
structure stored in the computer. The processes presented herein are not inherently
related to any particular computer or other apparatus. In particular, various general-
purpose machines may be used with programs written in accordance with the
teachings herein. In some cases, however, it may be more convenient to construct a
specialized apparatus to perform the required method operations. A particular

structure for a variety of these machines will appear from the description given below.
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In addition, embodiments of the present invention relate to computer
readable media or computer program products that include program instructions
and/or data (including data structures) for performing various computer-implemented
operations. Examples of computer-readable media include, but are not limited to,
magnetic media such as hard disks, floppy disks, magnetic tape; optical media such as
CD-ROM devices and holographic devices; magneto-optical media; semiconductor
memory devices, and hardware devices that are specially configured to store and
perform program instructions, such as read-only memory devices (ROM) and random
access memory (RAM), and sometimes application-specific integrated circuits
(ASICs), programmable logic devices (PLDs) and signal transmission media for
delivering computer-readable instructions, such as local area networks, wide area
networks, and the Internet. The data and program instructions of this invention may
also be embodied on a carrier wave or other transport medium (e.g., optical lines,

electrical lines, and/or airwaves).

Examples of program instructions include both low-level code, such as
produced by a compiler, and files containing higher level code that may be executed
by the computer using an interpreter. Further, the program instructions include
machine code, source code and any other code that directly or indirectly controls
operation of a computing machine in accordance with this invention. The code may

specify input, output, calculations, conditionals, branches, iterative loops, etc.

Standard desktop applications such as word processing software (e.g.,
Microsoft Word™ or Corel WordPerfect™) and database software (e.g., spreadsheet
software such as Microsoft Excel™, Corel Quattro Pro™, or database programs such
as Microsoft Access™ or Paradox™) can be adapted to the present invention by
inputting one or more character strings into the software which is loaded into the
memory of a digital system, and performing an operation as noted herein on the
character string. For example, systems can include the foregoing software having the
appropriate character string information, e.g., used in conjunction with a user
interface (e.g., a GUI in a standard operating system such as a Windows, Macintosh
or LINUX system) to manipulate strings of characters. Specialized alignment
programs such as PILEUP and BLAST can also be incorporated into the systems of
the invention, e.g., for alignment of nucleic acids or proteins (or corresponding

character strings) as a preparatory step to performing an operation on any aligned
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sequences. Software for performing PCA (e.g., as is commercially available from

Partek) or other statistical operations can also be included in the digital system.

Systems typically include, e.g., a digital computer with software for
aligning and manipulating sequences according to the operations noted herein, or for
performing PCA, neural network analysis or the like, as well as data sets entered into
the software system comprising sequences or other data to be mapped or manipulated.
The computer can be, e.g., a PC (Intel x86 or Pentium chip- compatible DOS™,
082™, WINDOWS™, WINDOWS NT™, WINDOWS95™, WINDOWS98™,
LINUX, Apple-compatible, MACINTOSH™ compatible, Power PC compatible, or a
UNIX compatible (e.g., SUN™ work station or machine) or other common
commercially available computer which is known to one of skill. Software for
aligning or otherwise manipulating sequences can be constructed by one of skill using
a standard programming language such as VisualBasic, Fortran, Basic, Java, or the

like, according to the methods herein.

Any controller or computer optionally includes a monitor which can
include, e.g., a cathode ray tube (“CRT”) display, a flat panel display (e.g., active
matrix liquid crystal display, liquid crystal display), or others. Computer circuitry is
often placed in a box which includes numerous integrated circuit chips, such as a
microprocessor, memory, interface circuits, and others. The box also optionally
includes a hard disk drive, a floppy disk drive, a high capacity removable drive such
as a writeable CD-ROM, and other common peripheral elements. Inputting devices
such as a keyboard or mouse optionally provide for input from a user and for user
selection of sequences to be compared or otherwise manipulated in the relevant

computer system.

The computer typically includes appropriate software for receiving
user instructions, either in the form of user input into a set parameter fields, e.g., in a
GUI, or in the form of preprogrammed instructions, e.g., preprogrammed for a variety
of different specific operations. The software then converts these instructions to
appropriate language for instructing the system to carry out any desired operation.
For example, in addition to performing statistical manipulations of data space, a
digital system can instruct an oligonucleotide synthesizer to synthesize

oligonucleotides for gene reconstruction, or even to order oligonucleotides from
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commercial sources (e.g., by printing appropriate order forms or by linking to an

order form on the internet).

The digital system can also include output elements for controlling
nucleic acid synthesis (e.g., based upon a sequence or an alignment of a sequences
herein), i.e., an integrated system of the invention optionally includes an
oligonucleotide synthesizer or an oligonucleotide synthesis controller. The system
can include other operations which occur downstream from an alignment or other
operation performed using a character string corresponding to a sequence herein, e.g.,

as noted above with reference to assays.

In one example, code embodying methods of the invention are
embodied in a fixed media or transmissible program component containing logic
instructions and/or data that when loaded into an appropriately configured computing
device causes the device to perform a genetic operator on one or more character
string. Figure 16 shows an example digital device 2200 that should be understood to
be a logical apparatus that can read instructions from media 2217, network port 2219,
user input keyboard 2209, user input 2211 or other inputting means. Apparatus 2200
can thereafter use those instructions to direct statistical operations in data space, €.g.,
to construct one or more data set (e.g., to determine a plurality of representative
members of the data space). One type of logical apparatus that can embody the
invention is a computer system as in computer system 2200 comprising CPU 2207,
optional user input devices keyboard 2209, and GUI pointing device 2211, as well as
peripheral components such as disk drives 2215 and monitor 2205 (which displays
GO modified character strings and provides for simplified selection of subsets of such
character strings by a user. Fixed media 2217 is optionally used to program the
overall system and can include, e.g., a disk-type optical or magnetic media or other
electronic memory storage element. Communication port 2219 can be used to

program the system and can represent any type of communication connection.

