
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0117167 A1

EVrard et al.

US 200601 17167A1

(43) Pub. Date: Jun. 1, 2006

(54) PROCESSING ACTIVITY MASKING IN A
DATA PROCESSING SYSTEM

(76) Inventors: Christophe Justin Evrard, Letignet
(FR); Julie-Anne Francoise Marie
Pruvost, Antibes (FR)

Correspondence Address:
NIXON & VANDERHYE, PC
901 NORTH GLEBE ROAD, 11TH FLOOR
ARLINGTON, VA 22203 (US)

(21) Appl. No.: 10/527,812

(22) PCT Filed: Oct. 6, 2003

(86). PCT No.: PCT/GBO3AO4261

(30) Foreign Application Priority Data

Dec. 12, 2002 (GB)... O229068.2
Feb. 5, 2003 (GB) ... O3O2646.5

instruction
diver circuit.

enables

68

Instruction
decoder

isu ran

Feb. 5, 2003
Apr. 4, 2003

(GB)... O3O2650.7
(GB)... O307823.5

Publication Classification

(51) Int. Cl.
G06F 9/30 (2006.01)

(52) U.S. Cl. .. 712/208

(57) ABSTRACT

Within a data processing systems supporting conditional
write processing operations, a trash register is provided Such
that when non-write conditions are encountered a register
write is made to the trash register rather than the data register
specified by the conditional write operation. Thus the power
signature associated with whether or not a register write
does or does not occur is masked. The trash register activity
may be programmable enabled and disabled by a configu
ration parameter stored within a system configuration reg
ister.

mul ran
add ran auran

mul ran
add ran
sft ran
isu an
alu ran

Randon
clock
gating

70

Random
74 Clock

Control
Flags

72

Patent Application Publication Jun. 1, 2006 Sheet 1 of 11 US 2006/0117167 A1

24
26 ^

Condition Opcode Operand 1 Operand 2 Operand 3
codes

e.g. Don't execute if:
Zero,
Carry,
Overflow, etc

Compare with condition
codes from previous ..

execution F G 2

US 2006/0117167 A1 Jun. 1, 2006 Sheet 2 of 11 Patent Application Publication

|e? OO

Patent Application Publication Jun. 1, 2006 Sheet 3 of 11 US 2006/0117167 A1

instruction
driven circuit

enables

68

Instruction
decoder

mul ran
add ran .

mul ran
add ran
sft ran
isu ran
alu ran

Random
70 clock

isu ran -- gating

F.G. 5

Patent Application Publication Jun. 1, 2006 Sheet 4 of 11 US 2006/0117167 A1

> input latches

2

> Intermediate latches. s 86

e

> Output latches output latches

FIG.6

Shift register A

Fixed
clock

FIG.7

Patent Application Publication Jun. 1, 2006 Sheet 5 of 11 US 2006/0117167 A1

Enable inputs and
clock

FIG. 8

Patent Application Publication Jun. 1, 2006 Sheet 6 of 11 US 2006/0117167 A1

Data processing
registers

Dedicated dummy
registers

Register
X (new value) Write

control Shared dummy
reg. no registers

Register bank
Symmetric
Write control
from CP15
register FIG. 9

Patent Application Publication Jun. 1, 2006 Sheet 7 of 11 US 2006/0117167 A1

104 Register write required? t

N is register in range RO to
R12 or RTP

Y

is symmetric register

106

writing enabled? 110

Y

Calculate transition
balancing values

Write register

108

114

Write register

Write 3 further
registers

FIG. 10

Patent Application Publication Jun. 1, 2006 Sheet 8 of 11 US 2006/0117167 A1

am -b -Hs -o-

5

wnveO wasOO Ov-ve . wOe o i5:
O O d d V- we W- w =

Patent Application Publication Jun. 1, 2006 Sheet 9 of 11 US 2006/0117167 A1

Execute instruction
writing result to

register specified by
instruction

Execute instruction
writing result to
trash register

122

F.G. 12

US 2006/0117167 A1 Patent Application Publication Jun. 1, 2006 Sheet 10 of 11

epoo W/\ pue quoddns elleze?

Patent Application Publication Jun. 1, 2006 Sheet 11 of 11 US 2006/0117167 A1

Java bytecode received? h

ls Jazelle enabled?