The invention can also be embodied within the circuitry of an
application specific integrated circuit (ASIC) or programmable logic device (PLD).
In such a case, the invention is embodied in a computer readable descriptor language
that can be used to create an ASIC or PLD. The invention can also be embodied
within the circuitry or logic processors of a variety of other digital apparatus, such as

PDAs, laptop computer systems, displays, image editing equipment, etc.
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In one preferred aspect, the digital system comprises a learning
component where the outcomes of physical oligonucleotide assembly schemes
(compositions, abundance of products, different processes) are monitored in
conjunction with physical assays, and correlations are established. Successful and
unsuccessful combinations are documented in a database to provide
justification/preferences for user-base or digital system based selection of sets of
parameters for subsequent processes described herein involving the same set of
parental character strings/nucleic acids/proteins (or even unrelated sequences, where
the information provides process improvement information). The correlations are
used to modify subsequent processes of the invention, e.g., to optimize the particular
process. This cycle of physical synthesis, selection and correlation is optionally
repeated to optimize the system. For example, a learning neural network can be used

to optimize outcomes.

VIII. EMBODIMENTS IN WEBSITES

The Internet includes computers, information appliances, and computer
networks that are interconnected through communication links. The interconnected
computers exchange information using various services, such as electronic mail, fip,
the World Wide Web (“WWW”) and other services, including secure services. The
WWW service can be understood as allowing a server computer system (e.g., a Web
server or a Web site) to send web pages of information to a remote client information
appliance or computer system. The remote client computer system can then display
the web pages. Generally, each resource (e.g., computer or web page) of the WWW
is uniquely identifiable by a Uniform Resource Locator (“URL”). To view or interact
with a specific web page, a client computer system specifies a URL for that web page
in a request. The request is forwarded to a server that supports that web page. When
the server receives the request, it sends that web page to the client information system.
When the client computer system receives that web page, it can display the web page
using a browser or can interact with the web page or interface as otherwise provided.
A browser is a logic module that effects the requesting of web pages and displaying or
interacting with web pages.

Currently, displayable web pages are typically defined using a Hyper
Text Markup Language (“HTML”). HTML provides a standard set of tags that define
how a web page is to be displayed. An HTML document contains various tags that
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control the displaying of text, graphics, controls, and other features. The HTML
document may contain URLSs of other Web pages available on that server computer
system or other server computer systems. URLs can also indicate other types of
interfaces, including such things as CGI scripts or executable interfaces, that
information appliances use to communicate with remote information appliances or
servers without necessarily displaying information to a user.

The Internet is especially conducive to providing information services
to one or more remote customers. Services can include items (e.g., music or stock
quotes) that are delivered electronically to a purchaser over the Internet. Services can
also include handling orders for items (e.g., groceries, books, or chemical or biologic
compounds, etc.) that may be delivered through conventional distribution channels
(e.g., a common carrier). Services may also include handling orders for items, such as
aitline or theater reservations, that a purchaser accesses at a later time. A server
computer system may provide an electronic version of an interface that lists items or
services that are available. A user or a potential purchaser may access the interface
using a browser and select various items of interest. When the user has completed -
selecting the items desired, the server computer system may then prompt the user for
information needed to complete the service. This transaction-specific order
information may include the purchaser's name or other identification, an identification
for payment (such as a corporate purchase order number or account number), or
additional information needed to complete the service, such as flight information.
NCBI Databases and Software

Among services of particular interest that can be provided over the
internet and over other networks are biological data and biological databases. Such
services include a variety of services provided by the National Center for
Biotechnology Information (NCBI) of the National Institutes of Health (NIH). NCBI
is charged with creating automated systems for storing and analyzing knowledge
about molecular biology, biochemistry, and genetics; facilitating the use of such
databases and software by the research and medical community; coordinating efforts
to gather biotechnology information both nationally and internationally; and
performing research into advanced methods of computer-based information
processing for analyzing the structure and function of biologically important

molecules.
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NCBI holds responsibility for the GenBank® DNA sequence database.
The database has been constructed from sequences submitted by individual
laboratories and by data exchange with the international nucleotide sequence
databases, the European Molecular Biology Laboratory (EMBL) and the DNA
Database of Japan (DDBJ), and includes patent sequence data submitted to the U.S.
Patent and Trademark Office. In addition to GenBank®, NCBI supports and
distributes a variety of databases for the medical and scientific communities. These
include the Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling
Database (MMDB) of 3D protein structures, the Unique Human Gene Sequence
Collection (UniGene), a Gene Map of the Human Genome, the Taxonomy Browser,
and the Cancer Genome Anatomy Project (CGAP), in collaboration with the National
Cancer Institute. Entrez is NCBI's search and retrieval system that provides users
with integrated access to sequence, mapping, taxonomy, and structural data. Entrez
also provides graphical views of sequences and chromosome maps. A feature of
Entrez is the ability to retrieve related sequences, structures, and references. BLAST,
as described herein, is a program for sequence similarity searching developed at
NCBI for identifying genes and genetic features that can execute sequence searches
against the entire DNA database. Additional software tools provided by NCBI
include: Open Reading Frame Finder (ORF Finder), Electronic PCR, and the
sequence submission tools, Sequin and BankIt. NCBI's various databases and
software tools are available from the WWW or by FTP or by e-mail servers. Further
information is available at www.ncbi.nlm.nih.gov.

Some biological data available over the internet is data that is generally
viewed with a special browser “plug-in” or other executable code. One example of
such a system is CHIME, a browser plug-in that allows an interactive virtual 3-
dimensional display of molecular structures, including biological molecular
structures. Further information regarding CHIME is available at
www.mdlchime.com/chime/.

Online Oligos, Gene, or Protein Ordering

A variety of companies and institutions provide online systems for
ordering biological compounds. Examples of such systems can be found at
www.genosys.com/oligo_custinfo.cfm or

www.genomictechnologies.com/Qbrowser2 FP.html. Typically, these systems
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accept some descriptor of a desired biological compound (such as an oligonucleotide,
DNA strand, RNA strand, amino acid sequence, etc.) and then the requested
compound is manufactured and is shipped to the customer in a liquid solution or other
appropriate form.

To further illustrate, the methods of this invention can be implemented
in a localized or distributed computing environment. In a distributed environment, the
methods may be implemented on a single computer comprising multiple processors or
on a multiplicity of computers. The computers can be linked, e.g. through a common
bus, but more preferably the computer(s) are nodes on a network. The network can be
a generalized or a dedicated local or wide-area network and, in certain preferred

embodiments, the computers may be components of an Intranet or an Internet.

In one internet embodiment, a client system typically executes a Web
browser and is coupled to a server computer executing a Web server. The Web
browser is typically a program such as IBM's Web Explorer, Microsoft’s Internet
explorer, NetScape, Opera, or Mosaic. The Web server is typically, but not
necessarily, a program such as IBM's HTTP Daemon or other www daemon (e.g.,
LINUX-based forms of the program). The client computer is bi-directionally coupled
with the server computer over a line or via a wireless system. In turn, the server
computer is bi-directionally coupled with a website (server hosting the website)

providing access to software implementing the methods of this invention.

As mentioned, a user of a client connected to the Intranet or Internet
may cause the client to request resources that are part of the web site(s) hosting the
application(s) providing an implementation of the methods of this invention. Server
program(s) then process the request to return the specified resources (assuming they
are currently available). The standard naming convention (i.e., Uniform Resource
Locator (“URL”)) encompasses several types of location names, presently including
subclasses such as Hypertext Transport Protocol (“http”), File Transport Protocol
(“ftp”), gopher, and Wide Area Information Service (“WAIS”). When a resource is
downloaded, it may include the URLs of additional resources. Thus, the user of the
client can easily learn of the existence of new resources that he or she had not

specifically requested.

The software implementing the method(s) of this invention can run

locally on the server hosting the website in a true client-server architecture. Thus, the
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client computer posts requests to the host server which runs the requested process(es)
locally and then downloads the results back to the client. Alternatively, the methods
of this invention can be implemented in a “multi-tier” format in which a component of
the method(s) are performed locally by the client. This can be implemented by
software downloaded from the server on request by the client (e.g. a Java application)

or it can be implemented by software “permanently” installed on the client.

In one embodiment the application(s) implementing the methods of
this invention are divided into frames. In this paradigm, it is helpful to view an
application not so much as a collection of features or functionality but, instead, as a
collection of discrete frames or views. A typical application, for instance, generally
includes a set of menu items, each of with invokes a particular frame--that is, a form
which manifest certain functionality of the application. With this perspective, an
application is viewed not as a monolithic body of code but as a collection of applets,
or bundles of functionality. In this manner from within a browser, a user would select
a Web page link which would, in turn, invoke a particular frame of the application
(i.e., a sub-application). Thus, for example, one or more frames may provide
functionality for inputting and/or encoding biological molecule(s) into one or more

data spaces, while another frame provides tools for refining a model of the data space.

In certain embodiments, the methods of this invention are
implemented as one or more frames providing, e.g., the following functionalit(ies).
Function(s) to encode two or more biological molecules into character strings to
provide a collection of two or more different initial character strings wherein each of
said biological molecules comprises a selected set of subunits; functions to select at
least two substrings from the character strings; functions to concatenate the substrings
to form one or more product strings about the same length as one or more of the initial
character strings; functions to add (place) the product strings to a collection of strings,

and functions to implement any feature set forth herein.

The functions to distribute two or more biological molecules into data
space can provide one or more windows wherein the user can insert representation(s)
of biological molecules. In addition, the encoding function also, optionally, provides
access to private and/or public databases accessible through a local network and/or the
intranet whereby one or more sequences contained in the databases can be input into

the methods of this invention. Thus, for example, in one embodiment, where the end

82



10

15

20

25

30

WO 03/075129 PCT/US03/06551

user inputs a nucleic acid sequenced into the encoding function, the user can,
optionally, have the ability to request a search of GenBank® and input one or more of
the sequences returned by such a search into the encoding and/or diversity generating

function.

Methods of implementing Intranet and/or Intranet embodiments of
computational and/or data access processes are well known to those of skill in the art
and are documented in great detail (see, e.g., Cluer et al. (1992) “A General
Framework for the Optimization of Object-Oriented Queries,” Proc SIGMOD
International Conference on Management of Data, San Diego, California, Jun. 2-5,
1992, SIGMOD Record, vol. 21, Issue 2, Jun., 1992; Stonebraker, M., Editor; ACM
Press, pp. 383-392; ISO-ANSI, Working Draft, “Information Technology-Database
Language SQL,” Jim Melton, Editor, International Organization for Standardization
and American National Standards Institute, Jul. 1992; Microsoft Corporation, “ODBC
2.0 Programmer's Reference and SDK Guide. The Microsoft Open Database Standard
for Microsoft Windows.™ and Windows NT™, Microsoft Open Database
Connectivity. TM. Software Development Kit,” 1992, 1993, 1994 Microsoft Press, pp.
3-30 and 41-56; ISO Working Draft, “Database Language SQL-Part 2:Foundation
(SQL/Foundation),” CD9075-2:199.chi.SQL, Sep. 11, 1997, and the like). Additional
relevant details regarding web based applications are found in WO 00/42559, entitled
“METHODS OF POPULATING DATA STRUCTURES FOR USE IN
EVOLUTIONARY SIMULATIONS,” by Selifonov and Stemmer.

IX. EXAMPLES - IDENTIFYING FUNCTIONAL CONSTRAINTS IN
PROTEINS BY SYNTHETIC DNA SHUFFLING

The following non-limiting example is offered only by way of
illustration.

Protein evolution is manifested by amino acid changes in the coding
sequence. These amino acid changes are constrained by continuous selective pressure
for function, resulting in independent and correlated changes in a protein’s
descendents. This section presents a method for differentiating covariation between
amino acids reflecting functional selection, from covariation that simply results from

a common ancestral origin.
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Functional screening and sequencing of sequences suggests that most
of the covariation observed in naturally occurring sequences results from phylogenetic
descent, rather than functional constraints. The functional covariations that are
identified are mainly in local structural elements, but there is also some covariation
occurring over longer distances in genes/proteins. In general, genes and proteins are
very plastic and have evolved to minimize the interdependence of allowed amino acid
changes to facilitate adaptation.