Y

Does Jazelle hardware
support this bytecode? Y

Execute bytecode. Execute bytecode
in software in hardware

142 146

138

140

F.G. 14

US 2006/01 17167 A1

PROCESSING ACTIVITY MASKING IN ADATA
PROCESSING SYSTEM

0001. This invention relates to the field of data processing
systems. More particularly, this invention relates to the
masking of processing activity within data processing sys
tems, for example, in order to increase security.

0002. It is known to provide data processing systems
which manipulate secure data and for which it is desirable to
ensure a high degree of security. As an example, it is known
to provide Smart cards which include a data processing
system which manipulates secure data, Such as secret cryp
tographic keys, and this data must be kept secret in order to
prevent fraud.

0003 Known ways of attacking the security of such
systems include timing analysis and power analysis. By
observing the tiling behaviour and/or the power consump
tion behaviour of Such a system in response to inputs,
information concerning the processing being performed and
the data being manipulated can be determined in a way that
can compromise security. It is strongly advantageous to
provide resistance against Such security attacks.

0004 Viewed from one aspect the present invention
provides apparatus for processing data, said apparatus com
prising:

0005 a result data value generating circuit operable to
generate a result data value upon execution of a data
processing operation; and

0006 a data processing register to which said result data
value is written; wherein

0007 at least one data processing operation executed by
said result data generating circuit is a conditional write data
processing operation for which a result data value is not
written to said data processing register when non-write
conditions are met; and further comprising

0008 a trash register to which a result data value may be
written upon execution of said conditional write data pro
cessing operation when said non-write conditions are met.

0009. This invention recognises that there is a character
istic power consumption signature associated with a write to
a data processing register and accordingly information con
cerning the data processing being performed in association
with conditional write data processing operations can be
externally observed, i.e. information upon whether or not the
conditional write did or did not occur. The invention address
this problem by providing a trash register to which a result
value (which is preferably the true value) is written when the
conditional write data processing operation meets its non
write conditions and a write would not otherwise occur.
Accordingly, a write to a register whether the true register or
the trash register, always occurs irrespective of whether or
not the write conditions or non-write conditions are met and
thus the security of this system is enhanced.

0010. The data register to which the write is normally
made when the write conditions are met is preferably part of
a register bank containing a plurality of Such registers. In
this circumstance, a common trash register(s) may be used
for dummy writes irrespective of how many real data
registers are provided within the register bank.

Jun. 1, 2006

0011 Preferably, the trash register is physically located
as part of the register bank So as to avoid leakage of
information by observing which part of a circuit is active at
any given time.

0012 Whilst the present technique is applicable to a wide
variety of systems, such a microprocessor based systems,
digital signal processing system and the like, the invention
is particularly well Suited to systems including a processor
core responsive to data processing instructions as these often
incorporate conditional write instructions which give rise to
the potential vulnerability addressed by this technique.

0013. It will be appreciated that a conditional write
operation may be arranged to either occur or not occur when
particular conditions are met.

0014. It will be appreciated that the normal technical
prejudice in this field is to reduce power consumption as
much as possible. Accordingly, it would conventionally be
considered that not performing a register write when a
conditional write operation did not require one would be an
advantageous feature since it would reduce the amount of
power consumed. The present technique moves against this
technical prejudice in the field by deliberately performing a
trash register write and consuming power even though this
is not required for the real processing activities of the
system.

0015. In preferred embodiments of the invention the trash
register activity can be selectively enabled and disabled
depending upon a control signal stored in a system configu
ration register. This allows programmable activity of the
trash register activity Such that power can be saved by
disabling this feature when non secure processing is taking
place and yet security improved when required, such as
when handling cryptographic keys, decoding passwords etc.

0016. As mentioned above, whilst the trash register may
be physically located within the register bank with the
normal data registers, in preferred embodiments the trash
register is unmapped to a register number Such that it cannot
be specified by any program instruction and accordingly is
invisible as a register from the programmer's model point of
view. The trash register is however visible in the sense that
its activity can be enable or disabled in preferred embodi
ments by a configuration parameter.

0017 Viewed from another aspect the present invention
provides a method of processing data, said method com
prising the steps of

0018 generating a result data value upon execution of a
data processing operation, at least one data processing
operation executed being a conditional write data processing
operation, wherein

0019 a result data value is not written to a data process
ing register when non-write conditions are met but is instead
written to a trash register.