During divergent evolution, protein sequences change while the
biochemical function of the protein is generally retained. Correlated change between
functionally linked residues in a protein provide for the preservation of protein
structure and function throughout the evolutionary process. The functional link
between the covarying residues can be due, e.g., to structural contact or an indirect
effect through interactions with substrates, products, cofactors or other proteins.
Independent mutations among functionally linked residues are often disadvantageous,
but two simultaneous mutations may allow the protein to retain function.
Alternatively, two or more residues may covary simply due to a common ancestral
origin. Current analytical tools are limited in the ability to separate the functional
from the phylogenetic (ancestral) covariation in a family of orthologous proteins.
Statistical tools are limited both by the amount of data to infer covariation and also
limited by the evolutionary models to explain the data. See, Wollenberg, K. R. &
Atchley, W. R. Separation of phylogenetic and functional associations in biological
sequences by using the parametric bootstrap. Proc. Nat'l Acad. Sci 97, 3288-91.
(2000); Gaucher, E. A., Miyamoto, M. M. & Benner, S. A. Function-structure

analysis of proteins using covarion-based evolutionary approaches: Elongation

factors. Proc. Nat'l Acad. Sci 98, 548-552 (2001); Larson, S. M., Di Nardo, A. A. &

Davidson, A. R. Analysis of covariation in an SH3 domain sequence alignment:
applications in tertiary contact prediction and the design of compensating

hydrophobic core substitutions. J Mol Biol 303, 433-46. (2000); Pollock, D. D.,

Taylor, W. R. & Goldman, N. Coevolving protein residues: maximum likelihood
identification and relationship to structure. ] Mol Biol 287, 187-98. (1999; and
Atchley, W. R., Wollenberg, K. R., Fitch, W. M., Terhalle, W. & Dress, A. W.
Correlations among amino acid sites in bHLH protein domains: an information

theoretic analysis. Mol Biol Evol 17, 164-78. (2000).
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If sequential point mutations are the primary mechanism for divergent
evolution, most amino acid changes should occur independently: two simultaneous
mutations will be extremely rare (e.g., at the rate of one mutation per 10° base pairs
for a single cell division in E. coli).

Here an experiment is described in which all amino acids in a family of
proteins are deliberately uncoupled by synthetic DNA shuffling (i.e., recombination
of synthetic oligonucleotides that collectively correspond in sequence to a set of
parental polynucleotides). By allowing all residues to vary independent of context
and then screening for function, any covariation derived from common ancestral
origin is eliminated and only covariation that contributes to function is retained.
Functional variants are analyzed using mutual information theory to assess
covariation between residues. Most of the covariation observed among the parental
sequences is not preserved in functional chimeric proteins, indicating that it is
primarily a measure of common ancestral descent. The methods also identify
covarying residues that are not seen among the parents due to sampling effects.

Synthetic shuffling can be performed in a homology independent
method that allows an essentially equal probability of each allowed residue at any
given position to be incorporated into the final product. See, e.g., WO 00/42561 by
Crameri et al., “Oligonucleotide Mediated Nucleic Acid Recombination” and Ness, J.,
Minshull, J. & Kim, S. Synthetic Shuffling. Nature Biotech Submitted (2001)). This
is in contrast to many other recombination formats where the distribution of any
single residue is dependent on its abundance and context among the parental genes.
Synthetic shuffling results in a library of sequences that are completely chimeric on
the single residue level and rich in natural diversity.

Despite the vast total size of libraries which can be generated by
synthetic shuffling, characterization of only a small subset of the library is sufficient
to test a significant number of covarying residue pairs for correlation with function.
Any pair of covarying amino acid residues is sampled many times over among the
fully characterized variants. Libraries generated through synthetic shuffling are an
excellent unbiased source of data to analyze the relative importance of covariance and
its distribution in a biological system.

Characterizing the distribution of a pre-screened library allows one to
normalize the covariation found among the active variants to the inherent distribution

of covariance the library. Any spurious artifactual mutual information derived from

85



10

15

20

25

30

WO 03/075129 PCT/US03/06551

an imperfect library (for example oligonucleotide degeneracy biases produced during
synthesis) can be eliminated. In general, there is no, or very little, difference in the
sequence diversity distribution between pre-screened and active variants. In both
cases, the variants are evenly distributed, suggesting no significant bias towards
diversity originating from any given parent or cluster of parents. This shows that new
regions of sequence space can be explored for functional activity by distributing the
characterized variants evenly across the same sequence space covered by parental
genes. Sequence distance traversed using classic directed evolution techniques such
as random mutagenesis is usually limited to 1-3 amino acid residues per gene per
round. Most of the solutions found through synthetic shuffling are consequently
inaccessible by random mutagenesis.

Covariation between residues inferred from biological sequence data
can be attributed to either functional constraints or phylogenetic relationships. Since
one generally does not know the historical origin of the sequences at issue (at least
where the sequences are naturally occurring), one cannot de-convolute the covariant
nature of residues involved. This issue has typically been addressed either through
collecting as many sequences as possible under a given node in a phylogenetic tree, or
by computer simulations of possible evolutionary paths using a model for sequence
evolution. Both approaches have significant complications and drawbacks. An
inherent complication of the first type of covariation analysis is the inclusion of
sequences having diverged not only in neutral mutations, but also in function. The
divergence can be small, as in evolving to a slightly different pH optimum, or large as
in evolving to catalyze a related but different reaction. No single orthologous enzyme
pair has truly evolved for the exact same physiological conditions. Including
sequences in the covariation analysis that have diverged in function adds noise to the
correlations, as they are subjected to different selective pressures. Another, perhaps
more serious concern, is the inability to ever gather all sequences under a
phylogenetic node to ensure that the distribution in the data set is unbiased due to
sampling effects. In a library produced by synthetic shuffling, all inherent covariation
is removed and amino acid diversity occurring in any one position has an equal
probability of occurring in any variant. Screening such a library (e.g., in vitro) for a
defined biochemical function, identifies all covariation derived from functional

constraints required for the assayed biological activity of the enzyme. The remainder
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of the covariation found among the parental genes, but not present among the
functional progeny, is consequently the result of common ancestral origin.

The covariation among a set of variants from the library can be
assessed and visualized by aligning the sequences and removing residues that are
conserved throughout the alignment. The mutual information between each varying
residue pairs is plotted in a two-dimensional matrix. Each row/column represents one
of the varying residue positions for a protein and each cell in the matrix represents a
possible residue pair. A filled cell of the matrix corresponds to highly covarying
residues. Each parental sequence has evolved independently through natural selection
and their phylogenetic distribution is highly clustered. Displaying every residue pair
for the parental genes identifies many residue pairs that covary. The mutual
information distribution is normalized to have a mean of 0 and variance of 1.
Covariation here is defined as residue pairs with mutual information higher than 2
deviations for that alignment.

After making the synthetic library, but before exposing the variants to
any selective pressure, variants are isolated. These unscreened variants are
characterized for covariation in the same way as the parental genes. In most cases,
the distribution of the varying residues is uniform, with all varying residues exist in
conjunction with all other varying residues. To the extent that there is covariation,
that covariation is not the result of functional constraints (i.e., the variants have not
been exposed to selection). This in effect, is a control of the question of whether the
covariation is a result of functional constraints. After synthetic shuffling and
selection for function, covarying residue pairs that are identified are the result of
functional constraints. The covariation found among the parental genes and not
among the finctionally active library variants could also reflect a selective pressure
for indirect effects on the organism. Indirect effects could potentially be any trait,
such as sequestering of cofactors or cellular localization, etc. that is not specifically

related to the screening criteria of the selection assay.

1. MUTUAL INFORMATION ANALYSIS

In a protein alignment, the entropy measure for each position in the
alignment indicates the degree of variability and preference for each amino acid. The
following equation is used to quantify site-entropy (Shannon, C. E. The mathematical

theory of communication. 1963. MD Comput 14, 306-17. (1997)).
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I, = SxP(AX) log P(AY) (1)

Where the sum is over all k amino acids {A%} occurring at position i in
the alignment. P(A%) is the probability of amino acid k at position i. Likewise,
covariance between amino acids can be measured by using the mutual information
content between pairs of sites.

ML, = 3, X1 P(AY and A')) log P(A¥; and A')) (2)
P(A") P(A')

The double summation is over all possible pairs of amino acids (A}

and {Alj} at positions i and j respectively. P(AY) is the probability of amino acid k at
position i and P(A¥ and A';) is combined probability of amino acid k at position i and
amino acid 1 at position j.

The MI values are normalized for each group of variants to have the
same mean of 0.0 and standard deviation of 1.0. The degree of co-variation among
any residue pair is identified by the deviation of the MI for the given pair from the
expected mutual information content.

While the foregoing invention has been described in some detail for
purposes of clarity and understanding, it will be clear to one skilled in the art from a
reading of this disclosure that various changes in form and detail can be made without
departing from the true scope of the invention. For example, all the techniques and
apparatus described above may be used in various combinations. All publications,
patents, patent applications, or other documents cited in this application are
incorporated by reference in their entirety for all purposes to the same extent as if
each individual publication, patent, patent application, or other document were

individually indicated to be incorporated by reference for all purposes.

\

88



10

15

20

25

30

WO 03/075129 PCT/US03/06551

CLAIMS

WHAT IS CLAIMED IS:

1. A method for identifying amino acid residues for variation in a protein
variant library in order to affect a desired activity, said method comprising:

(a)  receiving data characterizing a training set of a protein variant library,

wherein protein variants in the library have systematically varied sequences,

and

wherein the data provides activity and sequence information for each protein
variant in the training set;

(b)  from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the
sequence; and

(c)  using the sequence activity model to identify one or more amino acid
residues at specific positions in the systematically varied sequences that are to be
varied in order to impact the desired activity.

2. The method of claim 1, further comprising:

(d)  using the sequence activity model to identify one or more amino acid
residues that are to remain fixed in a new protein variant library.

3. The method of claim 1, wherein the protein variant library comprises
naturally occurring proteins or proteins derived therefrom.

4. The method of claim 3, wherein the naturally occurring proteins
comprise proteins that are encoded by members of a single gene family.

5. The method of claim 1, wherein the protein variant library comprises
proteins that are obtained by using a recombination-based diversity generation
mechanism.

6. The method of claim 1, further comprising performing DOE to identify

the systematically varied sequences.

7. The method of claim 1, wherein the activity is not protein stability.

8. The method of claim 1, wherein the sequence activity model is a
regression model.

9. The method of claim 1, wherein the sequence activity model is a

partial least squares model.
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10.  The method of claim 1, wherein the sequence activity model is a neural
network.

11.  The method of claim 1, wherein using the sequence activity model to
identify one or more amino acid residues further comprises identifying sequences for
use in a recombination-based diversity generation mechanism, wherein said sequences
comprise variations in the one or more amino acid residues identified in (c).

12.  The method of claim 1, wherein using the sequence activity model
comprises identifying a sequence predicted by the model to have a highest value of
the desired activity.

13.  The method of 12, wherein using the model further comprises selecting
subsequences of the best sequence.

14.  The method of claim 1, wherein using the sequence activity model to
identify one or more amino acid residues comprises using the sequence activity model
to rank residue positions in order of impact on the desired activity.

15.  The method of claim 1, wherein using the sequence activity model to
identify one or more amino acid residues comprises using the sequence activity model
to rank residue types at residue positions in order of impact on the desired activity.

16.  The method of claim 1, wherein using the model comprises using the
model as a fitness function in a genetic algorithm.

17.  The method of claim 1, wherein using the sequence activity model to
identify one or more amino acid residues at specific positions in the systematically
varied sequences comprises identifying one or more sequences for use in generating a
new protein variant library.