0020 Embodiments of the invention will now be
described, by way of example only, with reference to the
accompanying drawings in which:

0021 FIG. 1 schematically illustrates a data processing
system operable in a fixed timing mode and a variable timing
mode;

US 2006/01 17167 A1

0022 FIG. 2 schematically illustrates a conditional pro
gramming instruction;
0023 FIG. 3 is a flow diagram schematically illustrating
part of the processing operations performed by an instruc
tion decoder operating in accordance with the present tech
niques;

0024 FIG. 4 schematically illustrates the execution of a
conditional branch instruction in a fixed timing mode;
0.025 FIG. 5 is a diagram schematically illustrating a
data processing system including multiple circuit portions
which may be selectively enabled to perform required
processing operations or dummy processing operations;

0026 FIG. 6 schematically illustrates a circuit portion
and its associated dummy activity enabling circuit which
may be responsive to both required enable signals and
random dummy activity enable signals;

0027 FIG. 7 schematically illustrates a linear shift back
feed register which may be used as a pseudo-random signal
generator:

0028 FIG. 8 is a flow diagram schematically illustrating
control of a circuit portion to perform required processing
activity and dummy processing activity;

0029 FIG. 9 schematically illustrates a portion of a
register bank including multiple data processing registers,
multiple dummy registers, multiple shared dummy registers
and a non-mapped trash register RT to which a dummy
register write is made when a conditional write operation
fails its condition codes;

0030 FIG. 10 is a flow diagram schematically illustrat
ing a register write controlling circuit which seeks to balance
the number of high to low and low to high transitions
occurring when a register write occurs;

0031 FIG. 11 is a table illustrating the relationships
between bit transitions for a particular bit within the data
register and three further registers which are configured to
balance the high to low and low to high transitions occurring
in association with a register writet;

0032 FIG. 12 is a flow diagram schematically illustrat
ing control of writing to a trash register on a condition code
fail of a write operation;

0033 FIG. 13 is a diagram schematically illustrating a
system having multiple execution mechanisms for an
instruction and pseudo random selection of the execution
mechanism employed for at least Some instructions; and

0034 FIG. 14 is a flow diagram schematically illustrat
ing control of the system of FIG. 13.

0035 FIG. 1 illustrates a data processing system 2
including a processor core 4, a coprocessor 6 and a memory
8.

0036). In operation, the processor core 4 fetches instruc
tions and data from the memory 8. The instructions are fed
to an instruction pipeline 10 where they occupy Successive
pipeline stages Such as, for example, fetch, decode, execute,
memory and write back on Successive processing cycles.
Pipelined processors are in themselves well known as a way

Jun. 1, 2006

of effectively executing a number of program instructions in
a partially overlapping fashion in order to improve processor
performance.
0037. The data values read from the memory 8 by the
processor core 4 are Supplied to a register bank 12 from
where they may be manipulated under program instruction
control using one or more of a multiplier 14, a shifter 16 and
an adder 18. Other data manipulating circuits may be
provided. Such as circuits performing logical operations,
Such as ANDs, Ors, count leading Zeros etc.
0038 FIG. 1 also illustrates an instruction decoder 20
within the processor core 4 which is responsive to a program
instruction within the instruction pipeline 10 to generate
execution control signals that are applied to the various
processing elements, such as the register bank 12, the
multiplier 14, the shifter 16 and the adder 18 in order to
control the data processing operations performed. As an
example, the control signals generated by the decoder 20
may cause the appropriate operands to be read from the
register bank 12 and Supplied and acted upon by the appro
priate ones of the multiplier 14, the shifter 16 and the adder
18 so as to generate a result which is written back into the
register bank 12.
0039 The coprocessor 6 is a system configuration copro
cessor containing a number of configuration registers 22
which may be written under program control to set up
configuration controlling parameters. These configuration
controlling parameters can specify many aspects of the
configuration of the processing system 2. Such as for
example the endianess and the like. Included within one of
these configuration controlling registers 22 is a bit which
specifies whether or not the processor core should operate in
a fixed timing mode or a variable timing mode. This bit is
illustrated as being Supplied as an input to the instruction
decoder 20, but it will be appreciated that this bit may also
be supplied to various other points within the processor core
4 as required to control their behaviour. In dependence upon
this fixed/variable bit, the processor core 4 operates in either
a fixed timing mode or a variable timing mode. When in the
fixed timing mode at least one program instruction which
has a variable timing (i.e. takes a variable number of
processing cycles to complete) in the variable timing mode,
is instead forced to have a fixed timing (e.g. take the
maximum possible number of processing cycles to complete
irrespective of whether or not it could have been suppressed
in its entirety or completed in less than the maximum
number of processing cycles. As the instruction decoder 20
is primarily responsible for decoding the program instruc
tions and instructing the activity of the other elements of the
processor core 4, the instruction decoder 20 can take the
major role in controlling the processor core 4 to either
operate in the fixed timing mode or the variable timing
mode. Not all variable timing instruction need be provided
with a fixed timing mode type of operation.
0040. It will be appreciated that in the above description
a single bit in the configuration controlling register 22 is
shown as Switching between fixed and variable timing
modes. Alternatively, multiple bits within the configuration
controlling register 22 may be provided to separately enable
and disable the fixed or variable timing behaviour of differ
ent types of instruction, Such as conditional instruction
behaviour, uniform branch behaviour, disabling early termi
nate, etc.