18.  The method of claim 17, wherein the sequences are oligonucleotide
sequences encoding variations of the one or more identified amino acid residues.

19.  The method of claim 18, further comprising performing mutagenesis or
a recombination-based diversity generation mechanism using the oligonucleotide
sequences to generate the new protein variant library.

20. The method of claim 19, wherein performing mutagenesis or a
recombination-based diversity generation mechanism is used in a directed evolution
procedure.

21.  The method of claim 18, wherein the oligonucleotide sequences

encode at least a portion of (i) a naturally occurring parent protein having the highest
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activity among naturally occurring parent proteins, or (ii) a sequence predicted by the
sequence activity model to have the highest activity.

22.  The method of claim 17, further comprising developing a new
sequence activity model using activity and sequence data characterizing the new
protein variant library.

23.  The method of claim 17, further comprising selecting one or more
members of the new protein variant library for production.

24.  The method of claim 23, further comprising expressing one or more of
the selected members of the new protein variant library.

25.  The method of claim 23, further comprising:

(i) providing an expression system from which a selected member of the new
protein variant library can be expressed; and

(ii) expressing the selected member of the new protein variant library.

26. The method of claim 1, wherein the one or more amino acid residues
identified in (c) are identified in a reference sequence predicted using the sequence
activity model or a reference sequence that describes a member of the protein variant
library.

27. A method for identifying amino acid residues for variation in a protein
variant library in order to affect a desired activity, said method comprising:

(@)  receiving data characterizing a training set of a protein variant library

comprising proteins that were obtained by performing classical or synthetic

DNA shuffling on nucleic acids encoding all or part of one or more naturally

occurring parent proteins, wherein the data provides activity and sequence

information for each protein variant in the training set;

(b)  from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the
sequence; and

()  using the sequence activity model to identify one or more amino acid
residues, in proteins of the library, that are to be varied in order to impact the desired
activity.

28. A method for identifying amino acid residues for variation in a protein

variant library in order to affect a desired activity, said method comprising:
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(a)  receiving data characterizing a training set of a protein variant library,
wherein the data provides activity and sequence information for each protein
variant in the training set;

(b)  from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the
sequence; and

(©) using the sequence activity model to identify one or more amino acid
residues, in proteins of the protein variant library, that are to be varied in order to
identify one or more sequences for use in a directed evolution procedure.

29.  The method of claim 28, wherein the sequences are oligonucleotide
sequences encoding variations of the one or more identified amino acid residues.

30. A method for identifying amino acid residues for variation in a protein
variant library in order to affect a desired activity, said method comprising:

(@ receiving déta characterizing a training set of a protein variant library,

wherein the data provides activity and sequence information for each protein

variant in the training set;

(b)  from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the
sequence;

(c) using the sequence activity model to rank residue positions or residue
types at specific residue positions in order of impact on the desired activity;

(d) using the ranking to identify one or more amino acid residues, n
proteins of the protein variant library, that are to be varied or fixed in order to impact
the desired activity.

31. A method for generating an optimized protein variant library, said
method comprising:

(a) receiving data characterizing a training set of a protein variant library,

wherein protein variants in the library have systematically varied sequences,
and

wherein the data provides activity and sequence information for each protein
variant in the training set;

(b)  from the data, developing a sequence activity model that predicts
activity as a function of amino acid residue type and corresponding position in the

sequence;
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(c) using the sequence activity model to select one or more amino acid
residues at specific positions in the systematically varied sequences that are predicted
to provide desired activity;

(d)  generating an optimized protein variant library,

wherein the sequences of the members of the optimized protein variant library
each comprise the one or more selected amino acid residues.

32. A computer program product comprising a computer readable medium
on which is provided program instructions for identifying amino acid residues for
variation in a protein variant library in order to affect a desired activity, said
instructions comprising:

(a) code for receiving data characterizing a training set of a protein variant
libfa;ry,

wherein protein variants in the library have systematically varied sequences,

and

wherein the data provides activity and sequence information for each pl;otein
variant in the training set;

(b)  code for using the data to develop a sequence activity model that
predicts activity as a function of amino acid residue type and corresponding position
in the sequence; and

©) code for using the sequence activity model to identify one or more
amino acid residues at specific positions in the systematically varied sequences that
are to be varied in order to impact the desired activity.

33.  The computer program product of claim 32, wherein the program
instructions further comprise:

(d)  code for using the sequence activity model to identify one or more
amino acid residues that are to remain fixed in a new protein variant library.

34.  The computer program product of claim 32, wherein the program
instructions further comprise code for performing DOE to identify the systematically
varied sequences.

35.  The computer program product of claim 32, wherein the sequence
activity model is a regression model.

36.  The computer program product of claim 32, wherein the sequence

activity model is a partial least squares model.
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37.  The computer program product of claim 32, wherein the sequence
activity model is a neural network.

38.  The computer program product of claim 32, wherein the code for using
the sequence activity model comprises code for identifying a sequence predicted by
the model to have a highest value of the desired activity.

39.  The computer program product of 38, wherein the code for using the
model further comprises code for selecting subsequences of the best sequence.

40.  The computer program product of claim 32, wherein the code for using
the sequence activity model to identify one or more amino acid residues comprises
code for using the sequence activity model to rank residue positions in order of impact
on the desired activity.

41.  The computer program product of claim 32, wherein the code for using
the sequence activity model to identify one or more amino acid residues comprises
code for using the sequence activity model to rank residue types at residue positions
in order of impact on the desired activity.

42.  The computer program product of claim 32, wherein the code for using
the model comprises code for using the model as a fitness function in a genetic
algorithm.

43.  The computer program product of claim 32, wherein the code for using
the sequence activity model to identify one or more amino acid residues at specific
positions in the systematically varied sequences comprises code for identifying one or
more sequences for use in generating a new protein variant library.

44.  The computer program product of claim 43, wherein the sequences are
oligonucleotide sequences encoding variations of the one or more identified amino
acid residues.