US 2006/01 17167 A1

0041 FIG. 2 schematically illustrates a conditional
instruction 24. This conditional instruction may be part of an
instruction set which includes only some conditional instruc
tions or part of an instruction set, such as the ARM instruc
tion set, which is substantially fully conditional. The con
dition codes 26 encode a set of processor state conditions in
which the associated instruction either will or will not be
executed. As an example, the condition codes 26 can be
arranged to specify that the instruction 24 will not execute
if the condition codes currently set in the system indicate a
Zero result, a carry has occurred, an overflow has occurred
or the like. This type of instruction can be utilised to provide
efficient program coding. The fixed/variable bit at least
partially Suppresses the conditional behaviour in that the
instruction will execute irrespective of its condition codes,
but may not write its result in a way that has an effect upon
the processor state.
0.042 FIG. 3 is a flow diagram schematically illustrating
part of the processing operations performed by the instruc
tion decoder 20. It will be appreciated that FIG. 3 illustrates
these processing operations as a logical sequence, whereas
in practice these processing operations may be performed at
least partially in parallel or in a different order.
0043. At step 28, the instruction decoder 20 waits for a
new instruction to execute. When a new instruction is
received processing proceeds to step 30 at which the con
dition codes associated with the new instruction are read. At
step 32 these condition codes are compared with the cur
rently existing condition codes in the system. These condi
tion codes currently existing in the system are the result of
previous processing activity, either in the immediately pre
ceding instruction or in the last instruction which would
have updated those condition codes.
0044) At step 34, a check is made for a match between the
condition codes 26 of the current instruction being executed
and the existing condition codes. If a match does not occur,
then processing proceeds to step 36 where execution of the
current instruction is started. It will be appreciated that FIG.
3 illustrates a system in which execution occurs when a
match does not occur, but alternative embodiments could
equally well be ones in which execution occurs when a
match occurs.

0045. Following step 36, processing proceeds to step 38
where a check is made as to whether or not early termination
of the instruction is possible. This early termination may, for
example, be because one of the operands has a particular
value. Such as Zero or unity, or on Subsequent processing
cycles that a particular partial result has been produced. If
early termination is possible, then processing proceeds to
step 40 where a check is made as to whether or not the
processor core 4 is currently operating in the fixed or
variable timing mode. If the processor is in the variable
timing mode, then processing proceeds to step 42 and the
instruction concerned is early terminated with the result
being returned as appropriate and processing returns to step
28.

0046) If the determination at step 40 is that the system is
in the fixed timing mode, then processing proceeds to step
44 irrespective of the fact that early termination is possible.
Step 44, which may also be reached by a determination at
step 38 that early termination is not possible, executes the
instruction concerned for one processing cycle. In the case

Jun. 1, 2006

of a multicycle processing instruction, such as a multipli
cation, a divide, an add or a Subtraction, these typically take
several cycles to execute and so after step 44 processing
proceeds to step 46 at which a determination is made as to
whether or not the maximum number of cycles associated
with that instruction has yet been performed. If the maxi
mum number of cycles has been performed, then the result
will have been generated. If early termination was possible
and the system was being forced to continue to execute for
further processing cycles, then step 46 will still indicate that
this forced execution should cease when the maximum
possible number of processing cycles for that type of
instruction has been reached. If the maximum number of
processing cycles has not yet been performed, then process
ing is returned to step 38.

0047. If the match tested for at step 34 was positive, then
processing proceeds to step 48. In this example, the positive
detection of a match at step 34 indicates that execution of the
particular instruction should be suppressed. Step 48 deter
mines whether or not the system is currently in the forced
execution mode. If in the forced execution mode, then
processing proceeds to step 50 where a forced dummy
execution of the instruction will occur. When dummy execu
tion is performed the result is written to a trash register (see
trash register 51 in FIG. 1), rather than the destination
specified in the instruction itself so as to prevent the state of
the system being modified by a program instruction which
should not have executed as it should have been suppressed
whilst also keeping a Substantially unaltered power con
sumption. If at step 48 the determination is that the system
is not in the forced execution mode but is in the variable
timing mode, then processing bypasses step 50 and returns
to step 28 with the program instruction being Suppressed in
the normal way.

0.048. It will be appreciated that FIG. 3 illustrates a
generic system in which dummy execution is applied to all
condition code failed instructions and all early termination
of instructions is suppressed. In practice, it is also possible
for these techniques to be applied to a subset of conditional
instructions and instructions capable of early termination.
The multiple configuration controlling bits mentioned above
could be used to selectively turn on features such as early
terminate Suppression, but not others, such as dummy execu
tion following a condition code fail.

0049 FIG. 4 schematically illustrates the execution of a
conditional branch instruction in the fixed timing mode. A
sequence of instructions AB are executed until a conditional
branch instruction BEQ (branch upon equal) is reached. This
instruction encodes the behaviour that the specified branch
will be performed if the flag indicating an equal result from
previous processing is set and will be suppressed if this flag
is not set. When the condition codes are passed, i.e. a
condition code match, then the branch is taken and process
ing proceeds to instructions X, Y, etc. If the condition codes
fail, then instead of being suppressed in its entirety, the BEQ
instruction performs a branch to the immediately following
instruction C. This is the same instruction which would have
been reached if the BEQ instruction had been suppressed
and not executed at all. However, in the fixed timing mode,
the BEQ will have executed consuming the same number of
processing cycles irrespective of whether or not the condi
tion codes were passed or failed. This helps obscure the

US 2006/01 17167 A1

results of data processing operations previously performed
from a person trying to gain access to secure data.

0050 FIG. 5 schematically illustrates a data processing
system 52 in the form of a programmable processor core
which responds to program instructions I and manipulates
data D. The data processing system 52 includes a register
bank 54, a multiplier 56, a shifter 58, an adder 60, and
arithmetic logic unit 62, a load store unit 64, a data pipeline
66, and instruction decoder 68 and a random clock gating
circuit 70. A system configuration coprocessor CP1572 is
coupled to the processor core. The system configuration
coprocessor 72 includes a system configuration register 74
holding multiple flag values which respectively serve to
enable or disable the pseudo random dummy activity of
different circuit portions of the data processing system 52. It
will be appreciated that the data processing system 52 will
typically include many more circuit elements, but these have
been omitted for the sake of clarity from FIG. 5.
0051 Associated with the multiplier 56 is a dummy
activity enable circuit 76 which serves to enable dummy
activity in the multiplier 56 as appropriate or alternatively
pass the required activity enable signals to activate the
multiplier 56 when the program instruction being executed
so requires. Similar dummy activity enables circuits 78. 80,
82, 84 are associated with the respective other circuit
portions 58, 60, 62, 64 previously mentioned.

0.052 In operation, instructions to be executed are to be
passed to the instruction pipeline 66 and on to the instruction
decoder 68 to generate instruction driven enable signals
which are applied to respective circuit portions. These
enable signal serve to select the data path through the data
processing system 52 and to activate the circuit portions
concerned to read their inputs, to perform the specified
processing and to generate their associated output signals.
As an example, a multiplier-accumulate operation might
read data values from the register bank 54, apply these to the
multiplier 56 and adder 60 and then write back the result to
the register bank 54. Thus, the register bank 54, the multi
plier 56 and the adder 60 would all be subject to required
activity enable signals which both enabled their operation
and selected them to form a complete data path. The
different circuit portions have different power consumption
characteristics and timing characteristics such that external
observation could reveal which instruction were being
executed by observing Such parameters. Accordingly,
pseudo random dummy activity of the other circuit portions
not required for the instruction being executed is also
enabled. Thus, even though the shifter 58 may not being
used by the particular multiplier accumulate instruction
being executed, it may nevertheless be pseudo randomly
enabled such that it will consume power by shifting what
ever value is applied to its input. Its output latches will not
be enabled to avoid this dummy activity altering the circuit
state an undesired way which may interfere with required
operation e.g. Some circuit portions might assume persis
tence of output values. The dummy activity is enabled for
time periods matching the normal operation timings for the
circuit portions concerned.