45. The computer program product of claim 44, wherein the
oligonucleotide sequences encode at least a portion of (i) a naturally occurring parent
protein having the highest activity among naturally occurring parent proteins, or (ii) a
sequence predicted by the sequence activity model to have the highest activity.

46.  The computer program product of claim 43, further comprising code
for developing a new sequence activity model using activity and sequence data
characterizing the new protein variant library.

47.  The computer program of claim 43, further comprising code for

selecting one or more members of the new protein variant library for production.
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48.  The computer program product of claim 32, wherein the code in (c)
identifies the one or more amino acid residues in (i) a reference sequence predicted
using the sequence activity model or (ii) a reference sequence that describes a
member of the protein variant library.

49. A computer program product comprising a computer readable medium
on which is provided program instructions for identifying amino acid residues for
variation in a protein variant library in order to affect a desired activity, said program
instructions comprising:

(a) code for receiving data characterizing a training set of a protein variant

library comprising proteins that were obtained by performing classical or

synthetic DNA shuffling on nucleic acids encoding all or part of one or more
naturally occurring parent proteins, wherein the data provides activity and
sequence information for each protein variant in the training set;

(b) code for using the data to develop a sequence activity model that
predicts activity as a function of amino acid residue type and corresponding position
in the sequence; and

(c)  code for using the sequence activity model to identify one or more
amino acid residues, in proteins of the library, that are to be varied in order to impact
the desired activity.

50. A computer program product comprising a machine readable medium
on which is provided program instructions for identifying amino acid residues for
variation in a protein variant library in order to affect a desired activity, said program
instructions comprising:

(@) code for receiving data characterizing a training set of a protein variant

library, wherein the data provides activity and sequence information for each

protein variant in the training set;

(b) code for using the data to develop a sequence activity model that
predicts activity as a function of amino acid residue type and corresponding position
in the sequence; and

(c) code for using the sequence activity model to identify one or more
amino acid residues, in proteins of the protein variant library, that are to be varied in
order to identify one or more sequences for use in a directed evolution procedure.

51. A computer program product comprising a machine readable medium

on which is provided program instructions for identifying amino acid residues for
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variation in a protein variant library in order to affect a desired activity, said program
instructions comprising:

(a) code for receiving data characterizing a training set of a protein variant

library, wherein the data provides activity and sequence information for each

protein variant in the training set;

(b)  code for using the data to develop a sequence activity model that
predicts activity as a function of amino acid residue type and corresponding position
in the sequence;

(c) code for using the sequence activity model to rank residue positions or
residue types at specific residue positions in order of impact on the desired activity;

(d code for using the ranking to identify one or more amino acid residues,
in proteins of the protein variant library, that are to be varied or fixed in order to
impact the desired activity.

52. A computer program product comprising a machine readable medium
on which is provided program instructions for generating an optimized protein variant
library, said program instructions comprising:

(@) code for receiving data characterizing a training set of a protein variant
library,

wherein protein variants in the library have systematically varied sequences,
and

wherein the data provides activity and sequence information for each protein
variant in the training set;

(b) code for using the data to develop a sequence activity model that
predicts activity as a function of amino acid residue type and corresponding position
in the sequence;

(©) code for using the sequence activity model to select one or more amino
acid residues at specific positions in the systematically varied sequences that are
predicted to provide desired activity;

(d code for defining an optimized protein variant library,

wherein the sequences of the members of the optimized protein variant library
each comprise the one or more selected amino acid residues.

53. A method of identifying members of a population of biopolymer

sequence variants most suitable for artificial evolution, the method comprising:
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(a) selecting or screening the members of a population of biopolymer
sequence variants for two or more desired objectives to produce a multi-objective
fitness data set;

(b) identifying a Pareto front in the multi-objective fitness data set; and,

(c) selecting one or more members proximal to the Pareto front, thereby
identifying the members of the population of biopolymer sequence variants most
suitable for artificial evolution.

54.  The method of claim 53, wherein step (c) comprises:

(i) calculating a weighted sum of the two or more desired objectives
for at least some of the members proximal to the Pareto front; and

(ii) selecting at least one member comprising a higher weighted sum
than other members proximal to the Pareto front.

55.  The method of claim 53, wherein step (c) comprises:

(i) ranking the one or more members according to relative proximity to
the Pareto front and relative isolation in sequence space; and,

(ii) selecting at least one member that ranks higher than other members
proximal to the Pareto front.

56. A computer program product comprising a computer readable medium
having one or more logic instructions for

(a) applying one or more multi-objective evolutionary algorithms to at least
one parental biopolymer sequence to produce a set of biopolymer sequence variants;

(b) selecting or screening the members of the set of biopolymer sequence
variants for two or more desired objectives;

(c) plotting the set of biopolymer sequence variants as a function of the two or
more desired objectives to produce a biopolymer sequence variant plot; and,

(d) identifying a Pareto front in the biopolymer sequence variant plot to
identify the members of the set of biopolymer sequence variants comprising multiple
improved objectives relative to other members of the set of biopolymer sequence
variants.

57. A method of predicting sequences that comprise desired properties, the
method comprising:

(a) evolving at least one parental sequence using at least one artificial

evolution procedure to produce at least one population of artificially evolved

sequences;
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(b) selecting or screening the population of artificially evolved sequences for
at least one desired property to produce a population of selected artificially evolved
sequences;

(c) training a neural network with the population of selected artificially
evolved sequences to produce a trained neural network; and,

(d) predicting one or more sequences that comprise the at least one desired property
using the trained neural network.

58. A computer system for predicting sequences that comprise desired
properties, comprising:

(a) at least one computer system comprising a neural network and a database
capable of storing sequences; and,

(b) system software comprising one or more logic instructions for:

(i) evolving at least one parental sequence using at least one artificial
evolution procedure to produce at least one population of artificially evolved
sequences;

(ii) selecting or screening the population of artificially evolved
sequences for at least one desired property to produce a population of selected
artificially evolved sequences;

(iii) training the neural network with the population of selected
artificially evolved sequences to produce a trained neural network; and

(iv) predicting one or more sequences that comprise the at least one
desired property using the trained neural network.