0053. The random clock gating circuit 70 serves to
receive a plurality of pseudo random enable signals for
different respective circuit portions and gate these for apply
ing to respective circuit portions under the control of con

Jun. 1, 2006

figuration parameters read from the system configuration
register 74 within the system configuration coprocessor 72.
These configuration flags may indicate that dummy activity
should be enabled for the shifter 58, ALU 62 and multiplier
56, but not for the adder 60 or the load store unit 64. The
different pseudo random enable signals allow different
pseudo random characteristics to be applied in a manner that
can match these respective circuit portion concerned. As an
example, there may a different minimum enable time asso
ciated with the normal timing of the different circuit por
tions.

0054 At an overall level, it will be seen that the instruc
tion decoder 68 will serve as a required activity enabling
circuit which will enable the circuit portions required to
perform the data processing operation specified by the
instruction currently being executed. Superimposed upon
this required activity, various dummy activities within the
other circuit portions will be enabled/stimulated by the
dummy activity control circuitry provided in various places
in the rest of the data processing system 52. The dummy
activity serves to mask the power consumption and timing
characteristics associated with the required activity.
0.055 FIG. 6 schematically illustrates a circuit portion 86
which may be subject to both a required enable signal en and
a dummy enable signal rind. This circuit portion 86 can be
considered as a sequence of latches between which process
ing logic manipulates data values. When genuine required
activity is necessary, all of the latches that provide a data
path through the circuit portion 86 are enabled and the
required processing will be performed between the input
latches and the output latches. When dummy activity is
instructed, then only the input latches and the intermediate
latches are enabled. Thus, a data path is not provided
through the full circuit portion and the output values gen
erated by that circuit portion are not altered.

0056 FIG. 7 illustrates a linear feedback shift register of
the type which may be used to generate pseudo random
clock signal. These clock signals can be provided to the
random clock dating circuit 72 of FIG. 5. Separate pseudo
random signal generators may be provided for the different
circuit portions. The fixed clock frequency associated with
the different pseudo random generators may be altered so as
to match the characteristics of the circuit portion concerned
and further obscure the masking operation as required.

0057 FIG. 8 schematically illustrates the control of an
enable signal for a circuit portion. At step 88 a determination
is made as to whether or not an enable signal en has been
received from the instruction decoder 68. If such an enable
signal has been received, then processing passes to step 90.
An enable signal from the instruction decoder 68 indicates
that required processing operation is necessary in accor
dance with a genuine program instruction being decoded.
Thus, step 90 enables the input, output and clock signal to
the circuit portion concerned. Ifat step 88 no enable signal
en is received from the instruction decoder, then processing
passes to step 92 where a determination is made as to
whether or not dummy operation of that circuit portion is
permitted. If dummy operation is permitted, then processing
proceeds to step 94 at which the inputs and clock to the
circuit portion are enabled, but the outputs from the circuit
portion are not enabled. The circuit portion then undertakes
dummy activity. If the determination at step 92 was that

US 2006/01 17167 A1

dummy operation was not permitted, as indicated by the
system configuration parameter(s), then processing termi
nates by passing to step 94.

0.058 It will be appreciated that the process illustrated in
FIG. 8 is in the form of a sequential flow diagram. In
practice, this control may be performed in a different
sequence and use circuit elements spread throughout the
data processing system 52. The operations illustrated as
being sequentially performed may in fact be performed in
parallel or the control functions modified. At an overall level
an individual circuit portion will be enabled to perform its
normal required operation in response to an appropriate
program instruction and will be enabled to perform dummy
activity when permitted by the associated configuration
parameter.

0059 FIG.9 schematically illustrates a register bank 96.
This register bank is based upon the ARM processor pro
grammer's model for user mode operation in accordance
with processors designed by ARM Limited, Cambridge,
England). In practice, further registers may be provided for
other processor modes, but these have been omitted for the
sake of clarity. The normal data registers R0 to R15 are
provided for holding data values. The registers R13, R14 and
R15 typically serve to store the program counter value, the
branch return address value and the stack pointer, which tend
to be none security related data values. Accordingly, tran
sition balancing upon data writes is not necessary for R13.
R14 and R15. A trash register RT is provided within the
register bank 96 for use in association with conditional
writes which fail their condition codes thus, a conditional
write instruction which fails its condition code would not
normally make any write. However, with this system such a
failed conditional write instruction nevertheless writes a data
value to the trash data register RT even though the condition
codes have failed. This masks any difference in power
consumption or timing that might be associated with con
dition code failure or condition code passing of a conditional
write operation. The trash data register RT does not appear
in the programmer's model in a way that enables it to be
addressed with a register specifying operand within an
instruction.

0060. As well as the trash data register RT, further
registers 98, 100 are also provided for the purpose of
balancing the high to low and low to high transitions.
Dedicated dummy registers 98 are provided in respect of the
data registers R0 to R12 as well as the trash data register RT.
Shared dummy registers 100 are provided for storing an
exclusive OR value as well as the inverse of the exclusive
OR value in response to each write to a data register subject
to the transition balancing technique. A register write control
circuit 102 serves to generate the appropriate data values to
be written to the further registers 98, 100 in response to a
data value write to a data register. This symmetric write
control is selectively enabled and disabled by an appropriate
system configuring controlling flag signal from the system
configuring coprocessor 72.

0061 FIG. 10 is a flow diagram schematically illustrat
ing the operation of the register write control circuit 102. At
step 104 the circuit waits for a register write operation to be
instructed. Step 106 determines whether this register write is
to one of the data registers or the trash data registers RT for
which the symmetric write control system is applied. If the

Jun. 1, 2006

register write is not to Such a register, then processing
proceeds to step 108 and a simple write of the required data
value X is made to one of the registers R13, R14 and R15.
0062) If the register to which the write is being made is
potentially subject to symmetric register writing then step
110 serves to determine whether or not this feature is
currently enabled. If this feature is not currently enabled,
then processing proceeds to step 108. If this feature is
enabled, then processing proceeds to step 112.

0063 At step 112, the register controls circuit calculates
for each bit position within the data value a value being the
inverse exclusive OR of the current bit being written at that
position and the previously stored bit at that position which
is then exclusive Ored with the previously stored dummy
register value for that bit position (see FIG. 11). The register
control circuit 102 also calculates the inverse of the deter
mination as well the inverse of the bit being written as the
data value to the data register. These values are calculated
for all of the bits being written (e.g. 3 dummy 32-bit values).

0064. At step 114 the data value is written to the data
register in a similar manner to step 108. At step 116 the three
further values determined for each bit position within the
registers concerned are written to the three further registers.
Steps 114 and 116 take place simultaneously. As will be
discussed in relation to FIG. 11, this results in a balance
number of high to low and low to high transitions and thus
power consumed.

0065 FIG. 11 illustrates a table of possible bit values
before and after a data write operation. The data value is
being written to a register Rn, which is a register to which
the symmetric write operation function is applied. The
values at time t and time t+1 are illustrated. The inverse of
these values is simply determined. Each of the data registers
Subject to this symmetric operation is provided with a
dedicated dummy register 98 which stores the inverse of the
data value currently held in the data register.

0066. The shared dummy registers 100 are indicated in
FIG. 11 as registers Rd. For each bit position on within the
shared dummy register Rd the new value to be written at that
bit position when a data write occurs is determined by the
function shown at the bottom of FIG. 11. This function
ensures that when a change does not occur in the data value
and the inverse of the data value, then a change is guaranteed
to occur in the corresponding bit within the shared dummy
register and accordingly its inverse. The table shows the
changes in the shared dummy register values which occur
when the data value does not change and the shared values
in the dummy register values not changing when the data
value does change. Thus, there is a guaranteed fixed number
of transitions for every write, i.e. a balanced equal number
of transitions high to low and low to high.
0067 FIG. 13 is a flow diagram illustrating the action of
the dummy data register RD to provide writes when a write
operation fails its condition code(s). At step 118 the control
logic waits for an instruction to be received. This control
logic may be the instruction decoder 68 or other logic. Step
120 determines whether or not the instruction failed its
condition codes. If the instruction does not fail its condition
code, then it is normally executed at step 122 and makes its
write to the register specified by the register operand within
that instruction. If the instruction does fail its condition