59. A computer program product for predicting sequences that comprise
desired properties, comprising a computer readable medium having one or more logic
instructions for:

(a) evolving at least one parental sequence using at least one artificial
evolution procedure to produce at least one population of artificially evolved
sequences;

(b) selecting or screening the population of artificially evolved sequences for
at least one desired property to produce a population of selected artificially evolved
sequences;

(c) training a neural network with the population of selected artificially

evolved sequences to produce a trained neural network; and,
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(d) predicting one or more sequences that comprise the at least one desired
property using the trained neural network.

60. A method of predicting at least one property of at least one target
polypeptide sequence, the method comprising:

(a) identifying one or more motifs common to two or more members of a
population of polypeptide sequence variants, wherein at least a subset of the
population of polypeptide sequence variants comprises the at least one property, to
produce a motif data set;

(b) correlating at least one motif from the motif data set with the at least one
property to produce a motif scoring function; and,

(c) scoring the at least one target polypeptide sequence using the motif scoring
function, thereby predicting the at least one property of the at least one target
polypeptide sequence.

61. A system for predicting at least one property of at least one target
polypeptide sequence, comprising:

() at least one computer comprising a database capable of storing sequences;
and,

(b) system software comprising one or more logic instructions for:

(i) identifying one or more motifs common to two or more members of

a population of polypeptide sequence variants, wherein at least a subset of the

population of polypeptide sequence variants comprises the at least one

property, to produce a motif data set;

(ii) correlating at least one motif from the motif data set with the at
least one property to produce a motif scoring function; and

(iii) scoring the at least one target polypeptide sequence using the
motif scoring function to predict the at least one property of the at least one
target polypeptide sequence.

62. A computer program product for predicting at least one property of at
least one target polypeptide sequence, comprising a computer readable medium
having one or more logic instructions for:

() identifying one or more motifs common to two or more members of a
population of polypeptide sequence variants, wherein at least a subset of the
population of polypeptide sequence variants comprises the at least one property, to

produce a motif data set;
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(b) correlating at least one motif from the motif data set with the at least one
property to produce a motif scoring function; and,

(c) scoring the at least one target polypeptide sequence using the motif scoring
function to predict the at least one property of the at least one target polypeptide
sequence.

63. A system for predicting sequence activities, comprising:

(a) at least one computer comprising a database capable of storing sequences;
and,

(b) system software comprising one or more logic instructions for:

(i) selecting a set of parental sequences for at least one activity to
produce a set of selected parental sequences;

(ii) subjecting the set of selected parental sequences to one or more
artificial evolution procedures to produce a set of evolved sequences;

(iii) selecting the set of evolved sequences for the at least one activity
to produce a set of selected evolved sequences;

(iv) providing a sequence-activity plot for the set of sequence variants;
and

(v) predicting at least one activity of one or more sequences from the
sequence-activity plot.

64. A computer program product for predicting sequence activities,
comprising a computer readable medium having one or more logic instructions for:

(a) selecting a set of parental sequences for at least one activity to produce a
set of selected parental sequences;

(b) subjecting the set of selected parental sequences to one or more artificial
evolution procedures to produce a set of evolved sequences;

(c) selecting the set of evolved sequences for the at least one activity to
produce a set of selected evolved sequences;

(d) providing a sequence-activity plot for the set of sequence variants; and,

(e) predicting at least one activity of one or more sequences from the
sequence-activity plot.

65. A method of producing libraries of desired sizes, the method
comprising:

(a) identifying one or more homologues of at least one initial polypeptide

sequence;
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(b) comparing the sequences of the homologue(s) and the initial polypeptide;

(c) identifying variable amino acid residues, wherein variable amino acid
residues differ with respect to residue type at corresponding positions in the sequences
of the homologue(s) and the initial polypeptide sequence;

(d) identifying a set of evolutionarily conserved variable amino acid residues;
and

(e) generating a library of protein variants incorporating the set of
evolutionarily conserved variable amino acid residues.

66.  The method of claim 65, wherein step (b) comprises using at least one
substitution matrix to identify the set of evolutionarily conserved variable amino acid
residues.

67.  The method of claim 65, wherein the library produced by the method
comprises a high average fitness as compared to the fitness of the initial polypeptide
sequence.

68.  The method of claim 65, wherein the homologues comprise a
phylogenetic family of polypeptides.

69.  The method of claim 65, further comprising screening or selecting
members of the library provided in step (¢) for one or more desired properties.

70.  The method of claim 65, further comprising repeating steps (a)-(e)
using at least one screened or selected member as the at least one initial polypeptide
in a repeated step (a).

71. A system for producing libraries of desired sizes, comprising:

(a) at least one computer comprising a database capable of storing sets of
polypeptide sequences; and,

(b) system software comprising one or more logic instructions for:

(1) identifying one or more homologues of at least one initial
polypeptide sequence from a selected evolutionary timescale;

(i) comparing the sequences of the homologue(s) and the initial
polypeptide;

(iii) identifying variable amino acid residues, wherein variable amino
acid residues differ with respect to residue type at corresponding positions in
the sequences of the homologue(s) and the initial polypeptide sequence; and

(iv) identifying a set of evolutionarily conserved variable amino acid

residues.
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73.  The system of claim 72 wherein the system software further comprises
logic instructions for:

(v)  identifying a set of oligonucleotide sequences that collectively encode
polypeptide variants of the initial polypeptide, wherein the set comprises

5  oligonucleotides that encode the set of evolutionarily conserved variable amino acid

residues.

74. A computer program product for producing libraries of desired sizes,
comprising a computer readable medium having one or more logic instructions for:

(1) identifying one or more homologues of at least one initial polypeptide

10 sequence/sequence from a selected evolutionary timescale;

(if) comparing the sequences of the homologue(s) and the initial polypeptide;

(iif) identifying variable amino acid residues, wherein variable amino acid
residues differ with respect to residue type at corresponding positions in the sequences
of the homologue(s) and the initial polypeptide sequence; and

15 (1v) identifying a set of evolutionarily conserved variable amino acid residues.
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