US 2006/01 17167 A1

codes, then processing proceeds to step 124 at which a
determination is made as to whether or not dummy data
register writes are enabled. If these are not enabled, then
processing terminates. If dummy data register writes are
enabled, then processing proceeds to step 126 at which a
write of the data value calculated by the condition code
failed instruction is written to the trash data register RT even
though the condition codes failed. This balances the power
consumption and timing irrespective of a condition code
pass or a condition code fail. It will be appreciated that the
trash data register RT is also subject to the transition
balancing mechanisms previously discussed.
0068 FIG. 13 illustrates a data processing system 128 in
which multiple instruction execution mechanisms are pro
vided for at least some instructions. The data processing
system 128 is one which supports the native execution of at
least o Some Java bytecode instructions. This type of data
processing system and native execution is described in
published PCT Patent Application Number WO-A-02/
29555. The disclosure of this published application as a
whole and in respect of the native hardware execution and
selective software emulation of more complex Java byte
codes in particular is incorporated here in by reference.
0069. The Java bytecode decoder 130 may be selectively
enabled and disabled by an input signal. When the Java
bytecode decoder 130 is disabled a received Java bytecode
will trigger an exception which starts execution of software
emulation code for handling Java bytecodes using the native
ARM Thumb instruction sets. This support code is stored
within memory in area 132 as illustrated. The Java bytecode
program 134 is also stored within memory. When it is
desired to obscure the nature of the Java program execution,
the Java bytecode decoder 130 may be subject to a pseudo
random signal which selectively enables and disables this
element so as to effectively switch the instruction execution
mechanism for the Java bytecodes between a mixed hard
ware and emulation execution mechanism and a purely
emulation mechanism. Configuration controlling values
within a system configuration register 136 specify whether
or not the Java decoder 130 is present and whether or not
random enabling and disabling of this Java decode 130 is
permitted.
0070 FIG. 14 schematically illustrates the handling of a
received Java bytecode. At step 138 a Java bytecode is
received. Step 140 determines whether or not the Java
decoder 130 is enabled. The pseudo random enabling and
disabling of the Java decoder 130 effectively causes a branch
to either step 142 at which the bytecode is always emulated
or an attempt to execute the instruction in hardware at step
146. This obscures/masks the power signature associated
with Java bytecode execution. If the determination at step
146 is that the particular Java bytecode concerned is not
supported by the Java decoder 130, then this Java bytecode
will also be emulated in software at step 142. However, if the
Java bytecode is Supported in hardware, then it is executed
in hardware at step 146.

1. Apparatus for processing data, Said-apparatus compris
ing:

a process core (4) operable to execute data processing
instructions to generate result data values; and

Jun. 1, 2006

data processing registers (12) holding data values defining
state of said processor core to which said result data
values are written; wherein

at least one data processing instruction executed by said
processor core is a conditional write data processing
instruction encoding condition codes (26) specifying
conditions under which said conditional write data
processing instruction will or will not be permitted to
write data to effect a change in state of said processor
core: and further comprising

a trash register (51) to which a result data value may be
written instead of a data processing register upon
execution of said conditional write data processing
instruction when said condition codes within said con
ditional write data processing instruction do not permit
a write to effect a change in State of said processor core.

2. Apparatus as claim in claim 1, comprising a register
bank (12) having a plurality of data registers to which result
data values are written.

3. Apparatus as claimed in claim 1, wherein writing to
said trash register (51) is programmably disabled by a trash
register control signal.

4. Apparatus as claimed in claim 3, wherein said trash
register control signal is stored in a system configuration
register.

5. Apparatus as claimed in claim 2, wherein said trash
register (51) is part of said register bank, said trash register
being unmapped to a register number Such that said trash
register may not be specified by a register specifying oper
and value.

6. A method of processing data, said method comprising
the steps of:

generating result data values upon execution by a proces
Sor core (4) of data processing instructions, at least one
data processing instruction executed being a condi
tional write data processing instruction encoding con
dition codes (26) specifying conditions under which
said conditional write data processing instruction will
or will not be permitted to write data to effect a change
in state of said processor core and wherein

a result data value is not written to a data processing
register holding a data value defining state of said
processor core when condition codes within said con
dition write data processing instruction do not permit a
write to effect a change in state of said processor core
but is instead written to a trash register (51).

7. A method as claimed in claim 6, wherein said data
processing register is part of a register bank (12) having a
plurality of data registers to which result data values are
written.

8. A method as claimed in claim 6, wherein writing to said
trash register (51) is programmable disabled by a trash
register control signal.

9. A method as claimed in claim 8, wherein said trash
register control signal is stored in a system configuration
register.

10. A method as claimed in claim 7, wherein said dummy
register is part of said register bank, said trash register being
unmapped to a register number Such that said trash register
may not be specified by a register specifying operand value.

k k k k k

